SQLite

Check-in [d184cf0057]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest trunk changes.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | sessions
Files: files | file ages | folders
SHA1: d184cf00574b52b93f1f089025d6a0addca57558
User & Date: dan 2011-04-01 15:43:40.999
Context
2011-04-04
13:19
Merge the latest changes of trunk into the session branch. (check-in: 95d53c4432 user: drh tags: sessions)
2011-04-01
15:43
Merge latest trunk changes. (check-in: d184cf0057 user: dan tags: sessions)
15:30
If the sessions module is being built as part of the amalgamation, do not try to include sqliteInt.h and vdbeInt.h. (check-in: f87bfe6e12 user: dan tags: sessions)
15:15
Ensure that it is not possible to add a column to a system table using ALTER TABLE. (check-in: d9707ef8dc user: dan tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/alter.c.
365
366
367
368
369
370
371
















372
373
374
375
376
377
378
  ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
  */
  if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
    sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
  }
#endif
}

















/*
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" 
** command. 
*/
void sqlite3AlterRenameTable(
  Parse *pParse,            /* Parser context. */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
  */
  if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
    sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
  }
#endif
}

/*
** Parameter zName is the name of a table that is about to be altered
** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).
** If the table is a system table, this function leaves an error message
** in pParse->zErr (system tables may not be altered) and returns non-zero.
**
** Or, if zName is not a system table, zero is returned.
*/
static int isSystemTable(Parse *pParse, const char *zName){
  if( sqlite3Strlen30(zName)>6 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
    sqlite3ErrorMsg(pParse, "table %s may not be altered", zName);
    return 1;
  }
  return 0;
}

/*
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" 
** command. 
*/
void sqlite3AlterRenameTable(
  Parse *pParse,            /* Parser context. */
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        "there is already another table or index with this name: %s", zName);
    goto exit_rename_table;
  }

  /* Make sure it is not a system table being altered, or a reserved name
  ** that the table is being renamed to.
  */
  if( sqlite3Strlen30(pTab->zName)>6 
   && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7)
  ){
    sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
    goto exit_rename_table;
  }
  if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
    goto exit_rename_table;
  }

#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
    goto exit_rename_table;
  }







<
<
<
|


|
|







432
433
434
435
436
437
438



439
440
441
442
443
444
445
446
447
448
449
450
        "there is already another table or index with this name: %s", zName);
    goto exit_rename_table;
  }

  /* Make sure it is not a system table being altered, or a reserved name
  ** that the table is being renamed to.
  */



  if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){
    goto exit_rename_table;
  }
  if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto
    exit_rename_table;
  }

#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
    goto exit_rename_table;
  }
754
755
756
757
758
759
760



761
762
763
764
765
766
767
  }
#endif

  /* Make sure this is not an attempt to ALTER a view. */
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
    goto exit_begin_add_column;



  }

  assert( pTab->addColOffset>0 );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);

  /* Put a copy of the Table struct in Parse.pNewTable for the
  ** sqlite3AddColumn() function and friends to modify.  But modify







>
>
>







767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
  }
#endif

  /* Make sure this is not an attempt to ALTER a view. */
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
    goto exit_begin_add_column;
  }
  if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){
    goto exit_begin_add_column;
  }

  assert( pTab->addColOffset>0 );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);

  /* Put a copy of the Table struct in Parse.pNewTable for the
  ** sqlite3AddColumn() function and friends to modify.  But modify
Changes to src/analyze.c.
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */

  const char *zWhere      /* Delete entries associated with this table */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#ifdef SQLITE_ENABLE_STAT2







>
|







30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere,     /* Delete entries for this table or index */
  const char *zWhereType  /* Either "tbl" or "idx" */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#ifdef SQLITE_ENABLE_STAT2
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE tbl=%Q", pDb->zName, zTab, zWhere
        );
      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }







|







76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
        );
      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }
99
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */

  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */
){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */
  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */
  int addr = 0;                /* The address of an instruction */
  int jZeroRows = 0;           /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regSampleno = iMem++;    /* Register containing next sample number */
  int regCol = iMem++;         /* Content of a column analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regRowid = iMem++;       /* Rowid for the inserted record */

#ifdef SQLITE_ENABLE_STAT2

  int regTemp2 = iMem++;       /* Temporary use register */
  int regSamplerecno = iMem++; /* Index of next sample to record */
  int regRecno = iMem++;       /* Current sample index */
  int regLast = iMem++;        /* Index of last sample to record */
  int regFirst = iMem++;       /* Index of first sample to record */
#endif








>










<
|










>







100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  Index *pOnlyIdx, /* If not NULL, only analyze this one index */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */
){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */
  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */

  int jZeroRows = -1;          /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regSampleno = iMem++;    /* Register containing next sample number */
  int regCol = iMem++;         /* Content of a column analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regRowid = iMem++;       /* Rowid for the inserted record */

#ifdef SQLITE_ENABLE_STAT2
  int addr = 0;                /* Instruction address */
  int regTemp2 = iMem++;       /* Temporary use register */
  int regSamplerecno = iMem++; /* Index of next sample to record */
  int regRecno = iMem++;       /* Current sample index */
  int regLast = iMem++;        /* Index of last sample to record */
  int regFirst = iMem++;       /* Index of first sample to record */
#endif

156
157
158
159
160
161
162
163
164
165



166
167
168
169
170
171
172

  /* Establish a read-lock on the table at the shared-cache level. */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol = pIdx->nColumn;
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);




    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);
    }

    /* Open a cursor to the index to be analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,







|
|

>
>
>







158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

  /* Establish a read-lock on the table at the shared-cache level. */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;
    KeyInfo *pKey;

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    nCol = pIdx->nColumn;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);
    }

    /* Open a cursor to the index to be analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
    if( jZeroRows==0 ){
      jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);







|







320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
    if( jZeroRows<0 ){
      jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
341
342
343
344
345
346
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
  ** containing NULL as the index name and the row count as the content.
  */
  if( pTab->pIndex==0 ){
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

  }else{
    assert( jZeroRows>0 );
    addr = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
  sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
  sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
  sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
  sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
  sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  if( pParse->nMem<regRec ) pParse->nMem = regRec;
  if( jZeroRows ){
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){







>

|
|
<







<
|
<







346
347
348
349
350
351
352
353
354
355
356

357
358
359
360
361
362
363

364

365
366
367
368
369
370
371
  ** containing NULL as the index name and the row count as the content.
  */
  if( pTab->pIndex==0 ){
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regSampleno);
  }else{
    sqlite3VdbeJumpHere(v, jZeroRows);
    jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);

  }
  sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
  sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
  sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
  sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
  sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  if( pParse->nMem<regRec ) pParse->nMem = regRec;

  sqlite3VdbeJumpHere(v, jZeroRows);

}

/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409
410

411



412
413
414
415
416
417
418
419
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.

*/
static void analyzeTable(Parse *pParse, Table *pTab){
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;

  openStatTable(pParse, iDb, iStatCur, pTab->zName);



  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
** when it recognizes an ANALYZE command.
**







|



|






|
>

|









>
|
>
>
>
|







384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, 0, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.  If pOnlyIdx is not NULL then it is a single index
** in pTab that should be analyzed.
*/
static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  if( pOnlyIdx ){
    openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
  }else{
    openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
  }
  analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
** when it recognizes an ANALYZE command.
**
427
428
429
430
431
432
433

434
435
436
437
438
439
440
*/
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
  sqlite3 *db = pParse->db;
  int iDb;
  int i;
  char *z, *zDb;
  Table *pTab;

  Token *pTableName;

  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    return;







>







435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
*/
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
  sqlite3 *db = pParse->db;
  int iDb;
  int i;
  char *z, *zDb;
  Table *pTab;
  Index *pIdx;
  Token *pTableName;

  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    return;
451
452
453
454
455
456
457


458
459
460
461
462

463
464
465
466
467
468
469
470
471


472
473
474
475
476

477
478
479
480
481
482
483
    /* Form 2:  Analyze the database or table named */
    iDb = sqlite3FindDb(db, pName1);
    if( iDb>=0 ){
      analyzeDatabase(pParse, iDb);
    }else{
      z = sqlite3NameFromToken(db, pName1);
      if( z ){


        pTab = sqlite3LocateTable(pParse, 0, z, 0);
        sqlite3DbFree(db, z);
        if( pTab ){
          analyzeTable(pParse, pTab);
        }

      }
    }
  }else{
    /* Form 3: Analyze the fully qualified table name */
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
    if( iDb>=0 ){
      zDb = db->aDb[iDb].zName;
      z = sqlite3NameFromToken(db, pTableName);
      if( z ){


        pTab = sqlite3LocateTable(pParse, 0, z, zDb);
        sqlite3DbFree(db, z);
        if( pTab ){
          analyzeTable(pParse, pTab);
        }

      }
    }   
  }
}

/*
** Used to pass information from the analyzer reader through to the







>
>
|
<
<
|

>









>
>
|
<
<
|

>







460
461
462
463
464
465
466
467
468
469


470
471
472
473
474
475
476
477
478
479
480
481
482
483
484


485
486
487
488
489
490
491
492
493
494
    /* Form 2:  Analyze the database or table named */
    iDb = sqlite3FindDb(db, pName1);
    if( iDb>=0 ){
      analyzeDatabase(pParse, iDb);
    }else{
      z = sqlite3NameFromToken(db, pName1);
      if( z ){
        if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
          analyzeTable(pParse, pIdx->pTable, pIdx);
        }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){


          analyzeTable(pParse, pTab, 0);
        }
        sqlite3DbFree(db, z);
      }
    }
  }else{
    /* Form 3: Analyze the fully qualified table name */
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
    if( iDb>=0 ){
      zDb = db->aDb[iDb].zName;
      z = sqlite3NameFromToken(db, pTableName);
      if( z ){
        if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
          analyzeTable(pParse, pIdx->pTable, pIdx);
        }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){


          analyzeTable(pParse, pTab, 0);
        }
        sqlite3DbFree(db, z);
      }
    }   
  }
}

