SQLite

Check-in [b2e01080cc]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge 3.8.6 beta changes in from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA1: b2e01080cce405de2bba7a5294001f9cc463a3c4
User & Date: drh 2014-08-06 01:51:19.484
Context
2014-08-14
13:39
Merge the pre-3.8.6 changes from trunk into the apple-osx branch. (check-in: 08058df3af user: drh tags: apple-osx)
2014-08-06
01:51
Merge 3.8.6 beta changes in from trunk. (check-in: b2e01080cc user: drh tags: apple-osx)
01:08
Fix typos in the opcode documentation. Comment changes only. No changes to code. (check-in: 717245d487 user: drh tags: trunk)
2014-07-30
14:57
Merge in the CREATE UNIQUE INDEX fix of ticket [9a6daf340df99ba93c53bcf]. (check-in: fa7912320f user: drh tags: apple-osx)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/analyze.c.
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
      **   if( idx(1) != regPrev(1) ) goto chng_addr_1
      **   ...
      **   regChng = N
      **   goto endDistinctTest
      */
      sqlite3VdbeAddOp0(v, OP_Goto);
      addrNextRow = sqlite3VdbeCurrentAddr(v);
      if( nColTest==1 && pIdx->nKeyCol==1 && pIdx->onError!=OE_None ){
        /* For a single-column UNIQUE index, once we have found a non-NULL
        ** row, we know that all the rest will be distinct, so skip 
        ** subsequent distinctness tests. */
        sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
        VdbeCoverage(v);
      }
      for(i=0; i<nColTest; i++){







|







1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
      **   if( idx(1) != regPrev(1) ) goto chng_addr_1
      **   ...
      **   regChng = N
      **   goto endDistinctTest
      */
      sqlite3VdbeAddOp0(v, OP_Goto);
      addrNextRow = sqlite3VdbeCurrentAddr(v);
      if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
        /* For a single-column UNIQUE index, once we have found a non-NULL
        ** row, we know that all the rest will be distinct, so skip 
        ** subsequent distinctness tests. */
        sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
        VdbeCoverage(v);
      }
      for(i=0; i<nColTest; i++){
Changes to src/btree.c.
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  }

  /* If the client is reading  or writing an index and the schema is
  ** not loaded, then it is too difficult to actually check to see if
  ** the correct locks are held.  So do not bother - just return true.
  ** This case does not come up very often anyhow.
  */
  if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
    return 1;
  }

  /* Figure out the root-page that the lock should be held on. For table
  ** b-trees, this is just the root page of the b-tree being read or
  ** written. For index b-trees, it is the root page of the associated
  ** table.  */







|







164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  }

  /* If the client is reading  or writing an index and the schema is
  ** not loaded, then it is too difficult to actually check to see if
  ** the correct locks are held.  So do not bother - just return true.
  ** This case does not come up very often anyhow.
  */
  if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
    return 1;
  }

  /* Figure out the root-page that the lock should be held on. For table
  ** b-trees, this is just the root page of the b-tree being read or
  ** written. For index b-trees, it is the root page of the associated
  ** table.  */
Changes to src/build.c.
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
      assert( pTable->aCol==0 );
      pTable->nCol = pSelTab->nCol;
      pTable->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite3DeleteTable(db, pSelTab);
      assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
      pTable->pSchema->flags |= DB_UnresetViews;
    }else{
      pTable->nCol = 0;
      nErr++;
    }
    sqlite3SelectDelete(db, pSel);
  } else {
    nErr++;







|







2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
      assert( pTable->aCol==0 );
      pTable->nCol = pSelTab->nCol;
      pTable->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite3DeleteTable(db, pSelTab);
      assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
      pTable->pSchema->schemaFlags |= DB_UnresetViews;
    }else{
      pTable->nCol = 0;
      nErr++;
    }
    sqlite3SelectDelete(db, pSel);
  } else {
    nErr++;
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
  if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO);
  sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));

  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
  assert( pKey!=0 || db->mallocFailed || pParse->nErr );
  if( pIndex->onError!=OE_None && pKey!=0 ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
                         pIndex->nKeyCol); VdbeCoverage(v);
    sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
  }else{







|







2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
  if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO);
  sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));

