SQLite

Check-in [ccb601f6df]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge recent trunk enhancements.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA1: ccb601f6dffba68a57d82db2d046aa27f6f1b755
User & Date: drh 2014-11-18 21:27:48.468
Context
2014-12-02
16:38
Merge all recent enhancements and bug fixes from trunk into the apple-osx branch. (check-in: 43c4ba26a2 user: drh tags: apple-osx)
2014-11-18
21:27
Merge recent trunk enhancements. (check-in: ccb601f6df user: drh tags: apple-osx)
20:49
Merge in all the other ROLLBACK fixes from the branch-3.8.7 branch. I don't know why I was doing them one-by-one. (check-in: 296b0c7397 user: drh tags: trunk)
2014-10-31
15:20
Merge all recent trunk enhancements into the apple-osx branch. (check-in: fef8430f12 user: drh tags: apple-osx)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.in.
393
394
395
396
397
398
399

400
401
402
403
404
405
406
  $(TOP)/ext/fts3/fts3_test.c 

# Statically linked extensions
#
TESTSRC += \
  $(TOP)/ext/misc/amatch.c \
  $(TOP)/ext/misc/closure.c \

  $(TOP)/ext/misc/fileio.c \
  $(TOP)/ext/misc/fuzzer.c \
  $(TOP)/ext/misc/ieee754.c \
  $(TOP)/ext/misc/nextchar.c \
  $(TOP)/ext/misc/percentile.c \
  $(TOP)/ext/misc/regexp.c \
  $(TOP)/ext/misc/spellfix.c \







>







393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
  $(TOP)/ext/fts3/fts3_test.c 

# Statically linked extensions
#
TESTSRC += \
  $(TOP)/ext/misc/amatch.c \
  $(TOP)/ext/misc/closure.c \
  $(TOP)/ext/misc/eval.c \
  $(TOP)/ext/misc/fileio.c \
  $(TOP)/ext/misc/fuzzer.c \
  $(TOP)/ext/misc/ieee754.c \
  $(TOP)/ext/misc/nextchar.c \
  $(TOP)/ext/misc/percentile.c \
  $(TOP)/ext/misc/regexp.c \
  $(TOP)/ext/misc/spellfix.c \
Changes to Makefile.msc.
859
860
861
862
863
864
865

866
867
868
869
870
871
872
  $(TOP)\ext\fts3\fts3_test.c

# Statically linked extensions
#
TESTEXT = \
  $(TOP)\ext\misc\amatch.c \
  $(TOP)\ext\misc\closure.c \

  $(TOP)\ext\misc\fileio.c \
  $(TOP)\ext\misc\fuzzer.c \
  $(TOP)\ext\misc\ieee754.c \
  $(TOP)\ext\misc\nextchar.c \
  $(TOP)\ext\misc\percentile.c \
  $(TOP)\ext\misc\regexp.c \
  $(TOP)\ext\misc\spellfix.c \







>







859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
  $(TOP)\ext\fts3\fts3_test.c

# Statically linked extensions
#
TESTEXT = \
  $(TOP)\ext\misc\amatch.c \
  $(TOP)\ext\misc\closure.c \
  $(TOP)\ext\misc\eval.c \
  $(TOP)\ext\misc\fileio.c \
  $(TOP)\ext\misc\fuzzer.c \
  $(TOP)\ext\misc\ieee754.c \
  $(TOP)\ext\misc\nextchar.c \
  $(TOP)\ext\misc\percentile.c \
  $(TOP)\ext\misc\regexp.c \
  $(TOP)\ext\misc\spellfix.c \
Added ext/misc/eval.c.














































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
** 2014-11-10
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements SQL function eval() which runs
** SQL statements recursively.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <string.h>

/*
** Structure used to accumulate the output
*/
struct EvalResult {
  char *z;            /* Accumulated output */
  const char *zSep;   /* Separator */
  int szSep;          /* Size of the separator string */
  int nAlloc;         /* Number of bytes allocated for z[] */
  int nUsed;          /* Number of bytes of z[] actually used */
};

/*
** Callback from sqlite_exec() for the eval() function.
*/
static int callback(void *pCtx, int argc, char **argv, char **colnames){
  struct EvalResult *p = (struct EvalResult*)pCtx;
  int i; 
  for(i=0; i<argc; i++){
    const char *z = argv[i] ? argv[i] : "";
    size_t sz = strlen(z);
    if( sz+p->nUsed+p->szSep+1 > p->nAlloc ){
      char *zNew;
      p->nAlloc = p->nAlloc*2 + sz + p->szSep + 1;
      zNew = sqlite3_realloc(p->z, p->nAlloc);
      if( zNew==0 ){
        sqlite3_free(p->z);
        memset(p, 0, sizeof(*p));
        return 1;
      }
      p->z = zNew;
    }
    if( p->nUsed>0 ){
      memcpy(&p->z[p->nUsed], p->zSep, p->szSep);
      p->nUsed += p->szSep;
    }
    memcpy(&p->z[p->nUsed], z, sz);
    p->nUsed += sz;
  }
  return 0;
}

/*
** Implementation of the eval(X) and eval(X,Y) SQL functions.
**
** Evaluate the SQL text in X.  Return the results, using string
** Y as the separator.  If Y is omitted, use a single space character.
*/
static void sqlEvalFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const char *zSql;
  sqlite3 *db;
  char *zErr = 0;
  int rc;
  struct EvalResult x;

  memset(&x, 0, sizeof(x));
  x.zSep = " ";
  zSql = (const char*)sqlite3_value_text(argv[0]);
  if( zSql==0 ) return;
  if( argc>1 ){
    x.zSep = (const char*)sqlite3_value_text(argv[1]);
    if( x.zSep==0 ) return;
  }
  x.szSep = (int)strlen(x.zSep);
  db = sqlite3_context_db_handle(context);
  rc = sqlite3_exec(db, zSql, callback, &x, &zErr);
  if( rc!=SQLITE_OK ){
    sqlite3_result_error(context, zErr, -1);
    sqlite3_free(zErr);
  }else if( x.zSep==0 ){
    sqlite3_result_error_nomem(context);
    sqlite3_free(x.z);
  }else{
    sqlite3_result_text(context, x.z, x.nUsed, sqlite3_free);
  }
}


#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_eval_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  int rc = SQLITE_OK;
  SQLITE_EXTENSION_INIT2(pApi);
  (void)pzErrMsg;  /* Unused parameter */
  rc = sqlite3_create_function(db, "eval", 1, SQLITE_UTF8, 0,
                               sqlEvalFunc, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "eval", 2, SQLITE_UTF8, 0,
                                 sqlEvalFunc, 0, 0);
  }
  return rc;
}
Changes to main.mk.
244
245
246
247
248
249
250

251
252
253
254
255
256
257
  $(TOP)/src/test6.c \
  $(TOP)/src/test7.c \
  $(TOP)/src/test8.c \
  $(TOP)/src/test9.c \
  $(TOP)/src/test_autoext.c \
  $(TOP)/src/test_async.c \
  $(TOP)/src/test_backup.c \

  $(TOP)/src/test_btree.c \
  $(TOP)/src/test_config.c \
  $(TOP)/src/test_demovfs.c \
  $(TOP)/src/test_devsym.c \
  $(TOP)/src/test_fs.c \
  $(TOP)/src/test_func.c \
  $(TOP)/src/test_hexio.c \







>







244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  $(TOP)/src/test6.c \
  $(TOP)/src/test7.c \
  $(TOP)/src/test8.c \
  $(TOP)/src/test9.c \
  $(TOP)/src/test_autoext.c \
  $(TOP)/src/test_async.c \
  $(TOP)/src/test_backup.c \
  $(TOP)/src/test_blob.c \
  $(TOP)/src/test_btree.c \
  $(TOP)/src/test_config.c \
  $(TOP)/src/test_demovfs.c \
  $(TOP)/src/test_devsym.c \
  $(TOP)/src/test_fs.c \
  $(TOP)/src/test_func.c \
  $(TOP)/src/test_hexio.c \
278
279
280
281
282
283
284

285
286
287
288
289
290
291
  $(TOP)/src/test_wsd.c

# Extensions to be statically loaded.
#
TESTSRC += \
  $(TOP)/ext/misc/amatch.c \
  $(TOP)/ext/misc/closure.c \

  $(TOP)/ext/misc/fileio.c \
  $(TOP)/ext/misc/fuzzer.c \
  $(TOP)/ext/misc/ieee754.c \
  $(TOP)/ext/misc/nextchar.c \
  $(TOP)/ext/misc/percentile.c \
  $(TOP)/ext/misc/regexp.c \
  $(TOP)/ext/misc/spellfix.c \







>







279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
  $(TOP)/src/test_wsd.c

# Extensions to be statically loaded.
#
TESTSRC += \
  $(TOP)/ext/misc/amatch.c \
  $(TOP)/ext/misc/closure.c \
  $(TOP)/ext/misc/eval.c \
  $(TOP)/ext/misc/fileio.c \
  $(TOP)/ext/misc/fuzzer.c \
  $(TOP)/ext/misc/ieee754.c \
  $(TOP)/ext/misc/nextchar.c \
  $(TOP)/ext/misc/percentile.c \
  $(TOP)/ext/misc/regexp.c \
  $(TOP)/ext/misc/spellfix.c \
Changes to src/backup.c.
117
118
119
120
121
122
123














124
125
126
127
128
129
130
** of the source.
*/
static int setDestPgsz(sqlite3_backup *p){
  int rc;
  rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0);
  return rc;
}















/*
** Create an sqlite3_backup process to copy the contents of zSrcDb from
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
** a pointer to the new sqlite3_backup object.
**
** If an error occurs, NULL is returned and an error code and error message







>
>
>
>
>
>
>
>
>
>
>
>
>
>







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
** of the source.
*/
static int setDestPgsz(sqlite3_backup *p){
  int rc;
  rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0);
  return rc;
}

/*
** Check that there is no open read-transaction on the b-tree passed as the
** second argument. If there is not, return SQLITE_OK. Otherwise, if there
** is an open read-transaction, return SQLITE_ERROR and leave an error 
** message in database handle db.
*/
static int checkReadTransaction(sqlite3 *db, Btree *p){
  if( sqlite3BtreeIsInReadTrans(p) ){
    sqlite3ErrorWithMsg(db, SQLITE_ERROR, "destination database is in use");
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}

/*
** Create an sqlite3_backup process to copy the contents of zSrcDb from
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
** a pointer to the new sqlite3_backup object.
**
** If an error occurs, NULL is returned and an error code and error message
177
178
179
180
181
182
183
184



185

186
187
188
189
190
191
192
193
194
195
196
    p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
    p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
    p->pDestDb = pDestDb;
    p->pSrcDb = pSrcDb;
    p->iNext = 1;
    p->isAttached = 0;

    if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM ){



      /* One (or both) of the named databases did not exist or an OOM

      ** error was hit.  The error has already been written into the
      ** pDestDb handle.  All that is left to do here is free the
      ** sqlite3_backup structure.
      */
      sqlite3_free(p);
      p = 0;
    }
  }
  if( p ){
    p->pSrc->nBackup++;
  }







|
>
>
>

>
|
|
|
<







191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
    p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
    p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
    p->pDestDb = pDestDb;
    p->pSrcDb = pSrcDb;
    p->iNext = 1;
    p->isAttached = 0;

    if( 0==p->pSrc || 0==p->pDest 
     || setDestPgsz(p)==SQLITE_NOMEM 
     || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK 
     ){
      /* One (or both) of the named databases did not exist or an OOM
      ** error was hit. Or there is a transaction open on the destination
      ** database. The error has already been written into the pDestDb 
      ** handle. All that is left to do here is free the sqlite3_backup 
      ** structure.  */

      sqlite3_free(p);
      p = 0;
    }
  }
  if( p ){
    p->pSrc->nBackup++;
  }
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    while( *pp!=p ){
      pp = &(*pp)->pNext;
    }
    *pp = p->pNext;
  }

  /* If a transaction is still open on the Btree, roll it back. */
  sqlite3BtreeRollback(p->pDest, SQLITE_OK);

  /* Set the error code of the destination database handle. */
  rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
  if( p->pDestDb ){
    sqlite3Error(p->pDestDb, rc);

    /* Exit the mutexes and free the backup context structure. */







|







620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    while( *pp!=p ){
      pp = &(*pp)->pNext;
    }
    *pp = p->pNext;
  }

  /* If a transaction is still open on the Btree, roll it back. */
  sqlite3BtreeRollback(p->pDest, SQLITE_OK, 0);

  /* Set the error code of the destination database handle. */
  rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
  if( p->pDestDb ){
    sqlite3Error(p->pDestDb, rc);

    /* Exit the mutexes and free the backup context structure. */
Changes to src/btree.c.
1299
1300
1301
1302
1303
1304
1305

1306
1307
1308
1309
1310
1311
1312
1313
1314
** allocation is being made in order to insert a new cell, so we will
** also end up needing a new cell pointer.
*/
static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
  const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
  u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
  int top;                             /* First byte of cell content area */

  int gap;        /* First byte of gap between cell pointers and cell content */
  int rc;         /* Integer return code */
  
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );







>

<







1299
1300
1301
1302
1303
1304
1305
1306
1307

1308
1309
1310
1311
1312
1313
1314
** allocation is being made in order to insert a new cell, so we will
** also end up needing a new cell pointer.
*/
static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
  const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
  u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
  int top;                             /* First byte of cell content area */
  int rc = SQLITE_OK;                  /* Integer return code */
  int gap;        /* First byte of gap between cell pointers and cell content */

  
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342

1343
1344
1345
1346
1347
1348
1349
1350
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
  testcase( gap+2==top );
  testcase( gap+1==top );
  testcase( gap==top );
  if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
    int rc = SQLITE_OK;
    int bDefrag = 0;
    u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag);
    if( rc ) return rc;
    if( bDefrag ) goto defragment_page;
    if( pSpace ){

      *pIdx = pSpace - data;
      return SQLITE_OK;
    }
  }

  /* The request could not be fulfilled using a freelist slot.  Check
  ** to see if defragmentation is necessary.
  */







<





>
|







1330
1331
1332
1333
1334
1335
1336

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
  testcase( gap+2==top );
  testcase( gap+1==top );
  testcase( gap==top );
  if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){

    int bDefrag = 0;
    u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag);
    if( rc ) return rc;
    if( bDefrag ) goto defragment_page;
    if( pSpace ){
      assert( pSpace>=data && (pSpace - data)<65536 );
      *pIdx = (int)(pSpace - data);
      return SQLITE_OK;
    }
  }

  /* The request could not be fulfilled using a freelist slot.  Check
  ** to see if defragmentation is necessary.
  */
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
    }
  }

  /* Rollback any active transaction and free the handle structure.
  ** The call to sqlite3BtreeRollback() drops any table-locks held by
  ** this handle.
  */
  sqlite3BtreeRollback(p, SQLITE_OK);
  sqlite3BtreeLeave(p);

  /* If there are still other outstanding references to the shared-btree
  ** structure, return now. The remainder of this procedure cleans 
  ** up the shared-btree.
  */
  assert( p->wantToLock==0 && p->locked==0 );







|







2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
    }
  }

  /* Rollback any active transaction and free the handle structure.
  ** The call to sqlite3BtreeRollback() drops any table-locks held by
  ** this handle.
  */
  sqlite3BtreeRollback(p, SQLITE_OK, 0);
  sqlite3BtreeLeave(p);

  /* If there are still other outstanding references to the shared-btree
  ** structure, return now. The remainder of this procedure cleans 
  ** up the shared-btree.
  */
  assert( p->wantToLock==0 && p->locked==0 );
3529
3530
3531
3532
3533
3534
3535
3536
3537

3538
3539
3540
3541
3542
3543
3544
3545

3546


3547
3548
3549






3550
3551
3552



3553
3554
3555
3556









3557
3558
3559

3560
3561
3562
3563
3564
3565
3566

3567

3568
3569



3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581


3582
3583
3584

3585
3586
3587
3588
3589


3590
3591
3592
3593
3594
3595
3596
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** This routine sets the state to CURSOR_FAULT and the error
** code to errCode for every cursor on BtShared that pBtree
** references.

**
** Every cursor is tripped, including cursors that belong
** to other database connections that happen to be sharing
** the cache with pBtree.
**
** This routine gets called when a rollback occurs.
** All cursors using the same cache must be tripped
** to prevent them from trying to use the btree after

** the rollback.  The rollback may have deleted tables


** or moved root pages, so it is not sufficient to
** save the state of the cursor.  The cursor must be
** invalidated.






*/
void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
  BtCursor *p;



  if( pBtree==0 ) return;
  sqlite3BtreeEnter(pBtree);
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    int i;









    sqlite3BtreeClearCursor(p);
    p->eState = CURSOR_FAULT;
    p->skipNext = errCode;

    for(i=0; i<=p->iPage; i++){
      releasePage(p->apPage[i]);
      p->apPage[i] = 0;
    }
  }
  sqlite3BtreeLeave(pBtree);
}



/*
** Rollback the transaction in progress.  All cursors will be



** invalided by this operation.  Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeRollback(Btree *p, int tripCode){
  int rc;
  BtShared *pBt = p->pBt;
  MemPage *pPage1;



  sqlite3BtreeEnter(p);
  if( tripCode==SQLITE_OK ){
    rc = tripCode = saveAllCursors(pBt, 0, 0);

  }else{
    rc = SQLITE_OK;
  }
  if( tripCode ){
    sqlite3BtreeTripAllCursors(p, tripCode);


  }
  btreeIntegrity(p);

  if( p->inTrans==TRANS_WRITE ){
    int rc2;

    assert( TRANS_WRITE==pBt->inTransaction );







|
|
>

|
|
|

|
|
<
>
|
>
>
|
|
|
>
>
>
>
>
>

|

>
>
>
|
|
|
|
>
>
>
>
>
>
>
>
>
|
|
|
>
|
|
|
|
|
|
|
>
|
>

|
>
>
>
|
<
|




|




>
>



>




|
>
>







3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545

3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597

3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** This routine sets the state to CURSOR_FAULT and the error
** code to errCode for every cursor on any BtShared that pBtree
** references.  Or if the writeOnly flag is set to 1, then only
** trip write cursors and leave read cursors unchanged.
**
** Every cursor is a candidate to be tripped, including cursors
** that belong to other database connections that happen to be
** sharing the cache with pBtree.
**
** This routine gets called when a rollback occurs. If the writeOnly
** flag is true, then only write-cursors need be tripped - read-only

** cursors save their current positions so that they may continue 
** following the rollback. Or, if writeOnly is false, all cursors are 
** tripped. In general, writeOnly is false if the transaction being
** rolled back modified the database schema. In this case b-tree root
** pages may be moved or deleted from the database altogether, making
** it unsafe for read cursors to continue.
**
** If the writeOnly flag is true and an error is encountered while 
** saving the current position of a read-only cursor, all cursors, 
** including all read-cursors are tripped.
**
** SQLITE_OK is returned if successful, or if an error occurs while
** saving a cursor position, an SQLite error code.
*/
int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
  BtCursor *p;
  int rc = SQLITE_OK;

  assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
  if( pBtree ){
    sqlite3BtreeEnter(pBtree);
    for(p=pBtree->pBt->pCursor; p; p=p->pNext){
      int i;
      if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
        if( p->eState==CURSOR_VALID ){
          rc = saveCursorPosition(p);
          if( rc!=SQLITE_OK ){
            (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
            break;
          }
        }
      }else{
        sqlite3BtreeClearCursor(p);
        p->eState = CURSOR_FAULT;
        p->skipNext = errCode;
      }
      for(i=0; i<=p->iPage; i++){
        releasePage(p->apPage[i]);
        p->apPage[i] = 0;
      }
    }
    sqlite3BtreeLeave(pBtree);
  }
  return rc;
}

/*
** Rollback the transaction in progress.
**
** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
** Only write cursors are tripped if writeOnly is true but all cursors are
** tripped if writeOnly is false.  Any attempt to use

** a tripped cursor will result in an error.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
  int rc;
  BtShared *pBt = p->pBt;
  MemPage *pPage1;

  assert( writeOnly==1 || writeOnly==0 );
  assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
  sqlite3BtreeEnter(p);
  if( tripCode==SQLITE_OK ){
    rc = tripCode = saveAllCursors(pBt, 0, 0);
    if( rc ) writeOnly = 0;
  }else{
    rc = SQLITE_OK;
  }
  if( tripCode ){
    int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
    assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
    if( rc2!=SQLITE_OK ) rc = rc2;
  }
  btreeIntegrity(p);

  if( p->inTrans==TRANS_WRITE ){
    int rc2;

    assert( TRANS_WRITE==pBt->inTransaction );
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
**
** The caller must position the cursor prior to invoking this routine.
** 
** This routine cannot fail.  It always returns SQLITE_OK.  
*/
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
  if( pCur->eState!=CURSOR_VALID ){
    *pSize = 0;
  }else{
    getCellInfo(pCur);
    *pSize = pCur->info.nKey;
  }
  return SQLITE_OK;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.
**







|
<
<
<
|
|
<







3948
3949
3950
3951
3952
3953
3954
3955



3956
3957

3958
3959
3960
3961
3962
3963
3964
**
** The caller must position the cursor prior to invoking this routine.
** 
** This routine cannot fail.  It always returns SQLITE_OK.  
*/
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );



  getCellInfo(pCur);
  *pSize = pCur->info.nKey;

  return SQLITE_OK;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.
**
6140
6141
6142
6143
6144
6145
6146
6147



6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158



6159
6160
6161
6162
6163
6164
6165
  int szFree = 0;

  for(i=0; i<nCell; i++){
    u8 *pCell = apCell[i];
    if( pCell>=pStart && pCell<pEnd ){
      int sz = szCell[i];
      if( pFree!=(pCell + sz) ){
        if( pFree ) freeSpace(pPg, pFree - aData, szFree);



        pFree = pCell;
        szFree = sz;
        if( pFree+sz>pEnd ) return 0;
      }else{
        pFree = pCell;
        szFree += sz;
      }
      nRet++;
    }
  }
  if( pFree ) freeSpace(pPg, pFree - aData, szFree);



  return nRet;
}

/*
** The pPg->nFree field is invalid when this function returns. It is the
** responsibility of the caller to set it correctly.
*/







|
>
>
>










|
>
>
>







6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
  int szFree = 0;

  for(i=0; i<nCell; i++){
    u8 *pCell = apCell[i];
    if( pCell>=pStart && pCell<pEnd ){
      int sz = szCell[i];
      if( pFree!=(pCell + sz) ){
        if( pFree ){
          assert( pFree>aData && (pFree - aData)<65536 );
          freeSpace(pPg, (u16)(pFree - aData), szFree);
        }
        pFree = pCell;
        szFree = sz;
        if( pFree+sz>pEnd ) return 0;
      }else{
        pFree = pCell;
        szFree += sz;
      }
      nRet++;
    }
  }
  if( pFree ){
    assert( pFree>aData && (pFree - aData)<65536 );
    freeSpace(pPg, (u16)(pFree - aData), szFree);
  }
  return nRet;
}

/*
** The pPg->nFree field is invalid when this function returns. It is the
** responsibility of the caller to set it correctly.
*/
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
    nCell += nAdd;
  }

  /* Add any overflow cells */
  for(i=0; i<pPg->nOverflow; i++){
    int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
    if( iCell>=0 && iCell<nNew ){
      u8 *pCellptr = &pPg->aCellIdx[iCell * 2];
      memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
      nCell++;
      if( pageInsertArray(
            pPg, pBegin, &pData, pCellptr,
            1, &apCell[iCell + iNew], &szCell[iCell + iNew]
      ) ) goto editpage_fail;
    }







|







6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
    nCell += nAdd;
  }

  /* Add any overflow cells */
  for(i=0; i<pPg->nOverflow; i++){
    int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
    if( iCell>=0 && iCell<nNew ){
      pCellptr = &pPg->aCellIdx[iCell * 2];
      memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
      nCell++;
      if( pageInsertArray(
            pPg, pBegin, &pData, pCellptr,
            1, &apCell[iCell + iNew], &szCell[iCell + iNew]
      ) ) goto editpage_fail;
    }
6672
6673
6674
6675
6676
6677
6678



6679
6680
6681
6682
6683
6684
6685
6686
  /*
  ** Allocate space for memory structures
  */
  szScratch =
       nMaxCells*sizeof(u8*)                       /* apCell */
     + nMaxCells*sizeof(u16)                       /* szCell */
     + pBt->pageSize;                              /* aSpace1 */



  assert( szScratch<=16896 || szScratch<=6*pBt->pageSize );
  apCell = sqlite3ScratchMalloc( szScratch ); 
  if( apCell==0 ){
    rc = SQLITE_NOMEM;
    goto balance_cleanup;
  }
  szCell = (u16*)&apCell[nMaxCells];
  aSpace1 = (u8*)&szCell[nMaxCells];







>
>
>
|







6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
  /*
  ** Allocate space for memory structures
  */
  szScratch =
       nMaxCells*sizeof(u8*)                       /* apCell */
     + nMaxCells*sizeof(u16)                       /* szCell */
     + pBt->pageSize;                              /* aSpace1 */

  /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
  ** that is more than 6 times the database page size. */
  assert( szScratch<=6*pBt->pageSize );
  apCell = sqlite3ScratchMalloc( szScratch ); 
  if( apCell==0 ){
    rc = SQLITE_NOMEM;
    goto balance_cleanup;
  }
  szCell = (u16*)&apCell[nMaxCells];
  aSpace1 = (u8*)&szCell[nMaxCells];
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
        rc = SQLITE_CORRUPT_BKPT;
        goto balance_cleanup;
      }
    }
  }
  for(i=0; i<nNew; i++){
    int iBest = 0;                /* aPgno[] index of page number to use */
    Pgno pgno;                    /* Page number to use */
    for(j=1; j<nNew; j++){
      if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
    }
    pgno = aPgOrder[iBest];
    aPgOrder[iBest] = 0xffffffff;
    if( iBest!=i ){
      if( iBest>i ){







<







6937
6938
6939
6940
6941
6942
6943

6944
6945
6946
6947
6948
6949
6950
        rc = SQLITE_CORRUPT_BKPT;
        goto balance_cleanup;
      }
    }
  }
  for(i=0; i<nNew; i++){
    int iBest = 0;                /* aPgno[] index of page number to use */

    for(j=1; j<nNew; j++){
      if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
    }
    pgno = aPgOrder[iBest];
    aPgOrder[iBest] = 0xffffffff;
    if( iBest!=i ){
      if( iBest>i ){
8988
8989
8990
8991
8992
8993
8994






/*
** Return true if the given Btree is read-only.
*/
int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}












>
>
>
>
>
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034

/*
** Return true if the given Btree is read-only.
*/
int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}

/*
** Return the size of the header added to each page by this module.
*/
int sqlite3HeaderSizeBtree(void){ return sizeof(MemPage); }
Changes to src/btree.h.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#endif
int sqlite3BtreeSetAutoVacuum(Btree *, int);
int sqlite3BtreeGetAutoVacuum(Btree *);
int sqlite3BtreeBeginTrans(Btree*,int);
int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
int sqlite3BtreeCommitPhaseTwo(Btree*, int);
int sqlite3BtreeCommit(Btree*);
int sqlite3BtreeRollback(Btree*,int);
int sqlite3BtreeBeginStmt(Btree*,int);
int sqlite3BtreeCreateTable(Btree*, int*, int flags);
int sqlite3BtreeIsInTrans(Btree*);
int sqlite3BtreeIsInReadTrans(Btree*);
int sqlite3BtreeIsInBackup(Btree*);
void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
int sqlite3BtreeSchemaLocked(Btree *pBtree);







|







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#endif
int sqlite3BtreeSetAutoVacuum(Btree *, int);
int sqlite3BtreeGetAutoVacuum(Btree *);
int sqlite3BtreeBeginTrans(Btree*,int);
int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
int sqlite3BtreeCommitPhaseTwo(Btree*, int);
int sqlite3BtreeCommit(Btree*);
int sqlite3BtreeRollback(Btree*,int,int);
int sqlite3BtreeBeginStmt(Btree*,int);
int sqlite3BtreeCreateTable(Btree*, int*, int flags);
int sqlite3BtreeIsInTrans(Btree*);
int sqlite3BtreeIsInReadTrans(Btree*);
int sqlite3BtreeIsInBackup(Btree*);
void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
int sqlite3BtreeSchemaLocked(Btree *pBtree);
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
*/
#define BTREE_INTKEY     1    /* Table has only 64-bit signed integer keys */
#define BTREE_BLOBKEY    2    /* Table has keys only - no data */

int sqlite3BtreeDropTable(Btree*, int, int*);
int sqlite3BtreeClearTable(Btree*, int, int*);
int sqlite3BtreeClearTableOfCursor(BtCursor*);
void sqlite3BtreeTripAllCursors(Btree*, int);

void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);

int sqlite3BtreeNewDb(Btree *p);

/*







|







112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
*/
#define BTREE_INTKEY     1    /* Table has only 64-bit signed integer keys */
#define BTREE_BLOBKEY    2    /* Table has keys only - no data */

int sqlite3BtreeDropTable(Btree*, int, int*);
int sqlite3BtreeClearTable(Btree*, int, int*);
int sqlite3BtreeClearTableOfCursor(BtCursor*);
int sqlite3BtreeTripAllCursors(Btree*, int, int);

void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);

int sqlite3BtreeNewDb(Btree *p);

/*
192
193
194
195
196
197
198

199
200
201
202
203
204
205

int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
void sqlite3BtreeIncrblobCursor(BtCursor *);
void sqlite3BtreeClearCursor(BtCursor *);
int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);
int sqlite3BtreeIsReadonly(Btree *pBt);


#ifndef NDEBUG
int sqlite3BtreeCursorIsValid(BtCursor*);
#endif

#ifndef SQLITE_OMIT_BTREECOUNT
int sqlite3BtreeCount(BtCursor *, i64 *);







>







192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
void sqlite3BtreeIncrblobCursor(BtCursor *);
void sqlite3BtreeClearCursor(BtCursor *);
int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);
int sqlite3BtreeIsReadonly(Btree *pBt);
int sqlite3HeaderSizeBtree(void);

#ifndef NDEBUG
int sqlite3BtreeCursorIsValid(BtCursor*);
#endif

#ifndef SQLITE_OMIT_BTREECOUNT
int sqlite3BtreeCount(BtCursor *, i64 *);
Changes to src/btreeInt.h.
485
486
487
488
489
490
491





492
493
494
495
496
497
498
499
500
501
502
503
504

505
506
507
508
509
510
511
**
** A single database file can be shared by two more database connections,
** but cursors cannot be shared.  Each cursor is associated with a
** particular database connection identified BtCursor.pBtree.db.
**
** Fields in this structure are accessed under the BtShared.mutex
** found at self->pBt->mutex. 





*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
  Pgno *aOverflow;          /* Cache of overflow page locations */
  CellInfo info;            /* A parse of the cell we are pointing at */
  i64 nKey;                 /* Size of pKey, or last integer key */
  void *pKey;               /* Saved key that was cursor last known position */
  Pgno pgnoRoot;            /* The root page of this tree */
  int nOvflAlloc;           /* Allocated size of aOverflow[] array */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive */

  u8 curFlags;              /* zero or more BTCF_* flags defined below */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  u8 hints;                             /* As configured by CursorSetHints() */
  i16 iPage;                            /* Index of current page in apPage */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};







>
>
>
>
>












|
>







485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
**
** A single database file can be shared by two more database connections,
** but cursors cannot be shared.  Each cursor is associated with a
** particular database connection identified BtCursor.pBtree.db.
**
** Fields in this structure are accessed under the BtShared.mutex
** found at self->pBt->mutex. 
**
** skipNext meaning:
**    eState==SKIPNEXT && skipNext>0:  Next sqlite3BtreeNext() is no-op.
**    eState==SKIPNEXT && skipNext<0:  Next sqlite3BtreePrevious() is no-op.
**    eState==FAULT:                   Cursor fault with skipNext as error code.
*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
  Pgno *aOverflow;          /* Cache of overflow page locations */
  CellInfo info;            /* A parse of the cell we are pointing at */
  i64 nKey;                 /* Size of pKey, or last integer key */
  void *pKey;               /* Saved key that was cursor last known position */
  Pgno pgnoRoot;            /* The root page of this tree */
  int nOvflAlloc;           /* Allocated size of aOverflow[] array */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive.
                   ** Error code if eState==CURSOR_FAULT */
  u8 curFlags;              /* zero or more BTCF_* flags defined below */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  u8 hints;                             /* As configured by CursorSetHints() */
  i16 iPage;                            /* Index of current page in apPage */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
**   seek the cursor to the saved position.
**
** CURSOR_FAULT:
**   An unrecoverable error (an I/O error or a malloc failure) has occurred
**   on a different connection that shares the BtShared cache with this
**   cursor.  The error has left the cache in an inconsistent state.
**   Do nothing else with this cursor.  Any attempt to use the cursor
**   should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1
#define CURSOR_SKIPNEXT          2
#define CURSOR_REQUIRESEEK       3
#define CURSOR_FAULT             4








|







549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
**   seek the cursor to the saved position.
**
** CURSOR_FAULT:
**   An unrecoverable error (an I/O error or a malloc failure) has occurred
**   on a different connection that shares the BtShared cache with this
**   cursor.  The error has left the cache in an inconsistent state.
**   Do nothing else with this cursor.  Any attempt to use the cursor
**   should return the error code stored in BtCursor.skipNext
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1
#define CURSOR_SKIPNEXT          2
#define CURSOR_REQUIRESEEK       3
#define CURSOR_FAULT             4

Changes to src/date.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
** This file contains the C functions that implement date and time
** functions for SQLite.  
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** SQLite processes all times and dates as Julian Day numbers.  The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
** This implementation requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar.  Historians usually
** use the Julian calendar for dates prior to 1582-10-15 and for some
** dates afterwards, depending on locale.  Beware of this difference.
**
** The conversion algorithms are implemented based on descriptions
** in the following text:
**
**      Jean Meeus
**      Astronomical Algorithms, 2nd Edition, 1998







|














|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
** This file contains the C functions that implement date and time
** functions for SQLite.  
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** SQLite processes all times and dates as julian day numbers.  The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
** This implementation requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar.  Historians usually
** use the julian calendar for dates prior to 1582-10-15 and for some
** dates afterwards, depending on locale.  Beware of this difference.
**
** The conversion algorithms are implemented based on descriptions
** in the following text:
**
**      Jean Meeus
**      Astronomical Algorithms, 2nd Edition, 1998
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    return 0;
  }else{
    return 1;
  }
}

/*
** Attempt to parse the given string into a Julian Day Number.  Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
**      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
**      DDDD.DD 
**      now







|







300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    return 0;
  }else{
    return 1;
  }
}

/*
** Attempt to parse the given string into a julian day number.  Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
**      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
**      DDDD.DD 
**      now
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
**
** Return a string described by FORMAT.  Conversions as follows:
**
**   %d  day of month
**   %f  ** fractional seconds  SS.SSS
**   %H  hour 00-24
**   %j  day of year 000-366
**   %J  ** Julian day number
**   %m  month 01-12
**   %M  minute 00-59
**   %s  seconds since 1970-01-01
**   %S  seconds 00-59
**   %w  day of week 0-6  sunday==0
**   %W  week of year 00-53
**   %Y  year 0000-9999







|







871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
**
** Return a string described by FORMAT.  Conversions as follows:
**
**   %d  day of month
**   %f  ** fractional seconds  SS.SSS
**   %H  hour 00-24
**   %j  day of year 000-366
**   %J  ** julian day number
**   %m  month 01-12
**   %M  minute 00-59
**   %s  seconds since 1970-01-01
**   %S  seconds 00-59
**   %w  day of week 0-6  sunday==0
**   %W  week of year 00-53
**   %Y  year 0000-9999
Changes to src/expr.c.
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pSelect->iLimit = 0;
        testcase( pSelect->selFlags & SF_Distinct );
        pSelect->selFlags &= ~SF_Distinct;
        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
        if( sqlite3Select(pParse, pSelect, &dest) ){
          sqlite3KeyInfoUnref(pKeyInfo);
          return 0;
        }
        pEList = pSelect->pEList;
        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */







<







1853
1854
1855
1856
1857
1858
1859

1860
1861
1862
1863
1864
1865
1866

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pSelect->iLimit = 0;
        testcase( pSelect->selFlags & SF_Distinct );

        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
        if( sqlite3Select(pParse, pSelect, &dest) ){
          sqlite3KeyInfoUnref(pKeyInfo);
          return 0;
        }
        pEList = pSelect->pEList;
        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
Changes to src/global.c.
131
132
133
134
135
136
137




138
139
140
141
142




143
144
145
146
147
148
149

/* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards
** compatibility for legacy applications, the URI filename capability is
** disabled by default.
**
** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.




*/
#ifndef SQLITE_USE_URI
# define  SQLITE_USE_URI 0
#endif





#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN
# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
#endif

/*
** The following singleton contains the global configuration for
** the SQLite library.