/*
** Used to pass information from the analyzer reader through to the
Changes to src/os_unix.c.
589
590
591
592
593
594
595












596
597

598
599
600
601
602
603
604
605
** SQLITE_IOERR
** 
** Errors during initialization of locks, or file system support for locks,
** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
*/
static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
  switch (posixError) {












  case 0: 
    return SQLITE_OK;

    
  case EAGAIN:
  case ETIMEDOUT:
  case EBUSY:
  case EINTR:
  case ENOLCK:  
    /* random NFS retry error, unless during file system support 
     * introspection, in which it actually means what it says */







>
>
>
>
>
>
>
>
>
>
>
>


>
|







589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
** SQLITE_IOERR
** 
** Errors during initialization of locks, or file system support for locks,
** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
*/
static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
  switch (posixError) {
#if 0
  /* At one point this code was not commented out. In theory, this branch
  ** should never be hit, as this function should only be called after
  ** a locking-related function (i.e. fcntl()) has returned non-zero with
  ** the value of errno as the first argument. Since a system call has failed,
  ** errno should be non-zero.
  **
  ** Despite this, if errno really is zero, we still don't want to return
  ** SQLITE_OK. The system call failed, and *some* SQLite error should be
  ** propagated back to the caller. Commenting this branch out means errno==0
  ** will be handled by the "default:" case below.
  */
  case 0: 
    return SQLITE_OK;
#endif

  case EAGAIN:
  case ETIMEDOUT:
  case EBUSY:
  case EINTR:
  case ENOLCK:  
    /* random NFS retry error, unless during file system support 
     * introspection, in which it actually means what it says */
613
614
615
616
617
618
619






620
621

622
623
624
625
626
627
628
	(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
      return SQLITE_BUSY;
    }
    /* else fall through */
  case EPERM: 
    return SQLITE_PERM;
    






  case EDEADLK:
    return SQLITE_IOERR_BLOCKED;

    
#if EOPNOTSUPP!=ENOTSUP
  case EOPNOTSUPP: 
    /* something went terribly awry, unless during file system support 
     * introspection, in which it actually means what it says */
#endif
#ifdef ENOTSUP







>
>
>
>
>
>


>







626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
	(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
      return SQLITE_BUSY;
    }
    /* else fall through */
  case EPERM: 
    return SQLITE_PERM;
    
  /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
  ** this module never makes such a call. And the code in SQLite itself 
  ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
  ** this case is also commented out. If the system does set errno to EDEADLK,
  ** the default SQLITE_IOERR_XXX code will be returned. */
#if 0
  case EDEADLK:
    return SQLITE_IOERR_BLOCKED;
#endif
    
#if EOPNOTSUPP!=ENOTSUP
  case EOPNOTSUPP: 
    /* something went terribly awry, unless during file system support 
     * introspection, in which it actually means what it says */
#endif
#ifdef ENOTSUP
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
**
** The mutex entered using the unixEnterMutex() function must be held
** when this function is called.
*/
static void releaseInodeInfo(unixFile *pFile){
  unixInodeInfo *pInode = pFile->pInode;
  assert( unixMutexHeld() );
  if( pInode ){
    pInode->nRef--;
    if( pInode->nRef==0 ){
      assert( pInode->pShmNode==0 );
      closePendingFds(pFile);
      if( pInode->pPrev ){
        assert( pInode->pPrev->pNext==pInode );
        pInode->pPrev->pNext = pInode->pNext;







|







1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
**
** The mutex entered using the unixEnterMutex() function must be held
** when this function is called.
*/
static void releaseInodeInfo(unixFile *pFile){
  unixInodeInfo *pInode = pFile->pInode;
  assert( unixMutexHeld() );
  if( ALWAYS(pInode) ){
    pInode->nRef--;
    if( pInode->nRef==0 ){
      assert( pInode->pShmNode==0 );
      closePendingFds(pFile);
      if( pInode->pPrev ){
        assert( pInode->pPrev->pNext==pInode );
        pInode->pPrev->pNext = pInode->pNext;
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
#ifndef __DJGPP__
  if( !reserved && !pFile->pInode->bProcessLock ){
    struct flock lock;
    lock.l_whence = SEEK_SET;
    lock.l_start = RESERVED_BYTE;
    lock.l_len = 1;
    lock.l_type = F_WRLCK;
    if (-1 == osFcntl(pFile->h, F_GETLK, &lock)) {
      int tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
      pFile->lastErrno = tErrno;
    } else if( lock.l_type!=F_UNLCK ){
      reserved = 1;
    }
  }
#endif
  
  unixLeaveMutex();







|
<
|
|







1195
1196
1197
1198
1199
1200
1201
1202

1203
1204
1205
1206
1207
1208
1209
1210
1211
#ifndef __DJGPP__
  if( !reserved && !pFile->pInode->bProcessLock ){
    struct flock lock;
    lock.l_whence = SEEK_SET;
    lock.l_start = RESERVED_BYTE;
    lock.l_len = 1;
    lock.l_type = F_WRLCK;
    if( osFcntl(pFile->h, F_GETLK, &lock) ){

      rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
      pFile->lastErrno = errno;
    } else if( lock.l_type!=F_UNLCK ){
      reserved = 1;
    }
  }
#endif
  
  unixLeaveMutex();
1207
1208
1209
1210
1211
1212
1213



1214
1215
1216
1217
1218
1219
1220
** in order to coordinate access between separate database connections
** within this process, but all of that is handled in memory and the
** operating system does not participate.
**
** This function is a pass-through to fcntl(F_SETLK) if pFile is using
** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
** and is read-only.



*/
static int unixFileLock(unixFile *pFile, struct flock *pLock){
  int rc;
  unixInodeInfo *pInode = pFile->pInode;
  assert( unixMutexHeld() );
  assert( pInode!=0 );
  if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)







>
>
>







1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
** in order to coordinate access between separate database connections
** within this process, but all of that is handled in memory and the
** operating system does not participate.
**
** This function is a pass-through to fcntl(F_SETLK) if pFile is using
** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
** and is read-only.
**
** Zero is returned if the call completes successfully, or -1 if a call
** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
*/
static int unixFileLock(unixFile *pFile, struct flock *pLock){
  int rc;
  unixInodeInfo *pInode = pFile->pInode;
  assert( unixMutexHeld() );
  assert( pInode!=0 );
  if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
  ** locking a random byte from a range, concurrent SHARED locks may exist
  ** even if the locking primitive used is always a write-lock.
  */
  int rc = SQLITE_OK;
  unixFile *pFile = (unixFile*)id;
  unixInodeInfo *pInode = pFile->pInode;
  struct flock lock;
  int s = 0;
  int tErrno = 0;

  assert( pFile );
  OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
      azFileLock(eFileLock), azFileLock(pFile->eFileLock),
      azFileLock(pInode->eFileLock), pInode->nShared , getpid()));








<







1325
1326
1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338
  ** locking a random byte from a range, concurrent SHARED locks may exist
  ** even if the locking primitive used is always a write-lock.
  */
  int rc = SQLITE_OK;
  unixFile *pFile = (unixFile*)id;
  unixInodeInfo *pInode = pFile->pInode;
  struct flock lock;

  int tErrno = 0;

  assert( pFile );
  OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
      azFileLock(eFileLock), azFileLock(pFile->eFileLock),
      azFileLock(pInode->eFileLock), pInode->nShared , getpid()));

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

1397
1398
1399
1400
1401
1402

1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440

1441
1442

1443
1444
1445
1446
1447
1448
1449
1450

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
  lock.l_len = 1L;
  lock.l_whence = SEEK_SET;
  if( eFileLock==SHARED_LOCK 
      || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
  ){
    lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
    lock.l_start = PENDING_BYTE;
    s = unixFileLock(pFile, &lock);
    if( s==(-1) ){
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
      goto end_lock;
    }
  }


  /* If control gets to this point, then actually go ahead and make
  ** operating system calls for the specified lock.
  */
  if( eFileLock==SHARED_LOCK ){
    assert( pInode->nShared==0 );
    assert( pInode->eFileLock==0 );


    /* Now get the read-lock */
    lock.l_start = SHARED_FIRST;
    lock.l_len = SHARED_SIZE;
    if( (s = unixFileLock(pFile, &lock))==(-1) ){
      tErrno = errno;

    }

    /* Drop the temporary PENDING lock */
    lock.l_start = PENDING_BYTE;
    lock.l_len = 1L;
    lock.l_type = F_UNLCK;
    if( unixFileLock(pFile, &lock)!=0 ){
      if( s != -1 ){
        /* This could happen with a network mount */
        tErrno = errno; 
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 
        if( IS_LOCK_ERROR(rc) ){
          pFile->lastErrno = tErrno;
        }
        goto end_lock;
      }
    }
    if( s==(-1) ){
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }

    }else{
      pFile->eFileLock = SHARED_LOCK;
      pInode->nLock++;
      pInode->nShared = 1;
    }
  }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
    /* We are trying for an exclusive lock but another thread in this
    ** same process is still holding a shared lock. */
    rc = SQLITE_BUSY;
  }else{
    /* The request was for a RESERVED or EXCLUSIVE lock.  It is
    ** assumed that there is a SHARED or greater lock on the file
    ** already.
    */
    assert( 0!=pFile->eFileLock );
    lock.l_type = F_WRLCK;
    switch( eFileLock ){

      case RESERVED_LOCK:
        lock.l_start = RESERVED_BYTE;

        break;
      case EXCLUSIVE_LOCK:
        lock.l_start = SHARED_FIRST;
        lock.l_len = SHARED_SIZE;
        break;
      default:
        assert(0);
    }

    s = unixFileLock(pFile, &lock);
    if( s==(-1) ){
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
    }
  }
  

#ifndef NDEBUG







|
<


|













>




|

>

>




|
<
|
|
|
<
<
|
<
|
<
|
|
<


>
















|
>
|
|
>
|
<
|
|
<
<
<

>
|
<


|







1393
1394
1395
1396
1397
1398
1399
1400

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

1432
1433
1434


1435

1436

1437
1438

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

1464
1465



1466
1467
1468

1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
  lock.l_len = 1L;
  lock.l_whence = SEEK_SET;
  if( eFileLock==SHARED_LOCK 
      || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
  ){
    lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
    lock.l_start = PENDING_BYTE;
    if( unixFileLock(pFile, &lock) ){

      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( rc!=SQLITE_BUSY ){
        pFile->lastErrno = tErrno;
      }
      goto end_lock;
    }
  }


  /* If control gets to this point, then actually go ahead and make
  ** operating system calls for the specified lock.
  */
  if( eFileLock==SHARED_LOCK ){
    assert( pInode->nShared==0 );
    assert( pInode->eFileLock==0 );
    assert( rc==SQLITE_OK );

    /* Now get the read-lock */
    lock.l_start = SHARED_FIRST;
    lock.l_len = SHARED_SIZE;
    if( unixFileLock(pFile, &lock) ){
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
    }

    /* Drop the temporary PENDING lock */
    lock.l_start = PENDING_BYTE;
    lock.l_len = 1L;
    lock.l_type = F_UNLCK;
    if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){

      /* This could happen with a network mount */
      tErrno = errno;
      rc = SQLITE_IOERR_UNLOCK; 


    }



    if( rc ){
      if( rc!=SQLITE_BUSY ){

        pFile->lastErrno = tErrno;
      }
      goto end_lock;
    }else{
      pFile->eFileLock = SHARED_LOCK;
      pInode->nLock++;
      pInode->nShared = 1;
    }
  }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
    /* We are trying for an exclusive lock but another thread in this
    ** same process is still holding a shared lock. */
    rc = SQLITE_BUSY;
  }else{
    /* The request was for a RESERVED or EXCLUSIVE lock.  It is
    ** assumed that there is a SHARED or greater lock on the file
    ** already.
    */
    assert( 0!=pFile->eFileLock );
    lock.l_type = F_WRLCK;

    assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
    if( eFileLock==RESERVED_LOCK ){
      lock.l_start = RESERVED_BYTE;
      lock.l_len = 1L;
    }else{

      lock.l_start = SHARED_FIRST;
      lock.l_len = SHARED_SIZE;



    }

    if( unixFileLock(pFile, &lock) ){

      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( rc!=SQLITE_BUSY ){
        pFile->lastErrno = tErrno;
      }
    }
  }
  

#ifndef NDEBUG
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
*/
static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
  unixFile *pFile = (unixFile*)id;
  unixInodeInfo *pInode;
  struct flock lock;
  int rc = SQLITE_OK;
  int h;
  int tErrno;                      /* Error code from system call errors */

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
      pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
      getpid()));

  assert( eFileLock<=SHARED_LOCK );







<







1535
1536
1537
1538
1539
1540
1541

1542
1543
1544
1545
1546
1547
1548
*/
static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
  unixFile *pFile = (unixFile*)id;
  unixInodeInfo *pInode;
  struct flock lock;
  int rc = SQLITE_OK;
  int h;


  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
      pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
      getpid()));

  assert( eFileLock<=SHARED_LOCK );
1574
1575
1576
1577
1578
1579
1580

1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596

#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
      (void)handleNFSUnlock;
      assert( handleNFSUnlock==0 );
#endif
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
      if( handleNFSUnlock ){

        off_t divSize = SHARED_SIZE - 1;
        
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile,, &lock)==(-1) ){
          tErrno = errno;
          rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
          if( IS_LOCK_ERROR(rc) ){
            pFile->lastErrno = tErrno;
          }
          goto end_unlock;
        }
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;







>






|

|







1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612

#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
      (void)handleNFSUnlock;
      assert( handleNFSUnlock==0 );
#endif
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
      if( handleNFSUnlock ){
        int tErrno;               /* Error code from system call errors */
        off_t divSize = SHARED_SIZE - 1;
        
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;
          if( IS_LOCK_ERROR(rc) ){
            pFile->lastErrno = tErrno;
          }
          goto end_unlock;
        }
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626





1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
        }
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST+divSize;
        lock.l_len = SHARED_SIZE-divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
          if( IS_LOCK_ERROR(rc) ){
            pFile->lastErrno = tErrno;
          }
          goto end_unlock;
        }
      }else
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
      {
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = SHARED_SIZE;
        if( unixFileLock(pFile, &lock)==(-1) ){





          tErrno = errno;
          rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
          if( IS_LOCK_ERROR(rc) ){
            pFile->lastErrno = tErrno;
          }
          goto end_unlock;
        }
      }
    }
    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = PENDING_BYTE;
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
    if( unixFileLock(pFile, &lock)!=(-1) ){
      pInode->eFileLock = SHARED_LOCK;
    }else{
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
      goto end_unlock;
    }
  }
  if( eFileLock==NO_LOCK ){
    /* Decrement the shared lock counter.  Release the lock using an
    ** OS call only when all threads in this same process have released
    ** the lock.
    */
    pInode->nShared--;
    if( pInode->nShared==0 ){
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      SimulateIOErrorBenign(1);
      SimulateIOError( h=(-1) )
      SimulateIOErrorBenign(0);
      if( unixFileLock(pFile, &lock)!=(-1) ){
        pInode->eFileLock = NO_LOCK;
      }else{
        tErrno = errno;
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
        if( IS_LOCK_ERROR(rc) ){
          pFile->lastErrno = tErrno;
        }
        pInode->eFileLock = NO_LOCK;
        pFile->eFileLock = NO_LOCK;
      }
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close







|












|
>
>
>
>
>
|
|
<
|
<








|


<
|
<
|
<
















|


<
|
<
|
<







1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

1650

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

1662

1663

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682

1683

1684

1685
1686
1687
1688
1689
1690
1691
        }
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST+divSize;
        lock.l_len = SHARED_SIZE-divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;
          if( IS_LOCK_ERROR(rc) ){
            pFile->lastErrno = tErrno;
          }
          goto end_unlock;
        }
      }else
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
      {
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = SHARED_SIZE;
        if( unixFileLock(pFile, &lock) ){
          /* In theory, the call to unixFileLock() cannot fail because another
          ** process is holding an incompatible lock. If it does, this 
          ** indicates that the other process is not following the locking
          ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
          ** SQLITE_BUSY would confuse the upper layer (in practice it causes 
          ** an assert to fail). */ 
          rc = SQLITE_IOERR_RDLOCK;

          pFile->lastErrno = errno;

          goto end_unlock;
        }
      }
    }
    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = PENDING_BYTE;
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
    if( unixFileLock(pFile, &lock)==0 ){
      pInode->eFileLock = SHARED_LOCK;
    }else{

      rc = SQLITE_IOERR_UNLOCK;

      pFile->lastErrno = errno;

      goto end_unlock;
    }
  }
  if( eFileLock==NO_LOCK ){
    /* Decrement the shared lock counter.  Release the lock using an
    ** OS call only when all threads in this same process have released
    ** the lock.
    */
    pInode->nShared--;
    if( pInode->nShared==0 ){
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      SimulateIOErrorBenign(1);
      SimulateIOError( h=(-1) )
      SimulateIOErrorBenign(0);
      if( unixFileLock(pFile, &lock)==0 ){
        pInode->eFileLock = NO_LOCK;
      }else{

        rc = SQLITE_IOERR_UNLOCK;

	pFile->lastErrno = errno;

        pInode->eFileLock = NO_LOCK;
        pFile->eFileLock = NO_LOCK;
      }
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752



1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
**
** It is *not* necessary to hold the mutex when this routine is called,
** even on VxWorks.  A mutex will be acquired on VxWorks by the
** vxworksReleaseFileId() routine.
*/
static int closeUnixFile(sqlite3_file *id){
  unixFile *pFile = (unixFile*)id;
  if( pFile ){
    if( pFile->dirfd>=0 ){
      robust_close(pFile, pFile->dirfd, __LINE__);
      pFile->dirfd=-1;
    }
    if( pFile->h>=0 ){
      robust_close(pFile, pFile->h, __LINE__);
      pFile->h = -1;
    }
#if OS_VXWORKS
    if( pFile->pId ){
      if( pFile->isDelete ){
        unlink(pFile->pId->zCanonicalName);
      }
      vxworksReleaseFileId(pFile->pId);
      pFile->pId = 0;
    }
#endif
    OSTRACE(("CLOSE   %-3d\n", pFile->h));
    OpenCounter(-1);
    sqlite3_free(pFile->pUnused);
    memset(pFile, 0, sizeof(unixFile));
  }
  return SQLITE_OK;
}

