/ Check-in [d0a450ce]
Login
SQLite training in Houston TX on 2019-11-05 (details)
Part of the 2019 Tcl Conference

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Updates to FTS4 to improve performance and make more accurate cost estimates for prefix terms.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | experimental
Files: files | file ages | folders
SHA1: d0a450ce78e99f55c862f26f9332786660007a0a
User & Date: dan 2010-10-20 18:56:04
Context
2010-10-21
15:49
Merge trunk changes into experimental branch. check-in: fd1e5cad user: dan tags: experimental
2010-10-20
18:56
Updates to FTS4 to improve performance and make more accurate cost estimates for prefix terms. check-in: d0a450ce user: dan tags: experimental
2010-10-19
14:08
Experimental changes to fts4 to try to selectively avoid loading very large doclists. check-in: 5ae0ba44 user: dan tags: experimental
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts3/fts3.c.

922
923
924
925
926
927
928
929
930

931
932
933
934
935
936
937
...
965
966
967
968
969
970
971














































































972
973
974
975
976
977
978
...
989
990
991
992
993
994
995
996

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031

1032
1033




1034
1035
1036
1037

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058



1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
....
1502
1503
1504
1505
1506
1507
1508
1509

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

1520
1521
1522
1523
1524
1525
1526
....
1556
1557
1558
1559
1560
1561
1562

1563
1564
1565
1566
1567
1568
1569
....
1589
1590
1591
1592
1593
1594
1595


1596
1597
1598
1599
1600
1601
1602
....
1641
1642
1643
1644
1645
1646
1647

1648
1649
1650
1651
1652
1653
1654
....
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
....
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
....
1901
1902
1903
1904
1905
1906
1907
1908

1909

1910
1911
1912
1913
1914
1915
1916
1917
1918
....
2004
2005
2006
2007
2008
2009
2010









2011
2012

2013
2014
2015
2016
2017







2018
2019
2020

2021

2022
2023
2024
2025
2026
2027
2028
....
2156
2157
2158
2159
2160
2161
2162



2163
2164
2165
2166
2167
2168
2169
....
2185
2186
2187
2188
2189
2190
2191
2192
2193

2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
....
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
....
2438
2439
2440
2441
2442
2443
2444



2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
....
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
....
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
....
2637
2638
2639
2640
2641
2642
2643

2644
2645
2646
2647
2648
2649
2650
....
2667
2668
2669
2670
2671
2672
2673

2674
2675
2676
2677
2678
2679
2680
....
2778
2779
2780
2781
2782
2783
2784
2785


2786
2787
2788
2789
2790
2791
2792
....
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
  return SQLITE_OK;
}

/*
** Close the cursor.  For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int fulltextClose(sqlite3_vtab_cursor *pCursor){
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;

  sqlite3_finalize(pCsr->pStmt);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3Fts3FreeDeferredTokens(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3_free(pCsr->aMatchinfo);
  sqlite3_free(pCsr);
  return SQLITE_OK;
................................................................................
    }
  }else{
    return SQLITE_OK;
  }
}


















































































/*
** The buffer pointed to by argument zNode (size nNode bytes) contains the
** root node of a b-tree segment. The segment is guaranteed to be at least
** one level high (i.e. the root node is not also a leaf). If successful,
** this function locates the leaf node of the segment that may contain the 
................................................................................
*/ 
static int fts3SelectLeaf(
  Fts3Table *p,                   /* Virtual table handle */
  const char *zTerm,              /* Term to select leaves for */
  int nTerm,                      /* Size of term zTerm in bytes */
  const char *zNode,              /* Buffer containing segment interior node */
  int nNode,                      /* Size of buffer at zNode */
  sqlite3_int64 *piLeaf           /* Selected leaf node */

){
  int rc = SQLITE_OK;             /* Return code */
  const char *zCsr = zNode;       /* Cursor to iterate through node */
  const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
  char *zBuffer = 0;              /* Buffer to load terms into */
  int nAlloc = 0;                 /* Size of allocated buffer */

  while( 1 ){
    int isFirstTerm = 1;          /* True when processing first term on page */
    int iHeight;                  /* Height of this node in tree */
    sqlite3_int64 iChild;         /* Block id of child node to descend to */
    int nBlock;                   /* Size of child node in bytes */

    zCsr += sqlite3Fts3GetVarint32(zCsr, &iHeight);
    zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);

  
    while( zCsr<zEnd ){
      int cmp;                    /* memcmp() result */
      int nSuffix;                /* Size of term suffix */
      int nPrefix = 0;            /* Size of term prefix */
      int nBuffer;                /* Total term size */
  
      /* Load the next term on the node into zBuffer */
      if( !isFirstTerm ){
        zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
      }
      isFirstTerm = 0;
      zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
      if( nPrefix+nSuffix>nAlloc ){

        char *zNew;
        nAlloc = (nPrefix+nSuffix) * 2;
        zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
        if( !zNew ){
          sqlite3_free(zBuffer);
          return SQLITE_NOMEM;

        }
        zBuffer = zNew;




      }
      memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
      nBuffer = nPrefix + nSuffix;
      zCsr += nSuffix;

  
      /* Compare the term we are searching for with the term just loaded from
      ** the interior node. If the specified term is greater than or equal
      ** to the term from the interior node, then all terms on the sub-tree 
      ** headed by node iChild are smaller than zTerm. No need to search 
      ** iChild.
      **
      ** If the interior node term is larger than the specified term, then
      ** the tree headed by iChild may contain the specified term.
      */
      cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
      if( cmp<0 || (cmp==0 && nBuffer>nTerm) ) break;
      iChild++;
    };

    /* If (iHeight==1), the children of this interior node are leaves. The
    ** specified term may be present on leaf node iChild.
    */
    if( iHeight==1 ){
      *piLeaf = iChild;
      break;



    }

    /* Descend to interior node iChild. */
    rc = sqlite3Fts3ReadBlock(p, iChild, &zCsr, &nBlock);
    if( rc!=SQLITE_OK ) break;
    zEnd = &zCsr[nBlock];
  }
  sqlite3_free(zBuffer);
  return rc;
}

/*
** This function is used to create delta-encoded serialized lists of FTS3 
** varints. Each call to this function appends a single varint to a list.
*/
................................................................................
  int nParam1,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
  int nParam2,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
  char *aBuffer,                  /* Pre-allocated output buffer */
  int *pnBuffer,                  /* OUT: Bytes written to aBuffer */
  char *a1,                       /* Buffer containing first doclist */
  int n1,                         /* Size of buffer a1 */
  char *a2,                       /* Buffer containing second doclist */
  int n2                          /* Size of buffer a2 */

){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;

  char *p = aBuffer;
  char *p1 = a1;
  char *p2 = a2;
  char *pEnd1 = &a1[n1];
  char *pEnd2 = &a2[n2];


  assert( mergetype==MERGE_OR     || mergetype==MERGE_POS_OR 
       || mergetype==MERGE_AND    || mergetype==MERGE_NOT
       || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
       || mergetype==MERGE_NEAR   || mergetype==MERGE_POS_NEAR
  );

................................................................................

    case MERGE_AND:
      while( p1 && p2 ){
        if( i1==i2 ){
          fts3PutDeltaVarint(&p, &iPrev, i1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);

        }else if( i1<i2 ){
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }
      }
      break;
................................................................................
        if( i1==i2 ){
          char *pSave = p;
          sqlite3_int64 iPrevSave = iPrev;
          fts3PutDeltaVarint(&p, &iPrev, i1);
          if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){
            p = pSave;
            iPrev = iPrevSave;


          }
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }else if( i1<i2 ){
          fts3PoslistCopy(0, &p1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
................................................................................
        }
      }
      sqlite3_free(aTmp);
      break;
    }
  }


  *pnBuffer = (int)(p-aBuffer);
  return SQLITE_OK;
}

/* 
** A pointer to an instance of this structure is used as the context 
** argument to sqlite3Fts3SegReaderIterate()
................................................................................
        int nNew = nOut + pTS->anOutput[i];
        char *aNew = sqlite3_malloc(nNew);
        if( !aNew ){
          sqlite3_free(aOut);
          return SQLITE_NOMEM;
        }
        fts3DoclistMerge(mergetype, 0, 0,
            aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut
        );
        sqlite3_free(pTS->aaOutput[i]);
        sqlite3_free(aOut);
        pTS->aaOutput[i] = 0;
        aOut = aNew;
        nOut = nNew;
      }
................................................................................
      aNew = sqlite3_malloc(nNew);
      if( !aNew ){
        if( aMerge!=aDoclist ){
          sqlite3_free(aMerge);
        }
        return SQLITE_NOMEM;
      }
      fts3DoclistMerge(mergetype, 0, 0,
          aNew, &nNew, pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge
      );

      if( iOut>0 ) sqlite3_free(aMerge);
      sqlite3_free(pTS->aaOutput[iOut]);
      pTS->aaOutput[iOut] = 0;

      aMerge = aNew;
................................................................................
      /* The entire segment is stored on the root node (which must be a
      ** leaf). Do not bother inspecting any data in this case, just
      ** create a Fts3SegReader to scan the single leaf. 
      */
      rc = sqlite3Fts3SegReaderNew(p, iAge, 0, 0, 0, zRoot, nRoot, &pNew);
    }else{
      int rc2;                    /* Return value of sqlite3Fts3ReadBlock() */
      sqlite3_int64 i1;           /* Blockid of leaf that may contain zTerm */

      rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1);

      if( rc==SQLITE_OK ){
        sqlite3_int64 i2 = sqlite3_column_int64(pStmt, 2);
        rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew);
      }

