Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Changes to support fragmentation analysis in sqlite3_analyzer. (CVS 3634) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
bd6bc3b8f06919000fb082087dff7bbd |
User & Date: | drh 2007-02-10 19:22:36.000 |
Context
2007-02-13
| ||
01:38 | Additional fixes to the new fragmentation feature of sqlite3_analyzer. (CVS 3635) (check-in: 82aed271a4 user: drh tags: trunk) | |
2007-02-10
| ||
19:22 | Changes to support fragmentation analysis in sqlite3_analyzer. (CVS 3634) (check-in: bd6bc3b8f0 user: drh tags: trunk) | |
2007-02-07
| ||
13:09 | Explicit collations always override implicit collations. This is backwards compatible since SQLite has not previously supported explicit collations. Need to add tests of this new behavior. (CVS 3633) (check-in: 3638823a62 user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.335 2007/02/10 19:22:36 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 | ** aResult[3] = Cell size (local payload + header) ** aResult[4] = Number of free bytes on this page ** aResult[5] = Number of free blocks on the page ** aResult[6] = Total payload size (local + overflow) ** aResult[7] = Header size in bytes ** aResult[8] = Local payload size ** aResult[9] = Parent page number ** ** This routine is used for testing and debugging only. */ int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){ int cnt, idx; MemPage *pPage = pCur->pPage; BtCursor tmpCur; | > | 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 | ** aResult[3] = Cell size (local payload + header) ** aResult[4] = Number of free bytes on this page ** aResult[5] = Number of free blocks on the page ** aResult[6] = Total payload size (local + overflow) ** aResult[7] = Header size in bytes ** aResult[8] = Local payload size ** aResult[9] = Parent page number ** aResult[10]= Page number of the first overflow page ** ** This routine is used for testing and debugging only. */ int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){ int cnt, idx; MemPage *pPage = pCur->pPage; BtCursor tmpCur; |
︙ | ︙ | |||
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 | idx = get2byte(&pPage->aData[idx]); } aResult[5] = cnt; if( pPage->pParent==0 || isRootPage(pPage) ){ aResult[9] = 0; }else{ aResult[9] = pPage->pParent->pgno; } releaseTempCursor(&tmpCur); return SQLITE_OK; } #endif /* | > > > > > | 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 | idx = get2byte(&pPage->aData[idx]); } aResult[5] = cnt; if( pPage->pParent==0 || isRootPage(pPage) ){ aResult[9] = 0; }else{ aResult[9] = pPage->pParent->pgno; } if( tmpCur.info.iOverflow ){ aResult[10] = get4byte(&tmpCur.info.pCell[tmpCur.info.iOverflow]); }else{ aResult[10] = 0; } releaseTempCursor(&tmpCur); return SQLITE_OK; } #endif /* |
︙ | ︙ |
Changes to src/test3.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test3.c,v 1.70 2007/02/10 19:22:36 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
573 574 575 576 577 578 579 | if( argc<3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID ROOT ...\"", 0); return TCL_ERROR; } pBt = sqlite3TextToPtr(argv[1]); nRoot = argc-2; | | | | 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 | if( argc<3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID ROOT ...\"", 0); return TCL_ERROR; } pBt = sqlite3TextToPtr(argv[1]); nRoot = argc-2; aRoot = (int*)malloc( sizeof(int)*(argc-2) ); for(i=0; i<argc-2; i++){ if( Tcl_GetInt(interp, argv[i+2], &aRoot[i]) ) return TCL_ERROR; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK zResult = sqlite3BtreeIntegrityCheck(pBt, aRoot, nRoot, 10000, &nErr); #else zResult = 0; #endif free((void*)aRoot); if( zResult ){ Tcl_AppendResult(interp, zResult, 0); sqliteFree(zResult); } return TCL_OK; } |
︙ | ︙ | |||