>
>
>
>





>
>
>
>







131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

/* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards
** compatibility for legacy applications, the URI filename capability is
** disabled by default.
**
** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.
**
** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** SQLITE_USE_URI symbol defined.
*/
#ifndef SQLITE_USE_URI
# define  SQLITE_USE_URI 0
#endif

/* EVIDENCE-OF: R-38720-18127 The default setting is determined by the
** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if
** that compile-time option is omitted.
*/
#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN
# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
#endif

/*
** The following singleton contains the global configuration for
** the SQLite library.
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
** a different position in the file.  This allows code that has to
** deal with the pending byte to run on files that are much smaller
** than 1 GiB.  The sqlite3_test_control() interface can be used to
** move the pending byte.
**
** IMPORTANT:  Changing the pending byte to any value other than
** 0x40000000 results in an incompatible database file format!
** Changing the pending byte during operating results in undefined
** and dileterious behavior.
*/
#ifndef SQLITE_OMIT_WSD
int sqlite3PendingByte = 0x40000000;
#endif

#include "opcodes.h"
/*
** Properties of opcodes.  The OPFLG_INITIALIZER macro is
** created by mkopcodeh.awk during compilation.  Data is obtained
** from the comments following the "case OP_xxxx:" statements in
** the vdbe.c file.  
*/
const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER;







|
|













233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
** a different position in the file.  This allows code that has to
** deal with the pending byte to run on files that are much smaller
** than 1 GiB.  The sqlite3_test_control() interface can be used to
** move the pending byte.
**
** IMPORTANT:  Changing the pending byte to any value other than
** 0x40000000 results in an incompatible database file format!
** Changing the pending byte during operation will result in undefined
** and incorrect behavior.
*/
#ifndef SQLITE_OMIT_WSD
int sqlite3PendingByte = 0x40000000;
#endif

#include "opcodes.h"
/*
** Properties of opcodes.  The OPFLG_INITIALIZER macro is
** created by mkopcodeh.awk during compilation.  Data is obtained
** from the comments following the "case OP_xxxx:" statements in
** the vdbe.c file.  
*/
const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER;
Changes to src/main.c.
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343


344
345
346
347
348
349
350


351
352
353
354
355
356


357
358
359
360
361


362
363
364
365
366
367
368
369
370




371
372
373
374
375



376
377
378
379
380
381


382
383
384
385
386


387

388
389
390
391
392
393


394
395
396
397
398











399
400
401
402
403
404
405
406
407
408
409
410
411



412
413
414
415
416




417
418
419
420
421
422
423



424
425

426

427
428
429
430
431
432
433
434
435
436
437
438

439



440
441
442
443
444
445
446

447
448
449
450
451
452
453
454
455
456
  ** the SQLite library is in use. */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;

  va_start(ap, op);
  switch( op ){

    /* Mutex configuration options are only available in a threadsafe
    ** compile. 
    */
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
    case SQLITE_CONFIG_SINGLETHREAD: {
      /* Disable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 0;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }


    case SQLITE_CONFIG_MULTITHREAD: {
      /* Disable mutexing of database connections */
      /* Enable mutexing of core data structures */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }


    case SQLITE_CONFIG_SERIALIZED: {
      /* Enable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 1;
      break;
    }


    case SQLITE_CONFIG_MUTEX: {
      /* Specify an alternative mutex implementation */
      sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
      break;
    }


    case SQLITE_CONFIG_GETMUTEX: {
      /* Retrieve the current mutex implementation */
      *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
      break;
    }
#endif


    case SQLITE_CONFIG_MALLOC: {




      /* Specify an alternative malloc implementation */
      sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
      break;
    }
    case SQLITE_CONFIG_GETMALLOC: {



      /* Retrieve the current malloc() implementation */
      if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
      *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
      break;
    }
    case SQLITE_CONFIG_MEMSTATUS: {


      /* Enable or disable the malloc status collection */
      sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_SCRATCH: {


      /* Designate a buffer for scratch memory space */

      sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
      sqlite3GlobalConfig.szScratch = va_arg(ap, int);
      sqlite3GlobalConfig.nScratch = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PAGECACHE: {


      /* Designate a buffer for page cache memory space */
      sqlite3GlobalConfig.pPage = va_arg(ap, void*);
      sqlite3GlobalConfig.szPage = va_arg(ap, int);
      sqlite3GlobalConfig.nPage = va_arg(ap, int);
      break;











    }

    case SQLITE_CONFIG_PCACHE: {
      /* no-op */
      break;
    }
    case SQLITE_CONFIG_GETPCACHE: {
      /* now an error */
      rc = SQLITE_ERROR;
      break;
    }

    case SQLITE_CONFIG_PCACHE2: {



      /* Specify an alternative page cache implementation */
      sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
      break;
    }
    case SQLITE_CONFIG_GETPCACHE2: {




      if( sqlite3GlobalConfig.pcache2.xInit==0 ){
        sqlite3PCacheSetDefault();
      }
      *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
      break;
    }




#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
    case SQLITE_CONFIG_HEAP: {

      /* Designate a buffer for heap memory space */

      sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      sqlite3GlobalConfig.mnReq = va_arg(ap, int);

      if( sqlite3GlobalConfig.mnReq<1 ){
        sqlite3GlobalConfig.mnReq = 1;
      }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
        /* cap min request size at 2^12 */
        sqlite3GlobalConfig.mnReq = (1<<12);
      }

      if( sqlite3GlobalConfig.pHeap==0 ){

        /* If the heap pointer is NULL, then restore the malloc implementation



        ** back to NULL pointers too.  This will cause the malloc to go
        ** back to its default implementation when sqlite3_initialize() is
        ** run.
        */
        memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
      }else{
        /* The heap pointer is not NULL, then install one of the

        ** mem5.c/mem3.c methods.  The enclosing #if guarantees at
        ** least one of these methods is currently enabled.
        */
#ifdef SQLITE_ENABLE_MEMSYS3
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
#endif
      }







|

|






>
>







>
>






>
>





>
>







<

>
>
>
>
|




>
>
>
|





>
>
|




>
>
|
>






>
>
|




>
>
>
>
>
>
>
>
>
>
>













>
>
>
|




>
>
>
>







>
>
>


>
|
>












>
|
>
>
>
|
|
<



|
>
|
<
<







328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

490
491
492
493
494
495


496
497
498
499
500
501
502
  ** the SQLite library is in use. */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;

  va_start(ap, op);
  switch( op ){

    /* Mutex configuration options are only available in a threadsafe
    ** compile.
    */
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0  /* IMP: R-54466-46756 */
    case SQLITE_CONFIG_SINGLETHREAD: {
      /* Disable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 0;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */
    case SQLITE_CONFIG_MULTITHREAD: {
      /* Disable mutexing of database connections */
      /* Enable mutexing of core data structures */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */
    case SQLITE_CONFIG_SERIALIZED: {
      /* Enable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 1;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */
    case SQLITE_CONFIG_MUTEX: {
      /* Specify an alternative mutex implementation */
      sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */
    case SQLITE_CONFIG_GETMUTEX: {
      /* Retrieve the current mutex implementation */
      *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
      break;
    }
#endif


    case SQLITE_CONFIG_MALLOC: {
      /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a
      ** single argument which is a pointer to an instance of the
      ** sqlite3_mem_methods structure. The argument specifies alternative
      ** low-level memory allocation routines to be used in place of the memory
      ** allocation routines built into SQLite. */
      sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
      break;
    }
    case SQLITE_CONFIG_GETMALLOC: {
      /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a
      ** single argument which is a pointer to an instance of the
      ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is
      ** filled with the currently defined memory allocation routines. */
      if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
      *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
      break;
    }
    case SQLITE_CONFIG_MEMSTATUS: {
      /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes
      ** single argument of type int, interpreted as a boolean, which enables
      ** or disables the collection of memory allocation statistics. */
      sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_SCRATCH: {
      /* EVIDENCE-OF: R-08404-60887 There are three arguments to
      ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from
      ** which the scratch allocations will be drawn, the size of each scratch
      ** allocation (sz), and the maximum number of scratch allocations (N). */
      sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
      sqlite3GlobalConfig.szScratch = va_arg(ap, int);
      sqlite3GlobalConfig.nScratch = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PAGECACHE: {
      /* EVIDENCE-OF: R-31408-40510 There are three arguments to
      ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory, the size
      ** of each page buffer (sz), and the number of pages (N). */
      sqlite3GlobalConfig.pPage = va_arg(ap, void*);
      sqlite3GlobalConfig.szPage = va_arg(ap, int);
      sqlite3GlobalConfig.nPage = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PCACHE_HDRSZ: {
      /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes
      ** a single parameter which is a pointer to an integer and writes into
      ** that integer the number of extra bytes per page required for each page
      ** in SQLITE_CONFIG_PAGECACHE. */
      *va_arg(ap, int*) = 
          sqlite3HeaderSizeBtree() +
          sqlite3HeaderSizePcache() +
          sqlite3HeaderSizePcache1();
      break;
    }

    case SQLITE_CONFIG_PCACHE: {
      /* no-op */
      break;
    }
    case SQLITE_CONFIG_GETPCACHE: {
      /* now an error */
      rc = SQLITE_ERROR;
      break;
    }

    case SQLITE_CONFIG_PCACHE2: {
      /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a
      ** single argument which is a pointer to an sqlite3_pcache_methods2
      ** object. This object specifies the interface to a custom page cache
      ** implementation. */
      sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
      break;
    }
    case SQLITE_CONFIG_GETPCACHE2: {
      /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a
      ** single argument which is a pointer to an sqlite3_pcache_methods2
      ** object. SQLite copies of the current page cache implementation into
      ** that object. */
      if( sqlite3GlobalConfig.pcache2.xInit==0 ){
        sqlite3PCacheSetDefault();
      }
      *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
      break;
    }

/* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only
** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or
** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
    case SQLITE_CONFIG_HEAP: {
      /* EVIDENCE-OF: R-19854-42126 There are three arguments to
      ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the
      ** number of bytes in the memory buffer, and the minimum allocation size. */
      sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      sqlite3GlobalConfig.mnReq = va_arg(ap, int);

      if( sqlite3GlobalConfig.mnReq<1 ){
        sqlite3GlobalConfig.mnReq = 1;
      }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
        /* cap min request size at 2^12 */
        sqlite3GlobalConfig.mnReq = (1<<12);
      }

      if( sqlite3GlobalConfig.pHeap==0 ){
        /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer)
        ** is NULL, then SQLite reverts to using its default memory allocator
        ** (the system malloc() implementation), undoing any prior invocation of
        ** SQLITE_CONFIG_MALLOC.
        **
        ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to
        ** revert to its default implementation when sqlite3_initialize() is run

        */
        memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
      }else{
        /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the
        ** alternative memory allocator is engaged to handle all of SQLites
        ** memory allocation needs. */


#ifdef SQLITE_ENABLE_MEMSYS3
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
#endif
      }
481
482
483
484
485
486
487




488
489
490
491
492




493
494
495
496
497
498
499
500
501
502
503
504
505
506




507
508








509
510
511
512
513
514

515
516
517
518
519
520



521
522
523
524
525
526
527

    /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames
    ** can be changed at start-time using the
    ** sqlite3_config(SQLITE_CONFIG_URI,1) or
    ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls.
    */
    case SQLITE_CONFIG_URI: {




      sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
      break;
    }

    case SQLITE_CONFIG_COVERING_INDEX_SCAN: {




      sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
      break;
    }

#ifdef SQLITE_ENABLE_SQLLOG
    case SQLITE_CONFIG_SQLLOG: {
      typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
      sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
      sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
      break;
    }
#endif

    case SQLITE_CONFIG_MMAP_SIZE: {




      sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
      sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);








      if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){
        mxMmap = SQLITE_MAX_MMAP_SIZE;
      }
      sqlite3GlobalConfig.mxMmap = mxMmap;
      if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
      if( szMmap>mxMmap) szMmap = mxMmap;

      sqlite3GlobalConfig.szMmap = szMmap;
      break;
    }

#if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC)
    case SQLITE_CONFIG_WIN32_HEAPSIZE: {



      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      break;
    }
#endif

    default: {
      rc = SQLITE_ERROR;







>
>
>
>





>
>
>
>














>
>
>
>


>
>
>
>
>
>
>
>
|
<
<
<


>




|

>
>
>







527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575



576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

    /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames
    ** can be changed at start-time using the
    ** sqlite3_config(SQLITE_CONFIG_URI,1) or
    ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls.
    */
    case SQLITE_CONFIG_URI: {
      /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single
      ** argument of type int. If non-zero, then URI handling is globally
      ** enabled. If the parameter is zero, then URI handling is globally
      ** disabled. */
      sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
      break;
    }

    case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
      /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN
      ** option takes a single integer argument which is interpreted as a
      ** boolean in order to enable or disable the use of covering indices for
      ** full table scans in the query optimizer. */
      sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
      break;
    }

#ifdef SQLITE_ENABLE_SQLLOG
    case SQLITE_CONFIG_SQLLOG: {
      typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
      sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
      sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
      break;
    }
#endif

    case SQLITE_CONFIG_MMAP_SIZE: {
      /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit
      ** integer (sqlite3_int64) values that are the default mmap size limit
      ** (the default setting for PRAGMA mmap_size) and the maximum allowed
      ** mmap size limit. */
      sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
      sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);
      /* EVIDENCE-OF: R-53367-43190 If either argument to this option is
      ** negative, then that argument is changed to its compile-time default.
      **
      ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be
      ** silently truncated if necessary so that it does not exceed the
      ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE
      ** compile-time option.
      */
      if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ) mxMmap = SQLITE_MAX_MMAP_SIZE;



      if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
      if( szMmap>mxMmap) szMmap = mxMmap;
      sqlite3GlobalConfig.mxMmap = mxMmap;
      sqlite3GlobalConfig.szMmap = szMmap;
      break;
    }

#if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */
    case SQLITE_CONFIG_WIN32_HEAPSIZE: {
      /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit
      ** unsigned integer value that specifies the maximum size of the created
      ** heap. */
      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      break;
    }
#endif

    default: {
      rc = SQLITE_ERROR;
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

1057
1058
1059
1060

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
#endif
  
  sqlite3_free(db);
}

/*
** Rollback all database files.  If tripCode is not SQLITE_OK, then
** any open cursors are invalidated ("tripped" - as in "tripping a circuit
** breaker") and made to return tripCode if there are any further
** attempts to use that cursor.

*/
void sqlite3RollbackAll(sqlite3 *db, int tripCode){
  int i;
  int inTrans = 0;

  assert( sqlite3_mutex_held(db->mutex) );
  sqlite3BeginBenignMalloc();

  /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 
  ** This is important in case the transaction being rolled back has
  ** modified the database schema. If the b-tree mutexes are not taken
  ** here, then another shared-cache connection might sneak in between
  ** the database rollback and schema reset, which can cause false
  ** corruption reports in some cases.  */
  sqlite3BtreeEnterAll(db);


  for(i=0; i<db->nDb; i++){
    Btree *p = db->aDb[i].pBt;
    if( p ){
      if( sqlite3BtreeIsInTrans(p) ){
        inTrans = 1;
      }
      sqlite3BtreeRollback(p, tripCode);
    }
  }
  sqlite3VtabRollback(db);
  sqlite3EndBenignMalloc();

  if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){
    sqlite3ExpirePreparedStatements(db);







|

|
>




>










>







|







1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
#endif
  
  sqlite3_free(db);
}

/*
** Rollback all database files.  If tripCode is not SQLITE_OK, then
** any write cursors are invalidated ("tripped" - as in "tripping a circuit
** breaker") and made to return tripCode if there are any further
** attempts to use that cursor.  Read cursors remain open and valid
** but are "saved" in case the table pages are moved around.
*/
void sqlite3RollbackAll(sqlite3 *db, int tripCode){
  int i;
  int inTrans = 0;
  int schemaChange;
  assert( sqlite3_mutex_held(db->mutex) );
  sqlite3BeginBenignMalloc();

  /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 
  ** This is important in case the transaction being rolled back has
  ** modified the database schema. If the b-tree mutexes are not taken
  ** here, then another shared-cache connection might sneak in between
  ** the database rollback and schema reset, which can cause false
  ** corruption reports in some cases.  */
  sqlite3BtreeEnterAll(db);
  schemaChange = (db->flags & SQLITE_InternChanges)!=0 && db->init.busy==0;

  for(i=0; i<db->nDb; i++){
    Btree *p = db->aDb[i].pBt;
    if( p ){
      if( sqlite3BtreeIsInTrans(p) ){
        inTrans = 1;
      }
      sqlite3BtreeRollback(p, tripCode, !schemaChange);
    }
  }
  sqlite3VtabRollback(db);
  sqlite3EndBenignMalloc();

  if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){
    sqlite3ExpirePreparedStatements(db);
2374
2375
2376
2377
2378
2379
2380

2381
2382
2383
2384
2385
2386
2387
2388
  const char *zVfs = zDefaultVfs;
  char *zFile;
  char c;
  int nUri = sqlite3Strlen30(zUri);

  assert( *pzErrMsg==0 );


  if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) 
   && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */
  ){
    char *zOpt;
    int eState;                   /* Parser state when parsing URI */
    int iIn;                      /* Input character index */
    int iOut = 0;                 /* Output character index */
    int nByte = nUri+2;           /* Bytes of space to allocate */







>
|







2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
  const char *zVfs = zDefaultVfs;
  char *zFile;
  char c;
  int nUri = sqlite3Strlen30(zUri);

  assert( *pzErrMsg==0 );

  if( ((flags & SQLITE_OPEN_URI)             /* IMP: R-48725-32206 */
            || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */
   && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */
  ){
    char *zOpt;
    int eState;                   /* Parser state when parsing URI */
    int iIn;                      /* Input character index */
    int iOut = 0;                 /* Output character index */
    int nByte = nUri+2;           /* Bytes of space to allocate */
Changes to src/malloc.c.
373
374
375
376
377
378
379

380
381

382
383

384
385
386
387
388
389
390
391
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)

  /* Verify that no more than two scratch allocations per thread
  ** are outstanding at one time.  (This is only checked in the

  ** single-threaded case since checking in the multi-threaded case
  ** would be much more complicated.) */

  assert( scratchAllocOut<=1 );
  if( p ) scratchAllocOut++;
#endif

  return p;
}
void sqlite3ScratchFree(void *p){
  if( p ){







>
|
<
>
|
<
>
|







373
374
375
376
377
378
379
380
381

382
383

384
385
386
387
388
389
390
391
392
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
  ** buffers per thread.

  **
  ** This can only be checked in single-threaded mode.

  */
  assert( scratchAllocOut==0 );
  if( p ) scratchAllocOut++;
#endif

  return p;
}
void sqlite3ScratchFree(void *p){
  if( p ){
Changes to src/os_win.c.
30
31
32
33
34
35
36





37
38
39
40
41
42
43
** available in Windows platforms based on the NT kernel.
*/
#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
#  error "WAL mode requires support from the Windows NT kernel, compile\
 with SQLITE_OMIT_WAL."
#endif






/*
** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
** based on the sub-platform)?
*/
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
#  define SQLITE_WIN32_HAS_ANSI
#endif







>
>
>
>
>







30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
** available in Windows platforms based on the NT kernel.
*/
#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
#  error "WAL mode requires support from the Windows NT kernel, compile\
 with SQLITE_OMIT_WAL."
#endif

#if !SQLITE_OS_WINNT && SQLITE_MAX_MMAP_SIZE>0
#  error "Memory mapped files require support from the Windows NT kernel,\
 compile with SQLITE_MAX_MMAP_SIZE=0."
#endif

/*
** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
** based on the sub-platform)?
*/
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
#  define SQLITE_WIN32_HAS_ANSI
#endif
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
*/
#ifndef winGetDirSep
#  define winGetDirSep()                '\\'
#endif

/*
** Do we need to manually define the Win32 file mapping APIs for use with WAL
** mode (e.g. these APIs are available in the Windows CE SDK; however, they
** are not present in the header file)?
*/
#if SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL)

/*
** Two of the file mapping APIs are different under WinRT.  Figure out which
** set we need.
*/
#if SQLITE_OS_WINRT
WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \
        LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR);







|
|

|
>







164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
*/
#ifndef winGetDirSep
#  define winGetDirSep()                '\\'
#endif

/*
** Do we need to manually define the Win32 file mapping APIs for use with WAL
** mode or memory mapped files (e.g. these APIs are available in the Windows
** CE SDK; however, they are not present in the header file)?
*/
#if SQLITE_WIN32_FILEMAPPING_API && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
/*
** Two of the file mapping APIs are different under WinRT.  Figure out which
** set we need.
*/
#if SQLITE_OS_WINRT
WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \
        LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR);
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
#endif /* SQLITE_OS_WINRT */

/*
** This file mapping API is common to both Win32 and WinRT.
*/
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */

/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif







|







196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
#endif /* SQLITE_OS_WINRT */

/*
** This file mapping API is common to both Win32 and WinRT.
*/
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API */

/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
  { "CreateFileW",             (SYSCALL)0,                       0 },
#endif

#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
        LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)

#if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
        !defined(SQLITE_OMIT_WAL))
  { "CreateFileMappingA",      (SYSCALL)CreateFileMappingA,      0 },
#else
  { "CreateFileMappingA",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
        !defined(SQLITE_OMIT_WAL))
  { "CreateFileMappingW",      (SYSCALL)CreateFileMappingW,      0 },
#else
  { "CreateFileMappingW",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent)







|









|







489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  { "CreateFileW",             (SYSCALL)0,                       0 },
#endif

#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
        LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)

#if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
  { "CreateFileMappingA",      (SYSCALL)CreateFileMappingA,      0 },
#else
  { "CreateFileMappingA",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
  { "CreateFileMappingW",      (SYSCALL)CreateFileMappingW,      0 },
#else
  { "CreateFileMappingW",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent)
833
834
835
836
837
838
839
840

841
842
843
844
845
846
847
#endif

#ifndef osLockFileEx
#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[48].pCurrent)
#endif

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL))

  { "MapViewOfFile",           (SYSCALL)MapViewOfFile,           0 },
#else
  { "MapViewOfFile",           (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        SIZE_T))aSyscall[49].pCurrent)







|
>







839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
#endif

#ifndef osLockFileEx
#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[48].pCurrent)
#endif

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
  { "MapViewOfFile",           (SYSCALL)MapViewOfFile,           0 },
#else
  { "MapViewOfFile",           (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        SIZE_T))aSyscall[49].pCurrent)
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
#else
  { "UnlockFileEx",            (SYSCALL)0,                       0 },
#endif

#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[58].pCurrent)

#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL)
  { "UnmapViewOfFile",         (SYSCALL)UnmapViewOfFile,         0 },
#else
  { "UnmapViewOfFile",         (SYSCALL)0,                       0 },
#endif

#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent)








|







910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
#else
  { "UnlockFileEx",            (SYSCALL)0,                       0 },
#endif

#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[58].pCurrent)

#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "UnmapViewOfFile",         (SYSCALL)UnmapViewOfFile,         0 },
#else
  { "UnmapViewOfFile",         (SYSCALL)0,                       0 },
#endif

#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent)

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
#else
  { "GetFileInformationByHandleEx", (SYSCALL)0,                  0 },
#endif

#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
        FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent)

#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)
  { "MapViewOfFileFromApp",    (SYSCALL)MapViewOfFileFromApp,    0 },
#else
  { "MapViewOfFileFromApp",    (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
        SIZE_T))aSyscall[67].pCurrent)







|







973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
#else
  { "GetFileInformationByHandleEx", (SYSCALL)0,                  0 },
#endif

#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
        FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent)

#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
  { "MapViewOfFileFromApp",    (SYSCALL)MapViewOfFileFromApp,    0 },
#else
  { "MapViewOfFileFromApp",    (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
        SIZE_T))aSyscall[67].pCurrent)
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent)

  { "GetProcessHeap",          (SYSCALL)GetProcessHeap,          0 },

#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent)

#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)
  { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
#else
  { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
#endif

#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
        LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)







|







1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent)

  { "GetProcessHeap",          (SYSCALL)GetProcessHeap,          0 },

#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent)

#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
  { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
#else
  { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
#endif

#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
        LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)
Changes to src/pcache.c.
646
647
648
649
650
651
652







653
654
655
656
657
658
659
/*
** Free up as much memory as possible from the page cache.
*/
void sqlite3PcacheShrink(PCache *pCache){
  assert( pCache->pCache!=0 );
  sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
}








#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
/*
** For all dirty pages currently in the cache, invoke the specified
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
** defined.
*/







>
>
>
>
>
>
>







646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
** Free up as much memory as possible from the page cache.
*/
void sqlite3PcacheShrink(PCache *pCache){
  assert( pCache->pCache!=0 );
  sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
}

/*
** Return the size of the header added by this middleware layer
** in the page-cache hierarchy.
*/
int sqlite3HeaderSizePcache(void){ return sizeof(PgHdr); }


#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
/*
** For all dirty pages currently in the cache, invoke the specified
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
** defined.
*/
Changes to src/pcache.h.
156
157
158
159
160
161
162




163

#ifdef SQLITE_TEST
void sqlite3PcacheStats(int*,int*,int*,int*);
#endif

void sqlite3PCacheSetDefault(void);





#endif /* _PCACHE_H_ */







>
>
>
>

156
157
158
159
160
161
162
163
164
165
166
167

#ifdef SQLITE_TEST
void sqlite3PcacheStats(int*,int*,int*,int*);
#endif

void sqlite3PCacheSetDefault(void);

/* Return the header size */
int sqlite3HeaderSizePcache(void);
int sqlite3HeaderSizePcache1(void);

#endif /* _PCACHE_H_ */
Changes to src/pcache1.c.
977
978
979
980
981
982
983





984
985
986
987
988
989
990
    pcache1Truncate,         /* xTruncate */
    pcache1Destroy,          /* xDestroy */
    pcache1Shrink            /* xShrink */
  };
  sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}






#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has







>
>
>
>
>







977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    pcache1Truncate,         /* xTruncate */
    pcache1Destroy,          /* xDestroy */
    pcache1Shrink            /* xShrink */
  };
  sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}

/*
** Return the size of the header on each page of this PCACHE implementation.
*/
int sqlite3HeaderSizePcache1(void){ return sizeof(PgHdr1); }

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has
Changes to src/printf.c.
766
767
768
769
770
771
772





773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

789
790
791
792
793
794
795
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = (p->zText==p->zBase ? 0 : p->zText);
    i64 szNew = p->nChar;
    szNew += N + 1;





    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->useMalloc==1 ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
      zNew = sqlite3_realloc(zOld, p->nAlloc);
    }
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;

    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;







>
>
>
>
>
















>







766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = (p->zText==p->zBase ? 0 : p->zText);
    i64 szNew = p->nChar;
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
      szNew += p->nChar;
    }
    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->useMalloc==1 ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
      zNew = sqlite3_realloc(zOld, p->nAlloc);
    }
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
      p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
Changes to src/shell.c.
168
169
170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include <windows.h>

/* Saved resource information for the beginning of an operation */
static HANDLE hProcess;
static FILETIME ftKernelBegin;
static FILETIME ftUserBegin;
static sqlite3_int64 ftWallBegin;
typedef BOOL (WINAPI *GETPROCTIMES)(HANDLE, LPFILETIME, LPFILETIME, LPFILETIME, LPFILETIME);

static GETPROCTIMES getProcessTimesAddr = NULL;

/*
** Check to see if we have timer support.  Return 1 if necessary
** support found (or found previously).
*/
static int hasTimer(void){
  if( getProcessTimesAddr ){
    return 1;
  } else {
    /* GetProcessTimes() isn't supported in WIN95 and some other Windows versions.
    ** See if the version we are running on has it, and if it does, save off
    ** a pointer to it and the current process handle.
    */
    hProcess = GetCurrentProcess();
    if( hProcess ){
      HINSTANCE hinstLib = LoadLibrary(TEXT("Kernel32.dll"));
      if( NULL != hinstLib ){

        getProcessTimesAddr = (GETPROCTIMES) GetProcAddress(hinstLib, "GetProcessTimes");
        if( NULL != getProcessTimesAddr ){
          return 1;
        }
        FreeLibrary(hinstLib); 
      }
    }
  }
  return 0;
}

/*
** Begin timing an operation
*/
static void beginTimer(void){
  if( enableTimer && getProcessTimesAddr ){
    FILETIME ftCreation, ftExit;
    getProcessTimesAddr(hProcess, &ftCreation, &ftExit, &ftKernelBegin, &ftUserBegin);

    ftWallBegin = timeOfDay();
  }
}

/* Return the difference of two FILETIME structs in seconds */
static double timeDiff(FILETIME *pStart, FILETIME *pEnd){
  sqlite_int64 i64Start = *((sqlite_int64 *) pStart);
  sqlite_int64 i64End = *((sqlite_int64 *) pEnd);
  return (double) ((i64End - i64Start) / 10000000.0);
}

/*
** Print the timing results.
*/
static void endTimer(void){
  if( enableTimer && getProcessTimesAddr){
    FILETIME ftCreation, ftExit, ftKernelEnd, ftUserEnd;
    sqlite3_int64 ftWallEnd = timeOfDay();
    getProcessTimesAddr(hProcess, &ftCreation, &ftExit, &ftKernelEnd, &ftUserEnd);
    printf("Run Time: real %.3f user %f sys %f\n",
       (ftWallEnd - ftWallBegin)*0.001,
       timeDiff(&ftUserBegin, &ftUserEnd),
       timeDiff(&ftKernelBegin, &ftKernelEnd));
  }
}








|
>










|
|
|





>
|
















|
>


















|







168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#include <windows.h>

/* Saved resource information for the beginning of an operation */
static HANDLE hProcess;
static FILETIME ftKernelBegin;
static FILETIME ftUserBegin;
static sqlite3_int64 ftWallBegin;
typedef BOOL (WINAPI *GETPROCTIMES)(HANDLE, LPFILETIME, LPFILETIME,
                                    LPFILETIME, LPFILETIME);
static GETPROCTIMES getProcessTimesAddr = NULL;

/*
** Check to see if we have timer support.  Return 1 if necessary
** support found (or found previously).
*/
static int hasTimer(void){
  if( getProcessTimesAddr ){
    return 1;
  } else {
    /* GetProcessTimes() isn't supported in WIN95 and some other Windows
    ** versions. See if the version we are running on has it, and if it
    ** does, save off a pointer to it and the current process handle.
    */
    hProcess = GetCurrentProcess();
    if( hProcess ){
      HINSTANCE hinstLib = LoadLibrary(TEXT("Kernel32.dll"));
      if( NULL != hinstLib ){
        getProcessTimesAddr =
            (GETPROCTIMES) GetProcAddress(hinstLib, "GetProcessTimes");
        if( NULL != getProcessTimesAddr ){
          return 1;
        }
        FreeLibrary(hinstLib); 
      }
    }
  }
  return 0;
}

/*
** Begin timing an operation
*/
static void beginTimer(void){
  if( enableTimer && getProcessTimesAddr ){
    FILETIME ftCreation, ftExit;
    getProcessTimesAddr(hProcess,&ftCreation,&ftExit,
                        &ftKernelBegin,&ftUserBegin);
    ftWallBegin = timeOfDay();
  }
}

/* Return the difference of two FILETIME structs in seconds */
static double timeDiff(FILETIME *pStart, FILETIME *pEnd){
  sqlite_int64 i64Start = *((sqlite_int64 *) pStart);
  sqlite_int64 i64End = *((sqlite_int64 *) pEnd);
  return (double) ((i64End - i64Start) / 10000000.0);
}

/*
** Print the timing results.
*/
static void endTimer(void){
  if( enableTimer && getProcessTimesAddr){
    FILETIME ftCreation, ftExit, ftKernelEnd, ftUserEnd;
    sqlite3_int64 ftWallEnd = timeOfDay();
    getProcessTimesAddr(hProcess,&ftCreation,&ftExit,&ftKernelEnd,&ftUserEnd);
    printf("Run Time: real %.3f user %f sys %f\n",
       (ftWallEnd - ftWallBegin)*0.001,
       timeDiff(&ftUserBegin, &ftUserEnd),
       timeDiff(&ftKernelBegin, &ftKernelEnd));
  }
}

453
454
455
456
457
458
459

460
461
462
463
464
465
466
*/
typedef struct ShellState ShellState;
struct ShellState {
  sqlite3 *db;           /* The database */
  int echoOn;            /* True to echo input commands */
  int autoEQP;           /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */
  int statsOn;           /* True to display memory stats before each finalize */

  int outCount;          /* Revert to stdout when reaching zero */
  int cnt;               /* Number of records displayed so far */
  FILE *out;             /* Write results here */
  FILE *traceOut;        /* Output for sqlite3_trace() */
  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int writableSchema;    /* True if PRAGMA writable_schema=ON */







>







456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
*/
typedef struct ShellState ShellState;
struct ShellState {
  sqlite3 *db;           /* The database */
  int echoOn;            /* True to echo input commands */
  int autoEQP;           /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */
  int statsOn;           /* True to display memory stats before each finalize */
  int scanstatsOn;       /* True to display scan stats before each finalize */
  int outCount;          /* Revert to stdout when reaching zero */
  int cnt;               /* Number of records displayed so far */
  FILE *out;             /* Write results here */
  FILE *traceOut;        /* Output for sqlite3_trace() */
  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int writableSchema;    /* True if PRAGMA writable_schema=ON */
721
722
723
724
725
726
727
728






729
730
731
732
733
734
735
}
#endif

/*
** This is the callback routine that the shell
** invokes for each row of a query result.
*/
static int shell_callback(void *pArg, int nArg, char **azArg, char **azCol, int *aiType){






  int i;
  ShellState *p = (ShellState*)pArg;

  switch( p->mode ){
    case MODE_Line: {
      int w = 5;
      if( azArg==0 ) break;







|
>
>
>
>
>
>







725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
}
#endif

/*
** This is the callback routine that the shell
** invokes for each row of a query result.
*/
static int shell_callback(
  void *pArg,
  int nArg,        /* Number of result columns */
  char **azArg,    /* Text of each result column */
  char **azCol,    /* Column names */
  int *aiType      /* Column types */
){
  int i;
  ShellState *p = (ShellState*)pArg;

  switch( p->mode ){
    case MODE_Line: {
      int w = 5;
      if( azArg==0 ) break;
1100
1101
1102
1103
1104
1105
1106

1107

1108
1109
1110

1111
1112
1113

1114

1115
1116
1117

1118

1119
1120
1121
1122

1123
1124
1125

1126

1127
1128
1129

1130
1131
1132

1133
1134
1135

1136
1137
1138
1139

1140
1141
1142
1143
1144
1145
1146

1147

1148

1149
1150

1151
1152

1153
1154
1155
1156
1157

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186













































1187
1188
1189
1190
1191
1192
1193
  int iCur;
  int iHiwtr;

  if( pArg && pArg->out ){
    
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_MEMORY_USED, &iCur, &iHiwtr, bReset);

    fprintf(pArg->out, "Memory Used:                         %d (max %d) bytes\n", iCur, iHiwtr);

    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_MALLOC_COUNT, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Number of Outstanding Allocations:   %d (max %d)\n", iCur, iHiwtr);

    if( pArg->shellFlgs & SHFLG_Pagecache ){
      iHiwtr = iCur = -1;
      sqlite3_status(SQLITE_STATUS_PAGECACHE_USED, &iCur, &iHiwtr, bReset);

      fprintf(pArg->out, "Number of Pcache Pages Used:         %d (max %d) pages\n", iCur, iHiwtr);

    }
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_PAGECACHE_OVERFLOW, &iCur, &iHiwtr, bReset);

    fprintf(pArg->out, "Number of Pcache Overflow Bytes:     %d (max %d) bytes\n", iCur, iHiwtr);

    if( pArg->shellFlgs & SHFLG_Scratch ){
      iHiwtr = iCur = -1;
      sqlite3_status(SQLITE_STATUS_SCRATCH_USED, &iCur, &iHiwtr, bReset);
      fprintf(pArg->out, "Number of Scratch Allocations Used:  %d (max %d)\n", iCur, iHiwtr);

    }
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_SCRATCH_OVERFLOW, &iCur, &iHiwtr, bReset);

    fprintf(pArg->out, "Number of Scratch Overflow Bytes:    %d (max %d) bytes\n", iCur, iHiwtr);

    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_MALLOC_SIZE, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Largest Allocation:                  %d bytes\n", iHiwtr);

    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_PAGECACHE_SIZE, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Largest Pcache Allocation:           %d bytes\n", iHiwtr);

    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_SCRATCH_SIZE, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Largest Scratch Allocation:          %d bytes\n", iHiwtr);

#ifdef YYTRACKMAXSTACKDEPTH
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_PARSER_STACK, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Deepest Parser Stack:                %d (max %d)\n", iCur, iHiwtr);

#endif
  }

  if( pArg && pArg->out && db ){
    if( pArg->shellFlgs & SHFLG_Lookaside ){
      iHiwtr = iCur = -1;
      sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_USED, &iCur, &iHiwtr, bReset);

      fprintf(pArg->out, "Lookaside Slots Used:                %d (max %d)\n", iCur, iHiwtr);

      sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_HIT, &iCur, &iHiwtr, bReset);

      fprintf(pArg->out, "Successful lookaside attempts:       %d\n", iHiwtr);
      sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE, &iCur, &iHiwtr, bReset);

      fprintf(pArg->out, "Lookaside failures due to size:      %d\n", iHiwtr);
      sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL, &iCur, &iHiwtr, bReset);

      fprintf(pArg->out, "Lookaside failures due to OOM:       %d\n", iHiwtr);
    }
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Pager Heap Usage:                    %d bytes\n", iCur);    iHiwtr = iCur = -1;

    sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_HIT, &iCur, &iHiwtr, 1);
    fprintf(pArg->out, "Page cache hits:                     %d\n", iCur);
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_MISS, &iCur, &iHiwtr, 1);
    fprintf(pArg->out, "Page cache misses:                   %d\n", iCur); 
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_WRITE, &iCur, &iHiwtr, 1);
    fprintf(pArg->out, "Page cache writes:                   %d\n", iCur); 
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Schema Heap Usage:                   %d bytes\n", iCur); 
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Statement Heap/Lookaside Usage:      %d bytes\n", iCur); 
  }

  if( pArg && pArg->out && db && pArg->pStmt ){
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP, bReset);

    fprintf(pArg->out, "Fullscan Steps:                      %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset);
    fprintf(pArg->out, "Sort Operations:                     %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX, bReset);
    fprintf(pArg->out, "Autoindex Inserts:                   %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_VM_STEP, bReset);
    fprintf(pArg->out, "Virtual Machine Steps:               %d\n", iCur);
  }

  return 0;
}














































/*
** Parameter azArray points to a zero-terminated array of strings. zStr
** points to a single nul-terminated string. Return non-zero if zStr
** is equal, according to strcmp(), to any of the strings in the array.
** Otherwise, return zero.
*/







