SQLite

Check-in [cfa65e23df]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Change mem6.c to use the malloc() and free() functions directly, instead of going via another sqlite3_mem_methods structure. (CVS 5474)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: cfa65e23df8b6f33884f533492b84dd1985db4d4
User & Date: danielk1977 2008-07-25 09:24:13.000
Context
2008-07-25
10:40
Speed up the xFree() method of the mem6.c allocator by storing the offset from the pointer to the start of its chunk in a header field. (CVS 5475) (check-in: 0de54891d4 user: danielk1977 tags: trunk)
09:24
Change mem6.c to use the malloc() and free() functions directly, instead of going via another sqlite3_mem_methods structure. (CVS 5474) (check-in: cfa65e23df user: danielk1977 tags: trunk)
08:49
Updates to mem6.c allocator. (CVS 5473) (check-in: 43a4cae2ac user: danielk1977 tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/mem6.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
** 2008 July 24
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains an alternative memory allocation system for SQLite.
** This system is implemented as a wrapper around the default memory
** allocation system (usually the one found in mem1.c - system malloc).
**
** This system differentiates between requests for "small" allocations 
** (by default those of 128 bytes or less) and "large" allocations (all
** others). The 256 byte threshhold is configurable at runtime.
**
** All requests for large allocations are passed through to the
** default memory allocation system.
**
** Requests for small allocations are met by allocating space within
** one or more larger "chunks" of memory obtained from the default
** memory allocation system. Chunks of memory are usually 64KB or 
** larger. The algorithm used to manage space within each chunk is
** the same as that used by mem5.c. 
**
** This strategy is designed to prevent the default memory allocation
** system (usually the system malloc) from suffering from heap 
** fragmentation. On some systems, heap fragmentation can cause a 
** significant real-time slowdown.
**
** $Id: mem6.c,v 1.3 2008/07/25 08:49:00 danielk1977 Exp $
*/

#ifdef SQLITE_ENABLE_MEMSYS6

#include "sqliteInt.h"

/*













|
|





|
|












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
** 2008 July 24
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains an alternative memory allocation system for SQLite.
** This system is implemented as a wrapper around the system provided
** by the operating system - vanilla malloc(), realloc() and free().
**
** This system differentiates between requests for "small" allocations 
** (by default those of 128 bytes or less) and "large" allocations (all
** others). The 256 byte threshhold is configurable at runtime.
**
** All requests for large allocations are passed through to the 
** default system.
**
** Requests for small allocations are met by allocating space within
** one or more larger "chunks" of memory obtained from the default
** memory allocation system. Chunks of memory are usually 64KB or 
** larger. The algorithm used to manage space within each chunk is
** the same as that used by mem5.c. 
**
** This strategy is designed to prevent the default memory allocation
** system (usually the system malloc) from suffering from heap 
** fragmentation. On some systems, heap fragmentation can cause a 
** significant real-time slowdown.
**
** $Id: mem6.c,v 1.4 2008/07/25 09:24:13 danielk1977 Exp $
*/

#ifdef SQLITE_ENABLE_MEMSYS6

#include "sqliteInt.h"

/*
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    assert((iOffset+nAlloc)>pChunk->nBlock);
  }

  return pChunk;
}

struct Mem6Global {
  sqlite3_mem_methods parent;     /* Used to allocate chunks */
  int nMinAlloc;                  /* Minimum allowed allocation size */
  int nThreshold;                 /* Allocs larger than this go to parent */
  sqlite3_mutex *mutex;
  Mem6Chunk *pChunk;              /* Singly linked list of all memory chunks */
} mem6;


static void mem6Enter(void){
  sqlite3_mutex_enter(mem6.mutex);
}

static void mem6Leave(void){
  sqlite3_mutex_leave(mem6.mutex);
}

/*
** Based on the number and size of the currently allocated chunks, return
** the size of the next chunk to allocate, in bytes.
*/
static int nextChunkSize(void){
  int iTotal = 0;
  Mem6Chunk *p;
  for(p=mem6.pChunk; p; p=p->pNext){
    iTotal += mem6.parent.xSize((void *)p);
  }
  if( iTotal==0 ){
    iTotal = MIN_CHUNKSIZE;
  }
  return iTotal;
}

