Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Make MEM_IntReal a completely independent type, meaning a floating point value stored as an integer. This fixes a problem with arithmetic within arguments to string functions on indexes of expressions. But it is a big change and needs lots of new testcase() macros for MC/DC and so it is initially put on this branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | int-real |
Files: | files | file ages | folders |
SHA3-256: |
dba836e31cb29d339b4520acb06188a8 |
User & Date: | drh 2019-05-02 21:36:26.172 |
Context
2019-05-03
| ||
17:08 | Improved comments on the elements of the array constant used to implement the sqlite3_value_type() interface. (check-in: f73a7de7a5 user: drh tags: int-real) | |
2019-05-02
| ||
21:36 | Make MEM_IntReal a completely independent type, meaning a floating point value stored as an integer. This fixes a problem with arithmetic within arguments to string functions on indexes of expressions. But it is a big change and needs lots of new testcase() macros for MC/DC and so it is initially put on this branch. (check-in: dba836e31c user: drh tags: int-real) | |
17:45 | Ensure that the typeof() function always returns SQLITE_FLOAT for floating point values even when the value is stored as an integer to save space. (check-in: 48889530a9 user: drh tags: trunk) | |
Changes
Changes to src/vdbe.c.
︙ | ︙ | |||
291 292 293 294 295 296 297 | ** point or exponential notation, the result is only MEM_Real, even ** if there is an exact integer representation of the quantity. */ static void applyNumericAffinity(Mem *pRec, int bTryForInt){ double rValue; i64 iValue; u8 enc = pRec->enc; | | | 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | ** point or exponential notation, the result is only MEM_Real, even ** if there is an exact integer representation of the quantity. */ static void applyNumericAffinity(Mem *pRec, int bTryForInt){ double rValue; i64 iValue; u8 enc = pRec->enc; assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ pRec->u.i = iValue; pRec->flags |= MEM_Int; }else{ pRec->u.r = rValue; pRec->flags |= MEM_Real; |
︙ | ︙ | |||
348 349 350 351 352 353 354 | }else if( affinity==SQLITE_AFF_TEXT ){ /* Only attempt the conversion to TEXT if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. It would be harmless to repeat the conversion if ** there is already a string rep, but it is pointless to waste those ** CPU cycles. */ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ | | | | 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | }else if( affinity==SQLITE_AFF_TEXT ){ /* Only attempt the conversion to TEXT if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. It would be harmless to repeat the conversion if ** there is already a string rep, but it is pointless to waste those ** CPU cycles. */ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ sqlite3VdbeMemStringify(pRec, enc, 1); } } pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); } } /* ** Try to convert the type of a function argument or a result column ** into a numeric representation. Use either INTEGER or REAL whichever ** is appropriate. But only do the conversion if it is possible without |
︙ | ︙ | |||
391 392 393 394 395 396 397 | /* ** pMem currently only holds a string type (or maybe a BLOB that we can ** interpret as a string if we want to). Compute its corresponding ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields ** accordingly. */ static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ | | | | | 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | /* ** pMem currently only holds a string type (or maybe a BLOB that we can ** interpret as a string if we want to). Compute its corresponding ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields ** accordingly. */ static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); ExpandBlob(pMem); if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ return 0; } if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){ return MEM_Int; } return MEM_Real; } /* ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or ** none. ** ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. ** But it does set pMem->u.r and pMem->u.i appropriately. */ static u16 numericType(Mem *pMem){ if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); } if( pMem->flags & (MEM_Str|MEM_Blob) ){ return computeNumericType(pMem); } return 0; } |
︙ | ︙ | |||
