Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Rework the VDBE data structures to combine string representations into the same structure with integer and floating point. This opens the door to significant optimizations. (CVS 1202) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
c0faa1c67a967f028cd018e58988fb08 |
User & Date: | drh 2004-01-30 14:49:17.000 |
Context
2004-01-31
| ||
19:22 | Rework internal data structures to make the VDBE about 15% smaller. (CVS 1203) (check-in: 8273c74bd0 user: drh tags: trunk) | |
2004-01-30
| ||
14:49 | Rework the VDBE data structures to combine string representations into the same structure with integer and floating point. This opens the door to significant optimizations. (CVS 1202) (check-in: c0faa1c67a user: drh tags: trunk) | |
02:01 | Make sure min() and max() optimizations work for subqueries. Ticket #587. (CVS 1201) (check-in: af73fbca83 user: drh tags: trunk) | |
Changes
Changes to src/func.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** ** $Id: func.c,v 1.38 2004/01/30 14:49:17 drh Exp $ */ #include <ctype.h> #include <math.h> #include <stdlib.h> #include <assert.h> #include "sqliteInt.h" #include "os.h" |
︙ | ︙ | |||
491 492 493 494 495 496 497 | */ static void minStep(sqlite_func *context, int argc, const char **argv){ MinMaxCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( p==0 || argc<1 || argv[0]==0 ) return; if( p->z==0 || sqliteCompare(argv[0],p->z)<0 ){ int len; | | | > | > | | > | > | | 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | */ static void minStep(sqlite_func *context, int argc, const char **argv){ MinMaxCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( p==0 || argc<1 || argv[0]==0 ) return; if( p->z==0 || sqliteCompare(argv[0],p->z)<0 ){ int len; if( !p->zBuf[0] ){ sqliteFree(p->z); } len = strlen(argv[0]); if( len < sizeof(p->zBuf)-1 ){ p->z = &p->zBuf[1]; p->zBuf[0] = 1; }else{ p->z = sqliteMalloc( len+1 ); p->zBuf[0] = 0; if( p->z==0 ) return; } strcpy(p->z, argv[0]); } } static void maxStep(sqlite_func *context, int argc, const char **argv){ MinMaxCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( p==0 || argc<1 || argv[0]==0 ) return; if( p->z==0 || sqliteCompare(argv[0],p->z)>0 ){ int len; if( !p->zBuf[0] ){ sqliteFree(p->z); } len = strlen(argv[0]); if( len < sizeof(p->zBuf)-1 ){ p->z = &p->zBuf[1]; p->zBuf[0] = 1; }else{ p->z = sqliteMalloc( len+1 ); p->zBuf[0] = 0; if( p->z==0 ) return; } strcpy(p->z, argv[0]); } } static void minMaxFinalize(sqlite_func *context){ MinMaxCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( p && p->z ){ sqlite_set_result_string(context, p->z, strlen(p->z)); } if( p && !p->zBuf[0] ){ sqliteFree(p->z); } } /* ** This function registered all of the above C functions as SQL ** functions. This should be the only routine in this file with |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.252 2004/01/30 14:49:17 drh Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> #include "vdbeInt.h" /* |
︙ | ︙ | |||
155 156 157 158 159 160 161 | pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); if( pOld!=0 ){ assert( pOld==pElem ); /* Malloc failed on insert */ sqliteFree(pOld); return 0; } for(i=0; i<p->nMem; i++){ | | | 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); if( pOld!=0 ){ assert( pOld==pElem ); /* Malloc failed on insert */ sqliteFree(pOld); return 0; } for(i=0; i<p->nMem; i++){ pElem->aMem[i].flags = MEM_Null; } p->pCurrent = pElem; return 0; } /* ** Get the AggElem currently in focus |
︙ | ︙ | |||
178 179 180 181 182 183 184 | return pElem ? sqliteHashData(pElem) : 0; } /* ** Convert the given stack entity into a string if it isn't one ** already. */ | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | return pElem ? sqliteHashData(pElem) : 0; } /* ** Convert the given stack entity into a string if it isn't one ** already. */ #define Stringify(P,I) if((aStack[I].flags & MEM_Str)==0){hardStringify(P,I);} static int hardStringify(Vdbe *p, int i){ Mem *pStack = &p->aStack[i]; int fg = pStack->flags; if( fg & MEM_Real ){ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r); }else if( fg & MEM_Int ){ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i); }else{ pStack->zShort[0] = 0; } p->aStack[i].z = pStack->zShort; pStack->n = strlen(pStack->zShort)+1; pStack->flags = MEM_Str; return 0; } /* ** Convert the given stack entity into a string that has been obtained ** from sqliteMalloc(). This is different from Stringify() above in that ** Stringify() will use the NBFS bytes of static string space if the string ** will fit but this routine always mallocs for space. ** Return non-zero if we run out of memory. */ #define Dynamicify(P,I) ((aStack[I].flags & MEM_Dyn)==0 ? hardDynamicify(P,I):0) static int hardDynamicify(Vdbe *p, int i){ Mem *pStack = &p->aStack[i]; int fg = pStack->flags; char *z; if( (fg & MEM_Str)==0 ){ hardStringify(p, i); } assert( (fg & MEM_Dyn)==0 ); z = sqliteMallocRaw( pStack->n ); if( z==0 ) return 1; memcpy(z, p->aStack[i].z, pStack->n); p->aStack[i].z = z; pStack->flags |= MEM_Dyn; return 0; } /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the stack entry ** does not control the string, it might be deleted without the stack ** entry knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the stack entry itself controls. In other words, it ** converts an MEM_Ephem string into an MEM_Dyn string. */ #define Deephemeralize(P,I) \ if( ((P)->aStack[I].flags&MEM_Ephem)!=0 && hardDeephem(P,I) ){ goto no_mem;} static int hardDeephem(Vdbe *p, int i){ Mem *pStack = &p->aStack[i]; char *z; assert( (pStack->flags & MEM_Ephem)!=0 ); z = sqliteMallocRaw( pStack->n ); if( z==0 ) return 1; memcpy(z, pStack->z, pStack->n); pStack->z = z; pStack->flags &= ~MEM_Ephem; pStack->flags |= MEM_Dyn; return 0; } /* ** Release the memory associated with the given stack level */ #define Release(P,I) if((P)->aStack[I].flags&MEM_Dyn){ hardRelease(P,I); } static void hardRelease(Vdbe *p, int i){ sqliteFree(p->aStack[i].z); p->aStack[i].z = 0; p->aStack[i].flags &= ~(MEM_Str|MEM_Dyn|MEM_Static|MEM_Ephem); } /* ** Return TRUE if zNum is a 32-bit signed integer and write ** the value of the integer into *pNum. If zNum is not an integer ** or is an integer that is too large to be expressed with just 32 ** bits, then return false. |
︙ | ︙ | |||
293 294 295 296 297 298 299 | ** Convert the given stack entity into a integer if it isn't one ** already. ** ** Any prior string or real representation is invalidated. ** NULLs are converted into 0. */ #define Integerify(P,I) \ | | | | | | | | | | | | 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | ** Convert the given stack entity into a integer if it isn't one ** already. ** ** Any prior string or real representation is invalidated. ** NULLs are converted into 0. */ #define Integerify(P,I) \ if(((P)->aStack[(I)].flags&MEM_Int)==0){ hardIntegerify(P,I); } static void hardIntegerify(Vdbe *p, int i){ if( p->aStack[i].flags & MEM_Real ){ p->aStack[i].i = (int)p->aStack[i].r; Release(p, i); }else if( p->aStack[i].flags & MEM_Str ){ toInt(p->aStack[i].z, &p->aStack[i].i); Release(p, i); }else{ p->aStack[i].i = 0; } p->aStack[i].flags = MEM_Int; } /* ** Get a valid Real representation for the given stack element. ** ** Any prior string or integer representation is retained. ** NULLs are converted into 0.0. */ #define Realify(P,I) \ if(((P)->aStack[(I)].flags&MEM_Real)==0){ hardRealify(P,I); } static void hardRealify(Vdbe *p, int i){ if( p->aStack[i].flags & MEM_Str ){ p->aStack[i].r = sqliteAtoF(p->aStack[i].z); }else if( p->aStack[i].flags & MEM_Int ){ p->aStack[i].r = p->aStack[i].i; }else{ p->aStack[i].r = 0.0; } p->aStack[i].flags |= MEM_Real; } /* ** The parameters are pointers to the head of two sorted lists ** of Sorter structures. Merge these two lists together and return ** a single sorted list. This routine forms the core of the merge-sort ** algorithm. |
︙ | ︙ | |||
482 483 484 485 486 487 488 | int sqliteVdbeExec( Vdbe *p /* The VDBE */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite *db = p->db; /* The database */ | < | | 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | int sqliteVdbeExec( Vdbe *p /* The VDBE */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite *db = p->db; /* The database */ Mem *aStack = p->aStack; /* The operand stack */ char zBuf[100]; /* Space to sprintf() an integer */ #ifdef VDBE_PROFILE unsigned long long start; /* CPU clock count at start of opcode */ int origPc; /* Program counter at start of opcode */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int nProgressOps = 0; /* Opcodes executed since progress callback. */ |
︙ | ︙ | |||