>
|
>


|
>



>
|
>



>
|
>



|
>



>
|
>


|
>


|
>


|
>



|
>






|
>
|
>
|
>

|
>

|
>




|
>










|


|



|
>



|







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
  int iCur;
  int iHiwtr;

  if( pArg && pArg->out ){
    
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_MEMORY_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out,
            "Memory Used:                         %d (max %d) bytes\n",
            iCur, iHiwtr);
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_MALLOC_COUNT, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Number of Outstanding Allocations:   %d (max %d)\n",
            iCur, iHiwtr);
    if( pArg->shellFlgs & SHFLG_Pagecache ){
      iHiwtr = iCur = -1;
      sqlite3_status(SQLITE_STATUS_PAGECACHE_USED, &iCur, &iHiwtr, bReset);
      fprintf(pArg->out,
              "Number of Pcache Pages Used:         %d (max %d) pages\n",
              iCur, iHiwtr);
    }
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_PAGECACHE_OVERFLOW, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out,
            "Number of Pcache Overflow Bytes:     %d (max %d) bytes\n",
            iCur, iHiwtr);
    if( pArg->shellFlgs & SHFLG_Scratch ){
      iHiwtr = iCur = -1;
      sqlite3_status(SQLITE_STATUS_SCRATCH_USED, &iCur, &iHiwtr, bReset);
      fprintf(pArg->out, "Number of Scratch Allocations Used:  %d (max %d)\n",
              iCur, iHiwtr);
    }
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_SCRATCH_OVERFLOW, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out,
            "Number of Scratch Overflow Bytes:    %d (max %d) bytes\n",
            iCur, iHiwtr);
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_MALLOC_SIZE, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Largest Allocation:                  %d bytes\n",
            iHiwtr);
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_PAGECACHE_SIZE, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Largest Pcache Allocation:           %d bytes\n",
            iHiwtr);
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_SCRATCH_SIZE, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Largest Scratch Allocation:          %d bytes\n",
            iHiwtr);
#ifdef YYTRACKMAXSTACKDEPTH
    iHiwtr = iCur = -1;
    sqlite3_status(SQLITE_STATUS_PARSER_STACK, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Deepest Parser Stack:                %d (max %d)\n",
            iCur, iHiwtr);
#endif
  }

  if( pArg && pArg->out && db ){
    if( pArg->shellFlgs & SHFLG_Lookaside ){
      iHiwtr = iCur = -1;
      sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_USED,
                        &iCur, &iHiwtr, bReset);
      fprintf(pArg->out, "Lookaside Slots Used:                %d (max %d)\n",
              iCur, iHiwtr);
      sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_HIT,
                        &iCur, &iHiwtr, bReset);
      fprintf(pArg->out, "Successful lookaside attempts:       %d\n", iHiwtr);
      sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE,
                        &iCur, &iHiwtr, bReset);
      fprintf(pArg->out, "Lookaside failures due to size:      %d\n", iHiwtr);
      sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL,
                        &iCur, &iHiwtr, bReset);
      fprintf(pArg->out, "Lookaside failures due to OOM:       %d\n", iHiwtr);
    }
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Pager Heap Usage:                    %d bytes\n",iCur);
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_HIT, &iCur, &iHiwtr, 1);
    fprintf(pArg->out, "Page cache hits:                     %d\n", iCur);
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_MISS, &iCur, &iHiwtr, 1);
    fprintf(pArg->out, "Page cache misses:                   %d\n", iCur); 
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_WRITE, &iCur, &iHiwtr, 1);
    fprintf(pArg->out, "Page cache writes:                   %d\n", iCur); 
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Schema Heap Usage:                   %d bytes\n",iCur); 
    iHiwtr = iCur = -1;
    sqlite3_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Statement Heap/Lookaside Usage:      %d bytes\n",iCur); 
  }

  if( pArg && pArg->out && db && pArg->pStmt ){
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP,
                               bReset);
    fprintf(pArg->out, "Fullscan Steps:                      %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset);
    fprintf(pArg->out, "Sort Operations:                     %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX,bReset);
    fprintf(pArg->out, "Autoindex Inserts:                   %d\n", iCur);
    iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_VM_STEP, bReset);
    fprintf(pArg->out, "Virtual Machine Steps:               %d\n", iCur);
  }

  return 0;
}

/*
** Display scan stats.
*/
static void display_scanstats(
  sqlite3 *db,                    /* Database to query */
  ShellState *pArg                /* Pointer to ShellState */
){
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  int i, k, n, mx;
  fprintf(pArg->out, "-------- scanstats --------\n");
  mx = 0;
  for(k=0; k<=mx; k++){
    double rEstLoop = 1.0;
    for(i=n=0; 1; i++){
      sqlite3_stmt *p = pArg->pStmt;
      sqlite3_int64 nLoop, nVisit;
      double rEst;
      int iSid;
      const char *zExplain;
      if( sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_NLOOP, (void*)&nLoop) ){
        break;
      }
      sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_SELECTID, (void*)&iSid);
      if( iSid>mx ) mx = iSid;
      if( iSid!=k ) continue;
      if( n==0 ){
        rEstLoop = (double)nLoop;
        if( k>0 ) fprintf(pArg->out, "-------- subquery %d -------\n", k);
      }
      n++;
      sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_NVISIT, (void*)&nVisit);
      sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_EST, (void*)&rEst);
      sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_EXPLAIN, (void*)&zExplain);
      fprintf(pArg->out, "Loop %2d: %s\n", n, zExplain);
      rEstLoop *= rEst;
      fprintf(pArg->out, 
          "         nLoop=%-8lld nRow=%-8lld estRow=%-8lld estRow/Loop=%-8g\n",
          nLoop, nVisit, (sqlite3_int64)(rEstLoop+0.5), rEst
      );
    }
  }
  fprintf(pArg->out, "---------------------------\n");
#endif
}

/*
** Parameter azArray points to a zero-terminated array of strings. zStr
** points to a single nul-terminated string. Return non-zero if zStr
** is equal, according to strcmp(), to any of the strings in the array.
** Otherwise, return zero.
*/
1222
1223
1224
1225
1226
1227
1228
1229

1230
1231
1232
1233
1234
1235
1236
  const char *z;                  /* Used to check if this is an EXPLAIN */
  int *abYield = 0;               /* True if op is an OP_Yield */
  int nAlloc = 0;                 /* Allocated size of p->aiIndent[], abYield */
  int iOp;                        /* Index of operation in p->aiIndent[] */

  const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext",
                           "NextIfOpen", "PrevIfOpen", 0 };
  const char *azYield[] = { "Yield", "SeekLT", "SeekGT", "RowSetRead", "Rewind", 0 };

  const char *azGoto[] = { "Goto", 0 };

  /* Try to figure out if this is really an EXPLAIN statement. If this
  ** cannot be verified, return early.  */
  zSql = sqlite3_sql(pSql);
  if( zSql==0 ) return;
  for(z=zSql; *z==' ' || *z=='\t' || *z=='\n' || *z=='\f' || *z=='\r'; z++);







|
>







1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
  const char *z;                  /* Used to check if this is an EXPLAIN */
  int *abYield = 0;               /* True if op is an OP_Yield */
  int nAlloc = 0;                 /* Allocated size of p->aiIndent[], abYield */
  int iOp;                        /* Index of operation in p->aiIndent[] */

  const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext",
                           "NextIfOpen", "PrevIfOpen", 0 };
  const char *azYield[] = { "Yield", "SeekLT", "SeekGT", "RowSetRead",
                            "Rewind", 0 };
  const char *azGoto[] = { "Goto", 0 };

  /* Try to figure out if this is really an EXPLAIN statement. If this
  ** cannot be verified, return early.  */
  zSql = sqlite3_sql(pSql);
  if( zSql==0 ) return;
  for(z=zSql; *z==' ' || *z=='\t' || *z=='\n' || *z=='\f' || *z=='\r'; z++);
1335
1336
1337
1338
1339
1340
1341
1342

1343
1344
1345
1346
1347
1348
1349
        const char *zStmtSql = sqlite3_sql(pStmt);
        fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql);
      }

      /* Show the EXPLAIN QUERY PLAN if .eqp is on */
      if( pArg && pArg->autoEQP ){
        sqlite3_stmt *pExplain;
        char *zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", sqlite3_sql(pStmt));

        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            fprintf(pArg->out,"--EQP-- %d,", sqlite3_column_int(pExplain, 0));
            fprintf(pArg->out,"%d,", sqlite3_column_int(pExplain, 1));
            fprintf(pArg->out,"%d,", sqlite3_column_int(pExplain, 2));
            fprintf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3));







|
>







1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
        const char *zStmtSql = sqlite3_sql(pStmt);
        fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql);
      }

      /* Show the EXPLAIN QUERY PLAN if .eqp is on */
      if( pArg && pArg->autoEQP ){
        sqlite3_stmt *pExplain;
        char *zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s",
                                     sqlite3_sql(pStmt));
        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            fprintf(pArg->out,"--EQP-- %d,", sqlite3_column_int(pExplain, 0));
            fprintf(pArg->out,"%d,", sqlite3_column_int(pExplain, 1));
            fprintf(pArg->out,"%d,", sqlite3_column_int(pExplain, 2));
            fprintf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3));
1418
1419
1420
1421
1422
1423
1424





1425
1426
1427
1428
1429
1430
1431

      explain_data_delete(pArg);

      /* print usage stats if stats on */
      if( pArg && pArg->statsOn ){
        display_stats(db, pArg, 0);
      }






      /* Finalize the statement just executed. If this fails, save a 
      ** copy of the error message. Otherwise, set zSql to point to the
      ** next statement to execute. */
      rc2 = sqlite3_finalize(pStmt);
      if( rc!=SQLITE_NOMEM ) rc = rc2;
      if( rc==SQLITE_OK ){







>
>
>
>
>







1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514

      explain_data_delete(pArg);

      /* print usage stats if stats on */
      if( pArg && pArg->statsOn ){
        display_stats(db, pArg, 0);
      }

      /* print loop-counters if required */
      if( pArg && pArg->scanstatsOn ){
        display_scanstats(db, pArg);
      }

      /* Finalize the statement just executed. If this fails, save a 
      ** copy of the error message. Otherwise, set zSql to point to the
      ** next statement to execute. */
      rc2 = sqlite3_finalize(pStmt);
      if( rc!=SQLITE_NOMEM ) rc = rc2;
      if( rc==SQLITE_OK ){
1629
1630
1631
1632
1633
1634
1635

1636
1637
1638
1639
1640
1641
1642
  ".output ?FILENAME?     Send output to FILENAME or stdout\n"
  ".print STRING...       Print literal STRING\n"
  ".prompt MAIN CONTINUE  Replace the standard prompts\n"
  ".quit                  Exit this program\n"
  ".read FILENAME         Execute SQL in FILENAME\n"
  ".restore ?DB? FILE     Restore content of DB (default \"main\") from FILE\n"
  ".save FILE             Write in-memory database into FILE\n"

  ".schema ?TABLE?        Show the CREATE statements\n"
  "                         If TABLE specified, only show tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".separator STRING ?NL? Change separator used by output mode and .import\n"
  "                         NL is the end-of-line mark for CSV\n"
  ".shell CMD ARGS...     Run CMD ARGS... in a system shell\n"
  ".show                  Show the current values for various settings\n"







>







1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
  ".output ?FILENAME?     Send output to FILENAME or stdout\n"
  ".print STRING...       Print literal STRING\n"
  ".prompt MAIN CONTINUE  Replace the standard prompts\n"
  ".quit                  Exit this program\n"
  ".read FILENAME         Execute SQL in FILENAME\n"
  ".restore ?DB? FILE     Restore content of DB (default \"main\") from FILE\n"
  ".save FILE             Write in-memory database into FILE\n"
  ".scanstats on|off      Turn sqlite3_stmt_scanstatus() metrics on or off\n"
  ".schema ?TABLE?        Show the CREATE statements\n"
  "                         If TABLE specified, only show tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".separator STRING ?NL? Change separator used by output mode and .import\n"
  "                         NL is the end-of-line mark for CSV\n"
  ".shell CMD ARGS...     Run CMD ARGS... in a system shell\n"
  ".show                  Show the current values for various settings\n"
3010
3011
3012
3013
3014
3015
3016













3017
3018
3019
3020
3021
3022
3023
    }else{
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db));
      rc = 1;
    }
    sqlite3_close(pSrc);
  }else














  if( c=='s' && strncmp(azArg[0], "schema", n)==0 ){
    ShellState data;
    char *zErrMsg = 0;
    open_db(p, 0);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 0;
    data.mode = MODE_Semi;







>
>
>
>
>
>
>
>
>
>
>
>
>







3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
    }else{
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db));
      rc = 1;
    }
    sqlite3_close(pSrc);
  }else


  if( c=='s' && strncmp(azArg[0], "scanstats", n)==0 ){
    if( nArg==2 ){
      p->scanstatsOn = booleanValue(azArg[1]);
#ifndef SQLITE_ENABLE_STMT_SCANSTATUS
      fprintf(stderr, "Warning: .scanstats not available in this build.\n");
#endif
    }else{
      fprintf(stderr, "Usage: .scanstats on|off\n");
      rc = 1;
    }
  }else

  if( c=='s' && strncmp(azArg[0], "schema", n)==0 ){
    ShellState data;
    char *zErrMsg = 0;
    open_db(p, 0);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 0;
    data.mode = MODE_Semi;
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
      }
      nPrintCol = 80/(maxlen+2);
      if( nPrintCol<1 ) nPrintCol = 1;
      nPrintRow = (nRow + nPrintCol - 1)/nPrintCol;
      for(i=0; i<nPrintRow; i++){
        for(j=i; j<nRow; j+=nPrintRow){
          char *zSp = j<nPrintRow ? "" : "  ";
          fprintf(p->out, "%s%-*s", zSp, maxlen, azResult[j] ? azResult[j] : "");
        }
        fprintf(p->out, "\n");
      }
    }
    for(ii=0; ii<nRow; ii++) sqlite3_free(azResult[ii]);
    sqlite3_free(azResult);
  }else







|







3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
      }
      nPrintCol = 80/(maxlen+2);
      if( nPrintCol<1 ) nPrintCol = 1;
      nPrintRow = (nRow + nPrintCol - 1)/nPrintCol;
      for(i=0; i<nPrintRow; i++){
        for(j=i; j<nRow; j+=nPrintRow){
          char *zSp = j<nPrintRow ? "" : "  ";
          fprintf(p->out, "%s%-*s", zSp, maxlen, azResult[j] ? azResult[j]:"");
        }
        fprintf(p->out, "\n");
      }
    }
    for(ii=0; ii<nRow; ii++) sqlite3_free(azResult[ii]);
    sqlite3_free(azResult);
  }else
3737
3738
3739
3740
3741
3742
3743
3744

3745
3746
3747
3748
3749
3750
3751
** Return a pathname which is the user's home directory.  A
** 0 return indicates an error of some kind.
*/
static char *find_home_dir(void){
  static char *home_dir = NULL;
  if( home_dir ) return home_dir;

#if !defined(_WIN32) && !defined(WIN32) && !defined(_WIN32_WCE) && !defined(__RTP__) && !defined(_WRS_KERNEL)

  {
    struct passwd *pwent;
    uid_t uid = getuid();
    if( (pwent=getpwuid(uid)) != NULL) {
      home_dir = pwent->pw_dir;
    }
  }







|
>







3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
** Return a pathname which is the user's home directory.  A
** 0 return indicates an error of some kind.
*/
static char *find_home_dir(void){
  static char *home_dir = NULL;
  if( home_dir ) return home_dir;

#if !defined(_WIN32) && !defined(WIN32) && !defined(_WIN32_WCE) \
     && !defined(__RTP__) && !defined(_WRS_KERNEL)
  {
    struct passwd *pwent;
    uid_t uid = getuid();
    if( (pwent=getpwuid(uid)) != NULL) {
      home_dir = pwent->pw_dir;
    }
  }
4136
4137
4138
4139
4140
4141
4142


4143
4144
4145
4146
4147
4148
4149
      data.showHeader = 0;
    }else if( strcmp(z,"-echo")==0 ){
      data.echoOn = 1;
    }else if( strcmp(z,"-eqp")==0 ){
      data.autoEQP = 1;
    }else if( strcmp(z,"-stats")==0 ){
      data.statsOn = 1;


    }else if( strcmp(z,"-bail")==0 ){
      bail_on_error = 1;
    }else if( strcmp(z,"-version")==0 ){
      printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid());
      return 0;
    }else if( strcmp(z,"-interactive")==0 ){
      stdin_is_interactive = 1;







>
>







4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
      data.showHeader = 0;
    }else if( strcmp(z,"-echo")==0 ){
      data.echoOn = 1;
    }else if( strcmp(z,"-eqp")==0 ){
      data.autoEQP = 1;
    }else if( strcmp(z,"-stats")==0 ){
      data.statsOn = 1;
    }else if( strcmp(z,"-scanstats")==0 ){
      data.scanstatsOn = 1;
    }else if( strcmp(z,"-bail")==0 ){
      bail_on_error = 1;
    }else if( strcmp(z,"-version")==0 ){
      printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid());
      return 0;
    }else if( strcmp(z,"-interactive")==0 ){
      stdin_is_interactive = 1;
Changes to src/sqlite.h.in.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif

/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are support for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple







|







48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif

/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are supported for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple
1500
1501
1502
1503
1504
1505
1506
1507
1508

1509
1510
1511
1512
1513
1514
1515
1516

1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556






1557
1558
1559
1560

1561
1562

1563
1564
1565
1566
1567


1568
1569

1570

1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582




1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
** ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** it is not possible to set the Serialized [threading mode] and
** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
**
** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The argument specifies

** alternative low-level memory allocation routines to be used in place of
** the memory allocation routines built into SQLite.)^ ^SQLite makes
** its own private copy of the content of the [sqlite3_mem_methods] structure
** before the [sqlite3_config()] call returns.</dd>
**
** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The [sqlite3_mem_methods]

** structure is filled with the currently defined memory allocation routines.)^
** This option can be used to overload the default memory allocation
** routines with a wrapper that simulations memory allocation failure or
** tracks memory usage, for example. </dd>
**
** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
** <dd> ^This option takes single argument of type int, interpreted as a 
** boolean, which enables or disables the collection of memory allocation 
** statistics. ^(When memory allocation statistics are disabled, the 
** following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd> ^This option specifies a static memory buffer that SQLite can use for

** scratch memory.  There are three arguments:  A pointer an 8-byte
** aligned memory buffer from which the scratch allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N).  The sz
** argument must be a multiple of 16.
** The first argument must be a pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
** ^SQLite will not use more than two scratch buffers per thread and not
** more than one scratch buffer per thread when not performing
** a [checkpoint] in [WAL mode].
** ^SQLite will never request a scratch buffer that is more than 6
** times the database page size, except when performing a [checkpoint]
** in [WAL mode] when the scratch buffer request size is a small fraction
** of the size of the WAL file.
** ^If SQLite needs needs additional
** scratch memory beyond what is provided by this configuration option, then 
** [sqlite3_malloc()] will be used to obtain the memory needed.</dd>






**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^This option specifies a static memory buffer that SQLite can use for
** the database page cache with the default page cache implementation.  

** This configuration should not be used if an application-define page
** cache implementation is loaded using the SQLITE_CONFIG_PCACHE2 option.

** There are three arguments to this option: A pointer to 8-byte aligned
** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 32768) plus a little extra for each
** page header.  ^The page header size is 20 to 40 bytes depending on


** the host architecture.  ^It is harmless, apart from the wasted memory,
** to make sz a little too large.  The first

** argument should point to an allocation of at least sz*N bytes of memory.

** ^SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
** The pointer in the first argument must
** be aligned to an 8-byte boundary or subsequent behavior of SQLite
** will be undefined.</dd>
**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^This option specifies a static memory buffer that SQLite will use
** for all of its dynamic memory allocation needs beyond those provided
** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].




** There are three arguments: An 8-byte aligned pointer to the memory,
** the number of bytes in the memory buffer, and the minimum allocation size.
** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  ^If the
** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
** allocator is engaged to handle all of SQLites memory allocation needs.
** The first pointer (the memory pointer) must be aligned to an 8-byte
** boundary or subsequent behavior of SQLite will be undefined.
** The minimum allocation size is capped at 2**12. Reasonable values
** for the minimum allocation size are 2**5 through 2**8.</dd>
**
** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The argument specifies
** alternative low-level mutex routines to be used in place
** the mutex routines built into SQLite.)^  ^SQLite makes a copy of the
** content of the [sqlite3_mutex_methods] structure before the call to
** [sqlite3_config()] returns. ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The
** [sqlite3_mutex_methods]
** structure is filled with the currently defined mutex routines.)^
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.   ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd> ^(This option takes two arguments that determine the default
** memory allocation for the lookaside memory allocator on each
** [database connection].  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.)^  ^(This option sets the
** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
** verb to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.)^ </dd>
**
** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
** <dd> ^(This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods2] object.  This object specifies the interface
** to a custom page cache implementation.)^  ^SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**
** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** [sqlite3_pcache_methods2] object.  SQLite copies of the current
** page cache implementation into that object.)^ </dd>
**
** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
** global [error log].
** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
** function with a call signature of void(*)(void*,int,const char*), 







|
|
>






|
|
>






|
|
|













|
>
|


|
<


|
<
<

|
<
<


|
>
>
>
>
>
>


|
|
>

|
>
|


|
|
>
>
|
|
>
|
>



|
<
<
<


|
|
|
>
>
>
>
|




|
<







|
|
|









|
|











|
|
|

|
|
|



|
|
|
|


|
|







1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546

1547
1548
1549


1550
1551


1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584



1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
** ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** it is not possible to set the Serialized [threading mode] and
** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
**
** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is 
** a pointer to an instance of the [sqlite3_mem_methods] structure.
** The argument specifies
** alternative low-level memory allocation routines to be used in place of
** the memory allocation routines built into SQLite.)^ ^SQLite makes
** its own private copy of the content of the [sqlite3_mem_methods] structure
** before the [sqlite3_config()] call returns.</dd>
**
** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
** is a pointer to an instance of the [sqlite3_mem_methods] structure.
** The [sqlite3_mem_methods]
** structure is filled with the currently defined memory allocation routines.)^
** This option can be used to overload the default memory allocation
** routines with a wrapper that simulations memory allocation failure or
** tracks memory usage, for example. </dd>
**
** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
** interpreted as a boolean, which enables or disables the collection of
** memory allocation statistics. ^(When memory allocation statistics are disabled, the 
** following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd> ^The SQLITE_CONFIG_SCRATCH option specifies a static memory buffer
** that SQLite can use for scratch memory.  ^(There are three arguments
** to SQLITE_CONFIG_SCRATCH:  A pointer an 8-byte
** aligned memory buffer from which the scratch allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N).)^

** The first argument must be a pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
** ^SQLite will not use more than one scratch buffers per thread.


** ^SQLite will never request a scratch buffer that is more than 6
** times the database page size.


** ^If SQLite needs needs additional
** scratch memory beyond what is provided by this configuration option, then 
** [sqlite3_malloc()] will be used to obtain the memory needed.<p>
** ^When the application provides any amount of scratch memory using
** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large
** [sqlite3_malloc|heap allocations].
** This can help [Robson proof|prevent memory allocation failures] due to heap
** fragmentation in low-memory embedded systems.
** </dd>
**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a static memory buffer
** that SQLite can use for the database page cache with the default page
** cache implementation.  
** This configuration should not be used if an application-define page
** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2]
** configuration option.
** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned
** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 32768) plus some extra bytes for each
** page header.  ^The number of extra bytes needed by the page header
** can be determined using the [SQLITE_CONFIG_PCACHE_HDRSZ] option 
** to [sqlite3_config()].
** ^It is harmless, apart from the wasted memory,
** for the sz parameter to be larger than necessary.  The first
** argument should pointer to an 8-byte aligned block of memory that
** is at least sz*N bytes of memory, otherwise subsequent behavior is
** undefined.
** ^SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.</dd>



**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer 
** that SQLite will use for all of its dynamic memory allocation needs
** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
** [SQLITE_ERROR] if invoked otherwise.
** ^There are three arguments to SQLITE_CONFIG_HEAP:
** An 8-byte aligned pointer to the memory,
** the number of bytes in the memory buffer, and the minimum allocation size.
** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  ^If the
** memory pointer is not NULL then the alternative memory

** allocator is engaged to handle all of SQLites memory allocation needs.
** The first pointer (the memory pointer) must be aligned to an 8-byte
** boundary or subsequent behavior of SQLite will be undefined.
** The minimum allocation size is capped at 2**12. Reasonable values
** for the minimum allocation size are 2**5 through 2**8.</dd>
**
** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
** pointer to an instance of the [sqlite3_mutex_methods] structure.
** The argument specifies alternative low-level mutex routines to be used in place
** the mutex routines built into SQLite.)^  ^SQLite makes a copy of the
** content of the [sqlite3_mutex_methods] structure before the call to
** [sqlite3_config()] returns. ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
** is a pointer to an instance of the [sqlite3_mutex_methods] structure.  The
** [sqlite3_mutex_methods]
** structure is filled with the currently defined mutex routines.)^
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.   ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
** the default size of lookaside memory on each [database connection].
** The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.)^  ^(SQLITE_CONFIG_LOOKASIDE
** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
** option to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.)^ </dd>
**
** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is 
** a pointer to an [sqlite3_pcache_methods2] object.  This object specifies
** the interface to a custom page cache implementation.)^
** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
**
** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
** is a pointer to an [sqlite3_pcache_methods2] object.  SQLite copies of the current
** page cache implementation into that object.)^ </dd>
**
** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
** global [error log].
** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
** function with a call signature of void(*)(void*,int,const char*), 
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

1678
1679
1680
1681
1682
1683
1684
1685
** log message after formatting via [sqlite3_snprintf()].
** The SQLite logging interface is not reentrant; the logger function
** supplied by the application must not invoke any SQLite interface.
** In a multi-threaded application, the application-defined logger
** function must be threadsafe. </dd>
**
** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
** <dd>^(This option takes a single argument of type int. If non-zero, then
** URI handling is globally enabled. If the parameter is zero, then URI handling
** is globally disabled.)^ ^If URI handling is globally enabled, all filenames
** passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or
** specified as part of [ATTACH] commands are interpreted as URIs, regardless
** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
** connection is opened. ^If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. ^(By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.)^
**
** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
** <dd>^This option takes a single integer argument which is interpreted as
** a boolean in order to enable or disable the use of covering indices for

** full table scans in the query optimizer.  ^The default setting is determined
** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
** if that compile-time option is omitted.
** The ability to disable the use of covering indices for full table scans
** is because some incorrectly coded legacy applications might malfunction
** when the optimization is enabled.  Providing the ability to
** disable the optimization allows the older, buggy application code to work
** without change even with newer versions of SQLite.







|
|
|
|









|
|
>
|







1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
** log message after formatting via [sqlite3_snprintf()].
** The SQLite logging interface is not reentrant; the logger function
** supplied by the application must not invoke any SQLite interface.
** In a multi-threaded application, the application-defined logger
** function must be threadsafe. </dd>
**
** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
** If non-zero, then URI handling is globally enabled. If the parameter is zero,
** then URI handling is globally disabled.)^ ^If URI handling is globally enabled,
** all filenames passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or
** specified as part of [ATTACH] commands are interpreted as URIs, regardless
** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
** connection is opened. ^If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. ^(By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.)^
**
** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
** argument which is interpreted as a boolean in order to enable or disable
** the use of covering indices for full table scans in the query optimizer.
** ^The default setting is determined
** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
** if that compile-time option is omitted.
** The ability to disable the use of covering indices for full table scans
** is because some incorrectly coded legacy applications might malfunction
** when the optimization is enabled.  Providing the ability to
** disable the optimization allows the older, buggy application code to work
** without change even with newer versions of SQLite.
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730









1731
1732
1733
1734
1735
1736
1737
** <dt>SQLITE_CONFIG_MMAP_SIZE
** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
** that are the default mmap size limit (the default setting for
** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
** ^The default setting can be overridden by each database connection using
** either the [PRAGMA mmap_size] command, or by using the
** [SQLITE_FCNTL_MMAP_SIZE] file control.  ^(The maximum allowed mmap size
** cannot be changed at run-time.  Nor may the maximum allowed mmap size
** exceed the compile-time maximum mmap size set by the
** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
** ^If either argument to this option is negative, then that argument is
** changed to its compile-time default.
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^This option is only available if SQLite is compiled for Windows
** with the [SQLITE_WIN32_MALLOC] pre-processor macro defined.
** SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.
** </dl>









*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_SCRATCH       6  /* void*, int sz, int N */







|
|






|
|
|


>
>
>
>
>
>
>
>
>







1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
** <dt>SQLITE_CONFIG_MMAP_SIZE
** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
** that are the default mmap size limit (the default setting for
** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
** ^The default setting can be overridden by each database connection using
** either the [PRAGMA mmap_size] command, or by using the
** [SQLITE_FCNTL_MMAP_SIZE] file control.  ^(The maximum allowed mmap size
** will be silently truncated if necessary so that it does not exceed the
** compile-time maximum mmap size set by the
** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
** ^If either argument to this option is negative, then that argument is
** changed to its compile-time default.
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro defined.
** ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.
** </dl>
**
** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
** is a pointer to an integer and writes into that integer the number of extra
** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE]. The amount of
** extra space required can change depending on the compiler,
** target platform, and SQLite version.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_SCRATCH       6  /* void*, int sz, int N */
1748
1749
1750
1751
1752
1753
1754

1755
1756
1757
1758
1759
1760
1761
#define SQLITE_CONFIG_URI          17  /* int */
#define SQLITE_CONFIG_PCACHE2      18  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_GETPCACHE2   19  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20  /* int */
#define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
#define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
#define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */


/*
** CAPI3REF: Database Connection Configuration Options
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**







>







1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
#define SQLITE_CONFIG_URI          17  /* int */
#define SQLITE_CONFIG_PCACHE2      18  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_GETPCACHE2   19  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20  /* int */
#define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
#define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
#define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */
#define SQLITE_CONFIG_PCACHE_HDRSZ        24  /* int *psz */

/*
** CAPI3REF: Database Connection Configuration Options
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660




5661
5662





5663















5664
5665
5666
5667
5668

5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre>)^
**
** ^If the flags parameter is non-zero, then the BLOB is opened for read
** and write access. ^If it is zero, the BLOB is opened for read access.
** ^It is not possible to open a column that is part of an index or primary 
** key for writing. ^If [foreign key constraints] are enabled, it is 
** not possible to open a column that is part of a [child key] for writing.
**
** ^Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** appears after the AS keyword when the database is connected using [ATTACH].
** ^For the main database file, the database name is "main".
** ^For TEMP tables, the database name is "temp".
**




** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set





** to be a null pointer.)^















** ^This function sets the [database connection] error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
** functions. ^Note that the *ppBlob variable is always initialized in a
** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
** regardless of the success or failure of this routine.

**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
** ^(Changes written into a BLOB prior to the BLOB expiring are not
** rolled back by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.)^
**
** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  ^The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** ^The [sqlite3_blob_open()] interface will fail for a [WITHOUT ROWID]
** table.  Incremental BLOB I/O is not possible on [WITHOUT ROWID] tables.
**
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
*/
int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,








<
<
<
<
<
<
|
|
|
|
|

>
>
>
>
|
|
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
<
<
<
>

















<
<
<

|
|
<







5662
5663
5664
5665
5666
5667
5668
5669






5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704



5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722



5723
5724
5725

5726
5727
5728
5729
5730
5731
5732
** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre>)^
**






** ^(Parameter zDb is not the filename that contains the database, but 
** rather the symbolic name of the database. For attached databases, this is
** the name that appears after the AS keyword in the [ATTACH] statement.
** For the main database file, the database name is "main". For TEMP
** tables, the database name is "temp".)^
**
** ^If the flags parameter is non-zero, then the BLOB is opened for read
** and write access. ^If the flags parameter is zero, the BLOB is opened for
** read-only access.
**
** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
** in *ppBlob. Otherwise an [error code] is returned and, unless the error
** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
** the API is not misused, it is always safe to call [sqlite3_blob_close()] 
** on *ppBlob after this function it returns.
**
** This function fails with SQLITE_ERROR if any of the following are true:
** <ul>
**   <li> ^(Database zDb does not exist)^, 
**   <li> ^(Table zTable does not exist within database zDb)^, 
**   <li> ^(Table zTable is a WITHOUT ROWID table)^, 
**   <li> ^(Column zColumn does not exist)^,
**   <li> ^(Row iRow is not present in the table)^,
**   <li> ^(The specified column of row iRow contains a value that is not
**         a TEXT or BLOB value)^,
**   <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE 
**         constraint and the blob is being opened for read/write access)^,
**   <li> ^([foreign key constraints | Foreign key constraints] are enabled, 
**         column zColumn is part of a [child key] definition and the blob is
**         being opened for read/write access)^.
** </ul>
**
** ^Unless it returns SQLITE_MISUSE, this function sets the 
** [database connection] error code and message accessible via 
** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. 



**
**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
** ^(Changes written into a BLOB prior to the BLOB expiring are not
** rolled back by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.)^
**
** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  ^The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**



** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.

**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
*/
int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
5727
5728
5729
5730
5731
5732
5733
5734


5735


5736

5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751


5752
5753
5754
5755
5756
5757
5758
** ^This function sets the database handle error code and message.
*/
SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^Closes an open [BLOB handle].


**


** ^Closing a BLOB shall cause the current transaction to commit

** if there are no other BLOBs, no pending prepared statements, and the
** database connection is in [autocommit mode].
** ^If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit.
**
** ^(Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
** at the time when the BLOB is closed.  Any errors that occur during
** closing are reported as a non-zero return value.)^
**
** ^(The BLOB is closed unconditionally.  Even if this routine returns
** an error code, the BLOB is still closed.)^
**
** ^Calling this routine with a null pointer (such as would be returned
** by a failed call to [sqlite3_blob_open()]) is a harmless no-op.


*/
int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 







|
>
>

>
>
|
>
|
<
<
<

|
<
<
|
<
<
<
<
|
|
>
>







5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775



5776
5777


5778




5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
** ^This function sets the database handle error code and message.
*/
SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
** unconditionally.  Even if this routine returns an error code, the 
** handle is still closed.)^
**
** ^If the blob handle being closed was opened for read-write access, and if
** the database is in auto-commit mode and there are no other open read-write
** blob handles or active write statements, the current transaction is
** committed. ^If an error occurs while committing the transaction, an error
** code is returned and the transaction rolled back.



**
** Calling this function with an argument that is not a NULL pointer or an


** open blob handle results in undefined behaviour. ^Calling this routine 




** with a null pointer (such as would be returned by a failed call to 
** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
** is passed a valid open blob handle, the values returned by the 
** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
*/
int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803






5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815

5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
** See also: [sqlite3_blob_write()].
*/
int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. ^N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.






**
** ^If the [BLOB handle] passed as the first argument was not opened for
** writing (the flags parameter to [sqlite3_blob_open()] was zero),
** this function returns [SQLITE_READONLY].
**
** ^This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** ^If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written.  ^If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.
** The size of the BLOB (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite3_blob_bytes()] interface.

**
** ^An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  ^Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**
** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
** Otherwise, an  [error code] or an [extended error code] is returned.)^
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
*/







|
|
|
>
>
>
>
>
>





|


|
<
|
|
>








<
<
<







5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849

5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860



5861
5862
5863
5864
5865
5866
5867
** See also: [sqlite3_blob_write()].
*/
int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^(This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.)^
**
** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
** Otherwise, an  [error code] or an [extended error code] is returned.)^
** ^Unless SQLITE_MISUSE is returned, this function sets the 
** [database connection] error code and message accessible via 
** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. 
**
** ^If the [BLOB handle] passed as the first argument was not opened for
** writing (the flags parameter to [sqlite3_blob_open()] was zero),
** this function returns [SQLITE_READONLY].
**
** This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** ^If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written. The size of the 

** BLOB (and hence the maximum value of N+iOffset) can be determined 
** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less 
** than zero [SQLITE_ERROR] is returned and no data is written.
**
** ^An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  ^Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**



** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
*/
6819
6820
6821
6822
6823
6824
6825




6826
6827
6828
6829
6830
6831
6832
** an [ATTACH] statement for an attached database.
** ^The S and M arguments passed to 
** sqlite3_backup_init(D,N,S,M) identify the [database connection]
** and database name of the source database, respectively.
** ^The source and destination [database connections] (parameters S and D)
** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
** an error.




