SQLite

Check-in [c28c973ad6]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fixes for harmless compiler warnings.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA3-256: c28c973ad6debd63f13e5d4d3da036f680baaec9d863eda039f2747db9f1cfd5
User & Date: drh 2019-04-13 14:07:57.472
Context
2019-04-13
14:17
Fix additional compiler warnings introduced by the previous check-in and found by MSVC. (check-in: 6fc0deffa4 user: drh tags: trunk)
14:07
Fixes for harmless compiler warnings. (check-in: c28c973ad6 user: drh tags: trunk)
04:38
Use the 64-bit memory allocator interfaces in extensions, whenever possible. (check-in: 07ee06fd39 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/fts3/fts3_snippet.c.
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
  ){
    return SQLITE_OK;
  }
  sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo request: %c", cArg);
  return SQLITE_ERROR;
}

static int fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
  int nVal;                       /* Number of integers output by cArg */

  switch( cArg ){
    case FTS3_MATCHINFO_NDOC:
    case FTS3_MATCHINFO_NPHRASE: 
    case FTS3_MATCHINFO_NCOL: 
      nVal = 1;
      break;







|
|







996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
  ){
    return SQLITE_OK;
  }
  sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo request: %c", cArg);
  return SQLITE_ERROR;
}

static size_t fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
  size_t nVal;                      /* Number of integers output by cArg */

  switch( cArg ){
    case FTS3_MATCHINFO_NDOC:
    case FTS3_MATCHINFO_NPHRASE: 
    case FTS3_MATCHINFO_NCOL: 
      nVal = 1;
      break;
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
        if( rc==SQLITE_OK ){
          rc = fts3MatchinfoLcs(pCsr, pInfo);
        }
        break;

      case FTS3_MATCHINFO_LHITS_BM:
      case FTS3_MATCHINFO_LHITS: {
        int nZero = fts3MatchinfoSize(pInfo, zArg[i]) * sizeof(u32);
        memset(pInfo->aMatchinfo, 0, nZero);
        rc = fts3ExprLHitGather(pCsr->pExpr, pInfo);
        break;
      }

      default: {
        Fts3Expr *pExpr;







|







1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
        if( rc==SQLITE_OK ){
          rc = fts3MatchinfoLcs(pCsr, pInfo);
        }
        break;

      case FTS3_MATCHINFO_LHITS_BM:
      case FTS3_MATCHINFO_LHITS: {
        size_t nZero = fts3MatchinfoSize(pInfo, zArg[i]) * sizeof(u32);
        memset(pInfo->aMatchinfo, 0, nZero);
        rc = fts3ExprLHitGather(pCsr->pExpr, pInfo);
        break;
      }

      default: {
        Fts3Expr *pExpr;
Changes to ext/fts5/fts5_index.c.
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
  if( p->rc==SQLITE_OK && nLvl>=pWriter->nDlidx ){
    Fts5DlidxWriter *aDlidx = (Fts5DlidxWriter*)sqlite3_realloc64(
        pWriter->aDlidx, sizeof(Fts5DlidxWriter) * nLvl
    );
    if( aDlidx==0 ){
      p->rc = SQLITE_NOMEM;
    }else{
      int nByte = sizeof(Fts5DlidxWriter) * (nLvl - pWriter->nDlidx);
      memset(&aDlidx[pWriter->nDlidx], 0, nByte);
      pWriter->aDlidx = aDlidx;
      pWriter->nDlidx = nLvl;
    }
  }
  return p->rc;
}







|







3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
  if( p->rc==SQLITE_OK && nLvl>=pWriter->nDlidx ){
    Fts5DlidxWriter *aDlidx = (Fts5DlidxWriter*)sqlite3_realloc64(
        pWriter->aDlidx, sizeof(Fts5DlidxWriter) * nLvl
    );
    if( aDlidx==0 ){
      p->rc = SQLITE_NOMEM;
    }else{
      size_t nByte = sizeof(Fts5DlidxWriter) * (nLvl - pWriter->nDlidx);
      memset(&aDlidx[pWriter->nDlidx], 0, nByte);
      pWriter->aDlidx = aDlidx;
      pWriter->nDlidx = nLvl;
    }
  }
  return p->rc;
}
Changes to ext/fts5/fts5_main.c.
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
  fts5_extension_function xFunc,  /* Aux. function implementation */
  void(*xDestroy)(void*)          /* Destructor for pUserData */
){
  Fts5Global *pGlobal = (Fts5Global*)pApi;
  int rc = sqlite3_overload_function(pGlobal->db, zName, -1);
  if( rc==SQLITE_OK ){
    Fts5Auxiliary *pAux;
    int nName;                      /* Size of zName in bytes, including \0 */
    int nByte;                      /* Bytes of space to allocate */