510 511 512 513 514 515 516 | static void memTracePrint(Mem *p){ if( p->flags & MEM_Undefined ){ printf(" undefined"); }else if( p->flags & MEM_Null ){ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ printf(" si:%lld", p->u.i); | | | 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | static void memTracePrint(Mem *p){ if( p->flags & MEM_Undefined ){ printf(" undefined"); }else if( p->flags & MEM_Null ){ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ printf(" si:%lld", p->u.i); }else if( (p->flags & (MEM_IntReal))!=0 ){ printf(" ir:%lld", p->u.i); }else if( p->flags & MEM_Int ){ printf(" i:%lld", p->u.i); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( p->flags & MEM_Real ){ printf(" r:%g", p->u.r); #endif |
︙ | ︙ | |||
1626 1627 1628 1629 1630 1631 1632 | MemSetTypeFlag(pOut, MEM_Int); #else if( sqlite3IsNaN(rB) ){ goto arithmetic_result_is_null; } pOut->u.r = rB; MemSetTypeFlag(pOut, MEM_Real); | | | 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 | MemSetTypeFlag(pOut, MEM_Int); #else if( sqlite3IsNaN(rB) ){ goto arithmetic_result_is_null; } pOut->u.r = rB; MemSetTypeFlag(pOut, MEM_Real); if( ((type1|type2)&(MEM_Real|MEM_IntReal))==0 && !bIntint ){ sqlite3VdbeIntegerAffinity(pOut); } #endif } break; arithmetic_result_is_null: |
︙ | ︙ | |||
1797 1798 1799 1800 1801 1802 1803 | ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; | | | 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 | ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ sqlite3VdbeMemRealify(pIn1); } break; } #endif #ifndef SQLITE_OMIT_CAST |
︙ | ︙ | |||
1989 1990 1991 1992 1993 1994 1995 | break; } }else{ /* Neither operand is NULL. Do a comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity>=SQLITE_AFF_NUMERIC ){ if( (flags1 | flags3)&MEM_Str ){ | | | | > | > | 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 | break; } }else{ /* Neither operand is NULL. Do a comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity>=SQLITE_AFF_NUMERIC ){ if( (flags1 | flags3)&MEM_Str ){ if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn1,0); assert( flags3==pIn3->flags ); /* testcase( flags3!=pIn3->flags ); ** this used to be possible with pIn1==pIn3, but not since ** the column cache was removed. The following assignment ** is essentially a no-op. But, it provides defense-in-depth ** in case our analysis is incorrect, so it is left in. */ flags3 = pIn3->flags; } if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3,0); } } /* Handle the common case of integer comparison here, as an ** optimization, to avoid a call to sqlite3MemCompare() */ if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } res = 0; goto compare_op; } }else if( affinity==SQLITE_AFF_TEXT ){ if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_Real ); testcase( pIn1->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pIn1, encoding, 1); testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); assert( pIn1!=pIn3 ); } if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_Real ); testcase( pIn3->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pIn3, encoding, 1); testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); } } assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); |
︙ | ︙ | |||
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 | assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); assert( memIsValid(pIn1) ); applyAffinity(pIn1, zAffinity[0], encoding); if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ /* When applying REAL affinity, if the result is still MEM_Int, ** indicate that REAL is actually desired */ pIn1->flags |= MEM_IntReal; } REGISTER_TRACE((int)(pIn1-aMem), pIn1); zAffinity++; if( zAffinity[0]==0 ) break; pIn1++; } break; | > | 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 | assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); assert( memIsValid(pIn1) ); applyAffinity(pIn1, zAffinity[0], encoding); if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ /* When applying REAL affinity, if the result is still MEM_Int, ** indicate that REAL is actually desired */ pIn1->flags |= MEM_IntReal; pIn1->flags &= ~MEM_Int; } REGISTER_TRACE((int)(pIn1-aMem), pIn1); zAffinity++; if( zAffinity[0]==0 ) break; pIn1++; } break; |
︙ | ︙ | |||
3983 3984 3985 3986 3987 3988 3989 | assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 || CORRUPT_DB ); /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; | | | | 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 | assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 || CORRUPT_DB ); /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3, 0); } iKey = sqlite3VdbeIntValue(pIn3); /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ VdbeBranchTaken(1,2); goto jump_to_p2; break; } |
︙ | ︙ | |||