658 659 660 661 662 663 664 | ** ** The integer value P1 is pushed onto the stack. If P3 is not zero ** then it is assumed to be a string representation of the same integer. */ case OP_Integer: { int i = ++p->tos; aStack[i].i = pOp->p1; | | | | | | | | | | | | | 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 | ** ** The integer value P1 is pushed onto the stack. If P3 is not zero ** then it is assumed to be a string representation of the same integer. */ case OP_Integer: { int i = ++p->tos; aStack[i].i = pOp->p1; aStack[i].flags = MEM_Int; if( pOp->p3 ){ aStack[i].z = pOp->p3; aStack[i].flags |= MEM_Str | MEM_Static; aStack[i].n = strlen(pOp->p3)+1; } break; } /* Opcode: String * * P3 ** ** The string value P3 is pushed onto the stack. If P3==0 then a ** NULL is pushed onto the stack. */ case OP_String: { int i = ++p->tos; char *z; z = pOp->p3; if( z==0 ){ aStack[i].z = 0; aStack[i].n = 0; aStack[i].flags = MEM_Null; }else{ aStack[i].z = z; aStack[i].n = strlen(z) + 1; aStack[i].flags = MEM_Str | MEM_Static; } break; } /* Opcode: Variable P1 * * ** ** Push the value of variable P1 onto the stack. A variable is ** an unknown in the original SQL string as handed to sqlite_compile(). ** Any occurance of the '?' character in the original SQL is considered ** a variable. Variables in the SQL string are number from left to ** right beginning with 1. The values of variables are set using the ** sqlite_bind() API. */ case OP_Variable: { int i = ++p->tos; int j = pOp->p1 - 1; if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){ aStack[i].z = p->azVar[j]; aStack[i].n = p->anVar[j]; aStack[i].flags = MEM_Str | MEM_Static; }else{ aStack[i].z = 0; aStack[i].n = 0; aStack[i].flags = MEM_Null; } break; } /* Opcode: Pop P1 * * ** ** P1 elements are popped off of the top of stack and discarded. |
︙ | ︙ | |||
742 743 744 745 746 747 748 | ** Also see the Pull instruction. */ case OP_Dup: { int i = p->tos - pOp->p1; int j = ++p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS); | | | | | | | | | | | | | | | < < | | | | | | < < | | | | | | | 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 | ** Also see the Pull instruction. */ case OP_Dup: { int i = p->tos - pOp->p1; int j = ++p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS); if( aStack[j].flags & MEM_Str ){ int isStatic = (aStack[j].flags & MEM_Static)!=0; if( pOp->p2 || isStatic ){ aStack[j].z = aStack[i].z; aStack[j].flags &= ~MEM_Dyn; if( !isStatic ) aStack[j].flags |= MEM_Ephem; }else if( aStack[i].n<=NBFS ){ memcpy(aStack[j].zShort, aStack[i].z, aStack[j].n); aStack[j].z = aStack[j].zShort; aStack[j].flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); }else{ aStack[j].z = sqliteMallocRaw( aStack[j].n ); if( aStack[j].z==0 ) goto no_mem; memcpy(aStack[j].z, aStack[i].z, aStack[j].n); aStack[j].flags &= ~(MEM_Static|MEM_Ephem); aStack[j].flags |= MEM_Dyn; } } break; } /* Opcode: Pull P1 * * ** ** The P1-th element is removed from its current location on ** the stack and pushed back on top of the stack. The ** top of the stack is element 0, so "Pull 0 0 0" is ** a no-op. "Pull 1 0 0" swaps the top two elements of ** the stack. ** ** See also the Dup instruction. */ case OP_Pull: { int from = p->tos - pOp->p1; int to = p->tos; int i; Mem ts; VERIFY( if( from<0 ) goto not_enough_stack; ) Deephemeralize(p, from); ts = aStack[from]; Deephemeralize(p, to); for(i=from; i<to; i++){ Deephemeralize(p, i+1); aStack[i] = aStack[i+1]; assert( (aStack[i].flags & MEM_Ephem)==0 ); if( aStack[i].flags & (MEM_Dyn|MEM_Static) ){ aStack[i].z = aStack[i+1].z; }else{ aStack[i].z = aStack[i].zShort; } } aStack[to] = ts; assert( (aStack[to].flags & MEM_Ephem)==0 ); if( (aStack[to].flags & (MEM_Dyn|MEM_Static))==0 ){ aStack[to].z = aStack[to].zShort; } break; } /* Opcode: Push P1 * * ** ** Overwrite the value of the P1-th element down on the ** stack (P1==0 is the top of the stack) with the value ** of the top of the stack. Then pop the top of the stack. */ case OP_Push: { int from = p->tos; int to = p->tos - pOp->p1; VERIFY( if( to<0 ) goto not_enough_stack; ) if( aStack[to].flags & MEM_Dyn ){ sqliteFree(aStack[to].z); } Deephemeralize(p, from); aStack[to] = aStack[from]; if( aStack[to].flags & (MEM_Dyn|MEM_Static|MEM_Ephem) ){ aStack[to].z = aStack[from].z; }else{ aStack[to].z = aStack[to].zShort; } aStack[from].flags = 0; p->tos--; break; } /* Opcode: ColumnName P1 * P3 |
︙ | ︙ | |||
853 854 855 856 857 858 859 | ** 3rd parameter. */ case OP_Callback: { int i = p->tos - pOp->p1 + 1; int j; VERIFY( if( i<0 ) goto not_enough_stack; ) for(j=i; j<=p->tos; j++){ | | | > | | | | 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 | ** 3rd parameter. */ case OP_Callback: { int i = p->tos - pOp->p1 + 1; int j; VERIFY( if( i<0 ) goto not_enough_stack; ) for(j=i; j<=p->tos; j++){ if( aStack[j].flags & MEM_Null ){ aStack[j].z = 0; }else{ Stringify(p, j); } p->zArgv[j] = aStack[j].z; } p->zArgv[p->tos+1] = 0; if( p->xCallback==0 ){ p->azResColumn = &p->zArgv[i]; p->nResColumn = pOp->p1; p->popStack = pOp->p1; p->pc = pc + 1; return SQLITE_ROW; } if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; if( p->xCallback(p->pCbArg, pOp->p1, &p->zArgv[i], p->azColName)!=0 ){ rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; p->nCallback++; sqliteVdbePopStack(p, pOp->p1); if( sqlite_malloc_failed ) goto no_mem; break; |
︙ | ︙ | |||
935 936 937 938 939 940 941 | nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1 - nSep; for(i=p->tos-nField+1; i<=p->tos; i++){ | | | | | | | | | 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 | nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1 - nSep; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & MEM_Null ){ nByte = -1; break; }else{ Stringify(p, i); nByte += aStack[i].n - 1 + nSep; } } if( nByte<0 ){ if( pOp->p2==0 ) sqliteVdbePopStack(p, nField); p->tos++; aStack[p->tos].flags = MEM_Null; aStack[p->tos].z = 0; break; } zNew = sqliteMallocRaw( nByte ); if( zNew==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & MEM_Null)==0 ){ memcpy(&zNew[j], aStack[i].z, aStack[i].n-1); j += aStack[i].n-1; } if( nSep>0 && i<p->tos ){ memcpy(&zNew[j], zSep, nSep); j += nSep; } } zNew[j] = 0; if( pOp->p2==0 ) sqliteVdbePopStack(p, nField); p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = MEM_Str|MEM_Dyn; aStack[p->tos].z = zNew; break; } /* Opcode: Add * * * ** ** Pop the top two elements from the stack, add them together, ** and push the result back onto the stack. If either element |
︙ | ︙ | |||
1026 1027 1028 1029 1030 1031 1032 | case OP_Subtract: case OP_Multiply: case OP_Divide: case OP_Remainder: { int tos = p->tos; int nos = tos - 1; VERIFY( if( nos<0 ) goto not_enough_stack; ) | | | | | 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | case OP_Subtract: case OP_Multiply: case OP_Divide: case OP_Remainder: { int tos = p->tos; int nos = tos - 1; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( ((aStack[tos].flags | aStack[nos].flags) & MEM_Null)!=0 ){ POPSTACK; Release(p, nos); aStack[nos].flags = MEM_Null; }else if( (aStack[tos].flags & aStack[nos].flags & MEM_Int)==MEM_Int ){ int a, b; a = aStack[tos].i; b = aStack[nos].i; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; |
︙ | ︙ | |||
1052 1053 1054 1055 1056 1057 1058 | b %= a; break; } } POPSTACK; Release(p, nos); aStack[nos].i = b; | | | 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 | b %= a; break; } } POPSTACK; Release(p, nos); aStack[nos].i = b; aStack[nos].flags = MEM_Int; }else{ double a, b; Realify(p, tos); Realify(p, nos); a = aStack[tos].r; b = aStack[nos].r; switch( pOp->opcode ){ |
︙ | ︙ | |||
1079 1080 1081 1082 1083 1084 1085 | b = ib % ia; break; } } POPSTACK; Release(p, nos); aStack[nos].r = b; | | | | | > | | | | | | | | | | 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 | b = ib % ia; break; } } POPSTACK; Release(p, nos); aStack[nos].r = b; aStack[nos].flags = MEM_Real; } break; divide_by_zero: sqliteVdbePopStack(p, 2); p->tos = nos; aStack[nos].flags = MEM_Null; break; } /* Opcode: Function P1 * P3 ** ** Invoke a user function (P3 is a pointer to a Function structure that ** defines the function) with P1 string arguments taken from the stack. ** Pop all arguments from the stack and push back the result. ** ** See also: AggFunc */ case OP_Function: { int n, i; sqlite_func ctx; n = pOp->p1; VERIFY( if( n<0 ) goto bad_instruction; ) VERIFY( if( p->tos+1<n ) goto not_enough_stack; ) for(i=p->tos-n+1; i<=p->tos; i++){ if( aStack[i].flags & MEM_Null ){ aStack[i].z = 0; }else{ Stringify(p, i); } p->zArgv[i] = aStack[i].z; } ctx.pFunc = (FuncDef*)pOp->p3; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.isError = 0; ctx.isStep = 0; if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; (*ctx.pFunc->xFunc)(&ctx, n, (const char**)&p->zArgv[p->tos-n+1]); if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; sqliteVdbePopStack(p, n); p->tos++; aStack[p->tos] = ctx.s; if( ctx.s.flags & MEM_Dyn ){ aStack[p->tos].z = ctx.s.z; }else if( ctx.s.flags & MEM_Str ){ aStack[p->tos].z = aStack[p->tos].zShort; }else{ aStack[p->tos].z = 0; } if( ctx.isError ){ sqliteSetString(&p->zErrMsg, aStack[p->tos].z ? aStack[p->tos].z : "user function error", (char*)0); rc = SQLITE_ERROR; } break; } /* Opcode: BitAnd * * * ** |
︙ | ︙ | |||
1174 1175 1176 1177 1178 1179 1180 | case OP_BitOr: case OP_ShiftLeft: case OP_ShiftRight: { int tos = p->tos; int nos = tos - 1; int a, b; VERIFY( if( nos<0 ) goto not_enough_stack; ) | | | | | 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 | case OP_BitOr: case OP_ShiftLeft: case OP_ShiftRight: { int tos = p->tos; int nos = tos - 1; int a, b; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( (aStack[tos].flags | aStack[nos].flags) & MEM_Null ){ POPSTACK; Release(p,nos); aStack[nos].flags = MEM_Null; break; } Integerify(p, tos); Integerify(p, nos); a = aStack[tos].i; b = aStack[nos].i; switch( pOp->opcode ){ case OP_BitAnd: a &= b; break; case OP_BitOr: a |= b; break; case OP_ShiftLeft: a <<= b; break; case OP_ShiftRight: a >>= b; break; default: /* CANT HAPPEN */ break; } POPSTACK; Release(p, nos); aStack[nos].i = a; aStack[nos].flags = MEM_Int; break; } /* Opcode: AddImm P1 * * ** ** Add the value P1 to whatever is on top of the stack. The result ** is always an integer. |