      /* The following call to ReadBlock() serves to reset the SQL statement
      ** used to retrieve blocks of data from the %_segments table. If it is
      ** not reset here, then it may remain classified as an active statement 
      ** by SQLite, which may lead to "DROP TABLE" or "DETACH" commands 
................................................................................
  }

  fts3SegReaderArrayFree(pArray);
  pTok->pArray = 0;
  return rc;
}










static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){
  int nDoc = 0;                   /* Return value */

  if( aList ){
    char *aEnd = &aList[nList];   /* Pointer to one byte after EOF */
    char *p = aList;              /* Cursor */
    sqlite3_int64 dummy;          /* For Fts3GetVarint() */
  







    while( p<aEnd ){
      nDoc++;
      p += sqlite3Fts3GetVarint(p, &dummy);

      if( isPoslist ) fts3PoslistCopy(0, &p);

    }
  }

  return nDoc;
}

/*
................................................................................
    }
    assert( rc!=SQLITE_OK || pCsr->doDeferred || pTok->pArray==0 );
    if( rc!=SQLITE_OK ) break;

    if( ii==0 ){
      pOut = pList;
      nOut = nList;



    }else{
      /* Merge the new term list and the current output. */
      char *aLeft, *aRight;
      int nLeft, nRight;
      int nDist;
      int mt;

................................................................................
        aRight = pOut;
        nRight = nOut;
        aLeft = pList;
        nLeft = nList;
        nDist = iPrevTok-iTok;
      }
      pOut = aRight;
     
      fts3DoclistMerge(mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight);

      sqlite3_free(aLeft);
    }
    assert( nOut==0 || pOut!=0 );

    iPrevTok = iTok;
    nDoc = fts3DoclistCountDocids(ii<(pPhrase->nToken-1), pOut, nOut);
  }

  if( rc==SQLITE_OK ){
    if( ii!=pPhrase->nToken ){
      assert( pCsr->doDeferred==0 && isReqPos==0 );
      fts3DoclistStripPositions(pOut, &nOut);
    }
................................................................................
  assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );

  aOut = sqlite3_malloc(nLeft+nRight+1);
  if( aOut==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, 
      aOut, pnOut, aLeft, nLeft, aRight, nRight
    );
    if( rc!=SQLITE_OK ){
      sqlite3_free(aOut);
      aOut = 0;
    }
  }

................................................................................
          }else{
            rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0);
            if( rc!=SQLITE_OK ) break;
            pBest->pExpr = 0;
            if( ii==0 ){
              aRet = aNew;
              nRet = nNew;



            }else{
              fts3DoclistMerge(
                  MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew
              );
              sqlite3_free(aNew);
            }
            nDoc = fts3DoclistCountDocids(0, aRet, nRet);
          }
        }
      }

      *paOut = aRet;
      *pnOut = nRet;
      sqlite3_free(aExpr);
................................................................................
            /* Allocate a buffer for the output. The maximum size is the
            ** sum of the sizes of the two input buffers. The +1 term is
            ** so that a buffer of zero bytes is never allocated - this can
            ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
            */
            char *aBuffer = sqlite3_malloc(nRight+nLeft+1);
            rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut,
                aLeft, nLeft, aRight, nRight
            );
            *paOut = aBuffer;
            sqlite3_free(aLeft);
            break;
          }

          default: {
            assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
            fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
                aLeft, nLeft, aRight, nRight
            );
            *paOut = aLeft;
            break;
          }
        }
      }
      sqlite3_free(aRight);
................................................................................
      pCsr->isMatchinfoNeeded = 1;
    }
  }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 );

  return rc;
}


/*
** This is the xFilter interface for the virtual table.  See
** the virtual table xFilter method documentation for additional
** information.
**
** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
** the %_content table.
................................................................................

  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(nVal);

  assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
  assert( nVal==0 || nVal==1 );
  assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );


  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

................................................................................
      return rc;
    }

    rc = sqlite3Fts3ReadLock(p);
    if( rc!=SQLITE_OK ) return rc;

    rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);

    if( rc!=SQLITE_OK ) return rc;
    pCsr->pNextId = pCsr->aDoclist;
    pCsr->iPrevId = 0;
    if( pCsr->nDoclist<0 ){
      assert( pCsr->aDoclist==0 );
      idxNum = FTS3_FULLSCAN_SEARCH;
    }
................................................................................
}

/*
** Implementation of xSync() method. Flush the contents of the pending-terms
** hash-table to the database.
*/
static int fts3SyncMethod(sqlite3_vtab *pVtab){
  return sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab);


}

/*
** Implementation of xBegin() method. This is a no-op.
*/
static int fts3BeginMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAMETER(pVtab);
................................................................................
  /* iVersion      */ 0,
  /* xCreate       */ fts3CreateMethod,
  /* xConnect      */ fts3ConnectMethod,
  /* xBestIndex    */ fts3BestIndexMethod,
  /* xDisconnect   */ fts3DisconnectMethod,
  /* xDestroy      */ fts3DestroyMethod,
  /* xOpen         */ fts3OpenMethod,
  /* xClose        */ fulltextClose,
  /* xFilter       */ fts3FilterMethod,
  /* xNext         */ fts3NextMethod,
  /* xEof          */ fts3EofMethod,
  /* xColumn       */ fts3ColumnMethod,
  /* xRowid        */ fts3RowidMethod,
  /* xUpdate       */ fts3UpdateMethod,
  /* xBegin        */ fts3BeginMethod,







|

>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
>

<
|
<
<
<
<
<
<
|
<
<

|
<
>

<
<
<
<
<
<
<
<
<
<
<
<
<
>
|
<
<
<
<
<
>
|
<
>
>
>
>

<
<
<
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
>
>
>

|
<
<
<
<
|
<







 







|
>










>







 







>







 







>
>







 







>







 







|







 







|
|







 







|
>
|
>

<







 







>
>
>
>
>
>
>
>
>


>



|
<
>
>
>
>
>
>
>
|
|
<
>
|
>







 







>
>
>







 







|
|
>





<







 







|







 







>
>
>


|



<







 







|









|







 







<







 







>







 







>







 







|
>
>







 







|







922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
...
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
....
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

1078






1079


1080
1081

1082
1083













1084
1085





1086
1087

1088
1089
1090
1091
1092



1093
1094













1095






1096
1097
1098
1099
1100




1101

1102
1103
1104
1105
1106
1107
1108
....
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
....
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
....
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
....
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
....
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
....
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
....
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953

1954
1955
1956
1957
1958
1959
1960
....
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068

2069
2070
2071
2072
2073
2074
2075
2076
2077

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
....
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
....
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261

2262
2263
2264
2265
2266
2267
2268
....
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
....
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515

2516
2517
2518
2519
2520
2521
2522
....
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
....
2657
2658
2659
2660
2661
2662
2663

2664
2665
2666
2667
2668
2669
2670
....
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
....
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
....
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
....
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
  return SQLITE_OK;
}

/*
** Close the cursor.  For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_finalize(pCsr->pStmt);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3Fts3FreeDeferredTokens(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3_free(pCsr->aMatchinfo);
  sqlite3_free(pCsr);
  return SQLITE_OK;
................................................................................
    }
  }else{
    return SQLITE_OK;
  }
}


static int fts3ScanInteriorNode(
  Fts3Table *p,                   /* Virtual table handle */
  const char *zTerm,              /* Term to select leaves for */
  int nTerm,                      /* Size of term zTerm in bytes */
  const char *zNode,              /* Buffer containing segment interior node */
  int nNode,                      /* Size of buffer at zNode */
  sqlite3_int64 *piFirst,         /* OUT: Selected child node */
  sqlite3_int64 *piLast           /* OUT: Selected child node */
){
  int rc = SQLITE_OK;             /* Return code */
  const char *zCsr = zNode;       /* Cursor to iterate through node */
  const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
  char *zBuffer = 0;              /* Buffer to load terms into */
  int nAlloc = 0;                 /* Size of allocated buffer */

  int isFirstTerm = 1;          /* True when processing first term on page */
  int dummy;
  sqlite3_int64 iChild;         /* Block id of child node to descend to */
  int nBlock;                   /* Size of child node in bytes */

  zCsr += sqlite3Fts3GetVarint32(zCsr, &dummy);
  zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
  
  while( zCsr<zEnd && (piFirst || piLast) ){
    int cmp;                    /* memcmp() result */
    int nSuffix;                /* Size of term suffix */
    int nPrefix = 0;            /* Size of term prefix */
    int nBuffer;                /* Total term size */
  