**
** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
** returned and an error code and error message are stored in the
** destination [database connection] D.
** ^The error code and message for the failed call to sqlite3_backup_init()
** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
** [sqlite3_errmsg16()] functions.







>
>
>
>







6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
** an [ATTACH] statement for an attached database.
** ^The S and M arguments passed to 
** sqlite3_backup_init(D,N,S,M) identify the [database connection]
** and database name of the source database, respectively.
** ^The source and destination [database connections] (parameters S and D)
** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
** an error.
**
** ^A call to sqlite3_backup_init() will fail, returning SQLITE_ERROR, if 
** there is already a read or read-write transaction open on the 
** destination database.
**
** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
** returned and an error code and error message are stored in the
** destination [database connection] D.
** ^The error code and message for the failed call to sqlite3_backup_init()
** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
** [sqlite3_errmsg16()] functions.
7412
7413
7414
7415
7416
7417
7418




























































































7419
7420
7421
7422
7423
7424
7425
*/
#define SQLITE_ROLLBACK 1
/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
#define SQLITE_FAIL     3
/* #define SQLITE_ABORT 4  // Also an error code */
#define SQLITE_REPLACE  5































































































/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
*/
#define SQLITE_ROLLBACK 1
/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
#define SQLITE_FAIL     3
/* #define SQLITE_ABORT 4  // Also an error code */
#define SQLITE_REPLACE  5

/*
** CAPI3REF: Prepared Statement Scan Status Opcodes
** KEYWORDS: {scanstatus options}
**
** The following constants can be used for the T parameter to the
** [sqlite3_stmt_scanstatus(S,X,T,V)] interface.  Each constant designates a
** different metric for sqlite3_stmt_scanstatus() to return.
**
** <dl>
** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt>
** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set to the
** total number of times that the X-th loop has run.</dd>
**
** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt>
** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set to the
** total number of rows examined by all iterations of the X-th loop.</dd>
**
** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt>
** <dd>^The "double" variable pointed to by the T parameter will be set to the
** query planner's estimate for the average number of rows output from each
** iteration of the X-th loop.  If the query planner's estimates was accurate,
** then this value will approximate the quotient NVISIT/NLOOP and the
** product of this value for all prior loops with the same SELECTID will
** be the NLOOP value for the current loop.
**
** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt>
** <dd>^The "const char *" variable pointed to by the T parameter will be set to 
** a zero-terminated UTF-8 string containing the name of the index or table used
** for the X-th loop.
**
** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt>
** <dd>^The "const char *" variable pointed to by the T parameter will be set to 
** a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN] description
** for the X-th loop.
**
** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECT</dt>
** <dd>^The "int" variable pointed to by the T parameter will be set to the
** "select-id" for the X-th loop.  The select-id identifies which query or
** subquery the loop is part of.  The main query has a select-id of zero.
** The select-id is the same value as is output in the first column
** of an [EXPLAIN QUERY PLAN] query.
** </dl>
*/
#define SQLITE_SCANSTAT_NLOOP    0
#define SQLITE_SCANSTAT_NVISIT   1
#define SQLITE_SCANSTAT_EST      2
#define SQLITE_SCANSTAT_NAME     3
#define SQLITE_SCANSTAT_EXPLAIN  4
#define SQLITE_SCANSTAT_SELECTID 5

/*
** CAPI3REF: Prepared Statement Scan Status
**
** Return status data for a single loop within query pStmt.
**
** The "iScanStatusOp" parameter determines which status information to return.
** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior of
** this interface is undefined.
** ^The requested measurement is written into a variable pointed to by
** the "pOut" parameter.
** Parameter "idx" identifies the specific loop to retrieve statistics for.
** Loops are numbered starting from zero. ^If idx is out of range - less than
** zero or greater than or equal to the total number of loops used to implement
** the statement - a non-zero value is returned and the variable that pOut
** points to is unchanged.
**
** ^Statistics might not be available for all loops in all statements. ^In cases
** where there exist loops with no available statistics, this function behaves
** as if the loop did not exist - it returns non-zero and leave the variable
** that pOut points to unchanged.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
**
** See also: [sqlite3_stmt_scanstatus_reset()]
*/
SQLITE_EXPERIMENTAL int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
  int idx,                  /* Index of loop to report on */
  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
  void *pOut                /* Result written here */
);     

/*
** CAPI3REF: Zero Scan-Status Counters
**
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_EXPERIMENTAL void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);


/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
Changes to src/sqliteInt.h.
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
*/
#ifndef SQLITE_POWERSAFE_OVERWRITE
# define SQLITE_POWERSAFE_OVERWRITE 1
#endif

/*

** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
** It determines whether or not the features related to 
** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
** be overridden at runtime using the sqlite3_config() API.
*/
#if !defined(SQLITE_DEFAULT_MEMSTATUS)
# define SQLITE_DEFAULT_MEMSTATUS 1
#endif

/*
** Exactly one of the following macros must be defined in order to







>
|
<
|
<







189
190
191
192
193
194
195
196
197

198

199
200
201
202
203
204
205
** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
*/
#ifndef SQLITE_POWERSAFE_OVERWRITE
# define SQLITE_POWERSAFE_OVERWRITE 1
#endif

/*
** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in

** which case memory allocation statistics are disabled by default.

*/
#if !defined(SQLITE_DEFAULT_MEMSTATUS)
# define SQLITE_DEFAULT_MEMSTATUS 1
#endif

/*
** Exactly one of the following macros must be defined in order to
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

/*
** Estimated quantities used for query planning are stored as 16-bit
** logarithms.  For quantity X, the value stored is 10*log2(X).  This
** gives a possible range of values of approximately 1.0e986 to 1e-986.
** But the allowed values are "grainy".  Not every value is representable.
** For example, quantities 16 and 17 are both represented by a LogEst
** of 40.  However, since LogEst quantaties are suppose to be estimates,
** not exact values, this imprecision is not a problem.
**
** "LogEst" is short for "Logarithmic Estimate".
**
** Examples:
**      1 -> 0              20 -> 43          10000 -> 132
**      2 -> 10             25 -> 46          25000 -> 146







|







558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

/*
** Estimated quantities used for query planning are stored as 16-bit
** logarithms.  For quantity X, the value stored is 10*log2(X).  This
** gives a possible range of values of approximately 1.0e986 to 1e-986.
** But the allowed values are "grainy".  Not every value is representable.
** For example, quantities 16 and 17 are both represented by a LogEst
** of 40.  However, since LogEst quantities are suppose to be estimates,
** not exact values, this imprecision is not a problem.
**
** "LogEst" is short for "Logarithmic Estimate".
**
** Examples:
**      1 -> 0              20 -> 43          10000 -> 132
**      2 -> 10             25 -> 46          25000 -> 146
Changes to src/tclsqlite.c.
3637
3638
3639
3640
3641
3642
3643







































3644
3645
3646
3647
3648
3649
3650
  }

  pDb->bLegacyPrepare = bPrepare;

  Tcl_ResetResult(interp);
  return TCL_OK;
}







































#endif

/*
** Configure the interpreter passed as the first argument to have access
** to the commands and linked variables that make up:
**
**   * the [sqlite3] extension itself, 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
  }

  pDb->bLegacyPrepare = bPrepare;

  Tcl_ResetResult(interp);
  return TCL_OK;
}

/*
** Tclcmd: db_last_stmt_ptr DB
**
**   If the statement cache associated with database DB is not empty,
**   return the text representation of the most recently used statement
**   handle.
*/
static int db_last_stmt_ptr(
  ClientData cd,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  extern int sqlite3TestMakePointerStr(Tcl_Interp*, char*, void*);
  Tcl_CmdInfo cmdInfo;
  SqliteDb *pDb;
  sqlite3_stmt *pStmt = 0;
  char zBuf[100];

  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB");
    return TCL_ERROR;
  }

  if( !Tcl_GetCommandInfo(interp, Tcl_GetString(objv[1]), &cmdInfo) ){
    Tcl_AppendResult(interp, "no such db: ", Tcl_GetString(objv[1]), (char*)0);
    return TCL_ERROR;
  }
  pDb = (SqliteDb*)cmdInfo.objClientData;

  if( pDb->stmtList ) pStmt = pDb->stmtList->pStmt;
  if( sqlite3TestMakePointerStr(interp, zBuf, pStmt) ){
    return TCL_ERROR;
  }
  Tcl_SetResult(interp, zBuf, TCL_VOLATILE);

  return TCL_OK;
}
#endif

/*
** Configure the interpreter passed as the first argument to have access
** to the commands and linked variables that make up:
**
**   * the [sqlite3] extension itself, 
3682
3683
3684
3685
3686
3687
3688

3689
3690
3691
3692
3693
3694
3695
    extern int Sqlitetest5_Init(Tcl_Interp*);
    extern int Sqlitetest6_Init(Tcl_Interp*);
    extern int Sqlitetest7_Init(Tcl_Interp*);
    extern int Sqlitetest8_Init(Tcl_Interp*);
    extern int Sqlitetest9_Init(Tcl_Interp*);
    extern int Sqlitetestasync_Init(Tcl_Interp*);
    extern int Sqlitetest_autoext_Init(Tcl_Interp*);

    extern int Sqlitetest_demovfs_Init(Tcl_Interp *);
    extern int Sqlitetest_func_Init(Tcl_Interp*);
    extern int Sqlitetest_hexio_Init(Tcl_Interp*);
    extern int Sqlitetest_init_Init(Tcl_Interp*);
    extern int Sqlitetest_malloc_Init(Tcl_Interp*);
    extern int Sqlitetest_mutex_Init(Tcl_Interp*);
    extern int Sqlitetestschema_Init(Tcl_Interp*);







>







3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
    extern int Sqlitetest5_Init(Tcl_Interp*);
    extern int Sqlitetest6_Init(Tcl_Interp*);
    extern int Sqlitetest7_Init(Tcl_Interp*);
    extern int Sqlitetest8_Init(Tcl_Interp*);
    extern int Sqlitetest9_Init(Tcl_Interp*);
    extern int Sqlitetestasync_Init(Tcl_Interp*);
    extern int Sqlitetest_autoext_Init(Tcl_Interp*);
    extern int Sqlitetest_blob_Init(Tcl_Interp*);
    extern int Sqlitetest_demovfs_Init(Tcl_Interp *);
    extern int Sqlitetest_func_Init(Tcl_Interp*);
    extern int Sqlitetest_hexio_Init(Tcl_Interp*);
    extern int Sqlitetest_init_Init(Tcl_Interp*);
    extern int Sqlitetest_malloc_Init(Tcl_Interp*);
    extern int Sqlitetest_mutex_Init(Tcl_Interp*);
    extern int Sqlitetestschema_Init(Tcl_Interp*);
3725
3726
3727
3728
3729
3730
3731

3732
3733
3734
3735
3736
3737
3738
    Sqlitetest5_Init(interp);
    Sqlitetest6_Init(interp);
    Sqlitetest7_Init(interp);
    Sqlitetest8_Init(interp);
    Sqlitetest9_Init(interp);
    Sqlitetestasync_Init(interp);
    Sqlitetest_autoext_Init(interp);

    Sqlitetest_demovfs_Init(interp);
    Sqlitetest_func_Init(interp);
    Sqlitetest_hexio_Init(interp);
    Sqlitetest_init_Init(interp);
    Sqlitetest_malloc_Init(interp);
    Sqlitetest_mutex_Init(interp);
    Sqlitetestschema_Init(interp);







>







3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
    Sqlitetest5_Init(interp);
    Sqlitetest6_Init(interp);
    Sqlitetest7_Init(interp);
    Sqlitetest8_Init(interp);
    Sqlitetest9_Init(interp);
    Sqlitetestasync_Init(interp);
    Sqlitetest_autoext_Init(interp);
    Sqlitetest_blob_Init(interp);
    Sqlitetest_demovfs_Init(interp);
    Sqlitetest_func_Init(interp);
    Sqlitetest_hexio_Init(interp);
    Sqlitetest_init_Init(interp);
    Sqlitetest_malloc_Init(interp);
    Sqlitetest_mutex_Init(interp);
    Sqlitetestschema_Init(interp);
3756
3757
3758
3759
3760
3761
3762



3763
3764
3765
3766
3767
3768
3769

    Tcl_CreateObjCommand(
        interp, "load_testfixture_extensions", init_all_cmd, 0, 0
    );
    Tcl_CreateObjCommand(
        interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0
    );




#ifdef SQLITE_SSE
    Sqlitetestsse_Init(interp);
#endif
  }
#endif
}







>
>
>







3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813

    Tcl_CreateObjCommand(
        interp, "load_testfixture_extensions", init_all_cmd, 0, 0
    );
    Tcl_CreateObjCommand(
        interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0
    );
    Tcl_CreateObjCommand(
        interp, "db_last_stmt_ptr", db_last_stmt_ptr, 0, 0
    );

#ifdef SQLITE_SSE
    Sqlitetestsse_Init(interp);
#endif
  }
#endif
}
Changes to src/test1.c.
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
    instanceData = Tcl_GetChannelInstanceData(channel);
    *ppBlob = *((sqlite3_blob **)instanceData);
  }

  return TCL_OK;
}

/*
** sqlite3_blob_bytes  CHANNEL
*/
static int test_blob_bytes(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_blob *pBlob;
  int nByte;
  
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  nByte = sqlite3_blob_bytes(pBlob);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(nByte));

  return TCL_OK;
}

/*
** sqlite3_blob_close  CHANNEL
*/
static int test_blob_close(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_blob *pBlob;
  
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  sqlite3_blob_close(pBlob);

  return TCL_OK;
}

/*
** sqlite3_blob_read  CHANNEL OFFSET N
**
**   This command is used to test the sqlite3_blob_read() in ways that
**   the Tcl channel interface does not. The first argument should
**   be the name of a valid channel created by the [incrblob] method
**   of a database handle. This function calls sqlite3_blob_read()
**   to read N bytes from offset OFFSET from the underlying SQLite
**   blob handle.
**
**   On success, a byte-array object containing the read data is 
**   returned. On failure, the interpreter result is set to the
**   text representation of the returned error code (i.e. "SQLITE_NOMEM")
**   and a Tcl exception is thrown.
*/
static int test_blob_read(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_blob *pBlob;
  int nByte;
  int iOffset;
  unsigned char *zBuf = 0;
  int rc;
  
  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL OFFSET N");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &iOffset)
   || TCL_OK!=Tcl_GetIntFromObj(interp, objv[3], &nByte)
  ){ 
    return TCL_ERROR;
  }

  if( nByte>0 ){
    zBuf = (unsigned char *)Tcl_Alloc(nByte);
  }
  rc = sqlite3_blob_read(pBlob, zBuf, nByte, iOffset);
  if( rc==SQLITE_OK ){
    Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(zBuf, nByte));
  }else{
    Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE);
  }
  Tcl_Free((char *)zBuf);

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}

/*
** sqlite3_blob_write CHANNEL OFFSET DATA ?NDATA?
**
**   This command is used to test the sqlite3_blob_write() in ways that
**   the Tcl channel interface does not. The first argument should
**   be the name of a valid channel created by the [incrblob] method
**   of a database handle. This function calls sqlite3_blob_write()
**   to write the DATA byte-array to the underlying SQLite blob handle.
**   at offset OFFSET.
**
**   On success, an empty string is returned. On failure, the interpreter
**   result is set to the text representation of the returned error code 
**   (i.e. "SQLITE_NOMEM") and a Tcl exception is thrown.
*/
static int test_blob_write(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_blob *pBlob;
  int iOffset;
  int rc;

  unsigned char *zBuf;
  int nBuf;
  
  if( objc!=4 && objc!=5 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL OFFSET DATA ?NDATA?");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &iOffset) ){ 
    return TCL_ERROR;
  }

  zBuf = Tcl_GetByteArrayFromObj(objv[3], &nBuf);
  if( objc==5 && Tcl_GetIntFromObj(interp, objv[4], &nBuf) ){
    return TCL_ERROR;
  }
  rc = sqlite3_blob_write(pBlob, zBuf, nBuf, iOffset);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE);
  }

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}

static int test_blob_reopen(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  Tcl_WideInt iRowid;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1647
1648
1649
1650
1651
1652
1653




















































































































































1654
1655
1656
1657
1658
1659
1660
    instanceData = Tcl_GetChannelInstanceData(channel);
    *ppBlob = *((sqlite3_blob **)instanceData);
  }

  return TCL_OK;
}





















































































































































static int test_blob_reopen(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  Tcl_WideInt iRowid;
2296
2297
2298
2299
2300
2301
2302







































































2303
2304
2305
2306
2307
2308
2309
    if( Tcl_GetIntFromObj(interp, objv[2], &op) ) return TCL_ERROR;
  }
  if( Tcl_GetBooleanFromObj(interp, objv[3], &resetFlag) ) return TCL_ERROR;
  iValue = sqlite3_stmt_status(pStmt, op, resetFlag);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(iValue));
  return TCL_OK;
}








































































/*
** Usage:  sqlite3_next_stmt  DB  STMT
**
** Return the next statment in sequence after STMT.
*/
static int test_next_stmt(







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
    if( Tcl_GetIntFromObj(interp, objv[2], &op) ) return TCL_ERROR;
  }
  if( Tcl_GetBooleanFromObj(interp, objv[3], &resetFlag) ) return TCL_ERROR;
  iValue = sqlite3_stmt_status(pStmt, op, resetFlag);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(iValue));
  return TCL_OK;
}

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Usage:  sqlite3_stmt_scanstatus STMT IDX
*/
static int test_stmt_scanstatus(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3_stmt *pStmt;            /* First argument */
  int idx;                        /* Second argument */

  const char *zName;
  const char *zExplain;
  sqlite3_int64 nLoop;
  sqlite3_int64 nVisit;
  double rEst;
  int res;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "STMT IDX");
    return TCL_ERROR;
  }
  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  if( Tcl_GetIntFromObj(interp, objv[2], &idx) ) return TCL_ERROR;

  res = sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_NLOOP, (void*)&nLoop);
  if( res==0 ){
    Tcl_Obj *pRet = Tcl_NewObj();
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("nLoop", -1));
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewWideIntObj(nLoop));
    sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_NVISIT, (void*)&nVisit);
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("nVisit", -1));
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewWideIntObj(nVisit));
    sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_EST, (void*)&rEst);
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("nEst", -1));
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewDoubleObj(rEst));
    sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_NAME, (void*)&zName);
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("zName", -1));
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zName, -1));
    sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_EXPLAIN, (void*)&zExplain);
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("zExplain", -1));
    Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zExplain, -1));
    Tcl_SetObjResult(interp, pRet);
  }else{
    Tcl_ResetResult(interp);
  }
  return TCL_OK;
}

/*
** Usage:  sqlite3_stmt_scanstatus_reset  STMT
*/
static int test_stmt_scanstatus_reset(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3_stmt *pStmt;            /* First argument */
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "STMT");
    return TCL_ERROR;
  }
  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  sqlite3_stmt_scanstatus_reset(pStmt);
  return TCL_OK;
}
#endif

/*
** Usage:  sqlite3_next_stmt  DB  STMT
**
** Return the next statment in sequence after STMT.
*/
static int test_next_stmt(
6525
6526
6527
6528
6529
6530
6531

6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546

6547
6548
6549
6550
6551
6552
6553
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  extern int sqlite3_amatch_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_closure_init(sqlite3*,char**,const sqlite3_api_routines*);

  extern int sqlite3_fileio_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_fuzzer_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_ieee_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_nextchar_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_percentile_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_regexp_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_spellfix_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_totype_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_wholenumber_init(sqlite3*,char**,const sqlite3_api_routines*);
  static const struct {
    const char *zExtName;
    int (*pInit)(sqlite3*,char**,const sqlite3_api_routines*);
  } aExtension[] = {
    { "amatch",                sqlite3_amatch_init               },
    { "closure",               sqlite3_closure_init              },

    { "fileio",                sqlite3_fileio_init               },
    { "fuzzer",                sqlite3_fuzzer_init               },
    { "ieee754",               sqlite3_ieee_init                 },
    { "nextchar",              sqlite3_nextchar_init             },
    { "percentile",            sqlite3_percentile_init           },
    { "regexp",                sqlite3_regexp_init               },
    { "spellfix",              sqlite3_spellfix_init             },







>















>







6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  extern int sqlite3_amatch_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_closure_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_eval_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_fileio_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_fuzzer_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_ieee_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_nextchar_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_percentile_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_regexp_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_spellfix_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_totype_init(sqlite3*,char**,const sqlite3_api_routines*);
  extern int sqlite3_wholenumber_init(sqlite3*,char**,const sqlite3_api_routines*);
  static const struct {
    const char *zExtName;
    int (*pInit)(sqlite3*,char**,const sqlite3_api_routines*);
  } aExtension[] = {
    { "amatch",                sqlite3_amatch_init               },
    { "closure",               sqlite3_closure_init              },
    { "eval",                  sqlite3_eval_init                 },
    { "fileio",                sqlite3_fileio_init               },
    { "fuzzer",                sqlite3_fuzzer_init               },
    { "ieee754",               sqlite3_ieee_init                 },
    { "nextchar",              sqlite3_nextchar_init             },
    { "percentile",            sqlite3_percentile_init           },
    { "regexp",                sqlite3_regexp_init               },
    { "spellfix",              sqlite3_spellfix_init             },
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
     { "sqlite3_shared_cache_report", sqlite3BtreeSharedCacheReport, 0},
#endif
     { "sqlite3_libversion_number", test_libversion_number, 0  },
#ifdef SQLITE_ENABLE_COLUMN_METADATA
     { "sqlite3_table_column_metadata", test_table_column_metadata, 0  },
#endif
#ifndef SQLITE_OMIT_INCRBLOB
     { "sqlite3_blob_read",   test_blob_read, 0  },
     { "sqlite3_blob_write",  test_blob_write, 0  },
     { "sqlite3_blob_reopen", test_blob_reopen, 0  },
     { "sqlite3_blob_bytes",  test_blob_bytes, 0  },
     { "sqlite3_blob_close",  test_blob_close, 0  },
#endif
     { "pcache_stats",       test_pcache_stats, 0  },
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
     { "sqlite3_unlock_notify", test_unlock_notify, 0  },
#endif
     { "sqlite3_wal_checkpoint",   test_wal_checkpoint, 0  },
     { "sqlite3_wal_checkpoint_v2",test_wal_checkpoint_v2, 0  },







<
<

<
<







6959
6960
6961
6962
6963
6964
6965


6966


6967
6968
6969
6970
6971
6972
6973
     { "sqlite3_shared_cache_report", sqlite3BtreeSharedCacheReport, 0},
#endif
     { "sqlite3_libversion_number", test_libversion_number, 0  },
#ifdef SQLITE_ENABLE_COLUMN_METADATA
     { "sqlite3_table_column_metadata", test_table_column_metadata, 0  },
#endif
#ifndef SQLITE_OMIT_INCRBLOB


     { "sqlite3_blob_reopen", test_blob_reopen, 0  },


#endif
     { "pcache_stats",       test_pcache_stats, 0  },
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
     { "sqlite3_unlock_notify", test_unlock_notify, 0  },
#endif
     { "sqlite3_wal_checkpoint",   test_wal_checkpoint, 0  },
     { "sqlite3_wal_checkpoint_v2",test_wal_checkpoint_v2, 0  },
7063
7064
7065
7066
7067
7068
7069




7070
7071
7072
7073
7074
7075
7076
     { "sorter_test_sort4_helper", sorter_test_sort4_helper },
#ifdef SQLITE_USER_AUTHENTICATION
     { "sqlite3_user_authenticate", test_user_authenticate, 0 },
     { "sqlite3_user_add",          test_user_add,          0 },
     { "sqlite3_user_change",       test_user_change,       0 },
     { "sqlite3_user_delete",       test_user_delete,       0 },
#endif





  };
  static int bitmask_size = sizeof(Bitmask)*8;
  int i;
  extern int sqlite3_sync_count, sqlite3_fullsync_count;
  extern int sqlite3_opentemp_count;
  extern int sqlite3_like_count;







>
>
>
>







6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
     { "sorter_test_sort4_helper", sorter_test_sort4_helper },
#ifdef SQLITE_USER_AUTHENTICATION
     { "sqlite3_user_authenticate", test_user_authenticate, 0 },
     { "sqlite3_user_add",          test_user_add,          0 },
     { "sqlite3_user_change",       test_user_change,       0 },
     { "sqlite3_user_delete",       test_user_delete,       0 },
#endif
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
     { "sqlite3_stmt_scanstatus",       test_stmt_scanstatus,   0 },
     { "sqlite3_stmt_scanstatus_reset", test_stmt_scanstatus_reset,   0 },
#endif

  };
  static int bitmask_size = sizeof(Bitmask)*8;
  int i;
  extern int sqlite3_sync_count, sqlite3_fullsync_count;
  extern int sqlite3_opentemp_count;
  extern int sqlite3_like_count;
Added src/test_blob.c.






























































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
** 2014 October 30
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
*/
#include "sqliteInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>

/* These functions are implemented in main.c. */
extern const char *sqlite3ErrName(int);

/* From test1.c: */
extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb);
extern void *sqlite3TestTextToPtr(const char *z);

/*
** Return a pointer to a buffer containing a text representation of the
** pointer passed as the only argument. The original pointer may be extracted
** from the text using sqlite3TestTextToPtr().
*/
static char *ptrToText(void *p){
  static char buf[100];
  sqlite3_snprintf(sizeof(buf)-1, buf, "%p", p);
  return buf;
}

/*
** Attempt to extract a blob handle (type sqlite3_blob*) from the Tcl
** object passed as the second argument. If successful, set *ppBlob to
** point to the blob handle and return TCL_OK. Otherwise, store an error
** message in the tcl interpreter and return TCL_ERROR. The final value
** of *ppBlob is undefined in this case.
**
** If the object contains a string that begins with "incrblob_", then it
** is assumed to be the name of a Tcl channel opened using the [db incrblob] 
** command (see tclsqlite.c). Otherwise, it is assumed to be a pointer 
** encoded using the ptrToText() routine or similar.
*/
static int blobHandleFromObj(
  Tcl_Interp *interp, 
  Tcl_Obj *pObj,
  sqlite3_blob **ppBlob
){
  char *z;
  int n;

  z = Tcl_GetStringFromObj(pObj, &n);
  if( n==0 ){
    *ppBlob = 0;
  }else if( n>9 && 0==memcmp("incrblob_", z, 9) ){
    int notUsed;
    Tcl_Channel channel;
    ClientData instanceData;
    
    channel = Tcl_GetChannel(interp, z, &notUsed);
    if( !channel ) return TCL_ERROR;

    Tcl_Flush(channel);
    Tcl_Seek(channel, 0, SEEK_SET);

    instanceData = Tcl_GetChannelInstanceData(channel);
    *ppBlob = *((sqlite3_blob **)instanceData);
  }else{
    *ppBlob = (sqlite3_blob*)sqlite3TestTextToPtr(z);
  }

  return TCL_OK;
}

/*
** Like Tcl_GetString(), except that if the string is 0 bytes in size, a
** NULL Pointer is returned.
*/
static char *blobStringFromObj(Tcl_Obj *pObj){
  int n;
  char *z;
  z = Tcl_GetStringFromObj(pObj, &n);
  return (n ? z : 0);
}

/*
** sqlite3_blob_open DB DATABASE TABLE COLUMN ROWID FLAGS VARNAME
**
** Tcl test harness for the sqlite3_blob_open() function.
*/
static int test_blob_open(
  ClientData clientData,          /* Not used */
  Tcl_Interp *interp,             /* Calling TCL interpreter */
  int objc,                       /* Number of arguments */
  Tcl_Obj *CONST objv[]           /* Command arguments */
){
  sqlite3 *db;
  const char *zDb;
  const char *zTable;
  const char *zColumn;
  sqlite_int64 iRowid;
  int flags;
  const char *zVarname;
  int nVarname;

  sqlite3_blob *pBlob = (sqlite3_blob*)0xFFFFFFFF;
  int rc;

  if( objc!=8 ){
    const char *zUsage = "DB DATABASE TABLE COLUMN ROWID FLAGS VARNAME";
    Tcl_WrongNumArgs(interp, 1, objv, zUsage);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  zDb = Tcl_GetString(objv[2]);
  zTable = blobStringFromObj(objv[3]);
  zColumn = Tcl_GetString(objv[4]);
  if( Tcl_GetWideIntFromObj(interp, objv[5], &iRowid) ) return TCL_ERROR;
  if( Tcl_GetIntFromObj(interp, objv[6], &flags) ) return TCL_ERROR;
  zVarname = Tcl_GetStringFromObj(objv[7], &nVarname);

  if( nVarname>0 ){
    rc = sqlite3_blob_open(db, zDb, zTable, zColumn, iRowid, flags, &pBlob);
    Tcl_SetVar(interp, zVarname, ptrToText(pBlob), 0);
  }else{
    rc = sqlite3_blob_open(db, zDb, zTable, zColumn, iRowid, flags, 0);
  }

  if( rc==SQLITE_OK ){
    Tcl_ResetResult(interp);
  }else{
    Tcl_SetResult(interp, (char*)sqlite3ErrName(rc), TCL_VOLATILE);
    return TCL_ERROR;
  }
  return TCL_OK;
}


/*
** sqlite3_blob_close  HANDLE
*/
static int test_blob_close(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_blob *pBlob;
  int rc;
  
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "HANDLE");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  rc = sqlite3_blob_close(pBlob);

  if( rc ){
    Tcl_SetResult(interp, (char*)sqlite3ErrName(rc), TCL_VOLATILE);
  }else{
    Tcl_ResetResult(interp);
  }
  return TCL_OK;
}

/*
** sqlite3_blob_bytes  HANDLE
*/
static int test_blob_bytes(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_blob *pBlob;
  int nByte;
  
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "HANDLE");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  nByte = sqlite3_blob_bytes(pBlob);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(nByte));

  return TCL_OK;
}

/*
** sqlite3_blob_read  CHANNEL OFFSET N
**
**   This command is used to test the sqlite3_blob_read() in ways that
**   the Tcl channel interface does not. The first argument should
**   be the name of a valid channel created by the [incrblob] method
**   of a database handle. This function calls sqlite3_blob_read()
**   to read N bytes from offset OFFSET from the underlying SQLite
**   blob handle.
**
**   On success, a byte-array object containing the read data is 
**   returned. On failure, the interpreter result is set to the
**   text representation of the returned error code (i.e. "SQLITE_NOMEM")
**   and a Tcl exception is thrown.
*/
static int test_blob_read(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_blob *pBlob;
  int nByte;
  int iOffset;
  unsigned char *zBuf = 0;
  int rc;
  
  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL OFFSET N");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &iOffset)
   || TCL_OK!=Tcl_GetIntFromObj(interp, objv[3], &nByte)
  ){ 
    return TCL_ERROR;
  }

  if( nByte>0 ){
    zBuf = (unsigned char *)Tcl_Alloc(nByte);
  }
  rc = sqlite3_blob_read(pBlob, zBuf, nByte, iOffset);
  if( rc==SQLITE_OK ){
    Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(zBuf, nByte));
  }else{
    Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE);
  }
  Tcl_Free((char *)zBuf);

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}

/*
** sqlite3_blob_write HANDLE OFFSET DATA ?NDATA?
**
**   This command is used to test the sqlite3_blob_write() in ways that
**   the Tcl channel interface does not. The first argument should
**   be the name of a valid channel created by the [incrblob] method
**   of a database handle. This function calls sqlite3_blob_write()
**   to write the DATA byte-array to the underlying SQLite blob handle.
**   at offset OFFSET.
**
**   On success, an empty string is returned. On failure, the interpreter
**   result is set to the text representation of the returned error code 
**   (i.e. "SQLITE_NOMEM") and a Tcl exception is thrown.
*/
static int test_blob_write(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3_blob *pBlob;
  int iOffset;
  int rc;

  unsigned char *zBuf;
  int nBuf;
  
  if( objc!=4 && objc!=5 ){
    Tcl_WrongNumArgs(interp, 1, objv, "HANDLE OFFSET DATA ?NDATA?");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &iOffset) ){ 
    return TCL_ERROR;
  }

  zBuf = Tcl_GetByteArrayFromObj(objv[3], &nBuf);
  if( objc==5 && Tcl_GetIntFromObj(interp, objv[4], &nBuf) ){
    return TCL_ERROR;
  }
  rc = sqlite3_blob_write(pBlob, zBuf, nBuf, iOffset);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE);
  }

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}


/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest_blob_Init(Tcl_Interp *interp){
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
  } aObjCmd[] = {
     { "sqlite3_blob_open",            test_blob_open        },
     { "sqlite3_blob_close",           test_blob_close       },
     { "sqlite3_blob_bytes",           test_blob_bytes       },
     { "sqlite3_blob_read",            test_blob_read        },
     { "sqlite3_blob_write",           test_blob_write       },
  };
  int i;
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
  }
  return TCL_OK;
}
Changes to src/test_config.c.
150
151
152
153
154
155
156






157
158
159
160
161
162
163
#endif

#ifdef SQLITE_OMIT_ANALYZE
  Tcl_SetVar2(interp, "sqlite_options", "analyze", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "analyze", "1", TCL_GLOBAL_ONLY);
#endif







#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  Tcl_SetVar2(interp, "sqlite_options", "atomicwrite", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "atomicwrite", "0", TCL_GLOBAL_ONLY);
#endif








>
>
>
>
>
>







150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#endif

#ifdef SQLITE_OMIT_ANALYZE
  Tcl_SetVar2(interp, "sqlite_options", "analyze", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "analyze", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_API_ARMOR
  Tcl_SetVar2(interp, "sqlite_options", "api_armor", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "api_armor", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  Tcl_SetVar2(interp, "sqlite_options", "atomicwrite", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "atomicwrite", "0", TCL_GLOBAL_ONLY);
#endif

479
480
481
482
483
484
485






486
487
488
489
490
491
492
  Tcl_SetVar2(interp, "sqlite_options", "stat4", "0", TCL_GLOBAL_ONLY);
#endif
#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY);
#endif







#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif







>
>
>
>
>
>







485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
  Tcl_SetVar2(interp, "sqlite_options", "stat4", "0", TCL_GLOBAL_ONLY);
#endif
#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  Tcl_SetVar2(interp, "sqlite_options", "scanstatus", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "scanstatus", "0", TCL_GLOBAL_ONLY);
#endif

#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif
Changes to src/vacuum.c.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
** original database is required.  Every page of the database is written
** approximately 3 times:  Once for step (2) and twice for step (3).
** Two writes per page are required in step (3) because the original
** database content must be written into the rollback journal prior to
** overwriting the database with the vacuumed content.
**
** Only 1x temporary space and only 1x writes would be required if
** the copy of step (3) were replace by deleting the original database
** and renaming the transient database as the original.  But that will
** not work if other processes are attached to the original database.
** And a power loss in between deleting the original and renaming the
** transient would cause the database file to appear to be deleted
** following reboot.
*/
void sqlite3Vacuum(Parse *pParse){







|







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
** original database is required.  Every page of the database is written
** approximately 3 times:  Once for step (2) and twice for step (3).
** Two writes per page are required in step (3) because the original
** database content must be written into the rollback journal prior to
** overwriting the database with the vacuumed content.
**
** Only 1x temporary space and only 1x writes would be required if
** the copy of step (3) were replaced by deleting the original database
** and renaming the transient database as the original.  But that will
** not work if other processes are attached to the original database.
** And a power loss in between deleting the original and renaming the
** transient would cause the database file to appear to be deleted
** following reboot.
*/
void sqlite3Vacuum(Parse *pParse){
Changes to src/vdbe.c.
604
605
606
607
608
609
610



611
612
613
614
615
616
617
    assert( pc>=0 && pc<p->nOp );
    if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
    start = sqlite3Hwtime();
#endif
    nVmStep++;
    pOp = &aOp[pc];




    /* Only allow tracing if SQLITE_DEBUG is defined.
    */
#ifdef SQLITE_DEBUG
    if( db->flags & SQLITE_VdbeTrace ){
      sqlite3VdbePrintOp(stdout, pc, pOp);
    }







>
>
>







604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    assert( pc>=0 && pc<p->nOp );
    if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
    start = sqlite3Hwtime();
#endif
    nVmStep++;
    pOp = &aOp[pc];
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    if( p->anExec ) p->anExec[pc]++;
#endif

    /* Only allow tracing if SQLITE_DEBUG is defined.
    */
#ifdef SQLITE_DEBUG
    if( db->flags & SQLITE_VdbeTrace ){
      sqlite3VdbePrintOp(stdout, pc, pOp);
    }
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
        assert( pC->pseudoTableReg>0 );
        pReg = &aMem[pC->pseudoTableReg];
        assert( pReg->flags & MEM_Blob );
        assert( memIsValid(pReg) );
        pC->payloadSize = pC->szRow = avail = pReg->n;
        pC->aRow = (u8*)pReg->z;
      }else{
        MemSetTypeFlag(pDest, MEM_Null);
        goto op_column_out;
      }
    }else{
      assert( pCrsr );
      if( pC->isTable==0 ){
        assert( sqlite3BtreeCursorIsValid(pCrsr) );
        VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);







|







2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
        assert( pC->pseudoTableReg>0 );
        pReg = &aMem[pC->pseudoTableReg];
        assert( pReg->flags & MEM_Blob );
        assert( memIsValid(pReg) );
        pC->payloadSize = pC->szRow = avail = pReg->n;
        pC->aRow = (u8*)pReg->z;
      }else{
        sqlite3VdbeMemSetNull(pDest);
        goto op_column_out;
      }
    }else{
      assert( pCrsr );
      if( pC->isTable==0 ){
        assert( sqlite3BtreeCursorIsValid(pCrsr) );
        VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2818
2819
2820
2821
2822
2823
2824