    nName = (int)strlen(zName) + 1;
    nByte = sizeof(Fts5Auxiliary) + nName;
    pAux = (Fts5Auxiliary*)sqlite3_malloc(nByte);
    if( pAux ){
      memset(pAux, 0, nByte);
      pAux->zFunc = (char*)&pAux[1];
      memcpy(pAux->zFunc, zName, nName);
      pAux->pGlobal = pGlobal;
      pAux->pUserData = pUserData;
      pAux->xFunc = xFunc;
      pAux->xDestroy = xDestroy;
      pAux->pNext = pGlobal->pAux;







|
|

|

|

|







2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
  fts5_extension_function xFunc,  /* Aux. function implementation */
  void(*xDestroy)(void*)          /* Destructor for pUserData */
){
  Fts5Global *pGlobal = (Fts5Global*)pApi;
  int rc = sqlite3_overload_function(pGlobal->db, zName, -1);
  if( rc==SQLITE_OK ){
    Fts5Auxiliary *pAux;
    sqlite3_int64 nName;            /* Size of zName in bytes, including \0 */
    sqlite3_int64 nByte;            /* Bytes of space to allocate */

    nName = strlen(zName) + 1;
    nByte = sizeof(Fts5Auxiliary) + nName;
    pAux = (Fts5Auxiliary*)sqlite3_malloc64(nByte);
    if( pAux ){
      memset(pAux, 0, (size_t)nByte);
      pAux->zFunc = (char*)&pAux[1];
      memcpy(pAux->zFunc, zName, nName);
      pAux->pGlobal = pGlobal;
      pAux->pUserData = pUserData;
      pAux->xFunc = xFunc;
      pAux->xDestroy = xDestroy;
      pAux->pNext = pGlobal->pAux;
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
  const char *zName,              /* Name of new function */
  void *pUserData,                /* User data for aux. function */
  fts5_tokenizer *pTokenizer,     /* Tokenizer implementation */
  void(*xDestroy)(void*)          /* Destructor for pUserData */
){
  Fts5Global *pGlobal = (Fts5Global*)pApi;
  Fts5TokenizerModule *pNew;
  int nName;                      /* Size of zName and its \0 terminator */
  int nByte;                      /* Bytes of space to allocate */
  int rc = SQLITE_OK;

  nName = (int)strlen(zName) + 1;
  nByte = sizeof(Fts5TokenizerModule) + nName;
  pNew = (Fts5TokenizerModule*)sqlite3_malloc(nByte);
  if( pNew ){
    memset(pNew, 0, nByte);
    pNew->zName = (char*)&pNew[1];
    memcpy(pNew->zName, zName, nName);
    pNew->pUserData = pUserData;
    pNew->x = *pTokenizer;
    pNew->xDestroy = xDestroy;
    pNew->pNext = pGlobal->pTok;
    pGlobal->pTok = pNew;







|
|


|

|

|







2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
  const char *zName,              /* Name of new function */
  void *pUserData,                /* User data for aux. function */
  fts5_tokenizer *pTokenizer,     /* Tokenizer implementation */
  void(*xDestroy)(void*)          /* Destructor for pUserData */
){
  Fts5Global *pGlobal = (Fts5Global*)pApi;
  Fts5TokenizerModule *pNew;
  sqlite3_int64 nName;            /* Size of zName and its \0 terminator */
  sqlite3_int64 nByte;            /* Bytes of space to allocate */
  int rc = SQLITE_OK;

