Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Some progress on user-defined collation sequences. (CVS 1544) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
c634e71f1909819fb55c728bc410e5cc |
User & Date: | danielk1977 2004-06-09 09:55:17.000 |
Context
2004-06-09
| ||
12:30 | Fix error reporting when trying to attach a database with a foriegn text encoding. (CVS 1545) (check-in: beab038c71 user: danielk1977 tags: trunk) | |
09:55 | Some progress on user-defined collation sequences. (CVS 1544) (check-in: c634e71f19 user: danielk1977 tags: trunk) | |
00:48 | Start all transactions and verify all schema cookies near the beginning of of each vdbe program. (CVS 1543) (check-in: 1086196460 user: drh tags: trunk) | |
Changes
Changes to src/build.c.
︙ | ︙ | |||
19 20 21 22 23 24 25 | ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** PRAGMA ** | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** PRAGMA ** ** $Id: build.c,v 1.211 2004/06/09 09:55:17 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** This routine is called when a new SQL statement is beginning to ** be parsed. Check to see if the schema for the database needs |
︙ | ︙ | |||
780 781 782 783 784 785 786 | ** field of the table under construction to be the index of the ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is ** no INTEGER PRIMARY KEY. ** ** If the key is not an INTEGER PRIMARY KEY, then create a unique ** index for the key. No index is created for INTEGER PRIMARY KEYs. */ | | | | | < < < < < < < < < < < < < < < < < > < > < | < | | | | > > > > > > > | | > | > | < < > > > > > | | | | | | < | | | | < < | | | | > > > | > > | > > > > > > > > > | 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 | ** field of the table under construction to be the index of the ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is ** no INTEGER PRIMARY KEY. ** ** If the key is not an INTEGER PRIMARY KEY, then create a unique ** index for the key. No index is created for INTEGER PRIMARY KEYs. */ void sqlite3AddPrimaryKey(Parse *pParse, ExprList *pList, int onError){ Table *pTab = pParse->pNewTable; char *zType = 0; int iCol = -1, i; if( pTab==0 ) goto primary_key_exit; if( pTab->hasPrimKey ){ sqlite3ErrorMsg(pParse, "table \"%s\" has more than one primary key", pTab->zName); goto primary_key_exit; } pTab->hasPrimKey = 1; if( pList==0 ){ iCol = pTab->nCol - 1; pTab->aCol[iCol].isPrimKey = 1; }else{ for(i=0; i<pList->nExpr; i++){ for(iCol=0; iCol<pTab->nCol; iCol++){ if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ break; } } if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1; } if( pList->nExpr>1 ) iCol = -1; } if( iCol>=0 && iCol<pTab->nCol ){ zType = pTab->aCol[iCol].zType; } if( zType && sqlite3StrICmp(zType, "INTEGER")==0 ){ pTab->iPKey = iCol; pTab->keyConf = onError; }else{ sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0); pList = 0; } primary_key_exit: sqlite3ExprListDelete(pList); return; } /* ** Set the collation function of the most recently parsed table column ** to the CollSeq given. */ void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){ Table *p; Index *pIdx; CollSeq *pColl; int i; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; pColl = sqlite3LocateCollSeq(pParse, zType, nType); p->aCol[i].pColl = pColl; /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", ** then an index may have been created on this column before the ** collation type was added. Correct this if it is the case. */ for(pIdx = p->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->nColumn==1 ); if( pIdx->aiColumn[0]==i ) pIdx->keyInfo.aColl[0] = pColl; } } /* ** Locate and return an entry from the db.aCollSeq hash table. If the entry ** specified by zName and nName is not found and parameter 'create' is ** true, then create a new entry. ** ** FIX ME: For now, return NULL if create is not true and the entry is not ** found. But this needs to change to call the collation factory. ** ** FIX ME: If we have a UTF-8 version of the collation function, and a ** UTF-16 version would be better, should the collation factory be called? ** If so should a flag be set to say that we already requested such a ** function and couldn't get one? */ CollSeq *sqlite3FindCollSeq( sqlite *db, const char *zName, int nName, int create ){ CollSeq *pColl; if( nName<0 ) nName = strlen(zName); pColl = sqlite3HashFind(&db->aCollSeq, zName, nName); if( 0==pColl && create ){ pColl = sqliteMalloc( sizeof(*pColl) + nName + 1 ); if( pColl ){ pColl->zName = (char*)&pColl[1]; memcpy(pColl->zName, zName, nName+1); sqlite3HashInsert(&db->aCollSeq, pColl->zName, nName, pColl); } } return pColl; } CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ CollSeq *pColl = sqlite3FindCollSeq(pParse->db, zName, nName, 0); if( !pColl ){ if( pParse->nErr==0 ){ sqlite3SetNString(&pParse->zErrMsg, "no such collation sequence: ", -1, zName, nName, 0); } pParse->nErr++; } return pColl; } /* ** Scan the column type name zType (length nType) and return the ** associated affinity type. */ char sqlite3AffinityType(const char *zType, int nType){ int n, i; |
︙ | ︙ | |||
1536 1537 1538 1539 1540 1541 1542 | ** until sqlite3EndTable(). ** ** The foreign key is set for IMMEDIATE processing. A subsequent call ** to sqlite3DeferForeignKey() might change this to DEFERRED. */ void sqlite3CreateForeignKey( Parse *pParse, /* Parsing context */ | | | | | | | | 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 | ** until sqlite3EndTable(). ** ** The foreign key is set for IMMEDIATE processing. A subsequent call ** to sqlite3DeferForeignKey() might change this to DEFERRED. */ void sqlite3CreateForeignKey( Parse *pParse, /* Parsing context */ ExprList *pFromCol, /* Columns in this table that point to other table */ Token *pTo, /* Name of the other table */ ExprList *pToCol, /* Columns in the other table */ int flags /* Conflict resolution algorithms. */ ){ Table *p = pParse->pNewTable; int nByte; int i; int nCol; char *z; FKey *pFKey = 0; assert( pTo!=0 ); if( p==0 || pParse->nErr ) goto fk_end; if( pFromCol==0 ){ int iCol = p->nCol-1; if( iCol<0 ) goto fk_end; if( pToCol && pToCol->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "foreign key on %s" " should reference only one column of table %T", p->aCol[iCol].zName, pTo); goto fk_end; } nCol = 1; }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ sqlite3ErrorMsg(pParse, "number of columns in foreign key does not match the number of " "columns in the referenced table"); goto fk_end; }else{ nCol = pFromCol->nExpr; } nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; if( pToCol ){ for(i=0; i<pToCol->nExpr; i++){ nByte += strlen(pToCol->a[i].zName) + 1; } } pFKey = sqliteMalloc( nByte ); if( pFKey==0 ) goto fk_end; pFKey->pFrom = p; pFKey->pNextFrom = p->pFKey; |
︙ | ︙ | |||
1627 1628 1629 1630 1631 1632 1633 | /* Link the foreign key to the table as the last step. */ p->pFKey = pFKey; pFKey = 0; fk_end: sqliteFree(pFKey); | | | | 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 | /* Link the foreign key to the table as the last step. */ p->pFKey = pFKey; pFKey = 0; fk_end: sqliteFree(pFKey); sqlite3ExprListDelete(pFromCol); sqlite3ExprListDelete(pToCol); } /* ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED ** clause is seen as part of a foreign key definition. The isDeferred ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. ** The behavior of the most recently created foreign key is adjusted |
︙ | ︙ | |||
1661 1662 1663 1664 1665 1666 1667 | ** is a primary key or unique-constraint on the most recent column added ** to the table currently under construction. */ void sqlite3CreateIndex( Parse *pParse, /* All information about this parse */ Token *pName1, /* First part of index name. May be NULL */ Token *pName2, /* Second part of index name. May be NULL */ | | | | 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 | ** is a primary key or unique-constraint on the most recent column added ** to the table currently under construction. */ void sqlite3CreateIndex( Parse *pParse, /* All information about this parse */ Token *pName1, /* First part of index name. May be NULL */ Token *pName2, /* Second part of index name. May be NULL */ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ ExprList *pList, /* A list of columns to be indexed */ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */ Token *pEnd /* The ")" that closes the CREATE INDEX statement */ ){ Table *pTab = 0; /* Table to be indexed */ Index *pIndex; /* The index to be created */ char *zName = 0; |
︙ | ︙ | |||
1790 1791 1792 1793 1794 1795 1796 | /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ nullId.z = pTab->aCol[pTab->nCol-1].zName; nullId.n = strlen(nullId.z); | | | | | | | > > > > | | > > | | 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 | /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ nullId.z = pTab->aCol[pTab->nCol-1].zName; nullId.n = strlen(nullId.z); pList = sqlite3ExprListAppend(0, 0, &nullId); if( pList==0 ) goto exit_create_index; } /* ** Allocate the index structure. */ pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + (sizeof(int) + sizeof(CollSeq*))*pList->nExpr ); if( pIndex==0 ) goto exit_create_index; pIndex->aiColumn = (int*)&pIndex->keyInfo.aColl[pList->nExpr]; pIndex->zName = (char*)&pIndex->aiColumn[pList->nExpr]; strcpy(pIndex->zName, zName); pIndex->pTable = pTab; pIndex->nColumn = pList->nExpr; pIndex->onError = onError; pIndex->autoIndex = pName==0; pIndex->iDb = iDb; /* Scan the names of the columns of the table to be indexed and ** load the column indices into the Index structure. Report an error ** if any column is not found. */ for(i=0; i<pList->nExpr; i++){ for(j=0; j<pTab->nCol; j++){ if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break; } if( j>=pTab->nCol ){ sqlite3ErrorMsg(pParse, "table %s has no column named %s", pTab->zName, pList->a[i].zName); sqliteFree(pIndex); goto exit_create_index; } pIndex->aiColumn[i] = j; if( pList->a[i].pExpr ){ assert( pList->a[i].pExpr->pColl ); pIndex->keyInfo.aColl[i] = pList->a[i].pExpr->pColl; }else{ pIndex->keyInfo.aColl[i] = pTab->aCol[j].pColl; } assert( pIndex->keyInfo.aColl[i] ); } pIndex->keyInfo.nField = pList->nExpr; /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( !pParse->explain ){ Index *p; p = sqlite3HashInsert(&db->aDb[pIndex->iDb].idxHash, |
︙ | ︙ | |||
1911 1912 1913 1914 1915 1916 1917 | OP_Integer, iDb, 0, 0); sqlite3VdbeOp3(v, OP_OpenWrite, 1, 0, (char*)&pIndex->keyInfo, P3_KEYINFO); } sqlite3VdbeAddOp(v, OP_String8, 0, 0); if( pStart && pEnd ){ | > | > > > | 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 | OP_Integer, iDb, 0, 0); sqlite3VdbeOp3(v, OP_OpenWrite, 1, 0, (char*)&pIndex->keyInfo, P3_KEYINFO); } sqlite3VdbeAddOp(v, OP_String8, 0, 0); if( pStart && pEnd ){ if( onError==OE_None ){ sqlite3VdbeChangeP3(v, -1, "CREATE INDEX ", P3_STATIC); }else{ sqlite3VdbeChangeP3(v, -1, "CREATE UNIQUE INDEX ", P3_STATIC); } sqlite3VdbeAddOp(v, OP_String8, 0, 0); n = Addr(pEnd->z) - Addr(pName->z) + 1; sqlite3VdbeChangeP3(v, -1, pName->z, n); sqlite3VdbeAddOp(v, OP_Concat, 2, 0); } sqlite3VdbeOp3(v, OP_MakeRecord, 5, 0, "tttit", P3_STATIC); sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0); |
︙ | ︙ | |||
1946 1947 1948 1949 1950 1951 1952 | sqlite3VdbeAddOp(v, OP_Close, 0, 0); sqlite3EndWriteOperation(pParse); } } /* Clean up before exiting */ exit_create_index: | | | 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 | sqlite3VdbeAddOp(v, OP_Close, 0, 0); sqlite3EndWriteOperation(pParse); } } /* Clean up before exiting */ exit_create_index: sqlite3ExprListDelete(pList); /* sqlite3SrcListDelete(pTable); */ sqliteFree(zName); return; } /* ** This routine will drop an existing named index. This routine |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** ** $Id: expr.c,v 1.137 2004/06/09 09:55:18 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> char const *sqlite3AffinityString(char affinity){ switch( affinity ){ case SQLITE_AFF_INTEGER: return "i"; |
︙ | ︙ | |||
50 51 52 53 54 55 56 57 58 59 60 61 62 63 | return sqlite3ExprAffinity(pExpr->pLeft); } if( pExpr->op==TK_SELECT ){ return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); } return pExpr->affinity; } /* ** pExpr is the left operand of a comparison operator. aff2 is the ** type affinity of the right operand. This routine returns the ** type affinity that should be used for the comparison operator. */ char sqlite3CompareAffinity(Expr *pExpr, char aff2){ | > > > > > > > > > > > > > > | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | return sqlite3ExprAffinity(pExpr->pLeft); } if( pExpr->op==TK_SELECT ){ return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); } return pExpr->affinity; } /* ** Return the default collation sequence for the expression pExpr. If ** there is no default collation type, return 0. */ CollSeq *sqlite3ExprCollSeq(Expr *pExpr){ if( pExpr ){ if( pExpr->pColl ) return pExpr->pColl; if( pExpr->op==TK_AS ){ return sqlite3ExprCollSeq(pExpr->pLeft); } } return 0; } /* ** pExpr is the left operand of a comparison operator. aff2 is the ** type affinity of the right operand. This routine returns the ** type affinity that should be used for the comparison operator. */ char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
︙ | ︙ | |||
129 130 131 132 133 134 135 136 137 138 139 140 141 142 | ** P1 value to tell the opcode to jump if either expression ** evaluates to NULL. */ static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ char aff = sqlite3ExprAffinity(pExpr2); return (((int)sqlite3CompareAffinity(pExpr1, aff))<<8)+(jumpIfNull?1:0); } /* ** Construct a new expression node and return a pointer to it. Memory ** for this node is obtained from sqliteMalloc(). The calling function ** is responsible for making sure the node eventually gets freed. */ Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ | > > > > > > > > > > > > > > > > > | 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | ** P1 value to tell the opcode to jump if either expression ** evaluates to NULL. */ static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ char aff = sqlite3ExprAffinity(pExpr2); return (((int)sqlite3CompareAffinity(pExpr1, aff))<<8)+(jumpIfNull?1:0); } /* ** Return a pointer to the collation sequence that should be used by ** a binary comparison operator comparing pLeft and pRight. ** ** If the left hand expression has a collating sequence type, then it is ** used. Otherwise the collation sequence for the right hand expression ** is used, or the default (BINARY) if neither expression has a collating ** type. */ static CollSeq* binaryCompareCollSeq(Expr *pLeft, Expr *pRight){ CollSeq *pColl = sqlite3ExprCollSeq(pLeft); if( !pColl ){ pColl = sqlite3ExprCollSeq(pRight); } return pColl; } /* ** Construct a new expression node and return a pointer to it. Memory ** for this node is obtained from sqliteMalloc(). The calling function ** is responsible for making sure the node eventually gets freed. */ Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ |
︙ | ︙ | |||
584 585 586 587 588 589 590 591 592 593 594 595 596 597 | if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iTable = pItem->iCursor; pExpr->iDb = pTab->iDb; /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; break; } } } /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference | > | 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 | if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iTable = pItem->iCursor; pExpr->iDb = pTab->iDb; /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; pExpr->pColl = pTab->aCol[j].pColl; break; } } } /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference |
︙ | ︙ | |||
616 617 618 619 620 621 622 623 624 625 626 627 628 629 | pExpr->iDb = pTab->iDb; cntTab++; for(j=0; j < pTab->nCol; j++, pCol++) { if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; break; } } } } /* | > | 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 | pExpr->iDb = pTab->iDb; cntTab++; for(j=0; j < pTab->nCol; j++, pCol++) { if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; pExpr->pColl = pTab->aCol[j].pColl; break; } } } } /* |
︙ | ︙ | |||
794 795 796 797 798 799 800 801 802 803 804 805 806 807 | break; } case TK_IN: { char affinity; Vdbe *v = sqlite3GetVdbe(pParse); KeyInfo keyInfo; if( v==0 ) return 1; if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){ return 1; } affinity = sqlite3ExprAffinity(pExpr->pLeft); | > | 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 | break; } case TK_IN: { char affinity; Vdbe *v = sqlite3GetVdbe(pParse); KeyInfo keyInfo; int addr; /* Address of OP_OpenTemp instruction */ if( v==0 ) return 1; if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){ return 1; } affinity = sqlite3ExprAffinity(pExpr->pLeft); |
︙ | ︙ | |||
815 816 817 818 819 820 821 822 823 | ** column is used to build the index keys. If both 'x' and the ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; memset(&keyInfo, 0, sizeof(keyInfo)); keyInfo.nField = 1; | > < < < > > > > > | 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 | ** column is used to build the index keys. If both 'x' and the ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; addr = sqlite3VdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 0); memset(&keyInfo, 0, sizeof(keyInfo)); keyInfo.nField = 1; sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); if( pExpr->pSelect ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ int iParm = pExpr->iTable + (((int)affinity)<<16); assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); if( pExpr->pSelect->pEList && pExpr->pSelect->pEList->nExpr>0 ){ keyInfo.aColl[0] = binaryCompareCollSeq(pExpr->pLeft, pExpr->pSelect->pEList->a[0].pExpr); } }else if( pExpr->pList ){ /* Case 2: expr IN (exprlist) ** ** For each expression, build an index key from the evaluation and ** store it in the temporary table. If <expr> is a column, then use ** that columns affinity when building index keys. If <expr> is not ** a column, use numeric affinity. */ int i; char const *affStr; if( !affinity ){ affinity = SQLITE_AFF_NUMERIC; } affStr = sqlite3AffinityString(affinity); keyInfo.aColl[0] = pExpr->pLeft->pColl; /* Loop through each expression in <exprlist>. */ for(i=0; i<pExpr->pList->nExpr; i++){ Expr *pE2 = pExpr->pList->a[i].pExpr; /* Check that the expression is constant and valid. */ if( !sqlite3ExprIsConstant(pE2) ){ |