2825
2826

2827
2828



2829


2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
          db->autoCommit = 0;
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{

        iSavepoint = db->nSavepoint - iSavepoint - 1;
        if( p1==SAVEPOINT_ROLLBACK ){

          for(ii=0; ii<db->nDb; ii++){
            sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);



          }


        }
        for(ii=0; ii<db->nDb; ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
          sqlite3ExpirePreparedStatements(db);
          sqlite3ResetAllSchemasOfConnection(db);
          db->flags = (db->flags | SQLITE_InternChanges);
        }
      }
  
      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 







>


>

|
>
>
>

>
>







|







2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
          db->autoCommit = 0;
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{
        int isSchemaChange;
        iSavepoint = db->nSavepoint - iSavepoint - 1;
        if( p1==SAVEPOINT_ROLLBACK ){
          isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
          for(ii=0; ii<db->nDb; ii++){
            rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
                                       SQLITE_ABORT_ROLLBACK,
                                       isSchemaChange==0);
            if( rc!=SQLITE_OK ) goto abort_due_to_error;
          }
        }else{
          isSchemaChange = 0;
        }
        for(ii=0; ii<db->nDb; ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( isSchemaChange ){
          sqlite3ExpirePreparedStatements(db);
          sqlite3ResetAllSchemasOfConnection(db);
          db->flags = (db->flags | SQLITE_InternChanges);
        }
      }
  
      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
          || p->readOnly==0 );

  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;







|







3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
          || p->readOnly==0 );

  if( p->expired ){
    rc = SQLITE_ABORT_ROLLBACK;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801

3802
3803
3804
3805
3806
3807
3808
      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
#endif
    }
    pIdxKey = &r;
  }else{
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
    ); 
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );
    assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */

    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
  }
  pIdxKey->default_rc = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not
    ** conflict */







|


|
>







3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
#endif
    }
    pIdxKey = &r;
  }else{
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
    );
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );
    /* assert( (pIn3->flags & MEM_Zero)==0 ); // zeroblobs already expanded */
    ExpandBlob(pIn3);
    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
  }
  pIdxKey->default_rc = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not
    ** conflict */
4394
4395
4396
4397
4398
4399
4400




4401
4402
4403
4404
4405
4406
4407
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorRestore(pC);
    if( rc ) goto abort_due_to_error;




    rc = sqlite3BtreeKeySize(pC->pCursor, &v);
    assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
  }
  pOut->u.i = v;
  break;
}








>
>
>
>







4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorRestore(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->nullRow ){
      pOut->flags = MEM_Null;
      break;
    }
    rc = sqlite3BtreeKeySize(pC->pCursor, &v);
    assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
  }
  pOut->u.i = v;
  break;
}

4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
  p->aCounter[SQLITE_STMTSTATUS_SORT]++;
  /* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end.  In other words, the cursor is
** configured to use Next, not Prev.
*/
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;







|
|
|







4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
  p->aCounter[SQLITE_STMTSTATUS_SORT]++;
  /* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty, jump immediately to P2.
** If the table or index is not empty, fall through to the following 
** instruction.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end.  In other words, the cursor is
** configured to use Next, not Prev.
*/
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;
5402
5403
5404
5405
5406
5407
5408



5409
5410
5411
5412
5413
5414
5415
    pFrame->apCsr = p->apCsr;
    pFrame->nCursor = p->nCursor;
    pFrame->aOp = p->aOp;
    pFrame->nOp = p->nOp;
    pFrame->token = pProgram->token;
    pFrame->aOnceFlag = p->aOnceFlag;
    pFrame->nOnceFlag = p->nOnceFlag;




    pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
    for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
      pMem->flags = MEM_Undefined;
      pMem->db = db;
    }
  }else{







>
>
>







5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
    pFrame->apCsr = p->apCsr;
    pFrame->nCursor = p->nCursor;
    pFrame->aOp = p->aOp;
    pFrame->nOp = p->nOp;
    pFrame->token = pProgram->token;
    pFrame->aOnceFlag = p->aOnceFlag;
    pFrame->nOnceFlag = p->nOnceFlag;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    pFrame->anExec = p->anExec;
#endif

    pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
    for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
      pMem->flags = MEM_Undefined;
      pMem->db = db;
    }
  }else{
5430
5431
5432
5433
5434
5435
5436



5437
5438
5439
5440
5441
5442
5443
  p->nMem = pFrame->nChildMem;
  p->nCursor = (u16)pFrame->nChildCsr;
  p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
  p->aOp = aOp = pProgram->aOp;
  p->nOp = pProgram->nOp;
  p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
  p->nOnceFlag = pProgram->nOnce;



  pc = -1;
  memset(p->aOnceFlag, 0, p->nOnceFlag);

  break;
}

/* Opcode: Param P1 P2 * * *







>
>
>







5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
  p->nMem = pFrame->nChildMem;
  p->nCursor = (u16)pFrame->nChildCsr;
  p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
  p->aOp = aOp = pProgram->aOp;
  p->nOp = pProgram->nOp;
  p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
  p->nOnceFlag = pProgram->nOnce;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  p->anExec = 0;
#endif
  pc = -1;
  memset(p->aOnceFlag, 0, p->nOnceFlag);

  break;
}

/* Opcode: Param P1 P2 * * *
Changes to src/vdbe.h.
277
278
279
280
281
282
283






284
285
#else
# define VdbeCoverage(v)
# define VdbeCoverageIf(v,x)
# define VdbeCoverageAlwaysTaken(v)
# define VdbeCoverageNeverTaken(v)
# define VDBE_OFFSET_LINENO(x) 0
#endif







#endif







>
>
>
>
>
>


277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#else
# define VdbeCoverage(v)
# define VdbeCoverageIf(v,x)
# define VdbeCoverageAlwaysTaken(v)
# define VdbeCoverageNeverTaken(v)
# define VDBE_OFFSET_LINENO(x) 0
#endif

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
void sqlite3VdbeScanStatus(Vdbe*, int, int, int, LogEst, const char*);
#else
# define sqlite3VdbeScanStatus(a,b,c,d,e)
#endif

#endif
Changes to src/vdbeInt.h.
128
129
130
131
132
133
134

135
136
137
138
139
140
141
** set to NULL if the currently executing frame is the main program.
*/
typedef struct VdbeFrame VdbeFrame;
struct VdbeFrame {
  Vdbe *v;                /* VM this frame belongs to */
  VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
  Op *aOp;                /* Program instructions for parent frame */

  Mem *aMem;              /* Array of memory cells for parent frame */
  u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
  VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
  void *token;            /* Copy of SubProgram.token */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  int nCursor;            /* Number of entries in apCsr */
  int pc;                 /* Program Counter in parent (calling) frame */







>







128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
** set to NULL if the currently executing frame is the main program.
*/
typedef struct VdbeFrame VdbeFrame;
struct VdbeFrame {
  Vdbe *v;                /* VM this frame belongs to */
  VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
  Op *aOp;                /* Program instructions for parent frame */
  i64 *anExec;            /* Event counters from parent frame */
  Mem *aMem;              /* Array of memory cells for parent frame */
  u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
  VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
  void *token;            /* Copy of SubProgram.token */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  int nCursor;            /* Number of entries in apCsr */
  int pc;                 /* Program Counter in parent (calling) frame */
292
293
294
295
296
297
298










299
300
301
302
303
304
305
};

/* A bitfield type for use inside of structures.  Always follow with :N where
** N is the number of bits.
*/
typedef unsigned bft;  /* Bit Field Type */











/*
** An instance of the virtual machine.  This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
** is really a pointer to an instance of this structure.
**







>
>
>
>
>
>
>
>
>
>







293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
};

/* A bitfield type for use inside of structures.  Always follow with :N where
** N is the number of bits.
*/
typedef unsigned bft;  /* Bit Field Type */

typedef struct ScanStatus ScanStatus;
struct ScanStatus {
  int addrExplain;                /* OP_Explain for loop */
  int addrLoop;                   /* Address of "loops" counter */
  int addrVisit;                  /* Address of "rows visited" counter */
  int iSelectID;                  /* The "Select-ID" for this loop */
  LogEst nEst;                    /* Estimated output rows per loop */
  char *zName;                    /* Name of table or index */
};

/*
** An instance of the virtual machine.  This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
** is really a pointer to an instance of this structure.
**
364
365
366
367
368
369
370





371
372
373
374
375
376
377
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  int nOnceFlag;          /* Size of array aOnceFlag[] */
  u8 *aOnceFlag;          /* Flags for OP_Once */
  AuxData *pAuxData;      /* Linked list of auxdata allocations */





};

/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */







>
>
>
>
>







375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  int nOnceFlag;          /* Size of array aOnceFlag[] */
  u8 *aOnceFlag;          /* Flags for OP_Once */
  AuxData *pAuxData;      /* Linked list of auxdata allocations */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  i64 *anExec;            /* Number of times each op has been executed */
  int nScan;              /* Entries in aScan[] */
  ScanStatus *aScan;      /* Scan definitions for sqlite3_stmt_scanstatus() */
#endif
};

/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
Changes to src/vdbeapi.c.
1514
1515
1516
1517
1518
1519
1520





































































    return 0;
  }
#endif
  v = pVdbe->aCounter[op];
  if( resetFlag ) pVdbe->aCounter[op] = 0;
  return (int)v;
}












































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
    return 0;
  }
#endif
  v = pVdbe->aCounter[op];
  if( resetFlag ) pVdbe->aCounter[op] = 0;
  return (int)v;
}

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Return status data for a single loop within query pStmt.
*/
int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,            /* Prepared statement being queried */
  int idx,                        /* Index of loop to report on */
  int iScanStatusOp,              /* Which metric to return */
  void *pOut                      /* OUT: Write the answer here */
){
  Vdbe *p = (Vdbe*)pStmt;
  ScanStatus *pScan;
  if( idx<0 || idx>=p->nScan ) return 1;
  pScan = &p->aScan[idx];
  switch( iScanStatusOp ){
    case SQLITE_SCANSTAT_NLOOP: {
      *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
      break;
    }
    case SQLITE_SCANSTAT_NVISIT: {
      *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
      break;
    }
    case SQLITE_SCANSTAT_EST: {
      double r = 1.0;
      LogEst x = pScan->nEst;
      while( x<100 ){
        x += 10;
        r *= 0.5;
      }
      *(double*)pOut = r*sqlite3LogEstToInt(x);
      break;
    }
    case SQLITE_SCANSTAT_NAME: {
      *(const char**)pOut = pScan->zName;
      break;
    }
    case SQLITE_SCANSTAT_EXPLAIN: {
      if( pScan->addrExplain ){
        *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
      }else{
        *(const char**)pOut = 0;
      }
      break;
    }
    case SQLITE_SCANSTAT_SELECTID: {
      if( pScan->addrExplain ){
        *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
      }else{
        *(int*)pOut = -1;
      }
      break;
    }
    default: {
      return 1;
    }
  }
  return 0;
}

/*
** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
*/
void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  memset(p->anExec, 0, p->nOp * sizeof(i64));
}
#endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
Changes to src/vdbeaux.c.
592
593
594
595
596
597
598




























599
600
601
602
603
604
605
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;
}





























/*
** Change the value of the P1 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;
}

#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
/*
** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
*/
void sqlite3VdbeScanStatus(
  Vdbe *p,                        /* VM to add scanstatus() to */
  int addrExplain,                /* Address of OP_Explain (or 0) */
  int addrLoop,                   /* Address of loop counter */ 
  int addrVisit,                  /* Address of rows visited counter */
  LogEst nEst,                    /* Estimated number of output rows */
  const char *zName               /* Name of table or index being scanned */
){
  int nByte = (p->nScan+1) * sizeof(ScanStatus);
  ScanStatus *aNew;
  aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
  if( aNew ){
    ScanStatus *pNew = &aNew[p->nScan++];
    pNew->addrExplain = addrExplain;
    pNew->addrLoop = addrLoop;
    pNew->addrVisit = addrVisit;
    pNew->nEst = nEst;
    pNew->zName = sqlite3DbStrDup(p->db, zName);
    p->aScan = aNew;
  }
}
#endif


/*
** Change the value of the P1 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
*/
1693
1694
1695
1696
1697
1698
1699



1700
1701
1702
1703
1704
1705
1706
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          &zCsr, zEnd, &nByte);
    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);



    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );








>
>
>







1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          &zCsr, zEnd, &nByte);
    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte);
#endif
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

1760
1761
1762
1763
1764
1765
1766



1767
1768
1769
1770
1771
1772
1773
/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore
** control to the main program.
*/
int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
  Vdbe *v = pFrame->v;



  v->aOnceFlag = pFrame->aOnceFlag;
  v->nOnceFlag = pFrame->nOnceFlag;
  v->aOp = pFrame->aOp;
  v->nOp = pFrame->nOp;
  v->aMem = pFrame->aMem;
  v->nMem = pFrame->nMem;
  v->apCsr = pFrame->apCsr;







>
>
>







1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore
** control to the main program.
*/
int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
  Vdbe *v = pFrame->v;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  v->anExec = pFrame->anExec;
#endif
  v->aOnceFlag = pFrame->aOnceFlag;
  v->nOnceFlag = pFrame->nOnceFlag;
  v->aOp = pFrame->aOp;
  v->nOp = pFrame->nOp;
  v->aMem = pFrame->aMem;
  v->nMem = pFrame->nMem;
  v->apCsr = pFrame->apCsr;
2683
2684
2685
2686
2687
2688
2689






2690
2691
2692
2693
2694
2695
2696
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);






}

/*
** Delete an entire VDBE.
*/
void sqlite3VdbeDelete(Vdbe *p){
  sqlite3 *db;







>
>
>
>
>
>







2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  for(i=0; i<p->nScan; i++){
    sqlite3DbFree(db, p->aScan[i].zName);
  }
  sqlite3DbFree(db, p->aScan);
#endif
}

/*
** Delete an entire VDBE.
*/
void sqlite3VdbeDelete(Vdbe *p){
  sqlite3 *db;
Changes to src/vdbeblob.c.
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

401
402
403
404
405
406
407
  db = p->db;
  sqlite3_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;
    sqlite3Error(db, SQLITE_ERROR);
  }else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
    ** returned, clean-up the statement handle.
    */
    assert( db == v->db );
    sqlite3BtreeEnterCursor(p->pCsr);
    rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
    sqlite3BtreeLeaveCursor(p->pCsr);
    if( rc==SQLITE_ABORT ){
      sqlite3VdbeFinalize(v);
      p->pStmt = 0;
    }else{
      db->errCode = rc;
      v->rc = rc;
    }
  }

  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Read data from a blob handle.







<

















<



>







372
373
374
375
376
377
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

396
397
398
399
400
401
402
403
404
405
406
  db = p->db;
  sqlite3_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;

  }else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
    ** returned, clean-up the statement handle.
    */
    assert( db == v->db );
    sqlite3BtreeEnterCursor(p->pCsr);
    rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
    sqlite3BtreeLeaveCursor(p->pCsr);
    if( rc==SQLITE_ABORT ){
      sqlite3VdbeFinalize(v);
      p->pStmt = 0;
    }else{

      v->rc = rc;
    }
  }
  sqlite3Error(db, rc);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Read data from a blob handle.
Changes to src/vdbesort.c.
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
** calling thread usually launches a worker thread to do so. Except, if
** there are already N worker threads running, the main thread does the work
** itself.
**
** The sorter is running in multi-threaded mode if (a) the library was built
** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
** than zero, and (b) worker threads have been enabled at runtime by calling
** sqlite3_config(SQLITE_CONFIG_WORKER_THREADS, ...).
**
** When Rewind() is called, any data remaining in memory is flushed to a 
** final PMA. So at this point the data is stored in some number of sorted
** PMAs within temporary files on disk.
**
** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
** sorter is running in single-threaded mode, then these PMAs are merged







|







96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
** calling thread usually launches a worker thread to do so. Except, if
** there are already N worker threads running, the main thread does the work
** itself.
**
** The sorter is running in multi-threaded mode if (a) the library was built
** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
** than zero, and (b) worker threads have been enabled at runtime by calling
** "PRAGMA threads=N" with some value of N greater than 0.
**
** When Rewind() is called, any data remaining in memory is flushed to a 
** final PMA. So at this point the data is stored in some number of sorted
** PMAs within temporary files on disk.
**
** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
** sorter is running in single-threaded mode, then these PMAs are merged
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

    if( !sqlite3TempInMemory(db) ){
      pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
      mxCache = db->aDb[0].pSchema->cache_size;
      if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
      pSorter->mxPmaSize = mxCache * pgsz;

      /* If the application has not configure scratch memory using
      ** SQLITE_CONFIG_SCRATCH then we assume it is OK to do large memory
      ** allocations.  If scratch memory has been configured, then assume
      ** large memory allocations should be avoided to prevent heap
      ** fragmentation.
      */
      if( sqlite3GlobalConfig.pScratch==0 ){
        assert( pSorter->iMemory==0 );
        pSorter->nMemory = pgsz;
        pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
        if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM;
      }







|
|
<
|
<







843
844
845
846
847
848
849
850
851

852

853
854
855
856
857
858
859

    if( !sqlite3TempInMemory(db) ){
      pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
      mxCache = db->aDb[0].pSchema->cache_size;
      if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
      pSorter->mxPmaSize = mxCache * pgsz;

      /* EVIDENCE-OF: R-26747-61719 When the application provides any amount of
      ** scratch memory using SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary

      ** large heap allocations.

      */
      if( sqlite3GlobalConfig.pScratch==0 ){
        assert( pSorter->iMemory==0 );
        pSorter->nMemory = pgsz;
        pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
        if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM;
      }
Changes to src/wal.c.
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
#endif
}

/* 
** Free an iterator allocated by walIteratorInit().
*/
static void walIteratorFree(WalIterator *p){
  sqlite3ScratchFree(p);
}

/*
** Construct a WalInterator object that can be used to loop over all 
** pages in the WAL in ascending order. The caller must hold the checkpoint
** lock.
**







|







1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
#endif
}

/* 
** Free an iterator allocated by walIteratorInit().
*/
static void walIteratorFree(WalIterator *p){
  sqlite3_free(p);
}

/*
** Construct a WalInterator object that can be used to loop over all 
** pages in the WAL in ascending order. The caller must hold the checkpoint
** lock.
**
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
  iLast = pWal->hdr.mxFrame;

  /* Allocate space for the WalIterator object. */
  nSegment = walFramePage(iLast) + 1;
  nByte = sizeof(WalIterator) 
        + (nSegment-1)*sizeof(struct WalSegment)
        + iLast*sizeof(ht_slot);
  p = (WalIterator *)sqlite3ScratchMalloc(nByte);
  if( !p ){
    return SQLITE_NOMEM;
  }
  memset(p, 0, nByte);
  p->nSegment = nSegment;

  /* Allocate temporary space used by the merge-sort routine. This block
  ** of memory will be freed before this function returns.
  */
  aTmp = (ht_slot *)sqlite3ScratchMalloc(
      sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
  );
  if( !aTmp ){
    rc = SQLITE_NOMEM;
  }

  for(i=0; rc==SQLITE_OK && i<nSegment; i++){







|









|







1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
  iLast = pWal->hdr.mxFrame;

  /* Allocate space for the WalIterator object. */
  nSegment = walFramePage(iLast) + 1;
  nByte = sizeof(WalIterator) 
        + (nSegment-1)*sizeof(struct WalSegment)
        + iLast*sizeof(ht_slot);
  p = (WalIterator *)sqlite3_malloc(nByte);
  if( !p ){
    return SQLITE_NOMEM;
  }
  memset(p, 0, nByte);
  p->nSegment = nSegment;

  /* Allocate temporary space used by the merge-sort routine. This block
  ** of memory will be freed before this function returns.
  */
  aTmp = (ht_slot *)sqlite3_malloc(
      sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
  );
  if( !aTmp ){
    rc = SQLITE_NOMEM;
  }

  for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
      walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
      p->aSegment[i].iZero = iZero;
      p->aSegment[i].nEntry = nEntry;
      p->aSegment[i].aIndex = aIndex;
      p->aSegment[i].aPgno = (u32 *)aPgno;
    }
  }
  sqlite3ScratchFree(aTmp);

  if( rc!=SQLITE_OK ){
    walIteratorFree(p);
  }
  *pp = p;
  return rc;
}







|







1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
      walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
      p->aSegment[i].iZero = iZero;
      p->aSegment[i].nEntry = nEntry;
      p->aSegment[i].aIndex = aIndex;
      p->aSegment[i].aPgno = (u32 *)aPgno;
    }
  }
  sqlite3_free(aTmp);

  if( rc!=SQLITE_OK ){
    walIteratorFree(p);
  }
  *pp = p;
  return rc;
}
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
  
    /* Restore the clients cache of the wal-index header to the state it
    ** was in before the client began writing to the database. 
    */
    memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));

    for(iFrame=pWal->hdr.mxFrame+1; 
        ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 
        iFrame++
    ){
      /* This call cannot fail. Unless the page for which the page number
      ** is passed as the second argument is (a) in the cache and 
      ** (b) has an outstanding reference, then xUndo is either a no-op
      ** (if (a) is false) or simply expels the page from the cache (if (b)
      ** is false).
      **
      ** If the upper layer is doing a rollback, it is guaranteed that there
      ** are no outstanding references to any page other than page 1. And
      ** page 1 is never written to the log until the transaction is
      ** committed. As a result, the call to xUndo may not fail.
      */
      assert( walFramePgno(pWal, iFrame)!=1 );
      rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
    }
    if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
  }
  assert( rc==SQLITE_OK );
  return rc;
}

/* 
** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 
** values. This function populates the array with values required to 
** "rollback" the write position of the WAL handle back to the current 







|


















<







2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544

2545
2546
2547
2548
2549
2550
2551
  
    /* Restore the clients cache of the wal-index header to the state it
    ** was in before the client began writing to the database. 
    */
    memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));

    for(iFrame=pWal->hdr.mxFrame+1; 
        rc==SQLITE_OK && iFrame<=iMax; 
        iFrame++
    ){
      /* This call cannot fail. Unless the page for which the page number
      ** is passed as the second argument is (a) in the cache and 
      ** (b) has an outstanding reference, then xUndo is either a no-op
      ** (if (a) is false) or simply expels the page from the cache (if (b)
      ** is false).
      **
      ** If the upper layer is doing a rollback, it is guaranteed that there
      ** are no outstanding references to any page other than page 1. And
      ** page 1 is never written to the log until the transaction is
      ** committed. As a result, the call to xUndo may not fail.
      */
      assert( walFramePgno(pWal, iFrame)!=1 );
      rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
    }
    if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
  }

  return rc;
}

/* 
** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 
** values. This function populates the array with values required to 
** "rollback" the write position of the WAL handle back to the current 
Changes to src/where.c.
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909

1910
1911
1912
1913
1914
1915
1916
1917
1918
    }
  }

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */


#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return SQLITE_OK on success.

*/
static void whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  UnpackedRecord *pRec,       /* Vector of values to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  IndexSample *aSample = pIdx->aSample;







<








|
>

|







1893
1894
1895
1896
1897
1898
1899

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
    }
  }

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */


#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return the index of the sample that is the smallest sample that
** is greater than or equal to pRec.
*/
static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  UnpackedRecord *pRec,       /* Vector of values to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  IndexSample *aSample = pIdx->aSample;
1986
1987
1988
1989
1990
1991
1992

1993
1994
1995
1996
1997
1998
1999
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }

}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

/*
** If it is not NULL, pTerm is a term that provides an upper or lower
** bound on a range scan. Without considering pTerm, it is estimated 
** that the scan will visit nNew rows. This function returns the number







>







1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }
  return i;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

/*
** If it is not NULL, pTerm is a term that provides an upper or lower
** bound on a range scan. Without considering pTerm, it is estimated 
** that the scan will visit nNew rows. This function returns the number
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index
** column subject to the range constraint. Or, equivalently, the number of
** equality constraints optimized by the proposed index scan. For example,
** assuming index p is on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq is set to 1 (as the range restricted column, b, is the second 
** left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the sqlite3LogEst() of the
** number of rows that the index scan is expected to visit without 
** considering the range constraints. If nEq is 0, this is the number of 
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range constraints pLower and pUpper.
** 
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, a single range inequality reduces the search space by a factor of 4. 
** and a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 64.







|















|







2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
** column subject to the range constraint. Or, equivalently, the number of
** equality constraints optimized by the proposed index scan. For example,
** assuming index p is on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq is set to 1 (as the range restricted column, b, is the second 
** left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the sqlite3LogEst() of the
** number of rows that the index scan is expected to visit without 
** considering the range constraints. If nEq is 0, then *pnOut is the number of 
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range constraints pLower and pUpper.
** 
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, a single range inequality reduces the search space by a factor of 4. 
** and a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 64.
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206


2207
2208
2209


2210
2211
2212
2213
2214
2215
2216
  int nOut = pLoop->nOut;
  LogEst nNew;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;

  if( p->nSample>0
   && nEq<p->nSampleCol
  ){
    if( nEq==pBuilder->nRecValid ){
      UnpackedRecord *pRec = pBuilder->pRec;
      tRowcnt a[2];
      u8 aff;

      /* Variable iLower will be set to the estimate of the number of rows in 
      ** the index that are less than the lower bound of the range query. The
      ** lower bound being the concatenation of $P and $L, where $P is the
      ** key-prefix formed by the nEq values matched against the nEq left-most
      ** columns of the index, and $L is the value in pLower.
      **
      ** Or, if pLower is NULL or $L cannot be extracted from it (because it
      ** is not a simple variable or literal value), the lower bound of the
      ** range is $P. Due to a quirk in the way whereKeyStats() works, even
      ** if $L is available, whereKeyStats() is called for both ($P) and 
      ** ($P:$L) and the larger of the two returned values used.
      **
      ** Similarly, iUpper is to be set to the estimate of the number of rows
      ** less than the upper bound of the range query. Where the upper bound
      ** is either ($P) or ($P:$U). Again, even if $U is available, both values
      ** of iUpper are requested of whereKeyStats() and the smaller used.


      */
      tRowcnt iLower;
      tRowcnt iUpper;



      if( pRec ){
        testcase( pRec->nField!=pBuilder->nRecValid );
        pRec->nField = pBuilder->nRecValid;
      }
      if( nEq==p->nKeyCol ){
        aff = SQLITE_AFF_INTEGER;







|
<
<















|





>
>

|
|
>
>







2177
2178
2179
2180
2181
2182
2183
2184


2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
  int nOut = pLoop->nOut;
  LogEst nNew;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;

  if( p->nSample>0 && nEq<p->nSampleCol ){


    if( nEq==pBuilder->nRecValid ){
      UnpackedRecord *pRec = pBuilder->pRec;
      tRowcnt a[2];
      u8 aff;

      /* Variable iLower will be set to the estimate of the number of rows in 
      ** the index that are less than the lower bound of the range query. The
      ** lower bound being the concatenation of $P and $L, where $P is the
      ** key-prefix formed by the nEq values matched against the nEq left-most
      ** columns of the index, and $L is the value in pLower.
      **
      ** Or, if pLower is NULL or $L cannot be extracted from it (because it
      ** is not a simple variable or literal value), the lower bound of the
      ** range is $P. Due to a quirk in the way whereKeyStats() works, even
      ** if $L is available, whereKeyStats() is called for both ($P) and 
      ** ($P:$L) and the larger of the two returned values is used.
      **
      ** Similarly, iUpper is to be set to the estimate of the number of rows
      ** less than the upper bound of the range query. Where the upper bound
      ** is either ($P) or ($P:$U). Again, even if $U is available, both values
      ** of iUpper are requested of whereKeyStats() and the smaller used.
      **
      ** The number of rows between the two bounds is then just iUpper-iLower.
      */
      tRowcnt iLower;     /* Rows less than the lower bound */
      tRowcnt iUpper;     /* Rows less than the upper bound */
      int iLwrIdx = -2;   /* aSample[] for the lower bound */
      int iUprIdx = -1;   /* aSample[] for the upper bound */

      if( pRec ){
        testcase( pRec->nField!=pBuilder->nRecValid );
        pRec->nField = pBuilder->nRecValid;
      }
      if( nEq==p->nKeyCol ){
        aff = SQLITE_AFF_INTEGER;
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273





2274
2275
2276
2277
2278
2279
2280
      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
          pLower = 0;
        }
      }

      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
          pUpper = 0;
        }
      }

      pBuilder->pRec = pRec;
      if( rc==SQLITE_OK ){
        if( iUpper>iLower ){
          nNew = sqlite3LogEst(iUpper - iLower);





        }else{
          nNew = 10;        assert( 10==sqlite3LogEst(2) );
        }
        if( nNew<nOut ){
          nOut = nNew;
        }
        WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",







|














|











>
>
>
>
>







2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
          pLower = 0;
        }
      }

      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
          pUpper = 0;
        }
      }

      pBuilder->pRec = pRec;
      if( rc==SQLITE_OK ){
        if( iUpper>iLower ){
          nNew = sqlite3LogEst(iUpper - iLower);
          /* TUNING:  If both iUpper and iLower are derived from the same
          ** sample, then assume they are 4x more selective.  This brings
          ** the estimated selectivity more in line with what it would be
          ** if estimated without the use of STAT3/4 tables. */
          if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
        }else{
          nNew = 10;        assert( 10==sqlite3LogEst(2) );
        }
        if( nNew<nOut ){
          nOut = nNew;
        }
        WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
2804
2805
2806
2807
2808
2809
2810
2811

2812
2813


2814
2815
2816
2817
2818
2819
2820
2821
2822

2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
    explainAppendTerm(pStr, i, z, "<");
  }
  sqlite3StrAccumAppend(pStr, ")", 1);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single

** record is added to the output to describe the table scan strategy in 
** pLevel.


*/
static void explainOneScan(
  Parse *pParse,                  /* Parse context */
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){

#ifndef SQLITE_DEBUG
  if( pParse->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    str.db = db;







|
>
|
|
>
>

|







>
|
















|







2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
    explainAppendTerm(pStr, i, z, "<");
  }
  sqlite3StrAccumAppend(pStr, ")", 1);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 
** is added to the output to describe the table scan strategy in pLevel.
**
** If an OP_Explain opcode is added to the VM, its address is returned.
** Otherwise, if no OP_Explain is coded, zero is returned.
*/
static int explainOneScan(
  Parse *pParse,                  /* Parse context */
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  int ret = 0;
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
  if( pParse->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    str.db = db;
2905
2906
2907
2908
2909
2910
2911
2912
2913

2914
2915
2916
2917
































2918
2919
2920
2921
2922
2923
2924
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
  }

}
#else
# define explainOneScan(u,v,w,x,y,z)
#endif /* SQLITE_OMIT_EXPLAIN */


































/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(







|

>


|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
  }
  return ret;
}
#else
# define explainOneScan(u,v,w,x,y,z) 0
#endif /* SQLITE_OMIT_EXPLAIN */

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Configure the VM passed as the first argument with an
** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 
** implement level pLvl. Argument pSrclist is a pointer to the FROM 
** clause that the scan reads data from.
**
** If argument addrExplain is not 0, it must be the address of an 
** OP_Explain instruction that describes the same loop.
*/
static void addScanStatus(
  Vdbe *v,                        /* Vdbe to add scanstatus entry to */
  SrcList *pSrclist,              /* FROM clause pLvl reads data from */
  WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
  int addrExplain                 /* Address of OP_Explain (or 0) */
){
  const char *zObj = 0;
  WhereLoop *pLoop = pLvl->pWLoop;
  if( (pLoop->wsFlags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
    zObj = pLoop->u.btree.pIndex->zName;
  }else{
    zObj = pSrclist->a[pLvl->iFrom].zName;
  }
  sqlite3VdbeScanStatus(
      v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
  );
}
#else
# define addScanStatus(a, b, c, d) ((void)d)
#endif



/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587


3588
3589
3590
3591
3592
3593
3594
        /* Loop through table entries that match term pOrTerm. */
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );


          /* This is the sub-WHERE clause body.  First skip over
          ** duplicate rows from prior sub-WHERE clauses, and record the
          ** rowid (or PRIMARY KEY) for the current row so that the same
          ** row will be skipped in subsequent sub-WHERE clauses.
          */
          if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int r;







|


>
>







3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
        /* Loop through table entries that match term pOrTerm. */
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          int addrExplain = explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          addScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);

          /* This is the sub-WHERE clause body.  First skip over
          ** duplicate rows from prior sub-WHERE clauses, and record the
          ** rowid (or PRIMARY KEY) for the current row so that the same
          ** row will be skipped in subsequent sub-WHERE clauses.
          */
          if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int r;
3710
3711
3712
3713
3714
3715
3716




3717
3718
3719
3720
3721
3722
3723
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
      VdbeCoverageIf(v, bRev==0);
      VdbeCoverageIf(v, bRev!=0);
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }
  }





  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );







>
>
>
>







3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
      VdbeCoverageIf(v, bRev==0);
      VdbeCoverageIf(v, bRev!=0);
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }
  }

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
#endif

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971

3972
3973
3974
3975
3976
3977
3978
3979


3980
3981
3982
3983
3984
3985
3986
3987
3988

3989
3990
3991
3992
3993
3994
3995
      whereLoopDelete(db, p);
    }
    sqlite3DbFree(db, pWInfo);
  }
}

/*
** Return TRUE if both of the following are true:
**
**   (1)  X has the same or lower cost that Y
**   (2)  X is a proper subset of Y

**
** By "proper subset" we mean that X uses fewer WHERE clause terms
** than Y and that every WHERE clause term used by X is also used
** by Y.
**
** If X is a proper subset of Y then Y is a better choice and ought
** to have a lower cost.  This routine returns TRUE when that cost 
** relationship is inverted and needs to be adjusted.