/*
** The argument is a pointer that may or may not have been allocated from
** one of the Mem6Chunk objects managed within mem6. If it is, return







<

|


















|


<
<
<
|







306
307
308
309
310
311
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335



336
337
338
339
340
341
342
343
    assert((iOffset+nAlloc)>pChunk->nBlock);
  }

  return pChunk;
}

struct Mem6Global {

  int nMinAlloc;                  /* Minimum allowed allocation size */
  int nThreshold;                 /* Allocs larger than this go to malloc() */
  sqlite3_mutex *mutex;
  Mem6Chunk *pChunk;              /* Singly linked list of all memory chunks */
} mem6;


static void mem6Enter(void){
  sqlite3_mutex_enter(mem6.mutex);
}

static void mem6Leave(void){
  sqlite3_mutex_leave(mem6.mutex);
}

/*
** Based on the number and size of the currently allocated chunks, return
** the size of the next chunk to allocate, in bytes.
*/
static int nextChunkSize(void){
  int iTotal = MIN_CHUNKSIZE;
  Mem6Chunk *p;
  for(p=mem6.pChunk; p; p=p->pNext){



    iTotal = iTotal*2;
  }
  return iTotal;
}

/*
** The argument is a pointer that may or may not have been allocated from
** one of the Mem6Chunk objects managed within mem6. If it is, return
357
358
359
360
361
362
363
364
365
366
367
368
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
  return 0;
}

static void freeChunk(Mem6Chunk *pChunk){
  Mem6Chunk **pp = &mem6.pChunk;
  for( pp=&mem6.pChunk; *pp!=pChunk; pp = &(*pp)->pNext );
  *pp = (*pp)->pNext;
  mem6.parent.xFree(pChunk);
}

static void *memsys6Malloc(int nByte){
  Mem6Chunk *pChunk;
  void *p = 0;


  mem6Enter();
  if( nByte>mem6.nThreshold ){
    p = mem6.parent.xMalloc(nByte);
  }else{
    for(pChunk=mem6.pChunk; !p && pChunk; pChunk=pChunk->pNext){
      p = chunkMalloc(pChunk, nByte);
    }
  
    if( !p ){
      int iSize = nextChunkSize();
      p = mem6.parent.xMalloc(iSize);
      if( p ){
        pChunk = chunkInit((u8 *)p, iSize, mem6.nMinAlloc);
        pChunk->pNext = mem6.pChunk;
        mem6.pChunk = pChunk;
        p = chunkMalloc(pChunk, nByte);
        assert(p);
      }
    }
  }
  mem6Leave();


  return p;
}

static int memsys6Size(void *p){
  Mem6Chunk *pChunk;
  int iSize;
  mem6Enter();
  pChunk = findChunk(p);
  iSize = (pChunk ? chunkSize(pChunk, p) : mem6.parent.xSize(p));
  mem6Leave();
  return iSize;
}

static void memsys6Free(void *p){
  Mem6Chunk *pChunk;


  mem6Enter();
  pChunk = findChunk(p);
  if( pChunk ){
    chunkFree(pChunk, p);
    if( chunkIsEmpty(pChunk) ){
      freeChunk(pChunk);
    }
  }else{
    mem6.parent.xFree(p);
  }
  mem6Leave();
}

static void *memsys6Realloc(void *p, int nByte){
  void *p2;








|





>


|
|


|




|




|






>
|


|
<
|
|
|
|
<
|


|

>









|







353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

395
396
397
398

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
  return 0;
}

static void freeChunk(Mem6Chunk *pChunk){
  Mem6Chunk **pp = &mem6.pChunk;
  for( pp=&mem6.pChunk; *pp!=pChunk; pp = &(*pp)->pNext );
  *pp = (*pp)->pNext;
  free(pChunk);
}

static void *memsys6Malloc(int nByte){
  Mem6Chunk *pChunk;
  void *p = 0;
  int nTotal = nByte+8;