    /* Load the next term on the node into zBuffer */
    if( !isFirstTerm ){
      zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
    if( nPrefix+nSuffix>nAlloc ){
      char *zNew;
      nAlloc = (nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
      if( !zNew ){
        sqlite3_free(zBuffer);
        return SQLITE_NOMEM;
      }
      zBuffer = zNew;
    }
    memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
    nBuffer = nPrefix + nSuffix;
    zCsr += nSuffix;

    /* Compare the term we are searching for with the term just loaded from
    ** the interior node. If the specified term is greater than or equal
    ** to the term from the interior node, then all terms on the sub-tree 
    ** headed by node iChild are smaller than zTerm. No need to search 
    ** iChild.
    **
    ** If the interior node term is larger than the specified term, then
    ** the tree headed by iChild may contain the specified term.
    */
    cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
    if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
      *piFirst = iChild;
      piFirst = 0;
    }

    if( piLast && cmp<0 ){
      *piLast = iChild;
      piLast = 0;
    }

    iChild++;
  };

  if( piFirst ) *piFirst = iChild;
  if( piLast ) *piLast = iChild;

  sqlite3_free(zBuffer);
  return rc;
}


/*
** The buffer pointed to by argument zNode (size nNode bytes) contains the
** root node of a b-tree segment. The segment is guaranteed to be at least
** one level high (i.e. the root node is not also a leaf). If successful,
** this function locates the leaf node of the segment that may contain the 
................................................................................
*/ 
static int fts3SelectLeaf(
  Fts3Table *p,                   /* Virtual table handle */
  const char *zTerm,              /* Term to select leaves for */
  int nTerm,                      /* Size of term zTerm in bytes */
  const char *zNode,              /* Buffer containing segment interior node */
  int nNode,                      /* Size of buffer at zNode */
  sqlite3_int64 *piLeaf,          /* Selected leaf node */
  sqlite3_int64 *piLeaf2          /* Selected leaf node */
){

  int rc;                         /* Return code */






  int iHeight;                    /* Height of this node in tree */



  sqlite3Fts3GetVarint32(zNode, &iHeight);

  rc = fts3ScanInteriorNode(p, zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
  













  if( rc==SQLITE_OK && iHeight>1 ){
    const char *zBlob;





    int nBlob;


    if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
      rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
      if( rc==SQLITE_OK ){
        rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
      }



      piLeaf = 0;
    }




















    rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
    if( rc==SQLITE_OK ){
      rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
    }
  }






  return rc;
}

/*
** This function is used to create delta-encoded serialized lists of FTS3 
** varints. Each call to this function appends a single varint to a list.
*/
................................................................................
  int nParam1,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
  int nParam2,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
  char *aBuffer,                  /* Pre-allocated output buffer */
  int *pnBuffer,                  /* OUT: Bytes written to aBuffer */
  char *a1,                       /* Buffer containing first doclist */
  int n1,                         /* Size of buffer a1 */
  char *a2,                       /* Buffer containing second doclist */
  int n2,                         /* Size of buffer a2 */
  int *pnDoc                      /* OUT: Number of docids in output */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;

  char *p = aBuffer;
  char *p1 = a1;
  char *p2 = a2;
  char *pEnd1 = &a1[n1];
  char *pEnd2 = &a2[n2];
  int nDoc = 0;

  assert( mergetype==MERGE_OR     || mergetype==MERGE_POS_OR 
       || mergetype==MERGE_AND    || mergetype==MERGE_NOT
       || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
       || mergetype==MERGE_NEAR   || mergetype==MERGE_POS_NEAR
  );

................................................................................

    case MERGE_AND:
      while( p1 && p2 ){
        if( i1==i2 ){
          fts3PutDeltaVarint(&p, &iPrev, i1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
          nDoc++;
        }else if( i1<i2 ){
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }
      }
      break;
................................................................................
        if( i1==i2 ){
          char *pSave = p;
          sqlite3_int64 iPrevSave = iPrev;
          fts3PutDeltaVarint(&p, &iPrev, i1);
          if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){
            p = pSave;
            iPrev = iPrevSave;
          }else{
            nDoc++;
          }
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }else if( i1<i2 ){
          fts3PoslistCopy(0, &p1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
................................................................................
        }
      }
      sqlite3_free(aTmp);
      break;
    }
  }

  if( pnDoc ) *pnDoc = nDoc;
  *pnBuffer = (int)(p-aBuffer);
  return SQLITE_OK;
}

/* 
** A pointer to an instance of this structure is used as the context 
** argument to sqlite3Fts3SegReaderIterate()
................................................................................
        int nNew = nOut + pTS->anOutput[i];
        char *aNew = sqlite3_malloc(nNew);
        if( !aNew ){
          sqlite3_free(aOut);
          return SQLITE_NOMEM;
        }
        fts3DoclistMerge(mergetype, 0, 0,
            aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0
        );
        sqlite3_free(pTS->aaOutput[i]);
        sqlite3_free(aOut);
        pTS->aaOutput[i] = 0;
        aOut = aNew;
        nOut = nNew;
      }
................................................................................
      aNew = sqlite3_malloc(nNew);
      if( !aNew ){
        if( aMerge!=aDoclist ){
          sqlite3_free(aMerge);
        }
        return SQLITE_NOMEM;
      }
      fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew, 
          pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0
      );

      if( iOut>0 ) sqlite3_free(aMerge);
      sqlite3_free(pTS->aaOutput[iOut]);
      pTS->aaOutput[iOut] = 0;

      aMerge = aNew;
................................................................................
      /* The entire segment is stored on the root node (which must be a
      ** leaf). Do not bother inspecting any data in this case, just
      ** create a Fts3SegReader to scan the single leaf. 
      */
      rc = sqlite3Fts3SegReaderNew(p, iAge, 0, 0, 0, zRoot, nRoot, &pNew);
    }else{
      int rc2;                    /* Return value of sqlite3Fts3ReadBlock() */
      sqlite3_int64 i1;           /* First leaf that may contain zTerm */
      sqlite3_int64 i2;           /* Last leaf that may contain zTerm */
      rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1, (isPrefix?&i2:0));
      if( isPrefix==0 ) i2 = i1;
      if( rc==SQLITE_OK ){

        rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew);
      }

      /* The following call to ReadBlock() serves to reset the SQL statement
      ** used to retrieve blocks of data from the %_segments table. If it is
      ** not reset here, then it may remain classified as an active statement 
      ** by SQLite, which may lead to "DROP TABLE" or "DETACH" commands 
................................................................................
  }

  fts3SegReaderArrayFree(pArray);
  pTok->pArray = 0;
  return rc;
}

/*
** This function counts the total number of docids in the doclist stored
** in buffer aList[], size nList bytes.
**
** If the isPoslist argument is true, then it is assumed that the doclist
** contains a position-list following each docid. Otherwise, it is assumed
** that the doclist is simply a list of docids stored as delta encoded 
** varints.
*/
static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){
  int nDoc = 0;                   /* Return value */

  if( aList ){
    char *aEnd = &aList[nList];   /* Pointer to one byte after EOF */
    char *p = aList;              /* Cursor */
    if( !isPoslist ){

      /* The number of docids in the list is the same as the number of 
      ** varints. In FTS3 a varint consists of a single byte with the 0x80 
      ** bit cleared and zero or more bytes with the 0x80 bit set. So to
      ** count the varints in the buffer, just count the number of bytes
      ** with the 0x80 bit clear.  */
      while( p<aEnd ) nDoc += (((*p++)&0x80)==0);
    }else{
      while( p<aEnd ){
        nDoc++;

        while( (*p++)&0x80 );     /* Skip docid varint */
        fts3PoslistCopy(0, &p);   /* Skip over position list */
      }
    }
  }

  return nDoc;
}

/*
................................................................................
    }
    assert( rc!=SQLITE_OK || pCsr->doDeferred || pTok->pArray==0 );
    if( rc!=SQLITE_OK ) break;

    if( ii==0 ){
      pOut = pList;
      nOut = nList;
      if( pCsr->doDeferred==0 && pPhrase->nToken>1 ){
        nDoc = fts3DoclistCountDocids(1, pOut, nOut);
      }
    }else{
      /* Merge the new term list and the current output. */
      char *aLeft, *aRight;
      int nLeft, nRight;
      int nDist;
      int mt;

................................................................................
        aRight = pOut;
        nRight = nOut;
        aLeft = pList;
        nLeft = nList;
        nDist = iPrevTok-iTok;
      }
      pOut = aRight;
      fts3DoclistMerge(
          mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc
      );
      sqlite3_free(aLeft);
    }
    assert( nOut==0 || pOut!=0 );

    iPrevTok = iTok;

  }

  if( rc==SQLITE_OK ){
    if( ii!=pPhrase->nToken ){
      assert( pCsr->doDeferred==0 && isReqPos==0 );
      fts3DoclistStripPositions(pOut, &nOut);
    }
................................................................................
  assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );

  aOut = sqlite3_malloc(nLeft+nRight+1);
  if( aOut==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, 
      aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
    );
    if( rc!=SQLITE_OK ){
      sqlite3_free(aOut);
      aOut = 0;
    }
  }