*/
static int whereLoopCheaperProperSubset(
  const WhereLoop *pX,       /* First WhereLoop to compare */
  const WhereLoop *pY        /* Compare against this WhereLoop */
){
  int i, j;
  if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
    return 0; /* X is not a subset of Y */
  }

  if( pX->rRun >= pY->rRun ){
    if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
    if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
  }
  for(i=pX->nLTerm-1; i>=0; i--){
    if( pX->aLTerm[i]==0 ) continue;
    for(j=pY->nLTerm-1; j>=0; j--){







|



>







|
>
>









>







4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
      whereLoopDelete(db, p);
    }
    sqlite3DbFree(db, pWInfo);
  }
}

/*
** Return TRUE if all of the following are true:
**
**   (1)  X has the same or lower cost that Y
**   (2)  X is a proper subset of Y
**   (3)  X skips at least as many columns as Y
**
** By "proper subset" we mean that X uses fewer WHERE clause terms
** than Y and that every WHERE clause term used by X is also used
** by Y.
**
** If X is a proper subset of Y then Y is a better choice and ought
** to have a lower cost.  This routine returns TRUE when that cost 
** relationship is inverted and needs to be adjusted.  The third rule
** was added because if X uses skip-scan less than Y it still might
** deserve a lower cost even if it is a proper subset of Y.
*/
static int whereLoopCheaperProperSubset(
  const WhereLoop *pX,       /* First WhereLoop to compare */
  const WhereLoop *pY        /* Compare against this WhereLoop */
){
  int i, j;
  if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
    return 0; /* X is not a subset of Y */
  }
  if( pY->nSkip > pX->nSkip ) return 0;
  if( pX->rRun >= pY->rRun ){
    if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
    if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
  }
  for(i=pX->nLTerm-1; i>=0; i--){
    if( pX->aLTerm[i]==0 ) continue;
    for(j=pY->nLTerm-1; j>=0; j--){
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
  if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
  for(; p; p=p->pNextLoop){
    if( p->iTab!=pTemplate->iTab ) continue;
    if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
    if( whereLoopCheaperProperSubset(p, pTemplate) ){
      /* Adjust pTemplate cost downward so that it is cheaper than its 
      ** subset p.  Except, do not adjust the cost estimate downward for
      ** a loop that skips more columns. */
      if( pTemplate->nSkip>p->nSkip ) continue;
      WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
                       pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
      pTemplate->rRun = p->rRun;
      pTemplate->nOut = p->nOut - 1;
    }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
      /* Adjust pTemplate cost upward so that it is costlier than p since
      ** pTemplate is a proper subset of p */







|
<
<







4072
4073
4074
4075
4076
4077
4078
4079


4080
4081
4082
4083
4084
4085
4086
static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
  if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
  for(; p; p=p->pNextLoop){
    if( p->iTab!=pTemplate->iTab ) continue;
    if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
    if( whereLoopCheaperProperSubset(p, pTemplate) ){
      /* Adjust pTemplate cost downward so that it is cheaper than its 
      ** subset p. */


      WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
                       pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
      pTemplate->rRun = p->rRun;
      pTemplate->nOut = p->nOut - 1;
    }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
      /* Adjust pTemplate cost upward so that it is costlier than p since
      ** pTemplate is a proper subset of p */
6412
6413
6414
6415
6416
6417
6418


6419

6420
6421
6422
6423
6424
6425
6426

6427

6428
6429
6430



6431
6432
6433
6434
6435
6436
6437

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){


    pLevel = &pWInfo->a[ii];

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC,
                &pTabList->a[pLevel->iFrom], notReady, pLevel);
      if( db->mallocFailed ) goto whereBeginError;
    }
#endif

    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);

    pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
    notReady = codeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;



  }

  /* Done. */
  VdbeModuleComment((v, "Begin WHERE-core"));
  return pWInfo;

  /* Jump here if malloc fails */







>
>

>







>
|
>



>
>
>







6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    int addrExplain;
    int wsFlags;
    pLevel = &pWInfo->a[ii];
    wsFlags = pLevel->pWLoop->wsFlags;
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC,
                &pTabList->a[pLevel->iFrom], notReady, pLevel);
      if( db->mallocFailed ) goto whereBeginError;
    }
#endif
    addrExplain = explainOneScan(
        pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
    );
    pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
    notReady = codeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;
    if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){
      addScanStatus(v, pTabList, pLevel, addrExplain);
    }
  }

  /* Done. */
  VdbeModuleComment((v, "Begin WHERE-core"));
  return pWInfo;

  /* Jump here if malloc fails */
Changes to src/whereInt.h.
81
82
83
84
85
86
87



88
89
90
91
92
93
94
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  struct WhereLoop *pWLoop;  /* The selected WhereLoop object */
  Bitmask notReady;          /* FROM entries not usable at this level */



};

/*
** Each instance of this object represents an algorithm for evaluating one
** term of a join.  Every term of the FROM clause will have at least
** one corresponding WhereLoop object (unless INDEXED BY constraints
** prevent a query solution - which is an error) and many terms of the







>
>
>







81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  struct WhereLoop *pWLoop;  /* The selected WhereLoop object */
  Bitmask notReady;          /* FROM entries not usable at this level */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  int addrVisit;        /* Address at which row is visited */
#endif
};

/*
** Each instance of this object represents an algorithm for evaluating one
** term of a join.  Every term of the FROM clause will have at least
** one corresponding WhereLoop object (unless INDEXED BY constraints
** prevent a query solution - which is an error) and many terms of the
Changes to test/analyze8.test.
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
# 
# Test 3.2 is a little unstable. It depends on the planner estimating
# that (b BETWEEN 50 AND 54) will match more rows than (c BETWEEN
# 800000 AND 900000). Which is a pretty close call (50 vs. 32), so
# the planner could get it wrong with an unlucky set of samples. This
# case happens to work, but others ("b BETWEEN 40 AND 44" for example) 
# will fail.
#
do_execsql_test 3.0 {
  SELECT count(*) FROM t1 WHERE b BETWEEN 50 AND 54;
  SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000;
  SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000;
} {50 376 32}
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 50 AND 54 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 50 AND 54 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}







|






|




|



|







82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
# 
# Test 3.2 is a little unstable. It depends on the planner estimating
# that (b BETWEEN 30 AND 34) will match more rows than (c BETWEEN
# 800000 AND 900000). Which is a pretty close call (50 vs. 32), so
# the planner could get it wrong with an unlucky set of samples. This
# case happens to work, but others ("b BETWEEN 40 AND 44" for example) 
# will fail.
#
do_execsql_test 3.0 {
  SELECT count(*) FROM t1 WHERE b BETWEEN 30 AND 34;
  SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000;
  SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000;
} {50 376 32}
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 30 AND 34 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
Changes to test/backup.test.
213
214
215
216
217
218
219

220
221
222
223
224
225
226
        CREATE INDEX ${file_dest}.i1 ON t1(a, b);
      " $db_dest
      for {set ii 0} {$ii < $rows_dest} {incr ii} {
        execsql "
          INSERT INTO ${file_dest}.t1 VALUES(1, randstr(1000,1000))
        " $db_dest
      }

    }
  
    # Backup the source database.
    do_test backup-2.$iTest.1 {
      sqlite3_backup B $db_dest $file_dest db main
      while {[B step $nPagePerStep]=="SQLITE_OK"} {}
      B finish







>







213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        CREATE INDEX ${file_dest}.i1 ON t1(a, b);
      " $db_dest
      for {set ii 0} {$ii < $rows_dest} {incr ii} {
        execsql "
          INSERT INTO ${file_dest}.t1 VALUES(1, randstr(1000,1000))
        " $db_dest
      }
      execsql COMMIT $db_dest
    }
  
    # Backup the source database.
    do_test backup-2.$iTest.1 {
      sqlite3_backup B $db_dest $file_dest db main
      while {[B step $nPagePerStep]=="SQLITE_OK"} {}
      B finish
Added test/backup5.test.


































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# 2014 November 13
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix backup5

forcedelete test2.db

do_execsql_test 1.0 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(a, b);
  INSERT INTO t2 VALUES(1, 1);
  INSERT INTO t2 VALUES(2, 2);
  INSERT INTO t2 VALUES(3, 3);
}

do_test 1.1 {
  forcecopy test.db test.db2
  db eval {
    DROP TABLE t2;
    INSERT INTO t1 VALUES(zeroblob(1000), zeroblob(1000));
    INSERT INTO t1 VALUES(randomblob(1000), randomblob(1000));
  }
} {}

do_test 1.2 {
  sqlite3 db2 test.db2
  set stmt [sqlite3_prepare_v2 db2 "SELECT * FROM t2" -1 dummy]
  sqlite3_step $stmt
} {SQLITE_ROW}

do_test 1.3 {
  list [catch { sqlite3_backup B db2 main db main } msg] $msg
} {1 {sqlite3_backup_init() failed}}

do_test 1.4 {
  sqlite3_errmsg db2
} {destination database is in use}

do_test 1.5 {
  sqlite3_reset $stmt
  sqlite3_backup B db2 main db main
  B step 200
  B finish
} {SQLITE_OK}

do_test 1.6 {
  list [sqlite3_step $stmt] [sqlite3_finalize $stmt]
} {SQLITE_ERROR SQLITE_ERROR}

do_test 1.7 {
  sqlite3_errmsg db2
} {no such table: t2}

finish_test
Changes to test/capi3.test.
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
  }
} {0 {}}
do_test capi3-11.9.3 {
  sqlite3_get_autocommit $DB
} 1
do_test capi3-11.10 {
  sqlite3_step $STMT
} {SQLITE_ERROR}
ifcapable !autoreset {
  # If SQLITE_OMIT_AUTORESET is defined, then the statement must be
  # reset() before it can be passed to step() again.
  do_test capi3-11.11a { sqlite3_step $STMT } {SQLITE_MISUSE}
  do_test capi3-11.11b { sqlite3_reset $STMT } {SQLITE_ABORT}
}
do_test capi3-11.11 {
  sqlite3_step $STMT
} {SQLITE_ROW}
do_test capi3-11.12 {
  sqlite3_step $STMT
  sqlite3_step $STMT
} {SQLITE_DONE}
do_test capi3-11.13 {
  sqlite3_finalize $STMT
} {SQLITE_OK}
do_test capi3-11.14 {
  execsql {
    SELECT a FROM t2;
  }







|








|



|







908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
  }
} {0 {}}
do_test capi3-11.9.3 {
  sqlite3_get_autocommit $DB
} 1
do_test capi3-11.10 {
  sqlite3_step $STMT
} {SQLITE_ROW}
ifcapable !autoreset {
  # If SQLITE_OMIT_AUTORESET is defined, then the statement must be
  # reset() before it can be passed to step() again.
  do_test capi3-11.11a { sqlite3_step $STMT } {SQLITE_MISUSE}
  do_test capi3-11.11b { sqlite3_reset $STMT } {SQLITE_ABORT}
}
do_test capi3-11.11 {
  sqlite3_step $STMT
} {SQLITE_DONE}
do_test capi3-11.12 {
  sqlite3_step $STMT
  sqlite3_step $STMT
} {SQLITE_ROW}
do_test capi3-11.13 {
  sqlite3_finalize $STMT
} {SQLITE_OK}
do_test capi3-11.14 {
  execsql {
    SELECT a FROM t2;
  }
Changes to test/capi3c.test.
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
  }
} {0 {}}
do_test capi3c-11.9.3 {
  sqlite3_get_autocommit $DB
} 1
do_test capi3c-11.10 {
  sqlite3_step $STMT
} {SQLITE_ABORT}
ifcapable !autoreset {
  # If SQLITE_OMIT_AUTORESET is defined, then the statement must be
  # reset() before it can be passed to step() again.
  do_test capi3-11.11a { sqlite3_step $STMT } {SQLITE_MISUSE}
  do_test capi3-11.11b { sqlite3_reset $STMT } {SQLITE_ABORT}
}
do_test capi3c-11.11 {
  sqlite3_step $STMT
} {SQLITE_ROW}
do_test capi3c-11.12 {
  sqlite3_step $STMT
  sqlite3_step $STMT
} {SQLITE_DONE}
do_test capi3c-11.13 {
  sqlite3_finalize $STMT
} {SQLITE_OK}
do_test capi3c-11.14 {
  execsql {
    SELECT a FROM t2;
  }







|








|



|







859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
  }
} {0 {}}
do_test capi3c-11.9.3 {
  sqlite3_get_autocommit $DB
} 1
do_test capi3c-11.10 {
  sqlite3_step $STMT
} {SQLITE_ROW}
ifcapable !autoreset {
  # If SQLITE_OMIT_AUTORESET is defined, then the statement must be
  # reset() before it can be passed to step() again.
  do_test capi3-11.11a { sqlite3_step $STMT } {SQLITE_MISUSE}
  do_test capi3-11.11b { sqlite3_reset $STMT } {SQLITE_ABORT}
}
do_test capi3c-11.11 {
  sqlite3_step $STMT
} {SQLITE_DONE}
do_test capi3c-11.12 {
  sqlite3_step $STMT
  sqlite3_step $STMT
} {SQLITE_ROW}
do_test capi3c-11.13 {
  sqlite3_finalize $STMT
} {SQLITE_OK}
do_test capi3c-11.14 {
  execsql {
    SELECT a FROM t2;
  }
Changes to test/capi3d.test.
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

do_execsql_test capi3d-4.1 {
  CREATE TABLE t4(x,y);
  BEGIN;
}

do_test capi3d-4.2.1 {
  breakpoint
  set ::s1 [sqlite3_prepare_v2 db "ROLLBACK" -1 notused]
  sqlite3_step $::s1
} {SQLITE_DONE}

do_test capi3d-4.2.2 {
  sqlite3_stmt_busy $::s1
} {1}







<







151
152
153
154
155
156
157

158
159
160
161
162
163
164

do_execsql_test capi3d-4.1 {
  CREATE TABLE t4(x,y);
  BEGIN;
}

do_test capi3d-4.2.1 {

  set ::s1 [sqlite3_prepare_v2 db "ROLLBACK" -1 notused]
  sqlite3_step $::s1
} {SQLITE_DONE}

do_test capi3d-4.2.2 {
  sqlite3_stmt_busy $::s1
} {1}
Changes to test/corruptH.test.
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  }
  db close
  hexio_write test.db [expr {($r(t2)-1)*1024 + 11}] [format %.2X $r(t1)]
  sqlite3 db test.db
} {}

do_test 1.3 {
breakpoint
  db eval { PRAGMA secure_delete=1 }
  list [catch {
    db eval { SELECT * FROM t1 WHERE a IN (1, 2) } {
      db eval { DELETE FROM t2 }
    }
  } msg] $msg
} {1 {database disk image is malformed}}







<







60
61
62
63
64
65
66

67
68
69
70
71
72
73
  }
  db close
  hexio_write test.db [expr {($r(t2)-1)*1024 + 11}] [format %.2X $r(t1)]
  sqlite3 db test.db
} {}

do_test 1.3 {

  db eval { PRAGMA secure_delete=1 }
  list [catch {
    db eval { SELECT * FROM t1 WHERE a IN (1, 2) } {
      db eval { DELETE FROM t2 }
    }
  } msg] $msg
} {1 {database disk image is malformed}}
Added test/e_blobbytes.test.
























































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# 2014 October 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix e_blobbytes

do_execsql_test 1.0 {
  CREATE TABLE q1(r INTEGER PRIMARY KEY, s TEXT);
  WITH d(a, b) AS (
    SELECT 0, '' 
      UNION ALL
    SELECT a+1, b||'.' FROM d WHERE a<10000
  )
  INSERT INTO q1 SELECT * FROM d;
}


# EVIDENCE-OF: R-07796-55423 Returns the size in bytes of the BLOB
# accessible via the successfully opened BLOB handle in its only
# argument.
#
proc check_blob_size {tn rowid bytes} {
  uplevel [list do_test $tn [subst -nocommands {
    sqlite3_blob_open db main q1 s $rowid 0 B
    set res [sqlite3_blob_bytes [set B]]
    sqlite3_blob_close [set B]
    set res
  }] $bytes]
}
check_blob_size 1.1 43 43
check_blob_size 1.2 391 391
check_blob_size 1.3 6349 6349
check_blob_size 1.4 2621 2621
check_blob_size 1.5 7771 7771
check_blob_size 1.6 7949 7949
check_blob_size 1.7 4374 4374
check_blob_size 1.8 2578 2578
check_blob_size 1.9 7004 7004
check_blob_size 1.10 2180 2180
check_blob_size 1.11 3796 3796
check_blob_size 1.12 7101 7101
check_blob_size 1.13 7449 7449
check_blob_size 1.14 7224 7224
check_blob_size 1.15 3038 3038
check_blob_size 1.16 1083 1083
check_blob_size 1.17 5157 5157
check_blob_size 1.18 6686 6686
check_blob_size 1.19 6592 6592
check_blob_size 1.20 0 0


# EVIDENCE-OF: R-53088-19343 The incremental blob I/O routines can only
# read or overwriting existing blob content; they cannot change the size
# of a blob.
#
#   Also demonstrated in other e_blobXXX.test files.
#
do_test 2.1 {
  sqlite3_blob_open db main q1 s 86 1 B
  list [catch { sqlite3_blob_write $B 86 "1" 1 } msg] $msg
} {1 SQLITE_ERROR}
sqlite3_blob_close $B

finish_test


Added test/e_blobclose.test.






















































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# 2014 October 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix e_blobclose

set dots [string repeat . 40]
do_execsql_test 1.0 {
  CREATE TABLE x1(a INTEGER PRIMARY KEY, b DOTS);
  INSERT INTO x1 VALUES(-1, $dots);
  INSERT INTO x1 VALUES(-10, $dots);
  INSERT INTO x1 VALUES(-100, $dots);
  INSERT INTO x1 VALUES(-1000, $dots);
  INSERT INTO x1 VALUES(-10000, $dots);
}

# EVIDENCE-OF: R-03145-46390 This function closes an open BLOB handle.
#
#   It's not clear how to test that a blob handle really is closed.
#   Attempting to use a closed blob handle will likely crash the process.
#   Assume here that if the SHARED lock on the db file is released,
#   the blob handle has been closed.
#
do_execsql_test 1.1 { PRAGMA lock_status } {main unlocked temp closed}
sqlite3_blob_open db main x1 b -1 0 B
do_execsql_test 1.2 { PRAGMA lock_status } {main shared temp closed}
sqlite3_blob_close $B
do_execsql_test 1.3 { PRAGMA lock_status } {main unlocked temp closed}


# EVIDENCE-OF: R-34027-00617 If the blob handle being closed was opened
# for read-write access, and if the database is in auto-commit mode and
# there are no other open read-write blob handles or active write
# statements, the current transaction is committed.
#
#   2.1.*: Transaction is not committed if there are other open 
#          read-write blob handles.
#
#   2.2.*: Transaction is not committed if not in auto-commit mode.
#
#   2.3.*: Active write statements.
#
do_test 2.1.1 {
  sqlite3_blob_open db main x1 b -100 1 B1
  sqlite3_blob_open db main x1 b -1000 1 B2
  sqlite3_blob_open db main x1 b -10000 1 B3
  sqlite3_blob_open db main x1 b -10000 0 B4      ;# B4 is read-only!
  execsql { PRAGMA lock_status }
} {main reserved temp closed}
do_test 2.1.2 {
  sqlite3_blob_close $B1 
  execsql { PRAGMA lock_status }
} {main reserved temp closed}
do_test 2.1.3 {
  sqlite3_blob_close $B2 
  execsql { PRAGMA lock_status }
} {main reserved temp closed}
do_test 2.1.4 {
  sqlite3_blob_close $B3 
  execsql { PRAGMA lock_status }
} {main shared temp closed}
do_test 2.1.5 {
  sqlite3_blob_close $B4 
  execsql { PRAGMA lock_status }
} {main unlocked temp closed}

do_test 2.2.1 {
  sqlite3_blob_open db main x1 b -100 1 B1
  execsql { PRAGMA lock_status }
} {main reserved temp closed}
do_test 2.2.2 {
  execsql { BEGIN }
  sqlite3_blob_close $B1 
  execsql { PRAGMA lock_status }
} {main reserved temp closed}
do_test 2.2.3 {
  execsql { COMMIT }
  execsql { PRAGMA lock_status }
} {main unlocked temp closed}

proc val {} { 
  sqlite3_blob_close $::B 
  db eval { PRAGMA lock_status }
}
db func val val
do_test 2.3.1 {
  sqlite3_blob_open db main x1 b -100 1 B
  execsql { PRAGMA lock_status }
} {main reserved temp closed}
do_test 2.3.2 {
  execsql { INSERT INTO x1 VALUES(15, val()) }
  execsql { PRAGMA lock_status }
} {main unlocked temp closed}
do_test 2.3.3 {
  execsql { SELECT * FROM x1 WHERE a = 15 }
} {15 {main reserved temp closed}}

# A reader does not inhibit commit.
do_test 2.3.4 {
  sqlite3_blob_open db main x1 b -100 1 B
  execsql { PRAGMA lock_status }
} {main reserved temp closed}
do_test 2.3.5 {
  execsql { SELECT a, val() FROM x1 LIMIT 1 }
} {-10000 {main shared temp closed}}


do_test 3.1 {
  sqlite3_blob_open db main x1 b -10 1 B
  execsql {
    INSERT INTO x1 VALUES(1, 'abc');
    SELECT * FROM x1 WHERE a=1;
  }
} {1 abc}
do_test 3.2 {
  sqlite3_blob_write $B 0 "abcdefghij" 10
  execsql { SELECT * FROM x1 WHERE a=-10 }
} {-10 abcdefghij..............................}

do_test 3.3 {
  sqlite3 db2 test.db
  execsql { BEGIN ; SELECT * FROM x1 } db2
  sqlite3_blob_close $B 
} {SQLITE_BUSY}

# EVIDENCE-OF: R-41959-38737 Otherwise, if this function is passed a
# valid open blob handle, the values returned by the sqlite3_errcode()
# and sqlite3_errmsg() functions are set before returning.
#
do_test 3.4 {
  list [sqlite3_errcode db] [sqlite3_errmsg db]
} {SQLITE_BUSY {database is locked}}

# EVIDENCE-OF: R-37801-37633 The BLOB handle is closed unconditionally.
# Even if this routine returns an error code, the handle is still
# closed.
#
#   Test that the lock has been released. Assume this means the handle
#   is closed, even though blob_close() returned SQLITE_BUSY.
#
do_execsql_test 3.4 { PRAGMA lock_status } {main unlocked temp closed}

# EVIDENCE-OF: R-35111-05628 If an error occurs while committing the
# transaction, an error code is returned and the transaction rolled
# back.
#
#   Row 1 is removed (it was inserted this transaction) and row -10
#   is restored to its original state. Transaction has been rolled back.
#
do_execsql_test 3.5 {
  SELECT * FROM x1 WHERE a IN (1, -10);
} {-10 ........................................}

# EVIDENCE-OF: R-25894-51060 Calling this routine with a null pointer
# (such as would be returned by a failed call to sqlite3_blob_open()) is
# a harmless no-op.
#
do_test 4.0 { sqlite3_blob_close 0 } {}

finish_test

Added test/e_blobopen.test.










































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# 2014 October 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix e_blobopen

forcedelete test.db2

do_execsql_test 1.0 {
  ATTACH 'test.db2' AS aux;

  CREATE TABLE main.t1(a INTEGER PRIMARY KEY, b TEXT, c BLOB);
  CREATE TEMP TABLE t1(a INTEGER PRIMARY KEY, b TEXT, c BLOB);
  CREATE TABLE aux.t1(a INTEGER PRIMARY KEY, b TEXT, c BLOB);

  CREATE TABLE main.x1(a INTEGER PRIMARY KEY, b TEXT, c BLOB);
  CREATE TEMP TABLE x2(a INTEGER PRIMARY KEY, b TEXT, c BLOB);
  CREATE TABLE aux.x3(a INTEGER PRIMARY KEY, b TEXT, c BLOB);

  INSERT INTO main.t1 VALUES(1, 'main one', X'0101');
  INSERT INTO main.t1 VALUES(2, 'main two', X'0102');
  INSERT INTO main.t1 VALUES(3, 'main three', X'0103');
  INSERT INTO main.t1 VALUES(4, 'main four', X'0104');
  INSERT INTO main.t1 VALUES(5, 'main five', X'0105');

  INSERT INTO main.x1 VALUES(1, 'x main one', X'000101');
  INSERT INTO main.x1 VALUES(2, 'x main two', X'000102');
  INSERT INTO main.x1 VALUES(3, 'x main three', X'000103');
  INSERT INTO main.x1 VALUES(4, 'x main four', X'000104');
  INSERT INTO main.x1 VALUES(5, 'x main five', X'000105');

  INSERT INTO temp.t1 VALUES(1, 'temp one', X'0201');
  INSERT INTO temp.t1 VALUES(2, 'temp two', X'0202');
  INSERT INTO temp.t1 VALUES(3, 'temp three', X'0203');
  INSERT INTO temp.t1 VALUES(4, 'temp four', X'0204');
  INSERT INTO temp.t1 VALUES(5, 'temp five', X'0205');

  INSERT INTO temp.x2 VALUES(1, 'x temp one', X'000201');
  INSERT INTO temp.x2 VALUES(2, 'x temp two', X'000202');
  INSERT INTO temp.x2 VALUES(3, 'x temp three', X'000203');
  INSERT INTO temp.x2 VALUES(4, 'x temp four', X'000204');
  INSERT INTO temp.x2 VALUES(5, 'x temp five', X'000205');

  INSERT INTO aux.t1 VALUES(1, 'aux one', X'0301');
  INSERT INTO aux.t1 VALUES(2, 'aux two', X'0302');
  INSERT INTO aux.t1 VALUES(3, 'aux three', X'0303');
  INSERT INTO aux.t1 VALUES(4, 'aux four', X'0304');
  INSERT INTO aux.t1 VALUES(5, 'aux five', X'0305');

  INSERT INTO aux.x3 VALUES(1, 'x aux one', X'000301');
  INSERT INTO aux.x3 VALUES(2, 'x aux two', X'000302');
  INSERT INTO aux.x3 VALUES(3, 'x aux three', X'000303');
  INSERT INTO aux.x3 VALUES(4, 'x aux four', X'000304');
  INSERT INTO aux.x3 VALUES(5, 'x aux five', X'000305');
}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-37639-55938 This interfaces opens a handle to the BLOB
# located in row iRow, column zColumn, table zTable in database zDb; in
# other words, the same BLOB that would be selected by: SELECT zColumn
# FROM zDb.zTable WHERE rowid = iRow;
#
proc read_blob {zDb zTab zCol iRow} {
  sqlite3_blob_open db $zDb $zTab $zCol $iRow 0 B
  set nByte [sqlite3_blob_bytes $B]
  set data [sqlite3_blob_read $B 0 $nByte]
  sqlite3_blob_close $B
  return $data
}

do_test 1.1.1 { read_blob main t1 b 1 } "main one"
do_test 1.1.2 { read_blob main t1 c 1 } "\01\01"
do_test 1.1.3 { read_blob temp t1 b 1 } "temp one"
do_test 1.1.4 { read_blob temp t1 c 1 } "\02\01"
do_test 1.1.6 { read_blob aux  t1 b 1 } "aux one"
do_test 1.1.7 { read_blob aux  t1 c 1 } "\03\01"

do_test 1.2.1 { read_blob main t1 b 4 } "main four"
do_test 1.2.2 { read_blob main t1 c 4 } "\01\04"
do_test 1.2.3 { read_blob temp t1 b 4 } "temp four"
do_test 1.2.4 { read_blob temp t1 c 4 } "\02\04"
do_test 1.2.6 { read_blob aux  t1 b 4 } "aux four"
do_test 1.2.7 { read_blob aux  t1 c 4 } "\03\04"

do_test 1.3.1 { read_blob main x1 b 2 } "x main two"
do_test 1.3.2 { read_blob main x1 c 2 } "\00\01\02"
do_test 1.3.3 { read_blob temp x2 b 2 } "x temp two"
do_test 1.3.4 { read_blob temp x2 c 2 } "\00\02\02"
do_test 1.3.6 { read_blob aux  x3 b 2 } "x aux two"
do_test 1.3.7 { read_blob aux  x3 c 2 } "\00\03\02"

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-27234-05761 Parameter zDb is not the filename that
# contains the database, but rather the symbolic name of the database.
# For attached databases, this is the name that appears after the AS
# keyword in the ATTACH statement. For the main database file, the
# database name is "main". For TEMP tables, the database name is "temp".
#
#   The test cases immediately above demonstrate that the database name
#   for the main db, for TEMP tables and for those in attached databases
#   is correct. The following tests check that filenames cannot be
#   used as well.
#
do_test 2.1 {
  list [catch { sqlite3_blob_open db "test.db" t1 b 1 0 B } msg] $msg
} {1 SQLITE_ERROR}
do_test 2.2 {
  list [catch { sqlite3_blob_open db "test.db2" t1 b 1 0 B } msg] $msg
} {1 SQLITE_ERROR}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-50854-53979 If the flags parameter is non-zero, then
# the BLOB is opened for read and write access.
#
# EVIDENCE-OF: R-03922-41160 If the flags parameter is zero, the BLOB is
# opened for read-only access.
#
foreach {tn iRow flags} {
  1 1   0
  2 2   1
  3 3  -1
  4 4   2147483647
  5 5  -2147483648
} {
  do_test 3.$tn.1 {
    sqlite3_blob_open db main x1 c $iRow $flags B
    set n [sqlite3_blob_bytes $B]
    sqlite3_blob_read $B 0 $n
  } [binary format ccc 0 1 $iRow]

  if {$flags==0} {
    # Blob was opened for read-only access - writing returns an error.
    do_test 3.$tn.2 {
      list [catch { sqlite3_blob_write $B 0 xxx 3 } msg] $msg
    } {1 SQLITE_READONLY}

    do_execsql_test 3.$tn.3 {
      SELECT c FROM x1 WHERE a=$iRow;
    } [binary format ccc 0 1 $iRow]
  } else {
    # Blob was opened for read/write access - writing succeeds
    do_test 3.$tn.4 {
      list [catch { sqlite3_blob_write $B 0 xxx 3 } msg] $msg
    } {0 {}}

    do_execsql_test 3.$tn.5 {
      SELECT c FROM x1 WHERE a=$iRow;
    } {xxx}
  }

  sqlite3_blob_close $B
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 4.0 {
  CREATE TABLE t1(x, y);
  INSERT INTO t1 VALUES('abcd', 152);
  INSERT INTO t1 VALUES(NULL, X'00010203');
  INSERT INTO t1 VALUES('', 154.2);

  CREATE TABLE t2(x PRIMARY KEY, y) WITHOUT ROWID;
  INSERT INTO t2 VALUES(1, 'blob');

  CREATE TABLE t3(a PRIMARY KEY, b, c, d, e, f, UNIQUE(e, f));
  INSERT INTO t3 VALUES('aaaa', 'bbbb', 'cccc', 'dddd', 'eeee', 'ffff');
  CREATE INDEX t3b ON t3(b);

  CREATE TABLE p1(x PRIMARY KEY);
  INSERT INTO p1 VALUES('abc');

  CREATE TABLE c1(a INTEGER PRIMARY KEY, b REFERENCES p1);
  INSERT INTO c1 VALUES(45, 'abc');
}

proc test_blob_open {tn zDb zTab zCol iRow flags    errcode errmsg} {
  global B
  set B "0x1234"

  if {$errcode=="SQLITE_OK"} {
    set expected "0 {}"
  } else {
    set expected "1 $errcode"
  }

  set ::res [list [
    catch { sqlite3_blob_open db $zDb $zTab $zCol $iRow $flags B } msg
  ] $msg]
  do_test 4.$tn.1 { set ::res } $expected

  # EVIDENCE-OF: R-08940-21305 Unless it returns SQLITE_MISUSE, this
  # function sets the database connection error code and message
  # accessible via sqlite3_errcode() and sqlite3_errmsg() and related
  # functions.
  #
  #   This proc (test_blob_open) is used below to test various error and
  #   non-error conditions. But never SQLITE_MISUSE conditions. So these
  #   test cases are considered as partly verifying the requirement above.
  #   See below for a test of the SQLITE_MISUSE case.
  #
  do_test 4.$tn.2 {
    sqlite3_errcode db
  } $errcode
  do_test 4.$tn.3 {
    sqlite3_errmsg db
  } $errmsg

  # EVIDENCE-OF: R-31086-35521 On success, SQLITE_OK is returned and the
  # new BLOB handle is stored in *ppBlob. Otherwise an error code is
  # returned and, unless the error code is SQLITE_MISUSE, *ppBlob is set
  # to NULL.
  #
  do_test 4.$tn.4 {
    expr {$B == "0"}
  } [expr {$errcode != "SQLITE_OK"}]

  # EVIDENCE-OF: R-63421-15521 This means that, provided the API is not
  # misused, it is always safe to call sqlite3_blob_close() on *ppBlob
  # after this function it returns.
  do_test 4.$tn.5 {
    sqlite3_blob_close $B
  } {}
}

# EVIDENCE-OF: R-31204-44780 Database zDb does not exist
test_blob_open 1 nosuchdb t1 x 1 0 SQLITE_ERROR "no such table: nosuchdb.t1"

# EVIDENCE-OF: R-28676-08005 Table zTable does not exist within database zDb
test_blob_open 2 main tt1 x 1 0    SQLITE_ERROR "no such table: main.tt1"

# EVIDENCE-OF: R-40134-30296 Table zTable is a WITHOUT ROWID table
test_blob_open 3 main t2 y 1 0     SQLITE_ERROR \
    "cannot open table without rowid: t2"

# EVIDENCE-OF: R-56376-21261 Column zColumn does not exist
test_blob_open 4 main t1 z 2 0     SQLITE_ERROR "no such column: \"z\""

# EVIDENCE-OF: R-28258-23166 Row iRow is not present in the table
test_blob_open 5 main t1 y 6 0     SQLITE_ERROR "no such rowid: 6"

# EVIDENCE-OF: R-11683-62380 The specified column of row iRow contains a
# value that is not a TEXT or BLOB value
test_blob_open 6 main t1 x 2 0 SQLITE_ERROR "cannot open value of type null"
test_blob_open 7 main t1 y 1 0 SQLITE_ERROR "cannot open value of type integer"
test_blob_open 8 main t1 y 3 0 SQLITE_ERROR "cannot open value of type real"

# EVIDENCE-OF: R-34146-30782 Column zColumn is part of an index, PRIMARY
# KEY or UNIQUE constraint and the blob is being opened for read/write
# access
#
# Test cases 8.1.* show that such columns can be opened for read-access. 
# Tests 8.2.* show that read-write access is different. Columns "c" and "c"
# are not part of an index, PK or UNIQUE constraint, so they work in both
# cases.
#
test_blob_open 8.1.1 main t3 a 1 0 SQLITE_OK "not an error"
test_blob_open 8.1.2 main t3 b 1 0 SQLITE_OK "not an error"
test_blob_open 8.1.3 main t3 c 1 0 SQLITE_OK "not an error"
test_blob_open 8.1.4 main t3 d 1 0 SQLITE_OK "not an error"
test_blob_open 8.1.5 main t3 e 1 0 SQLITE_OK "not an error"
test_blob_open 8.1.6 main t3 f 1 0 SQLITE_OK "not an error"

set cannot "cannot open indexed column for writing"
test_blob_open 8.2.1 main t3 a 1 8 SQLITE_ERROR $cannot
test_blob_open 8.2.2 main t3 b 1 8 SQLITE_ERROR $cannot
test_blob_open 8.2.3 main t3 c 1 8 SQLITE_OK "not an error"
test_blob_open 8.2.4 main t3 d 1 8 SQLITE_OK "not an error"
test_blob_open 8.2.5 main t3 e 1 8 SQLITE_ERROR $cannot
test_blob_open 8.2.6 main t3 f 1 8 SQLITE_ERROR $cannot

# EVIDENCE-OF: R-50117-55204 Foreign key constraints are enabled, column
# zColumn is part of a child key definition and the blob is being opened
# for read/write access
#
#   9.1: FK disabled, read-only access.
#   9.2: FK disabled, read-only access.
#   9.3: FK enabled, read/write access.
#   9.4: FK enabled, read/write access.
#
test_blob_open 9.1 main c1 b 45 0 SQLITE_OK "not an error"
test_blob_open 9.2 main c1 b 45 1 SQLITE_OK "not an error"
execsql { PRAGMA foreign_keys = ON }
test_blob_open 9.3 main c1 b 45 0 SQLITE_OK "not an error"
test_blob_open 9.4 main c1 b 45 1 SQLITE_ERROR \
        "cannot open foreign key column for writing"

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-08940-21305 Unless it returns SQLITE_MISUSE, this
# function sets the database connection error code and message
# accessible via sqlite3_errcode() and sqlite3_errmsg() and related
# functions.
#
#   This requirement is partially verified by the many uses of test
#   command [test_blob_open] above. All that is left is to verify the
#   SQLITE_MISUSE case.
#
#   SQLITE_MISUSE is only returned if SQLITE_ENABLE_API_ARMOR is defined
#   during compilation.
#
ifcapable api_armor {
  sqlite3_blob_open db main t1 x 1 0 B

  do_test 10.1.1 {
    list [catch {sqlite3_blob_open $B main t1 x 1 0 B2} msg] $msg
  } {1 SQLITE_MISUSE}
  do_test 10.1.2 {
    list [sqlite3_errcode db] [sqlite3_errmsg db]
  } {SQLITE_OK {not an error}}
  sqlite3_blob_close $B

  do_test 10.2.1 {
    list [catch {sqlite3_blob_open db main {} x 1 0 B} msg] $msg
  } {1 SQLITE_MISUSE}
  do_test 10.2.2 {
    list [sqlite3_errcode db] [sqlite3_errmsg db]
  } {SQLITE_OK {not an error}}
}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-50542-62589 If the row that a BLOB handle points to is
# modified by an UPDATE, DELETE, or by ON CONFLICT side-effects then the
# BLOB handle is marked as "expired". This is true if any column of the
# row is changed, even a column other than the one the BLOB handle is
# open on.
#
# EVIDENCE-OF: R-48367-20048 Calls to sqlite3_blob_read() and
# sqlite3_blob_write() for an expired BLOB handle fail with a return
# code of SQLITE_ABORT.
#
#   11.2: read-only handle, DELETE.
#   11.3: read-only handle, UPDATE.
#   11.4: read-only handle, REPLACE.
#   11.5: read/write handle, DELETE.
#   11.6: read/write handle, UPDATE.
#   11.7: read/write handle, REPLACE.
#
do_execsql_test 11.1 {
  CREATE TABLE b1(a INTEGER PRIMARY KEY, b, c UNIQUE);
  INSERT INTO b1 VALUES(1, '1234567890', 1);
  INSERT INTO b1 VALUES(2, '1234567890', 2);
  INSERT INTO b1 VALUES(3, '1234567890', 3);
  INSERT INTO b1 VALUES(4, '1234567890', 4);
  INSERT INTO b1 VALUES(5, '1234567890', 5);
  INSERT INTO b1 VALUES(6, '1234567890', 6);