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 | ** aResult[3] = Cell size (local payload + header) ** aResult[4] = Number of free bytes on this page ** aResult[5] = Number of free blocks on the page ** aResult[6] = Total payload size (local + overflow) ** aResult[7] = Header size in bytes ** aResult[8] = Local payload size ** aResult[9] = Parent page number */ static int btree_cursor_info( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; int i, j; int up; | > | | 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 | ** aResult[3] = Cell size (local payload + header) ** aResult[4] = Number of free bytes on this page ** aResult[5] = Number of free blocks on the page ** aResult[6] = Total payload size (local + overflow) ** aResult[7] = Header size in bytes ** aResult[8] = Local payload size ** aResult[9] = Parent page number ** aResult[10]= Page number of the first overflow page */ static int btree_cursor_info( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; int i, j; int up; int aResult[11]; char zBuf[400]; if( argc!=2 && argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID ?UP-CNT?\"", 0); return TCL_ERROR; } |
︙ | ︙ | |||
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 | for(i=0; i<sizeof(aResult)/sizeof(aResult[0]); i++){ sqlite3_snprintf(40,&zBuf[j]," %d", aResult[i]); j += strlen(&zBuf[j]); } Tcl_AppendResult(interp, &zBuf[1], 0); return SQLITE_OK; } /* ** The command is provided for the purpose of setting breakpoints. ** in regression test scripts. ** ** By setting a GDB breakpoint on this procedure and executing the ** btree_breakpoint command in a test script, we can stop GDB at | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 | for(i=0; i<sizeof(aResult)/sizeof(aResult[0]); i++){ sqlite3_snprintf(40,&zBuf[j]," %d", aResult[i]); j += strlen(&zBuf[j]); } Tcl_AppendResult(interp, &zBuf[1], 0); return SQLITE_OK; } /* ** Copied from btree.c: */ static u32 get4byte(unsigned char *p){ return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; } /* ** btree_ovfl_info BTREE CURSOR ** ** Given a cursor, return the sequence of pages number that form the ** overflow pages for the data of the entry that the cursor is point ** to. */ static int btree_ovfl_info( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ Btree *pBt; BtCursor *pCur; Pager *pPager; int rc; int n; int dataSize; u32 pgno; void *pPage; int aResult[11]; char zElem[100]; Tcl_DString str; if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " BTREE CURSOR", 0); return TCL_ERROR; } pBt = sqlite3TextToPtr(argv[1]); pCur = sqlite3TextToPtr(argv[2]); if( (*(void**)pCur) != (void*)pBt ){ Tcl_AppendResult(interp, "Cursor ", argv[2], " does not belong to btree ", argv[1], 0); return TCL_ERROR; } pPager = sqlite3BtreePager(pBt); rc = sqlite3BtreeCursorInfo(pCur, aResult, 0); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } dataSize = sqlite3BtreeGetPageSize(pBt) - sqlite3BtreeGetReserve(pBt); Tcl_DStringInit(&str); n = aResult[6] - aResult[8]; n = (n + dataSize - 1)/dataSize; pgno = (u32)aResult[10]; while( pgno && n-- ){ sprintf(zElem, "%d", pgno); Tcl_DStringAppendElement(&str, zElem); if( sqlite3pager_get(pPager, pgno, &pPage)!=SQLITE_OK ){ Tcl_DStringFree(&str); Tcl_AppendResult(interp, "unable to get page ", zElem, 0); return TCL_ERROR; } pgno = get4byte((unsigned char*)pPage); sqlite3pager_unref(pPage); } Tcl_DStringResult(interp, &str); return SQLITE_OK; } /* ** The command is provided for the purpose of setting breakpoints. ** in regression test scripts. ** ** By setting a GDB breakpoint on this procedure and executing the ** btree_breakpoint command in a test script, we can stop GDB at |
︙ | ︙ | |||
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 | { "btree_varint_test", (Tcl_CmdProc*)btree_varint_test }, { "btree_begin_statement", (Tcl_CmdProc*)btree_begin_statement }, { "btree_commit_statement", (Tcl_CmdProc*)btree_commit_statement }, { "btree_rollback_statement", (Tcl_CmdProc*)btree_rollback_statement }, { "btree_from_db", (Tcl_CmdProc*)btree_from_db }, { "btree_set_cache_size", (Tcl_CmdProc*)btree_set_cache_size }, { "btree_cursor_info", (Tcl_CmdProc*)btree_cursor_info }, { "btree_cursor_list", (Tcl_CmdProc*)btree_cursor_list }, }; int i; for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); } | > | 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 | { "btree_varint_test", (Tcl_CmdProc*)btree_varint_test }, { "btree_begin_statement", (Tcl_CmdProc*)btree_begin_statement }, { "btree_commit_statement", (Tcl_CmdProc*)btree_commit_statement }, { "btree_rollback_statement", (Tcl_CmdProc*)btree_rollback_statement }, { "btree_from_db", (Tcl_CmdProc*)btree_from_db }, { "btree_set_cache_size", (Tcl_CmdProc*)btree_set_cache_size }, { "btree_cursor_info", (Tcl_CmdProc*)btree_cursor_info }, { "btree_ovfl_info", (Tcl_CmdProc*)btree_ovfl_info }, { "btree_cursor_list", (Tcl_CmdProc*)btree_cursor_list }, }; int i; for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); } |