︙ | ︙ | |||
1227 1228 1229 1230 1231 1232 1233 | ** current value if P1==0, or to the least integer that is strictly ** greater than its current value if P1==1. */ case OP_ForceInt: { int tos = p->tos; int v; VERIFY( if( tos<0 ) goto not_enough_stack; ) | | | | | | | | | | | | | | | 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 | ** current value if P1==0, or to the least integer that is strictly ** greater than its current value if P1==1. */ case OP_ForceInt: { int tos = p->tos; int v; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( (aStack[tos].flags & (MEM_Int|MEM_Real))==0 && (aStack[tos].z==0 || sqliteIsNumber(aStack[tos].z)==0) ){ POPSTACK; pc = pOp->p2 - 1; break; } if( aStack[tos].flags & MEM_Int ){ v = aStack[tos].i + (pOp->p1!=0); }else{ Realify(p, tos); v = (int)aStack[tos].r; if( aStack[tos].r>(double)v ) v++; if( pOp->p1 && aStack[tos].r==(double)v ) v++; } if( aStack[tos].flags & MEM_Dyn ) sqliteFree(aStack[tos].z); aStack[tos].z = 0; aStack[tos].i = v; aStack[tos].flags = MEM_Int; break; } /* Opcode: MustBeInt P1 P2 * ** ** Force the top of the stack to be an integer. If the top of the ** stack is not an integer and cannot be converted into an integer ** with out data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. ** ** If the top of the stack is not an integer and P2 is not zero and ** P1 is 1, then the stack is popped. In all other cases, the depth ** of the stack is unchanged. */ case OP_MustBeInt: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & MEM_Int ){ /* Do nothing */ }else if( aStack[tos].flags & MEM_Real ){ int i = aStack[tos].r; double r = (double)i; if( r!=aStack[tos].r ){ goto mismatch; } aStack[tos].i = i; }else if( aStack[tos].flags & MEM_Str ){ int v; if( !toInt(aStack[tos].z, &v) ){ double r; if( !sqliteIsNumber(aStack[tos].z) ){ goto mismatch; } Realify(p, tos); assert( (aStack[tos].flags & MEM_Real)!=0 ); v = aStack[tos].r; r = (double)v; if( r!=aStack[tos].r ){ goto mismatch; } } aStack[tos].i = v; }else{ goto mismatch; } Release(p, tos); aStack[tos].flags = MEM_Int; break; mismatch: if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ |
︙ | ︙ | |||
1429 1430 1431 1432 1433 1434 1435 | int tos = p->tos; int nos = tos - 1; int c, v; int ft, fn; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; | | | | | | | | | | | 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 | int tos = p->tos; int nos = tos - 1; int c, v; int ft, fn; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( (ft | fn) & MEM_Null ){ POPSTACK; POPSTACK; if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ p->tos++; aStack[nos].flags = MEM_Null; } break; }else if( (ft & fn & MEM_Int)==MEM_Int ){ c = aStack[nos].i - aStack[tos].i; }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(aStack[nos].z,&v) ){ Release(p, nos); aStack[nos].i = v; aStack[nos].flags = MEM_Int; c = aStack[nos].i - aStack[tos].i; }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(aStack[tos].z,&v) ){ Release(p, tos); aStack[tos].i = v; aStack[tos].flags = MEM_Int; c = aStack[nos].i - aStack[tos].i; }else{ Stringify(p, tos); Stringify(p, nos); c = sqliteCompare(aStack[nos].z, aStack[tos].z); } switch( pOp->opcode ){ case OP_Eq: c = c==0; break; case OP_Ne: c = c!=0; break; case OP_Lt: c = c<0; break; case OP_Le: c = c<=0; break; case OP_Gt: c = c>0; break; default: c = c>=0; break; } POPSTACK; POPSTACK; if( pOp->p2 ){ if( c ) pc = pOp->p2-1; }else{ p->tos++; aStack[nos].flags = MEM_Int; aStack[nos].i = c; } break; } /* INSERT NO CODE HERE! ** ** The opcode numbers are extracted from this source file by doing |
︙ | ︙ | |||
1592 1593 1594 1595 1596 1597 1598 | case OP_StrLe: case OP_StrGt: case OP_StrGe: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) | | | | | | 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 | case OP_StrLe: case OP_StrGt: case OP_StrGe: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( (aStack[nos].flags | aStack[tos].flags) & MEM_Null ){ POPSTACK; POPSTACK; if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ p->tos++; aStack[nos].flags = MEM_Null; } break; }else{ Stringify(p, tos); Stringify(p, nos); c = strcmp(aStack[nos].z, aStack[tos].z); } /* The asserts on each case of the following switch are there to verify ** that string comparison opcodes are always exactly 6 greater than the ** corresponding numeric comparison opcodes. The code generator depends ** on this fact. */ switch( pOp->opcode ){ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break; case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break; case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break; case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break; case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break; default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break; } POPSTACK; POPSTACK; if( pOp->p2 ){ if( c ) pc = pOp->p2-1; }else{ p->tos++; aStack[nos].flags = MEM_Int; aStack[nos].i = c; } break; } /* Opcode: And * * * ** |
︙ | ︙ | |||
1651 1652 1653 1654 1655 1656 1657 | case OP_And: case OP_Or: { int tos = p->tos; int nos = tos - 1; int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ VERIFY( if( nos<0 ) goto not_enough_stack; ) | | | | | | | | | | | | | | | | 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 | case OP_And: case OP_Or: { int tos = p->tos; int nos = tos - 1; int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ VERIFY( if( nos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & MEM_Null ){ v1 = 2; }else{ Integerify(p, tos); v1 = aStack[tos].i==0; } if( aStack[nos].flags & MEM_Null ){ v2 = 2; }else{ Integerify(p, nos); v2 = aStack[nos].i==0; } if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = or_logic[v1*3+v2]; } POPSTACK; Release(p, nos); if( v1==2 ){ aStack[nos].flags = MEM_Null; }else{ aStack[nos].i = v1==0; aStack[nos].flags = MEM_Int; } break; } /* Opcode: Negative * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its additive inverse. If the top of the stack is NULL ** its value is unchanged. */ /* Opcode: AbsValue * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its absolute value. If the top of the stack is NULL ** its value is unchanged. */ case OP_Negative: case OP_AbsValue: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & MEM_Real ){ Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){ aStack[tos].r = -aStack[tos].r; } aStack[tos].flags = MEM_Real; }else if( aStack[tos].flags & MEM_Int ){ Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].i<0 ){ aStack[tos].i = -aStack[tos].i; } aStack[tos].flags = MEM_Int; }else if( aStack[tos].flags & MEM_Null ){ /* Do nothing */ }else{ Realify(p, tos); Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){ aStack[tos].r = -aStack[tos].r; } aStack[tos].flags = MEM_Real; } break; } /* Opcode: Not * * * ** ** Interpret the top of the stack as a boolean value. Replace it ** with its complement. If the top of the stack is NULL its value ** is unchanged. */ case OP_Not: { int tos = p->tos; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & MEM_Null ) break; /* Do nothing to NULLs */ Integerify(p, tos); Release(p, tos); aStack[tos].i = !aStack[tos].i; aStack[tos].flags = MEM_Int; break; } /* Opcode: BitNot * * * ** ** Interpret the top of the stack as an value. Replace it ** with its ones-complement. If the top of the stack is NULL its ** value is unchanged. */ case OP_BitNot: { int tos = p->tos; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & MEM_Null ) break; /* Do nothing to NULLs */ Integerify(p, tos); Release(p, tos); aStack[tos].i = ~aStack[tos].i; aStack[tos].flags = MEM_Int; break; } /* Opcode: Noop * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. |
︙ | ︙ | |||
1789 1790 1791 1792 1793 1794 1795 | ** If the value popped of the stack is NULL, then take the jump if P1 ** is true and fall through if P1 is false. */ case OP_If: case OP_IfNot: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) | | | 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 | ** If the value popped of the stack is NULL, then take the jump if P1 ** is true and fall through if P1 is false. */ case OP_If: case OP_IfNot: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( aStack[p->tos].flags & MEM_Null ){ c = pOp->p1; }else{ Integerify(p, p->tos); c = aStack[p->tos].i; if( pOp->opcode==OP_IfNot ) c = !c; } POPSTACK; |
︙ | ︙ | |||
1813 1814 1815 1816 1817 1818 1819 | */ case OP_IsNull: { int i, cnt; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; ) for(i=0; i<cnt; i++){ | | | | 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 | */ case OP_IsNull: { int i, cnt; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; ) for(i=0; i<cnt; i++){ if( aStack[p->tos-i].flags & MEM_Null ){ pc = pOp->p2-1; break; } } if( pOp->p1>0 ) sqliteVdbePopStack(p, cnt); break; } /* Opcode: NotNull P1 P2 * ** ** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the ** stack if P1 times if P1 is greater than zero. If P1 is less than ** zero then leave the stack unchanged. */ case OP_NotNull: { int i, cnt; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; ) for(i=0; i<cnt && (aStack[p->tos-i].flags & MEM_Null)==0; i++){} if( i>=cnt ) pc = pOp->p2-1; if( pOp->p1>0 ) sqliteVdbePopStack(p, cnt); break; } /* Opcode: MakeRecord P1 P2 * ** |