︙ | ︙ | |||
867 868 869 870 871 872 873 874 875 876 877 878 879 880 | /* Evaluate the expression and insert it into the temp table */ sqlite3ExprCode(pParse, pE2); sqlite3VdbeOp3(v, OP_MakeKey, 1, 0, affStr, P3_STATIC); sqlite3VdbeAddOp(v, OP_String8, 0, 0); sqlite3VdbeAddOp(v, OP_PutStrKey, pExpr->iTable, 0); } } break; } case TK_SELECT: { /* This has to be a scalar SELECT. Generate code to put the ** value of this select in a memory cell and record the number ** of the memory cell in iColumn. | > > | 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 | /* Evaluate the expression and insert it into the temp table */ sqlite3ExprCode(pParse, pE2); sqlite3VdbeOp3(v, OP_MakeKey, 1, 0, affStr, P3_STATIC); sqlite3VdbeAddOp(v, OP_String8, 0, 0); sqlite3VdbeAddOp(v, OP_PutStrKey, pExpr->iTable, 0); } } sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); break; } case TK_SELECT: { /* This has to be a scalar SELECT. Generate code to put the ** value of this select in a memory cell and record the number ** of the memory cell in iColumn. |
︙ | ︙ | |||
998 999 1000 1001 1002 1003 1004 | pExpr->op = TK_AGG_FUNCTION; if( pIsAgg ) *pIsAgg = 1; } for(i=0; nErr==0 && i<n; i++){ nErr = sqlite3ExprCheck(pParse, pExpr->pList->a[i].pExpr, allowAgg && !is_agg, pIsAgg); } | | | > | 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 | pExpr->op = TK_AGG_FUNCTION; if( pIsAgg ) *pIsAgg = 1; } for(i=0; nErr==0 && i<n; i++){ nErr = sqlite3ExprCheck(pParse, pExpr->pList->a[i].pExpr, allowAgg && !is_agg, pIsAgg); } /* FIX ME: Compute pExpr->affinity based on the expected return ** type of the function */ } default: { if( pExpr->pLeft ){ nErr = sqlite3ExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg); } if( nErr==0 && pExpr->pRight ){ nErr = sqlite3ExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg); |
︙ | ︙ | |||
1151 1152 1153 1154 1155 1156 1157 1158 1159 | case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, 0); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); | > | | 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 | case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, 0); CollSeq *p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pRight); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); sqlite3VdbeOp3(v, op, p1, 0, (void *)p3, P3_COLLSEQ); break; } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: |
︙ | ︙ | |||
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 | sqlite3VdbeOp3(v, OP_MakeKey, 1, 0, affStr, P3_STATIC); /* addr + 4 */ sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ break; } case TK_BETWEEN: { sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3ExprCode(pParse, pExpr->pList->a[0].pExpr); | > > > > | > > | | 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 | sqlite3VdbeOp3(v, OP_MakeKey, 1, 0, affStr, P3_STATIC); /* addr + 4 */ sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ break; } case TK_BETWEEN: { int p1; CollSeq *p3; sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3ExprCode(pParse, pExpr->pList->a[0].pExpr); p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[0].pExpr, 0); p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pList->a[0].pExpr); sqlite3VdbeOp3(v, OP_Ge, p1, 0, (void *)p3, P3_COLLSEQ); sqlite3VdbeAddOp(v, OP_Pull, 1, 0); sqlite3ExprCode(pParse, pExpr->pList->a[1].pExpr); p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[1].pExpr, 0); p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pList->a[1].pExpr); sqlite3VdbeOp3(v, OP_Le, p1, 0, (void *)p3, P3_COLLSEQ); sqlite3VdbeAddOp(v, OP_And, 0, 0); break; } case TK_UPLUS: case TK_AS: { sqlite3ExprCode(pParse, pExpr->pLeft); break; |
︙ | ︙ | |||
1308 1309 1310 1311 1312 1313 1314 1315 | expr_end_label = sqlite3VdbeMakeLabel(v); if( pExpr->pLeft ){ sqlite3ExprCode(pParse, pExpr->pLeft); } for(i=0; i<nExpr; i=i+2){ sqlite3ExprCode(pParse, pExpr->pList->a[i].pExpr); if( pExpr->pLeft ){ sqlite3VdbeAddOp(v, OP_Dup, 1, 1); | > > > | | 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 | expr_end_label = sqlite3VdbeMakeLabel(v); if( pExpr->pLeft ){ sqlite3ExprCode(pParse, pExpr->pLeft); } for(i=0; i<nExpr; i=i+2){ sqlite3ExprCode(pParse, pExpr->pList->a[i].pExpr); if( pExpr->pLeft ){ int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[i].pExpr, 1); CollSeq *p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pList->a[i].pExpr); sqlite3VdbeAddOp(v, OP_Dup, 1, 1); jumpInst = sqlite3VdbeOp3(v, OP_Ne, p1, 0, (void *)p3, P3_COLLSEQ); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); }else{ jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); } sqlite3ExprCode(pParse, pExpr->pList->a[i+1].pExpr); sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); addr = sqlite3VdbeCurrentAddr(v); |
︙ | ︙ | |||
1422 1423 1424 1425 1426 1427 1428 1429 1430 | case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, jumpIfNull); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); | > | > > > > > > > > > > > | > > > | | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 | case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, jumpIfNull); CollSeq *p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pRight); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); sqlite3VdbeOp3(v, op, p1, dest, (void *)p3, P3_COLLSEQ); break; } case TK_ISNULL: case TK_NOTNULL: { sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, op, 1, dest); break; } case TK_BETWEEN: { /* The expression "x BETWEEN y AND z" is implemented as: ** ** 1 IF (x < y) GOTO 3 ** 2 IF (x <= z) GOTO <dest> ** 3 ... */ int addr; int p1; CollSeq *p3; sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3ExprCode(pParse, pExpr->pList->a[0].pExpr); p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[0].pExpr, !jumpIfNull); p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pList->a[0].pExpr); addr = sqlite3VdbeOp3(v, OP_Lt, p1, 0, (void *)p3, P3_COLLSEQ); sqlite3ExprCode(pParse, pExpr->pList->a[1].pExpr); p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[1].pExpr, jumpIfNull); p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pList->a[1].pExpr); sqlite3VdbeOp3(v, OP_Le, p1, dest, (void *)p3, P3_COLLSEQ); sqlite3VdbeAddOp(v, OP_Integer, 0, 0); sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); break; } default: { sqlite3ExprCode(pParse, pExpr); |
︙ | ︙ | |||
1501 1502 1503 1504 1505 1506 1507 1508 1509 | case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, jumpIfNull); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); | > | < | > > > > > > < < < < < < < < < < < < < < | > | > > > > | | 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 | case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, jumpIfNull); CollSeq *p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pRight); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); sqlite3VdbeOp3(v, op, p1, dest, (void *)p3, P3_COLLSEQ); break; } case TK_ISNULL: case TK_NOTNULL: { sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, op, 1, dest); break; } case TK_BETWEEN: { /* The expression is "x BETWEEN y AND z". It is implemented as: ** ** 1 IF (x >= y) GOTO 3 ** 2 GOTO <dest> ** 3 IF (x > z) GOTO <dest> */ int addr; int p1; CollSeq *p3; sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3ExprCode(pParse, pExpr->pList->a[0].pExpr); addr = sqlite3VdbeCurrentAddr(v); p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[0].pExpr, !jumpIfNull); p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pList->a[0].pExpr); sqlite3VdbeOp3(v, OP_Ge, p1, addr+3, (void *)p3, P3_COLLSEQ); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, dest); sqlite3ExprCode(pParse, pExpr->pList->a[1].pExpr); p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[1].pExpr, jumpIfNull); p3 = binaryCompareCollSeq(pExpr->pLeft, pExpr->pList->a[1].pExpr); sqlite3VdbeOp3(v, OP_Gt, p1, dest, (void *)p3, P3_COLLSEQ); break; } default: { sqlite3ExprCode(pParse, pExpr); sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); break; } |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.208 2004/06/09 09:55:18 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> /* ** A pointer to this structure is used to communicate information |
︙ | ︙ | |||
419 420 421 422 423 424 425 426 427 428 429 430 431 432 | n = nKey1<nKey2 ? nKey1 : nKey2; rc = memcmp(pKey1, pKey2, n); if( rc==0 ){ rc = nKey1 - nKey2; } return rc; } /* ** Return the ROWID of the most recent insert */ long long int sqlite3_last_insert_rowid(sqlite *db){ return db->lastRowid; } | > > > > > > > > > > > > > > > > > | 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | n = nKey1<nKey2 ? nKey1 : nKey2; rc = memcmp(pKey1, pKey2, n); if( rc==0 ){ rc = nKey1 - nKey2; } return rc; } /* ** Another built-in collating sequence: NOCASE. At the moment there is ** only a UTF-8 implementation. */ static int nocaseCollatingFunc( void *NotUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int r = sqlite3StrNICmp( (const char *)pKey1, (const char *)pKey2, (nKey1>nKey2)?nKey1:nKey2); if( 0==r ){ r = nKey1-nKey2; } return r; } /* ** Return the ROWID of the most recent insert */ long long int sqlite3_last_insert_rowid(sqlite *db){ return db->lastRowid; } |
︙ | ︙ | |||
997 998 999 1000 1001 1002 1003 | sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0); for(i=0; i<db->nDb; i++){ sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1); } | > > > > > > > > | > > > > > | > > | | 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 | sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0); for(i=0; i<db->nDb; i++){ sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1); } /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. */ sqlite3_create_collation(db, "BINARY", 0, 0, binaryCollatingFunc); sqlite3_create_collation(db, "BINARY", 1, 0, binaryCollatingFunc); db->pDfltColl = sqlite3FindCollSeq(db, "BINARY", 6, 0); if( !db->pDfltColl ){ rc = db->errCode; assert( rc!=SQLITE_OK ); db->magic = SQLITE_MAGIC_CLOSED; goto opendb_out; } /* Also add a UTF-8 case-insensitive collation sequence. */ sqlite3_create_collation(db, "NOCASE", 0, 0, nocaseCollatingFunc); /* Open the backend database driver */ if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){ db->temp_store = 2; } rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt); if( rc!=SQLITE_OK ){ /* FIX ME: sqlite3BtreeFactory() should call sqlite3Error(). */ |
︙ | ︙ | |||
1094 1095 1096 1097 1098 1099 1100 | ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). */ int sqlite3_reset(sqlite3_stmt *pStmt){ int rc = sqlite3VdbeReset((Vdbe*)pStmt, 0); sqlite3VdbeMakeReady((Vdbe*)pStmt, -1, 0); return rc; } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 | ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). */ int sqlite3_reset(sqlite3_stmt *pStmt){ int rc = sqlite3VdbeReset((Vdbe*)pStmt, 0); sqlite3VdbeMakeReady((Vdbe*)pStmt, -1, 0); return rc; } int sqlite3_create_collation( sqlite3* db, const char *zName, int pref16, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ CollSeq *pColl; int rc = SQLITE_OK; pColl = sqlite3FindCollSeq(db, zName, strlen(zName), 1); if( 0==pColl ){ rc = SQLITE_NOMEM; }else if( pref16 ){ pColl->xCmp16 = xCompare; pColl->pUser16 = pCtx; }else{ pColl->xCmp = xCompare; pColl->pUser = pCtx; } sqlite3Error(db, rc, 0); return SQLITE_OK; } int sqlite3_create_collation16( sqlite3* db, const char *zName, int pref16, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc; char *zName8 = sqlite3utf16to8(zName, -1, SQLITE_BIGENDIAN); rc = sqlite3_create_collation(db, zName8, pref16, pCtx, xCompare); sqliteFree(zName8); return rc; } |
Changes to src/parse.y.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** This file contains SQLite's grammar for SQL. Process this file ** using the lemon parser generator to generate C code that runs ** the parser. Lemon will also generate a header file containing ** numeric codes for all of the tokens. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** This file contains SQLite's grammar for SQL. Process this file ** using the lemon parser generator to generate C code that runs ** the parser. Lemon will also generate a header file containing ** numeric codes for all of the tokens. ** ** @(#) $Id: parse.y,v 1.127 2004/06/09 09:55:18 danielk1977 Exp $ */ %token_prefix TK_ %token_type {Token} %default_type {Token} %extra_argument {Parse *pParse} %syntax_error { if( pParse->zErrMsg==0 ){ |
︙ | ︙ | |||
419 420 421 422 423 424 425 | %type on_opt {Expr*} %destructor on_opt {sqlite3ExprDelete($$);} on_opt(N) ::= ON expr(E). {N = E;} on_opt(N) ::= . {N = 0;} %type using_opt {IdList*} %destructor using_opt {sqlite3IdListDelete($$);} | | | 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 | %type on_opt {Expr*} %destructor on_opt {sqlite3ExprDelete($$);} on_opt(N) ::= ON expr(E). {N = E;} on_opt(N) ::= . {N = 0;} %type using_opt {IdList*} %destructor using_opt {sqlite3IdListDelete($$);} using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} using_opt(U) ::= . {U = 0;} %type orderby_opt {ExprList*} %destructor orderby_opt {sqlite3ExprListDelete($$);} %type sortlist {ExprList*} %destructor sortlist {sqlite3ExprListDelete($$);} |
︙ | ︙ | |||
737 738 739 740 741 742 743 | Z, U, &S, &E); } %type uniqueflag {int} uniqueflag(A) ::= UNIQUE. { A = OE_Abort; } uniqueflag(A) ::= . { A = OE_None; } | | | | | | > > > > > > > | > > > > > > > | > | 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 | Z, U, &S, &E); } %type uniqueflag {int} uniqueflag(A) ::= UNIQUE. { A = OE_Abort; } uniqueflag(A) ::= . { A = OE_None; } %type idxlist {ExprList*} %destructor idxlist {sqlite3ExprListDelete($$);} %type idxlist_opt {ExprList*} %destructor idxlist_opt {sqlite3ExprListDelete($$);} %type idxitem {Token} idxlist_opt(A) ::= . {A = 0;} idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} idxlist(A) ::= idxlist(X) COMMA idxitem(Y) collate(C) sortorder. { Expr *p = 0; if( C.n>0 ){ p = sqlite3Expr(TK_COLUMN, 0, 0, 0); if( p ) p->pColl = sqlite3LocateCollSeq(pParse, C.z, C.n); } A = sqlite3ExprListAppend(X, p, &Y); } idxlist(A) ::= idxitem(Y) collate(C) sortorder. { Expr *p = 0; if( C.n>0 ){ p = sqlite3Expr(TK_COLUMN, 0, 0, 0); if( p ) p->pColl = sqlite3LocateCollSeq(pParse, C.z, C.n); } A = sqlite3ExprListAppend(0, p, &Y); } idxitem(A) ::= nm(X). {A = X;} ///////////////////////////// The DROP INDEX command ///////////////////////// // cmd ::= DROP INDEX nm(X) dbnm(Y). { sqlite3DropIndex(pParse, sqlite3SrcListAppend(0,&X,&Y)); } |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** ** $Id: select.c,v 1.185 2004/06/09 09:55:18 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Allocate a new Select structure and return a pointer to that ** structure. |
︙ | ︙ | |||
542 543 544 545 546 547 548 | pOrderBy = p->pOrderBy; nCol = pOrderBy->nExpr; pInfo = sqliteMalloc( sizeof(*pInfo) + nCol*(sizeof(CollSeq*)+1) ); if( pInfo==0 ) return; pInfo->aSortOrder = (char*)&pInfo->aColl[nCol]; pInfo->nField = nCol; for(i=0; i<nCol; i++){ | > > > > > > | > | 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | pOrderBy = p->pOrderBy; nCol = pOrderBy->nExpr; pInfo = sqliteMalloc( sizeof(*pInfo) + nCol*(sizeof(CollSeq*)+1) ); if( pInfo==0 ) return; pInfo->aSortOrder = (char*)&pInfo->aColl[nCol]; pInfo->nField = nCol; for(i=0; i<nCol; i++){ /* If a collation sequence was specified explicity, then it ** is stored in pOrderBy->a[i].zName. Otherwise, use the default ** collation type for the expression. */ pInfo->aColl[i] = sqlite3ExprCollSeq(pOrderBy->a[i].pExpr); if( !pInfo->aColl[i] ){ pInfo->aColl[i] = db->pDfltColl; } pInfo->aSortOrder[i] = pOrderBy->a[i].sortOrder; } sqlite3VdbeOp3(v, OP_Sort, 0, 0, (char*)pInfo, P3_KEYINFO_HANDOFF); addr = sqlite3VdbeAddOp(v, OP_SortNext, 0, end1); if( p->iOffset>=0 ){ sqlite3VdbeAddOp(v, OP_MemIncr, p->iOffset, addr+4); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
︙ | ︙ | |||
814 815 816 817 818 819 820 821 822 823 824 825 826 827 | zType = sqliteStrDup(columnType(pParse, pSelect->pSrc ,p)); pTab->aCol[i].zType = zType; pTab->aCol[i].affinity = SQLITE_AFF_NUMERIC; if( zType ){ pTab->aCol[i].affinity = sqlite3AffinityType(zType, strlen(zType)); } } pTab->iPKey = -1; return pTab; } /* ** For the given SELECT statement, do three things. | > > > > | 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 | zType = sqliteStrDup(columnType(pParse, pSelect->pSrc ,p)); pTab->aCol[i].zType = zType; pTab->aCol[i].affinity = SQLITE_AFF_NUMERIC; if( zType ){ pTab->aCol[i].affinity = sqlite3AffinityType(zType, strlen(zType)); } pTab->aCol[i].pColl = sqlite3ExprCollSeq(p); if( !pTab->aCol[i].pColl ){ pTab->aCol[i].pColl = pParse->db->pDfltColl; } } pTab->iPKey = -1; return pTab; } /* ** For the given SELECT statement, do three things. |
︙ | ︙ | |||
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 | "GROUP BY column number %d out of range - should be " "between 1 and %d", iCol, pEList->nExpr); goto select_end; } } } } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto select_end; /* Identify column names if we will be using them in a callback. This | > > > > > > > > > > > > > > > | 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 | "GROUP BY column number %d out of range - should be " "between 1 and %d", iCol, pEList->nExpr); goto select_end; } } } } /* If there is an ORDER BY clause, resolve any collation sequences ** names that have been explicitly specified. */ if( pOrderBy ){ for(i=0; i<pOrderBy->nExpr; i++){ if( pOrderBy->a[i].zName ){ pOrderBy->a[i].pExpr->pColl = sqlite3LocateCollSeq(pParse, pOrderBy->a[i].zName, -1); } } if( pParse->nErr ){ goto select_end; } } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto select_end; /* Identify column names if we will be using them in a callback. This |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the SQLite library ** presents to client programs. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the SQLite library ** presents to client programs. ** ** @(#) $Id: sqlite.h.in,v 1.95 2004/06/09 09:55:18 danielk1977 Exp $ */ #ifndef _SQLITE_H_ #define _SQLITE_H_ #include <stdarg.h> /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. |