︙ | ︙ |
Added tool/fragck.tcl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | # Run this TCL script using "testfixture" to get a report that shows # the sequence of database pages used by a particular table or index. # This information is used for fragmentation analysis. # # Get the name of the database to analyze # if {[llength $argv]!=2} { puts stderr "Usage: $argv0 database-name table-or-index-name" exit 1 } set file_to_analyze [lindex $argv 0] if {![file exists $file_to_analyze]} { puts stderr "No such file: $file_to_analyze" exit 1 } if {![file readable $file_to_analyze]} { puts stderr "File is not readable: $file_to_analyze" exit 1 } if {[file size $file_to_analyze]<512} { puts stderr "Empty or malformed database: $file_to_analyze" exit 1 } set objname [lindex $argv 1] # Open the database # sqlite3 db [lindex $argv 0] set DB [btree_open [lindex $argv 0] 1000 0] # This proc is a wrapper around the btree_cursor_info command. The # second argument is an open btree cursor returned by [btree_cursor]. # The first argument is the name of an array variable that exists in # the scope of the caller. If the third argument is non-zero, then # info is returned for the page that lies $up entries upwards in the # tree-structure. (i.e. $up==1 returns the parent page, $up==2 the # grandparent etc.) # # The following entries in that array are filled in with information retrieved # using [btree_cursor_info]: # # $arrayvar(page_no) = The page number # $arrayvar(entry_no) = The entry number # $arrayvar(page_entries) = Total number of entries on this page # $arrayvar(cell_size) = Cell size (local payload + header) # $arrayvar(page_freebytes) = Number of free bytes on this page # $arrayvar(page_freeblocks) = Number of free blocks on the page # $arrayvar(payload_bytes) = Total payload size (local + overflow) # $arrayvar(header_bytes) = Header size in bytes # $arrayvar(local_payload_bytes) = Local payload size # $arrayvar(parent) = Parent page number # proc cursor_info {arrayvar csr {up 0}} { upvar $arrayvar a foreach [list a(page_no) \ a(entry_no) \ a(page_entries) \ a(cell_size) \ a(page_freebytes) \ a(page_freeblocks) \ a(payload_bytes) \ a(header_bytes) \ a(local_payload_bytes) \ a(parent) \ a(first_ovfl) ] [btree_cursor_info $csr $up] break } # Determine the page-size of the database. This global variable is used # throughout the script. # set pageSize [db eval {PRAGMA page_size}] # Find the root page of table or index to be analyzed. Also find out # if the object is a table or an index. # if {$objname=="sqlite_master"} { set rootpage 1 set type table } else { db eval { SELECT rootpage, type FROM sqlite_master WHERE name=$objname } break if {![info exists rootpage]} { puts stderr "no such table or index: $objname" exit 1 } if {$type!="table" && $type!="index"} { puts stderr "$objname is something other than a table or index" exit 1 } if {![string is integer -strict $rootpage]} { puts stderr "invalid root page for $objname: $rootpage" exit 1 } } # The cursor $csr is pointing to an entry. Print out information # about the page that $up levels above that page that contains # the entry. If $up==0 use the page that contains the entry. # # If information about the page has been printed already, then # this is a no-op. # proc page_info {csr up} { global seen cursor_info ci $csr $up set pg $ci(page_no) if {[info exists seen($pg)]} return set seen($pg) 1 # Do parent pages first # if {$ci(parent)} { page_info $csr [expr {$up+1}] } # Find the depth of this page # set depth 1 set i $up while {$ci(parent)} { incr i incr depth cursor_info ci $csr $i } # print the results # puts [format {LEVEL %d: %6d} $depth $pg] } # Loop through the object and print out page numbers # set csr [btree_cursor $DB $rootpage 0] for {btree_first $csr} {![btree_eof $csr]} {btree_next $csr} { page_info $csr 0 set i 1 foreach pg [btree_ovfl_info $DB $csr] { puts [format {OVFL %3d: %6d} $i $pg] incr i } } exit 0 |
Changes to tool/spaceanal.tcl.