................................................................................
          }else{
            rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0);
            if( rc!=SQLITE_OK ) break;
            pBest->pExpr = 0;
            if( ii==0 ){
              aRet = aNew;
              nRet = nNew;
              if( nExpr>1 ){
                nDoc = fts3DoclistCountDocids(0, aRet, nRet);
              }
            }else{
              fts3DoclistMerge(
                  MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc
              );
              sqlite3_free(aNew);
            }

          }
        }
      }

      *paOut = aRet;
      *pnOut = nRet;
      sqlite3_free(aExpr);
................................................................................
            /* Allocate a buffer for the output. The maximum size is the
            ** sum of the sizes of the two input buffers. The +1 term is
            ** so that a buffer of zero bytes is never allocated - this can
            ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
            */
            char *aBuffer = sqlite3_malloc(nRight+nLeft+1);
            rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut,
                aLeft, nLeft, aRight, nRight, 0
            );
            *paOut = aBuffer;
            sqlite3_free(aLeft);
            break;
          }

          default: {
            assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
            fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
                aLeft, nLeft, aRight, nRight, 0
            );
            *paOut = aLeft;
            break;
          }
        }
      }
      sqlite3_free(aRight);
................................................................................
      pCsr->isMatchinfoNeeded = 1;
    }
  }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 );

  return rc;
}


/*
** This is the xFilter interface for the virtual table.  See
** the virtual table xFilter method documentation for additional
** information.
**
** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
** the %_content table.
................................................................................

  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(nVal);

  assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
  assert( nVal==0 || nVal==1 );
  assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
  assert( p->pSegments==0 );

  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

................................................................................
      return rc;
    }

    rc = sqlite3Fts3ReadLock(p);
    if( rc!=SQLITE_OK ) return rc;

    rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);
    sqlite3Fts3SegmentsClose(p);
    if( rc!=SQLITE_OK ) return rc;
    pCsr->pNextId = pCsr->aDoclist;
    pCsr->iPrevId = 0;
    if( pCsr->nDoclist<0 ){
      assert( pCsr->aDoclist==0 );
      idxNum = FTS3_FULLSCAN_SEARCH;
    }
................................................................................
}

/*
** Implementation of xSync() method. Flush the contents of the pending-terms
** hash-table to the database.
*/
static int fts3SyncMethod(sqlite3_vtab *pVtab){
  int rc = sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab);
  sqlite3Fts3SegmentsClose((Fts3Table *)pVtab);
  return rc;
}

/*
** Implementation of xBegin() method. This is a no-op.
*/
static int fts3BeginMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAMETER(pVtab);
................................................................................
  /* iVersion      */ 0,
  /* xCreate       */ fts3CreateMethod,
  /* xConnect      */ fts3ConnectMethod,
  /* xBestIndex    */ fts3BestIndexMethod,
  /* xDisconnect   */ fts3DisconnectMethod,
  /* xDestroy      */ fts3DestroyMethod,
  /* xOpen         */ fts3OpenMethod,
  /* xClose        */ fts3CloseMethod,
  /* xFilter       */ fts3FilterMethod,
  /* xNext         */ fts3NextMethod,
  /* xEof          */ fts3EofMethod,
  /* xColumn       */ fts3ColumnMethod,
  /* xRowid        */ fts3RowidMethod,
  /* xUpdate       */ fts3UpdateMethod,
  /* xBegin        */ fts3BeginMethod,

Changes to ext/fts3/fts3Int.h.

126
127
128
129
130
131
132


133
134
135
136
137
138
139
...
282
283
284
285
286
287
288


289
290
291
292
293
294
295

  char *zSegmentsTbl;             /* Name of %_segments table */
  int nPgsz;                      /* Page size for host database */
  int nNodeSize;                  /* Soft limit for node size */
  u8 bHasContent;                 /* True if %_content table exists */
  u8 bHasDocsize;                 /* True if %_docsize table exists */



  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds nMaxPendingData, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
  ** inserted record.
  */
................................................................................
int sqlite3Fts3ReadLock(Fts3Table *);

void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *);



/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
#define FTS3_SEGMENT_REQUIRE_POS   0x00000001
#define FTS3_SEGMENT_IGNORE_EMPTY  0x00000002
#define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
#define FTS3_SEGMENT_PREFIX        0x00000008








>
>







 







>
>







126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
...
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

  char *zSegmentsTbl;             /* Name of %_segments table */
  int nPgsz;                      /* Page size for host database */
  int nNodeSize;                  /* Soft limit for node size */
  u8 bHasContent;                 /* True if %_content table exists */
  u8 bHasDocsize;                 /* True if %_docsize table exists */

  sqlite3_blob *pSegments;        /* Blob handle open on %_segments table */

  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds nMaxPendingData, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
  ** inserted record.
  */
................................................................................
int sqlite3Fts3ReadLock(Fts3Table *);

void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *);

void sqlite3Fts3SegmentsClose(Fts3Table *);

/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
#define FTS3_SEGMENT_REQUIRE_POS   0x00000001
#define FTS3_SEGMENT_IGNORE_EMPTY  0x00000002
#define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
#define FTS3_SEGMENT_PREFIX        0x00000008

Changes to ext/fts3/fts3_snippet.c.

264
265
266
267
268
269
270

271
272
273
274
275
276
277
  sCtx.pCsr = pCsr;
  rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb1, (void *)&sCtx);
  if( rc==SQLITE_OK ){
    (void)fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb2, 0);
  }
  if( pnPhrase ) *pnPhrase = sCtx.nPhrase;
  if( pnToken ) *pnToken = sCtx.nToken;

  return rc;
}

/*
** Advance the position list iterator specified by the first two 
** arguments so that it points to the first element with a value greater
** than or equal to parameter iNext.







>







264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  sCtx.pCsr = pCsr;
  rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb1, (void *)&sCtx);
  if( rc==SQLITE_OK ){
    (void)fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb2, 0);
  }
  if( pnPhrase ) *pnPhrase = sCtx.nPhrase;
  if( pnToken ) *pnToken = sCtx.nToken;
  sqlite3Fts3SegmentsClose((Fts3Table *)pCsr->base.pVtab);
  return rc;
}

/*
** Advance the position list iterator specified by the first two 
** arguments so that it points to the first element with a value greater
** than or equal to parameter iNext.

Changes to ext/fts3/fts3_write.c.

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823


824





825
826
827
828
829
830
831
832


























833
834
835
836
837
838
839
...
876
877
878
879
880
881
882

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
....
1004
1005
1006
1007
1008
1009
1010
1011

1012
1013
1014
1015
1016
1017
1018
....
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053


1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
....
1092
1093
1094
1095
1096
1097
1098

1099
1100
1101
1102
1103
1104
1105
....
2615
2616
2617
2618
2619
2620
2621

2622
2623
2624
2625
2626
2627
2628
....
2783
2784
2785
2786
2787
2788
2789

2790
2791
2792
2793
2794
2795
2796
....
2838
2839
2840
2841
2842
2843
2844

2845
2846
2847
2848
2849
2850
2851
....
2861
2862
2863
2864
2865
2866
2867

2868
2869
2870
2871
  return rc;
}

/*
** The %_segments table is declared as follows:
**
**   CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
**
** This function opens a read-only blob handle on the "block" column of
** row iSegment of the %_segments table associated with FTS3 table p.
**
** If all goes well, SQLITE_OK is returned and *ppBlob set to the 
** read-only blob handle. It is the responsibility of the caller to call
** sqlite3_blob_close() on the blob handle. Or, if an error occurs, an
** SQLite error code is returned and *ppBlob is either not modified or
** set to 0.
*/
static int fts3OpenSegmentsBlob(
  Fts3Table *p,                   /* FTS3 table handle */
  sqlite3_int64 iSegment,         /* Rowid in %_segments table */
  sqlite3_blob **ppBlob           /* OUT: Read-only blob handle */


){





  if( 0==p->zSegmentsTbl
   && 0==(p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName))
  ) {
    return SQLITE_NOMEM;
  }
  return sqlite3_blob_open(
     p->db, p->zDb, p->zSegmentsTbl, "block", iSegment, 0, ppBlob
  );


























}


/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
................................................................................