︙ | ︙ | |||
958 959 960 961 962 963 964 965 966 967 968 969 | void sqlite3_result_error16(sqlite3_context*, const void*, int); void sqlite3_result_int(sqlite3_context*, int); void sqlite3_result_int64(sqlite3_context*, long long int); void sqlite3_result_null(sqlite3_context*); void sqlite3_result_text(sqlite3_context*, const char*, int n, int eCopy); void sqlite3_result_text16(sqlite3_context*, const void*, int n, int eCopy); void sqlite3_result_value(sqlite3_context*, sqlite3_value*); #ifdef __cplusplus } /* End of the 'extern "C"' block */ #endif #endif | > > > > > > > > > > > > > > > > | 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 | void sqlite3_result_error16(sqlite3_context*, const void*, int); void sqlite3_result_int(sqlite3_context*, int); void sqlite3_result_int64(sqlite3_context*, long long int); void sqlite3_result_null(sqlite3_context*); void sqlite3_result_text(sqlite3_context*, const char*, int n, int eCopy); void sqlite3_result_text16(sqlite3_context*, const void*, int n, int eCopy); void sqlite3_result_value(sqlite3_context*, sqlite3_value*); int sqlite3_create_collation( sqlite3*, const char *zName, int pref16, void*, int(*xCompare)(void*,int,const void*,int,const void*) ); int sqlite3_create_collation16( sqlite3*, const char *zName, int pref16, void*, int(*xCompare)(void*,int,const void*,int,const void*) ); #ifdef __cplusplus } /* End of the 'extern "C"' block */ #endif #endif |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.273 2004/06/09 09:55:19 danielk1977 Exp $ */ #include "config.h" #include "sqlite3.h" #include "hash.h" #include "parse.h" #include <stdio.h> #include <stdlib.h> |
︙ | ︙ | |||
484 485 486 487 488 489 490 | u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ char affinity; /* One of the SQLITE_AFF_... values */ u8 dottedName; /* True if zName contains a "." character */ }; /* ** A "Collating Sequence" is defined by an instance of the following | | | > > > > > > > > | | > > | | | | > | > | 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ char affinity; /* One of the SQLITE_AFF_... values */ u8 dottedName; /* True if zName contains a "." character */ }; /* ** A "Collating Sequence" is defined by an instance of the following ** structure. Conceptually, a collating sequence consists of a name and ** a comparison routine that defines the order of that sequence. ** ** There may two seperate implementations of the collation function, one ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine ** native byte order. When a collation sequence is invoked, SQLite selects ** the version that will require the least expensive encoding ** transalations, if any. ** ** The CollSeq.pUser member variable is an extra parameter that passed in ** as the first argument to the UTF-8 comparison function, xCmp. ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, ** xCmp16. ** ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the ** collating sequence is undefined. Indices built on an undefined ** collating sequence may not be read or written. */ struct CollSeq { char *zName; /* Name of the collating sequence, UTF-8 encoded */ void *pUser; /* First argument to xCmp() */ void *pUser16; /* First argument to xCmp16() */ int (*xCmp)(void*,int, const void*, int, const void*); int (*xCmp16)(void*,int, const void*, int, const void*); }; /* ** A sort order can be either ASC or DESC. */ #define SQLITE_SO_ASC 0 /* Sort in ascending order */ #define SQLITE_SO_DESC 1 /* Sort in ascending order */ |
︙ | ︙ | |||
752 753 754 755 756 757 758 759 760 761 762 763 764 765 | ** be the right operand of an IN operator. Or, if a scalar SELECT appears ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only ** operand. */ struct Expr { u8 op; /* Operation performed by this node */ char affinity; /* The affinity of the column or 0 if not a column */ u8 iDb; /* Database referenced by this expression */ u8 flags; /* Various flags. See below */ Expr *pLeft, *pRight; /* Left and right subnodes */ ExprList *pList; /* A list of expressions used as function arguments ** or in "<expr> IN (<expr-list)" */ Token token; /* An operand token */ Token span; /* Complete text of the expression */ | > | 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | ** be the right operand of an IN operator. Or, if a scalar SELECT appears ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only ** operand. */ struct Expr { u8 op; /* Operation performed by this node */ char affinity; /* The affinity of the column or 0 if not a column */ CollSeq *pColl; /* The collation type of the column or 0 */ u8 iDb; /* Database referenced by this expression */ u8 flags; /* Various flags. See below */ Expr *pLeft, *pRight; /* Left and right subnodes */ ExprList *pList; /* A list of expressions used as function arguments ** or in "<expr> IN (<expr-list)" */ Token token; /* An operand token */ Token span; /* Complete text of the expression */ |
︙ | ︙ | |||
1220 1221 1222 1223 1224 1225 1226 | void sqlite3RollbackInternalChanges(sqlite*); void sqlite3CommitInternalChanges(sqlite*); Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); void sqlite3OpenMasterTable(Vdbe *v, int); void sqlite3StartTable(Parse*,Token*,Token*,Token*,int,int); void sqlite3AddColumn(Parse*,Token*); void sqlite3AddNotNull(Parse*, int); | | < < | | 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 | void sqlite3RollbackInternalChanges(sqlite*); void sqlite3CommitInternalChanges(sqlite*); Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); void sqlite3OpenMasterTable(Vdbe *v, int); void sqlite3StartTable(Parse*,Token*,Token*,Token*,int,int); void sqlite3AddColumn(Parse*,Token*); void sqlite3AddNotNull(Parse*, int); void sqlite3AddPrimaryKey(Parse*, ExprList*, int); void sqlite3AddColumnType(Parse*,Token*,Token*); void sqlite3AddDefaultValue(Parse*,Token*,int); void sqlite3AddCollateType(Parse*, const char*, int); void sqlite3EndTable(Parse*,Token*,Select*); void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int); int sqlite3ViewGetColumnNames(Parse*,Table*); void sqlite3DropTable(Parse*, SrcList*, int); void sqlite3DeleteTable(sqlite*, Table*); void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); IdList *sqlite3IdListAppend(IdList*, Token*); int sqlite3IdListIndex(IdList*,const char*); SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*); void sqlite3SrcListAddAlias(SrcList*, Token*); void sqlite3SrcListAssignCursors(Parse*, SrcList*); void sqlite3IdListDelete(IdList*); void sqlite3SrcListDelete(SrcList*); void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, Token*); void sqlite3DropIndex(Parse*, SrcList*); void sqlite3AddKeyType(Vdbe*, ExprList*); void sqlite3AddIdxKeyType(Vdbe*, Index*); int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, int,int,int); |
︙ | ︙ | |||
1320 1321 1322 1323 1324 1325 1326 | void sqlite3DeleteTriggerStep(TriggerStep*); TriggerStep *sqlite3TriggerSelectStep(Select*); TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*, Select*, int); TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); void sqlite3DeleteTrigger(Trigger*); int sqlite3JoinType(Parse*, Token*, Token*, Token*); | | | 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 | void sqlite3DeleteTriggerStep(TriggerStep*); TriggerStep *sqlite3TriggerSelectStep(Select*); TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*, Select*, int); TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); void sqlite3DeleteTrigger(Trigger*); int sqlite3JoinType(Parse*, Token*, Token*, Token*); void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); void sqlite3DeferForeignKey(Parse*, int); #ifndef SQLITE_OMIT_AUTHORIZATION void sqlite3AuthRead(Parse*,Expr*,SrcList*); int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); void sqlite3AuthContextPop(AuthContext*); #else |
︙ | ︙ | |||
1375 1376 1377 1378 1379 1380 1381 | int sqlite3utfTranslate(const void *, int , u8 , void **, int *, u8); u8 sqlite3UtfReadBom(const void *zData, int nData); void *sqlite3HexToBlob(const char *z); int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); const char *sqlite3ErrStr(int); int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold); int sqlite3ReadSchema(sqlite *db); | > > > | 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 | int sqlite3utfTranslate(const void *, int , u8 , void **, int *, u8); u8 sqlite3UtfReadBom(const void *zData, int nData); void *sqlite3HexToBlob(const char *z); int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); const char *sqlite3ErrStr(int); int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold); int sqlite3ReadSchema(sqlite *db); CollSeq *sqlite3FindCollSeq(sqlite *,const char *,int,int); CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); CollSeq *sqlite3ExprCollSeq(Expr *pExpr); |
Changes to src/tclsqlite.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** A TCL Interface to SQLite ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** A TCL Interface to SQLite ** ** $Id: tclsqlite.c,v 1.81 2004/06/09 09:55:19 danielk1977 Exp $ */ #ifndef NO_TCL /* Omit this whole file if TCL is unavailable */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | typedef struct SqlFunc SqlFunc; struct SqlFunc { Tcl_Interp *interp; /* The TCL interpret to execute the function */ char *zScript; /* The script to be run */ SqlFunc *pNext; /* Next function on the list of them all */ }; /* ** There is one instance of this structure for each SQLite database ** that has been opened by the SQLite TCL interface. */ typedef struct SqliteDb SqliteDb; struct SqliteDb { sqlite *db; /* The "real" database structure */ Tcl_Interp *interp; /* The interpreter used for this database */ char *zBusy; /* The busy callback routine */ char *zCommit; /* The commit hook callback routine */ char *zTrace; /* The trace callback routine */ char *zProgress; /* The progress callback routine */ char *zAuth; /* The authorization callback routine */ SqlFunc *pFunc; /* List of SQL functions */ int rc; /* Return code of most recent sqlite3_exec() */ int nChange; /* Database changes for the most recent eval */ }; /* ** An instance of this structure passes information thru the sqlite ** logic from the original TCL command into the callback routine. | > > > > > > > > > > > > | 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | typedef struct SqlFunc SqlFunc; struct SqlFunc { Tcl_Interp *interp; /* The TCL interpret to execute the function */ char *zScript; /* The script to be run */ SqlFunc *pNext; /* Next function on the list of them all */ }; /* ** New collation sequences function can be created as TCL scripts. Each such ** function is described by an instance of the following structure. */ typedef struct SqlCollate SqlCollate; struct SqlCollate { Tcl_Interp *interp; /* The TCL interpret to execute the function */ char *zScript; /* The script to be run */ SqlCollate *pNext; /* Next function on the list of them all */ }; /* ** There is one instance of this structure for each SQLite database ** that has been opened by the SQLite TCL interface. */ typedef struct SqliteDb SqliteDb; struct SqliteDb { sqlite *db; /* The "real" database structure */ Tcl_Interp *interp; /* The interpreter used for this database */ char *zBusy; /* The busy callback routine */ char *zCommit; /* The commit hook callback routine */ char *zTrace; /* The trace callback routine */ char *zProgress; /* The progress callback routine */ char *zAuth; /* The authorization callback routine */ SqlFunc *pFunc; /* List of SQL functions */ SqlCollate *pCollate; /* List of SQL collation functions */ int rc; /* Return code of most recent sqlite3_exec() */ int nChange; /* Database changes for the most recent eval */ }; /* ** An instance of this structure passes information thru the sqlite ** logic from the original TCL command into the callback routine. |
︙ | ︙ | |||
111 112 113 114 115 116 117 118 119 120 121 122 123 124 | SqliteDb *pDb = (SqliteDb*)db; sqlite3_close(pDb->db); while( pDb->pFunc ){ SqlFunc *pFunc = pDb->pFunc; pDb->pFunc = pFunc->pNext; Tcl_Free((char*)pFunc); } if( pDb->zBusy ){ Tcl_Free(pDb->zBusy); } if( pDb->zTrace ){ Tcl_Free(pDb->zTrace); } if( pDb->zAuth ){ | > > > > > | 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | SqliteDb *pDb = (SqliteDb*)db; sqlite3_close(pDb->db); while( pDb->pFunc ){ SqlFunc *pFunc = pDb->pFunc; pDb->pFunc = pFunc->pNext; Tcl_Free((char*)pFunc); } while( pDb->pCollate ){ SqlCollate *pCollate = pDb->pCollate; pDb->pCollate = pCollate->pNext; Tcl_Free((char*)pCollate); } if( pDb->zBusy ){ Tcl_Free(pDb->zBusy); } if( pDb->zTrace ){ Tcl_Free(pDb->zTrace); } if( pDb->zAuth ){ |
︙ | ︙ | |||
195 196 197 198 199 200 201 202 203 204 205 206 207 208 | rc = Tcl_Eval(pDb->interp, pDb->zCommit); if( rc!=TCL_OK || atoi(Tcl_GetStringResult(pDb->interp)) ){ return 1; } return 0; } /* ** This routine is called to evaluate an SQL function implemented ** using TCL script. */ static void tclSqlFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ SqlFunc *p = sqlite3_user_data(context); | > > > > > > > > > > > > > > > > > > > > > > > | 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | rc = Tcl_Eval(pDb->interp, pDb->zCommit); if( rc!=TCL_OK || atoi(Tcl_GetStringResult(pDb->interp)) ){ return 1; } return 0; } /* ** This routine is called to evaluate an SQL collation function implemented ** using TCL script. */ static int tclSqlCollate( void *pCtx, int nA, const void *zA, int nB, const void *zB ){ SqlCollate *p = (SqlCollate *)pCtx; Tcl_Obj *pCmd; pCmd = Tcl_NewStringObj(p->zScript, -1); Tcl_IncrRefCount(pCmd); Tcl_ListObjAppendElement(p->interp, pCmd, Tcl_NewStringObj(zA, nA)); Tcl_ListObjAppendElement(p->interp, pCmd, Tcl_NewStringObj(zB, nB)); Tcl_EvalObjEx(p->interp, pCmd, 0); Tcl_DecrRefCount(pCmd); return (atoi(Tcl_GetStringResult(p->interp))); } /* ** This routine is called to evaluate an SQL function implemented ** using TCL script. */ static void tclSqlFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ SqlFunc *p = sqlite3_user_data(context); |
︙ | ︙ | |||
338 339 340 341 342 343 344 | int rc = TCL_OK; static const char *DB_strs[] = { "authorizer", "busy", "changes", "close", "commit_hook", "complete", "errorcode", "eval", "function", "last_insert_rowid", "last_statement_changes", "onecolumn", "progress", "rekey", "timeout", | | | | 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | int rc = TCL_OK; static const char *DB_strs[] = { "authorizer", "busy", "changes", "close", "commit_hook", "complete", "errorcode", "eval", "function", "last_insert_rowid", "last_statement_changes", "onecolumn", "progress", "rekey", "timeout", "trace", "collate", 0 }; enum DB_enum { DB_AUTHORIZER, DB_BUSY, DB_CHANGES, DB_CLOSE, DB_COMMIT_HOOK, DB_COMPLETE, DB_ERRORCODE, DB_EVAL, DB_FUNCTION, DB_LAST_INSERT_ROWID, DB_LAST_STATEMENT_CHANGES, DB_ONECOLUMN, DB_PROGRESS, DB_REKEY, DB_TIMEOUT, DB_TRACE, DB_COLLATE }; if( objc<2 ){ Tcl_WrongNumArgs(interp, 1, objv, "SUBCOMMAND ..."); return TCL_ERROR; } if( Tcl_GetIndexFromObj(interp, objv[1], DB_strs, "option", 0, &choice) ){ |
︙ | ︙ | |||
849 850 851 852 853 854 855 856 857 858 859 860 861 862 | sqlite3_trace(pDb->db, DbTraceHandler, pDb); }else{ sqlite3_trace(pDb->db, 0, 0); } } break; } } /* End of the SWITCH statement */ return rc; } /* ** sqlite DBNAME FILENAME ?MODE? ?-key KEY? | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 | sqlite3_trace(pDb->db, DbTraceHandler, pDb); }else{ sqlite3_trace(pDb->db, 0, 0); } } break; } /* ** $db collate NAME SCRIPT ** ** Create a new SQL collation function called NAME. Whenever ** that function is called, invoke SCRIPT to evaluate the function. */ case DB_COLLATE: { SqlCollate *pCollate; char *zName; char *zScript; int nScript; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 2, objv, "NAME SCRIPT"); return TCL_ERROR; } zName = Tcl_GetStringFromObj(objv[2], 0); zScript = Tcl_GetStringFromObj(objv[3], &nScript); pCollate = (SqlCollate*)Tcl_Alloc( sizeof(*pCollate) + nScript + 1 ); if( pCollate==0 ) return TCL_ERROR; pCollate->interp = interp; pCollate->pNext = pDb->pCollate; pCollate->zScript = (char*)&pCollate[1]; strcpy(pCollate->zScript, zScript); if( sqlite3_create_collation(pDb->db, zName, 0, pCollate, tclSqlCollate) ){ return TCL_ERROR; } break; } } /* End of the SWITCH statement */ return rc; } /* ** sqlite DBNAME FILENAME ?MODE? ?-key KEY? |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the printf() interface to SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the printf() interface to SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test1.c,v 1.72 2004/06/09 09:55:19 danielk1977 Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include "os.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
1546 1547 1548 1549 1550 1551 1552 | if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR; Tcl_SetObjResult(interp, Tcl_NewIntObj(sqlite3_data_count(pStmt))); return TCL_OK; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 | if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR; Tcl_SetObjResult(interp, Tcl_NewIntObj(sqlite3_data_count(pStmt))); return TCL_OK; } /* ** Usage: sqlite3_column_text STMT column ** ** Usage: sqlite3_column_decltype STMT column ** ** Usage: sqlite3_column_name STMT column */ |
︙ | ︙ | |||
1876 1877 1878 1879 1880 1881 1882 | { "sqlite3_bind_text16", test_bind_text16 ,0 }, { "sqlite3_bind_blob", test_bind_blob ,0 }, { "sqlite3_errcode", test_errcode ,0 }, { "sqlite3_errmsg", test_errmsg ,0 }, { "sqlite3_errmsg16", test_errmsg16 ,0 }, { "sqlite3_open", test_open ,0 }, { "sqlite3_open16", test_open16 ,0 }, | < | 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 | { "sqlite3_bind_text16", test_bind_text16 ,0 }, { "sqlite3_bind_blob", test_bind_blob ,0 }, { "sqlite3_errcode", test_errcode ,0 }, { "sqlite3_errmsg", test_errmsg ,0 }, { "sqlite3_errmsg16", test_errmsg16 ,0 }, { "sqlite3_open", test_open ,0 }, { "sqlite3_open16", test_open16 ,0 }, { "sqlite3_prepare", test_prepare ,0 }, { "sqlite3_prepare16", test_prepare16 ,0 }, { "sqlite3_finalize", test_finalize ,0 }, { "sqlite3_reset", test_reset ,0 }, { "sqlite3_step", test_step,0 }, |
︙ | ︙ |
Changes to src/test5.c.