︙ | ︙ | |||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 | puts stderr "File is not readable: $file_to_analyze" exit 1 } if {[file size $file_to_analyze]<512} { puts stderr "Empty or malformed database: $file_to_analyze" exit 1 } # Open the database # sqlite3 db [lindex $argv 0] set DB [btree_open [lindex $argv 0] 1000 0] # In-memory database for collecting statistics. This script loops through | > > > > | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | puts stderr "File is not readable: $file_to_analyze" exit 1 } if {[file size $file_to_analyze]<512} { puts stderr "Empty or malformed database: $file_to_analyze" exit 1 } # Maximum distance between pages before we consider it a "gap" # set MAXGAP 3 # Open the database # sqlite3 db [lindex $argv 0] set DB [btree_open [lindex $argv 0] 1000 0] # In-memory database for collecting statistics. This script loops through |
︙ | ︙ | |||
49 50 51 52 53 54 55 | ovfl_cnt int, -- Number of entries that use overflow mx_payload int, -- Maximum payload size int_pages int, -- Number of interior pages used leaf_pages int, -- Number of leaf pages used ovfl_pages int, -- Number of overflow pages used int_unused int, -- Number of unused bytes on interior pages leaf_unused int, -- Number of unused bytes on primary pages | | > | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | ovfl_cnt int, -- Number of entries that use overflow mx_payload int, -- Maximum payload size int_pages int, -- Number of interior pages used leaf_pages int, -- Number of leaf pages used ovfl_pages int, -- Number of overflow pages used int_unused int, -- Number of unused bytes on interior pages leaf_unused int, -- Number of unused bytes on primary pages ovfl_unused int, -- Number of unused bytes on overflow pages gap_cnt int -- Number of gaps in the page layout );} mem eval $tabledef proc integerify {real} { return [expr int($real)] } mem function int integerify |
︙ | ︙ | |||
101 102 103 104 105 106 107 | a(page_entries) \ a(cell_size) \ a(page_freebytes) \ a(page_freeblocks) \ a(payload_bytes) \ a(header_bytes) \ a(local_payload_bytes) \ | > | | 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | a(page_entries) \ a(cell_size) \ a(page_freebytes) \ a(page_freeblocks) \ a(payload_bytes) \ a(header_bytes) \ a(local_payload_bytes) \ a(parent) \ a(first_ovfl) ] [btree_cursor_info $csr $up] break } # Determine the page-size of the database. This global variable is used # throughout the script. # set pageSize [db eval {PRAGMA page_size}] |
︙ | ︙ | |||
141 142 143 144 145 146 147 148 149 150 151 152 153 154 | set cnt_ovfl $wideZero ;# Number of entries that use overflows set cnt_leaf_entry $wideZero ;# Number of leaf entries set cnt_int_entry $wideZero ;# Number of interor entries set mx_payload $wideZero ;# Maximum payload size set ovfl_pages $wideZero ;# Number of overflow pages used set leaf_pages $wideZero ;# Number of leaf pages set int_pages $wideZero ;# Number of interior pages # As the btree is traversed, the array variable $seen($pgno) is set to 1 # the first time page $pgno is encountered. # catch {unset seen} # The following loop runs once for each entry in table $name. The table | > > | 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | set cnt_ovfl $wideZero ;# Number of entries that use overflows set cnt_leaf_entry $wideZero ;# Number of leaf entries set cnt_int_entry $wideZero ;# Number of interor entries set mx_payload $wideZero ;# Maximum payload size set ovfl_pages $wideZero ;# Number of overflow pages used set leaf_pages $wideZero ;# Number of leaf pages set int_pages $wideZero ;# Number of interior pages set gap_cnt 0 ;# Number of holes in the page sequence set prev_pgno 0 ;# Last page number seen # As the btree is traversed, the array variable $seen($pgno) is set to 1 # the first time page $pgno is encountered. # catch {unset seen} # The following loop runs once for each entry in table $name. The table |