/*
** Close a file.
*/
static int unixClose(sqlite3_file *id){
  int rc = SQLITE_OK;
  if( id ){
    unixFile *pFile = (unixFile *)id;
    unixUnlock(id, NO_LOCK);
    unixEnterMutex();
    assert( pFile->pInode==0 || pFile->pInode->nLock>0



            || pFile->pInode->bProcessLock==0 );
    if( pFile->pInode && pFile->pInode->nLock ){
      /* If there are outstanding locks, do not actually close the file just
      ** yet because that would clear those locks.  Instead, add the file
      ** descriptor to pInode->pUnused list.  It will be automatically closed 
      ** when the last lock is cleared.
      */
      setPendingFd(pFile);
    }
    releaseInodeInfo(pFile);
    rc = closeUnixFile(id);
    unixLeaveMutex();
  }
  return rc;
}

/************** End of the posix advisory lock implementation *****************
******************************************************************************/

/******************************************************************************







<
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
<








<
|
|
|
|
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
<







1723
1724
1725
1726
1727
1728
1729

1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750

1751
1752
1753
1754
1755
1756
1757
1758

1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777

1778
1779
1780
1781
1782
1783
1784
**
** It is *not* necessary to hold the mutex when this routine is called,
** even on VxWorks.  A mutex will be acquired on VxWorks by the
** vxworksReleaseFileId() routine.
*/
static int closeUnixFile(sqlite3_file *id){
  unixFile *pFile = (unixFile*)id;

  if( pFile->dirfd>=0 ){
    robust_close(pFile, pFile->dirfd, __LINE__);
    pFile->dirfd=-1;
  }
  if( pFile->h>=0 ){
    robust_close(pFile, pFile->h, __LINE__);
    pFile->h = -1;
  }
#if OS_VXWORKS
  if( pFile->pId ){
    if( pFile->isDelete ){
      unlink(pFile->pId->zCanonicalName);
    }
    vxworksReleaseFileId(pFile->pId);
    pFile->pId = 0;
  }
#endif
  OSTRACE(("CLOSE   %-3d\n", pFile->h));
  OpenCounter(-1);
  sqlite3_free(pFile->pUnused);
  memset(pFile, 0, sizeof(unixFile));

  return SQLITE_OK;
}

/*
** Close a file.
*/
static int unixClose(sqlite3_file *id){
  int rc = SQLITE_OK;

  unixFile *pFile = (unixFile *)id;
  unixUnlock(id, NO_LOCK);
  unixEnterMutex();

  /* unixFile.pInode is always valid here. Otherwise, a different close
  ** routine (e.g. nolockClose()) would be called instead.
  */
  assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
  if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
    /* If there are outstanding locks, do not actually close the file just
    ** yet because that would clear those locks.  Instead, add the file
    ** descriptor to pInode->pUnused list.  It will be automatically closed 
    ** when the last lock is cleared.
    */
    setPendingFd(pFile);
  }
  releaseInodeInfo(pFile);
  rc = closeUnixFile(id);
  unixLeaveMutex();

  return rc;
}

/************** End of the posix advisory lock implementation *****************
******************************************************************************/

/******************************************************************************
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
  
  /* To fully unlock the database, delete the lock file */
  assert( eFileLock==NO_LOCK );
  if( unlink(zLockFile) ){
    int rc = 0;
    int tErrno = errno;
    if( ENOENT != tErrno ){
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
    }
    if( IS_LOCK_ERROR(rc) ){
      pFile->lastErrno = tErrno;
    }
    return rc; 
  }
  pFile->eFileLock = NO_LOCK;







|







1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
  
  /* To fully unlock the database, delete the lock file */
  assert( eFileLock==NO_LOCK );
  if( unlink(zLockFile) ){
    int rc = 0;
    int tErrno = errno;
    if( ENOENT != tErrno ){
      rc = SQLITE_IOERR_UNLOCK;
    }
    if( IS_LOCK_ERROR(rc) ){
      pFile->lastErrno = tErrno;
    }
    return rc; 
  }
  pFile->eFileLock = NO_LOCK;
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
    int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
    if( !lrc ){
      /* got the lock, unlock it */
      lrc = robust_flock(pFile->h, LOCK_UN);
      if ( lrc ) {
        int tErrno = errno;
        /* unlock failed with an error */
        lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 
        if( IS_LOCK_ERROR(lrc) ){
          pFile->lastErrno = tErrno;
          rc = lrc;
        }
      }
    } else {
      int tErrno = errno;







|







2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
    int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
    if( !lrc ){
      /* got the lock, unlock it */
      lrc = robust_flock(pFile->h, LOCK_UN);
      if ( lrc ) {
        int tErrno = errno;
        /* unlock failed with an error */
        lrc = SQLITE_IOERR_UNLOCK; 
        if( IS_LOCK_ERROR(lrc) ){
          pFile->lastErrno = tErrno;
          rc = lrc;
        }
      }
    } else {
      int tErrno = errno;
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
  /* shared can just be set because we always have an exclusive */
  if (eFileLock==SHARED_LOCK) {
    pFile->eFileLock = eFileLock;
    return SQLITE_OK;
  }
  
  /* no, really, unlock. */
  int rc = robust_flock(pFile->h, LOCK_UN);
  if (rc) {
    int r, tErrno = errno;
    r = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
    if( IS_LOCK_ERROR(r) ){
      pFile->lastErrno = tErrno;
    }
#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
    if( (r & SQLITE_IOERR) == SQLITE_IOERR ){
      r = SQLITE_BUSY;
    }
#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
    
    return r;
  } else {
    pFile->eFileLock = NO_LOCK;
    return SQLITE_OK;
  }
}

/*
** Close a file.







|
<
<
<
<
<
<

<
|
<

<
|
|







2195
2196
2197
2198
2199
2200
2201
2202






2203

2204

2205

2206
2207
2208
2209
2210
2211
2212
2213
2214
  /* shared can just be set because we always have an exclusive */
  if (eFileLock==SHARED_LOCK) {
    pFile->eFileLock = eFileLock;
    return SQLITE_OK;
  }
  
  /* no, really, unlock. */
  if( robust_flock(pFile->h, LOCK_UN) ){






#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS

    return SQLITE_OK;

#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */

    return SQLITE_IOERR_UNLOCK;
  }else{
    pFile->eFileLock = NO_LOCK;
    return SQLITE_OK;
  }
}

/*
** Close a file.
3003
3004
3005
3006
3007
3008
3009

3010
3011
3012
3013
3014
3015
3016
  TIMER_START;
#if defined(USE_PREAD)
  do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
#elif defined(USE_PREAD64)
  do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
#else
  newOffset = lseek(id->h, offset, SEEK_SET);

  if( newOffset!=offset ){
    if( newOffset == -1 ){
      ((unixFile*)id)->lastErrno = errno;
    }else{
      ((unixFile*)id)->lastErrno = 0;			
    }
    return -1;







>







3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
  TIMER_START;
#if defined(USE_PREAD)
  do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
#elif defined(USE_PREAD64)
  do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
#else
  newOffset = lseek(id->h, offset, SEEK_SET);
  SimulateIOError( newOffset-- );
  if( newOffset!=offset ){
    if( newOffset == -1 ){
      ((unixFile*)id)->lastErrno = errno;
    }else{
      ((unixFile*)id)->lastErrno = 0;			
    }
    return -1;
3371
3372
3373
3374
3375
3376
3377

3378



3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
    i64 nSize;                    /* Required file size */
    struct stat buf;              /* Used to hold return values of fstat() */
   
    if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;

    nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
    if( nSize>(i64)buf.st_size ){

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE



      int rc;
      do{
        rc = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
      }while( rc<0 && errno==EINTR );
      if( rc ) return SQLITE_IOERR_WRITE;
#else
      /* If the OS does not have posix_fallocate(), fake it. First use
      ** ftruncate() to set the file size, then write a single byte to
      ** the last byte in each block within the extended region. This
      ** is the same technique used by glibc to implement posix_fallocate()
      ** on systems that do not have a real fallocate() system call.
      */







>

>
>
>
|

|
|
|







3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
    i64 nSize;                    /* Required file size */
    struct stat buf;              /* Used to hold return values of fstat() */
   
    if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;

    nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
    if( nSize>(i64)buf.st_size ){

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
      /* The code below is handling the return value of osFallocate() 
      ** correctly. posix_fallocate() is defined to "returns zero on success, 
      ** or an error number on  failure". See the manpage for details. */
      int err;
      do{
        err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
      }while( err==EINTR );
      if( err ) return SQLITE_IOERR_WRITE;
#else
      /* If the OS does not have posix_fallocate(), fake it. First use
      ** ftruncate() to set the file size, then write a single byte to
      ** the last byte in each block within the extended region. This
      ** is the same technique used by glibc to implement posix_fallocate()
      ** on systems that do not have a real fallocate() system call.
      */
5729
5730
5731
5732
5733
5734
5735