︙ | ︙ | |||
11 12 13 14 15 16 17 | ************************************************************************* ** Code for testing the utf.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. Specifically, the code in this file ** is used for testing the SQLite routines for converting between ** the various supported unicode encodings. ** | | > | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ************************************************************************* ** Code for testing the utf.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. Specifically, the code in this file ** is used for testing the SQLite routines for converting between ** the various supported unicode encodings. ** ** $Id: test5.c,v 1.9 2004/06/09 09:55:19 danielk1977 Exp $ */ #include "sqliteInt.h" #include "vdbeInt.h" #include "os.h" /* to get SQLITE_BIGENDIAN */ #include "tcl.h" #include <stdlib.h> #include <string.h> /* ** Return the number of bytes up to and including the first pair of |
︙ | ︙ | |||
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | bytes = Tcl_GetStringFromObj(objv[1], &len); pRet = Tcl_NewByteArrayObj(bytes, len+1); Tcl_SetObjResult(interp, pRet); return TCL_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetest5_Init(Tcl_Interp *interp){ static struct { char *zName; Tcl_ObjCmdProc *xProc; } aCmd[] = { { "sqlite_utf16to8", (Tcl_ObjCmdProc*)sqlite_utf16to8 }, { "sqlite_utf8to16le", (Tcl_ObjCmdProc*)sqlite_utf8to16le }, { "sqlite_utf8to16be", (Tcl_ObjCmdProc*)sqlite_utf8to16be }, { "sqlite_utf16to16le", (Tcl_ObjCmdProc*)sqlite_utf16to16le }, { "sqlite_utf16to16be", (Tcl_ObjCmdProc*)sqlite_utf16to16be }, { "binarize", (Tcl_ObjCmdProc*)binarize }, }; int i; for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < | | 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | bytes = Tcl_GetStringFromObj(objv[1], &len); pRet = Tcl_NewByteArrayObj(bytes, len+1); Tcl_SetObjResult(interp, pRet); return TCL_OK; } /* ** Usage: test_value_overhead <repeat-count> <do-calls>. ** ** This routine is used to test the overhead of calls to ** sqlite3_value_text(), on a value that contains a UTF-8 string. The idea ** is to figure out whether or not it is a problem to use sqlite3_value ** structures with collation sequence functions. ** ** If <do-calls> is 0, then the calls to sqlite3_value_text() are not ** actually made. */ static int test_value_overhead( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ int do_calls; int repeat_count; int i; Mem val; const char *zVal; if( objc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetStringFromObj(objv[0], 0), " <repeat-count> <do-calls>", 0); return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[1], &repeat_count) ) return TCL_ERROR; if( Tcl_GetIntFromObj(interp, objv[2], &do_calls) ) return TCL_ERROR; val.flags = MEM_Str|MEM_Term|MEM_Static; val.z = "hello world"; val.type = SQLITE_TEXT; val.enc = TEXT_Utf8; for(i=0; i<repeat_count; i++){ if( do_calls ){ zVal = sqlite3_value_text(&val); } } return TCL_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetest5_Init(Tcl_Interp *interp){ static struct { char *zName; Tcl_ObjCmdProc *xProc; } aCmd[] = { { "sqlite_utf16to8", (Tcl_ObjCmdProc*)sqlite_utf16to8 }, { "sqlite_utf8to16le", (Tcl_ObjCmdProc*)sqlite_utf8to16le }, { "sqlite_utf8to16be", (Tcl_ObjCmdProc*)sqlite_utf8to16be }, { "sqlite_utf16to16le", (Tcl_ObjCmdProc*)sqlite_utf16to16le }, { "sqlite_utf16to16be", (Tcl_ObjCmdProc*)sqlite_utf16to16be }, { "binarize", (Tcl_ObjCmdProc*)binarize }, { "test_value_overhead", (Tcl_ObjCmdProc*)test_value_overhead }, }; int i; for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); } return SQLITE_OK; } |
Changes to src/util.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** ** $Id: util.c,v 1.99 2004/06/09 09:55:19 danielk1977 Exp $ */ #include "sqliteInt.h" #include <stdarg.h> #include <ctype.h> /* ** If malloc() ever fails, this global variable gets set to 1. |
︙ | ︙ | |||
549 550 551 552 553 554 555 | return *a - *b; } int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } | | | 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | return *a - *b; } int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; } /* ** Return TRUE if z is a pure numeric string. Return FALSE if the ** string contains any character which is not part of a number. If ** the string is numeric and contains the '.' character, set *realnum ** to TRUE (otherwise FALSE). |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.361 2004/06/09 09:55:19 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> #include "vdbeInt.h" /* |
︙ | ︙ | |||
1506 1507 1508 1509 1510 1511 1512 | ** This works just like the Eq opcode except that the jump is taken if ** the operands from the stack are not equal. See the Eq opcode for ** additional information. */ /* Opcode: Lt P1 P2 P3 ** ** This works just like the Eq opcode except that the jump is taken if | | | | | | 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 | ** This works just like the Eq opcode except that the jump is taken if ** the operands from the stack are not equal. See the Eq opcode for ** additional information. */ /* Opcode: Lt P1 P2 P3 ** ** This works just like the Eq opcode except that the jump is taken if ** the 2nd element down on the stack is less than the top of the stack. ** See the Eq opcode for additional information. */ /* Opcode: Le P1 P2 P3 ** ** This works just like the Eq opcode except that the jump is taken if ** the 2nd element down on the stack is less than or equal to the ** top of the stack. See the Eq opcode for additional information. */ /* Opcode: Gt P1 P2 P3 ** ** This works just like the Eq opcode except that the jump is taken if ** the 2nd element down on the stack is greater than the top of the stack. ** See the Eq opcode for additional information. */ /* Opcode: Ge P1 P2 P3 ** ** This works just like the Eq opcode except that the jump is taken if ** the 2nd element down on the stack is greater than or equal to the ** top of the stack. See the Eq opcode for additional information. */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1252 1253 1254 1255 1256 1257 1258 | if( pOp->p3type==P3_DYNAMIC || pOp->p3type==P3_KEYINFO ){ sqliteFree(pOp->p3); } if( pOp->p3type==P3_VDBEFUNC ){ int j; VdbeFunc *pVdbeFunc = (VdbeFunc *)pOp->p3; for(j=0; j<pVdbeFunc->nAux; j++){ | | | 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 | if( pOp->p3type==P3_DYNAMIC || pOp->p3type==P3_KEYINFO ){ sqliteFree(pOp->p3); } if( pOp->p3type==P3_VDBEFUNC ){ int j; VdbeFunc *pVdbeFunc = (VdbeFunc *)pOp->p3; for(j=0; j<pVdbeFunc->nAux; j++){ struct AuxData *pAuxData = &pVdbeFunc->apAux[j]; if( pAuxData->pAux && pAuxData->xDelete ){ pAuxData->xDelete(pAuxData->pAux); } } sqliteFree(pVdbeFunc); } #ifndef NDEBUG |
︙ | ︙ | |||
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 | u32 idx1, idx2; /* Offset into aKey[] of next header element */ u32 szHdr1, szHdr2; /* Number of bytes in header */ int i = 0; int nField; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; const unsigned char *aKey2 = (const unsigned char *)pKey2; idx1 = sqlite3GetVarint32(pKey1, &szHdr1); d1 = szHdr1; idx2 = sqlite3GetVarint32(pKey2, &szHdr2); d2 = szHdr2; nField = pKeyInfo->nField; while( idx1<szHdr1 && idx2<szHdr2 ){ | > > > > > < < | 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 | u32 idx1, idx2; /* Offset into aKey[] of next header element */ u32 szHdr1, szHdr2; /* Number of bytes in header */ int i = 0; int nField; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; const unsigned char *aKey2 = (const unsigned char *)pKey2; Mem mem1; Mem mem2; mem1.enc = pKeyInfo->enc; mem2.enc = pKeyInfo->enc; idx1 = sqlite3GetVarint32(pKey1, &szHdr1); d1 = szHdr1; idx2 = sqlite3GetVarint32(pKey2, &szHdr2); d2 = szHdr2; nField = pKeyInfo->nField; while( idx1<szHdr1 && idx2<szHdr2 ){ u32 serial_type1; u32 serial_type2; /* Read the serial types for the next element in each key. */ idx1 += sqlite3GetVarint32(&aKey1[idx1], &serial_type1); if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; idx2 += sqlite3GetVarint32(&aKey2[idx2], &serial_type2); |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
423 424 425 426 427 428 429 | if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } | > > > > > > > > > > > > > | > | > > > > > > | < < > > > > > > > | > > > > | 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } assert( pMem1->enc==pMem2->enc ); assert( pMem1->enc==TEXT_Utf8 || pMem1->enc==TEXT_Utf16le || pMem1->enc==TEXT_Utf16be ); /* FIX ME: This may fail if the collation sequence is deleted after ** this vdbe program is compiled. We cannot just use BINARY in this ** case as this may lead to a segfault caused by traversing an index ** table incorrectly. We need to return an error to the user in this ** case. */ assert( !pColl || (pColl->xCmp || pColl->xCmp16) ); if( pColl ){ if( (pMem1->enc==TEXT_Utf8 && pColl->xCmp) || !pColl->xCmp16 ){ return pColl->xCmp( pColl->pUser, sqlite3_value_bytes((sqlite3_value *)pMem1), sqlite3_value_text((sqlite3_value *)pMem1), sqlite3_value_bytes((sqlite3_value *)pMem2), sqlite3_value_text((sqlite3_value *)pMem2) ); }else{ return pColl->xCmp16( pColl->pUser, sqlite3_value_bytes16((sqlite3_value *)pMem1), sqlite3_value_text16((sqlite3_value *)pMem1), sqlite3_value_bytes16((sqlite3_value *)pMem2), sqlite3_value_text16((sqlite3_value *)pMem2) ); } } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } /* Both values must be blobs. Compare using memcmp(). */ rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); if( rc==0 ){ rc = pMem1->n - pMem2->n; |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** $Id: where.c,v 1.103 2004/06/09 09:55:20 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by an AND operator. |
︙ | ︙ | |||
204 205 206 207 208 209 210 211 212 213 214 215 216 217 | ** the first nEqCol columns. ** ** All terms of the ORDER BY clause must be either ASC or DESC. The ** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is ** set to 0 if the ORDER BY clause is all ASC. */ static Index *findSortingIndex( Table *pTab, /* The table to be sorted */ int base, /* Cursor number for pTab */ ExprList *pOrderBy, /* The ORDER BY clause */ Index *pPreferredIdx, /* Use this index, if possible and not NULL */ int nEqCol, /* Number of index columns used with == constraints */ int *pbRev /* Set to 1 if ORDER BY is DESC */ ){ | > | 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | ** the first nEqCol columns. ** ** All terms of the ORDER BY clause must be either ASC or DESC. The ** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is ** set to 0 if the ORDER BY clause is all ASC. */ static Index *findSortingIndex( sqlite *db, Table *pTab, /* The table to be sorted */ int base, /* Cursor number for pTab */ ExprList *pOrderBy, /* The ORDER BY clause */ Index *pPreferredIdx, /* Use this index, if possible and not NULL */ int nEqCol, /* Number of index columns used with == constraints */ int *pbRev /* Set to 1 if ORDER BY is DESC */ ){ |
︙ | ︙ | |||
226 227 228 229 230 231 232 | for(i=0; i<pOrderBy->nExpr; i++){ Expr *p; if( pOrderBy->a[i].sortOrder!=sortOrder ){ /* Indices can only be used if all ORDER BY terms are either ** DESC or ASC. Indices cannot be used on a mixture. */ return 0; } | < < < < | > > > > | > > > > > > | > | 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | for(i=0; i<pOrderBy->nExpr; i++){ Expr *p; if( pOrderBy->a[i].sortOrder!=sortOrder ){ /* Indices can only be used if all ORDER BY terms are either ** DESC or ASC. Indices cannot be used on a mixture. */ return 0; } p = pOrderBy->a[i].pExpr; if( p->op!=TK_COLUMN || p->iTable!=base ){ /* Can not use an index sort on anything that is not a column in the ** left-most table of the FROM clause */ return 0; } } /* If we get this far, it means the ORDER BY clause consists only of ** ascending columns in the left-most table of the FROM clause. Now ** check for a matching index. */ pMatch = 0; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nExpr = pOrderBy->nExpr; if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue; for(i=j=0; i<nEqCol; i++){ CollSeq *pColl = sqlite3ExprCollSeq(pOrderBy->a[j].pExpr); if( !pColl ) pColl = db->pDfltColl; if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break; if( pPreferredIdx->keyInfo.aColl[i]!=pIdx->keyInfo.aColl[i] ) break; if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] && pColl==pIdx->keyInfo.aColl[i] ){ j++; } } if( i<nEqCol ) continue; for(i=0; i+j<nExpr; i++){ CollSeq *pColl = sqlite3ExprCollSeq(pOrderBy->a[i+j].pExpr); if( !pColl ) pColl = db->pDfltColl; if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] || pColl!=pIdx->keyInfo.aColl[i+nEqCol] ) break; } if( i+j>=nExpr ){ pMatch = pIdx; if( pIdx==pPreferredIdx ) break; } } if( pMatch && pbRev ){ |
︙ | ︙ | |||
528 529 530 531 532 533 534 535 536 537 538 539 540 | int ltMask = 0; /* Index columns covered by an x<... term */ int gtMask = 0; /* Index columns covered by an x>... term */ int inMask = 0; /* Index columns covered by an x IN .. term */ int nEq, m, score; if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */ for(j=0; j<nExpr; j++){ if( aExpr[j].idxLeft==iCur && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ int iColumn = aExpr[j].p->pLeft->iColumn; int k; char idxaff = pIdx->pTable->aCol[iColumn].affinity; for(k=0; k<pIdx->nColumn; k++){ | > > > > > > > > > | | > | 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 | int ltMask = 0; /* Index columns covered by an x<... term */ int gtMask = 0; /* Index columns covered by an x>... term */ int inMask = 0; /* Index columns covered by an x IN .. term */ int nEq, m, score; if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */ for(j=0; j<nExpr; j++){ CollSeq *pColl = sqlite3ExprCollSeq(aExpr[j].p->pLeft); if( !pColl && aExpr[j].p->pRight ){ pColl = sqlite3ExprCollSeq(aExpr[j].p->pRight); } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( aExpr[j].idxLeft==iCur && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ int iColumn = aExpr[j].p->pLeft->iColumn; int k; char idxaff = pIdx->pTable->aCol[iColumn].affinity; for(k=0; k<pIdx->nColumn; k++){ /* If the collating sequences or affinities don't match, ** ignore this index. */ if( pColl!=pIdx->keyInfo.aColl[k] ) continue; if( !sqlite3IndexAffinityOk(aExpr[j].p, idxaff) ) continue; if( pIdx->aiColumn[k]==iColumn ){ switch( aExpr[j].p->op ){ case TK_IN: { if( k==0 ) inMask |= 1; break; } case TK_EQ: { eqMask |= 1<<k; |
︙ | ︙ | |||