4375 4376 4377 4378 4379 4380 4381 | case OP_SeekRowid: { /* jump, in3 */ VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; pIn3 = &aMem[pOp->p3]; | | | 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 | case OP_SeekRowid: { /* jump, in3 */ VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ /* Make sure pIn3->u.i contains a valid integer representation of ** the key value, but do not change the datatype of the register, as ** other parts of the perpared statement might be depending on the ** current datatype. */ u16 origFlags = pIn3->flags; int isNotInt; applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
262 263 264 265 266 267 268 | SQLITE_NULL, /* 0x19 */ SQLITE_FLOAT, /* 0x1a */ SQLITE_NULL, /* 0x1b */ SQLITE_INTEGER, /* 0x1c */ SQLITE_NULL, /* 0x1d */ SQLITE_INTEGER, /* 0x1e */ SQLITE_NULL, /* 0x1f */ | | | 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | SQLITE_NULL, /* 0x19 */ SQLITE_FLOAT, /* 0x1a */ SQLITE_NULL, /* 0x1b */ SQLITE_INTEGER, /* 0x1c */ SQLITE_NULL, /* 0x1d */ SQLITE_INTEGER, /* 0x1e */ SQLITE_NULL, /* 0x1f */ SQLITE_FLOAT, /* 0x20 */ SQLITE_NULL, /* 0x21 */ SQLITE_TEXT, /* 0x22 */ SQLITE_NULL, /* 0x23 */ SQLITE_FLOAT, /* 0x24 */ SQLITE_NULL, /* 0x25 */ SQLITE_FLOAT, /* 0x26 */ SQLITE_NULL, /* 0x27 */ |
︙ | ︙ | |||
300 301 302 303 304 305 306 | SQLITE_NULL, /* 0x3f */ }; #ifdef SQLITE_DEBUG { int eType = SQLITE_BLOB; if( pVal->flags & MEM_Null ){ eType = SQLITE_NULL; | | | | | | 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | SQLITE_NULL, /* 0x3f */ }; #ifdef SQLITE_DEBUG { int eType = SQLITE_BLOB; if( pVal->flags & MEM_Null ){ eType = SQLITE_NULL; }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ eType = SQLITE_FLOAT; }else if( pVal->flags & MEM_Int ){ eType = SQLITE_INTEGER; }else if( pVal->flags & MEM_Str ){ eType = SQLITE_TEXT; } assert( eType == aType[pVal->flags&MEM_AffMask] ); } #endif return aType[pVal->flags&MEM_AffMask]; |
︙ | ︙ | |||
1845 1846 1847 1848 1849 1850 1851 | pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey1); }else if( iIdx>=p->pUnpacked->nField ){ *ppValue = (sqlite3_value *)columnNullValue(); }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ | | | 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 | pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey1); }else if( iIdx>=p->pUnpacked->nField ){ *ppValue = (sqlite3_value *)columnNullValue(); }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ if( pMem->flags & (MEM_Int|MEM_IntReal) ){ sqlite3VdbeMemRealify(pMem); } } preupdate_old_out: sqlite3Error(db, rc); return sqlite3ApiExit(db, rc); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1530 1531 1532 1533 1534 1535 1536 | sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; | | | 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 | sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&x, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_str_appendf(&x, "%.16g", pMem->u.r); }else if( pMem->flags & MEM_Null ){ zP4 = "NULL"; }else{ assert( pMem->flags & MEM_Blob ); |
︙ | ︙ | |||
3428 3429 3430 3431 3432 3433 3434 | u32 n; assert( pLen!=0 ); if( flags&MEM_Null ){ *pLen = 0; return 0; } | | | 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 | u32 n; assert( pLen!=0 ); if( flags&MEM_Null ){ *pLen = 0; return 0; } if( flags&(MEM_Int|MEM_IntReal) ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; if( i<0 ){ u = ~i; }else{ |
︙ | ︙ | |||
4107 4108 4109 4110 4111 4112 4113 | */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* At least one of the two values is a number */ | | | | > > > > | | 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 | */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* At least one of the two values is a number */ if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; } if( (f1 & f2 & MEM_Real)!=0 ){ if( pMem1->u.r < pMem2->u.r ) return -1; if( pMem1->u.r > pMem2->u.r ) return +1; return 0; } if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ if( (f2&MEM_Real)!=0 ){ return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; }else{ return -1; } } if( (f1&MEM_Real)!=0 ){ if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); }else{ return -1; } } return +1; } |
︙ | ︙ | |||
4275 4276 4277 4278 4279 4280 4281 | assert( pPKey2->pKeyInfo->aSortOrder!=0 ); assert( pPKey2->pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ | | | 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 | assert( pPKey2->pKeyInfo->aSortOrder!=0 ); assert( pPKey2->pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ serial_type = aKey1[idx1]; testcase( serial_type==12 ); if( serial_type>=10 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ |
︙ | ︙ | |||