  CREATE TABLE b2(a INTEGER PRIMARY KEY, b, c UNIQUE);
  INSERT INTO b2 VALUES(1, '1234567890', 1);
  INSERT INTO b2 VALUES(2, '1234567890', 2);
  INSERT INTO b2 VALUES(3, '1234567890', 3);
  INSERT INTO b2 VALUES(4, '1234567890', 4);
  INSERT INTO b2 VALUES(5, '1234567890', 5);
  INSERT INTO b2 VALUES(6, '1234567890', 6);
}

do_test 11.2.1 {
  sqlite3_blob_open db main b1 b 2 0 B
  sqlite3_blob_read $B 0 10
} {1234567890}
do_test 11.2.2 {
  # Deleting a different row does not invalidate the blob handle.
  execsql { DELETE FROM b1 WHERE a = 1 }
  sqlite3_blob_read $B 0 10
} {1234567890}
do_test 11.2.3 {
  execsql { DELETE FROM b1 WHERE a = 2 }
  list [catch { sqlite3_blob_read $B 0 10 } msg] $msg
} {1 SQLITE_ABORT}
do_test 11.2.4 {
  sqlite3_blob_close $B
} {}

do_test 11.3.1 {
  sqlite3_blob_open db main b1 b 3 0 B
  sqlite3_blob_read $B 0 10
} {1234567890}
do_test 11.3.2 {
  # Updating a different row
  execsql { UPDATE b1 SET c = 42 WHERE a=4 }
  sqlite3_blob_read $B 0 10
} {1234567890}
do_test 11.3.3 {
  execsql { UPDATE b1 SET c = 43 WHERE a=3 }
  list [catch { sqlite3_blob_read $B 0 10 } msg] $msg
} {1 SQLITE_ABORT}
do_test 11.3.4 {
  sqlite3_blob_close $B
} {}

do_test 11.4.1 {
  sqlite3_blob_open db main b1 b 6 0 B
  sqlite3_blob_read $B 0 10
} {1234567890}
do_test 11.4.2 {
  # Replace a different row
  execsql { INSERT OR REPLACE INTO b1 VALUES(10, 'abcdefghij', 5) }
  sqlite3_blob_read $B 0 10
} {1234567890}
do_test 11.4.3 {
  execsql { INSERT OR REPLACE INTO b1 VALUES(11, 'abcdefghij', 6) }
  list [catch { sqlite3_blob_read $B 0 10 } msg] $msg
} {1 SQLITE_ABORT}
do_test 11.4.4 {
  sqlite3_blob_close $B
} {}

do_test 11.4.1 {
  sqlite3_blob_open db main b2 b 2 1 B
  sqlite3_blob_write $B 0 "abcdefghij"
} {}
do_test 11.4.2 {
  # Deleting a different row does not invalidate the blob handle.
  execsql { DELETE FROM b2 WHERE a = 1 }
  sqlite3_blob_write $B 0 "ABCDEFGHIJ"
} {}
do_test 11.4.3 {
  execsql { DELETE FROM b2 WHERE a = 2 }
  list [catch { sqlite3_blob_write $B 0 "0987654321" } msg] $msg
} {1 SQLITE_ABORT}
do_test 11.4.4 {
  sqlite3_blob_close $B
} {}

do_test 11.5.1 {
  sqlite3_blob_open db main b2 b 3 1 B
  sqlite3_blob_write $B 0 "abcdefghij"
} {}
do_test 11.5.2 {
  # Updating a different row
  execsql { UPDATE b2 SET c = 42 WHERE a=4 }
  sqlite3_blob_write $B 0 "ABCDEFGHIJ"
} {}
do_test 11.5.3 {
  execsql { UPDATE b2 SET c = 43 WHERE a=3 }
  list [catch { sqlite3_blob_write $B 0 "0987654321" } msg] $msg
} {1 SQLITE_ABORT}
do_test 11.5.4 {
  sqlite3_blob_close $B
} {}

do_test 11.6.1 {
  sqlite3_blob_open db main b2 b 6 1 B
  sqlite3_blob_write $B 0 "abcdefghij"
} {}
do_test 11.6.2 {
  # Replace a different row
  execsql { INSERT OR REPLACE INTO b2 VALUES(10, 'abcdefghij', 5) }
  sqlite3_blob_write $B 0 "ABCDEFGHIJ"
} {}
do_test 11.6.3 {
  execsql { INSERT OR REPLACE INTO b2 VALUES(11, 'abcdefghij', 6) }
  list [catch { sqlite3_blob_write $B 0 "0987654321" } msg] $msg
} {1 SQLITE_ABORT}
do_test 11.6.4 {
  sqlite3_blob_close $B
} {}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-45408-40694 Changes written into a BLOB prior to the
# BLOB expiring are not rolled back by the expiration of the BLOB. Such
# changes will eventually commit if the transaction continues to
# completion.
#
do_execsql_test 12.1 {
  CREATE TABLE b3(x INTEGER PRIMARY KEY, y TEXT, z INTEGER);
  INSERT INTO b3 VALUES(22, '..........', NULL);
}
do_test 12.2 {
  sqlite3_blob_open db main b3 y 22 1 B
  sqlite3_blob_write $B 0 "xxxxx" 5
} {}
do_execsql_test 12.3 {
  UPDATE b3 SET z = 'not null';
}
do_test 12.4 {
  list [catch {sqlite3_blob_write $B 5 "xxxxx" 5} msg] $msg
} {1 SQLITE_ABORT}
do_execsql_test 12.5 {
  SELECT * FROM b3;
} {22 xxxxx..... {not null}}
do_test 12.5 {
  sqlite3_blob_close $B
} {}
do_execsql_test 12.6 {
  SELECT * FROM b3;
} {22 xxxxx..... {not null}}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-58813-55036 The sqlite3_bind_zeroblob() and
# sqlite3_result_zeroblob() interfaces and the built-in zeroblob SQL
# function may be used to create a zero-filled blob to read or write
# using the incremental-blob interface.
#
do_execsql_test 13.1 {
  CREATE TABLE c2(i INTEGER PRIMARY KEY, j);
  INSERT INTO c2 VALUES(10, zeroblob(24));
}

do_test 13.2 {
  set stmt [sqlite3_prepare_v2 db "INSERT INTO c2 VALUES(11, ?)" -1]
  sqlite3_bind_zeroblob $stmt 1 45
  sqlite3_step $stmt
  sqlite3_finalize $stmt
} {SQLITE_OK}

# The blobs can be read:
#
do_test 13.3.1 {
  sqlite3_blob_open db main c2 j 10 1 B
  sqlite3_blob_open db main c2 j 11 1 B2
  list [sqlite3_blob_bytes $B] [sqlite3_blob_bytes $B2]
} {24 45}
do_test 13.3.2 {
  sqlite3_blob_read $B 0 24
} [string repeat [binary format c 0] 24]
do_test 13.3.3 {
  sqlite3_blob_read $B2 0 45
} [string repeat [binary format c 0] 45]

# And also written:
#
do_test 13.4.1 {
  sqlite3_blob_write $B 0 [string repeat [binary format c 1] 24]
} {}
do_test 13.4.2 {
  sqlite3_blob_write $B2 0 [string repeat [binary format c 1] 45]
} {}
do_test 13.5 {
  sqlite3_blob_close $B
  sqlite3_blob_close $B2
  execsql { SELECT j FROM c2 }
} [list \
    [string repeat [binary format c 1] 24] \
    [string repeat [binary format c 1] 45] \
]


finish_test

Added test/e_blobwrite.test.
























































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# 2014 October 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix e_blobwrite

#--------------------------------------------------------------------------
# EVIDENCE-OF: R-62898-22698 This function is used to write data into an
# open BLOB handle from a caller-supplied buffer. N bytes of data are
# copied from the buffer Z into the open BLOB, starting at offset
# iOffset.
#
set dots [string repeat . 40]
do_execsql_test 1.0 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY, t TEXT);
  INSERT INTO t1 VALUES(-1, $dots);
  INSERT INTO t1 VALUES(-2, $dots);
  INSERT INTO t1 VALUES(-3, $dots);
  INSERT INTO t1 VALUES(-4, $dots);
  INSERT INTO t1 VALUES(-5, $dots);
  INSERT INTO t1 VALUES(-6, $dots);
}

proc blob_write_test {tn id iOffset blob nData final} {
  sqlite3_blob_open db main t1 t $id 1 B

  # EVIDENCE-OF: R-45864-01884 On success, sqlite3_blob_write() returns
  # SQLITE_OK. Otherwise, an error code or an extended error code is
  # returned.
  #
  #   This block tests the SQLITE_OK case in the requirement above (the
  #   Tcl sqlite3_blob_write() wrapper uses an empty string in place of
  #   "SQLITE_OK"). The error cases are tested by the "blob_write_error_test"
  #   tests below.
  #
  set res [sqlite3_blob_write $B $iOffset $blob $nData]
  uplevel [list do_test $tn.1 [list set {} $res] {}]

  sqlite3_blob_close $B
  uplevel [list do_execsql_test $tn.3 "SELECT t FROM t1 WHERE a=$id" $final]
}

set blob "0123456789012345678901234567890123456789"
blob_write_test 1.1 -1 0 $blob 10  { 0123456789.............................. }
blob_write_test 1.2 -2 8 $blob 10  { ........0123456789...................... }
blob_write_test 1.3 -3 8 $blob 1   { ........0............................... }
blob_write_test 1.4 -4 18 $blob 22 { ..................0123456789012345678901 }
blob_write_test 1.5 -5 18 $blob 0  { ........................................ }
blob_write_test 1.6 -6 0 $blob 40  { 0123456789012345678901234567890123456789 }


proc blob_write_error_test {tn B iOffset blob nData errcode errmsg} {

  # In cases where the underlying sqlite3_blob_write() function returns
  # SQLITE_OK, the Tcl wrapper returns an empty string. If the underlying
  # function returns an error, the Tcl wrapper throws an exception with
  # the error code as the Tcl exception message.
  #
  if {$errcode=="SQLITE_OK"} {
    set ret ""
    set isError 0
  } else {
    set ret $errcode
    set isError 1
  }

  set cmd [list sqlite3_blob_write $B $iOffset $blob $nData]
  uplevel [list do_test $tn.1 [subst -nocommands {
    list [catch {$cmd} msg] [set msg]              
  }] [list $isError $ret]]

  # EVIDENCE-OF: R-34782-18311 Unless SQLITE_MISUSE is returned, this
  # function sets the database connection error code and message
  # accessible via sqlite3_errcode() and sqlite3_errmsg() and related
  # functions.
  #
  if {$errcode == "SQLITE_MISUSE"} { error "test proc misuse!" }
  uplevel [list do_test $tn.2 [list sqlite3_errcode db] $errcode]
  uplevel [list do_test $tn.3 [list sqlite3_errmsg db] $errmsg]
}

do_execsql_test 2.0 {
  CREATE TABLE t2(a TEXT, b INTEGER PRIMARY KEY);
  INSERT INTO t2 VALUES($dots, 43);
  INSERT INTO t2 VALUES($dots, 44);
  INSERT INTO t2 VALUES($dots, 45);
}

# EVIDENCE-OF: R-63341-57517 If the BLOB handle passed as the first
# argument was not opened for writing (the flags parameter to
# sqlite3_blob_open() was zero), this function returns SQLITE_READONLY.
#
sqlite3_blob_open db main t2 a 43 0 B
blob_write_error_test 2.1 $B 0 $blob 10   \
    SQLITE_READONLY {attempt to write a readonly database}
sqlite3_blob_close $B

# EVIDENCE-OF: R-29804-27366 If offset iOffset is less than N bytes from
# the end of the BLOB, SQLITE_ERROR is returned and no data is written.
#
sqlite3_blob_open db main t2 a 44 3 B
blob_write_error_test 2.2.1 $B 31 $blob 10   \
    SQLITE_ERROR {SQL logic error or missing database}

# Make a successful write to the blob handle. This shows that the
# sqlite3_errcode() and sqlite3_errmsg() values are set even if the
# blob_write() call succeeds (see requirement in the [blob_write_error_test]
# proc).
blob_write_error_test 2.2.1 $B 30 $blob 10 SQLITE_OK {not an error}

# EVIDENCE-OF: R-58570-38916 If N or iOffset are less than zero
# SQLITE_ERROR is returned and no data is written.
#
blob_write_error_test 2.2.2 $B 31 $blob -1   \
    SQLITE_ERROR {SQL logic error or missing database}
blob_write_error_test 2.2.3 $B 20 $blob 10 SQLITE_OK {not an error}
blob_write_error_test 2.2.4 $B -1 $blob 10   \
    SQLITE_ERROR {SQL logic error or missing database}
sqlite3_blob_close $B

# EVIDENCE-OF: R-20958-54138 An attempt to write to an expired BLOB
# handle fails with an error code of SQLITE_ABORT.
#
do_test 2.3 {
  sqlite3_blob_open db main t2 a 43 0 B
  execsql { DELETE FROM t2 WHERE b=43 }
} {}
blob_write_error_test 2.3.1 $B 5 $blob 5 \
    SQLITE_ABORT {callback requested query abort}
do_test 2.3.2 {
  execsql { SELECT 1, 2, 3 }
  sqlite3_errcode db
} {SQLITE_OK}
blob_write_error_test 2.3.3 $B 5 $blob 5 \
    SQLITE_ABORT {callback requested query abort}
sqlite3_blob_close $B

# EVIDENCE-OF: R-08382-59936 Writes to the BLOB that occurred before the
# BLOB handle expired are not rolled back by the expiration of the
# handle, though of course those changes might have been overwritten by
# the statement that expired the BLOB handle or by other independent
# statements.
#
#   3.1.*: not rolled back, 
#   3.2.*: overwritten.
#
do_execsql_test 3.0 {
  CREATE TABLE t3(i INTEGER PRIMARY KEY, j TEXT, k TEXT);
  INSERT INTO t3 VALUES(1, $dots, $dots);
  INSERT INTO t3 VALUES(2, $dots, $dots);
  SELECT * FROM t3 WHERE i=1;
} {
  1
  ........................................
  ........................................
}
sqlite3_blob_open db main t3 j 1 1 B
blob_write_error_test 3.1.1 $B 5 $blob 10 SQLITE_OK {not an error}
do_execsql_test 3.1.2 {
  UPDATE t3 SET k = 'xyz' WHERE i=1;
  SELECT * FROM t3 WHERE i=1;
} {
  1 .....0123456789......................... xyz
}
blob_write_error_test 3.1.3 $B 15 $blob 10 \
    SQLITE_ABORT {callback requested query abort}
sqlite3_blob_close $B
do_execsql_test 3.1.4 {
  SELECT * FROM t3 WHERE i=1;
} {
  1 .....0123456789......................... xyz
}

sqlite3_blob_open db main t3 j 2 1 B
blob_write_error_test 3.2.1 $B 5 $blob 10 SQLITE_OK {not an error}
do_execsql_test 3.2.2 {
  UPDATE t3 SET j = 'xyz' WHERE i=2;
  SELECT * FROM t3 WHERE i=2;
} {
  2 xyz ........................................
}
blob_write_error_test 3.2.3 $B 15 $blob 10 \
    SQLITE_ABORT {callback requested query abort}
sqlite3_blob_close $B
do_execsql_test 3.2.4 {
  SELECT * FROM t3 WHERE i=2;
} {
  2 xyz ........................................
}



finish_test

Changes to test/fkey7.test.
46
47
48
49
50
51
52

















53
54
}

do_tblsread_test 1.2 { UPDATE par SET b=? WHERE a=? } {par s1}
do_tblsread_test 1.3 { UPDATE par SET a=? WHERE b=? } {c1 c2 par}
do_tblsread_test 1.4 { UPDATE par SET c=? WHERE b=? } {c3 par}
do_tblsread_test 1.5 { UPDATE par SET a=?,b=?,c=? WHERE b=? } {c1 c2 c3 par s1}



















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
}

do_tblsread_test 1.2 { UPDATE par SET b=? WHERE a=? } {par s1}
do_tblsread_test 1.3 { UPDATE par SET a=? WHERE b=? } {c1 c2 par}
do_tblsread_test 1.4 { UPDATE par SET c=? WHERE b=? } {c3 par}
do_tblsread_test 1.5 { UPDATE par SET a=?,b=?,c=? WHERE b=? } {c1 c2 c3 par s1}

ifcapable incrblob {
  do_execsql_test 2.0 {
    CREATE TABLE pX(x PRIMARY KEY);
    CREATE TABLE cX(a INTEGER PRIMARY KEY, b REFERENCES pX);
  }
  
  do_catchsql_test 2.1 {
    INSERT INTO cX VALUES(11, zeroblob(40));
  } {1 {FOREIGN KEY constraint failed}}
  
  do_test 2.2 {
    set stmt [sqlite3_prepare_v2 db "INSERT INTO cX VALUES(11, ?)" -1]
    sqlite3_bind_zeroblob $stmt 1 45
    sqlite3_step $stmt
    sqlite3_finalize $stmt
  } {SQLITE_CONSTRAINT}
}

finish_test
Changes to test/in5.test.
8
9
10
11
12
13
14

15
16
17
18
19
20
21
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl


do_test in5-1.1 {
  execsql {
    CREATE TABLE t1x(x INTEGER PRIMARY KEY);
    INSERT INTO t1x VALUES(1),(3),(5),(7),(9);
    CREATE TABLE t1y(y INTEGER UNIQUE);
    INSERT INTO t1y VALUES(2),(4),(6),(8);







>







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix in5

do_test in5-1.1 {
  execsql {
    CREATE TABLE t1x(x INTEGER PRIMARY KEY);
    INSERT INTO t1x VALUES(1),(3),(5),(7),(9);
    CREATE TABLE t1y(y INTEGER UNIQUE);
    INSERT INTO t1y VALUES(2),(4),(6),(8);
130
131
132
133
134
135
136
137















































138
  }
} {23g}
do_test in5-5.3 {
  regexp {OpenEphemeral} [db eval {
    EXPLAIN SELECT d FROM t2 WHERE a IN t1x AND b IN t1y AND c IN t1z
  }]
} {0}
















































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  }
} {23g}
do_test in5-5.3 {
  regexp {OpenEphemeral} [db eval {
    EXPLAIN SELECT d FROM t2 WHERE a IN t1x AND b IN t1y AND c IN t1z
  }]
} {0}

#-------------------------------------------------------------------------
# At one point SQLite was removing the DISTINCT keyword from expressions
# similar to:
#
#   <expr1> IN (SELECT DISTINCT <expr2> FROM...)
#
# However, there are a few obscure cases where this is incorrect. For
# example, if the SELECT features a LIMIT clause, or if the collation
# sequence or affinity used by the DISTINCT does not match the one used
# by the IN(...) expression.
#
do_execsql_test 6.1.1 {
  CREATE TABLE t1(a COLLATE nocase);
  INSERT INTO t1 VALUES('one');
  INSERT INTO t1 VALUES('ONE');
}
do_execsql_test 6.1.2 {
  SELECT count(*) FROM t1 WHERE a COLLATE BINARY IN (SELECT DISTINCT a FROM t1)
} {1}

do_execsql_test 6.2.1 {
  CREATE TABLE t3(a, b);
  INSERT INTO t3 VALUES(1, 1);
  INSERT INTO t3 VALUES(1, 2);
  INSERT INTO t3 VALUES(1, 3);
  INSERT INTO t3 VALUES(2, 4);
  INSERT INTO t3 VALUES(2, 5);
  INSERT INTO t3 VALUES(2, 6);
  INSERT INTO t3 VALUES(3, 7);
  INSERT INTO t3 VALUES(3, 8);
  INSERT INTO t3 VALUES(3, 9);
}
do_execsql_test 6.2.2 {
  SELECT count(*) FROM t3 WHERE b IN (SELECT DISTINCT a FROM t3 LIMIT 5);
} {3}
do_execsql_test 6.2.3 {
  SELECT count(*) FROM t3 WHERE b IN (SELECT          a FROM t3 LIMIT 5);
} {2}

do_execsql_test 6.3.1 {
  CREATE TABLE x1(a);
  CREATE TABLE x2(b);
  INSERT INTO x1 VALUES(1), (1), (2);
  INSERT INTO x2 VALUES(1), (2);
  SELECT count(*) FROM x2 WHERE b IN (SELECT DISTINCT a FROM x1 LIMIT 2);
} {2}

finish_test
Changes to test/ioerr2.test.
108
109
110
111
112
113
114






115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    set ::sqlite_io_error_pending $::N

    foreach {::go res} [catchsql $sql] {}
    check_db ioerr2-4.[expr {$bPersist+2}].$::N
  }
}







do_test ioerr2-5 {
  execsql {
    CREATE TABLE t2 AS SELECT * FROM t1;
    PRAGMA temp_store = memory;
  }
  set ::sqlite_io_error_persist 0
  set ::go 1
  set rc [catch {
    for {set ::N 2} {$::N<200} {incr ::N} {
      db eval {SELECT * FROM t1 WHERE rowid IN (1, 5, 10, 15, 20)} {
        set ::sqlite_io_error_hit 0
        set ::sqlite_io_error_pending $::N
        set sql {UPDATE t2 SET b = randstr(400,400)}
        foreach {::go res} [catchsql $sql] {}
      }
    }
  } msg]
  list $rc $msg
} {1 {abort due to ROLLBACK}}

if {$::tcl_platform(platform) == "unix"} {
  # Cause the call to xAccess used by [pragma temp_store_directory] to
  # determine if the specified directory is writable to fail. This causes
  # SQLite to report "not a writable directory", which is probably the
  # right answer.
  #







>
>
>
>
>
>


















|







108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    set ::sqlite_io_error_pending $::N

    foreach {::go res} [catchsql $sql] {}
    check_db ioerr2-4.[expr {$bPersist+2}].$::N
  }
}

# When this test was written, an IO error within the UPDATE statement caused
# a rollback, which tripped all read-cursors, causing the outer SELECT to
# fail with "abort due to ROLLBACK". Now, the loop continues until the UPDATE
# is run successfully. At this point the next IO error occurs within the 
# SELECT - throwing the "disk I/O error" that the test case now expects.
#
do_test ioerr2-5 {
  execsql {
    CREATE TABLE t2 AS SELECT * FROM t1;
    PRAGMA temp_store = memory;
  }
  set ::sqlite_io_error_persist 0
  set ::go 1
  set rc [catch {
    for {set ::N 2} {$::N<200} {incr ::N} {
      db eval {SELECT * FROM t1 WHERE rowid IN (1, 5, 10, 15, 20)} {
        set ::sqlite_io_error_hit 0
        set ::sqlite_io_error_pending $::N
        set sql {UPDATE t2 SET b = randstr(400,400)}
        foreach {::go res} [catchsql $sql] {}
      }
    }
  } msg]
  list $rc $msg
} {1 {disk I/O error}} ;# used to be "{1 {abort due to ROLLBACK}}"

if {$::tcl_platform(platform) == "unix"} {
  # Cause the call to xAccess used by [pragma temp_store_directory] to
  # determine if the specified directory is writable to fail. This causes
  # SQLite to report "not a writable directory", which is probably the
  # right answer.
  #
Added test/misc8.test.




































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# 2014-11-10
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
# The focus of this script is testing the "eval.c" loadable extension.
# 

set testdir [file dirname $argv0]
source $testdir/tester.tcl

load_static_extension db eval
do_execsql_test misc8-1.0 {
  CREATE TABLE t1(a,b,c);
  INSERT INTO t1 VALUES(1,2,3),(4,5,6);
  SELECT quote(eval('SELECT * FROM t1 ORDER BY a','-abc-'));
} {'1-abc-2-abc-3-abc-4-abc-5-abc-6'}
do_execsql_test misc8-1.1 {
  SELECT quote(eval('SELECT * FROM t1 ORDER BY a'));
} {{'1 2 3 4 5 6'}}
do_catchsql_test misc8-1.2 {
  SELECT quote(eval('SELECT d FROM t1 ORDER BY a'));
} {1 {no such column: d}}
do_execsql_test misc8-1.3 {
  INSERT INTO t1 VALUES(7,null,9);
  SELECT eval('SELECT * FROM t1 ORDER BY a',',');
} {1,2,3,4,5,6,7,,9}
do_catchsql_test misc8-1.4 {
  BEGIN;
  INSERT INTO t1 VALUES(10,11,12);
  SELECT a, coalesce(b, eval('ROLLBACK; SELECT ''bam'';')), c
   FROM t1 ORDER BY a;
} {0 {1 2 3 4 5 6 7 bam 9}}
do_catchsql_test misc8-1.5 {
  INSERT INTO t1 VALUES(10,11,12);
  SELECT a, coalesce(b, eval('SELECT ''bam''')), c
    FROM t1
   ORDER BY rowid;
} {0 {1 2 3 4 5 6 7 bam 9 10 11 12}}
do_catchsql_test misc8-1.6 {
  SELECT a, coalesce(b, eval('DELETE FROM t1; SELECT ''bam''')), c
    FROM t1
   ORDER BY rowid;
} {0 {1 2 3 4 5 6 7 bam {}}}
do_catchsql_test misc8-1.7 {
  INSERT INTO t1 VALUES(1,2,3),(4,5,6),(7,null,9);
  BEGIN;
  CREATE TABLE t2(x);
  SELECT a, coalesce(b, eval('ROLLBACK; SELECT ''bam''')), c
    FROM t1
   ORDER BY rowid;
} {1 {abort due to ROLLBACK}}


reset_db

proc dbeval {sql} { db eval $sql }
db func eval dbeval

do_execsql_test misc8-2.1 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b INTEGER) WITHOUT ROWID;
  CREATE TABLE t2(c INTEGER PRIMARY KEY, d INTEGER, x BLOB);
  INSERT INTO t1 VALUES(0,0);
  INSERT INTO t1 VALUES(10,10);
  INSERT INTO t2 VALUES(1,1,zeroblob(200));
  INSERT INTO t2 VALUES(2,2,zeroblob(200));
  INSERT INTO t2 VALUES(3,3,zeroblob(200));
  INSERT INTO t2 VALUES(4,4,zeroblob(200));
  INSERT INTO t2 VALUES(5,5,zeroblob(200));
  INSERT INTO t2 VALUES(6,6,zeroblob(200));
  INSERT INTO t2 VALUES(7,7,zeroblob(200));
  INSERT INTO t2 VALUES(8,8,zeroblob(200));
  INSERT INTO t2 VALUES(9,9,zeroblob(200));
  INSERT INTO t2 VALUES(10,10,zeroblob(200));
  SELECT a, c, eval(
      printf('DELETE FROM t2 WHERE c=%d AND %d>5', a+c, a+c)
  ) FROM t1, t2;
} {
  0 1 {} 10 1 {} 
  0 2 {} 10 2 {} 
  0 3 {} 10 3 {} 
  0 4 {} 10 4 {} 
  0 5 {} 10 5 {} 
  0 6 {} 10 {} {} 
  0 7 {} 10 {} {} 
  0 8 {} 10 {} {}
  0 9 {} 10 {} {} 
  0 10 {} 10 {} {}
}


finish_test
Changes to test/mmap1.test.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
}

proc register_rblob_code {dbname seed} {
  return [subst -nocommands {
    set ::rcnt $seed
    proc rblob {n} {
      set ::rcnt [expr (([set ::rcnt] << 3) + [set ::rcnt] + 456) & 0xFFFFFFFF]
      set str [format %.8x [expr [set ::rcnt] ^ 0xbdf20da3]] 
      string range [string repeat [set str] [expr [set n]/4]] 1 [set n]
    }
    $dbname func rblob rblob
  }]
}

# For cases 1.1 and 1.4, the number of pages read using xRead() is 4 on
# unix and 9 on windows. The difference is that windows only ever maps
# an integer number of OS pages (i.e. creates mappings that are a multiple 
# of 4KB in size). Whereas on unix any sized mapping may be created.
#
foreach {t mmap_size nRead c2init} {
  1.1 { PRAGMA mmap_size = 67108864 } /[49]/ {PRAGMA mmap_size = 0}
  1.2 { PRAGMA mmap_size =    53248 } 150    {PRAGMA mmap_size = 0}
  1.3 { PRAGMA mmap_size =        0 } 344    {PRAGMA mmap_size = 0}
  1.4 { PRAGMA mmap_size = 67108864 } /[49]/ {PRAGMA mmap_size = 67108864 }







|








|







29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
}

proc register_rblob_code {dbname seed} {
  return [subst -nocommands {
    set ::rcnt $seed
    proc rblob {n} {
      set ::rcnt [expr (([set ::rcnt] << 3) + [set ::rcnt] + 456) & 0xFFFFFFFF]
      set str [format %.8x [expr [set ::rcnt] ^ 0xbdf20da3]]
      string range [string repeat [set str] [expr [set n]/4]] 1 [set n]
    }
    $dbname func rblob rblob
  }]
}

# For cases 1.1 and 1.4, the number of pages read using xRead() is 4 on
# unix and 9 on windows. The difference is that windows only ever maps
# an integer number of OS pages (i.e. creates mappings that are a multiple
# of 4KB in size). Whereas on unix any sized mapping may be created.
#
foreach {t mmap_size nRead c2init} {
  1.1 { PRAGMA mmap_size = 67108864 } /[49]/ {PRAGMA mmap_size = 0}
  1.2 { PRAGMA mmap_size =    53248 } 150    {PRAGMA mmap_size = 0}
  1.3 { PRAGMA mmap_size =        0 } 344    {PRAGMA mmap_size = 0}
  1.4 { PRAGMA mmap_size = 67108864 } /[49]/ {PRAGMA mmap_size = 67108864 }
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155
156
157
158
159
    do_test $t.$tn.5 { nRead db } $nRead
  }
}

set ::rcnt 0
proc rblob {n} {
  set ::rcnt [expr (($::rcnt << 3) + $::rcnt + 456) & 0xFFFFFFFF]
  set str [format %.8x [expr $::rcnt ^ 0xbdf20da3]] 
  string range [string repeat $str [expr $n/4]] 1 $n
}

reset_db
db func rblob rblob


do_execsql_test 2.1 {
  PRAGMA auto_vacuum = 1;
  PRAGMA mmap_size = 67108864;
  PRAGMA journal_mode = wal;
  CREATE TABLE t1(a, b, UNIQUE(a, b));
  INSERT INTO t1 VALUES(rblob(500), rblob(500));
  INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --    2
  INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --    4
  INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --    8
  INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --   16
  INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --   32
  PRAGMA wal_checkpoint;
} {67108864 wal 0 103 103}

do_execsql_test 2.2 {
  PRAGMA auto_vacuum;
  SELECT count(*) FROM t1;
} {1 32}

if {[permutation] != "inmemory_journal"} {
  do_test 2.3 {
    sqlite3 db2 test.db
    db2 func rblob rblob
    db2 eval { 
      DELETE FROM t1 WHERE (rowid%4);
        PRAGMA wal_checkpoint;
    }
    db2 eval { 
      INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --    16
      SELECT count(*) FROM t1;
    }
  } {16}

  do_execsql_test 2.4 {
    PRAGMA wal_checkpoint;
  } {0 24 24}
  db2 close

}

reset_db
execsql { PRAGMA mmap_size = 67108864; }
db func rblob rblob
do_execsql_test 3.1 {
  PRAGMA auto_vacuum = 1;







|






>
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
>







102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    do_test $t.$tn.5 { nRead db } $nRead
  }
}

set ::rcnt 0
proc rblob {n} {
  set ::rcnt [expr (($::rcnt << 3) + $::rcnt + 456) & 0xFFFFFFFF]
  set str [format %.8x [expr $::rcnt ^ 0xbdf20da3]]
  string range [string repeat $str [expr $n/4]] 1 $n
}

reset_db
db func rblob rblob

ifcapable wal {
  do_execsql_test 2.1 {
    PRAGMA auto_vacuum = 1;
    PRAGMA mmap_size = 67108864;
    PRAGMA journal_mode = wal;
    CREATE TABLE t1(a, b, UNIQUE(a, b));
    INSERT INTO t1 VALUES(rblob(500), rblob(500));
    INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --    2
    INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --    4
    INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --    8
    INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --   16
    INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --   32
    PRAGMA wal_checkpoint;
  } {67108864 wal 0 103 103}

  do_execsql_test 2.2 {
    PRAGMA auto_vacuum;
    SELECT count(*) FROM t1;
  } {1 32}

  if {[permutation] != "inmemory_journal"} {
    do_test 2.3 {
      sqlite3 db2 test.db
      db2 func rblob rblob
      db2 eval {
        DELETE FROM t1 WHERE (rowid%4);
          PRAGMA wal_checkpoint;
      }
      db2 eval {
        INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; --    16
        SELECT count(*) FROM t1;
      }
    } {16}

    do_execsql_test 2.4 {
      PRAGMA wal_checkpoint;
    } {0 24 24}
    db2 close
  }
}

reset_db
execsql { PRAGMA mmap_size = 67108864; }
db func rblob rblob
do_execsql_test 3.1 {
  PRAGMA auto_vacuum = 1;
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
do_test 4.4 {
  sqlite3_finalize $::STMT
} SQLITE_OK

do_execsql_test 4.5 { COMMIT }

#-------------------------------------------------------------------------
# Ensure that existing cursors holding xFetch() references are not 
# confused if those pages are moved to make way for the root page of a
# new table or index.
#
reset_db
execsql { PRAGMA mmap_size = 67108864; }
do_execsql_test 5.1 {
  PRAGMA auto_vacuum = 2;







|







225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
do_test 4.4 {
  sqlite3_finalize $::STMT
} SQLITE_OK

do_execsql_test 4.5 { COMMIT }

#-------------------------------------------------------------------------
# Ensure that existing cursors holding xFetch() references are not
# confused if those pages are moved to make way for the root page of a
# new table or index.
#
reset_db
execsql { PRAGMA mmap_size = 67108864; }
do_execsql_test 5.1 {
  PRAGMA auto_vacuum = 2;
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    code1 [register_rblob_code db  0]
    code2 [register_rblob_code db2 444]

    sql1 "PRAGMA mmap_size = $mmap1"
    sql2 "PRAGMA mmap_size = $mmap2"

    do_test $tn1.$tn { 
      for {set i 1} {$i <= 100} {incr i} {
        if {$i % 2} {
          set c1 sql1
            set c2 sql2
        } else {
          set c1 sql2
            set c2 sql1
        }

        $c1 {
          INSERT INTO t1 VALUES( rblob(5000) );
          UPDATE t2 SET x = (SELECT md5sum(a) FROM t1);
        }

        set res [$c2 { 
            SELECT count(*) FROM t1;
            SELECT x == (SELECT md5sum(a) FROM t1) FROM t2;
            PRAGMA integrity_check;
        }]
        if {$res != [list $i 1 ok]} {
          do_test $tn1.$tn.$i {
            set ::res







|














|







294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

    code1 [register_rblob_code db  0]
    code2 [register_rblob_code db2 444]

    sql1 "PRAGMA mmap_size = $mmap1"
    sql2 "PRAGMA mmap_size = $mmap2"

    do_test $tn1.$tn {
      for {set i 1} {$i <= 100} {incr i} {
        if {$i % 2} {
          set c1 sql1
            set c2 sql2
        } else {
          set c1 sql2
            set c2 sql1
        }

        $c1 {
          INSERT INTO t1 VALUES( rblob(5000) );
          UPDATE t2 SET x = (SELECT md5sum(a) FROM t1);
        }

        set res [$c2 {
            SELECT count(*) FROM t1;
            SELECT x == (SELECT md5sum(a) FROM t1) FROM t2;
            PRAGMA integrity_check;
        }]
        if {$res != [list $i 1 ok]} {
          do_test $tn1.$tn.$i {
            set ::res
Changes to test/rollback.test.
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    }
  } {1 {UNIQUE constraint failed: t3.a}}
  
  # Try to continue with the SELECT statement
  #
  do_test rollback-1.5 {
    sqlite3_step $STMT
  } {SQLITE_ERROR}

  # Restart the SELECT statement
  #
  do_test rollback-1.6 { sqlite3_reset $STMT } {SQLITE_ABORT}
} else {
  do_test rollback-1.6 { sqlite3_reset $STMT } {SQLITE_OK}
}

do_test rollback-1.7 {
  sqlite3_step $STMT
} {SQLITE_ROW}







|



|







56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    }
  } {1 {UNIQUE constraint failed: t3.a}}
  
  # Try to continue with the SELECT statement
  #
  do_test rollback-1.5 {
    sqlite3_step $STMT
  } {SQLITE_ROW}

  # Restart the SELECT statement
  #
  do_test rollback-1.6 { sqlite3_reset $STMT } {SQLITE_OK}
} else {
  do_test rollback-1.6 { sqlite3_reset $STMT } {SQLITE_OK}
}

do_test rollback-1.7 {
  sqlite3_step $STMT
} {SQLITE_ROW}
Added test/rollback2.test.


























































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# 2014 November 12
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file containst tests to verify that ROLLBACK or ROLLBACK TO 
# operations interact correctly with ongoing SELECT statements.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix rollback2

proc int2hex {i} { format %.2X $i }
db func int2hex int2hex
do_execsql_test 1.0 {
  SELECT int2hex(0), int2hex(100), int2hex(255)
} {00 64 FF}
do_execsql_test 1.1 {
  CREATE TABLE t1(i, h);
  CREATE INDEX i1 ON t1(h);
  WITH data(a, b) AS (
    SELECT 1, int2hex(1)
      UNION ALL
    SELECT a+1, int2hex(a+1) FROM data WHERE a<40
  )
  INSERT INTO t1 SELECT * FROM data;
} {}


# do_rollback_test ID SWITCHES
#
# where SWITCHES are:
#
#   -setup      SQL script to open transaction and begin writing.
#   -select     SELECT to execute after -setup script
#   -result     Expected result of -select statement
#   -rollback   Use this SQL command ("ROLLBACK" or "ROLLBACK TO ...") to
#               rollback the transaction in the middle of the -select statment
#               execution.
#
proc do_rollback_test {tn args} {
  set A(-setup)    ""
  set A(-select)   ""
  set A(-result)   ""
  set A(-rollback) ROLLBACK

  array set O $args
  foreach k [array names O] {
    if {[info exists A($k)]==0} { error "unknown option: $k" }
    set A($k) $O($k)
  }

  for {set iRollback 0} 1 {incr iRollback} {
    catch { db eval ROLLBACK }
    set res [list]
    db eval $A(-setup)

    set i 0
    db eval $A(-select) x {
      if {$i==$iRollback} { db eval $A(-rollback) }
      foreach k $x(*) { lappend res $x($k) }
      incr i
    }

    do_test $tn.$iRollback [list set {} $res] [list {*}$A(-result)]
    if {$i < $iRollback} break
  }
}

do_rollback_test 2.1 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0
} -result {
  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
}

do_rollback_test 2.2 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%4)==1;
    SAVEPOINT one;
      DELETE FROM t1 WHERE (i%2)==1;
} -rollback {
  ROLLBACK TO one;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0
} -result {
  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
}

#--------------------------------------------------------------------
# Try with some index scans
#
do_eqp_test 3.1 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
do_rollback_test 3.2 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} -result {
  40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10  8  6  4  2
}
do_rollback_test 3.3 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%4)==1;
    SAVEPOINT one;
      DELETE FROM t1 WHERE (i%2)==1;
} -rollback {
  ROLLBACK TO one;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} -result {
  40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10  8  6  4  2
}