571 572 573 574 575 576 577 | } if( aExpr[j].idxRight==iCur && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ int iColumn = aExpr[j].p->pRight->iColumn; int k; char idxaff = pIdx->pTable->aCol[iColumn].affinity; for(k=0; k<pIdx->nColumn; k++){ | > > | | > | 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | } if( aExpr[j].idxRight==iCur && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ int iColumn = aExpr[j].p->pRight->iColumn; int k; char idxaff = pIdx->pTable->aCol[iColumn].affinity; for(k=0; k<pIdx->nColumn; k++){ /* If the collating sequences or affinities don't match, ** ignore this index. */ if( pColl!=pIdx->keyInfo.aColl[k] ) continue; if( !sqlite3IndexAffinityOk(aExpr[j].p, idxaff) ) continue; if( pIdx->aiColumn[k]==iColumn ){ switch( aExpr[j].p->op ){ case TK_EQ: { eqMask |= 1<<k; break; } case TK_LE: case TK_LT: { |
︙ | ︙ | |||
651 652 653 654 655 656 657 | }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ /* If the left-most column is accessed using its ROWID, then do ** not try to sort by index. */ pSortIdx = 0; }else{ int nEqCol = (pWInfo->a[0].score+4)/8; | | | 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 | }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ /* If the left-most column is accessed using its ROWID, then do ** not try to sort by index. */ pSortIdx = 0; }else{ int nEqCol = (pWInfo->a[0].score+4)/8; pSortIdx = findSortingIndex(pParse->db, pTab, pTabList->a[0].iCursor, *ppOrderBy, pIdx, nEqCol, &bRev); } if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){ if( pIdx==0 ){ pWInfo->a[0].pIdx = pSortIdx; pWInfo->a[0].iCur = pParse->nTab++; pWInfo->peakNTab = pParse->nTab; |
︙ | ︙ |
Added test/collate1.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | # # The author or author's hereby grant to the public domain a non-exclusive, # fully paid-up, perpetual, license in the software and all related # intellectual property to make, have made, use, have used, reproduce, # prepare derivative works, distribute, perform and display the work. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this file is testing the ORDER BY clause with # user-defined collation sequences. # # $Id: collate1.test,v 1.1 2004/06/09 09:55:20 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # # Tests are roughly organised as follows: # # collate1-1.* - Single-field ORDER BY with an explicit COLLATE clause. # collate1-2.* - Multi-field ORDER BY with an explicit COLLATE clause. # collate1-3.* - ORDER BY using a default collation type. Also that an # explict collate type overrides a default collate type. # collate1-4.* - ORDER BY using a data type. # # # Collation type 'HEX'. If an argument can be interpreted as a hexadecimal # number, then it is converted to one before the comparison is performed. # Numbers are less than other strings. If neither argument is a number, # [string compare] is used. # db collate HEX hex_collate proc hex_collate {lhs rhs} { set lhs_ishex [regexp {^(0x|)[1234567890abcdefABCDEF]+$} $lhs] set rhs_ishex [regexp {^(0x|)[1234567890abcdefABCDEF]+$} $rhs] if {$lhs_ishex && $rhs_ishex} { set lhsx [scan $lhs %x] set rhsx [scan $rhs %x] if {$lhs < $rhs} {return -1} if {$lhs == $rhs} {return 0} if {$lhs > $rhs} {return 1} } if {$lhs_ishex} { return -1; } if {$rhs_ishex} { return 1; } return [string compare $lhs $rhs] } db function hex {format 0x%X} # Mimic the SQLite 2 collation type NUMERIC. db collate numeric numeric_collate proc numeric_collate {lhs rhs} { if {$lhs == $rhs} {return 0} return [expr ($lhs>$rhs)?1:-1] } do_test collate1-1.0 { execsql { CREATE TABLE collate1t1(c1, c2); INSERT INTO collate1t1 VALUES(45, hex(45)); INSERT INTO collate1t1 VALUES(NULL, NULL); INSERT INTO collate1t1 VALUES(281, hex(281)); } } {} do_test collate1-1.1 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1; } } {{} 0x119 0x2D} do_test collate1-1.2 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex; } } {{} 0x2D 0x119} do_test collate1-1.3 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex DESC; } } {0x119 0x2D {}} do_test collate1-1.4 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex ASC; } } {{} 0x2D 0x119} do_test collate1-1.5 { execsql { DROP TABLE collate1t1; } } {} do_test collate1-2.0 { execsql { CREATE TABLE collate1t1(c1, c2); INSERT INTO collate1t1 VALUES('5', '0x11'); INSERT INTO collate1t1 VALUES('5', '0xA'); INSERT INTO collate1t1 VALUES(NULL, NULL); INSERT INTO collate1t1 VALUES('7', '0xA'); INSERT INTO collate1t1 VALUES('11', '0x11'); INSERT INTO collate1t1 VALUES('11', '0x101'); } } {} do_test collate1-2.2 { execsql { SELECT c1, c2 FROM collate1t1 ORDER BY 1 COLLATE numeric, 2 COLLATE hex; } } {{} {} 5 0xA 5 0x11 7 0xA 11 0x11 11 0x101} do_test collate1-2.3 { execsql { SELECT c1, c2 FROM collate1t1 ORDER BY 1 COLLATE binary, 2 COLLATE hex; } } {{} {} 11 0x11 11 0x101 5 0xA 5 0x11 7 0xA} do_test collate1-2.4 { execsql { SELECT c1, c2 FROM collate1t1 ORDER BY 1 COLLATE binary DESC, 2 COLLATE hex; } } {7 0xA 5 0xA 5 0x11 11 0x11 11 0x101 {} {}} do_test collate1-2.5 { execsql { SELECT c1, c2 FROM collate1t1 ORDER BY 1 COLLATE binary DESC, 2 COLLATE hex DESC; } } {7 0xA 5 0x11 5 0xA 11 0x101 11 0x11 {} {}} do_test collate1-2.6 { execsql { SELECT c1, c2 FROM collate1t1 ORDER BY 1 COLLATE binary ASC, 2 COLLATE hex ASC; } } {{} {} 11 0x11 11 0x101 5 0xA 5 0x11 7 0xA} do_test collate1-2.7 { execsql { DROP TABLE collate1t1; } } {} # # These tests ensure that the default collation type for a column is used # by an ORDER BY clause correctly. The focus is all the different ways # the column can be referenced. i.e. a, collate2t1.a, main.collate2t1.a etc. # do_test collate1-3.0 { execsql { CREATE TABLE collate1t1(a COLLATE hex, b); INSERT INTO collate1t1 VALUES( '0x5', 5 ); INSERT INTO collate1t1 VALUES( '1', 1 ); INSERT INTO collate1t1 VALUES( '0x45', 69 ); INSERT INTO collate1t1 VALUES( NULL, NULL ); SELECT * FROM collate1t1 ORDER BY a; } } {{} {} 1 1 0x5 5 0x45 69} do_test collate1-3.1 { execsql { SELECT * FROM collate1t1 ORDER BY 1; } } {{} {} 1 1 0x5 5 0x45 69} do_test collate1-3.2 { execsql { SELECT * FROM collate1t1 ORDER BY collate1t1.a; } } {{} {} 1 1 0x5 5 0x45 69} do_test collate1-3.3 { execsql { SELECT * FROM collate1t1 ORDER BY main.collate1t1.a; } } {{} {} 1 1 0x5 5 0x45 69} do_test collate1-3.4 { execsql { SELECT a as c1, b as c2 FROM collate1t1 ORDER BY c1; } } {{} {} 1 1 0x5 5 0x45 69} do_test collate1-3.5 { execsql { SELECT a as c1, b as c2 FROM collate1t1 ORDER BY c1 COLLATE binary; } } {{} {} 0x45 69 0x5 5 1 1} do_test collate1-3.6 { execsql { DROP TABLE collate1t1; } } {} # Update for SQLite version 3. The collate1-4.* test cases were written # before manifest types were introduced. The following test cases still # work, due to the 'affinity' mechanism, but they don't prove anything # about collation sequences. # do_test collate1-4.0 { execsql { CREATE TABLE collate1t1(c1 numeric, c2 text); INSERT INTO collate1t1 VALUES(1, 1); INSERT INTO collate1t1 VALUES(12, 12); INSERT INTO collate1t1 VALUES(NULL, NULL); INSERT INTO collate1t1 VALUES(101, 101); } } {} do_test collate1-4.1 { execsql { SELECT c1 FROM collate1t1 ORDER BY 1; } } {{} 1 12 101} do_test collate1-4.2 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1; } } {{} 1 101 12} do_test collate1-4.3 { execsql { SELECT c2+0 FROM collate1t1 ORDER BY 1; } } {{} 1 12 101} do_test collate1-4.4 { execsql { SELECT c1||'' FROM collate1t1 ORDER BY 1; } } {{} 1 101 12} do_test collate1-4.5 { execsql { DROP TABLE collate1t1; } } {} finish_test |
Added test/collate2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 | # # The author or author's hereby grant to the public domain a non-exclusive, # fully paid-up, perpetual, license in the software and all related # intellectual property to make, have made, use, have used, reproduce, # prepare derivative works, distribute, perform and display the work. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this file is testing comparison operators in expressions # that use user-defined collation sequences. # set testdir [file dirname $argv0] source $testdir/tester.tcl # # Tests are organised as follows: # # collate2-1.* WHERE <expr> expressions (sqliteExprIfTrue). # collate2-2.* WHERE NOT <expr> expressions (sqliteExprIfFalse). # collate2-3.* SELECT <expr> expressions (sqliteExprCode). # collate2-4.* Precedence of collation/data types in binary comparisons # collate2-5.* JOIN syntax. # # Create a collation type BACKWARDS for use in testing. This collation type # is similar to the built-in TEXT collation type except the order of # characters in each string is reversed before the comparison is performed. db collate BACKWARDS backwards_collate proc backwards_collate {a b} { set ra {}; set rb {} foreach c [split $a {}] { set ra $c$ra } foreach c [split $b {}] { set rb $c$rb } return [string compare $ra $rb] } # The following values are used in these tests: # NULL aa ab ba bb aA aB bA bB Aa Ab Ba Bb AA AB BA BB # # The collation orders for each of the tested collation types are: # # BINARY: NULL AA AB Aa Ab BA BB Ba Bb aA aB aa ab bA bB ba bb # NOCASE: NULL aa aA Aa AA ab aB Ab AB ba bA Ba BA bb bB Bb BB # BACKWARDS: NULL AA BA aA bA AB BB aB bB Aa Ba aa ba Ab Bb ab bb # # These tests verify that the default collation type for a column is used # for comparison operators (<, >, <=, >=, =) involving that column and # an expression that is not a column with a default collation type. # # The collation sequences BINARY and NOCASE are built-in, the BACKWARDS # collation sequence is implemented by the TCL proc backwards_collate # above. # do_test collate2-1.0 { execsql { CREATE TABLE collate2t1( a COLLATE BINARY, b COLLATE NOCASE, c COLLATE BACKWARDS ); INSERT INTO collate2t1 VALUES( NULL, NULL, NULL ); INSERT INTO collate2t1 VALUES( 'aa', 'aa', 'aa' ); INSERT INTO collate2t1 VALUES( 'ab', 'ab', 'ab' ); INSERT INTO collate2t1 VALUES( 'ba', 'ba', 'ba' ); INSERT INTO collate2t1 VALUES( 'bb', 'bb', 'bb' ); INSERT INTO collate2t1 VALUES( 'aA', 'aA', 'aA' ); INSERT INTO collate2t1 VALUES( 'aB', 'aB', 'aB' ); INSERT INTO collate2t1 VALUES( 'bA', 'bA', 'bA' ); INSERT INTO collate2t1 VALUES( 'bB', 'bB', 'bB' ); INSERT INTO collate2t1 VALUES( 'Aa', 'Aa', 'Aa' ); INSERT INTO collate2t1 VALUES( 'Ab', 'Ab', 'Ab' ); INSERT INTO collate2t1 VALUES( 'Ba', 'Ba', 'Ba' ); INSERT INTO collate2t1 VALUES( 'Bb', 'Bb', 'Bb' ); INSERT INTO collate2t1 VALUES( 'AA', 'AA', 'AA' ); INSERT INTO collate2t1 VALUES( 'AB', 'AB', 'AB' ); INSERT INTO collate2t1 VALUES( 'BA', 'BA', 'BA' ); INSERT INTO collate2t1 VALUES( 'BB', 'BB', 'BB' ); } if {[info exists collate_test_use_index]} { execsql { CREATE INDEX collate2t1_i1 ON collate2t1(a); CREATE INDEX collate2t1_i2 ON collate2t1(b); CREATE INDEX collate2t1_i3 ON collate2t1(c); } } } {} do_test collate2-1.1 { execsql { SELECT a FROM collate2t1 WHERE a > 'aa' ORDER BY 1; } } {ab bA bB ba bb} do_test collate2-1.2 { execsql { SELECT b FROM collate2t1 WHERE b > 'aa' ORDER BY 1, oid; } } {ab aB Ab AB ba bA Ba BA bb bB Bb BB} do_test collate2-1.3 { execsql { SELECT c FROM collate2t1 WHERE c > 'aa' ORDER BY 1; } } {ba Ab Bb ab bb} do_test collate2-1.4 { execsql { SELECT a FROM collate2t1 WHERE a < 'aa' ORDER BY 1; } } {AA AB Aa Ab BA BB Ba Bb aA aB} do_test collate2-1.5 { execsql { SELECT b FROM collate2t1 WHERE b < 'aa' ORDER BY 1, oid; } } {} do_test collate2-1.6 { execsql { SELECT c FROM collate2t1 WHERE c < 'aa' ORDER BY 1; } } {AA BA aA bA AB BB aB bB Aa Ba} do_test collate2-1.7 { execsql { SELECT a FROM collate2t1 WHERE a = 'aa'; } } {aa} do_test collate2-1.8 { execsql { SELECT b FROM collate2t1 WHERE b = 'aa' ORDER BY oid; } } {aa aA Aa AA} do_test collate2-1.9 { execsql { SELECT c FROM collate2t1 WHERE c = 'aa'; } } {aa} do_test collate2-1.10 { execsql { SELECT a FROM collate2t1 WHERE a >= 'aa' ORDER BY 1; } } {aa ab bA bB ba bb} do_test collate2-1.11 { execsql { SELECT b FROM collate2t1 WHERE b >= 'aa' ORDER BY 1, oid; } } {aa aA Aa AA ab aB Ab AB ba bA Ba BA bb bB Bb BB} do_test collate2-1.12 { execsql { SELECT c FROM collate2t1 WHERE c >= 'aa' ORDER BY 1; } } {aa ba Ab Bb ab bb} do_test collate2-1.13 { execsql { SELECT a FROM collate2t1 WHERE a <= 'aa' ORDER BY 1; } } {AA AB Aa Ab BA BB Ba Bb aA aB aa} do_test collate2-1.14 { execsql { SELECT b FROM collate2t1 WHERE b <= 'aa' ORDER BY 1, oid; } } {aa aA Aa AA} do_test collate2-1.15 { execsql { SELECT c FROM collate2t1 WHERE c <= 'aa' ORDER BY 1; } } {AA BA aA bA AB BB aB bB Aa Ba aa} do_test collate2-1.16 { execsql { SELECT a FROM collate2t1 WHERE a BETWEEN 'Aa' AND 'Bb' ORDER BY 1; } } {Aa Ab BA BB Ba Bb} do_test collate2-1.17 { execsql { SELECT b FROM collate2t1 WHERE b BETWEEN 'Aa' AND 'Bb' ORDER BY 1, oid; } } {aa aA Aa AA ab aB Ab AB ba bA Ba BA bb bB Bb BB} do_test collate2-1.18 { execsql { SELECT c FROM collate2t1 WHERE c BETWEEN 'Aa' AND 'Bb' ORDER BY 1; } } {Aa Ba aa ba Ab Bb} do_test collate2-1.19 { execsql { SELECT a FROM collate2t1 WHERE CASE a WHEN 'aa' THEN 1 ELSE 0 END ORDER BY 1, oid; } } {aa} do_test collate2-1.20 { execsql { SELECT b FROM collate2t1 WHERE CASE b WHEN 'aa' THEN 1 ELSE 0 END ORDER BY 1, oid; } } {aa aA Aa AA} do_test collate2-1.21 { execsql { SELECT c FROM collate2t1 WHERE CASE c WHEN 'aa' THEN 1 ELSE 0 END ORDER BY 1, oid; } } {aa} do_test collate2-1.22 { execsql { SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb') ORDER BY 1, oid; } } {aa bb} do_test collate2-1.23 { execsql { SELECT b FROM collate2t1 WHERE b IN ('aa', 'bb') ORDER BY 1, oid; } } {aa aA Aa AA bb bB Bb BB} do_test collate2-1.24 { execsql { SELECT c FROM collate2t1 WHERE c IN ('aa', 'bb') ORDER BY 1, oid; } } {aa bb} do_test collate2-1.25 { execsql { SELECT a FROM collate2t1 WHERE a IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')); } } {aa bb} do_test collate2-1.26 { execsql { SELECT b FROM collate2t1 WHERE b IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')); } } {aa bb aA bB Aa Bb AA BB} do_test collate2-1.27 { execsql { SELECT c FROM collate2t1 WHERE c IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')); } } {aa bb} do_test collate2-2.1 { execsql { SELECT a FROM collate2t1 WHERE NOT a > 'aa' ORDER BY 1; } } {AA AB Aa Ab BA BB Ba Bb aA aB aa} do_test collate2-2.2 { execsql { SELECT b FROM collate2t1 WHERE NOT b > 'aa' ORDER BY 1, oid; } } {aa aA Aa AA} do_test collate2-2.3 { execsql { SELECT c FROM collate2t1 WHERE NOT c > 'aa' ORDER BY 1; } } {AA BA aA bA AB BB aB bB Aa Ba aa} do_test collate2-2.4 { execsql { SELECT a FROM collate2t1 WHERE NOT a < 'aa' ORDER BY 1; } } {aa ab bA bB ba bb} do_test collate2-2.5 { execsql { SELECT b FROM collate2t1 WHERE NOT b < 'aa' ORDER BY 1, oid; } } {aa aA Aa AA ab aB Ab AB ba bA Ba BA bb bB Bb BB} do_test collate2-2.6 { execsql { SELECT c FROM collate2t1 WHERE NOT c < 'aa' ORDER BY 1; } } {aa ba Ab Bb ab bb} do_test collate2-2.7 { execsql { SELECT a FROM collate2t1 WHERE NOT a = 'aa'; } } {ab ba bb aA aB bA bB Aa Ab Ba Bb AA AB BA BB} do_test collate2-2.8 { execsql { SELECT b FROM collate2t1 WHERE NOT b = 'aa'; } } {ab ba bb aB bA bB Ab Ba Bb AB BA BB} do_test collate2-2.9 { execsql { SELECT c FROM collate2t1 WHERE NOT c = 'aa'; } } {ab ba bb aA aB bA bB Aa Ab Ba Bb AA AB BA BB} do_test collate2-2.10 { execsql { SELECT a FROM collate2t1 WHERE NOT a >= 'aa' ORDER BY 1; } } {AA AB Aa Ab BA BB Ba Bb aA aB} do_test collate2-2.11 { execsql { SELECT b FROM collate2t1 WHERE NOT b >= 'aa' ORDER BY 1, oid; } } {} do_test collate2-2.12 { execsql { SELECT c FROM collate2t1 WHERE NOT c >= 'aa' ORDER BY 1; } } {AA BA aA bA AB BB aB bB Aa Ba} do_test collate2-2.13 { execsql { SELECT a FROM collate2t1 WHERE NOT a <= 'aa' ORDER BY 1; } } {ab bA bB ba bb} do_test collate2-2.14 { execsql { SELECT b FROM collate2t1 WHERE NOT b <= 'aa' ORDER BY 1, oid; } } {ab aB Ab AB ba bA Ba BA bb bB Bb BB} do_test collate2-2.15 { execsql { SELECT c FROM collate2t1 WHERE NOT c <= 'aa' ORDER BY 1; } } {ba Ab Bb ab bb} do_test collate2-2.16 { execsql { SELECT a FROM collate2t1 WHERE a NOT BETWEEN 'Aa' AND 'Bb' ORDER BY 1; } } {AA AB aA aB aa ab bA bB ba bb} do_test collate2-2.17 { execsql { SELECT b FROM collate2t1 WHERE b NOT BETWEEN 'Aa' AND 'Bb' ORDER BY 1, oid; } } {} do_test collate2-2.18 { execsql { SELECT c FROM collate2t1 WHERE c NOT BETWEEN 'Aa' AND 'Bb' ORDER BY 1; } } {AA BA aA bA AB BB aB bB ab bb} do_test collate2-2.19 { execsql { SELECT a FROM collate2t1 WHERE NOT CASE a WHEN 'aa' THEN 1 ELSE 0 END; } } {{} ab ba bb aA aB bA bB Aa Ab Ba Bb AA AB BA BB} do_test collate2-2.20 { execsql { SELECT b FROM collate2t1 WHERE NOT CASE b WHEN 'aa' THEN 1 ELSE 0 END; } } {{} ab ba bb aB bA bB Ab Ba Bb AB BA BB} do_test collate2-2.21 { execsql { SELECT c FROM collate2t1 WHERE NOT CASE c WHEN 'aa' THEN 1 ELSE 0 END; } } {{} ab ba bb aA aB bA bB Aa Ab Ba Bb AA AB BA BB} do_test collate2-2.22 { execsql { SELECT a FROM collate2t1 WHERE NOT a IN ('aa', 'bb'); } } {ab ba aA aB bA bB Aa Ab Ba Bb AA AB BA BB} do_test collate2-2.23 { execsql { SELECT b FROM collate2t1 WHERE NOT b IN ('aa', 'bb'); } } {ab ba aB bA Ab Ba AB BA} do_test collate2-2.24 { execsql { SELECT c FROM collate2t1 WHERE NOT c IN ('aa', 'bb'); } } {ab ba aA aB bA bB Aa Ab Ba Bb AA AB BA BB} do_test collate2-2.25 { execsql { SELECT a FROM collate2t1 WHERE NOT a IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')); } } {ab ba aA aB bA bB Aa Ab Ba Bb AA AB BA BB} do_test collate2-2.26 { execsql { SELECT b FROM collate2t1 WHERE NOT b IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')); } } {ab ba aB bA Ab Ba AB BA} do_test collate2-2.27 { execsql { SELECT c FROM collate2t1 WHERE NOT c IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')); } } {ab ba aA aB bA bB Aa Ab Ba Bb AA AB BA BB} do_test collate2-3.1 { execsql { SELECT a > 'aa' FROM collate2t1; } } {{} 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0} do_test collate2-3.2 { execsql { SELECT b > 'aa' FROM collate2t1; } } {{} 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1} do_test collate2-3.3 { execsql { SELECT c > 'aa' FROM collate2t1; } } {{} 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0} do_test collate2-3.4 { execsql { SELECT a < 'aa' FROM collate2t1; } } {{} 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1} do_test collate2-3.5 { execsql { SELECT b < 'aa' FROM collate2t1; } } {{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-3.6 { execsql { SELECT c < 'aa' FROM collate2t1; } } {{} 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1} do_test collate2-3.7 { execsql { SELECT a = 'aa' FROM collate2t1; } } {{} 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-3.8 { execsql { SELECT b = 'aa' FROM collate2t1; } } {{} 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0} do_test collate2-3.9 { execsql { SELECT c = 'aa' FROM collate2t1; } } {{} 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-3.10 { execsql { SELECT a <= 'aa' FROM collate2t1; } } {{} 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1} do_test collate2-3.11 { execsql { SELECT b <= 'aa' FROM collate2t1; } } {{} 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0} do_test collate2-3.12 { execsql { SELECT c <= 'aa' FROM collate2t1; } } {{} 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1} do_test collate2-3.13 { execsql { SELECT a >= 'aa' FROM collate2t1; } } {{} 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0} do_test collate2-3.14 { execsql { SELECT b >= 'aa' FROM collate2t1; } } {{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1} do_test collate2-3.15 { execsql { SELECT c >= 'aa' FROM collate2t1; } } {{} 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0} do_test collate2-3.16 { execsql { SELECT a BETWEEN 'Aa' AND 'Bb' FROM collate2t1; } } {{} 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1} do_test collate2-3.17 { execsql { SELECT b BETWEEN 'Aa' AND 'Bb' FROM collate2t1; } } {{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1} do_test collate2-3.18 { execsql { SELECT c BETWEEN 'Aa' AND 'Bb' FROM collate2t1; } } {{} 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0} do_test collate2-3.19 { execsql { SELECT CASE a WHEN 'aa' THEN 1 ELSE 0 END FROM collate2t1; } } {0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-3.20 { execsql { SELECT CASE b WHEN 'aa' THEN 1 ELSE 0 END FROM collate2t1; } } {0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0} do_test collate2-3.21 { execsql { SELECT CASE c WHEN 'aa' THEN 1 ELSE 0 END FROM collate2t1; } } {0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-3.22 { execsql { SELECT a IN ('aa', 'bb') FROM collate2t1; } } {{} 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-3.23 { execsql { SELECT b IN ('aa', 'bb') FROM collate2t1; } } {{} 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1} do_test collate2-3.24 { execsql { SELECT c IN ('aa', 'bb') FROM collate2t1; } } {{} 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-3.25 { execsql { SELECT a IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')) FROM collate2t1; } } {{} 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-3.26 { execsql { SELECT b IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')) FROM collate2t1; } } {{} 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1} do_test collate2-3.27 { execsql { SELECT c IN (SELECT a FROM collate2t1 WHERE a IN ('aa', 'bb')) FROM collate2t1; } } {{} 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0} do_test collate2-4.0 { execsql { CREATE TABLE collate2t2(b COLLATE binary); CREATE TABLE collate2t3(b text); INSERT INTO collate2t2 VALUES('aa'); INSERT INTO collate2t3 VALUES('aa'); } } {} # Test that when both sides of a binary comparison operator have # default collation types, the collate type for the leftmost term # is used. do_test collate2-4.1 { execsql { SELECT collate2t1.a FROM collate2t1, collate2t2 WHERE collate2t1.b = collate2t2.b; } } {aa aA Aa AA} do_test collate2-4.2 { execsql { SELECT collate2t1.a FROM collate2t1, collate2t2 WHERE collate2t2.b = collate2t1.b; } } {aa} # Test that when one side has a default collation type and the other # does not, the collation type is used. do_test collate2-4.3 { execsql { SELECT collate2t1.a FROM collate2t1, collate2t3 WHERE collate2t1.b = collate2t3.b||''; } } {aa aA Aa AA} do_test collate2-4.4 { execsql { SELECT collate2t1.a FROM collate2t1, collate2t3 WHERE collate2t3.b||'' = collate2t1.b; } } {aa aA Aa AA} do_test collate2-4.5 { execsql { DROP TABLE collate2t3; } } {} # # Test that the default collation types are used when the JOIN syntax # is used in place of a WHERE clause. # # SQLite transforms the JOIN syntax into a WHERE clause internally, so # the focus of these tests is to ensure that the table on the left-hand-side # of the join determines the collation type used. # do_test collate2-5.0 { execsql { SELECT collate2t1.b FROM collate2t1 JOIN collate2t2 USING (b); } } {aa aA Aa AA} do_test collate2-5.1 { execsql { SELECT collate2t1.b FROM collate2t2 JOIN collate2t1 USING (b); } } {aa} do_test collate2-5.2 { execsql { SELECT collate2t1.b FROM collate2t1 NATURAL JOIN collate2t2; } } {aa aA Aa AA} do_test collate2-5.3 { execsql { SELECT collate2t1.b FROM collate2t2 NATURAL JOIN collate2t1; } } {aa} do_test collate2-5.4 { execsql { SELECT collate2t2.b FROM collate2t1 LEFT OUTER JOIN collate2t2 USING (b) order by collate2t1.oid; } } {{} aa {} {} {} aa {} {} {} aa {} {} {} aa {} {} {}} do_test collate2-5.5 { execsql { SELECT collate2t1.b, collate2t2.b FROM collate2t2 LEFT OUTER JOIN collate2t1 USING (b); } } {aa aa} finish_test |
Added test/collate4.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 | # # The author or author's hereby grant to the public domain a non-exclusive, # fully paid-up, perpetual, license in the software and all related # intellectual property to make, have made, use, have used, reproduce, # prepare derivative works, distribute, perform and display the work. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this file is testing indices that use user-defined collation # sequences. # set testdir [file dirname $argv0] source $testdir/tester.tcl db collate TEXT text_collate proc text_collate {a b} { return [string compare $a $b] } # Do an SQL statement. Append the search count to the end of the result. # proc count sql { set ::sqlite_search_count 0 return [concat [execsql $sql] $::sqlite_search_count] } # This procedure executes the SQL. Then it checks the generated program # for the SQL and appends a "nosort" to the result if the program contains the # SortCallback opcode. If the program does not contain the SortCallback # opcode it appends "sort" # proc cksort {sql} { set data [execsql $sql] set prog [execsql "EXPLAIN $sql"] if {[regexp Sort $prog]} {set x sort} {set x nosort} lappend data $x return $data } # # Test cases are organized roughly as follows: # # collate4-1.* ORDER BY. # collate4-2.* WHERE clauses. # collate4-3.* constraints (primary key, unique). # collate4-4.* simple min() or max() queries. # collate4-5.* REINDEX command # collate4-6.* INTEGER PRIMARY KEY indices. # # # These tests - collate4-1.* - check that indices are correctly # selected or not selected to implement ORDER BY clauses when # user defined collation sequences are involved. # # Because these tests also exercise all the different ways indices # can be created, they also serve to verify that indices are correctly # initialised with user-defined collation sequences when they are # created. # # Tests named collate4-1.1.* use indices with a single column. Tests # collate4-1.2.* use indices with two columns. # do_test collate4-1.1.0 { execsql { CREATE TABLE collate4t1(a COLLATE NOCASE, b COLLATE TEXT); INSERT INTO collate4t1 VALUES( 'a', 'a' ); INSERT INTO collate4t1 VALUES( 'b', 'b' ); INSERT INTO collate4t1 VALUES( NULL, NULL ); INSERT INTO collate4t1 VALUES( 'B', 'B' ); INSERT INTO collate4t1 VALUES( 'A', 'A' ); CREATE INDEX collate4i1 ON collate4t1(a); CREATE INDEX collate4i2 ON collate4t1(b); } } {} do_test collate4-1.1.1 { cksort {SELECT a FROM collate4t1 ORDER BY a} } {{} a A b B nosort} do_test collate4-1.1.2 { cksort {SELECT a FROM collate4t1 ORDER BY a COLLATE NOCASE} } {{} a A b B nosort} do_test collate4-1.1.3 { cksort {SELECT a FROM collate4t1 ORDER BY a COLLATE TEXT} } {{} A B a b sort} do_test collate4-1.1.4 { cksort {SELECT b FROM collate4t1 ORDER BY b} } {{} A B a b nosort} do_test collate4-1.1.5 { cksort {SELECT b FROM collate4t1 ORDER BY b COLLATE TEXT} } {{} A B a b nosort} do_test collate4-1.1.6 { cksort {SELECT b FROM collate4t1 ORDER BY b COLLATE NOCASE} } {{} A a B b sort} do_test collate4-1.1.7 { execsql { CREATE TABLE collate4t2( a PRIMARY KEY COLLATE NOCASE, b UNIQUE COLLATE TEXT ); INSERT INTO collate4t2 VALUES( 'a', 'a' ); INSERT INTO collate4t2 VALUES( NULL, NULL ); INSERT INTO collate4t2 VALUES( 'B', 'B' ); } } {} do_test collate4-1.1.8 { cksort {SELECT a FROM collate4t2 ORDER BY a} } {{} a B nosort} do_test collate4-1.1.9 { cksort {SELECT a FROM collate4t2 ORDER BY a COLLATE NOCASE} } {{} a B nosort} do_test collate4-1.1.10 { cksort {SELECT a FROM collate4t2 ORDER BY a COLLATE TEXT} } {{} B a sort} do_test collate4-1.1.11 { cksort {SELECT b FROM collate4t2 ORDER BY b} } {{} B a nosort} do_test collate4-1.1.12 { cksort {SELECT b FROM collate4t2 ORDER BY b COLLATE TEXT} } {{} B a nosort} do_test collate4-1.1.13 { cksort {SELECT b FROM collate4t2 ORDER BY b COLLATE NOCASE} } {{} a B sort} do_test collate4-1.1.14 { execsql { CREATE TABLE collate4t3( b COLLATE TEXT, a COLLATE NOCASE, UNIQUE(a), PRIMARY KEY(b) ); INSERT INTO collate4t3 VALUES( 'a', 'a' ); INSERT INTO collate4t3 VALUES( NULL, NULL ); INSERT INTO collate4t3 VALUES( 'B', 'B' ); } } {} do_test collate4-1.1.15 { cksort {SELECT a FROM collate4t3 ORDER BY a} } {{} a B nosort} do_test collate4-1.1.16 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE NOCASE} } {{} a B nosort} do_test collate4-1.1.17 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE TEXT} } {{} B a sort} do_test collate4-1.1.18 { cksort {SELECT b FROM collate4t3 ORDER BY b} } {{} B a nosort} do_test collate4-1.1.19 { cksort {SELECT b FROM collate4t3 ORDER BY b COLLATE TEXT} } {{} B a nosort} do_test collate4-1.1.20 { cksort {SELECT b FROM collate4t3 ORDER BY b COLLATE NOCASE} } {{} a B sort} do_test collate4-1.1.21 { execsql { CREATE TABLE collate4t4(a COLLATE NOCASE, b COLLATE TEXT); INSERT INTO collate4t4 VALUES( 'a', 'a' ); INSERT INTO collate4t4 VALUES( 'b', 'b' ); INSERT INTO collate4t4 VALUES( NULL, NULL ); INSERT INTO collate4t4 VALUES( 'B', 'B' ); INSERT INTO collate4t4 VALUES( 'A', 'A' ); CREATE INDEX collate4i3 ON collate4t4(a COLLATE TEXT); CREATE INDEX collate4i4 ON collate4t4(b COLLATE NOCASE); } } {} do_test collate4-1.1.22 { cksort {SELECT a FROM collate4t4 ORDER BY a} } {{} A a B b sort} do_test collate4-1.1.23 { cksort {SELECT a FROM collate4t4 ORDER BY a COLLATE NOCASE} } {{} A a B b sort} do_test collate4-1.1.24 { cksort {SELECT a FROM collate4t4 ORDER BY a COLLATE TEXT} } {{} A B a b nosort} do_test collate4-1.1.25 { cksort {SELECT b FROM collate4t4 ORDER BY b} } {{} A B a b sort} do_test collate4-1.1.26 { cksort {SELECT b FROM collate4t4 ORDER BY b COLLATE TEXT} } {{} A B a b sort} do_test collate4-1.1.27 { cksort {SELECT b FROM collate4t4 ORDER BY b COLLATE NOCASE} } {{} a A b B nosort} do_test collate4-1.1.30 { execsql { DROP TABLE collate4t1; DROP TABLE collate4t2; DROP TABLE collate4t3; DROP TABLE collate4t4; } } {} do_test collate4-1.2.0 { execsql { CREATE TABLE collate4t1(a COLLATE NOCASE, b COLLATE TEXT); INSERT INTO collate4t1 VALUES( 'a', 'a' ); INSERT INTO collate4t1 VALUES( 'b', 'b' ); INSERT INTO collate4t1 VALUES( NULL, NULL ); INSERT INTO collate4t1 VALUES( 'B', 'B' ); INSERT INTO collate4t1 VALUES( 'A', 'A' ); CREATE