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */
    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }


    rc = fts3OpenSegmentsBlob(p, ++pReader->iCurrentBlock, &pBlob);
    if( rc==SQLITE_OK ){
      pReader->nNode = sqlite3_blob_bytes(pBlob);
      pReader->aNode = (char *)sqlite3_malloc(pReader->nNode);
      if( pReader->aNode ){
        rc = sqlite3_blob_read(pBlob, pReader->aNode, pReader->nNode, 0);
      }else{
        rc = SQLITE_NOMEM;
      }
      sqlite3_blob_close(pBlob);
    }

    if( rc!=SQLITE_OK ){
      return rc;
    }
    pNext = pReader->aNode;
  }
  
................................................................................
  ** for the segment is stored on the root page of the b-tree, then the cost
  ** is zero. In this case all required data is already in main memory.
  */
  if( p->bHasDocsize 
   && !fts3SegReaderIsPending(pReader) 
   && !fts3SegReaderIsRootOnly(pReader) 
  ){
    sqlite3_blob *pBlob = 0;


    if( pCsr->nRowAvg==0 ){
      /* The average document size, which is required to calculate the cost
      ** of each doclist, has not yet been determined. Read the required 
      ** data from the %_stat table to calculate it.
      **
      ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
................................................................................

        pCsr->nRowAvg = (((nByte / nDoc) + pgsz - 1) / pgsz);
      }
      rc = sqlite3_reset(pStmt);
      if( rc!=SQLITE_OK || pCsr->nRowAvg==0 ) return rc;
    }

    rc = fts3OpenSegmentsBlob(p, pReader->iStartBlock, &pBlob);
    if( rc==SQLITE_OK ){
      /* Assume that a blob flows over onto overflow pages if it is larger
      ** than (pgsz-35) bytes in size (the file-format documentation
      ** confirms this).
      */


      int nBlob = sqlite3_blob_bytes(pBlob);
      if( (nBlob+35)>pgsz ){
        int nOvfl = (nBlob + 34)/pgsz;
        nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg);
      }
    }
    assert( rc==SQLITE_OK || pBlob==0 );
    sqlite3_blob_close(pBlob);
  }

  *pnCost += nCost;
  return rc;
}

/*
................................................................................
  int nRoot,                      /* Size of buffer containing root node */
  Fts3SegReader **ppReader        /* OUT: Allocated Fts3SegReader */
){
  int rc = SQLITE_OK;             /* Return code */
  Fts3SegReader *pReader;         /* Newly allocated SegReader object */
  int nExtra = 0;                 /* Bytes to allocate segment root node */


  if( iStartLeaf==0 ){
    nExtra = nRoot;
  }

  pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
  if( !pReader ){
    return SQLITE_NOMEM;
................................................................................
    p->nMaxPendingData = atoi(&zVal[11]);
    rc = SQLITE_OK;
#endif
  }else{
    rc = SQLITE_ERROR;
  }


  return rc;
}

/*
** Return the deferred doclist associated with deferred token pDeferred.
** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already
** been called to allocate and populate the doclist.
................................................................................
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  sqlite3_int64 iRemove = 0;      /* Rowid removed by UPDATE or DELETE */
  u32 *aSzIns;                    /* Sizes of inserted documents */
  u32 *aSzDel;                    /* Sizes of deleted documents */
  int nChng = 0;                  /* Net change in number of documents */



  /* Allocate space to hold the change in document sizes */
  aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*p->nColumn*2 );
  if( aSzIns==0 ) return SQLITE_NOMEM;
  aSzDel = &aSzIns[p->nColumn];
  memset(aSzIns, 0, sizeof(aSzIns[0])*p->nColumn*2);

................................................................................
  }

  if( p->bHasDocsize ){
    fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
  }

  sqlite3_free(aSzIns);

  return rc;
}

/* 
** Flush any data in the pending-terms hash table to disk. If successful,
** merge all segments in the database (including the new segment, if 
** there was any data to flush) into a single segment. 
................................................................................
        sqlite3Fts3PendingTermsClear(p);
      }
    }else{
      sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
      sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
    }
  }

  return rc;
}

#endif







<
<
<
<
<
<
<
<
<

|
|
|
<
>
>

>
>
>
>
>
|
|
<
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
|
<
|
<
<
<
<
<
<
<
<







 







|
>







 







<
<
|
|
|
|
>
>
|





<
<







 







>







 







>







 







>







 







>







 







>




803
804
805
806
807
808
809









810
811
812
813

814
815
816
817
818
819
820
821
822
823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
...
898
899
900
901
902
903
904
905
906

907








908
909
910
911
912
913
914
....
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
....
1056
1057
1058
1059
1060
1061
1062


1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074


1075
1076
1077
1078
1079
1080
1081
....
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
....
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
....
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
....
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
....
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
  return rc;
}

/*
** The %_segments table is declared as follows:
**
**   CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)









*/
static int fts3SegmentsBlob(
  Fts3Table *p,
  sqlite3_int64 iSegment,

  char **paBlob,
  int *pnBlob
){
  int rc;

  if( p->pSegments ){
    rc = sqlite3_blob_reopen(p->pSegments, iSegment);
  }else{
    if( 0==p->zSegmentsTbl ){
      p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);

      if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
    }
    rc = sqlite3_blob_open(
       p->db, p->zDb, p->zSegmentsTbl, "block", iSegment, 0, &p->pSegments
    );
  }

  if( rc==SQLITE_OK ){
    int nByte = sqlite3_blob_bytes(p->pSegments);
    if( paBlob ){
      char *aByte = sqlite3_malloc(nByte);
      if( !aByte ){
        rc = SQLITE_NOMEM;
      }else{
        rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
        if( rc!=SQLITE_OK ){
          sqlite3_free(aByte);
          aByte = 0;
        }
      }
      *paBlob = aByte;
    }
    *pnBlob = nByte;
  }

  return rc;
}

void sqlite3Fts3SegmentsClose(Fts3Table *p){
  sqlite3_blob_close(p->pSegments);
  p->pSegments = 0;
}


/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
................................................................................

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */
    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = fts3SegmentsBlob(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode

    );









    if( rc!=SQLITE_OK ){
      return rc;
    }
    pNext = pReader->aNode;
  }
  
................................................................................
  ** for the segment is stored on the root page of the b-tree, then the cost
  ** is zero. In this case all required data is already in main memory.
  */
  if( p->bHasDocsize 
   && !fts3SegReaderIsPending(pReader) 
   && !fts3SegReaderIsRootOnly(pReader) 
  ){
    int nBlob = 0;
    sqlite3_int64 iBlock;

    if( pCsr->nRowAvg==0 ){
      /* The average document size, which is required to calculate the cost
      ** of each doclist, has not yet been determined. Read the required 
      ** data from the %_stat table to calculate it.
      **
      ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
................................................................................

        pCsr->nRowAvg = (((nByte / nDoc) + pgsz - 1) / pgsz);
      }
      rc = sqlite3_reset(pStmt);
      if( rc!=SQLITE_OK || pCsr->nRowAvg==0 ) return rc;
    }



    /* Assume that a blob flows over onto overflow pages if it is larger
    ** than (pgsz-35) bytes in size (the file-format documentation
    ** confirms this).
    */
    for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){
      rc = fts3SegmentsBlob(p, iBlock, 0, &nBlob);
      if( rc!=SQLITE_OK ) break;
      if( (nBlob+35)>pgsz ){
        int nOvfl = (nBlob + 34)/pgsz;
        nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg);
      }
    }


  }

  *pnCost += nCost;
  return rc;
}

/*
................................................................................
  int nRoot,                      /* Size of buffer containing root node */
  Fts3SegReader **ppReader        /* OUT: Allocated Fts3SegReader */
){
  int rc = SQLITE_OK;             /* Return code */
  Fts3SegReader *pReader;         /* Newly allocated SegReader object */
  int nExtra = 0;                 /* Bytes to allocate segment root node */

  assert( iStartLeaf<=iEndLeaf );
  if( iStartLeaf==0 ){
    nExtra = nRoot;
  }

  pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
  if( !pReader ){
    return SQLITE_NOMEM;
................................................................................
    p->nMaxPendingData = atoi(&zVal[11]);
    rc = SQLITE_OK;
#endif
  }else{
    rc = SQLITE_ERROR;
  }

  sqlite3Fts3SegmentsClose(p);
  return rc;
}

/*
** Return the deferred doclist associated with deferred token pDeferred.
** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already
** been called to allocate and populate the doclist.
................................................................................
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  sqlite3_int64 iRemove = 0;      /* Rowid removed by UPDATE or DELETE */
  u32 *aSzIns;                    /* Sizes of inserted documents */
  u32 *aSzDel;                    /* Sizes of deleted documents */
  int nChng = 0;                  /* Net change in number of documents */

  assert( p->pSegments==0 );

  /* Allocate space to hold the change in document sizes */
  aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*p->nColumn*2 );
  if( aSzIns==0 ) return SQLITE_NOMEM;
  aSzDel = &aSzIns[p->nColumn];
  memset(aSzIns, 0, sizeof(aSzIns[0])*p->nColumn*2);

................................................................................
  }

  if( p->bHasDocsize ){
    fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
  }

  sqlite3_free(aSzIns);
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

/* 
** Flush any data in the pending-terms hash table to disk. If successful,
** merge all segments in the database (including the new segment, if 
** there was any data to flush) into a single segment. 
................................................................................
        sqlite3Fts3PendingTermsClear(p);
      }
    }else{
      sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
      sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
    }
  }
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

#endif

Changes to ext/fts3/fts3speed.tcl.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
..
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#

# Number of tokens in vocabulary. And number of tokens in each document.
#
set VOCAB_SIZE  2000
set DOC_SIZE     100

set NUM_INSERTS 1000
set NUM_SELECTS 1000

# Force everything in this script to be deterministic.
#
expr {srand(0)}

proc usage {} {
................................................................................