  nName = strlen(zName) + 1;
  nByte = sizeof(Fts5TokenizerModule) + nName;
  pNew = (Fts5TokenizerModule*)sqlite3_malloc64(nByte);
  if( pNew ){
    memset(pNew, 0, (size_t)nByte);
    pNew->zName = (char*)&pNew[1];
    memcpy(pNew->zName, zName, nName);
    pNew->pUserData = pUserData;
    pNew->x = *pTokenizer;
    pNew->xDestroy = xDestroy;
    pNew->pNext = pGlobal->pTok;
    pGlobal->pTok = pNew;
Changes to ext/rbu/sqlite3rbu.c.
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
**
** If an error (i.e. an OOM condition) occurs, return NULL and leave an 
** error code in the rbu handle passed as the first argument. Or, if an 
** error has already occurred when this function is called, return NULL 
** immediately without attempting the allocation or modifying the stored
** error code.
*/
static void *rbuMalloc(sqlite3rbu *p, int nByte){
  void *pRet = 0;
  if( p->rc==SQLITE_OK ){
    assert( nByte>0 );
    pRet = sqlite3_malloc64(nByte);
    if( pRet==0 ){
      p->rc = SQLITE_NOMEM;
    }else{
      memset(pRet, 0, nByte);
    }
  }
  return pRet;
}


/*
** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that
** there is room for at least nCol elements. If an OOM occurs, store an
** error code in the RBU handle passed as the first argument.
*/
static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){
  int nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol;
  char **azNew;

  azNew = (char**)rbuMalloc(p, nByte);
  if( azNew ){
    pIter->azTblCol = azNew;
    pIter->azTblType = &azNew[nCol];
    pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol];







|




















|







1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
**
** If an error (i.e. an OOM condition) occurs, return NULL and leave an 
** error code in the rbu handle passed as the first argument. Or, if an 
** error has already occurred when this function is called, return NULL 
** immediately without attempting the allocation or modifying the stored
** error code.
*/
static void *rbuMalloc(sqlite3rbu *p, sqlite3_int64 nByte){
  void *pRet = 0;
  if( p->rc==SQLITE_OK ){
    assert( nByte>0 );
    pRet = sqlite3_malloc64(nByte);
    if( pRet==0 ){
      p->rc = SQLITE_NOMEM;
    }else{
      memset(pRet, 0, nByte);
    }
  }
  return pRet;
}


/*
** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that
** there is room for at least nCol elements. If an OOM occurs, store an
** error code in the RBU handle passed as the first argument.
*/
static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){
  sqlite3_int64 nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol;
  char **azNew;

  azNew = (char**)rbuMalloc(p, nByte);
  if( azNew ){
    pIter->azTblCol = azNew;
    pIter->azTblType = &azNew[nCol];
    pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol];
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
** string, an error code is left in the rbu handle passed as the first
** argument and NULL is returned. Or, if an error has already occurred
** when this function is called, NULL is returned immediately, without
** attempting the allocation or modifying the stored error code.
*/
static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){
  char *zRet = 0;
  int nByte = nBind*2 + 1;

  zRet = (char*)rbuMalloc(p, nByte);
  if( zRet ){
    int i;
    for(i=0; i<nBind; i++){
      zRet[i*2] = '?';
      zRet[i*2+1] = (i+1==nBind) ? '\0' : ',';







|







1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
** string, an error code is left in the rbu handle passed as the first
** argument and NULL is returned. Or, if an error has already occurred
** when this function is called, NULL is returned immediately, without
** attempting the allocation or modifying the stored error code.
*/
static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){
  char *zRet = 0;
  sqlite3_int64 nByte = 2*(sqlite3_int64)nBind + 1;

  zRet = (char*)rbuMalloc(p, nByte);
  if( zRet ){
    int i;
    for(i=0; i<nBind; i++){
      zRet[i*2] = '?';
      zRet[i*2+1] = (i+1==nBind) ? '\0' : ',';
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571