INDEX collate4i1 ON collate4t1(a, b); } } {} do_test collate4-1.2.1 { cksort {SELECT a FROM collate4t1 ORDER BY a} } {{} A a B b nosort} do_test collate4-1.2.2 { cksort {SELECT a FROM collate4t1 ORDER BY a COLLATE nocase} } {{} A a B b nosort} do_test collate4-1.2.3 { cksort {SELECT a FROM collate4t1 ORDER BY a COLLATE text} } {{} A B a b sort} do_test collate4-1.2.4 { cksort {SELECT a FROM collate4t1 ORDER BY a, b} } {{} A a B b nosort} do_test collate4-1.2.5 { cksort {SELECT a FROM collate4t1 ORDER BY a, b COLLATE nocase} } {{} A a B b sort} do_test collate4-1.2.6 { cksort {SELECT a FROM collate4t1 ORDER BY a, b COLLATE text} } {{} A a B b nosort} do_test collate4-1.2.7 { execsql { CREATE TABLE collate4t2( a COLLATE NOCASE, b COLLATE TEXT, PRIMARY KEY(a, b) ); INSERT INTO collate4t2 VALUES( 'a', 'a' ); INSERT INTO collate4t2 VALUES( NULL, NULL ); INSERT INTO collate4t2 VALUES( 'B', 'B' ); } } {} do_test collate4-1.2.8 { cksort {SELECT a FROM collate4t2 ORDER BY a} } {{} a B nosort} do_test collate4-1.2.9 { cksort {SELECT a FROM collate4t2 ORDER BY a COLLATE nocase} } {{} a B nosort} do_test collate4-1.2.10 { cksort {SELECT a FROM collate4t2 ORDER BY a COLLATE text} } {{} B a sort} do_test collate4-1.2.11 { cksort {SELECT a FROM collate4t2 ORDER BY a, b} } {{} a B nosort} do_test collate4-1.2.12 { cksort {SELECT a FROM collate4t2 ORDER BY a, b COLLATE nocase} } {{} a B sort} do_test collate4-1.2.13 { cksort {SELECT a FROM collate4t2 ORDER BY a, b COLLATE text} } {{} a B nosort} do_test collate4-1.2.14 { execsql { CREATE TABLE collate4t3(a COLLATE NOCASE, b COLLATE TEXT); INSERT INTO collate4t3 VALUES( 'a', 'a' ); INSERT INTO collate4t3 VALUES( 'b', 'b' ); INSERT INTO collate4t3 VALUES( NULL, NULL ); INSERT INTO collate4t3 VALUES( 'B', 'B' ); INSERT INTO collate4t3 VALUES( 'A', 'A' ); CREATE INDEX collate4i2 ON collate4t3(a COLLATE TEXT, b COLLATE NOCASE); } } {} do_test collate4-1.2.15 { cksort {SELECT a FROM collate4t3 ORDER BY a} } {{} A a B b sort} do_test collate4-1.2.16 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE nocase} } {{} A a B b sort} do_test collate4-1.2.17 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE text} } {{} A B a b nosort} do_test collate4-1.2.18 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE text, b} } {{} A B a b sort} do_test collate4-1.2.19 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE text, b COLLATE nocase} } {{} A B a b nosort} do_test collate4-1.2.20 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE text, b COLLATE text} } {{} A B a b sort} do_test collate4-1.2.21 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE text DESC} } {b a B A {} nosort} do_test collate4-1.2.22 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE text DESC, b} } {b a B A {} sort} do_test collate4-1.2.23 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE text DESC, b COLLATE nocase} } {b a B A {} sort} do_test collate4-1.2.24 { cksort {SELECT a FROM collate4t3 ORDER BY a COLLATE text DESC, b COLLATE nocase DESC} } {b a B A {} nosort} do_test collate4-1.2.25 { execsql { DROP TABLE collate4t1; DROP TABLE collate4t2; DROP TABLE collate4t3; } } {} # # These tests - collate4-2.* - check that indices are correctly # selected or not selected to implement WHERE clauses when user # defined collation sequences are involved. # # Indices may optimise WHERE clauses using <, >, <=, >=, = or IN # operators. # do_test collate4-2.1.0 { execsql { CREATE TABLE collate4t1(a COLLATE NOCASE); CREATE TABLE collate4t2(b COLLATE TEXT); INSERT INTO collate4t1 VALUES('a'); INSERT INTO collate4t1 VALUES('A'); INSERT INTO collate4t1 VALUES('b'); INSERT INTO collate4t1 VALUES('B'); INSERT INTO collate4t1 VALUES('c'); INSERT INTO collate4t1 VALUES('C'); INSERT INTO collate4t1 VALUES('d'); INSERT INTO collate4t1 VALUES('D'); INSERT INTO collate4t1 VALUES('e'); INSERT INTO collate4t1 VALUES('D'); INSERT INTO collate4t2 VALUES('A'); INSERT INTO collate4t2 VALUES('Z'); } } {} do_test collate4-2.1.1 { count { SELECT * FROM collate4t2, collate4t1 WHERE a = b; } } {A a A A 19} do_test collate4-2.1.2 { execsql { CREATE INDEX collate4i1 ON collate4t1(a); } count { SELECT * FROM collate4t2, collate4t1 WHERE a = b; } } {A a A A 7} do_test collate4-2.1.3 { count { SELECT * FROM collate4t2, collate4t1 WHERE b = a; } } {A A 19} do_test collate4-2.1.4 { execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a COLLATE TEXT); } count { SELECT * FROM collate4t2, collate4t1 WHERE a = b; } } {A a A A 19} do_test collate4-2.1.5 { count { SELECT * FROM collate4t2, collate4t1 WHERE b = a; } } {A A 5} do_test collate4-2.1.6 { count { SELECT a FROM collate4t1 WHERE a IN (SELECT * FROM collate4t2); } } {a A 10} do_test collate4-2.1.7 { execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a); } count { SELECT a FROM collate4t1 WHERE a IN (SELECT * FROM collate4t2); } } {a A 8} do_test collate4-2.1.8 { count { SELECT a FROM collate4t1 WHERE a IN ('z', 'a'); } } {a A 7} do_test collate4-2.1.9 { execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a COLLATE TEXT); } count { SELECT a FROM collate4t1 WHERE a IN ('z', 'a'); } } {a A 9} do_test collate4-2.1.10 { execsql { DROP TABLE collate4t1; DROP TABLE collate4t2; } } {} do_test collate4-2.2.0 { execsql { CREATE TABLE collate4t1(a COLLATE nocase, b COLLATE text, c); CREATE TABLE collate4t2(a COLLATE nocase, b COLLATE text, c COLLATE TEXT); INSERT INTO collate4t1 VALUES('0', '0', '0'); INSERT INTO collate4t1 VALUES('0', '0', '1'); INSERT INTO collate4t1 VALUES('0', '1', '0'); INSERT INTO collate4t1 VALUES('0', '1', '1'); INSERT INTO collate4t1 VALUES('1', '0', '0'); INSERT INTO collate4t1 VALUES('1', '0', '1'); INSERT INTO collate4t1 VALUES('1', '1', '0'); INSERT INTO collate4t1 VALUES('1', '1', '1'); insert into collate4t2 SELECT * FROM collate4t1; } } {} do_test collate4-2.2.1 { count { SELECT * FROM collate4t2 NATURAL JOIN collate4t1; } } {0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 63} do_test collate4-2.2.1 { execsql { CREATE INDEX collate4i1 ON collate4t1(a, b, c); } count { SELECT * FROM collate4t2 NATURAL JOIN collate4t1; } } {0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 45} do_test collate4-2.2.2 { execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a, b, c COLLATE text); } count { SELECT * FROM collate4t2 NATURAL JOIN collate4t1; } } {0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 22} do_test collate4-2.2.10 { execsql { DROP TABLE collate4t1; DROP TABLE collate4t2; } } {} # # These tests - collate4-3.* verify that indices that implement # UNIQUE and PRIMARY KEY constraints operate correctly with user # defined collation sequences. # do_test collate4-3.0 { execsql { CREATE TABLE collate4t1(a PRIMARY KEY COLLATE NOCASE); } } {} do_test collate4-3.1 { catchsql { INSERT INTO collate4t1 VALUES('abc'); INSERT INTO collate4t1 VALUES('ABC'); } } {1 {column a is not unique}} do_test collate4-3.2 { execsql { SELECT * FROM collate4t1; } } {abc} do_test collate4-3.3 { catchsql { INSERT INTO collate4t1 SELECT upper(a) FROM collate4t1; } } {1 {column a is not unique}} do_test collate4-3.4 { catchsql { INSERT INTO collate4t1 VALUES(1); UPDATE collate4t1 SET a = 'abc'; } } {1 {column a is not unique}} do_test collate4-3.5 { execsql { DROP TABLE collate4t1; CREATE TABLE collate4t1(a COLLATE NOCASE UNIQUE); } } {} do_test collate4-3.6 { catchsql { INSERT INTO collate4t1 VALUES('abc'); INSERT INTO collate4t1 VALUES('ABC'); } } {1 {column a is not unique}} do_test collate4-3.7 { execsql { SELECT * FROM collate4t1; } } {abc} do_test collate4-3.8 { catchsql { INSERT INTO collate4t1 SELECT upper(a) FROM collate4t1; } } {1 {column a is not unique}} do_test collate4-3.9 { catchsql { INSERT INTO collate4t1 VALUES(1); UPDATE collate4t1 SET a = 'abc'; } } {1 {column a is not unique}} do_test collate4-3.10 { execsql { DROP TABLE collate4t1; CREATE TABLE collate4t1(a); CREATE UNIQUE INDEX collate4i1 ON collate4t1(a COLLATE NOCASE); } } {} do_test collate4-3.11 { catchsql { INSERT INTO collate4t1 VALUES('abc'); INSERT INTO collate4t1 VALUES('ABC'); } } {1 {column a is not unique}} do_test collate4-3.12 { execsql { SELECT * FROM collate4t1; } } {abc} do_test collate4-3.13 { catchsql { INSERT INTO collate4t1 SELECT upper(a) FROM collate4t1; } } {1 {column a is not unique}} do_test collate4-3.14 { catchsql { INSERT INTO collate4t1 VALUES(1); UPDATE collate4t1 SET a = 'abc'; } } {1 {column a is not unique}} do_test collate4-3.15 { execsql { DROP TABLE collate4t1; } } {} # # These tests - collate4-4.* check that min() and max() only ever # use indices constructed with built-in collation type numeric. # # CHANGED: min() and max() now use the collation type. If there # is an indice that can be used, it is used. # # FIX ME: min() and max() are currently broken. if 0 { do_test collate4-4.0 { execsql { CREATE TABLE collate4t1(a COLLATE TEXT); INSERT INTO collate4t1 VALUES(2); INSERT INTO collate4t1 VALUES(10); INSERT INTO collate4t1 VALUES(20); INSERT INTO collate4t1 VALUES(104); } } {} do_test collate4-4.1 { count { SELECT max(a) FROM collate4t1 } } {20 3} do_test collate4-4.2 { count { SELECT min(a) FROM collate4t1 } } {10 3} do_test collate4-4.3 { # Test that the index with collation type TEXT is used. execsql { CREATE INDEX collate4i1 ON collate4t1(a); } count { SELECT min(a) FROM collate4t1; } } {10 1} do_test collate4-4.4 { count { SELECT max(a) FROM collate4t1; } } {20 1} do_test collate4-4.5 { # Test that the index with collation type NUMERIC is not used. execsql { DROP INDEX collate4i1; CREATE INDEX collate4i1 ON collate4t1(a COLLATE NUMERIC); } count { SELECT min(a) FROM collate4t1; } } {10 3} do_test collate4-4.6 { count { SELECT max(a) FROM collate4t1; } } {20 3} do_test collate4-4.7 { execsql { DROP TABLE collate4t1; } } {} # Also test the scalar min() and max() functions. # do_test collate4-4.8 { execsql { CREATE TABLE collate4t1(a NUMERIC, b TEXT, c COLLATE TEXT, d COLLATE NUMERIC); INSERT INTO collate4t1 VALUES(11, 101, 1001, 10001); INSERT INTO collate4t1 VALUES(20002, 2002, 202, 22); } } {} do_test collate4-4.9 { execsql { SELECT max(a, b, c) FROM collate4t1; } } {11 202} do_test collate4-4.10 { execsql { SELECT max(c, b, a) FROM collate4t1; } } {11 202} do_test collate4-4.11 { execsql { SELECT max(a, b) FROM collate4t1; } } {101 20002} do_test collate4-4.12 { execsql { SELECT max(b, a) FROM collate4t1; } } {101 20002} do_test collate4-4.13 { execsql { SELECT max(b, a) FROM collate4t1; } } {101 20002} do_test collate4-4.14 { execsql { SELECT max(b, '11') FROM collate4t1; } } {11 2002} do_test collate4-4.15 { execsql { SELECT max('11', b) FROM collate4t1; } } {11 2002} do_test collate4-4.16 { execsql { SELECT max(11, b) FROM collate4t1; } } {101 2002} do_test collate4-4.17 { execsql { SELECT max(b, 11) FROM collate4t1; } } {101 2002} do_test collate4-4.18 { execsql { SELECT max(c, d) FROM collate4t1; } } {1001 22} do_test collate4-4.19 { execsql { SELECT max(d, c) FROM collate4t1; } } {10001 202} do_test collate4-4.20 { execsql { DROP TABLE collate4t1; } } {} } # # These tests - collate4-5.* - test the REINDEX command. # # FIX ME: Find out if version 3 needs REINDEX. if 0 { proc install_normal_collate {} { db collate collate1 "string compare" } proc inverse_collate {l r} { expr -1 * [string compare $l $r] } proc install_inverse_collate {} { db collate collate1 inverse_collate } install_normal_collate do_test collate4-5.0 { execsql { CREATE TABLE collate4t1(a COLLATE collate1); INSERT INTO collate4t1 VALUES('A'); INSERT INTO collate4t1 VALUES(NULL); INSERT INTO collate4t1 VALUES('B'); CREATE INDEX collate4i1 ON collate4t1(a); } } {} do_test collate4-5.1 { cksort { SELECT * FROM collate4t1 ORDER BY 1; } } {{} A B nosort} do_test collate4-5.2 { install_inverse_collate cksort { SELECT * FROM collate4t1 ORDER BY 1; } } {{} A B nosort} ;# This is incorrect - because we need to REINDEX do_test collate4-5.3 { install_inverse_collate cksort { REINDEX collate4t1; SELECT * FROM collate4t1 ORDER BY 1; } } {{} B A nosort} do_test collate4-5.4 { install_normal_collate cksort { REINDEX; SELECT * FROM collate4t1 ORDER BY 1; } } {{} A B nosort} do_test collate4-5.5 { install_inverse_collate cksort { REINDEX main.collate4t1; SELECT * FROM collate4t1 ORDER BY 1; } } {{} B A nosort} do_test collate4-5.6 { catchsql { REINDEX garbage; } } {1 {no such table: garbage}} do_test collate4-5.7 { execsql { DROP TABLE collate4t1; CREATE TEMP TABLE collate4t1(a COLLATE collate1, b COLLATE collate1); CREATE INDEX collatei1 ON collate4t1(a); CREATE INDEX collatei2 ON collate4t1(b); INSERT INTO collate4t1 VALUES(1, 1); INSERT INTO collate4t1 VALUES(NULL, NULL); INSERT INTO collate4t1 VALUES(2, 2); } } {} do_test collate4-5.8 { cksort { SELECT * FROM collate4t1 ORDER BY 1 } } {{} {} 2 2 1 1 nosort} do_test collate4-5.9 { install_normal_collate cksort { REINDEX; SELECT * FROM collate4t1 order by 2; } } {{} {} 1 1 2 2 nosort} do_test collate4-5.10 { install_inverse_collate cksort { REINDEX collate4t1; SELECT * FROM collate4t1 order by 1; } } {{} {} 2 2 1 1 nosort} do_test collate4-5.11 { install_normal_collate cksort { REINDEX temp.collate4t1; SELECT * FROM collate4t1 order by 2; } } {{} {} 1 1 2 2 nosort} # This checks that if a REINDEX operation produces a conflict an error # is raised and the checkpoint rolled back. do_test collate4-5.12 { execsql { BEGIN; CREATE UNIQUE INDEX collate4i3 ON collate4t1(a); INSERT INTO collate4t1 VALUES(3, 3); } db collate collate1 "expr 0 ;" catchsql { REINDEX; } } {1 {indexed columns are not unique}} do_test collate4-5.13 { execsql { COMMIT; SELECT * FROM collate4t1; } } {1 1 {} {} 2 2 3 3} # Do an EXPLAIN REINDEX, just in case it leaks memory or something. do_test collate4-5.14 { execsql { EXPLAIN REINDEX; } expr 0 } {0} do_test collate4-5.15 { execsql { EXPLAIN REINDEX collate4t1; } expr 0 } {0} do_test collate4-5.16 { execsql { DROP TABLE collate4t1; } } {} } # # These tests - collate4.6.* - ensure that implict INTEGER PRIMARY KEY # indices do not confuse collation sequences. # # These indices are never used for sorting in SQLite. And you can't # create another index on an INTEGER PRIMARY KEY column, so we don't have # to test that. # do_test collate4-6.0 { execsql { CREATE TABLE collate4t1(a INTEGER PRIMARY KEY); INSERT INTO collate4t1 VALUES(101); INSERT INTO collate4t1 VALUES(10); INSERT INTO collate4t1 VALUES(15); } } {} do_test collate4-6.1 { cksort { SELECT * FROM collate4t1 ORDER BY 1; } } {10 15 101 sort} do_test collate4-6.2 { cksort { SELECT * FROM collate4t1 ORDER BY oid; } } {10 15 101 sort} do_test collate4-6.3 { cksort { SELECT * FROM collate4t1 ORDER BY oid||'' COLLATE TEXT; } } {10 101 15 sort} finish_test |
Changes to test/misc1.test.