5736

5737
5738
5739
5740
5741
5742
5743
  pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
  if( pNew==NULL ){
    rc = SQLITE_NOMEM;
    goto end_create_proxy;
  }
  memset(pNew, 0, sizeof(unixFile));
  pNew->openFlags = openFlags;

  dummyVfs.pAppData = (void*)&autolockIoFinder;

  pUnused->fd = fd;
  pUnused->flags = openFlags;
  pNew->pUnused = pUnused;
  
  rc = fillInUnixFile(&dummyVfs, fd, dirfd, (sqlite3_file*)pNew, path, 0, 0, 0);
  if( rc==SQLITE_OK ){
    *ppFile = pNew;







>

>







5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
  pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
  if( pNew==NULL ){
    rc = SQLITE_NOMEM;
    goto end_create_proxy;
  }
  memset(pNew, 0, sizeof(unixFile));
  pNew->openFlags = openFlags;
  memset(&dummyVfs, 0, sizeof(dummyVfs));
  dummyVfs.pAppData = (void*)&autolockIoFinder;
  dummyVfs.zName = "dummy";
  pUnused->fd = fd;
  pUnused->flags = openFlags;
  pNew->pUnused = pUnused;
  
  rc = fillInUnixFile(&dummyVfs, fd, dirfd, (sqlite3_file*)pNew, path, 0, 0, 0);
  if( rc==SQLITE_OK ){
    *ppFile = pNew;
Changes to src/test1.c.
4883
4884
4885
4886
4887
4888
4889






































4890
4891
4892
4893
4894
4895
4896
  rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_CHUNK_SIZE, (void *)&nSize);
  if( rc ){
    Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }
  return TCL_OK;
}







































/*
** tclcmd:   file_control_lockproxy_test DB PWD
**
** This TCL command runs the sqlite3_file_control interface and
** verifies correct operation of the SQLITE_GET_LOCKPROXYFILE and
** SQLITE_SET_LOCKPROXYFILE verbs.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
  rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_CHUNK_SIZE, (void *)&nSize);
  if( rc ){
    Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** tclcmd:   file_control_sizehint_test DB DBNAME SIZE
**
** This TCL command runs the sqlite3_file_control interface and
** verifies correct operation of the SQLITE_GET_LOCKPROXYFILE and
** SQLITE_SET_LOCKPROXYFILE verbs.
*/
static int file_control_sizehint_test(
  ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_int64 nSize;            /* Hinted size */
  char *zDb;                      /* Db name ("main", "temp" etc.) */
  sqlite3 *db;                    /* Database handle */
  int rc;                         /* file_control() return code */

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB DBNAME SIZE");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) 
   || Tcl_GetWideIntFromObj(interp, objv[3], &nSize)
  ){
   return TCL_ERROR;
  }
  zDb = Tcl_GetString(objv[2]);
  if( zDb[0]=='\0' ) zDb = NULL;

  rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_SIZE_HINT, (void *)&nSize);
  if( rc ){
    Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** tclcmd:   file_control_lockproxy_test DB PWD
**
** This TCL command runs the sqlite3_file_control interface and
** verifies correct operation of the SQLITE_GET_LOCKPROXYFILE and
** SQLITE_SET_LOCKPROXYFILE verbs.
5604
5605
5606
5607
5608
5609
5610

5611
5612
5613
5614
5615
5616
5617
     { "vfs_initfail_test",          vfs_initfail_test,   0   },
     { "vfs_unregister_all",         vfs_unregister_all,  0   },
     { "vfs_reregister_all",         vfs_reregister_all,  0   },
     { "file_control_test",          file_control_test,   0   },
     { "file_control_lasterrno_test", file_control_lasterrno_test,  0   },
     { "file_control_lockproxy_test", file_control_lockproxy_test,  0   },
     { "file_control_chunksize_test", file_control_chunksize_test,  0   },

     { "sqlite3_vfs_list",           vfs_list,     0   },
     { "sqlite3_create_function_v2", test_create_function_v2, 0 },

     /* Functions from os.h */
#ifndef SQLITE_OMIT_UTF16
     { "add_test_collate",        test_collate, 0            },
     { "add_test_collate_needed", test_collate_needed, 0     },







>







5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
     { "vfs_initfail_test",          vfs_initfail_test,   0   },
     { "vfs_unregister_all",         vfs_unregister_all,  0   },
     { "vfs_reregister_all",         vfs_reregister_all,  0   },
     { "file_control_test",          file_control_test,   0   },
     { "file_control_lasterrno_test", file_control_lasterrno_test,  0   },
     { "file_control_lockproxy_test", file_control_lockproxy_test,  0   },
     { "file_control_chunksize_test", file_control_chunksize_test,  0   },
     { "file_control_sizehint_test", file_control_sizehint_test,  0   },
     { "sqlite3_vfs_list",           vfs_list,     0   },
     { "sqlite3_create_function_v2", test_create_function_v2, 0 },

     /* Functions from os.h */
#ifndef SQLITE_OMIT_UTF16
     { "add_test_collate",        test_collate, 0            },
     { "add_test_collate_needed", test_collate_needed, 0     },
Changes to src/test_hexio.c.
308
309
310
311
312
313
314

315



316

317
318
319
320
321
322
323
  z = sqlite3_malloc( n+3 );
  n = sqlite3TestHexToBin(zOrig, n, z);
  z[n] = 0;
  nOut = sqlite3Utf8To8(z);
  sqlite3TestBinToHex(z,nOut);
  Tcl_AppendResult(interp, (char*)z, 0);
  sqlite3_free(z);

#endif



  return TCL_OK;

}

static int getFts3Varint(const char *p, sqlite_int64 *v){
  const unsigned char *q = (const unsigned char *) p;
  sqlite_uint64 x = 0, y = 1;
  while( (*q & 0x80) == 0x80 ){
    x += y * (*q++ & 0x7f);







>
|
>
>
>
|
>







308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
  z = sqlite3_malloc( n+3 );
  n = sqlite3TestHexToBin(zOrig, n, z);
  z[n] = 0;
  nOut = sqlite3Utf8To8(z);
  sqlite3TestBinToHex(z,nOut);
  Tcl_AppendResult(interp, (char*)z, 0);
  sqlite3_free(z);
  return TCL_OK;
#else
  Tcl_AppendResult(interp, 
      "[utf8_to_utf8] unavailable - SQLITE_DEBUG not defined", 0
  );
  return TCL_ERROR;
#endif
}

static int getFts3Varint(const char *p, sqlite_int64 *v){
  const unsigned char *q = (const unsigned char *) p;
  sqlite_uint64 x = 0, y = 1;
  while( (*q & 0x80) == 0x80 ){
    x += y * (*q++ & 0x7f);
Changes to src/test_syscall.c.
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  /*  0 */ { "open",      (sqlite3_syscall_ptr)ts_open,      0, EACCES, 0 },
  /*  1 */ { "close",     (sqlite3_syscall_ptr)ts_close,     0, 0, 0 },
  /*  2 */ { "access",    (sqlite3_syscall_ptr)ts_access,    0, 0, 0 },
  /*  3 */ { "getcwd",    (sqlite3_syscall_ptr)ts_getcwd,    0, 0, 0 },
  /*  4 */ { "stat",      (sqlite3_syscall_ptr)ts_stat,      0, 0, 0 },
  /*  5 */ { "fstat",     (sqlite3_syscall_ptr)ts_fstat,     0, 0, 0 },
  /*  6 */ { "ftruncate", (sqlite3_syscall_ptr)ts_ftruncate, 0, EIO, 0 },
  /*  7 */ { "fcntl",     (sqlite3_syscall_ptr)ts_fcntl,     0, 0, 0 },
  /*  8 */ { "read",      (sqlite3_syscall_ptr)ts_read,      0, 0, 0 },
  /*  9 */ { "pread",     (sqlite3_syscall_ptr)ts_pread,     0, 0, 0 },
  /* 10 */ { "pread64",   (sqlite3_syscall_ptr)ts_pread64,   0, 0, 0 },
  /* 11 */ { "write",     (sqlite3_syscall_ptr)ts_write,     0, 0, 0 },
  /* 12 */ { "pwrite",    (sqlite3_syscall_ptr)ts_pwrite,    0, 0, 0 },
  /* 13 */ { "pwrite64",  (sqlite3_syscall_ptr)ts_pwrite64,  0, 0, 0 },
  /* 14 */ { "fchmod",    (sqlite3_syscall_ptr)ts_fchmod,    0, 0, 0 },







|







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  /*  0 */ { "open",      (sqlite3_syscall_ptr)ts_open,      0, EACCES, 0 },
  /*  1 */ { "close",     (sqlite3_syscall_ptr)ts_close,     0, 0, 0 },
  /*  2 */ { "access",    (sqlite3_syscall_ptr)ts_access,    0, 0, 0 },
  /*  3 */ { "getcwd",    (sqlite3_syscall_ptr)ts_getcwd,    0, 0, 0 },
  /*  4 */ { "stat",      (sqlite3_syscall_ptr)ts_stat,      0, 0, 0 },
  /*  5 */ { "fstat",     (sqlite3_syscall_ptr)ts_fstat,     0, 0, 0 },
  /*  6 */ { "ftruncate", (sqlite3_syscall_ptr)ts_ftruncate, 0, EIO, 0 },
  /*  7 */ { "fcntl",     (sqlite3_syscall_ptr)ts_fcntl,     0, EACCES, 0 },
  /*  8 */ { "read",      (sqlite3_syscall_ptr)ts_read,      0, 0, 0 },
  /*  9 */ { "pread",     (sqlite3_syscall_ptr)ts_pread,     0, 0, 0 },
  /* 10 */ { "pread64",   (sqlite3_syscall_ptr)ts_pread64,   0, 0, 0 },
  /* 11 */ { "write",     (sqlite3_syscall_ptr)ts_write,     0, 0, 0 },
  /* 12 */ { "pwrite",    (sqlite3_syscall_ptr)ts_pwrite,    0, 0, 0 },
  /* 13 */ { "pwrite64",  (sqlite3_syscall_ptr)ts_pwrite64,  0, 0, 0 },
  /* 14 */ { "fchmod",    (sqlite3_syscall_ptr)ts_fchmod,    0, 0, 0 },
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