  /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
  ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space 
  ** instead of a file on disk.  */
  assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
  if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
    if( iRegion<=p->nShm ){
      int nByte = (iRegion+1) * sizeof(char*);
      char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte);
      if( apNew==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
        p->apShm = apNew;
        p->nShm = iRegion+1;







|







4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571

  /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
  ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space 
  ** instead of a file on disk.  */
  assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
  if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
    if( iRegion<=p->nShm ){
      sqlite3_int64 nByte = (iRegion+1) * sizeof(char*);
      char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte);
      if( apNew==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
        p->apShm = apNew;
        p->nShm = iRegion+1;
Changes to ext/session/sqlite3session.c.
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
** Growing the hash table in this case is a performance optimization only,
** it is not required for correct operation.
*/
static int sessionGrowHash(int bPatchset, SessionTable *pTab){
  if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){
    int i;
    SessionChange **apNew;
    int nNew = (pTab->nChange ? pTab->nChange : 128) * 2;

    apNew = (SessionChange **)sqlite3_malloc64(sizeof(SessionChange *) * nNew);
    if( apNew==0 ){
      if( pTab->nChange==0 ){
        return SQLITE_ERROR;
      }
      return SQLITE_OK;







|







898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
** Growing the hash table in this case is a performance optimization only,
** it is not required for correct operation.
*/
static int sessionGrowHash(int bPatchset, SessionTable *pTab){
  if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){
    int i;
    SessionChange **apNew;
    sqlite3_int64 nNew = 2*(sqlite3_int64)(pTab->nChange ? pTab->nChange : 128);

    apNew = (SessionChange **)sqlite3_malloc64(sizeof(SessionChange *) * nNew);
    if( apNew==0 ){
      if( pTab->nChange==0 ){
        return SQLITE_ERROR;
      }
      return SQLITE_OK;
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
/*
** Ensure that there is room in the buffer to append nByte bytes of data.
** If not, use sqlite3_realloc() to grow the buffer so that there is.
**
** If successful, return zero. Otherwise, if an OOM condition is encountered,
** set *pRc to SQLITE_NOMEM and return non-zero.
*/
static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){
  if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){
    u8 *aNew;
    i64 nNew = p->nAlloc ? p->nAlloc : 128;
    do {
      nNew = nNew*2;
    }while( (nNew-p->nBuf)<nByte );








|







1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
/*
** Ensure that there is room in the buffer to append nByte bytes of data.
** If not, use sqlite3_realloc() to grow the buffer so that there is.
**
** If successful, return zero. Otherwise, if an OOM condition is encountered,
** set *pRc to SQLITE_NOMEM and return non-zero.
*/
static int sessionBufferGrow(SessionBuffer *p, size_t nByte, int *pRc){
  if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){
    u8 *aNew;
    i64 nNew = p->nAlloc ? p->nAlloc : 128;
    do {
      nNew = nNew*2;
    }while( (nNew-p->nBuf)<nByte );

2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
      sessionBufferGrow(&p->tblhdr, nByte, &rc);
    }else{
      rc = SQLITE_CORRUPT_BKPT;
    }
  }

  if( rc==SQLITE_OK ){
    int iPK = sizeof(sqlite3_value*)*p->nCol*2;
    memset(p->tblhdr.aBuf, 0, iPK);
    memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy);
    p->in.iNext += nCopy;
  }

  p->apValue = (sqlite3_value**)p->tblhdr.aBuf;
  p->abPK = (u8*)&p->apValue[p->nCol*2];







|







2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
      sessionBufferGrow(&p->tblhdr, nByte, &rc);
    }else{
      rc = SQLITE_CORRUPT_BKPT;
    }
  }

  if( rc==SQLITE_OK ){
    size_t iPK = sizeof(sqlite3_value*)*p->nCol*2;
    memset(p->tblhdr.aBuf, 0, iPK);
    memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy);
    p->in.iNext += nCopy;
  }

  p->apValue = (sqlite3_value**)p->tblhdr.aBuf;
  p->abPK = (u8*)&p->apValue[p->nCol*2];
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
  while( pApply->constraints.nBuf ){
    sqlite3_changeset_iter *pIter2 = 0;
    SessionBuffer cons = pApply->constraints;
    memset(&pApply->constraints, 0, sizeof(SessionBuffer));

    rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf, 0);
    if( rc==SQLITE_OK ){
      int nByte = 2*pApply->nCol*sizeof(sqlite3_value*);
      int rc2;
      pIter2->bPatchset = bPatchset;
      pIter2->zTab = (char*)zTab;
      pIter2->nCol = pApply->nCol;
      pIter2->abPK = pApply->abPK;
      sessionBufferGrow(&pIter2->tblhdr, nByte, &rc);
      pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf;