4620 4621 4622 4623 4624 4625 4626 | } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); | > | > | 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 | } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ assert( flags & MEM_Str ); return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include "vdbeInt.h" #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ int sqlite3VdbeCheckMemInvariants(Mem *p){ /* If MEM_Dyn is set then Mem.xDel!=0. ** Mem.xDel might not be initialized if MEM_Dyn is clear. */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we ** ensure that if Mem.szMalloc>0 then it is safe to do ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); | > > > > > | | | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include "vdbeInt.h" /* True if X is a power of two. 0 is considered a power of two here. ** In other words, return true if X has at most one bit set. */ #define ISPOWEROF2(X) (((X)&((X)-1))==0) #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ int sqlite3VdbeCheckMemInvariants(Mem *p){ /* If MEM_Dyn is set then Mem.xDel!=0. ** Mem.xDel might not be initialized if MEM_Dyn is clear. */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we ** ensure that if Mem.szMalloc>0 then it is safe to do ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); if( p->flags & MEM_Null ){ /* Cannot be both MEM_Null and some other type */ assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); /* If MEM_Null is set, then either the value is a pure NULL (the usual ** case) or it is a pointer set using sqlite3_bind_pointer() or |
︙ | ︙ | |||
89 90 91 92 93 94 95 | ); } return 1; } #endif /* | | | | | | | | | 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | ); } return 1; } #endif /* ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal ** into a buffer. */ static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ StrAccum acc; assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); if( p->flags & MEM_Int ){ sqlite3_str_appendf(&acc, "%lld", p->u.i); }else if( p->flags & MEM_IntReal ){ sqlite3_str_appendf(&acc, "%!.15g", (double)p->u.i); }else{ sqlite3_str_appendf(&acc, "%!.15g", p->u.r); } assert( acc.zText==zBuf && acc.mxAlloc<=0 ); zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ } |
︙ | ︙ | |||
132 133 134 135 136 137 138 | ** This routine is for use inside of assert() statements only. */ int sqlite3VdbeMemConsistentDualRep(Mem *p){ char zBuf[100]; char *z; int i, j, incr; if( (p->flags & MEM_Str)==0 ) return 1; | | | 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | ** This routine is for use inside of assert() statements only. */ int sqlite3VdbeMemConsistentDualRep(Mem *p){ char zBuf[100]; char *z; int i, j, incr; if( (p->flags & MEM_Str)==0 ) return 1; if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; vdbeMemRenderNum(sizeof(zBuf), zBuf, p); z = p->z; i = j = 0; incr = 1; if( p->enc!=SQLITE_UTF8 ){ incr = 2; if( p->enc==SQLITE_UTF16BE ) z++; |
︙ | ︙ | |||
245 246 247 248 249 250 251 | /* ** Change the pMem->zMalloc allocation to be at least szNew bytes. ** If pMem->zMalloc already meets or exceeds the requested size, this ** routine is a no-op. ** ** Any prior string or blob content in the pMem object may be discarded. ** The pMem->xDel destructor is called, if it exists. Though MEM_Str | | | | 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | /* ** Change the pMem->zMalloc allocation to be at least szNew bytes. ** If pMem->zMalloc already meets or exceeds the requested size, this ** routine is a no-op. ** ** Any prior string or blob content in the pMem object may be discarded. ** The pMem->xDel destructor is called, if it exists. Though MEM_Str ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, ** and MEM_Null values are preserved. ** ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) ** if unable to complete the resizing. */ int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ assert( CORRUPT_DB || szNew>0 ); assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); |
︙ | ︙ | |||
350 351 352 353 354 355 356 | } /* ** Add MEM_Str to the set of representations for the given Mem. Numbers ** are converted using sqlite3_snprintf(). Converting a BLOB to a string ** is a no-op. ** | | | | | 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | } /* ** Add MEM_Str to the set of representations for the given Mem. Numbers ** are converted using sqlite3_snprintf(). Converting a BLOB to a string ** is a no-op. ** ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated ** if bForce is true but are retained if bForce is false. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the latter is an internal programming error. */ int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ const int nByte = 32; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(pMem->flags&MEM_Zero) ); assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ pMem->enc = 0; return SQLITE_NOMEM_BKPT; |
︙ | ︙ | |||