/*
** A wrapper around fcntl().
*/
static int ts_fcntl(int fd, int cmd, ... ){
  va_list ap;
  void *pArg;
  if( tsIsFail() ){
    return -1;
  }
  va_start(ap, cmd);
  pArg = va_arg(ap, void *);
  return orig_fcntl(fd, cmd, pArg);
}

/*
** A wrapper around read().
*/
static int ts_read(int fd, void *aBuf, size_t nBuf){
  if( tsIsFail() ){
    return -1;
  }
  return orig_read(fd, aBuf, nBuf);
}

/*
** A wrapper around pread().
*/
static int ts_pread(int fd, void *aBuf, size_t nBuf, off_t off){
  if( tsIsFail() ){
    return -1;
  }
  return orig_pread(fd, aBuf, nBuf, off);
}

/*
** A wrapper around pread64().
*/
static int ts_pread64(int fd, void *aBuf, size_t nBuf, off_t off){
  if( tsIsFail() ){
    return -1;
  }
  return orig_pread64(fd, aBuf, nBuf, off);
}

/*
** A wrapper around write().
*/
static int ts_write(int fd, const void *aBuf, size_t nBuf){
  if( tsIsFail() ){
    return -1;
  }
  return orig_write(fd, aBuf, nBuf);
}

/*
** A wrapper around pwrite().
*/
static int ts_pwrite(int fd, const void *aBuf, size_t nBuf, off_t off){
  if( tsIsFail() ){
    return -1;
  }
  return orig_pwrite(fd, aBuf, nBuf, off);
}

/*
** A wrapper around pwrite64().
*/
static int ts_pwrite64(int fd, const void *aBuf, size_t nBuf, off_t off){
  if( tsIsFail() ){
    return -1;
  }
  return orig_pwrite64(fd, aBuf, nBuf, off);
}

/*
** A wrapper around fchmod().







|











|









|









|









|









|









|







271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

/*
** A wrapper around fcntl().
*/
static int ts_fcntl(int fd, int cmd, ... ){
  va_list ap;
  void *pArg;
  if( tsIsFailErrno("fcntl") ){
    return -1;
  }
  va_start(ap, cmd);
  pArg = va_arg(ap, void *);
  return orig_fcntl(fd, cmd, pArg);
}

/*
** A wrapper around read().
*/
static int ts_read(int fd, void *aBuf, size_t nBuf){
  if( tsIsFailErrno("read") ){
    return -1;
  }
  return orig_read(fd, aBuf, nBuf);
}

/*
** A wrapper around pread().
*/
static int ts_pread(int fd, void *aBuf, size_t nBuf, off_t off){
  if( tsIsFailErrno("pread") ){
    return -1;
  }
  return orig_pread(fd, aBuf, nBuf, off);
}

/*
** A wrapper around pread64().
*/
static int ts_pread64(int fd, void *aBuf, size_t nBuf, off_t off){
  if( tsIsFailErrno("pread64") ){
    return -1;
  }
  return orig_pread64(fd, aBuf, nBuf, off);
}

/*
** A wrapper around write().
*/
static int ts_write(int fd, const void *aBuf, size_t nBuf){
  if( tsIsFailErrno("write") ){
    return -1;
  }
  return orig_write(fd, aBuf, nBuf);
}

/*
** A wrapper around pwrite().
*/
static int ts_pwrite(int fd, const void *aBuf, size_t nBuf, off_t off){
  if( tsIsFailErrno("pwrite") ){
    return -1;
  }
  return orig_pwrite(fd, aBuf, nBuf, off);
}

/*
** A wrapper around pwrite64().
*/
static int ts_pwrite64(int fd, const void *aBuf, size_t nBuf, off_t off){
  if( tsIsFailErrno("pwrite64") ){
    return -1;
  }
  return orig_pwrite64(fd, aBuf, nBuf, off);
}

/*
** A wrapper around fchmod().
527
528
529
530
531
532
533
534
535
536
537
538






539
540
541
542
543
544
545
  int iErrno;
  int rc;

  struct Errno {
    const char *z;
    int i;
  } aErrno[] = {
    { "EACCES", EACCES },
    { "EINTR", EINTR },
    { "EIO", EIO },
    { "EOVERFLOW", EOVERFLOW },
    { "ENOMEM", ENOMEM },






    { 0, 0 }
  };

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 2, objv, "SYSCALL ERRNO");
    return TCL_ERROR;
  }







|
|
|

|
>
>
>
>
>
>







527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
  int iErrno;
  int rc;

  struct Errno {
    const char *z;
    int i;
  } aErrno[] = {
    { "EACCES",    EACCES },
    { "EINTR",     EINTR },
    { "EIO",       EIO },
    { "EOVERFLOW", EOVERFLOW },
    { "ENOMEM",    ENOMEM },
    { "EAGAIN",    EAGAIN },
    { "ETIMEDOUT", ETIMEDOUT },
    { "EBUSY",     EBUSY },
    { "EPERM",     EPERM },
    { "EDEADLK",   EDEADLK },
    { "ENOLCK",    ENOLCK },
    { 0, 0 }
  };

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 2, objv, "SYSCALL ERRNO");
    return TCL_ERROR;
  }
Changes to src/vdbeaux.c.
556
557
558
559
560
561
562

563
564
565
566
567
568
569
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){

  sqlite3VdbeChangeP2(p, addr, p->nOp);
}


/*
** If the input FuncDef structure is ephemeral, then free it.  If
** the FuncDef is not ephermal, then do nothing.







>







556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
  assert( addr>=0 );
  sqlite3VdbeChangeP2(p, addr, p->nOp);
}


/*
** If the input FuncDef structure is ephemeral, then free it.  If
** the FuncDef is not ephermal, then do nothing.
Changes to src/where.c.
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->pOperator==WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
      }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT2 */








|







2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->eOperator==WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
      }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT2 */

Changes to test/alter.test.
835
836
837
838
839
840
841



















842
843
} {1 {Cannot add a UNIQUE column}}
do_test alter-14.2 {
  catchsql {
    ALTER TABLE t3651 ADD COLUMN b PRIMARY KEY;
  }
} {1 {Cannot add a PRIMARY KEY column}}





















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
} {1 {Cannot add a UNIQUE column}}
do_test alter-14.2 {
  catchsql {
    ALTER TABLE t3651 ADD COLUMN b PRIMARY KEY;
  }
} {1 {Cannot add a PRIMARY KEY column}}


#-------------------------------------------------------------------------
# Test that it is not possible to use ALTER TABLE on any system table.
#
set system_table_list {1 sqlite_master}
catchsql ANALYZE
ifcapable analyze { lappend system_table_list 2 sqlite_stat1 }
ifcapable stat2   { lappend system_table_list 3 sqlite_stat2 }

foreach {tn tbl} $system_table_list {
  do_test alter-15.$tn.1 {
    catchsql "ALTER TABLE $tbl RENAME TO xyz"
  } [list 1 "table $tbl may not be altered"]

  do_test alter-15.$tn.2 {
    catchsql "ALTER TABLE $tbl ADD COLUMN xyz"
  } [list 1 "table $tbl may not be altered"]
}


finish_test
Changes to test/analyze.test.
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    ANALYZE main.t1;
  }
} {0 {}}
do_test analyze-1.11 {
  execsql {
    SELECT * FROM sqlite_stat1
  }
} {t1 {} 0}
do_test analyze-1.12 {
  catchsql {
    ANALYZE t1;
  }
} {0 {}}
do_test analyze-1.13 {
  execsql {
    SELECT * FROM sqlite_stat1
  }
} {t1 {} 0}

# Create some indices that can be analyzed.  But do not yet add
# data.  Without data in the tables, no analysis is done.
#
do_test analyze-2.1 {
  execsql {
    CREATE INDEX t1i1 ON t1(a);
    ANALYZE main.t1;
    SELECT * FROM sqlite_stat1 ORDER BY idx;
  }
} {t1 {} 0}
do_test analyze-2.2 {
  execsql {
    CREATE INDEX t1i2 ON t1(b);
    ANALYZE t1;
    SELECT * FROM sqlite_stat1 ORDER BY idx;
  }
} {t1 {} 0}
do_test analyze-2.3 {
  execsql {
    CREATE INDEX t1i3 ON t1(a,b);
    ANALYZE main;
    SELECT * FROM sqlite_stat1 ORDER BY idx;
  }
} {t1 {} 0}

# Start adding data to the table.  Verify that the analysis
# is done correctly.
#
do_test analyze-3.1 {
  execsql {
    INSERT INTO t1 VALUES(1,2);







|









|










|






|






|







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    ANALYZE main.t1;
  }
} {0 {}}
do_test analyze-1.11 {
  execsql {
    SELECT * FROM sqlite_stat1
  }
} {}
do_test analyze-1.12 {
  catchsql {
    ANALYZE t1;
  }
} {0 {}}
do_test analyze-1.13 {
  execsql {
    SELECT * FROM sqlite_stat1
  }
} {}