︙ | ︙ | |||
1893 1894 1895 1896 1897 1898 1899 | ** of data(0). Idx(k) contains the offset to the start of data(k). ** Idx(N) contains the total number of bytes in the record. */ nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ | | | 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 | ** of data(0). Idx(k) contains the offset to the start of data(k). ** Idx(N) contains the total number of bytes in the record. */ nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & MEM_Null) ){ addUnique = pOp->p2; }else{ Stringify(p, i); nByte += aStack[i].n; } } if( addUnique ) nByte += sizeof(p->uniqueCnt); |
︙ | ︙ | |||
1929 1930 1931 1932 1933 1934 1935 | zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } | | | | | | | | | | 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 | zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( (aStack[i].flags & MEM_Null)==0 ){ addr += aStack[i].n; } } zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( addUnique ){ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt)); p->uniqueCnt++; j += sizeof(p->uniqueCnt); } for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & MEM_Null)==0 ){ memcpy(&zNewRecord[j], aStack[i].z, aStack[i].n); j += aStack[i].n; } } sqliteVdbePopStack(p, nField); p->tos++; aStack[p->tos].n = nByte; if( nByte<=NBFS ){ assert( zNewRecord==zTemp ); memcpy(aStack[p->tos].zShort, zTemp, nByte); aStack[p->tos].z = aStack[p->tos].zShort; aStack[p->tos].flags = MEM_Str; }else{ assert( zNewRecord!=zTemp ); aStack[p->tos].flags = MEM_Str | MEM_Dyn; aStack[p->tos].z = zNewRecord; } break; } /* Opcode: MakeKey P1 P2 P3 ** ** Convert the top P1 entries of the stack into a single entry suitable |
︙ | ︙ | |||
2057 2058 2059 2060 2061 2062 2063 | nField = pOp->p1; VERIFY( if( p->tos+1+addRowid<nField ) goto not_enough_stack; ) nByte = 0; for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){ int flags = aStack[i].flags; int len; char *z; | | | | | | | | | | | | > | | | | | | | | | 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 | nField = pOp->p1; VERIFY( if( p->tos+1+addRowid<nField ) goto not_enough_stack; ) nByte = 0; for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){ int flags = aStack[i].flags; int len; char *z; if( flags & MEM_Null ){ nByte += 2; containsNull = 1; }else if( pOp->p3 && pOp->p3[j]=='t' ){ Stringify(p, i); aStack[i].flags &= ~(MEM_Int|MEM_Real); nByte += aStack[i].n+1; }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(aStack[i].z) ){ if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){ aStack[i].r = aStack[i].i; }else if( (flags & (MEM_Real|MEM_Int))==0 ){ aStack[i].r = sqliteAtoF(aStack[i].z); } Release(p, i); z = aStack[i].zShort; sqliteRealToSortable(aStack[i].r, z); len = strlen(z); aStack[i].z = 0; aStack[i].flags = MEM_Real; aStack[i].n = len+1; nByte += aStack[i].n+1; }else{ nByte += aStack[i].n+1; } } if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ rc = SQLITE_TOOBIG; goto abort_due_to_error; } if( addRowid ) nByte += sizeof(u32); if( nByte<=NBFS ){ zNewKey = zTemp; }else{ zNewKey = sqliteMallocRaw( nByte ); if( zNewKey==0 ) goto no_mem; } j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & MEM_Null ){ zNewKey[j++] = 'a'; zNewKey[j++] = 0; }else{ if( aStack[i].flags & (MEM_Int|MEM_Real) ){ zNewKey[j++] = 'b'; }else{ zNewKey[j++] = 'c'; } /*** Is this right? ****/ memcpy(&zNewKey[j],aStack[i].z?aStack[i].z:aStack[i].zShort,aStack[i].n); j += aStack[i].n; } } if( addRowid ){ u32 iKey; Integerify(p, p->tos-nField); iKey = intToKey(aStack[p->tos-nField].i); memcpy(&zNewKey[j], &iKey, sizeof(u32)); sqliteVdbePopStack(p, nField+1); if( pOp->p2 && containsNull ) pc = pOp->p2 - 1; }else{ if( pOp->p2==0 ) sqliteVdbePopStack(p, nField+addRowid); } p->tos++; aStack[p->tos].n = nByte; if( nByte<=NBFS ){ assert( zNewKey==zTemp ); aStack[p->tos].z = aStack[p->tos].zShort; memcpy(aStack[p->tos].z, zTemp, nByte); aStack[p->tos].flags = MEM_Str; }else{ aStack[p->tos].flags = MEM_Str|MEM_Dyn; aStack[p->tos].z = zNewKey; } break; } /* Opcode: IncrKey * * * ** ** The top of the stack should contain an index key generated by ** The MakeKey opcode. This routine increases the least significant ** byte of that key by one. This is used so that the MoveTo opcode ** will move to the first entry greater than the key rather than to ** the key itself. */ case OP_IncrKey: { int tos = p->tos; VERIFY( if( tos<0 ) goto bad_instruction ); Stringify(p, tos); if( aStack[tos].flags & (MEM_Static|MEM_Ephem) ){ /* CANT HAPPEN. The IncrKey opcode is only applied to keys ** generated by MakeKey or MakeIdxKey and the results of those ** operands are always dynamic strings. */ goto abort_due_to_error; } aStack[tos].z[aStack[tos].n-1]++; break; } /* Opcode: Checkpoint P1 * * ** ** Begin a checkpoint. A checkpoint is the beginning of a operation that ** is part of a larger transaction but which might need to be rolled back |
︙ | ︙ | |||
2301 2302 2303 2304 2305 2306 2307 | int i = ++p->tos; int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( db->aDb[pOp->p1].pBt!=0 ); rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); aStack[i].i = aMeta[1+pOp->p2]; | | | 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 | int i = ++p->tos; int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( db->aDb[pOp->p1].pBt!=0 ); rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); aStack[i].i = aMeta[1+pOp->p2]; aStack[i].flags = MEM_Int; break; } /* Opcode: SetCookie P1 P2 * ** ** Write the top of the stack into cookie number P2 of database P1. ** P2==0 is the schema version. P2==1 is the database format. |
︙ | ︙ | |||
2582 2583 2584 2585 2586 2587 2588 | VERIFY( if( tos<0 ) goto not_enough_stack; ) assert( i>=0 && i<p->nCursor ); pC = &p->aCsr[i]; if( pC->pCursor!=0 ){ int res, oc; pC->nullRow = 0; | | | | 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 | VERIFY( if( tos<0 ) goto not_enough_stack; ) assert( i>=0 && i<p->nCursor ); pC = &p->aCsr[i]; if( pC->pCursor!=0 ){ int res, oc; pC->nullRow = 0; if( aStack[tos].flags & MEM_Int ){ int iKey = intToKey(aStack[tos].i); if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){ pC->movetoTarget = iKey; pC->deferredMoveto = 1; POPSTACK; break; } sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); pC->lastRecno = aStack[tos].i; pC->recnoIsValid = res==0; }else{ Stringify(p, tos); sqliteBtreeMoveto(pC->pCursor, aStack[tos].z, aStack[tos].n, &res); pC->recnoIsValid = 0; } pC->deferredMoveto = 0; sqlite_search_count++; oc = pOp->opcode; if( oc==OP_MoveTo && res<0 ){ sqliteBtreeNext(pC->pCursor, &res); |
︙ | ︙ | |||
2671 2672 2673 2674 2675 2676 2677 | int tos = p->tos; int alreadyExists = 0; Cursor *pC; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){ int res, rx; Stringify(p, tos); | | | 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 | int tos = p->tos; int alreadyExists = 0; Cursor *pC; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){ int res, rx; Stringify(p, tos); rx = sqliteBtreeMoveto(pC->pCursor, aStack[tos].z, aStack[tos].n, &res); alreadyExists = rx==SQLITE_OK && res==0; pC->deferredMoveto = 0; } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; |
︙ | ︙ | |||
2728 2729 2730 2731 2732 2733 2734 | int v; /* The record number on the P1 entry that matches K */ char *zKey; /* The value of K */ int nKey; /* Number of bytes in K */ /* Make sure K is a string and make zKey point to K */ Stringify(p, nos); | | | 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 | int v; /* The record number on the P1 entry that matches K */ char *zKey; /* The value of K */ int nKey; /* Number of bytes in K */ /* Make sure K is a string and make zKey point to K */ Stringify(p, nos); zKey = aStack[nos].z; nKey = aStack[nos].n; assert( nKey >= 4 ); /* Search for an entry in P1 where all but the last four bytes match K. ** If there is no such entry, jump immediately to P2. */ assert( p->aCsr[i].deferredMoveto==0 ); |
︙ | ︙ | |||
2771 2772 2773 2774 2775 2776 2777 | /* The last four bytes of the key are different from R. Convert the ** last four bytes of the key into an integer and push it onto the ** stack. (These bytes are the record number of an entry that ** violates a UNIQUE constraint.) */ p->tos++; aStack[tos].i = v; | | | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 | /* The last four bytes of the key are different from R. Convert the ** last four bytes of the key into an integer and push it onto the ** stack. (These bytes are the record number of an entry that ** violates a UNIQUE constraint.) */ p->tos++; aStack[tos].i = v; aStack[tos].flags = MEM_Int; } break; } /* Opcode: NotExists P1 P2 * ** ** Use the top of the stack as a integer key. If a record with that key |
︙ | ︙ | |||