proc test_1 {nInsert} {
  sql "PRAGMA synchronous = OFF;"
  sql "DROP TABLE IF EXISTS t1;"
  sql "CREATE VIRTUAL TABLE t1 USING fts4;"
  for {set i 0} {$i < $nInsert} {incr i} {
    set doc [select_doc $::DOC_SIZE]
    #sql "INSERT INTO t1 VALUES('$doc');"
    sql "\"$doc\""
  }
}

proc test_2 {} {
  sql "INSERT INTO t1(t1) VALUES('optimize');"
}








|







 







|
<







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
..
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
#

# Number of tokens in vocabulary. And number of tokens in each document.
#
set VOCAB_SIZE  2000
set DOC_SIZE     100

set NUM_INSERTS 100000
set NUM_SELECTS 1000

# Force everything in this script to be deterministic.
#
expr {srand(0)}

proc usage {} {
................................................................................

proc test_1 {nInsert} {
  sql "PRAGMA synchronous = OFF;"
  sql "DROP TABLE IF EXISTS t1;"
  sql "CREATE VIRTUAL TABLE t1 USING fts4;"
  for {set i 0} {$i < $nInsert} {incr i} {
    set doc [select_doc $::DOC_SIZE]
    sql "INSERT INTO t1 VALUES('$doc');"

  }
}

proc test_2 {} {
  sql "INSERT INTO t1(t1) VALUES('optimize');"
}

Changes to src/btree.c.

8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
** (stored in BtCursor.aOverflow[]) is allocated and used by function
** accessPayload() (the worker function for sqlite3BtreeData() and
** sqlite3BtreePutData()).
*/
void sqlite3BtreeCacheOverflow(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert(!pCur->isIncrblobHandle);
  assert(!pCur->aOverflow);
  pCur->isIncrblobHandle = 1;
}
#endif

/*
** Set both the "read version" (single byte at byte offset 18) and 
** "write version" (single byte at byte offset 19) fields in the database







|
<







8092
8093
8094
8095
8096
8097
8098
8099

8100
8101
8102
8103
8104
8105
8106
** (stored in BtCursor.aOverflow[]) is allocated and used by function
** accessPayload() (the worker function for sqlite3BtreeData() and
** sqlite3BtreePutData()).
*/
void sqlite3BtreeCacheOverflow(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  invalidateOverflowCache(pCur);

  pCur->isIncrblobHandle = 1;
}
#endif

/*
** Set both the "read version" (single byte at byte offset 18) and 
** "write version" (single byte at byte offset 19) fields in the database

Changes to src/sqlite.h.in.

4786
4787
4788
4789
4790
4791
4792





4793
4794
4795
4796
4797
4798
4799
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
  int flags,
  sqlite3_blob **ppBlob
);






/*
** CAPI3REF: Close A BLOB Handle
**
** ^Closes an open [BLOB handle].
**
** ^Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the







>
>
>
>
>







4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
  int flags,
  sqlite3_blob **ppBlob
);

/*
** CAPI3REF: Move a BLOB Handle
*/
SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^Closes an open [BLOB handle].
**
** ^Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the

Changes to src/test1.c.

1699
1700
1701
1702
1703
1704
1705













































1706
1707
1708
1709
1710
1711
1712
....
5324
5325
5326
5327
5328
5329
5330

5331
5332
5333
5334
5335
5336
5337
  rc = sqlite3_blob_write(pBlob, zBuf, nBuf, iOffset);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_VOLATILE);
  }

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}













































#endif

/*
** Usage: sqlite3_create_collation_v2 DB-HANDLE NAME CMP-PROC DEL-PROC
**
**   This Tcl proc is used for testing the experimental
**   sqlite3_create_collation_v2() interface.
................................................................................
     { "sqlite3_libversion_number", test_libversion_number, 0  },
#ifdef SQLITE_ENABLE_COLUMN_METADATA
     { "sqlite3_table_column_metadata", test_table_column_metadata, 0  },
#endif
#ifndef SQLITE_OMIT_INCRBLOB
     { "sqlite3_blob_read",  test_blob_read, 0  },
     { "sqlite3_blob_write", test_blob_write, 0  },

#endif
     { "pcache_stats",       test_pcache_stats, 0  },
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
     { "sqlite3_unlock_notify", test_unlock_notify, 0  },
#endif
     { "sqlite3_wal_checkpoint", test_wal_checkpoint, 0  },
     { "test_sqlite3_log",     test_sqlite3_log, 0  },







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>







1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
....
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
  rc = sqlite3_blob_write(pBlob, zBuf, nBuf, iOffset);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_VOLATILE);
  }

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}

static int test_blob_reopen(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  Tcl_WideInt iRowid;
  Tcl_Channel channel;
  ClientData instanceData;
  sqlite3_blob *pBlob;
  int notUsed;
  int rc;

  unsigned char *zBuf;
  int nBuf;
  
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL ROWID");
    return TCL_ERROR;
  }

  channel = Tcl_GetChannel(interp, Tcl_GetString(objv[1]), &notUsed);
  if( !channel || TCL_OK!=Tcl_GetWideIntFromObj(interp, objv[2], &iRowid) ){ 
    return TCL_ERROR;
  }

  if( TCL_OK!=(rc = Tcl_Flush(channel)) ){
    return rc;
  }
  if( TCL_OK!=(rc = Tcl_Seek(channel, 0, SEEK_SET)) ){
    return rc;
  }

  instanceData = Tcl_GetChannelInstanceData(channel);
  pBlob = *((sqlite3_blob **)instanceData);

  rc = sqlite3_blob_reopen(pBlob, iRowid);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_VOLATILE);
  }

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}

#endif

/*
** Usage: sqlite3_create_collation_v2 DB-HANDLE NAME CMP-PROC DEL-PROC
**
**   This Tcl proc is used for testing the experimental
**   sqlite3_create_collation_v2() interface.
................................................................................
     { "sqlite3_libversion_number", test_libversion_number, 0  },
#ifdef SQLITE_ENABLE_COLUMN_METADATA
     { "sqlite3_table_column_metadata", test_table_column_metadata, 0  },
#endif
#ifndef SQLITE_OMIT_INCRBLOB
     { "sqlite3_blob_read",  test_blob_read, 0  },
     { "sqlite3_blob_write", test_blob_write, 0  },
     { "sqlite3_blob_reopen", test_blob_reopen, 0  },
#endif
     { "pcache_stats",       test_pcache_stats, 0  },
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
     { "sqlite3_unlock_notify", test_unlock_notify, 0  },
#endif
     { "sqlite3_wal_checkpoint", test_wal_checkpoint, 0  },
     { "test_sqlite3_log",     test_sqlite3_log, 0  },

Changes to src/vdbeblob.c.

22
23
24
25
26
27
28

29
30
31
32
33

















































34
35
36
37
38
39
40
..
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85

86

87

88


89
90
91

92
93

94
95
96
97
98
99
100
...
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
...
216
217
218
219
220
221
222




223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271



272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
...
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
...
377
378
379
380
381
382
383
384







































385
** Valid sqlite3_blob* handles point to Incrblob structures.
*/
typedef struct Incrblob Incrblob;
struct Incrblob {
  int flags;              /* Copy of "flags" passed to sqlite3_blob_open() */
  int nByte;              /* Size of open blob, in bytes */
  int iOffset;            /* Byte offset of blob in cursor data */

  BtCursor *pCsr;         /* Cursor pointing at blob row */
  sqlite3_stmt *pStmt;    /* Statement holding cursor open */
  sqlite3 *db;            /* The associated database */
};


















































/*
** Open a blob handle.
*/
int sqlite3_blob_open(
  sqlite3* db,            /* The database connection */
  const char *zDb,        /* The attached database containing the blob */
  const char *zTable,     /* The table containing the blob */
................................................................................
    {OP_TableLock, 0, 0, 0},       /* 2: Acquire a read or write lock */

    /* One of the following two instructions is replaced by an OP_Noop. */
    {OP_OpenRead, 0, 0, 0},        /* 3: Open cursor 0 for reading */
    {OP_OpenWrite, 0, 0, 0},       /* 4: Open cursor 0 for read/write */

    {OP_Variable, 1, 1, 1},        /* 5: Push the rowid to the stack */
    {OP_NotExists, 0, 9, 1},       /* 6: Seek the cursor */
    {OP_Column, 0, 0, 1},          /* 7  */
    {OP_ResultRow, 1, 0, 0},       /* 8  */

    {OP_Close, 0, 0, 0},           /* 9  */
    {OP_Halt, 0, 0, 0},            /* 10 */
  };

  Vdbe *v = 0;
  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse;



  *ppBlob = 0;

  sqlite3_mutex_enter(db->mutex);


  pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
  if( pParse==0 ){
    rc = SQLITE_NOMEM;

    goto blob_open_out;
  }

  do {
    memset(pParse, 0, sizeof(Parse));
    pParse->db = db;

    sqlite3BtreeEnterAll(db);
    pTab = sqlite3LocateTable(pParse, 0, zTable, zDb);
    if( pTab && IsVirtual(pTab) ){
................................................................................
      }
    }

    v = sqlite3VdbeCreate(db);
    if( v ){
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
      flags = !!flags;                 /* flags = (flags ? 1 : 0); */