︙ | ︙ | |||
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | set ovfl [expr {$ci(payload_bytes)-$ci(local_payload_bytes)}] if {$ovfl} { incr cnt_ovfl incr total_ovfl $ovfl set n [expr {int(ceil($ovfl/($pageSize-4.0)))}] incr ovfl_pages $n incr unused_ovfl [expr {$n*($pageSize-4) - $ovfl}] } # If this is the first table entry analyzed for the page, then update # the page-related statistics $leaf_pages and $unused_leaf. Also, if # this page has a parent page that has not been analyzed, retrieve # info for the parent and update statistics for it too. # if {![info exists seen($ci(page_no))]} { set seen($ci(page_no)) 1 incr leaf_pages incr unused_leaf $ci(page_freebytes) # Now check if the page has a parent that has not been analyzed. If # so, update the $int_pages, $cnt_int_entry and $unused_int statistics # accordingly. Then check if the parent page has a parent that has # not yet been analyzed etc. # # set parent $ci(parent_page_no) for {set up 1} \ {$ci(parent)!=0 && ![info exists seen($ci(parent))]} {incr up} \ { # Mark the parent as seen. # set seen($ci(parent)) 1 # Retrieve info for the parent and update statistics. cursor_info ci $csr $up incr int_pages incr cnt_int_entry $ci(page_entries) incr unused_int $ci(page_freebytes) | > > > > | > > > > > > > > > > > > | 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | set ovfl [expr {$ci(payload_bytes)-$ci(local_payload_bytes)}] if {$ovfl} { incr cnt_ovfl incr total_ovfl $ovfl set n [expr {int(ceil($ovfl/($pageSize-4.0)))}] incr ovfl_pages $n incr unused_ovfl [expr {$n*($pageSize-4) - $ovfl}] set pglist [btree_ovfl_info $DB $csr] } else { set pglist {} } # If this is the first table entry analyzed for the page, then update # the page-related statistics $leaf_pages and $unused_leaf. Also, if # this page has a parent page that has not been analyzed, retrieve # info for the parent and update statistics for it too. # if {![info exists seen($ci(page_no))]} { set seen($ci(page_no)) 1 incr leaf_pages incr unused_leaf $ci(page_freebytes) set pglist "$ci(page_no) $pglist" # Now check if the page has a parent that has not been analyzed. If # so, update the $int_pages, $cnt_int_entry and $unused_int statistics # accordingly. Then check if the parent page has a parent that has # not yet been analyzed etc. # # set parent $ci(parent_page_no) for {set up 1} \ {$ci(parent)!=0 && ![info exists seen($ci(parent))]} {incr up} \ { # Mark the parent as seen. # set seen($ci(parent)) 1 # Retrieve info for the parent and update statistics. cursor_info ci $csr $up incr int_pages incr cnt_int_entry $ci(page_entries) incr unused_int $ci(page_freebytes) # parent pages come before their first child set pglist "$ci(page_no) $pglist" } } # Check the page list for fragmentation # foreach pg $pglist { if {($pg<$prev_pgno || $pg>$prev_pgno+$MAXGAP) && $prev_pgno>0} { incr gap_cnt } set prev_pgno $pg } } btree_close_cursor $csr # Handle the special case where a table contains no data. In this case # all statistics are zero, except for the number of leaf pages (1) and # the unused bytes on leaf pages ($pageSize - 8). |
︙ | ︙ | |||