2796 2797 2798 2799 2800 2801 2802 | case OP_NotExists: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rx, iKey; | | | 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 | case OP_NotExists: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rx, iKey; assert( aStack[tos].flags & MEM_Int ); iKey = intToKey(aStack[tos].i); rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res); p->aCsr[i].lastRecno = aStack[tos].i; p->aCsr[i].recnoIsValid = res==0; p->aCsr[i].nullRow = 0; if( rx!=SQLITE_OK || res!=0 ){ pc = pOp->p2 - 1; |
︙ | ︙ | |||
2908 2909 2910 2911 2912 2913 2914 | } } pC->recnoIsValid = 0; pC->deferredMoveto = 0; } p->tos++; aStack[p->tos].i = v; | | | 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 | } } pC->recnoIsValid = 0; pC->deferredMoveto = 0; } p->tos++; aStack[p->tos].i = v; aStack[p->tos].flags = MEM_Int; break; } /* Opcode: PutIntKey P1 P2 * ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing |
︙ | ︙ | |||
2948 2949 2950 2951 2952 2953 2954 | if( VERIFY( i>=0 && i<p->nCursor && ) ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ char *zKey; int nKey, iKey; if( pOp->opcode==OP_PutStrKey ){ Stringify(p, nos); nKey = aStack[nos].n; | | | | | | | | | | 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 | if( VERIFY( i>=0 && i<p->nCursor && ) ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ char *zKey; int nKey, iKey; if( pOp->opcode==OP_PutStrKey ){ Stringify(p, nos); nKey = aStack[nos].n; zKey = aStack[nos].z; }else{ assert( aStack[nos].flags & MEM_Int ); nKey = sizeof(int); iKey = intToKey(aStack[nos].i); zKey = (char*)&iKey; if( pOp->p2 ){ db->nChange++; db->lastRowid = aStack[nos].i; } if( pC->nextRowidValid && aStack[nos].i>=pC->nextRowid ){ pC->nextRowidValid = 0; } } if( pC->pseudoTable ){ /* PutStrKey does not work for pseudo-tables. ** The following assert makes sure we are not trying to use ** PutStrKey on a pseudo-table */ assert( pOp->opcode==OP_PutIntKey ); sqliteFree(pC->pData); pC->iKey = iKey; pC->nData = aStack[tos].n; if( aStack[tos].flags & MEM_Dyn ){ pC->pData = aStack[tos].z; aStack[tos].z = 0; aStack[tos].flags = MEM_Null; }else{ pC->pData = sqliteMallocRaw( pC->nData ); if( pC->pData ){ memcpy(pC->pData, aStack[tos].z, pC->nData); } } pC->nullRow = 0; }else{ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, aStack[tos].z, aStack[tos].n); } pC->recnoIsValid = 0; pC->deferredMoveto = 0; } POPSTACK; POPSTACK; break; |
︙ | ︙ | |||
3064 3065 3066 3067 3068 3069 3070 | int tos = ++p->tos; Cursor *pC; int n; assert( i>=0 && i<p->nCursor ); pC = &p->aCsr[i]; if( pC->nullRow ){ | | | | | | | | | | | | | 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 | int tos = ++p->tos; Cursor *pC; int n; assert( i>=0 && i<p->nCursor ); pC = &p->aCsr[i]; if( pC->nullRow ){ aStack[tos].flags = MEM_Null; }else if( pC->pCursor!=0 ){ BtCursor *pCrsr = pC->pCursor; sqliteVdbeCursorMoveto(pC); if( pC->nullRow ){ aStack[tos].flags = MEM_Null; break; }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ sqliteBtreeKeySize(pCrsr, &n); }else{ sqliteBtreeDataSize(pCrsr, &n); } aStack[tos].n = n; if( n<=NBFS ){ aStack[tos].flags = MEM_Str; aStack[tos].z = aStack[tos].zShort; }else{ char *z = sqliteMallocRaw( n ); if( z==0 ) goto no_mem; aStack[tos].flags = MEM_Str | MEM_Dyn; aStack[tos].z = z; } if( pC->keyAsData || pOp->opcode==OP_RowKey ){ sqliteBtreeKey(pCrsr, 0, n, aStack[tos].z); }else{ sqliteBtreeData(pCrsr, 0, n, aStack[tos].z); } }else if( pC->pseudoTable ){ aStack[tos].n = pC->nData; aStack[tos].z = pC->pData; aStack[tos].flags = MEM_Str|MEM_Ephem; }else{ aStack[tos].flags = MEM_Null; } break; } /* Opcode: Column P1 P2 * ** ** Interpret the data that cursor P1 points to as |
︙ | ︙ | |||
3134 3135 3136 3137 3138 3139 3140 | BtCursor *pCrsr; int idxWidth; unsigned char aHdr[10]; assert( i<p->nCursor ); if( i<0 ){ VERIFY( if( tos+i<0 ) goto bad_instruction; ) | | | | 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 | BtCursor *pCrsr; int idxWidth; unsigned char aHdr[10]; assert( i<p->nCursor ); if( i<0 ){ VERIFY( if( tos+i<0 ) goto bad_instruction; ) VERIFY( if( (aStack[tos+i].flags & MEM_Str)==0 ) goto bad_instruction; ) zRec = aStack[tos+i].z; payloadSize = aStack[tos+i].n; }else if( (pC = &p->aCsr[i])->pCursor!=0 ){ sqliteVdbeCursorMoveto(pC); zRec = 0; pCrsr = pC->pCursor; if( pC->nullRow ){ payloadSize = 0; |
︙ | ︙ | |||
3160 3161 3162 3163 3164 3165 3166 | payloadSize = 0; } /* Figure out how many bytes in the column data and where the column ** data begins. */ if( payloadSize==0 ){ | | | 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 | payloadSize = 0; } /* Figure out how many bytes in the column data and where the column ** data begins. */ if( payloadSize==0 ){ aStack[tos].flags = MEM_Null; p->tos = tos; break; }else if( payloadSize<256 ){ idxWidth = 1; }else if( payloadSize<65536 ){ idxWidth = 2; }else{ |
︙ | ︙ | |||
3204 3205 3206 3207 3208 3209 3210 | goto abort_due_to_error; } /* amt and offset now hold the offset to the start of data and the ** amount of data. Go get the data and put it on the stack. */ if( amt==0 ){ | | | | | | | | | | | 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 | goto abort_due_to_error; } /* amt and offset now hold the offset to the start of data and the ** amount of data. Go get the data and put it on the stack. */ if( amt==0 ){ aStack[tos].flags = MEM_Null; }else if( zRec ){ aStack[tos].flags = MEM_Str | MEM_Ephem; aStack[tos].n = amt; aStack[tos].z = &zRec[offset]; }else{ if( amt<=NBFS ){ aStack[tos].flags = MEM_Str; aStack[tos].z = aStack[tos].zShort; aStack[tos].n = amt; }else{ char *z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; aStack[tos].flags = MEM_Str | MEM_Dyn; aStack[tos].z = z; aStack[tos].n = amt; } if( pC->keyAsData ){ sqliteBtreeKey(pCrsr, offset, amt, aStack[tos].z); }else{ sqliteBtreeData(pCrsr, offset, amt, aStack[tos].z); } } p->tos = tos; break; } /* Opcode: Recno P1 * * |
︙ | ︙ | |||
3252 3253 3254 3255 3256 3257 3258 | pC = &p->aCsr[i]; sqliteVdbeCursorMoveto(pC); if( pC->recnoIsValid ){ v = pC->lastRecno; }else if( pC->pseudoTable ){ v = keyToInt(pC->iKey); }else if( pC->nullRow || pC->pCursor==0 ){ | | | | 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 | pC = &p->aCsr[i]; sqliteVdbeCursorMoveto(pC); if( pC->recnoIsValid ){ v = pC->lastRecno; }else if( pC->pseudoTable ){ v = keyToInt(pC->iKey); }else if( pC->nullRow || pC->pCursor==0 ){ aStack[tos].flags = MEM_Null; break; }else{ assert( pC->pCursor!=0 ); sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v); v = keyToInt(v); } aStack[tos].i = v; aStack[tos].flags = MEM_Int; break; } /* Opcode: FullKey P1 * * ** ** Extract the complete key from the record that cursor P1 is currently ** pointing to and push the key onto the stack as a string. |
︙ | ︙ | |||
3295 3296 3297 3298 3299 3300 3301 | if( amt<=0 ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( amt>NBFS ){ z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; | | | | | | 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 | if( amt<=0 ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( amt>NBFS ){ z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; aStack[tos].flags = MEM_Str | MEM_Dyn; }else{ z = aStack[tos].zShort; aStack[tos].flags = MEM_Str; } sqliteBtreeKey(pCrsr, 0, amt, z); aStack[tos].z = z; aStack[tos].n = amt; } break; } /* Opcode: NullRow P1 * * ** |
︙ | ︙ | |||
3444 3445 3446 3447 3448 3449 3450 | case OP_IdxPut: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int nKey = aStack[tos].n; | | | 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 | case OP_IdxPut: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int nKey = aStack[tos].n; const char *zKey = aStack[tos].z; if( pOp->p2 ){ int res, n; assert( aStack[tos].n >= 4 ); rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; while( res!=0 ){ int c; |
︙ | ︙ | |||
3490 3491 3492 3493 3494 3495 3496 | case OP_IdxDelete: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int rx, res; | | | 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 | case OP_IdxDelete: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int rx, res; rx = sqliteBtreeMoveto(pCrsr, aStack[tos].z, aStack[tos].n, &res); if( rx==SQLITE_OK && res==0 ){ rc = sqliteBtreeDelete(pCrsr); } assert( p->aCsr[i].deferredMoveto==0 ); } POPSTACK; break; |
︙ | ︙ | |||
3520 3521 3522 3523 3524 3525 3526 | if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int v; int sz; assert( p->aCsr[i].deferredMoveto==0 ); sqliteBtreeKeySize(pCrsr, &sz); if( sz<sizeof(u32) ){ | | | | 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 | if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int v; int sz; assert( p->aCsr[i].deferredMoveto==0 ); sqliteBtreeKeySize(pCrsr, &sz); if( sz<sizeof(u32) ){ aStack[tos].flags = MEM_Null; }else{ sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v); v = keyToInt(v); aStack[tos].i = v; aStack[tos].flags = MEM_Int; } } break; } /* Opcode: IdxGT P1 P2 * ** |
︙ | ︙ | |||
3568 3569 3570 3571 3572 3573 3574 | BtCursor *pCrsr; if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; Stringify(p, tos); assert( p->aCsr[i].deferredMoveto==0 ); | | | 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 | BtCursor *pCrsr; if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; Stringify(p, tos); assert( p->aCsr[i].deferredMoveto==0 ); rc = sqliteBtreeKeyCompare(pCrsr, aStack[tos].z, aStack[tos].n, 4, &res); if( rc!=SQLITE_OK ){ break; } if( pOp->opcode==OP_IdxLT ){ res = -res; }else if( pOp->opcode==OP_IdxGE ){ res++; |