      /* Configure the OP_Transaction */
      sqlite3VdbeChangeP1(v, 0, iDb);
      sqlite3VdbeChangeP2(v, 0, flags);

      /* Configure the OP_VerifyCookie */
      sqlite3VdbeChangeP1(v, 1, iDb);
................................................................................
      sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){
        sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0);
      }
    }
   




    sqlite3BtreeLeaveAll(db);

    if( db->mallocFailed ){
      goto blob_open_out;
    }

    sqlite3_bind_int64((sqlite3_stmt *)v, 1, iRow);
    rc = sqlite3_step((sqlite3_stmt *)v);
    if( rc!=SQLITE_ROW ){
      nAttempt++;
      rc = sqlite3_finalize((sqlite3_stmt *)v);
      sqlite3DbFree(db, zErr);
      zErr = sqlite3MPrintf(db, sqlite3_errmsg(db));
      v = 0;
    }
  } while( nAttempt<5 && rc==SQLITE_SCHEMA );

  if( rc==SQLITE_ROW ){
    /* The row-record has been opened successfully. Check that the
    ** column in question contains text or a blob. If it contains
    ** text, it is up to the caller to get the encoding right.
    */
    Incrblob *pBlob;
    u32 type = v->apCsr[0]->aType[iCol];

    if( type<12 ){
      sqlite3DbFree(db, zErr);
      zErr = sqlite3MPrintf(db, "cannot open value of type %s",
          type==0?"null": type==7?"real": "integer"
      );
      rc = SQLITE_ERROR;
      goto blob_open_out;
    }
    pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
    if( db->mallocFailed ){
      sqlite3DbFree(db, pBlob);
      goto blob_open_out;
    }
    pBlob->flags = flags;
    pBlob->pCsr =  v->apCsr[0]->pCursor;
    sqlite3BtreeEnterCursor(pBlob->pCsr);
    sqlite3BtreeCacheOverflow(pBlob->pCsr);
    sqlite3BtreeLeaveCursor(pBlob->pCsr);
    pBlob->pStmt = (sqlite3_stmt *)v;
    pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
    pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
    pBlob->db = db;
    *ppBlob = (sqlite3_blob *)pBlob;
    rc = SQLITE_OK;
  }else if( rc==SQLITE_OK ){



    sqlite3DbFree(db, zErr);
    zErr = sqlite3MPrintf(db, "no such rowid: %lld", iRow);
    rc = SQLITE_ERROR;
  }

blob_open_out:
  if( v && (rc!=SQLITE_OK || db->mallocFailed) ){
    sqlite3VdbeFinalize(v);
  }
  sqlite3Error(db, rc, zErr);
  sqlite3DbFree(db, zErr);
  sqlite3StackFree(db, pParse);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

................................................................................
  sqlite3_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;
    sqlite3Error(db, SQLITE_ERROR, 0);
  } else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
    ** returned, clean-up the statement handle.
................................................................................
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
** so no mutex is required for access.
*/
int sqlite3_blob_bytes(sqlite3_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  return p ? p->nByte : 0;
}








































#endif /* #ifndef SQLITE_OMIT_INCRBLOB */







>





>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|


>
|
|







>

>

>

>
>

|
<
>


>







 







<







 







>
>
>
>

>




|
|
<
<
<
<
<
<
<
|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<

<
<
>
>
>
|
<
<


<
<
<
<
|







 







|







 








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
...
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
...
230
231
232
233
234
235
236

237
238
239
240
241
242
243
...
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290







291
292














293


294












295


296
297
298
299


300
301




302
303
304
305
306
307
308
309
...
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
...
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
** Valid sqlite3_blob* handles point to Incrblob structures.
*/
typedef struct Incrblob Incrblob;
struct Incrblob {
  int flags;              /* Copy of "flags" passed to sqlite3_blob_open() */
  int nByte;              /* Size of open blob, in bytes */
  int iOffset;            /* Byte offset of blob in cursor data */
  int iCol;               /* Table column this handle is open on */
  BtCursor *pCsr;         /* Cursor pointing at blob row */
  sqlite3_stmt *pStmt;    /* Statement holding cursor open */
  sqlite3 *db;            /* The associated database */
};


static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){
  int rc;                         /* Error code */
  char *zErr = 0;                 /* Error message */
  Vdbe *v = (Vdbe *)p->pStmt;

  v->aVar[0].u.i = iRow;
  rc = sqlite3_step(p->pStmt);

  if( rc==SQLITE_ROW ){
    Vdbe *v = (Vdbe *)p->pStmt;
    u32 type = v->apCsr[0]->aType[p->iCol];
    if( type<12 ){
      zErr = sqlite3MPrintf(p->db, "cannot open value of type %s",
          type==0?"null": type==7?"real": "integer"
      );
      rc = SQLITE_ERROR;
      sqlite3_finalize(p->pStmt);
      p->pStmt = 0;
    }else{
      p->iOffset = v->apCsr[0]->aOffset[p->iCol];
      p->nByte = sqlite3VdbeSerialTypeLen(type);
      p->pCsr =  v->apCsr[0]->pCursor;
      sqlite3BtreeEnterCursor(p->pCsr);
      sqlite3BtreeCacheOverflow(p->pCsr);
      sqlite3BtreeLeaveCursor(p->pCsr);
    }
  }

  if( rc==SQLITE_ROW ){
    rc = SQLITE_OK;
  }else if( p->pStmt ){
    rc = sqlite3_finalize(p->pStmt);
    p->pStmt = 0;
    if( rc==SQLITE_OK ){
      zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow);
      rc = SQLITE_ERROR;
    }else{
      zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db));
    }
  }

  assert( rc!=SQLITE_OK || zErr==0 );
  assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE );

  *pzErr = zErr;
  return rc;
}

/*
** Open a blob handle.
*/
int sqlite3_blob_open(
  sqlite3* db,            /* The database connection */
  const char *zDb,        /* The attached database containing the blob */
  const char *zTable,     /* The table containing the blob */
................................................................................
    {OP_TableLock, 0, 0, 0},       /* 2: Acquire a read or write lock */

    /* One of the following two instructions is replaced by an OP_Noop. */
    {OP_OpenRead, 0, 0, 0},        /* 3: Open cursor 0 for reading */
    {OP_OpenWrite, 0, 0, 0},       /* 4: Open cursor 0 for read/write */

    {OP_Variable, 1, 1, 1},        /* 5: Push the rowid to the stack */
    {OP_NotExists, 0, 10, 1},      /* 6: Seek the cursor */
    {OP_Column, 0, 0, 1},          /* 7  */
    {OP_ResultRow, 1, 0, 0},       /* 8  */
    {OP_Goto, 0, 5, 0},            /* 9  */
    {OP_Close, 0, 0, 0},           /* 10 */
    {OP_Halt, 0, 0, 0},            /* 11 */
  };

  Vdbe *v = 0;
  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse;
  Incrblob *pBlob;

  flags = !!flags;                /* flags = (flags ? 1 : 0); */
  *ppBlob = 0;

  sqlite3_mutex_enter(db->mutex);

  pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
  pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
  if( pParse==0 || pBlob==0 ){

    assert( db->mallocFailed );
    goto blob_open_out;
  }

  do {
    memset(pParse, 0, sizeof(Parse));
    pParse->db = db;

    sqlite3BtreeEnterAll(db);
    pTab = sqlite3LocateTable(pParse, 0, zTable, zDb);
    if( pTab && IsVirtual(pTab) ){
................................................................................
      }
    }

    v = sqlite3VdbeCreate(db);
    if( v ){
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);


      /* Configure the OP_Transaction */
      sqlite3VdbeChangeP1(v, 0, iDb);
      sqlite3VdbeChangeP2(v, 0, flags);

      /* Configure the OP_VerifyCookie */
      sqlite3VdbeChangeP1(v, 1, iDb);
................................................................................
      sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){
        sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0);
      }
    }
   
    pBlob->flags = flags;
    pBlob->pStmt = (sqlite3_stmt *)v;
    pBlob->iCol = iCol;
    pBlob->db = db;
    sqlite3BtreeLeaveAll(db);
    v = 0;
    if( db->mallocFailed ){
      goto blob_open_out;
    }

    sqlite3_bind_int64(pBlob->pStmt, 1, iRow);
    rc = blobSeekToRow(pBlob, iRow, &zErr);







  } while( (++nAttempt)<5 && rc==SQLITE_SCHEMA );















blob_open_out:


  if( rc==SQLITE_OK && db->mallocFailed==0 ){












    *ppBlob = (sqlite3_blob *)pBlob;


  }else{
    if( v ) sqlite3VdbeFinalize(v);
    if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt);
    sqlite3DbFree(db, pBlob);


  }





  sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr);
  sqlite3DbFree(db, zErr);
  sqlite3StackFree(db, pParse);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

................................................................................
  sqlite3_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;
    sqlite3Error(db, SQLITE_ERROR, 0);
  }else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
    ** returned, clean-up the statement handle.
................................................................................
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
** so no mutex is required for access.
*/
int sqlite3_blob_bytes(sqlite3_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  return p ? p->nByte : 0;
}

/*
** Move an existing blob handle to point to a different row of the same
** database table.
**
** If an error occurs, or if the specified row does not exist or does not
** contain a blob or text value, then an error code is returned and the
** database handle error code and message set. If this happens, then all 
** subsequent calls to sqlite3_blob_xxx() functions (except blob_close()) 
** immediately return SQLITE_ABORT.
*/
int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){
  int rc;
  Incrblob *p = (Incrblob *)pBlob;
  sqlite3 *db;

  if( p==0 ) return SQLITE_MISUSE_BKPT;
  db = p->db;
  sqlite3_mutex_enter(db->mutex);

  if( p->pStmt==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    char *zErr;
    rc = blobSeekToRow(p, iRow, &zErr);
    if( rc!=SQLITE_OK ){
      sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr);
      sqlite3DbFree(db, zErr);
    }
    assert( rc!=SQLITE_SCHEMA );
  }

  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

#endif /* #ifndef SQLITE_OMIT_INCRBLOB */

Changes to test/fts3ah.test.