#--------------------------------------------------------------------
# Now with some index scans that feature overflow keys.
#
set leader [string repeat "abcdefghij" 70]
do_execsql_test 4.1 { UPDATE t1 SET h = $leader || h; }

do_eqp_test 4.2 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
do_rollback_test 4.3 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} -result {
  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
}
do_rollback_test 4.4 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%4)==1;
    SAVEPOINT one;
      DELETE FROM t1 WHERE (i%2)==1;
} -rollback {
  ROLLBACK TO one;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} -result {
  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
}

finish_test

Added test/rollbackfault.test.








































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# 2014-11-12
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test that errors encountered during a ROLLBACK operation correctly 
# affect ongoing SQL statements.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl
set testprefix rollbackfault


proc int2hex {i} { format %.2X $i }
db func int2hex int2hex
do_execsql_test 1.0 {
  SELECT int2hex(0), int2hex(100), int2hex(255)
} {00 64 FF}
do_execsql_test 1.1 {
  CREATE TABLE t1(i, h);
  CREATE INDEX i1 ON t1(h);
  WITH data(a, b) AS (
    SELECT 1, int2hex(1)
      UNION ALL
    SELECT a+1, int2hex(a+1) FROM data WHERE a<40
  )
  INSERT INTO t1 SELECT * FROM data;
} {}

foreach f {oom ioerr} {
  do_faultsim_test 1.2 -faults $f* -prep {
    set sql1 { SELECT i FROM t1 WHERE (i%2)==0 }
    set sql2 { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h }
    set ::s1 [sqlite3_prepare db $sql1 -1 dummy]
    set ::s2 [sqlite3_prepare db $sql2 -1 dummy]
  
    for {set i 0} {$i < 10} {incr i} { sqlite3_step $::s1 }
    for {set i 0} {$i < 3}  {incr i} { sqlite3_step $::s2 }
  
    execsql {
      BEGIN; DELETE FROM t1 WHERE (i%2)
    }
  } -body {
    execsql { ROLLBACK }
  } -test {
  
    set res1 [list]
    set res2 [list]
    while {"SQLITE_ROW" == [sqlite3_step $::s1]} {
      lappend res1 [sqlite3_column_text $::s1 0]
    }
    while {"SQLITE_ROW" == [sqlite3_step $::s2]} {
      lappend res2 [sqlite3_column_text $::s2 0]
    }
    set rc1 [sqlite3_finalize $::s1]
    set rc2 [sqlite3_finalize $::s2]
  
    catchsql { ROLLBACK }
  
    if {$rc1=="SQLITE_OK" && $rc2=="SQLITE_OK" 
     && $res1=="22 24 26 28 30 32 34 36 38 40"
     && $res2=="8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40"
    } {
      # This is Ok.
    } elseif {$rc1!="SQLITE_OK" && $rc2!="SQLITE_OK" && $res1=="" &&$res2==""} {
      # Also Ok.
    } else {
      error "statements don't look right"
    }
  }
}


finish_test


Changes to test/savepoint.test.
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
  } {0 {hellontyeight character blob}}
  do_test savepoint-5.3.2.2 {
    catchsql {ROLLBACK TO def}
  } {0 {}}
  do_test savepoint-5.3.2.3 {
    set rc [catch {seek $fd 0; read $fd} res]
    set rc
  } {1}
  do_test savepoint-5.3.3 {
    catchsql  {RELEASE def}
  } {0 {}}
  do_test savepoint-5.3.4 {
    close $fd
    execsql  {savepoint def}
    set fd [db incrblob blobs x 1]







|







311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
  } {0 {hellontyeight character blob}}
  do_test savepoint-5.3.2.2 {
    catchsql {ROLLBACK TO def}
  } {0 {}}
  do_test savepoint-5.3.2.3 {
    set rc [catch {seek $fd 0; read $fd} res]
    set rc
  } {0}
  do_test savepoint-5.3.3 {
    catchsql  {RELEASE def}
  } {0 {}}
  do_test savepoint-5.3.4 {
    close $fd
    execsql  {savepoint def}
    set fd [db incrblob blobs x 1]
Changes to test/savepoint7.test.
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
    INSERT INTO t1 VALUES(4,5,6);
    INSERT INTO t1 VALUES(7,8,9);
    SAVEPOINT x1;
  }
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;

      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2; RELEASE x1}
} {1 2 3 4 5 6 7 8 9}

do_test savepoint7-1.2 {
  db eval {DELETE FROM t2;}
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;
      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2}
} {1 2 3 4 5 6 7 8 9}

do_test savepoint7-1.3 {
  db eval {DELETE FROM t2; BEGIN;}
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;
      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2; ROLLBACK;}
} {1 2 3 4 5 6 7 8 9}

# However, a ROLLBACK of an inner savepoint will abort all queries, including
# queries in outer contexts.
#
do_test savepoint7-2.1 {
  db eval {DELETE FROM t2; SAVEPOINT x1;}
  set rc [catch {
    db eval {SELECT * FROM t1} {
      db eval {
        SAVEPOINT x2;
        INSERT INTO t2 VALUES($a,$b,$c);
        ROLLBACK TO x2;
      }
    }
  } msg]
  db eval {RELEASE x1}
  list $rc $msg [db eval {SELECT * FROM t2}]
} {1 {callback requested query abort} {}}

do_test savepoint7-2.2 {
  db eval {DELETE FROM t2;}
  set rc [catch {
    db eval {SELECT * FROM t1} {
      db eval {
        SAVEPOINT x2;

        INSERT INTO t2 VALUES($a,$b,$c);
        ROLLBACK TO x2;
      }
    }
  } msg]
  list $rc $msg [db eval {SELECT * FROM t2}]
} {1 {callback requested query abort} {}}

finish_test







>
















|


















|











|







>






|


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    INSERT INTO t1 VALUES(4,5,6);
    INSERT INTO t1 VALUES(7,8,9);
    SAVEPOINT x1;
  }
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;
      CREATE TABLE IF NOT EXISTS t3(xyz);
      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2; RELEASE x1}
} {1 2 3 4 5 6 7 8 9}

do_test savepoint7-1.2 {
  db eval {DELETE FROM t2;}
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;
      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2;}
} {1 2 3 4 5 6 7 8 9}

do_test savepoint7-1.3 {
  db eval {DELETE FROM t2; BEGIN;}
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;
      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2; ROLLBACK;}
} {1 2 3 4 5 6 7 8 9}

# However, a ROLLBACK of an inner savepoint will abort all queries, including
# queries in outer contexts.
#
do_test savepoint7-2.1 {
  db eval {DELETE FROM t2; SAVEPOINT x1; CREATE TABLE t4(abc);}
  set rc [catch {
    db eval {SELECT * FROM t1} {
      db eval {
        SAVEPOINT x2;
        INSERT INTO t2 VALUES($a,$b,$c);
        ROLLBACK TO x2;
      }
    }
  } msg]
  db eval {RELEASE x1}
  list $rc $msg [db eval {SELECT * FROM t2}]
} {1 {abort due to ROLLBACK} {}}

do_test savepoint7-2.2 {
  db eval {DELETE FROM t2;}
  set rc [catch {
    db eval {SELECT * FROM t1} {
      db eval {
        SAVEPOINT x2;
        CREATE TABLE t5(pqr);
        INSERT INTO t2 VALUES($a,$b,$c);
        ROLLBACK TO x2;
      }
    }
  } msg]
  list $rc $msg [db eval {SELECT * FROM t2}]
} {1 {abort due to ROLLBACK} {}}

finish_test
Added test/scanstatus.test.




























































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# 2014 November 1
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix scanstatus

ifcapable !scanstatus {
  finish_test
  return
}

do_execsql_test 1.0 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(x, y);
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(3, 4);
  INSERT INTO t2 VALUES('a', 'b');
  INSERT INTO t2 VALUES('c', 'd');
  INSERT INTO t2 VALUES('e', 'f');
}

proc do_scanstatus_test {tn res} {
  set stmt [db_last_stmt_ptr db]
  set idx 0
  set ret [list]
  while {1} {
    set r [sqlite3_stmt_scanstatus $stmt $idx]
    if {[llength $r]==0} break
    lappend ret {*}$r
    incr idx
  }

  uplevel [list do_test $tn [list set {} $ret] [list {*}$res]]
}

do_execsql_test 1.1 { SELECT count(*) FROM t1, t2; } 6
do_scanstatus_test 1.2 {
  nLoop 1 nVisit 2 nEst 1048576.0 zName t1 zExplain {SCAN TABLE t1}
  nLoop 2 nVisit 6 nEst 1048576.0 zName t2 zExplain {SCAN TABLE t2}
}

do_execsql_test 1.3 {
  ANALYZE;
  SELECT count(*) FROM t1, t2;
} 6
do_scanstatus_test 1.4 {
  nLoop 1 nVisit 2 nEst 2.0 zName t1 zExplain {SCAN TABLE t1}
  nLoop 2 nVisit 6 nEst 3.0 zName t2 zExplain {SCAN TABLE t2}
}

do_execsql_test 1.5 { ANALYZE }
do_execsql_test 1.6 {
  SELECT count(*) FROM t1, t2 WHERE t2.rowid>1;
} 4
do_scanstatus_test 1.7 {
  nLoop 1 nVisit 2 nEst 2.0 zName t2 zExplain 
  {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid>?)}
  nLoop 2 nVisit 4 nEst 2.0 zName t1 zExplain {SCAN TABLE t1}
}

do_execsql_test 1.8 {
  SELECT count(*) FROM t1, t2 WHERE t2.rowid>1;
} 4

do_scanstatus_test 1.9 {
  nLoop 2 nVisit 4 nEst 2.0 zName t2 zExplain 
  {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid>?)}
  nLoop 4 nVisit 8 nEst 2.0 zName t1 zExplain {SCAN TABLE t1}
}

do_test 1.9 {
  sqlite3_stmt_scanstatus_reset [db_last_stmt_ptr db]
} {}

do_scanstatus_test 1.10 {
  nLoop 0 nVisit 0 nEst 2.0 zName t2 zExplain 
  {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid>?)}
  nLoop 0 nVisit 0 nEst 2.0 zName t1 zExplain {SCAN TABLE t1}
}

#-------------------------------------------------------------------------
# Try a few different types of scans.
#
reset_db
do_execsql_test 2.1 {
  CREATE TABLE x1(i INTEGER PRIMARY KEY, j);
  INSERT INTO x1 VALUES(1, 'one');
  INSERT INTO x1 VALUES(2, 'two');
  INSERT INTO x1 VALUES(3, 'three');
  INSERT INTO x1 VALUES(4, 'four');
  CREATE INDEX x1j ON x1(j);

  SELECT * FROM x1 WHERE i=2;
} {2 two}

do_scanstatus_test 2.2 {
  nLoop 1 nVisit 1 nEst 1.0 zName x1 
  zExplain {SEARCH TABLE x1 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_execsql_test 2.3.1 {
  SELECT * FROM x1 WHERE j='two'
} {2 two}
do_scanstatus_test 2.3.2 {
  nLoop 1 nVisit 1 nEst 10.0 zName x1j 
  zExplain {SEARCH TABLE x1 USING COVERING INDEX x1j (j=?)}
}

do_execsql_test 2.4.1 {
  SELECT * FROM x1 WHERE j<'two'
} {4 four 1 one 3 three}
do_scanstatus_test 2.4.2 {
  nLoop 1 nVisit 3 nEst 262144.0 zName x1j 
  zExplain {SEARCH TABLE x1 USING COVERING INDEX x1j (j<?)}
}

do_execsql_test 2.5.1 {
  SELECT * FROM x1 WHERE j>='two'
} {2 two}
do_scanstatus_test 2.5.2 {
  nLoop 1 nVisit 1 nEst 262144.0 zName x1j 
  zExplain {SEARCH TABLE x1 USING COVERING INDEX x1j (j>?)}
}

do_execsql_test 2.6.1 {
  SELECT * FROM x1 WHERE j BETWEEN 'three' AND 'two'
} {3 three 2 two}
do_scanstatus_test 2.6.2 {
  nLoop 1 nVisit 2 nEst 16384.0 zName x1j 
  zExplain {SEARCH TABLE x1 USING COVERING INDEX x1j (j>? AND j<?)}
}

do_execsql_test 2.7.1 {
  CREATE TABLE x2(i INTEGER, j, k);
  INSERT INTO x2 SELECT i, j, i || ' ' || j FROM x1;
  CREATE INDEX x2j ON x2(j);
  CREATE INDEX x2ij ON x2(i, j);
  SELECT * FROM x2 WHERE j BETWEEN 'three' AND 'two'
} {3 three {3 three} 2 two {2 two}}

do_scanstatus_test 2.7.2 {
  nLoop 1 nVisit 2 nEst 16384.0 zName x2j 
  zExplain {SEARCH TABLE x2 USING INDEX x2j (j>? AND j<?)}
}

do_execsql_test 2.8.1 {
  SELECT * FROM x2 WHERE i=1 AND j='two'
}
do_scanstatus_test 2.8.2 {
  nLoop 1 nVisit 0 nEst 8.0 zName x2ij 
  zExplain {SEARCH TABLE x2 USING INDEX x2ij (i=? AND j=?)}
}

do_execsql_test 2.9.1 {
  SELECT * FROM x2 WHERE i=5 AND j='two'
}
do_scanstatus_test 2.9.2 {
  nLoop 1 nVisit 0 nEst 8.0 zName x2ij 
  zExplain {SEARCH TABLE x2 USING INDEX x2ij (i=? AND j=?)}
}

do_execsql_test 2.10.1 {
  SELECT * FROM x2 WHERE i=3 AND j='three'
} {3 three {3 three}}
do_scanstatus_test 2.10.2 {
  nLoop 1 nVisit 1 nEst 8.0 zName x2ij 
  zExplain {SEARCH TABLE x2 USING INDEX x2ij (i=? AND j=?)}
}

#-------------------------------------------------------------------------
# Try with queries that use the OR optimization.
#
do_execsql_test 3.1 {
  CREATE TABLE a1(a, b, c, d);
  CREATE INDEX a1a ON a1(a);
  CREATE INDEX a1bc ON a1(b, c);

  WITH d(x) AS (SELECT 1 UNION ALL SELECT x+1 AS n FROM d WHERE n<=100)
  INSERT INTO a1 SELECT x, x, x, x FROM d;
}

do_execsql_test 3.2.1 {
  SELECT d FROM a1 WHERE (a=4 OR b=13)
} {4 13}
do_scanstatus_test 3.2.2 {
  nLoop 1 nVisit 1 nEst 10.0 zName a1a 
  zExplain {SEARCH TABLE a1 USING INDEX a1a (a=?)}
  nLoop 1 nVisit 1 nEst 10.0 zName a1bc 
  zExplain {SEARCH TABLE a1 USING INDEX a1bc (b=?)}
}

do_execsql_test 3.2.1 {
  SELECT count(*) FROM a1 WHERE (a BETWEEN 4 AND 12) OR (b BETWEEN 40 AND 60)
} {30}
do_scanstatus_test 3.2.2 {
  nLoop 1 nVisit 9 nEst 16384.0 zName a1a 
  zExplain {SEARCH TABLE a1 USING INDEX a1a (a>? AND a<?)}
  nLoop 1 nVisit 21 nEst 16384.0 zName a1bc
  zExplain {SEARCH TABLE a1 USING INDEX a1bc (b>? AND b<?)}
}

do_execsql_test 3.3.1 {
  SELECT count(*) FROM a1 AS x, a1 AS y 
  WHERE (x.a BETWEEN 4 AND 12) AND (y.b BETWEEN 1 AND 10)
} {90}
do_scanstatus_test 3.2.2 {
  nLoop 1 nVisit 10 nEst 16384.0 zName a1bc 
  zExplain {SEARCH TABLE a1 AS y USING COVERING INDEX a1bc (b>? AND b<?)}
  nLoop 10 nVisit 90 nEst 16384.0 zName a1a
  zExplain {SEARCH TABLE a1 AS x USING COVERING INDEX a1a (a>? AND a<?)}
}

do_execsql_test 3.4.1 {
  SELECT count(*) FROM a1 WHERE a IN (1, 5, 10, 15);
} {4}
do_scanstatus_test 3.4.2 {
  nLoop 1 nVisit 4 nEst 40.0 zName a1a 
  zExplain {SEARCH TABLE a1 USING COVERING INDEX a1a (a=?)}
}

do_execsql_test 3.4.1 {
  SELECT count(*) FROM a1 WHERE rowid IN (1, 5, 10, 15);
} {4}
do_scanstatus_test 3.4.2 {
  nLoop 1 nVisit 4 nEst 4.0 zName a1
  zExplain {SEARCH TABLE a1 USING INTEGER PRIMARY KEY (rowid=?)}
}

#-------------------------------------------------------------------------
# Test that scanstatus() data is not available for searches performed
# by triggers.
#
# It is available for searches performed as part of FK processing, but 
# not FK action processing.
#
do_execsql_test 4.0 {
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(x PRIMARY KEY, y, z);
  CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN
    SELECT * FROM t2 WHERE x BETWEEN 20 AND 40;
  END;
  WITH d(x) AS (SELECT 1 UNION ALL SELECT x+1 AS n FROM d WHERE n<=100)
  INSERT INTO t2 SELECT x, x*2, x*3 FROM d;
}

do_execsql_test    4.1.1 { INSERT INTO t1 VALUES(1, 2, 3); }
do_scanstatus_test 4.1.2 { }

do_execsql_test 4.2 {
  CREATE TABLE p1(x PRIMARY KEY);
  INSERT INTO p1 VALUES(1), (2), (3), (4);
  CREATE TABLE c1(y REFERENCES p1);
  INSERT INTO c1 VALUES(1), (2), (3);
  PRAGMA foreign_keys=on;
}
do_execsql_test    4.2.1 { DELETE FROM p1 WHERE x=4 }
do_scanstatus_test 4.2.2 { 
  nLoop 1 nVisit 1 nEst 1.0 zName sqlite_autoindex_p1_1 
  zExplain {SEARCH TABLE p1 USING INDEX sqlite_autoindex_p1_1 (x=?)}

  nLoop 1 nVisit 3 nEst 524288.0 zName c1 zExplain {SCAN TABLE c1}
}

#-------------------------------------------------------------------------
# Further tests of different scan types.
#
reset_db
proc tochar {i} {
  set alphabet {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  return [lindex $alphabet [expr $i % [llength $alphabet]]]
}
db func tochar tochar
do_execsql_test 5.0 {
  CREATE TABLE t1(a PRIMARY KEY, b, c);
  INSERT INTO t1 VALUES(0, 1, 'a');
  INSERT INTO t1 VALUES(1, 0, 'b');
  INSERT INTO t1 VALUES(2, 1, 'c');
  INSERT INTO t1 VALUES(3, 0, 'd');
  INSERT INTO t1 VALUES(4, 1, 'e');
  INSERT INTO t1 VALUES(5, 0, 'a');
  INSERT INTO t1 VALUES(6, 1, 'b');
  INSERT INTO t1 VALUES(7, 0, 'c');
  INSERT INTO t1 VALUES(8, 1, 'd');
  INSERT INTO t1 VALUES(9, 0, 'e');
  CREATE INDEX t1bc ON t1(b, c);

  CREATE TABLE t2(x, y);
  CREATE INDEX t2xy ON t2(x, y);
  WITH data(i, x, y) AS (
    SELECT 0, 0, tochar(0) 
    UNION ALL
    SELECT i+1, (i+1)%2, tochar(i+1) FROM data WHERE i<500
  ) INSERT INTO t2 SELECT x, y FROM data;

  CREATE TABLE t3(x, y);
  INSERT INTO t3 SELECT * FROM t2;

  ANALYZE;
}

do_execsql_test 5.1.1 {
  SELECT count(*) FROM t1 WHERE a IN (SELECT b FROM t1 AS ii)
} {2}
do_scanstatus_test 5.1.2 { 
  nLoop 1 nVisit 10 nEst 10.0 zName t1bc 
  zExplain {SCAN TABLE t1 AS ii USING COVERING INDEX t1bc}
  nLoop 1 nVisit 2 nEst 8.0 zName sqlite_autoindex_t1_1
  zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)}
}

do_execsql_test 5.2.1 {
  SELECT count(*) FROM t1 WHERE a IN (0, 1)
} {2}
do_scanstatus_test 5.2.2 { 
  nLoop 1 nVisit 2 nEst 2.0 zName sqlite_autoindex_t1_1
  zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)}
}

do_eqp_test 5.3.1 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}}
do_execsql_test 5.3.2 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {19}
do_scanstatus_test 5.3.3 { 
  nLoop 1 nVisit 19 nEst 56.0 zName t2xy zExplain
  {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.4.1 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX t1bc}
  0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}
do_execsql_test 5.4.2 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {200}
do_scanstatus_test 5.4.3 { 
  nLoop 1 nVisit 10 nEst 10.0 zName t1bc 
  zExplain {SCAN TABLE t1 USING COVERING INDEX t1bc}
  nLoop 10 nVisit 200 nEst 56.0 zName t2xy 
  zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.5.1 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {
  0 0 1 {SCAN TABLE t3} 
  0 1 0 {SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?)}
}
do_execsql_test 5.5.2 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {200}
do_scanstatus_test 5.5.3 { 
  nLoop 1 nVisit 501 nEst 480.0 zName t3 zExplain {SCAN TABLE t3}
  nLoop 501 nVisit 200 nEst 20.0 zName auto-index zExplain
  {SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?)}
}

#-------------------------------------------------------------------------
# Virtual table scans
#
ifcapable fts3 {
  do_execsql_test 6.0 {
    CREATE VIRTUAL TABLE ft1 USING fts4;
    INSERT INTO ft1 VALUES('a d c f g h e i f c');
    INSERT INTO ft1 VALUES('g c h b g b f f f g');
    INSERT INTO ft1 VALUES('h h c c h f a e d d');
    INSERT INTO ft1 VALUES('e j i j i e b c f g');
    INSERT INTO ft1 VALUES('g f b g j c h a d f');
    INSERT INTO ft1 VALUES('j i a e g f a i a c');
    INSERT INTO ft1 VALUES('f d g g j j c a h g');
    INSERT INTO ft1 VALUES('b d h a d j j j b i');
    INSERT INTO ft1 VALUES('j e a b j e c b c i');
    INSERT INTO ft1 VALUES('a d e f b j j c g d');
  }
  do_execsql_test 6.1.1 {
    SELECT count(*) FROM ft1 WHERE ft1 MATCH 'd'
  } {6}
  do_scanstatus_test 6.1.2 { 
    nLoop 1 nVisit 6 nEst 24.0 zName ft1 zExplain 
    {SCAN TABLE ft1 VIRTUAL TABLE INDEX 3:}
  }
}


finish_test
Changes to test/shared_err.test.
442
443
444
445
446
447
448





449
450
451

452
453
454
455
456
457
458
      ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_NOMEM") ||
      ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_IOERR") ||
      ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_CORRUPT")
    }
  } {1}
  db2 close
}





do_test shared_malloc-8.X {
  # Test that one or more queries were aborted due to the malloc() failure.
  expr $::aborted>=1

} {1}

# This test is designed to catch a specific bug that was present during
# development of 3.5.0. If a malloc() failed while setting the page-size,
# a buffer (Pager.pTmpSpace) was being freed. This could cause a seg-fault
# later if another connection tried to use the pager.
#







>
>
>
>
>


|
>







442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
      ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_NOMEM") ||
      ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_IOERR") ||
      ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_CORRUPT")
    }
  } {1}
  db2 close
}

# When this test case was written, OOM errors in write statements would 
# cause transaction rollback, which would trip cursors in other statements,
# aborting them. This no longer happens.
#
do_test shared_malloc-8.X {
  # Test that one or more queries were aborted due to the malloc() failure.
  # expr $::aborted>=1
  expr $::aborted==0
} {1}

# This test is designed to catch a specific bug that was present during
# development of 3.5.0. If a malloc() failed while setting the page-size,
# a buffer (Pager.pTmpSpace) was being freed. This could cause a seg-fault
# later if another connection tried to use the pager.
#
Changes to test/skipscan6.test.
135
136
137
138
139
140
141























































142
143
144
145
  EXPLAIN QUERY PLAN
  SELECT COUNT(*)
    FROM t1
   WHERE bb=21
     AND aa=1
     AND dd BETWEEN 1413833728 and 1413837331;
} {/INDEX good .bb=. AND aa=. AND dd>. AND dd<../}


























































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  EXPLAIN QUERY PLAN
  SELECT COUNT(*)
    FROM t1
   WHERE bb=21
     AND aa=1
     AND dd BETWEEN 1413833728 and 1413837331;
} {/INDEX good .bb=. AND aa=. AND dd>. AND dd<../}


# Create a table containing 100 rows. Column "a" contains a copy of the
# rowid value - sequentially increasing integers from 1 to 100. Column
# "b" contains the value of (a % 5). Columns "c" and "d" both contain
# constant values (i.e. the same for every row).
#
# Then create a second table t2. t2 is the same as t3 except for the
# order in which the indexes are created.
#
do_execsql_test 3.0 {
  CREATE TABLE t3(a, b, c, d);
  CREATE INDEX t3_ba ON t3(b, a, c);
  CREATE INDEX t3_a ON t3(a);

  WITH d(a, b) AS (
    SELECT 1, 1 
    UNION ALL
    SELECT a+1, (a+1) % 5 FROM d WHERE a<100
  )
  INSERT INTO t3 SELECT a, b, 'c', 'd' FROM d;

  CREATE TABLE t2(a, b, c, d);
  CREATE INDEX t2_a ON t2(a);
  CREATE INDEX t2_ba ON t2(b, a, c);
  INSERT INTO t2 SELECT * FROM t3;

  ANALYZE;
  SELECT * FROM sqlite_stat1;
} {
  t2 t2_ba   {100 20 1 1}
  t2 t2_a    {100 1} 
  t3 t3_a    {100 1} 
  t3 t3_ba   {100 20 1 1}
}

# Use index "t3_a", as (a=?) is expected to match only a single row.
#
do_eqp_test 3.1 {
  SELECT * FROM t3 WHERE a = ? AND c = ?
} {
  0 0 0 {SEARCH TABLE t3 USING INDEX t3_a (a=?)}
}

# The same query on table t2. This should use index "t2_a", for the
# same reason. At one point though, it was mistakenly using a skip-scan.
#
do_eqp_test 3.2 {
  SELECT * FROM t2 WHERE a = ? AND c = ?
} {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2_a (a=?)}
}

finish_test




finish_test
Changes to test/sort2.test.
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  
  do_execsql_test $tn.2.3 {
    CREATE UNIQUE INDEX i2 ON t1(a);
  }
  
  do_execsql_test $tn.2.4 { PRAGMA integrity_check } {ok}
  
  breakpoint
  do_execsql_test $tn.3 {
    PRAGMA cache_size = 5;
    WITH r(x,y) AS (
      SELECT 1, randomblob(100)
      UNION ALL
      SELECT x+1, randomblob(100) FROM r
      LIMIT 1000000







<







58
59
60
61
62
63
64

65
66
67
68
69
70
71
  
  do_execsql_test $tn.2.3 {
    CREATE UNIQUE INDEX i2 ON t1(a);
  }
  
  do_execsql_test $tn.2.4 { PRAGMA integrity_check } {ok}
  

  do_execsql_test $tn.3 {
    PRAGMA cache_size = 5;
    WITH r(x,y) AS (
      SELECT 1, randomblob(100)
      UNION ALL
      SELECT x+1, randomblob(100) FROM r
      LIMIT 1000000
Changes to test/table.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the CREATE TABLE statement.
#
# $Id: table.test,v 1.53 2009/06/05 17:09:12 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Create a basic table and verify it is added to sqlite_master
#
do_test table-1.1 {













<







1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the CREATE TABLE statement.
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Create a basic table and verify it is added to sqlite_master
#
do_test table-1.1 {
768
769
770
771
772
773
774
775

















776
  CREATE TABLE t16(x DEFAULT(group_concat('x',',')));
  INSERT INTO t16(rowid) VALUES(123);
  SELECT rowid, x FROM t16;
} {1 {unknown function: group_concat()}}
do_catchsql_test table-16.7 {
  INSERT INTO t16 DEFAULT VALUES;
} {1 {unknown function: group_concat()}}


















finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
  CREATE TABLE t16(x DEFAULT(group_concat('x',',')));
  INSERT INTO t16(rowid) VALUES(123);
  SELECT rowid, x FROM t16;
} {1 {unknown function: group_concat()}}
do_catchsql_test table-16.7 {
  INSERT INTO t16 DEFAULT VALUES;
} {1 {unknown function: group_concat()}}

# Ticket [https://www.sqlite.org/src/info/094d39a4c95ee4abbc417f04214617675ba15c63]
# describes a assertion fault that occurs on a CREATE TABLE .. AS SELECT statement.
# the following test verifies that the problem has been fixed.
#
do_execsql_test table-17.1 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a TEXT);
  INSERT INTO t1(a) VALUES(1),(2);
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t2(x TEXT, y TEXT);
  INSERT INTO t2(x,y) VALUES(3,4);
  DROP TABLE IF EXISTS t3;
  CREATE TABLE t3 AS
    SELECT a AS p, coalesce(y,a) AS q FROM t1 LEFT JOIN t2 ON a=x;
  SELECT p, q, '|' FROM t3 ORDER BY p;
} {1 1 | 2 2 |}

finish_test
Changes to test/tkt-f777251dc7a.test.
36
37
38
39
40
41
42

43
44
45
46
47
48
49
  catch {db eval {INSERT OR ROLLBACK INTO t1 VALUES(1)}}
}
db function force_rollback force_rollback

do_test tkt-f7772-1.2 {
  catchsql {
    BEGIN IMMEDIATE;

    SELECT x, force_rollback(), EXISTS(SELECT 1 FROM t3 WHERE w=x) FROM t2;
  }
} {1 {abort due to ROLLBACK}}
do_test tkt-f7772-1.3 {
  sqlite3_get_autocommit db
} {1}








>







36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  catch {db eval {INSERT OR ROLLBACK INTO t1 VALUES(1)}}
}
db function force_rollback force_rollback

do_test tkt-f7772-1.2 {
  catchsql {
    BEGIN IMMEDIATE;
    CREATE TABLE xyzzy(abc);
    SELECT x, force_rollback(), EXISTS(SELECT 1 FROM t3 WHERE w=x) FROM t2;
  }
} {1 {abort due to ROLLBACK}}
do_test tkt-f7772-1.3 {
  sqlite3_get_autocommit db
} {1}

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
  execsql {
    BEGIN IMMEDIATE;
    CREATE TEMP TABLE t3(w, z);
  }
  catchsql {
    SELECT x, force_rollback(), EXISTS(SELECT 1 FROM t3 WHERE w=x) FROM t2
  }
} {1 {callback requested query abort}}
do_test tkt-f7772-2.3 {
  sqlite3_get_autocommit db
} {1}

do_test tkt-f7772-3.1 {
  execsql {
    DROP TABLE IF EXISTS t1;







|







64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  execsql {
    BEGIN IMMEDIATE;
    CREATE TEMP TABLE t3(w, z);
  }
  catchsql {
    SELECT x, force_rollback(), EXISTS(SELECT 1 FROM t3 WHERE w=x) FROM t2
  }
} {1 {abort due to ROLLBACK}}
do_test tkt-f7772-2.3 {
  sqlite3_get_autocommit db
} {1}

do_test tkt-f7772-3.1 {
  execsql {
    DROP TABLE IF EXISTS t1;
Changes to test/trans3.test.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
do_test trans3-1.3.1 {
  sqlite3_get_autocommit db
} 1
do_test trans3-1.4 {
  db eval {SELECT * FROM t1}
} {1 2 3 4}
do_test trans3-1.5 {
  db eval BEGIN
  db eval {INSERT INTO t1 VALUES(5);}
  set ::ecode {}
  set x [catch {
     db eval {SELECT * FROM t1} {
        if {[catch {db eval ROLLBACK} errmsg]} {
           set ::ecode [sqlite3_extended_errcode db]
           error $errmsg







|







48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
do_test trans3-1.3.1 {
  sqlite3_get_autocommit db
} 1
do_test trans3-1.4 {
  db eval {SELECT * FROM t1}
} {1 2 3 4}
do_test trans3-1.5 {
  db eval {BEGIN; CREATE TABLE xyzzy(abc);}
  db eval {INSERT INTO t1 VALUES(5);}
  set ::ecode {}
  set x [catch {
     db eval {SELECT * FROM t1} {
        if {[catch {db eval ROLLBACK} errmsg]} {
           set ::ecode [sqlite3_extended_errcode db]
           error $errmsg
Changes to test/without_rowid5.test.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
do_execsql_test without_rowid5-5.9 {
  SELECT count(*) FROM nnw;
} {1}

# EVIDENCE-OF: R-12643-30541 The incremental blob I/O mechanism does not
# work for WITHOUT ROWID tables.
#
# EVIDENCE-OF: R-25760-33257 The sqlite3_blob_open() interface will fail
# for a WITHOUT ROWID table.
#
do_execsql_test without_rowid5-6.1 {
  CREATE TABLE b1(a INTEGER PRIMARY KEY, b BLOB) WITHOUT ROWID;
  INSERT INTO b1 VALUES(1,x'0102030405060708090a0b0c0d0e0f');
} {}
do_test without_rowid5-6.2 {
  set rc [catch {db incrblob b1 b 1} msg]







<
|







181
182
183
184
185
186
187

188
189
190
191
192
193
194
195
do_execsql_test without_rowid5-5.9 {
  SELECT count(*) FROM nnw;
} {1}

# EVIDENCE-OF: R-12643-30541 The incremental blob I/O mechanism does not
# work for WITHOUT ROWID tables.
#

# EVIDENCE-OF: R-40134-30296 Table zTable is a WITHOUT ROWID table
#
do_execsql_test without_rowid5-6.1 {
  CREATE TABLE b1(a INTEGER PRIMARY KEY, b BLOB) WITHOUT ROWID;
  INSERT INTO b1 VALUES(1,x'0102030405060708090a0b0c0d0e0f');
} {}
do_test without_rowid5-6.2 {
  set rc [catch {db incrblob b1 b 1} msg]
Changes to tool/showstat4.c.
35
36
37
38
39
40
41

42
43
44
45
46
47
48
  sqlite3_stmt *pStmt;
  char *zIdx = 0;
  int rc, j, x, y, mxHdr;
  const unsigned char *aSample;
  int nSample;
  i64 iVal;
  const char *zSep;


  if( argc!=2 ){
    fprintf(stderr, "Usage: %s DATABASE-FILE\n", argv[0]);
    exit(1);
  }
  rc = sqlite3_open(argv[1], &db);
  if( rc!=SQLITE_OK || db==0 ){







>







35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
  sqlite3_stmt *pStmt;
  char *zIdx = 0;
  int rc, j, x, y, mxHdr;
  const unsigned char *aSample;
  int nSample;
  i64 iVal;
  const char *zSep;
  int iRow = 0;

  if( argc!=2 ){
    fprintf(stderr, "Usage: %s DATABASE-FILE\n", argv[0]);
    exit(1);
  }
  rc = sqlite3_open(argv[1], &db);
  if( rc!=SQLITE_OK || db==0 ){
56
57
58
59
60
61
62
63

64
65
66
67
68

69

70
71
72
73
74
75
76
  if( rc!=SQLITE_OK || pStmt==0 ){
    fprintf(stderr, "%s\n", sqlite3_errmsg(db));
    sqlite3_close(db);
    exit(1);
  }
  while( SQLITE_ROW==sqlite3_step(pStmt) ){
    if( zIdx==0 || strcmp(zIdx, (const char*)sqlite3_column_text(pStmt,0))!=0 ){
      if( zIdx ) printf("\n");

      sqlite3_free(zIdx);
      zIdx = sqlite3_mprintf("%s", sqlite3_column_text(pStmt,0));
      printf("%s:\n", zIdx);
    }else{
      printf("  -----------------------------------------------------------\n");

    }

    printf("  nEq    = %s\n", sqlite3_column_text(pStmt,1));
    printf("  nLt    = %s\n", sqlite3_column_text(pStmt,2));
    printf("  nDLt   = %s\n", sqlite3_column_text(pStmt,3));
    printf("  sample = x'");
    aSample = sqlite3_column_blob(pStmt,4);
    nSample = sqlite3_column_bytes(pStmt,4);
    for(j=0; j<nSample; j++) printf("%02x", aSample[j]);







|
>


<
<
<
>

>







57
58
59
60
61
62
63
64
65
66
67



68
69
70
71
72
73
74
75
76
77
  if( rc!=SQLITE_OK || pStmt==0 ){
    fprintf(stderr, "%s\n", sqlite3_errmsg(db));
    sqlite3_close(db);
    exit(1);
  }
  while( SQLITE_ROW==sqlite3_step(pStmt) ){
    if( zIdx==0 || strcmp(zIdx, (const char*)sqlite3_column_text(pStmt,0))!=0 ){
      if( zIdx ) printf("\n**************************************"
                        "**************\n\n");
      sqlite3_free(zIdx);
      zIdx = sqlite3_mprintf("%s", sqlite3_column_text(pStmt,0));



      iRow = 0;
    }
    printf("%s sample %d ------------------------------------\n", zIdx, ++iRow);
    printf("  nEq    = %s\n", sqlite3_column_text(pStmt,1));
    printf("  nLt    = %s\n", sqlite3_column_text(pStmt,2));
    printf("  nDLt   = %s\n", sqlite3_column_text(pStmt,3));
    printf("  sample = x'");
    aSample = sqlite3_column_blob(pStmt,4);
    nSample = sqlite3_column_bytes(pStmt,4);
    for(j=0; j<nSample; j++) printf("%02x", aSample[j]);