︙ | ︙ | |||
3601 3602 3603 3604 3605 3606 3607 | case OP_IdxIsNull: { int i = pOp->p1; int tos = p->tos; int k, n; const char *z; assert( tos>=0 ); | | | | 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 | case OP_IdxIsNull: { int i = pOp->p1; int tos = p->tos; int k, n; const char *z; assert( tos>=0 ); assert( aStack[tos].flags & MEM_Str ); z = aStack[tos].z; n = aStack[tos].n; for(k=0; k<n && i>0; i--){ if( z[k]=='a' ){ pc = pOp->p2-1; break; } while( k<n && z[k] ){ k++; } |
︙ | ︙ | |||
3688 3689 3690 3691 3692 3693 3694 | if( pOp->opcode==OP_CreateTable ){ rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); }else{ rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); } if( rc==SQLITE_OK ){ aStack[i].i = pgno; | | | 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 | if( pOp->opcode==OP_CreateTable ){ rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); }else{ rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); } if( rc==SQLITE_OK ){ aStack[i].i = pgno; aStack[i].flags = MEM_Int; *(u32*)pOp->p3 = pgno; pOp->p3 = 0; } break; } /* Opcode: IntegrityCk P1 P2 * |
︙ | ︙ | |||
3735 3736 3737 3738 3739 3740 3741 | } aRoot[j] = 0; sqliteHashClear(&pSet->hash); pSet->prev = 0; z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); if( z==0 || z[0]==0 ){ if( z ) sqliteFree(z); | | | | | | 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 | } aRoot[j] = 0; sqliteHashClear(&pSet->hash); pSet->prev = 0; z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); if( z==0 || z[0]==0 ){ if( z ) sqliteFree(z); aStack[tos].z = "ok"; aStack[tos].n = 3; aStack[tos].flags = MEM_Str | MEM_Static; }else{ aStack[tos].z = z; aStack[tos].n = strlen(z) + 1; aStack[tos].flags = MEM_Str | MEM_Dyn; } sqliteFree(aRoot); break; } /* Opcode: ListWrite * * * ** |
︙ | ︙ | |||
3799 3800 3801 3802 3803 3804 3805 | VERIFY( if( pKeylist->nRead<0 || pKeylist->nRead>=pKeylist->nUsed || pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction; ) p->tos++; aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++]; | | | | 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 | VERIFY( if( pKeylist->nRead<0 || pKeylist->nRead>=pKeylist->nUsed || pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction; ) p->tos++; aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++]; aStack[p->tos].flags = MEM_Int; aStack[p->tos].z = 0; if( pKeylist->nRead>=pKeylist->nUsed ){ p->pList = pKeylist->pNext; sqliteFree(pKeylist); } }else{ pc = pOp->p2 - 1; } |
︙ | ︙ | |||
3873 3874 3875 3876 3877 3878 3879 | Sorter *pSorter; VERIFY( if( tos<1 ) goto not_enough_stack; ) if( Dynamicify(p, tos) || Dynamicify(p, nos) ) goto no_mem; pSorter = sqliteMallocRaw( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->pSort; p->pSort = pSorter; | | | | | | | | | 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 | Sorter *pSorter; VERIFY( if( tos<1 ) goto not_enough_stack; ) if( Dynamicify(p, tos) || Dynamicify(p, nos) ) goto no_mem; pSorter = sqliteMallocRaw( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->pSort; p->pSort = pSorter; assert( aStack[tos].flags & MEM_Dyn ); pSorter->nKey = aStack[tos].n; pSorter->zKey = aStack[tos].z; pSorter->nData = aStack[nos].n; if( aStack[nos].flags & MEM_Dyn ){ pSorter->pData = aStack[nos].z; }else{ pSorter->pData = sqliteStrDup(aStack[nos].z); } aStack[tos].flags = 0; aStack[nos].flags = 0; aStack[tos].z = 0; aStack[nos].z = 0; p->tos -= 2; break; } /* Opcode: SortMakeRec P1 * * ** ** The top P1 elements are the arguments to a callback. Form these |
︙ | ︙ | |||
3907 3908 3909 3910 3911 3912 3913 | int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ | | | | | | | 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 | int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & MEM_Null)==0 ){ Stringify(p, i); nByte += aStack[i].n; } } nByte += sizeof(char*)*(nField+1); azArg = sqliteMallocRaw( nByte ); if( azArg==0 ) goto no_mem; z = (char*)&azArg[nField+1]; for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){ if( aStack[i].flags & MEM_Null ){ azArg[j] = 0; }else{ azArg[j] = z; strcpy(z, aStack[i].z); z += aStack[i].n; } } sqliteVdbePopStack(p, nField); p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].z = (char*)azArg; aStack[p->tos].flags = MEM_Str|MEM_Dyn; break; } /* Opcode: SortMakeKey * * P3 ** ** Convert the top few entries of the stack into a sort key. The ** number of stack entries consumed is the number of characters in |
︙ | ︙ | |||
3958 3959 3960 3961 3962 3963 3964 | int nField; int i, j, k; nField = strlen(pOp->p3); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1; for(i=p->tos-nField+1; i<=p->tos; i++){ | | | | | | | 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 | int nField; int i, j, k; nField = strlen(pOp->p3); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & MEM_Null)!=0 ){ nByte += 2; }else{ Stringify(p, i); nByte += aStack[i].n+2; } } zNewKey = sqliteMallocRaw( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; k = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & MEM_Null)!=0 ){ zNewKey[j++] = 'N'; zNewKey[j++] = 0; k++; }else{ zNewKey[j++] = pOp->p3[k++]; memcpy(&zNewKey[j], aStack[i].z, aStack[i].n-1); j += aStack[i].n-1; zNewKey[j++] = 0; } } zNewKey[j] = 0; assert( j<nByte ); sqliteVdbePopStack(p, nField); p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = MEM_Str|MEM_Dyn; aStack[p->tos].z = zNewKey; break; } /* Opcode: Sort * * * ** ** Sort all elements on the sorter. The algorithm is a ** mergesort. |
︙ | ︙ | |||
4041 4042 4043 4044 4045 4046 4047 | */ case OP_SortNext: { Sorter *pSorter = p->pSort; CHECK_FOR_INTERRUPT; if( pSorter!=0 ){ p->pSort = pSorter->pNext; p->tos++; | | | | | | 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 | */ case OP_SortNext: { Sorter *pSorter = p->pSort; CHECK_FOR_INTERRUPT; if( pSorter!=0 ){ p->pSort = pSorter->pNext; p->tos++; aStack[p->tos].z = pSorter->pData; aStack[p->tos].n = pSorter->nData; aStack[p->tos].flags = MEM_Str|MEM_Dyn; sqliteFree(pSorter->zKey); sqliteFree(pSorter); }else{ pc = pOp->p2 - 1; } break; } /* Opcode: SortCallback P1 * * ** ** The top of the stack contains a callback record built using ** the SortMakeRec operation with the same P1 value as this ** instruction. Pop this record from the stack and invoke the ** callback on it. */ case OP_SortCallback: { int i = p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) if( p->xCallback==0 ){ p->pc = pc+1; p->azResColumn = (char**)aStack[i].z; p->nResColumn = pOp->p1; p->popStack = 1; return SQLITE_ROW; }else{ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; if( p->xCallback(p->pCbArg, pOp->p1, (char**)aStack[i].z, p->azColName)!=0){ rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; p->nCallback++; } POPSTACK; if( sqlite_malloc_failed ) goto no_mem; |
︙ | ︙ | |||
4249 4250 4251 4252 4253 4254 4255 | z = p->azField[i]; }else{ z = 0; } p->tos++; if( z ){ aStack[p->tos].n = strlen(z) + 1; | | | | | | 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 | z = p->azField[i]; }else{ z = 0; } p->tos++; if( z ){ aStack[p->tos].n = strlen(z) + 1; aStack[p->tos].z = z; aStack[p->tos].flags = MEM_Str; }else{ aStack[p->tos].n = 0; aStack[p->tos].z = 0; aStack[p->tos].flags = MEM_Null; } break; } /* Opcode: MemStore P1 P2 * ** ** Write the top of the stack into memory location P1. |
︙ | ︙ | |||
4285 4286 4287 4288 4289 4290 4291 | Mem *aMem; p->nMem = i + 5; aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); if( aMem==0 ) goto no_mem; if( aMem!=p->aMem ){ int j; for(j=0; j<nOld; j++){ | | | | | | | | | | | | | | | | | | | | | | | | | | 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 | Mem *aMem; p->nMem = i + 5; aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); if( aMem==0 ) goto no_mem; if( aMem!=p->aMem ){ int j; for(j=0; j<nOld; j++){ if( aMem[j].z==p->aMem[j].zShort ){ aMem[j].z = aMem[j].zShort; } } } p->aMem = aMem; if( nOld<p->nMem ){ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); } } pMem = &p->aMem[i]; flags = pMem->flags; if( flags & MEM_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } *pMem = aStack[tos]; flags = pMem->flags; if( flags & (MEM_Static|MEM_Dyn|MEM_Ephem) ){ if( (flags & MEM_Static)!=0 || (pOp->p2 && (flags & MEM_Dyn)!=0) ){ /* pMem->z = zStack[tos]; *** do nothing */ }else if( flags & MEM_Str ){ pMem->z = sqliteMallocRaw( pMem->n ); if( pMem->z==0 ) goto no_mem; memcpy(pMem->z, aStack[tos].z, pMem->n); pMem->flags |= MEM_Dyn; pMem->flags &= ~(MEM_Static|MEM_Ephem); } }else{ pMem->z = pMem->zShort; } if( zOld ) sqliteFree(zOld); if( pOp->p2 ){ aStack[tos].z = 0; aStack[tos].flags = 0; POPSTACK; } break; } /* Opcode: MemLoad P1 * * ** ** Push a copy of the value in memory location P1 onto the stack. ** ** If the value is a string, then the value pushed is a pointer to ** the string that is stored in the memory location. If the memory ** location is subsequently changed (using OP_MemStore) then the ** value pushed onto the stack will change too. */ case OP_MemLoad: { int tos = ++p->tos; int i = pOp->p1; VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; ) memcpy(&aStack[tos], &p->aMem[i], sizeof(aStack[tos])-NBFS);; if( aStack[tos].flags & MEM_Str ){ /* aStack[tos].z = p->aMem[i].z; */ aStack[tos].flags |= MEM_Ephem; aStack[tos].flags &= ~(MEM_Dyn|MEM_Static); } break; } /* Opcode: MemIncr P1 P2 * ** ** Increment the integer valued memory cell P1 by 1. If P2 is not zero ** and the result after the increment is greater than zero, then jump ** to P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemIncr: { int i = pOp->p1; Mem *pMem; VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; ) pMem = &p->aMem[i]; VERIFY( if( pMem->flags != MEM_Int ) goto bad_instruction; ) pMem->i++; if( pOp->p2>0 && pMem->i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggReset * P2 * ** |