# Create some indices that can be analyzed.  But do not yet add
# data.  Without data in the tables, no analysis is done.
#
do_test analyze-2.1 {
  execsql {
    CREATE INDEX t1i1 ON t1(a);
    ANALYZE main.t1;
    SELECT * FROM sqlite_stat1 ORDER BY idx;
  }
} {}
do_test analyze-2.2 {
  execsql {
    CREATE INDEX t1i2 ON t1(b);
    ANALYZE t1;
    SELECT * FROM sqlite_stat1 ORDER BY idx;
  }
} {}
do_test analyze-2.3 {
  execsql {
    CREATE INDEX t1i3 ON t1(a,b);
    ANALYZE main;
    SELECT * FROM sqlite_stat1 ORDER BY idx;
  }
} {}

# Start adding data to the table.  Verify that the analysis
# is done correctly.
#
do_test analyze-3.1 {
  execsql {
    INSERT INTO t1 VALUES(1,2);
Changes to test/analyze6.test.
67
68
69
70
71
72
73
















































74
# FROM clause.
#
do_test analyze6-1.2 {
  eqp {SELECT count(*) FROM cat, ev WHERE x=y}
} {0 0 0 {SCAN TABLE cat (~16 rows)} 0 1 1 {SEARCH TABLE ev USING COVERING INDEX evy (y=?) (~32 rows)}}


















































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# FROM clause.
#
do_test analyze6-1.2 {
  eqp {SELECT count(*) FROM cat, ev WHERE x=y}
} {0 0 0 {SCAN TABLE cat (~16 rows)} 0 1 1 {SEARCH TABLE ev USING COVERING INDEX evy (y=?) (~32 rows)}}


# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}

finish_test
Added test/analyze7.test.




















































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# 2011 April 1
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
# This file implements tests for the ANALYZE command when an idnex
# name is given as the argument.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# There is nothing to test if ANALYZE is disable for this build.
#
ifcapable {!analyze} {
  finish_test
  return
}

# Generate some test data
#
do_test analyze7-1.0 {
  execsql {
    CREATE TABLE sequence(x INTEGER PRIMARY KEY);
    INSERT INTO sequence VALUES(1);
    INSERT INTO sequence VALUES(2);
    INSERT INTO sequence SELECT x+2 FROM sequence;
    INSERT INTO sequence SELECT x+4 FROM sequence;
    INSERT INTO sequence SELECT x+8 FROM sequence;
    INSERT INTO sequence SELECT x+16 FROM sequence;
    INSERT INTO sequence SELECT x+32 FROM sequence;
    INSERT INTO sequence SELECT x+64 FROM sequence;
    INSERT INTO sequence SELECT x+128 FROM sequence;
    INSERT INTO sequence SELECT x+256 FROM sequence;
    CREATE TABLE t1(a,b,c,d);
    CREATE INDEX t1a ON t1(a);
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    INSERT INTO t1 SELECT x, x, x/100, x FROM sequence;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~10 rows)}}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~10 rows)}}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~10 rows)}}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-3.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~102 rows)}}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test analyze7-3.4 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
do_test analyze7-3.5 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?) (~1 rows)}}

finish_test
Changes to test/badutf2.test.
101
102
103
104
105
106
107

108
109
110

111
112
113
114
115
116
117
  do_test badutf2-4.1.$i {
    sqlite3_reset $S
    sqlite3_bind_text $S 1 $xstr $len
    sqlite3_step $S
    utf8_to_ustr2 [ sqlite3_column_text $S 0 ]
  } $ustr


  do_test badutf2-5.1.$i {
    utf8_to_utf8 $uval
  } $u2u


}

do_test badutf2-4.2 {
  sqlite3_finalize $S
} {SQLITE_OK}








>
|
|
|
>







101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
  do_test badutf2-4.1.$i {
    sqlite3_reset $S
    sqlite3_bind_text $S 1 $xstr $len
    sqlite3_step $S
    utf8_to_ustr2 [ sqlite3_column_text $S 0 ]
  } $ustr

  ifcapable debug {
    do_test badutf2-5.1.$i {
      utf8_to_utf8 $uval
    } $u2u
  }

}

do_test badutf2-4.2 {
  sqlite3_finalize $S
} {SQLITE_OK}

Changes to test/oserror.test.
40
41
42
43
44
45
46
47





48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
  
}

#--------------------------------------------------------------------------
# Tests oserror-1.* test failures in the open() system call.
#

# Test a failure in open() due to too many files.





#
do_test 1.1.1 {
  set ::log [list]
  list [catch {
    for {set i 0} {$i < 2000} {incr i} { sqlite3 dbh_$i test.db -readonly 1 }
  } msg] $msg
} {1 {unable to open database file}}
do_test 1.1.2 {
  catch { for {set i 0} {$i < 2000} {incr i} { dbh_$i close } }
} {1}


do_re_test 1.1.3 { lindex $::log 0 } {^os_unix.c:\d+: \(\d+\) open\(.*test.db\) - }


# Test a failure in open() due to the path being a directory.
#
do_test 1.2.1 {
  file mkdir dir.db
  set ::log [list]







|
>
>
>
>
>










|
>
|







40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  
}

#--------------------------------------------------------------------------
# Tests oserror-1.* test failures in the open() system call.
#

# Test a failure in open() due to too many files. 
#
# The xOpen() method of the unix VFS calls getcwd() as well as open().
# Although this does not appear to be documented in the man page, on OSX
# a call to getcwd() may fail if there are no free file descriptors. So
# an error may be reported for either open() or getcwd() here.
#
do_test 1.1.1 {
  set ::log [list]
  list [catch {
    for {set i 0} {$i < 2000} {incr i} { sqlite3 dbh_$i test.db -readonly 1 }
  } msg] $msg
} {1 {unable to open database file}}
do_test 1.1.2 {
  catch { for {set i 0} {$i < 2000} {incr i} { dbh_$i close } }
} {1}
do_re_test 1.1.3 { 
  lindex $::log 0 
} {^os_unix.c:\d+: \(\d+\) (open|getcwd)\(.*test.db\) - }


# Test a failure in open() due to the path being a directory.
#
do_test 1.2.1 {
  file mkdir dir.db
  set ::log [list]
Changes to test/syscall.test.
189
190
191
192
193
194
195



















































196
197
198
199
    INSERT INTO tt SELECT randomblob(500), randomblob(600) FROM tt;
    INSERT INTO tt SELECT randomblob(500), randomblob(600) FROM tt;
    INSERT INTO tt SELECT randomblob(500), randomblob(600) FROM tt;
  }

  db close
} {}






















































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    INSERT INTO tt SELECT randomblob(500), randomblob(600) FROM tt;
    INSERT INTO tt SELECT randomblob(500), randomblob(600) FROM tt;
    INSERT INTO tt SELECT randomblob(500), randomblob(600) FROM tt;
  }

  db close
} {}

#-------------------------------------------------------------------------
# Test that a database file a single byte in size is treated as an empty
# file. Whereas a file 2 bytes or larger might be considered corrupt.
#
catch { db close }
forcedelete test.db test.db2

proc create_db_file {nByte} {
  set fd [open test.db w]
  fconfigure $fd -translation binary -encoding binary
  puts -nonewline $fd [string range "xSQLite" 1 $nByte]
  close $fd
}

foreach {nByte res} {
  1      {0 {}}
  2      {1 {file is encrypted or is not a database}}
  3      {1 {file is encrypted or is not a database}}
} {
  do_test 7.$nByte {
    create_db_file $nByte
    sqlite3 db test.db
    catchsql { CREATE TABLE t1(a, b) }
  } $res
  catch { db close }
}

#-------------------------------------------------------------------------
# 
catch { db close }
forcedelete test.db test.db2

do_test 8.1 {
  sqlite3 db test.db
  file_control_chunksize_test db main 4096
  file size test.db
} {0}

foreach {tn hint size} {
  1  1000    4096 
  2  1000    4096 
  3  3000    4096 
  4  4096    4096 
  5  4197    8192 
} {
  do_test 8.2.$tn {
    file_control_sizehint_test db main $hint
    file size test.db
  } $size
}



finish_test
Changes to test/sysfault.test.
62
63
64
65
66
67
68

69



70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86













































87
88
89
90
91
92
93
94
95
96
97
98
99
100
  faultsim_restore
} -body $open_and_write_body -test {
  faultsim_test_result {0 {wal 1 2 3 4}}       \
    {1 {unable to open database file}}         \
    {1 {attempt to write a readonly database}}
}


# Errors in the fstat() function when opening and writing a file.



#
foreach {tn errno errlist} {
  1 ENOMEM       {{disk I/O error}}
  2 EOVERFLOW    {{disk I/O error} {large file support is disabled}}
} {
  proc vfsfault_install {} { test_syscall install fstat }
  set errs [list]
  foreach e $errlist { lappend errs [list 1 $e] }
  do_faultsim_test 1.2.$tn -faults vfsfault-* -prep {
    faultsim_restore
  } -body "
    test_syscall errno fstat $errno
    $open_and_write_body 
  " -test "
    faultsim_test_result {0 {wal 1 2 3 4}} $errs
  "
}














































#-------------------------------------------------------------------------
# Check that a single EINTR error does not affect processing.
#
proc vfsfault_install {} { 
  test_syscall reset
  test_syscall install {open ftruncate close}
}

forcedelete test.db test.db2
sqlite3 db test.db
do_test 2.setup {
  execsql {
    CREATE TABLE t1(a, b, c, PRIMARY KEY(a));