|







4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
  while( pApply->constraints.nBuf ){
    sqlite3_changeset_iter *pIter2 = 0;
    SessionBuffer cons = pApply->constraints;
    memset(&pApply->constraints, 0, sizeof(SessionBuffer));

    rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf, 0);
    if( rc==SQLITE_OK ){
      size_t nByte = 2*pApply->nCol*sizeof(sqlite3_value*);
      int rc2;
      pIter2->bPatchset = bPatchset;
      pIter2->zTab = (char*)zTab;
      pIter2->nCol = pApply->nCol;
      pIter2->abPK = pApply->abPK;
      sessionBufferGrow(&pIter2->tblhdr, nByte, &rc);
      pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf;
Changes to src/build.c.
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
  sqlite3 *db,      /* Connection to notify of malloc failures */
  void *pArray,     /* Array of objects.  Might be reallocated */
  int szEntry,      /* Size of each object in the array */
  int *pnEntry,     /* Number of objects currently in use */
  int *pIdx         /* Write the index of a new slot here */
){
  char *z;
  sqlite3_int64 n = *pnEntry;
  if( (n & (n-1))==0 ){
    sqlite3_int64 sz = (n==0) ? 1 : 2*n;
    void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
    if( pNew==0 ){
      *pIdx = -1;
      return pArray;
    }
    pArray = pNew;
  }
  z = (char*)pArray;
  memset(&z[n * szEntry], 0, szEntry);
  *pIdx = n;
  ++*pnEntry;
  return pArray;
}

/*
** Append a new element to the given IdList.  Create a new IdList if
** need be.







|











<







3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782

3783
3784
3785
3786
3787
3788
3789
  sqlite3 *db,      /* Connection to notify of malloc failures */
  void *pArray,     /* Array of objects.  Might be reallocated */
  int szEntry,      /* Size of each object in the array */
  int *pnEntry,     /* Number of objects currently in use */
  int *pIdx         /* Write the index of a new slot here */
){
  char *z;
  sqlite3_int64 n = *pIdx = *pnEntry;
  if( (n & (n-1))==0 ){
    sqlite3_int64 sz = (n==0) ? 1 : 2*n;
    void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
    if( pNew==0 ){
      *pIdx = -1;
      return pArray;
    }
    pArray = pNew;
  }
  z = (char*)pArray;
  memset(&z[n * szEntry], 0, szEntry);

  ++*pnEntry;
  return pArray;
}

/*
** Append a new element to the given IdList.  Create a new IdList if
** need be.
Changes to src/hash.c.
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
*/
static HashElem *findElementWithHash(
  const Hash *pH,     /* The pH to be searched */
  const char *pKey,   /* The key we are searching for */
  unsigned int *pHash /* Write the hash value here */
){
  HashElem *elem;                /* Used to loop thru the element list */
  int count;                     /* Number of elements left to test */
  unsigned int h;                /* The computed hash */
  static HashElem nullElement = { 0, 0, 0, 0 };

  if( pH->ht ){   /*OPTIMIZATION-IF-TRUE*/
    struct _ht *pEntry;
    h = strHash(pKey) % pH->htsize;
    pEntry = &pH->ht[h];







|







146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
*/
static HashElem *findElementWithHash(
  const Hash *pH,     /* The pH to be searched */
  const char *pKey,   /* The key we are searching for */
  unsigned int *pHash /* Write the hash value here */
){
  HashElem *elem;                /* Used to loop thru the element list */
  unsigned int count;            /* Number of elements left to test */
  unsigned int h;                /* The computed hash */
  static HashElem nullElement = { 0, 0, 0, 0 };

  if( pH->ht ){   /*OPTIMIZATION-IF-TRUE*/
    struct _ht *pEntry;
    h = strHash(pKey) % pH->htsize;
    pEntry = &pH->ht[h];
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    elem->next->prev = elem->prev;
  }
  if( pH->ht ){
    pEntry = &pH->ht[h];
    if( pEntry->chain==elem ){
      pEntry->chain = elem->next;
    }
    pEntry->count--;
    assert( pEntry->count>=0 );
  }
  sqlite3_free( elem );
  pH->count--;
  if( pH->count==0 ){
    assert( pH->first==0 );
    assert( pH->count==0 );
    sqlite3HashClear(pH);