︙ | ︙ | |||
4415 4416 4417 4418 4419 4420 4421 | int n = pOp->p2; int i; Mem *pMem; sqlite_func ctx; VERIFY( if( n<0 ) goto bad_instruction; ) VERIFY( if( p->tos+1<n ) goto not_enough_stack; ) | | | | > | | | | | 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 | int n = pOp->p2; int i; Mem *pMem; sqlite_func ctx; VERIFY( if( n<0 ) goto bad_instruction; ) VERIFY( if( p->tos+1<n ) goto not_enough_stack; ) VERIFY( if( aStack[p->tos].flags!=MEM_Int ) goto bad_instruction; ) for(i=p->tos-n; i<p->tos; i++){ if( aStack[i].flags & MEM_Null ){ aStack[i].z = 0; }else{ Stringify(p, i); } p->zArgv[i] = aStack[i].z; } i = aStack[p->tos].i; VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; ) ctx.pFunc = (FuncDef*)pOp->p3; pMem = &p->agg.pCurrent->aMem[i]; ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ ctx.pAgg = pMem->z; ctx.cnt = ++pMem->i; ctx.isError = 0; ctx.isStep = 1; (ctx.pFunc->xStep)(&ctx, n, (const char**)&p->zArgv[p->tos-n]); pMem->z = ctx.pAgg; pMem->flags = MEM_AggCtx; sqliteVdbePopStack(p, n+1); if( ctx.isError ){ rc = SQLITE_ERROR; } break; } |
︙ | ︙ | |||
4464 4465 4466 4467 4468 4469 4470 | int tos = p->tos; AggElem *pElem; char *zKey; int nKey; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); | | | 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 | int tos = p->tos; AggElem *pElem; char *zKey; int nKey; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); zKey = aStack[tos].z; nKey = aStack[tos].n; pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); if( pElem ){ p->agg.pCurrent = pElem; pc = pOp->p2 - 1; }else{ AggInsert(&p->agg, zKey, nKey); |
︙ | ︙ | |||
4492 4493 4494 4495 4496 4497 4498 | int i = pOp->p2; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; char *zOld; | | | | < | | | | | | < | | | 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 | int i = pOp->p2; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; char *zOld; if( pMem->flags & MEM_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } Deephemeralize(p, tos); *pMem = aStack[tos]; if( pMem->flags & MEM_Dyn ){ aStack[tos].z = 0; aStack[tos].flags = 0; }else if( pMem->flags & (MEM_Static|MEM_AggCtx) ){ /* pMem->z = zStack[tos]; *** do nothing */ }else if( pMem->flags & MEM_Str ){ pMem->z = pMem->zShort; } if( zOld ) sqliteFree(zOld); } POPSTACK; break; } /* Opcode: AggGet * P2 * ** ** Push a new entry onto the stack which is a copy of the P2-th field ** of the current aggregate. Strings are not duplicated so ** string values will be ephemeral. */ case OP_AggGet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = ++p->tos; if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; aStack[tos] = *pMem; aStack[tos].flags &= ~MEM_Dyn; aStack[tos].flags |= MEM_Ephem; } break; } /* Opcode: AggNext * P2 * ** ** Make the next aggregate value the current aggregate. The prior |
︙ | ︙ | |||
4566 4567 4568 4569 4570 4571 4572 | Mem *aMem; p->agg.pCurrent = sqliteHashData(p->agg.pSearch); aMem = p->agg.pCurrent->aMem; for(i=0; i<p->agg.nMem; i++){ int freeCtx; if( p->agg.apFunc[i]==0 ) continue; if( p->agg.apFunc[i]->xFinalize==0 ) continue; | | | | | | < | | | | 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 | Mem *aMem; p->agg.pCurrent = sqliteHashData(p->agg.pSearch); aMem = p->agg.pCurrent->aMem; for(i=0; i<p->agg.nMem; i++){ int freeCtx; if( p->agg.apFunc[i]==0 ) continue; if( p->agg.apFunc[i]->xFinalize==0 ) continue; ctx.s.flags = MEM_Null; ctx.s.z = aMem[i].zShort; ctx.pAgg = (void*)aMem[i].z; freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort; ctx.cnt = aMem[i].i; ctx.isStep = 0; ctx.pFunc = p->agg.apFunc[i]; (*p->agg.apFunc[i]->xFinalize)(&ctx); if( freeCtx ){ sqliteFree( aMem[i].z ); } aMem[i] = ctx.s; if( (aMem[i].flags & MEM_Str) && (aMem[i].flags & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 ){ aMem[i].z = aMem[i].zShort; } } } break; } /* Opcode: SetInsert P1 * P3 |
︙ | ︙ | |||
4612 4613 4614 4615 4616 4617 4618 | } if( pOp->p3 ){ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); }else{ int tos = p->tos; if( tos<0 ) goto not_enough_stack; Stringify(p, tos); | | | | | 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 | } if( pOp->p3 ){ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); }else{ int tos = p->tos; if( tos<0 ) goto not_enough_stack; Stringify(p, tos); sqliteHashInsert(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n, p); POPSTACK; } if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SetFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped exists in set P1, ** then jump to P2. Otherwise fall through. */ case OP_SetFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n)){ pc = pOp->p2 - 1; } POPSTACK; break; } /* Opcode: SetNotFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped does not exists in ** set P1, then jump to P2. Otherwise fall through. */ case OP_SetNotFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); if( i<0 || i>=p->nSet || sqliteHashFind(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n)==0 ){ pc = pOp->p2 - 1; } POPSTACK; break; } /* Opcode: SetFirst P1 P2 * |
︙ | ︙ | |||
4695 4696 4697 4698 4699 4700 4701 | if( pSet->prev==0 ){ break; }else{ pc = pOp->p2 - 1; } } tos = ++p->tos; | | | | 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 | if( pSet->prev==0 ){ break; }else{ pc = pOp->p2 - 1; } } tos = ++p->tos; aStack[tos].z = sqliteHashKey(pSet->prev); aStack[tos].n = sqliteHashKeysize(pSet->prev); aStack[tos].flags = MEM_Str | MEM_Ephem; break; } /* Opcode: Vacuum * * * ** ** Vacuum the entire database. This opcode will cause other virtual ** machines to be created and run. It may not be called from within |
︙ | ︙ | |||
4757 4758 4759 4760 4761 4762 4763 | sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); rc = SQLITE_INTERNAL; } if( p->trace && p->tos>=0 ){ int i; fprintf(p->trace, "Stack:"); for(i=p->tos; i>=0 && i>p->tos-5; i--){ | | | | | | | | | | | | | | 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 | sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); rc = SQLITE_INTERNAL; } if( p->trace && p->tos>=0 ){ int i; fprintf(p->trace, "Stack:"); for(i=p->tos; i>=0 && i>p->tos-5; i--){ if( aStack[i].flags & MEM_Null ){ fprintf(p->trace, " NULL"); }else if( (aStack[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ fprintf(p->trace, " si:%d", aStack[i].i); }else if( aStack[i].flags & MEM_Int ){ fprintf(p->trace, " i:%d", aStack[i].i); }else if( aStack[i].flags & MEM_Real ){ fprintf(p->trace, " r:%g", aStack[i].r); }else if( aStack[i].flags & MEM_Str ){ int j, k; char zBuf[100]; zBuf[0] = ' '; if( aStack[i].flags & MEM_Dyn ){ zBuf[1] = 'z'; assert( (aStack[i].flags & (MEM_Static|MEM_Ephem))==0 ); }else if( aStack[i].flags & MEM_Static ){ zBuf[1] = 't'; assert( (aStack[i].flags & (MEM_Dyn|MEM_Ephem))==0 ); }else if( aStack[i].flags & MEM_Ephem ){ zBuf[1] = 'e'; assert( (aStack[i].flags & (MEM_Static|MEM_Dyn))==0 ); }else{ zBuf[1] = 's'; } zBuf[2] = '['; k = 3; for(j=0; j<20 && j<aStack[i].n; j++){ int c = aStack[i].z[j]; if( c==0 && j==aStack[i].n-1 ) break; if( isprint(c) && !isspace(c) ){ zBuf[k++] = c; }else{ zBuf[k++] = '.'; } } |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
102 103 104 105 106 107 108 | ** Number of bytes of string storage space available to each stack ** layer without having to malloc. NBFS is short for Number of Bytes ** For Strings. */ #define NBFS 32 /* | | | < < < | | | | | > | < < < < < < < < < < | | | | | | | | | | | | < | 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | ** Number of bytes of string storage space available to each stack ** layer without having to malloc. NBFS is short for Number of Bytes ** For Strings. */ #define NBFS 32 /* ** A single level of the stack or a single memory cell ** is an instance of the following structure. */ struct Mem { int i; /* Integer value */ int n; /* Number of characters in string value, including '\0' */ int flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ double r; /* Real value */ char *z; /* String value */ char zShort[NBFS]; /* Space for short strings */ }; typedef struct Mem Mem; /* ** Allowed values for Mem.flags */ #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Dyn 0x0010 /* Need to call sqliteFree() on Mem.z */ #define MEM_Static 0x0020 /* Mem.z points to a static string */ #define MEM_Ephem 0x0040 /* Mem.z points to an ephemeral string */ /* The following MEM_ value appears only in AggElem.aMem.s.flag fields. ** It indicates that the corresponding AggElem.aMem.z points to a ** aggregate function context that needs to be finalized. */ #define MEM_AggCtx 0x0040 /* Mem.z points to an agg function context */ /* ** The "context" argument for a installable function. A pointer to an ** instance of this structure is the first argument to the routines used ** implement the SQL functions. ** ** There is a typedef for this structure in sqlite.h. So all routines, ** even the public interface to SQLite, can use a pointer to this structure. ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbe.c because it uses substructures ** (Mem) which are only defined there. */ struct sqlite_func { FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ Mem s; /* The return value is stored here */ void *pAgg; /* Aggregate context */ u8 isError; /* Set to true for an error */ u8 isStep; /* Current in the step function */ int cnt; /* Number of times that the step function has been called */ }; /* |