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  execsql {SELECT rowid FROM t1 WHERE t1 MATCH 'something'}
} {}

do_test fts3ah-1.2 {
  execsql {SELECT rowid FROM t1 WHERE t1 MATCH $aterm}
} {1 3}

do_test fts3ah-1.2 {
  execsql {SELECT rowid FROM t1 WHERE t1 MATCH $xterm}
} {}

do_test fts3ah-1.3 {
  execsql "SELECT rowid FROM t1 WHERE t1 MATCH '$aterm -$xterm'"
} {1 3}

do_test fts3ah-1.4 {
  execsql "SELECT rowid FROM t1 WHERE t1 MATCH '\"$aterm $bterm\"'"
} {1}

finish_test







|



|



|




52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  execsql {SELECT rowid FROM t1 WHERE t1 MATCH 'something'}
} {}

do_test fts3ah-1.2 {
  execsql {SELECT rowid FROM t1 WHERE t1 MATCH $aterm}
} {1 3}

do_test fts3ah-1.3 {
  execsql {SELECT rowid FROM t1 WHERE t1 MATCH $xterm}
} {}

do_test fts3ah-1.4 {
  execsql "SELECT rowid FROM t1 WHERE t1 MATCH '$aterm -$xterm'"
} {1 3}

do_test fts3ah-1.5 {
  execsql "SELECT rowid FROM t1 WHERE t1 MATCH '\"$aterm $bterm\"'"
} {1}

finish_test

Changes to test/fts3defer.test.

14
15
16
17
18
19
20


21
22
23
24
25
26
27
...
183
184
185
186
187
188
189




190



191
192
193
194
195
196
197
...
200
201
202
203
204
205
206
207
208
209
210
211



212
213
214
215
216
217
218
...
267
268
269
270
271
272
273











274
275
276
277
278
279
280
source $testdir/malloc_common.tcl

ifcapable !fts3 {
  finish_test
  return
}



set ::testprefix fts3defer

#--------------------------------------------------------------------------
# Test cases fts3defer-1.* are the "warm body" cases. The database contains
# one row with 15000 instances of the token "a". This makes the doclist for
# "a" so large that FTS3 will avoid loading it in most cases.
#
................................................................................
  "urvysbnykk dzadnqzprr csjqxhgj mjpavjuhw ubwrfqnbjf nkaotm jk jk zm drir"
  "nvfasfh xh igju zm wluvgsw jk zm srwwnezqk ewle ovnq"
  "jk nvfasfh eh ktxdty urvysbnykk vgsld zm jk eh uenvbm"
  "orpfawpx pahlds jk uhzq hi zm zm zf jk dzadnqzprr"
  "srwwnezqk csjqxhgj rbwzuf nvfasfh jcpiwj xldlpy nvfasfh jk vgsld wjybxmieki"
}










foreach {tn setup} {
  1 {
    set dmt_modes 0
    execsql { CREATE VIRTUAL TABLE t1 USING FTS3 }
    foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } }
  }
................................................................................
    execsql { CREATE VIRTUAL TABLE t1 USING FTS4 }
    foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } }
  }
  3 {
    set dmt_modes {0 1 2}
    execsql { CREATE VIRTUAL TABLE t1 USING FTS4 }
    foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } }
    execsql {
      UPDATE t1_segments
      SET block = zeroblob(length(block)) 
      WHERE length(block)>10000;
    }



  }
} {

  execsql { DROP TABLE IF EXISTS t1 }
  eval $setup
  set ::testprefix fts3defer-2.$tn
  set DO_MALLOC_TEST 0
................................................................................
  do_select_test 2.6 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"xh jk jk"'
  } {18}
  do_select_test 2.7 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"zm jk vgsld"'
  } {13 17}












  do_select_test 3.1 {
    SELECT snippet(t1, '[', ']') FROM t1 WHERE t1 MATCH '"zm agmckuiu"'
  } {
    {zm [zm] [agmckuiu] uhzq nsab jk rrkx duszemmzl hyq jk} 
    {jk [zm] [agmckuiu] urvysbnykk jk jk zm zm jk jk} 
    {[zm] [agmckuiu] zexh fibokdry jk uhzq bu tugflixoex xnxhf sk} 
    {zm zf uenvbm jk azavwm zm [zm] [agmckuiu] zm jk}







>
>







 







>
>
>
>

>
>
>







 







|
|
|
|
|
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
...
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
...
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
source $testdir/malloc_common.tcl

ifcapable !fts3 {
  finish_test
  return
}

set sqlite_fts3_enable_parentheses 1

set ::testprefix fts3defer

#--------------------------------------------------------------------------
# Test cases fts3defer-1.* are the "warm body" cases. The database contains
# one row with 15000 instances of the token "a". This makes the doclist for
# "a" so large that FTS3 will avoid loading it in most cases.
#
................................................................................
  "urvysbnykk dzadnqzprr csjqxhgj mjpavjuhw ubwrfqnbjf nkaotm jk jk zm drir"
  "nvfasfh xh igju zm wluvgsw jk zm srwwnezqk ewle ovnq"
  "jk nvfasfh eh ktxdty urvysbnykk vgsld zm jk eh uenvbm"
  "orpfawpx pahlds jk uhzq hi zm zm zf jk dzadnqzprr"
  "srwwnezqk csjqxhgj rbwzuf nvfasfh jcpiwj xldlpy nvfasfh jk vgsld wjybxmieki"
}

#set e [list]
#foreach d $data {set e [concat $e $d]}
#puts [lsort -unique $e]
#exit

set zero_long_doclists {
  UPDATE t1_segments SET block=zeroblob(length(block)) WHERE length(block)>10000
}

foreach {tn setup} {
  1 {
    set dmt_modes 0
    execsql { CREATE VIRTUAL TABLE t1 USING FTS3 }
    foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } }
  }
................................................................................
    execsql { CREATE VIRTUAL TABLE t1 USING FTS4 }
    foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } }
  }
  3 {
    set dmt_modes {0 1 2}
    execsql { CREATE VIRTUAL TABLE t1 USING FTS4 }
    foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } }
    execsql $zero_long_doclists
  }
  4 {
    set dmt_modes 0
    execsql { CREATE VIRTUAL TABLE t1 USING FTS4 }
    foreach doc $data { execsql { INSERT INTO t1 VALUES($doc) } }
    execsql "INSERT INTO t1(t1) VALUES('optimize')"
    execsql $zero_long_doclists
  }
} {

  execsql { DROP TABLE IF EXISTS t1 }
  eval $setup
  set ::testprefix fts3defer-2.$tn
  set DO_MALLOC_TEST 0
................................................................................
  do_select_test 2.6 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"xh jk jk"'
  } {18}
  do_select_test 2.7 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"zm jk vgsld"'
  } {13 17}

  do_select_test 2.8 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'z* vgsld'
  } {10 13 17 31 35 51 58 88 89 90 93 100}
  do_select_test 2.9 {
    SELECT rowid FROM t1 
    WHERE t1 MATCH '(
      zdu OR zexh OR zf OR zhbrzadb OR zidhxhbtv OR 
      zk OR zkhdvkw OR zm OR zsmhnf
    ) vgsld'
  } {10 13 17 31 35 51 58 88 89 90 93 100}

  do_select_test 3.1 {
    SELECT snippet(t1, '[', ']') FROM t1 WHERE t1 MATCH '"zm agmckuiu"'
  } {
    {zm [zm] [agmckuiu] uhzq nsab jk rrkx duszemmzl hyq jk} 
    {jk [zm] [agmckuiu] urvysbnykk jk jk zm zm jk jk} 
    {[zm] [agmckuiu] zexh fibokdry jk uhzq bu tugflixoex xnxhf sk} 
    {zm zf uenvbm jk azavwm zm [zm] [agmckuiu] zm jk}