|
|







194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    elem->next->prev = elem->prev;
  }
  if( pH->ht ){
    pEntry = &pH->ht[h];
    if( pEntry->chain==elem ){
      pEntry->chain = elem->next;
    }
    assert( pEntry->count>0 );
    pEntry->count--;
  }
  sqlite3_free( elem );
  pH->count--;
  if( pH->count==0 ){
    assert( pH->first==0 );
    assert( pH->count==0 );
    sqlite3HashClear(pH);
Changes to src/hash.h.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
** the hash table.
*/
struct Hash {
  unsigned int htsize;      /* Number of buckets in the hash table */
  unsigned int count;       /* Number of entries in this table */
  HashElem *first;          /* The first element of the array */
  struct _ht {              /* the hash table */
    int count;                 /* Number of entries with this hash */
    HashElem *chain;           /* Pointer to first entry with this hash */
  } *ht;
};

/* Each element in the hash table is an instance of the following 
** structure.  All elements are stored on a single doubly-linked list.
**







|







41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
** the hash table.
*/
struct Hash {
  unsigned int htsize;      /* Number of buckets in the hash table */
  unsigned int count;       /* Number of entries in this table */
  HashElem *first;          /* The first element of the array */
  struct _ht {              /* the hash table */
    unsigned int count;        /* Number of entries with this hash */
    HashElem *chain;           /* Pointer to first entry with this hash */
  } *ht;
};

/* Each element in the hash table is an instance of the following 
** structure.  All elements are stored on a single doubly-linked list.
**
Changes to src/vdbeaux.c.
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
  ** size of the op array or add 1KB of space, whichever is smaller. */
#ifdef SQLITE_TEST_REALLOC_STRESS
  sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
                        : (sqlite3_int64)v->nOpAlloc+nOp);
#else
  sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
                        : (sqlite3_int64)1024/sizeof(Op));
  UNUSED_PARAMETER(nOp);
#endif

  /* Ensure that the size of a VDBE does not grow too large */
  if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
    sqlite3OomFault(p->db);
    return SQLITE_NOMEM;







|







155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
  ** size of the op array or add 1KB of space, whichever is smaller. */
#ifdef SQLITE_TEST_REALLOC_STRESS
  sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
                        : (sqlite3_int64)v->nOpAlloc+nOp);
#else
  sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
                        : (sqlite3_int64)(1024/sizeof(Op)));
  UNUSED_PARAMETER(nOp);
#endif

  /* Ensure that the size of a VDBE does not grow too large */
  if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
    sqlite3OomFault(p->db);
    return SQLITE_NOMEM;
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */

/* An instance of this object describes bulk memory available for use
** by subcomponents of a prepared statement.  Space is allocated out
** of a ReusableSpace object by the allocSpace() routine below.
*/
struct ReusableSpace {
  u8 *pSpace;          /* Available memory */
  int nFree;           /* Bytes of available memory */
  int nNeeded;         /* Total bytes that could not be allocated */
};

/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
** from the ReusableSpace object.  Return a pointer to the allocated
** memory on success.  If insufficient memory is available in the
** ReusableSpace object, increase the ReusableSpace.nNeeded
** value by the amount needed and return NULL.
**
** If pBuf is not initially NULL, that means that the memory has already
** been allocated by a prior call to this routine, so just return a copy
** of pBuf and leave ReusableSpace unchanged.
**
** This allocator is employed to repurpose unused slots at the end of the
** opcode array of prepared state for other memory needs of the prepared
** statement.
*/
static void *allocSpace(
  struct ReusableSpace *p,  /* Bulk memory available for allocation */
  void *pBuf,               /* Pointer to a prior allocation */
  int nByte                 /* Bytes of memory needed */
){
  assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
  if( pBuf==0 ){
    nByte = ROUND8(nByte);
    if( nByte <= p->nFree ){
      p->nFree -= nByte;
      pBuf = &p->pSpace[p->nFree];







|
|
|



















|







2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */

/* An instance of this object describes bulk memory available for use
** by subcomponents of a prepared statement.  Space is allocated out
** of a ReusableSpace object by the allocSpace() routine below.
*/
struct ReusableSpace {
  u8 *pSpace;            /* Available memory */
  sqlite3_int64 nFree;   /* Bytes of available memory */
  sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
};