  mem6Enter();
  if( nTotal>mem6.nThreshold ){
    p = malloc(nTotal);
  }else{
    for(pChunk=mem6.pChunk; !p && pChunk; pChunk=pChunk->pNext){
      p = chunkMalloc(pChunk, nTotal);
    }
  
    if( !p ){
      int iSize = nextChunkSize();
      p = malloc(iSize);
      if( p ){
        pChunk = chunkInit((u8 *)p, iSize, mem6.nMinAlloc);
        pChunk->pNext = mem6.pChunk;
        mem6.pChunk = pChunk;
        p = chunkMalloc(pChunk, nTotal);
        assert(p);
      }
    }
  }
  mem6Leave();

  ((sqlite3_int64 *)p)[0] = nByte;
  return &((sqlite3_int64 *)p)[1];
}

static int memsys6Size(void *pPrior){

  sqlite3_int64 *p;
  if( pPrior==0 ) return 0;
  p = (sqlite3_int64*)pPrior;
  p--;

  return p[0];
}

static void memsys6Free(void *pPrior){
  Mem6Chunk *pChunk;
  void *p = &((sqlite3_int64 *)pPrior)[-1];

  mem6Enter();
  pChunk = findChunk(p);
  if( pChunk ){
    chunkFree(pChunk, p);
    if( chunkIsEmpty(pChunk) ){
      freeChunk(pChunk);
    }
  }else{
    free(p);
  }
  mem6Leave();
}

static void *memsys6Realloc(void *p, int nByte){
  void *p2;

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
  int iFullSz;
  for(iFullSz=mem6.nMinAlloc; iFullSz<n; iFullSz *= 2);
  return iFullSz;
}

static int memsys6Init(void *pCtx){
  u8 bMemstat = sqlite3Config.bMemstat;
  mem6.parent = *sqlite3MemGetDefault();
  mem6.nMinAlloc = 16;
  mem6.pChunk = 0;
  mem6.nThreshold = sqlite3Config.nSmall;
  if( mem6.nThreshold<=0 ){
    mem6.nThreshold = SMALL_MALLOC_DEFAULT_THRESHOLD;
  }
  if( !bMemstat ){
    mem6.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  }

  /* Initialize the parent allocator. */
#ifdef SQLITE_MEMDEBUG
  sqlite3Config.bMemstat = 1;
#endif
  mem6.parent.xInit(mem6.parent.pAppData);
#ifdef SQLITE_MEMDEBUG
  sqlite3Config.bMemstat = bMemstat;
#endif

  return SQLITE_OK;
}

static void memsys6Shutdown(void *pCtx){
  if( mem6.parent.xShutdown ){
    mem6.parent.xShutdown(mem6.parent.pAppData);
  }
  memset(&mem6, 0, sizeof(mem6));
}

/*
** This routine is the only routine in this file with external 
** linkage. It returns a pointer to a static sqlite3_mem_methods
** struct populated with the memsys6 methods.







<










<
<
<
<
<
<
<
<
<




<
<
<







437
438
439
440
441
442
443

444
445
446
447
448
449
450
451
452
453









454
455
456
457



458
459
460
461
462
463
464
  int iFullSz;
  for(iFullSz=mem6.nMinAlloc; iFullSz<n; iFullSz *= 2);
  return iFullSz;
}

static int memsys6Init(void *pCtx){
  u8 bMemstat = sqlite3Config.bMemstat;

  mem6.nMinAlloc = 16;
  mem6.pChunk = 0;
  mem6.nThreshold = sqlite3Config.nSmall;
  if( mem6.nThreshold<=0 ){
    mem6.nThreshold = SMALL_MALLOC_DEFAULT_THRESHOLD;
  }
  if( !bMemstat ){
    mem6.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  }










  return SQLITE_OK;
}

static void memsys6Shutdown(void *pCtx){



  memset(&mem6, 0, sizeof(mem6));
}

/*
** This routine is the only routine in this file with external 
** linkage. It returns a pointer to a static sqlite3_mem_methods
** struct populated with the memsys6 methods.