|
| | | > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | # 2001 September 15. # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # # This file implements tests for miscellanous features that were # left out of other test files. # # $Id: misc1.test,v 1.26 2004/06/09 09:55:20 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Mimic the SQLite 2 collation type NUMERIC. db collate numeric numeric_collate proc numeric_collate {lhs rhs} { if {$lhs == $rhs} {return 0} return [expr ($lhs>$rhs)?1:-1] } # Mimic the SQLite 2 collation type TEXT. db collate text text_collate proc numeric_collate {lhs rhs} { return [string compare $lhs $rhs] } # Test the creation and use of tables that have a large number # of columns. # do_test misc1-1.1 { set cmd "CREATE TABLE manycol(x0 text" for {set i 1} {$i<=99} {incr i} { |
︙ | ︙ | |||
377 378 379 380 381 382 383 | } } {1 2 2 3 4 2} # This used to be an error. But we changed the code so that arbitrary # identifiers can be used as a collating sequence. Collation is by text # if the identifier contains "text", "blob", or "clob" and is numeric # otherwise. | > > > | | | < > | | 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | } } {1 2 2 3 4 2} # This used to be an error. But we changed the code so that arbitrary # identifiers can be used as a collating sequence. Collation is by text # if the identifier contains "text", "blob", or "clob" and is numeric # otherwise. # # Update: In v3, it is an error again. # #do_test misc1-12.10 { # catchsql { # SELECT * FROM t6 ORDER BY a COLLATE unknown; # } #} {0 {0 0.0 y 0}} do_test misc1-12.11 { execsql { CREATE TABLE t8(x TEXT COLLATE numeric, y INTEGER COLLATE text, z); INSERT INTO t8 VALUES(0,0,1); INSERT INTO t8 VALUES(0.0,0,2); INSERT INTO t8 VALUES(0,0.0,3); INSERT INTO t8 VALUES(0.0,0.0,4); |
︙ | ︙ |
Changes to test/sort.test.
|
| | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15. # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the CREATE TABLE statement. # # $Id: sort.test,v 1.13 2004/06/09 09:55:20 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Create a bunch of data to sort against # do_test sort-1.0 { |
︙ | ︙ | |||
319 320 321 322 323 324 325 | # } #} {1 2 11 12} #do_test sort-7.10 { # execsql { # SELECT b FROM t4 UNION SELECT b FROM v4 ORDER BY 1 COLLATE integer; # } #} {1 2 11 12} | | | | < > | | | | < > | | | | < > | | | | < > | | 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | # } #} {1 2 11 12} #do_test sort-7.10 { # execsql { # SELECT b FROM t4 UNION SELECT b FROM v4 ORDER BY 1 COLLATE integer; # } #} {1 2 11 12} #do_test sort-7.11 { # execsql { # SELECT b FROM t4 UNION SELECT b FROM v4 ORDER BY 1 COLLATE text; # } #} {1 11 12 2} #do_test sort-7.12 { # execsql { # SELECT b FROM t4 UNION SELECT b FROM v4 ORDER BY 1 COLLATE blob; # } #} {1 11 12 2} #do_test sort-7.13 { # execsql { # SELECT b FROM t4 UNION SELECT b FROM v4 ORDER BY 1 COLLATE clob; # } #} {1 11 12 2} #do_test sort-7.14 { # execsql { # SELECT b FROM t4 UNION SELECT b FROM v4 ORDER BY 1 COLLATE varchar; # } #} {1 11 12 2} # Ticket #297 # do_test sort-8.1 { execsql { CREATE TABLE t5(a real, b text); INSERT INTO t5 VALUES(100,'A1'); INSERT INTO t5 VALUES(100.0,'A2'); SELECT * FROM t5 ORDER BY a, b; } } {100 A1 100 A2} finish_test |
Changes to test/tclsqlite.test.
︙ | ︙ | |||
11 12 13 14 15 16 17 | # This file implements regression tests for TCL interface to the # SQLite library. # # Actually, all tests are based on the TCL interface, so the main # interface is pretty well tested. This file contains some addition # tests for fringe issues that the main test suite does not cover. # | | | | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | # This file implements regression tests for TCL interface to the # SQLite library. # # Actually, all tests are based on the TCL interface, so the main # interface is pretty well tested. This file contains some addition # tests for fringe issues that the main test suite does not cover. # # $Id: tclsqlite.test,v 1.22 2004/06/09 09:55:20 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Check the error messages generated by tclsqlite # if {[sqlite -has-codec]} { set r "sqlite_orig HANDLE FILENAME ?-key CODEC-KEY?" } else { set r "sqlite HANDLE FILENAME ?MODE?" } do_test tcl-1.1 { set v [catch {sqlite bogus} msg] lappend v $msg } [list 1 "wrong # args: should be \"$r\""] do_test tcl-1.2 { set v [catch {db bogus} msg] lappend v $msg } {1 {bad option "bogus": must be authorizer, busy, changes, close, commit_hook, complete, errorcode, eval, function, last_insert_rowid, last_statement_changes, onecolumn, progress, rekey, timeout, trace, or collate}} do_test tcl-1.3 { execsql {CREATE TABLE t1(a int, b int)} execsql {INSERT INTO t1 VALUES(10,20)} set v [catch { db eval {SELECT * FROM t1} data { error "The error message" } |
︙ | ︙ |
Changes to www/datatype3.tcl.
|
| | | 1 2 3 4 5 6 7 8 | set rcsid {$Id: datatype3.tcl,v 1.4 2004/06/09 09:55:20 danielk1977 Exp $} source common.tcl header {Datatypes In SQLite Version 3} puts { <h2>Datatypes In SQLite Version 3</h2> <h3>1. Storage Classes</h3> |
︙ | ︙ | |||
40 41 42 43 44 45 46 | <P>Storage classes are initially assigned as follows:</P> <UL> <LI><P>Values specified as literals as part of SQL statements are assigned storage class TEXT if they are enclosed by single or double quotes, INTEGER if the literal is specified as an unquoted number with no decimal point or exponent, REAL if the literal is an unquoted number with a decimal point or exponent and NULL if the | | > | 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | <P>Storage classes are initially assigned as follows:</P> <UL> <LI><P>Values specified as literals as part of SQL statements are assigned storage class TEXT if they are enclosed by single or double quotes, INTEGER if the literal is specified as an unquoted number with no decimal point or exponent, REAL if the literal is an unquoted number with a decimal point or exponent and NULL if the value is a NULL. Literals with storage class BLOB are specified using the X'ABCD' notation.</P> <LI><P>Values supplied using the sqlite3_bind_* APIs are assigned the storage class that most closely matches the native type bound (i.e. sqlite3_bind_blob() binds a value with storage class BLOB).</P> </UL> <P>The storage class of a value that is the result of an SQL scalar operator depends on the outermost operator of the expression. User-defined functions may return values with any storage class. It |
︙ | ︙ | |||
195 196 197 198 199 200 201 202 203 204 205 206 207 208 | from the non-NUMERIC column.</P> <LI><P>When the results of two expressions are compared, the NUMERIC affinity is applied to both values before the comparison takes place.</P> </UL> <h4>3.1 Comparison Example</h4> <blockquote> <PRE> CREATE TABLE t1( a TEXT, b NUMERIC, | > > > > > > > > > > > > > > > > | 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | from the non-NUMERIC column.</P> <LI><P>When the results of two expressions are compared, the NUMERIC affinity is applied to both values before the comparison takes place.</P> </UL> <P> In SQLite, the expression "a BETWEEN b AND c" is equivalent to "a >= b AND a <= c", even if this means that different affinities are applied to 'a' in each of the comparisons required to evaluate the expression. </P> <P>Expressions of the type "a IN (SELECT b ....)" are handled by the three rules enumerated above for binary comparisons (e.g. in a similar manner to "a = b"). For example if 'b' is a column value and 'a' is an expression, then the affinity of 'b' is applied to 'a' before any comparisons take place.</P> <P>SQLite treats the expression "a IN (x, y, z)" as equivalent to "a = z OR a = y OR a = z". </P> <h4>3.1 Comparison Example</h4> <blockquote> <PRE> CREATE TABLE t1( a TEXT, b NUMERIC, |
︙ | ︙ | |||
223 224 225 226 227 228 229 | -- Both 60 and 600 (storage class NUMERIC) are less than '500' -- (storage class TEXT). SELECT c < 60, c < 600 FROM t1; 0|0 </PRE> </blockquote> | < < < < < < < < < < < < < < < < < < < | 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | -- Both 60 and 600 (storage class NUMERIC) are less than '500' -- (storage class TEXT). SELECT c < 60, c < 600 FROM t1; 0|0 </PRE> </blockquote> <h3>4. Operators</h3> <P>All mathematical operators (which is to say, all operators other than the concatenation operator "||") apply NUMERIC affinity to all operands prior to being carried out. If one or both operands cannot be converted to NUMERIC then the result of the operation is NULL.</P> |
︙ | ︙ | |||
298 299 300 301 302 303 304 | storage classes are ever performed. Comparisons between values of different storage classes (except for INTEGER and REAL) are always false.</P> </UL> <h3>7. User-defined Collation Sequences</h3> | > | < | | | | > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | storage classes are ever performed. Comparisons between values of different storage classes (except for INTEGER and REAL) are always false.</P> </UL> <h3>7. User-defined Collation Sequences</h3> <p> By default, when SQLite compares two text values, the result of the comparison is determined using memcmp(), regardless of the encoding of the string. SQLite v3 provides the ability for users to supply arbitrary comparison functions, known as user-defined collation sequences, to be used instead of memcmp(). </p> <p> Aside from the default collation sequence BINARY, implemented using memcmp(), SQLite features two extra built-in collation sequences, NOCASE and REVERSE: </p> <UL> <LI><b>BINARY</b> - Compares string data using memcmp(), regardless of text encoding.</LI> <LI><b>REVERSE</b> - Collate in the reverse order to BINARY. </LI> <LI><b>NOCASE</b> - The same as binary, except the 26 upper case characters used by the English language are folded to their lower case equivalents before the comparison is performed. </UL> <h4>7.1 Assigning Collation Sequences from SQL</h4> <p> Each column of each table has a default collation type. If a collation type other than BINARY is required, a COLLATE clause is specified as part of the <a href="lang.html#createtable">column definition</a> to define it.used as illustrated in the example below to </p> <p> Whenever two text values are compared by SQLite, a collation sequence is used to determine the results of the comparison according to the following rules. Sections 3 and 5 of this document describe the circumstances under which such a comparison takes place. </p> <p> For binary comparison operators (=, <, >, <= and >=) if either operand is a column, then the default collation type of the column determines the collation sequence to use for the comparison. If both operands are columns, then the collation type for the left operand determines the collation sequence used. If neither operand is a column, then the BINARY collation sequence is used. </p> <p> The expression "x BETWEEN y and z" is equivalent to "x >= y AND x <= z". The expression "x IN (SELECT y ...)" is handled in the same way as the expression "x = y" for the purposes of determining the collation sequence to use. The collation sequence used for expressions of the form "x IN (y, z ...)" is the default collation type of x if x is a column, or BINARY otherwise. </p> <p> An <a href="lang.html#select">ORDER BY</a> clause that is part of a SELECT statement may be assigned a collation sequence to be used for the sort operation explicitly. In this case the explicit collation sequence is always used. Otherwise, if the expression sorted by an ORDER BY clause is a column, then the default collation type of the column is used to determine sort order. If the expression is not a column, then the BINARY collation sequence is used. </p> <h4>7.2 Collation Sequences Example</h4> <p> The examples below identify the collation sequences that would be used to determine the results of text comparisons that may be performed by various SQL statements. Note that a text comparison may not be required, and no collation sequence used, in the case of numeric, blob or NULL values. </p> <blockquote> <PRE> CREATE TABLE t1( a, -- default collation type BINARY b COLLATE BINARY, -- default collation type BINARY c COLLATE REVERSE, -- default collation type REVERSE d COLLATE NOCASE -- default collation type NOCASE ); -- Text comparison is performed using the BINARY collation sequence. SELECT (a = b) FROM t1; -- Text comparison is performed using the NOCASE collation sequence. SELECT (a = d) FROM t1; -- Text comparison is performed using the BINARY collation sequence. SELECT (d = a) FROM t1; -- Text comparison is performed using the REVERSE collation sequence. SELECT ('abc' = c) FROM t1; -- Text comparison is performed using the REVERSE collation sequence. SELECT (c = 'abc') FROM t1; -- Grouping is performed using the NOCASE collation sequence (i.e. values -- 'abc' and 'ABC' are placed in the same group). SELECT count(*) GROUP BY d FROM t1; -- Grouping is performed using the BINARY collation sequence. SELECT count(*) GROUP BY (d || '') FROM t1; -- Sorting is performed using the REVERSE collation sequence. SELECT * FROM t1 ORDER BY c; -- Sorting is performed using the BINARY collation sequence. SELECT * FROM t1 ORDER BY (c || ''); -- Sorting is performed using the NOCASE collation sequence. SELECT * FROM t1 ORDER BY c COLLATE NOCASE; </PRE> </blockquote> } footer $rcsid |