︙ | ︙ | |||
233 234 235 236 237 238 239 | int nOp; /* Number of instructions in the program */ int nOpAlloc; /* Number of slots allocated for aOp[] */ Op *aOp; /* Space to hold the virtual machine's program */ int nLabel; /* Number of labels used */ int nLabelAlloc; /* Number of slots allocated in aLabel[] */ int *aLabel; /* Space to hold the labels */ int tos; /* Index of top of stack */ | | | | 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | int nOp; /* Number of instructions in the program */ int nOpAlloc; /* Number of slots allocated for aOp[] */ Op *aOp; /* Space to hold the virtual machine's program */ int nLabel; /* Number of labels used */ int nLabelAlloc; /* Number of slots allocated in aLabel[] */ int *aLabel; /* Space to hold the labels */ int tos; /* Index of top of stack */ Mem *aStack; /* The operand stack, except string values */ char **zArgv; /* Text values used by the callback */ char **azColName; /* Becomes the 4th parameter to callbacks */ int nCursor; /* Number of slots in aCsr[] */ Cursor *aCsr; /* One element of this array for each open cursor */ Sorter *pSort; /* A linked list of objects to be sorted */ FILE *pFile; /* At most one open file handler */ int nField; /* Number of file fields */ char **azField; /* Data for each file field */ |
︙ | ︙ | |||
290 291 292 293 294 295 296 | /* ** Here is a macro to handle the common case of popping the stack ** once. This macro only works from within the sqliteVdbeExec() ** function. */ #define POPSTACK \ assert(p->tos>=0); \ | | | 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | /* ** Here is a macro to handle the common case of popping the stack ** once. This macro only works from within the sqliteVdbeExec() ** function. */ #define POPSTACK \ assert(p->tos>=0); \ if( aStack[p->tos].flags & MEM_Dyn ) sqliteFree(aStack[p->tos].z); \ p->tos--; /* ** Function prototypes */ void sqliteVdbeCleanupCursor(Cursor*); void sqliteVdbeSorterReset(Vdbe*); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
371 372 373 374 375 376 377 | ** ** These routines are defined here in vdbe.c because they depend on knowing ** the internals of the sqlite_func structure which is only defined in ** this source file. */ char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){ assert( !p->isStep ); | | | | | | | | | | | | | | | | | | | | | | 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | ** ** These routines are defined here in vdbe.c because they depend on knowing ** the internals of the sqlite_func structure which is only defined in ** this source file. */ char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){ assert( !p->isStep ); if( p->s.flags & MEM_Dyn ){ sqliteFree(p->s.z); } if( zResult==0 ){ p->s.flags = MEM_Null; n = 0; p->s.z = 0; p->s.n = 0; }else{ if( n<0 ) n = strlen(zResult); if( n<NBFS-1 ){ memcpy(p->s.zShort, zResult, n); p->s.zShort[n] = 0; p->s.flags = MEM_Str; p->s.z = p->s.zShort; }else{ p->s.z = sqliteMallocRaw( n+1 ); if( p->s.z ){ memcpy(p->s.z, zResult, n); p->s.z[n] = 0; } p->s.flags = MEM_Str | MEM_Dyn; } p->s.n = n+1; } return p->s.z; } void sqlite_set_result_int(sqlite_func *p, int iResult){ assert( !p->isStep ); if( p->s.flags & MEM_Dyn ){ sqliteFree(p->s.z); } p->s.i = iResult; p->s.flags = MEM_Int; } void sqlite_set_result_double(sqlite_func *p, double rResult){ assert( !p->isStep ); if( p->s.flags & MEM_Dyn ){ sqliteFree(p->s.z); } p->s.r = rResult; p->s.flags = MEM_Real; } void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){ assert( !p->isStep ); sqlite_set_result_string(p, zMsg, n); p->isError = 1; } |
︙ | ︙ | |||
442 443 444 445 446 447 448 | ** the internals of the sqlite_func structure which is only defined in ** this source file. */ void *sqlite_aggregate_context(sqlite_func *p, int nByte){ assert( p && p->pFunc && p->pFunc->xStep ); if( p->pAgg==0 ){ if( nByte<=NBFS ){ | | > | 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | ** the internals of the sqlite_func structure which is only defined in ** this source file. */ void *sqlite_aggregate_context(sqlite_func *p, int nByte){ assert( p && p->pFunc && p->pFunc->xStep ); if( p->pAgg==0 ){ if( nByte<=NBFS ){ p->pAgg = (void*)p->s.z; memset(p->pAgg, 0, nByte); }else{ p->pAgg = sqliteMalloc( nByte ); } } return p->pAgg; } |
︙ | ︙ | |||
504 505 506 507 508 509 510 | "int", "text", "int", "int", "text", 0 }; assert( p->popStack==0 ); assert( p->explain ); p->azColName = azColumnNames; | | | | | | | | | | | | | 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 | "int", "text", "int", "int", "text", 0 }; assert( p->popStack==0 ); assert( p->explain ); p->azColName = azColumnNames; p->azResColumn = p->zArgv; for(i=0; i<5; i++) p->zArgv[i] = p->aStack[i].zShort; p->rc = SQLITE_OK; for(i=p->pc; p->rc==SQLITE_OK && i<p->nOp; i++){ if( db->flags & SQLITE_Interrupt ){ db->flags &= ~SQLITE_Interrupt; if( db->magic!=SQLITE_MAGIC_BUSY ){ p->rc = SQLITE_MISUSE; }else{ p->rc = SQLITE_INTERRUPT; } sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), (char*)0); break; } sprintf(p->zArgv[0],"%d",i); sprintf(p->zArgv[2],"%d", p->aOp[i].p1); sprintf(p->zArgv[3],"%d", p->aOp[i].p2); if( p->aOp[i].p3type==P3_POINTER ){ sprintf(p->aStack[4].zShort, "ptr(%#x)", (int)p->aOp[i].p3); p->zArgv[4] = p->aStack[4].zShort; }else{ p->zArgv[4] = p->aOp[i].p3; } p->zArgv[1] = sqliteOpcodeNames[p->aOp[i].opcode]; if( p->xCallback==0 ){ p->pc = i+1; p->azResColumn = p->zArgv; p->nResColumn = 5; return SQLITE_ROW; } if( sqliteSafetyOff(db) ){ p->rc = SQLITE_MISUSE; break; } if( p->xCallback(p->pCbArg, 5, p->zArgv, p->azColName) ){ p->rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ){ p->rc = SQLITE_MISUSE; } } return p->rc==SQLITE_OK ? SQLITE_DONE : SQLITE_ERROR; |
︙ | ︙ | |||
592 593 594 595 596 597 598 | ** Allocation all the stack space we will ever need. */ if( p->aStack==0 ){ p->nVar = nVar; assert( nVar>=0 ); n = isExplain ? 10 : p->nOp; p->aStack = sqliteMalloc( | | | | | 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | ** Allocation all the stack space we will ever need. */ if( p->aStack==0 ){ p->nVar = nVar; assert( nVar>=0 ); n = isExplain ? 10 : p->nOp; p->aStack = sqliteMalloc( n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) /* aStack and zArgv */ + p->nVar*(sizeof(char*)+sizeof(int)+1) /* azVar, anVar, abVar */ ); p->zArgv = (char**)&p->aStack[n]; p->azColName = (char**)&p->zArgv[n]; p->azVar = (char**)&p->azColName[n]; p->anVar = (int*)&p->azVar[p->nVar]; p->abVar = (u8*)&p->anVar[p->nVar]; } sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0); p->agg.pSearch = 0; |
︙ | ︙ | |||
652 653 654 655 656 657 658 | /* ** Pop the stack N times. Free any memory associated with the ** popped stack elements. */ void sqliteVdbePopStack(Vdbe *p, int N){ assert( N>=0 ); | < < | | < | 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 | /* ** Pop the stack N times. Free any memory associated with the ** popped stack elements. */ void sqliteVdbePopStack(Vdbe *p, int N){ assert( N>=0 ); if( p->aStack==0 ) return; while( N-- > 0 ){ if( p->aStack[p->tos].flags & MEM_Dyn ){ sqliteFree(p->aStack[p->tos].z); } p->aStack[p->tos].flags = 0; p->tos--; } } /* ** Reset an Agg structure. Delete all its contents. ** |
︙ | ︙ | |||
682 683 684 685 686 687 688 | int i; HashElem *p; for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){ AggElem *pElem = sqliteHashData(p); assert( pAgg->apFunc!=0 ); for(i=0; i<pAgg->nMem; i++){ Mem *pMem = &pElem->aMem[i]; | | | < | | | | 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 | int i; HashElem *p; for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){ AggElem *pElem = sqliteHashData(p); assert( pAgg->apFunc!=0 ); for(i=0; i<pAgg->nMem; i++){ Mem *pMem = &pElem->aMem[i]; if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){ sqlite_func ctx; ctx.pFunc = pAgg->apFunc[i]; ctx.s.flags = MEM_Null; ctx.pAgg = pMem->z; ctx.cnt = pMem->i; ctx.isStep = 0; ctx.isError = 0; (*pAgg->apFunc[i]->xFinalize)(&ctx); if( pMem->z!=0 && pMem->z!=pMem->zShort ){ sqliteFree(pMem->z); } }else if( pMem->flags & MEM_Dyn ){ sqliteFree(pMem->z); } } sqliteFree(pElem); } sqliteHashClear(&pAgg->hash); sqliteFree(pAgg->apFunc); |
︙ | ︙ | |||
761 762 763 764 765 766 767 | */ static void Cleanup(Vdbe *p){ int i; sqliteVdbePopStack(p, p->tos+1); closeAllCursors(p); if( p->aMem ){ for(i=0; i<p->nMem; i++){ | | | 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 | */ static void Cleanup(Vdbe *p){ int i; sqliteVdbePopStack(p, p->tos+1); closeAllCursors(p); if( p->aMem ){ for(i=0; i<p->nMem; i++){ if( p->aMem[i].flags & MEM_Dyn ){ sqliteFree(p->aMem[i].z); } } } sqliteFree(p->aMem); p->aMem = 0; p->nMem = 0; |
︙ | ︙ |