>
|
>
>
>

















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  faultsim_restore
} -body $open_and_write_body -test {
  faultsim_test_result {0 {wal 1 2 3 4}}       \
    {1 {unable to open database file}}         \
    {1 {attempt to write a readonly database}}
}

#-------------------------------------------------------------------------
# Errors in the fstat() function when opening and writing a file. Cases
# where fstat() fails and sets errno to ENOMEM and EOVERFLOW are both
# tested. EOVERFLOW is interpreted as meaning that a file on disk is
# too large to be opened by the OS.
#
foreach {tn errno errlist} {
  1 ENOMEM       {{disk I/O error}}
  2 EOVERFLOW    {{disk I/O error} {large file support is disabled}}
} {
  proc vfsfault_install {} { test_syscall install fstat }
  set errs [list]
  foreach e $errlist { lappend errs [list 1 $e] }
  do_faultsim_test 1.2.$tn -faults vfsfault-* -prep {
    faultsim_restore
  } -body "
    test_syscall errno fstat $errno
    $open_and_write_body 
  " -test "
    faultsim_test_result {0 {wal 1 2 3 4}} $errs
  "
}

#-------------------------------------------------------------------------
# Various errors in locking functions. 
#
foreach vfs {unix unix-excl} {
  foreach {tn errno errlist} {
    1 EAGAIN       {{database is locked} {disk I/O error}}
    2 ETIMEDOUT    {{database is locked} {disk I/O error}}
    3 EBUSY        {{database is locked} {disk I/O error}}
    4 EINTR        {{database is locked} {disk I/O error}}
    5 ENOLCK       {{database is locked} {disk I/O error}}
    6 EACCES       {{database is locked} {disk I/O error}}
    7 EPERM        {{access permission denied} {disk I/O error}}
    8 EDEADLK      {{disk I/O error}}
    9 ENOMEM       {{disk I/O error}}
  } {
    proc vfsfault_install {} { test_syscall install fcntl }
    set errs [list]
    foreach e $errlist { lappend errs [list 1 $e] }
  
    set body [string map [list %VFS% $vfs] {
      sqlite3 db test.db
      db eval {
        CREATE TABLE t1(a, b);
        INSERT INTO t1 VALUES(1, 2);
      }
      set fd [open test.db-journal w]
      puts $fd "hello world"
      close $fd
      sqlite3 db test.db -vfs %VFS%
      db eval {
        SELECT * FROM t1;
      }
    }]
  
    do_faultsim_test 1.3.$vfs.$tn -faults vfsfault-* -prep {
      faultsim_restore
    } -body "
      test_syscall errno fcntl $errno
      $body
    " -test "
      faultsim_test_result {0 {1 2}} $errs
    "
  }
}

#-------------------------------------------------------------------------
# Check that a single EINTR error does not affect processing.
#
proc vfsfault_install {} { 
  test_syscall reset
  test_syscall install {open ftruncate close read pread pread64 write fallocate}
}

forcedelete test.db test.db2
sqlite3 db test.db
do_test 2.setup {
  execsql {
    CREATE TABLE t1(a, b, c, PRIMARY KEY(a));
109
110
111
112
113
114
115





116
117


118
119
120
121
122
123

124
125

126
127
128
129
130
131
132
do_faultsim_test 2.1 -faults vfsfault-transient -prep {
  catch { db close }
  faultsim_restore
} -body {
  test_syscall errno open      EINTR
  test_syscall errno ftruncate EINTR
  test_syscall errno close     EINTR






  sqlite3 db test.db


  set res [db eval {
    ATTACH 'test.db2' AS 'aux';
    SELECT * FROM t1;
    PRAGMA journal_mode = truncate;
    BEGIN;
      INSERT INTO t1 VALUES('jkl', 'mno', 'pqr');

      UPDATE t2 SET x = 2;
    COMMIT;

    SELECT * FROM t1;
    SELECT * FROM t2;
  }]
  db close
  set res
} -test {
  faultsim_test_result {0 {abc def ghi truncate abc def ghi jkl mno pqr 2}}







>
>
>
>
>


>
>






>


>







158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
do_faultsim_test 2.1 -faults vfsfault-transient -prep {
  catch { db close }
  faultsim_restore
} -body {
  test_syscall errno open      EINTR
  test_syscall errno ftruncate EINTR
  test_syscall errno close     EINTR
  test_syscall errno read      EINTR
  test_syscall errno pread     EINTR
  test_syscall errno pread64   EINTR
  test_syscall errno write     EINTR
  test_syscall errno fallocate EINTR

  sqlite3 db test.db
  file_control_chunksize_test db main 8192

  set res [db eval {
    ATTACH 'test.db2' AS 'aux';
    SELECT * FROM t1;
    PRAGMA journal_mode = truncate;
    BEGIN;
      INSERT INTO t1 VALUES('jkl', 'mno', 'pqr');
      INSERT INTO t1 VALUES(randomblob(10000), 0, 0);
      UPDATE t2 SET x = 2;
    COMMIT;
    DELETE FROM t1 WHERE length(a)>3;
    SELECT * FROM t1;
    SELECT * FROM t2;
  }]
  db close
  set res
} -test {
  faultsim_test_result {0 {abc def ghi truncate abc def ghi jkl mno pqr 2}}
155
156
157
158
159
160
161
162



163




















164
165
166
    {1 {unable to open database file}}                                      \
    {1 {unable to open database: test.db2}}                                 \
    {1 {attempt to write a readonly database}}                              \
    {1 {disk I/O error}}                                                  
}

#-------------------------------------------------------------------------
# 

























finish_test








|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    {1 {unable to open database file}}                                      \
    {1 {unable to open database: test.db2}}                                 \
    {1 {attempt to write a readonly database}}                              \
    {1 {disk I/O error}}                                                  
}

#-------------------------------------------------------------------------

proc vfsfault_install {} { 
  test_syscall reset
  test_syscall install {fstat fallocate}
}
do_faultsim_test 3 -faults vfsfault-* -prep {
  faultsim_delete_and_reopen
  file_control_chunksize_test db main 8192
  execsql {
    CREATE TABLE t1(a, b);
    BEGIN;
      SELECT * FROM t1;
  }
} -body {
  test_syscall errno fstat     EIO
  test_syscall errno fallocate EIO

  execsql {
    INSERT INTO t1 VALUES(randomblob(10000), randomblob(10000));
    SELECT length(a) + length(b) FROM t1;
    COMMIT;
  }
} -test {
  faultsim_test_result {0 20000}
}

finish_test

Added test/unixexcl.test.






































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# 2011 March 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests for the "unix-excl" VFS module (part of 
# os_unix.c).
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/lock_common.tcl
source $testdir/malloc_common.tcl

if {$::tcl_platform(platform)!="unix" || [info commands test_syscall]==""} {
  finish_test
  return
} 
set testprefix unixexcl



# Test that when using VFS "unix-excl", the first time the database is read
# a process-wide exclusive lock is taken on it. This means other connections
# within the process may still access the db normally, but connections from
# outside the process cannot.
#
do_multiclient_test tn {
  do_test unixexcl-1.$tn.1 {
    sql1 {
      CREATE TABLE t1(a, b);
      INSERT INTO t1 VALUES('hello', 'world');
    }
  } {}
  do_test unixexcl-1.$tn.2 { sql2 { SELECT * FROM t1 } } {hello world}
  do_test unixexcl-1.$tn.3 {
    code1 {
      db close
      sqlite3 db test.db -vfs unix-excl
      db eval { SELECT * FROM t1 }
    }
  } {hello world}
  if {$tn==1} {
    do_test unixexcl-1.$tn.4.multiproc { 
      csql2 { SELECT * FROM t1 } 
    } {1 {database is locked}}
  } else {
    do_test unixexcl-1.$tn.4.singleproc { 
      csql2 { SELECT * FROM t1 } 
    } {0 {hello world}}
  }
}

# Test that when using VFS "unix-excl", if a file is opened in read-only mode
# the behaviour is the same as if VFS "unix" were used.
#
do_multiclient_test tn {
  do_test unixexcl-2.$tn.1 {
    sql1 {
      CREATE TABLE t1(a, b);
      INSERT INTO t1 VALUES('hello', 'world');
    }
  } {}
  do_test unixexcl-2.$tn.2 { sql2 { SELECT * FROM t1 } } {hello world}
  do_test unixexcl-2.$tn.3 {
    code1 {
      db close
      sqlite3 db test.db -readonly yes -vfs unix-excl
      db eval { SELECT * FROM t1 }
    }
  } {hello world}
  do_test unixexcl-2.$tn.4 { 
    csql2 { SELECT * FROM t1 } 
  } {0 {hello world}}
}

finish_test
Changes to test/where3.test.
218
219
220
221
222
223
224

225
226
227
228
229
230
231
# if held until an inner loop.
# 
do_execsql_test where3-3.0 {
  CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c);
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  CREATE TABLE t302(x, y);

  ANALYZE;
  explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 0 {SCAN TABLE t302 (~1 rows)} 
  0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}
do_execsql_test where3-3.1 {







>







218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# if held until an inner loop.
# 
do_execsql_test where3-3.0 {
  CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c);
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;
  explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 0 {SCAN TABLE t302 (~1 rows)} 
  0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}
do_execsql_test where3-3.1 {
336
337
338
339
340
341
342
343
344
345
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 0 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}


finish_test








<

337
338
339
340
341
342
343
344

345
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 0 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}


finish_test