SQLite

Check-in [c844f3daa9]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fix the extra comments (added with -DSQLITE_ENABLE_EXPLAIN_COMMENTS) so that the sense of <, <=, >, and >= tests is correct and so that the SQLITE_STOREP2 version is shown correctly. Cherrypick of [4d43c4698eef4e3d].
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | branch-3.14
Files: files | file ages | folders
SHA1: c844f3daa9173badf476c56ca00284dbbac853d3
User & Date: mistachkin 2016-09-07 19:47:07.213
Context
2016-09-07
20:12
Fix the sqlite3_trace_v2() interface so that it goes disabled if either the callback or mask arguments are zero, in accordance with the documentation. Cherrypick of [37e6c54b1afc6348]. (check-in: e9acf61613 user: mistachkin tags: branch-3.14)
19:47
Fix the extra comments (added with -DSQLITE_ENABLE_EXPLAIN_COMMENTS) so that the sense of <, <=, >, and >= tests is correct and so that the SQLITE_STOREP2 version is shown correctly. Cherrypick of [4d43c4698eef4e3d]. (check-in: c844f3daa9 user: mistachkin tags: branch-3.14)
19:31
Merge selected test fixes from trunk. (check-in: 71866b367f user: mistachkin tags: branch-3.14)
2016-08-27
14:05
Fix the extra comments (added with -DSQLITE_ENABLE_EXPLAIN_COMMENTS) so that the sense of <, <=, >, and >= tests is correct and so that the SQLITE_STOREP2 version is shown correctly. These changes are already in the rowvalue branch but are added here since they are technically unrelated to rowvalue. (check-in: 4d43c4698e user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/vdbe.c.
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
  UPDATE_MAX_BLOBSIZE(pIn1);
  if( rc ) goto abort_due_to_error;
  break;
}
#endif /* SQLITE_OMIT_CAST */

/* Opcode: Lt P1 P2 P3 P4 P5
** Synopsis: if r[P1]<r[P3] goto P2
**
** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
** jump to address P2.  
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
** bit is clear then fall through if either operand is NULL.







|







1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
  UPDATE_MAX_BLOBSIZE(pIn1);
  if( rc ) goto abort_due_to_error;
  break;
}
#endif /* SQLITE_OMIT_CAST */

/* Opcode: Lt P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<r[P1]
**
** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
** jump to address P2.  
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
** bit is clear then fall through if either operand is NULL.
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
** store a boolean result (either 0, or 1, or NULL) in register P2.
**
** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
** equal to one another, provided that they do not have their MEM_Cleared
** bit set.
*/
/* Opcode: Ne P1 P2 P3 P4 P5
** Synopsis: if r[P1]!=r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
** additional information.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is false.  If either operand is NULL then the result is true.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Eq P1 P2 P3 P4 P5
** Synopsis: if r[P1]==r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are equal.
** See the Lt opcode for additional information.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is true.  If either operand is NULL then the result is false.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Le P1 P2 P3 P4 P5
** Synopsis: if r[P1]<=r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1.  See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3 P4 P5
** Synopsis: if r[P1]>r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1.  See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3 P4 P5
** Synopsis: if r[P1]>=r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
** register P1.  See the Lt opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
case OP_Ne:               /* same as TK_NE, jump, in1, in3 */







|












|












|






|






|







1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
** store a boolean result (either 0, or 1, or NULL) in register P2.
**
** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
** equal to one another, provided that they do not have their MEM_Cleared
** bit set.
*/
/* Opcode: Ne P1 P2 P3 P4 P5
** Synopsis: IF r[P3]!=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
** additional information.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is false.  If either operand is NULL then the result is true.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Eq P1 P2 P3 P4 P5
** Synopsis: IF r[P3]==r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are equal.
** See the Lt opcode for additional information.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is true.  If either operand is NULL then the result is false.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Le P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1.  See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3 P4 P5
** Synopsis: IF r[P3]>r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1.  See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3 P4 P5
** Synopsis: IF r[P3]>=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
** register P1.  See the Lt opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
Changes to src/vdbeaux.c.
1090
1091
1092
1093
1094
1095
1096

1097
1098
1099
1100
1101
1102








1103
1104
1105
1106
1107
1108
1109
  char *zTemp,       /* Write result here */
  int nTemp          /* Space available in zTemp[] */
){
  const char *zOpName;
  const char *zSynopsis;
  int nOpName;
  int ii, jj;

  zOpName = sqlite3OpcodeName(pOp->opcode);
  nOpName = sqlite3Strlen30(zOpName);
  if( zOpName[nOpName+1] ){
    int seenCom = 0;
    char c;
    zSynopsis = zOpName += nOpName + 1;








    for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
      if( c=='P' ){
        c = zSynopsis[++ii];
        if( c=='4' ){
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
        }else if( c=='X' ){
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);







>






>
>
>
>
>
>
>
>







1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
  char *zTemp,       /* Write result here */
  int nTemp          /* Space available in zTemp[] */
){
  const char *zOpName;
  const char *zSynopsis;
  int nOpName;
  int ii, jj;
  char zAlt[50];
  zOpName = sqlite3OpcodeName(pOp->opcode);
  nOpName = sqlite3Strlen30(zOpName);
  if( zOpName[nOpName+1] ){
    int seenCom = 0;
    char c;
    zSynopsis = zOpName += nOpName + 1;
    if( strncmp(zSynopsis,"IF ",3)==0 ){
      if( pOp->p5 & SQLITE_STOREP2 ){
        sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
      }else{
        sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
      }
      zSynopsis = zAlt;
    }
    for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
      if( c=='P' ){
        c = zSynopsis[++ii];
        if( c=='4' ){
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
        }else if( c=='X' ){
          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);