554 555 556 557 558 559 560 | return value; } i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; | | | 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 | return value; } i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & (MEM_Int|MEM_IntReal) ){ return pMem->u.i; }else if( flags & MEM_Real ){ return doubleToInt64(pMem->u.r); }else if( flags & (MEM_Str|MEM_Blob) ){ assert( pMem->z || pMem->n==0 ); return memIntValue(pMem); }else{ |
︙ | ︙ | |||
583 584 585 586 587 588 589 | return val; } double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_Real ){ return pMem->u.r; | | | | 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 | return val; } double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_Real ){ return pMem->u.r; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ return (double)pMem->u.i; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ return memRealValue(pMem); }else{ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ return (double)0; } } /* ** Return 1 if pMem represents true, and return 0 if pMem represents false. ** Return the value ifNull if pMem is NULL. */ int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; if( pMem->flags & MEM_Null ) return ifNull; return sqlite3VdbeRealValue(pMem)!=0.0; } /* ** The MEM structure is already a MEM_Real. Try to also make it a ** MEM_Int if we can. |
︙ | ︙ | |||
671 672 673 674 675 676 677 | */ static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return memcmp(&r1, &r2, sizeof(r1))==0; } /* | | | | | 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | */ static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return memcmp(&r1, &r2, sizeof(r1))==0; } /* ** Convert pMem so that it has type MEM_Real or MEM_Int. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert ** as much of the string as we can and ignore the rest. */ int sqlite3VdbeMemNumerify(Mem *pMem){ if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ int rc; assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc); if( rc==0 ){ MemSetTypeFlag(pMem, MEM_Int); }else{ i64 i = pMem->u.i; sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){ pMem->u.i = i; MemSetTypeFlag(pMem, MEM_Int); }else{ MemSetTypeFlag(pMem, MEM_Real); } } } assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); return SQLITE_OK; } /* ** Cast the datatype of the value in pMem according to the affinity ** "aff". Casting is different from applying affinity in that a cast |
︙ | ︙ | |||
924 925 926 927 928 929 930 | /* If pX is marked as a shallow copy of pMem, then verify that ** no significant changes have been made to pX since the OP_SCopy. ** A significant change would indicated a missed call to this ** function for pX. Minor changes, such as adding or removing a ** dual type, are allowed, as long as the underlying value is the ** same. */ u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; | | | 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 | /* If pX is marked as a shallow copy of pMem, then verify that ** no significant changes have been made to pX since the OP_SCopy. ** A significant change would indicated a missed call to this ** function for pX. Minor changes, such as adding or removing a ** dual type, are allowed, as long as the underlying value is the ** same. */ u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) ); assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 ); /* pMem is the register that is changing. But also mark pX as ** undefined so that we can quickly detect the shallow-copy error */ pX->flags = MEM_Undefined; |
︙ | ︙ | |||
1487 1488 1489 1490 1491 1492 1493 | sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } | | | 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 | sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ) pVal->flags &= ~MEM_Str; if( enc!=SQLITE_UTF8 ){ rc = sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) && pVal!=0 |
︙ | ︙ |
Changes to src/vdbetrace.c.
︙ | ︙ | |||
126 127 128 129 130 131 132 | } zRawSql += nToken; nextIndex = idx + 1; assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; if( pVar->flags & MEM_Null ){ sqlite3_str_append(&out, "NULL", 4); | | | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | } zRawSql += nToken; nextIndex = idx + 1; assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; if( pVar->flags & MEM_Null ){ sqlite3_str_append(&out, "NULL", 4); }else if( pVar->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&out, "%lld", pVar->u.i); }else if( pVar->flags & MEM_Real ){ sqlite3_str_appendf(&out, "%!.15g", pVar->u.r); }else if( pVar->flags & MEM_Str ){ int nOut; /* Number of bytes of the string text to include in output */ #ifndef SQLITE_OMIT_UTF16 u8 enc = ENC(db); |
︙ | ︙ |