246 247 248 249 250 251 252 253 254 255 256 257 258 259 | append sql ",$mx_payload" append sql ",$int_pages" append sql ",$leaf_pages" append sql ",$ovfl_pages" append sql ",$unused_int" append sql ",$unused_leaf" append sql ",$unused_ovfl" append sql ); mem eval $sql } # Analyze every index in the database, one at a time. # # The query below returns the name, associated table and root-page number | > | 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | append sql ",$mx_payload" append sql ",$int_pages" append sql ",$leaf_pages" append sql ",$ovfl_pages" append sql ",$unused_int" append sql ",$unused_leaf" append sql ",$unused_ovfl" append sql ",$gap_cnt" append sql ); mem eval $sql } # Analyze every index in the database, one at a time. # # The query below returns the name, associated table and root-page number |
︙ | ︙ | |||
275 276 277 278 279 280 281 282 283 284 285 286 287 288 | set unused_leaf $wideZero ;# Unused space on leaf nodes set unused_ovfl $wideZero ;# Unused space on overflow pages set cnt_ovfl $wideZero ;# Number of entries that use overflows set cnt_leaf_entry $wideZero ;# Number of leaf entries set mx_payload $wideZero ;# Maximum payload size set ovfl_pages $wideZero ;# Number of overflow pages used set leaf_pages $wideZero ;# Number of leaf pages # As the btree is traversed, the array variable $seen($pgno) is set to 1 # the first time page $pgno is encountered. # catch {unset seen} # The following loop runs once for each entry in index $name. The index | > > | 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | set unused_leaf $wideZero ;# Unused space on leaf nodes set unused_ovfl $wideZero ;# Unused space on overflow pages set cnt_ovfl $wideZero ;# Number of entries that use overflows set cnt_leaf_entry $wideZero ;# Number of leaf entries set mx_payload $wideZero ;# Maximum payload size set ovfl_pages $wideZero ;# Number of overflow pages used set leaf_pages $wideZero ;# Number of leaf pages set gap_cnt 0 ;# Number of holes in the page sequence set prev_pgno 0 ;# Last page number seen # As the btree is traversed, the array variable $seen($pgno) is set to 1 # the first time page $pgno is encountered. # catch {unset seen} # The following loop runs once for each entry in index $name. The index |
︙ | ︙ | |||
320 321 322 323 324 325 326 327 328 329 330 331 332 333 | # If this is the first table entry analyzed for the page, then update # the page-related statistics $leaf_pages and $unused_leaf. # if {![info exists seen($ci(page_no))]} { set seen($ci(page_no)) 1 incr leaf_pages incr unused_leaf $ci(page_freebytes) } } btree_close_cursor $csr # Handle the special case where a index contains no data. In this case # all statistics are zero, except for the number of leaf pages (1) and # the unused bytes on leaf pages ($pageSize - 8). | > > > > > | 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | # If this is the first table entry analyzed for the page, then update # the page-related statistics $leaf_pages and $unused_leaf. # if {![info exists seen($ci(page_no))]} { set seen($ci(page_no)) 1 incr leaf_pages incr unused_leaf $ci(page_freebytes) set pg $ci(page_no) if {$prev_pgno>0 && ($prev_pgno<$pg-$MAXGAP || $prev_pgno>$pg)} { incr gap_cnt } set prev_pgno $ci(page_no) } } btree_close_cursor $csr # Handle the special case where a index contains no data. In this case # all statistics are zero, except for the number of leaf pages (1) and # the unused bytes on leaf pages ($pageSize - 8). |
︙ | ︙ | |||
351 352 353 354 355 356 357 358 359 360 361 362 363 364 | append sql ",$mx_payload" append sql ",0" append sql ",$leaf_pages" append sql ",$ovfl_pages" append sql ",0" append sql ",$unused_leaf" append sql ",$unused_ovfl" append sql ); mem eval $sql } # Generate a single line of output in the statistics section of the # report. # | > | 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | append sql ",$mx_payload" append sql ",0" append sql ",$leaf_pages" append sql ",$ovfl_pages" append sql ",0" append sql ",$unused_leaf" append sql ",$unused_ovfl" append sql ",$gap_cnt" append sql ); mem eval $sql } # Generate a single line of output in the statistics section of the # report. # |