/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
** from the ReusableSpace object.  Return a pointer to the allocated
** memory on success.  If insufficient memory is available in the
** ReusableSpace object, increase the ReusableSpace.nNeeded
** value by the amount needed and return NULL.
**
** If pBuf is not initially NULL, that means that the memory has already
** been allocated by a prior call to this routine, so just return a copy
** of pBuf and leave ReusableSpace unchanged.
**
** This allocator is employed to repurpose unused slots at the end of the
** opcode array of prepared state for other memory needs of the prepared
** statement.
*/
static void *allocSpace(
  struct ReusableSpace *p,  /* Bulk memory available for allocation */
  void *pBuf,               /* Pointer to a prior allocation */
  sqlite3_int64 nByte       /* Bytes of memory needed */
){
  assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
  if( pBuf==0 ){
    nByte = ROUND8(nByte);
    if( nByte <= p->nFree ){
      p->nFree -= nByte;
      pBuf = &p->pSpace[p->nFree];
Changes to src/wal.c.
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
  int iPage,               /* The page we seek */
  volatile u32 **ppPage    /* Write the page pointer here */
){
  int rc = SQLITE_OK;

  /* Enlarge the pWal->apWiData[] array if required */
  if( pWal->nWiData<=iPage ){
    int nByte = sizeof(u32*)*(iPage+1);
    volatile u32 **apNew;
    apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
    if( !apNew ){
      *ppPage = 0;
      return SQLITE_NOMEM_BKPT;
    }
    memset((void*)&apNew[pWal->nWiData], 0,







|







571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
  int iPage,               /* The page we seek */
  volatile u32 **ppPage    /* Write the page pointer here */
){
  int rc = SQLITE_OK;

  /* Enlarge the pWal->apWiData[] array if required */
  if( pWal->nWiData<=iPage ){
    sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
    volatile u32 **apNew;
    apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
    if( !apNew ){
      *ppPage = 0;
      return SQLITE_NOMEM_BKPT;
    }
    memset((void*)&apNew[pWal->nWiData], 0,
675
676
677
678
679
680
681

682
683
684
685
686
687
688
    s2 = aIn[1];
  }else{
    s1 = s2 = 0;
  }

  assert( nByte>=8 );
  assert( (nByte&0x00000007)==0 );


  if( nativeCksum ){
    do {
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
    }while( aData<aEnd );
  }else{







>







675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    s2 = aIn[1];
  }else{
    s1 = s2 = 0;
  }

  assert( nByte>=8 );
  assert( (nByte&0x00000007)==0 );
  assert( nByte<=65536 );

  if( nativeCksum ){
    do {
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
    }while( aData<aEnd );
  }else{
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
** The calling routine should invoke walIteratorFree() to destroy the
** WalIterator object when it has finished with it.
*/
static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
  WalIterator *p;                 /* Return value */
  int nSegment;                   /* Number of segments to merge */
  u32 iLast;                      /* Last frame in log */
  int nByte;                      /* Number of bytes to allocate */
  int i;                          /* Iterator variable */
  ht_slot *aTmp;                  /* Temp space used by merge-sort */
  int rc = SQLITE_OK;             /* Return Code */

  /* This routine only runs while holding the checkpoint lock. And
  ** it only runs if there is actually content in the log (mxFrame>0).
  */







|







1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
** The calling routine should invoke walIteratorFree() to destroy the
** WalIterator object when it has finished with it.
*/
static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
  WalIterator *p;                 /* Return value */
  int nSegment;                   /* Number of segments to merge */
  u32 iLast;                      /* Last frame in log */
  sqlite3_int64 nByte;            /* Number of bytes to allocate */
  int i;                          /* Iterator variable */
  ht_slot *aTmp;                  /* Temp space used by merge-sort */
  int rc = SQLITE_OK;             /* Return Code */

  /* This routine only runs while holding the checkpoint lock. And
  ** it only runs if there is actually content in the log (mxFrame>0).
  */