︙ | ︙ | |||
416 417 418 419 420 421 422 | max(mx_payload) AS mx_payload, int(sum(ovfl_cnt)) as ovfl_cnt, int(sum(leaf_pages)) AS leaf_pages, int(sum(int_pages)) AS int_pages, int(sum(ovfl_pages)) AS ovfl_pages, int(sum(leaf_unused)) AS leaf_unused, int(sum(int_unused)) AS int_unused, | | > | 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 | max(mx_payload) AS mx_payload, int(sum(ovfl_cnt)) as ovfl_cnt, int(sum(leaf_pages)) AS leaf_pages, int(sum(int_pages)) AS int_pages, int(sum(ovfl_pages)) AS ovfl_pages, int(sum(leaf_unused)) AS leaf_unused, int(sum(int_unused)) AS int_unused, int(sum(ovfl_unused)) AS ovfl_unused, int(sum(gap_cnt)) AS gap_cnt FROM space_used WHERE $where" {} {} # Output the sub-report title, nicely decorated with * characters. # puts "" set len [string length $title] set stars [string repeat * [expr 65-$len]] |
︙ | ︙ | |||
446 447 448 449 450 451 452 453 454 455 456 457 458 459 | set total_pages [expr {$leaf_pages+$int_pages+$ovfl_pages}] set total_pages_percent [percent $total_pages $file_pgcnt] set storage [expr {$total_pages*$pageSize}] set payload_percent [percent $payload $storage {of storage consumed}] set total_unused [expr {$ovfl_unused+$int_unused+$leaf_unused}] set avg_payload [divide $payload $nleaf] set avg_unused [divide $total_unused $nleaf] if {$int_pages>0} { # TODO: Is this formula correct? set nTab [mem eval " SELECT count(*) FROM ( SELECT DISTINCT tblname FROM space_used WHERE $where AND is_index=0 ) "] | > | 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | set total_pages [expr {$leaf_pages+$int_pages+$ovfl_pages}] set total_pages_percent [percent $total_pages $file_pgcnt] set storage [expr {$total_pages*$pageSize}] set payload_percent [percent $payload $storage {of storage consumed}] set total_unused [expr {$ovfl_unused+$int_unused+$leaf_unused}] set avg_payload [divide $payload $nleaf] set avg_unused [divide $total_unused $nleaf] set fragmentation [percent $gap_cnt $total_pages {fragmentation}] if {$int_pages>0} { # TODO: Is this formula correct? set nTab [mem eval " SELECT count(*) FROM ( SELECT DISTINCT tblname FROM space_used WHERE $where AND is_index=0 ) "] |
︙ | ︙ | |||
472 473 474 475 476 477 478 479 480 481 482 483 484 485 | statline {Bytes of storage consumed} $storage statline {Bytes of payload} $payload $payload_percent statline {Average payload per entry} $avg_payload statline {Average unused bytes per entry} $avg_unused if {[info exists avg_fanout]} { statline {Average fanout} $avg_fanout } statline {Maximum payload per entry} $mx_payload statline {Entries that use overflow} $ovfl_cnt $ovfl_cnt_percent if {$int_pages>0} { statline {Index pages used} $int_pages } statline {Primary pages used} $leaf_pages statline {Overflow pages used} $ovfl_pages | > > > | 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | statline {Bytes of storage consumed} $storage statline {Bytes of payload} $payload $payload_percent statline {Average payload per entry} $avg_payload statline {Average unused bytes per entry} $avg_unused if {[info exists avg_fanout]} { statline {Average fanout} $avg_fanout } if {$total_pages>1} { statline {Fragmentation} $fragmentation } statline {Maximum payload per entry} $mx_payload statline {Entries that use overflow} $ovfl_cnt $ovfl_cnt_percent if {$int_pages>0} { statline {Index pages used} $int_pages } statline {Primary pages used} $leaf_pages statline {Overflow pages used} $ovfl_pages |
︙ | ︙ |