  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
  assert( pKey!=0 || db->mallocFailed || pParse->nErr );
  if( IsUniqueIndex(pIndex) && pKey!=0 ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
                         pIndex->nKeyCol); VdbeCoverage(v);
    sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
  }else{
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
    ** If there are different collating sequences or if the columns of
    ** the constraint occur in different orders, then the constraints are
    ** considered distinct and both result in separate indices.
    */
    Index *pIdx;
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      int k;
      assert( pIdx->onError!=OE_None );
      assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
      assert( pIndex->onError!=OE_None );

      if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
      for(k=0; k<pIdx->nKeyCol; k++){
        const char *z1;
        const char *z2;
        if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
        z1 = pIdx->azColl[k];







|

|







3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
    ** If there are different collating sequences or if the columns of
    ** the constraint occur in different orders, then the constraints are
    ** considered distinct and both result in separate indices.
    */
    Index *pIdx;
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      int k;
      assert( IsUniqueIndex(pIdx) );
      assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
      assert( IsUniqueIndex(pIndex) );

      if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
      for(k=0; k<pIdx->nKeyCol; k++){
        const char *z1;
        const char *z2;
        if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
        z1 = pIdx->azColl[k];
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
  ** 6 and each subsequent value (if any) is 5.  */
  memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
  for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
    a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
  }

  assert( 0==sqlite3LogEst(1) );
  if( pIdx->onError!=OE_None ) a[pIdx->nKeyCol] = 0;
}

/*
** This routine will drop an existing named index.  This routine
** implements the DROP INDEX statement.
*/
void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){







|







3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
  ** 6 and each subsequent value (if any) is 5.  */
  memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
  for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
    a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
  }

  assert( 0==sqlite3LogEst(1) );
  if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
}

/*
** This routine will drop an existing named index.  This routine
** implements the DROP INDEX statement.
*/
void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
Changes to src/callback.c.
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
    Table *pTab = sqliteHashData(pElem);
    sqlite3DeleteTable(0, pTab);
  }
  sqlite3HashClear(&temp1);
  sqlite3HashClear(&pSchema->fkeyHash);
  pSchema->pSeqTab = 0;
  if( pSchema->flags & DB_SchemaLoaded ){
    pSchema->iGeneration++;
    pSchema->flags &= ~DB_SchemaLoaded;
  }
}

/*
** Find and return the schema associated with a BTree.  Create
** a new one if necessary.
*/







|

|







443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
    Table *pTab = sqliteHashData(pElem);
    sqlite3DeleteTable(0, pTab);
  }
  sqlite3HashClear(&temp1);
  sqlite3HashClear(&pSchema->fkeyHash);
  pSchema->pSeqTab = 0;
  if( pSchema->schemaFlags & DB_SchemaLoaded ){
    pSchema->iGeneration++;
    pSchema->schemaFlags &= ~DB_SchemaLoaded;
  }
}

/*
** Find and return the schema associated with a BTree.  Create
** a new one if necessary.
*/
Changes to src/expr.c.
1364
1365
1366
1367
1368
1369
1370



1371
1372
1373
1374
1375
1376
1377
  if( op==TK_REGISTER ) op = p->op2;
  switch( op ){
    case TK_INTEGER:
    case TK_STRING:
    case TK_FLOAT:
    case TK_BLOB:
      return 0;



    default:
      return 1;
  }
}

/*
** Return TRUE if the given expression is a constant which would be







>
>
>







1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
  if( op==TK_REGISTER ) op = p->op2;
  switch( op ){
    case TK_INTEGER:
    case TK_STRING:
    case TK_FLOAT:
    case TK_BLOB:
      return 0;
    case TK_COLUMN:
      assert( p->pTab!=0 );
      return p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0;
    default:
      return 1;
  }
}

/*
** Return TRUE if the given expression is a constant which would be
1471
1472
1473
1474
1475
1476
1477


































1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496


1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507







1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518







1519
1520
1521

1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

1551
1552
1553
1554
1555
1556
1557
** address of the new instruction.
*/
int sqlite3CodeOnce(Parse *pParse){
  Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
  return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
}



































/*
** This function is used by the implementation of the IN (...) operator.
** The pX parameter is the expression on the RHS of the IN operator, which
** might be either a list of expressions or a subquery.
**
** The job of this routine is to find or create a b-tree object that can
** be used either to test for membership in the RHS set or to iterate through
** all members of the RHS set, skipping duplicates.
**
** A cursor is opened on the b-tree object that the RHS of the IN operator
** and pX->iTable is set to the index of that cursor.
**
** The returned value of this function indicates the b-tree type, as follows:
**
**   IN_INDEX_ROWID      - The cursor was opened on a database table.
**   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
**   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
**   IN_INDEX_EPH        - The cursor was opened on a specially created and
**                         populated epheremal table.


**
** An existing b-tree might be used if the RHS expression pX is a simple
** subquery such as:
**
**     SELECT <column> FROM <table>
**
** If the RHS of the IN operator is a list or a more complex subquery, then
** an ephemeral table might need to be generated from the RHS and then
** pX->iTable made to point to the ephermeral table instead of an
** existing table.  
**







** If the prNotFound parameter is 0, then the b-tree will be used to iterate
** through the set members, skipping any duplicates. In this case an
** epheremal table must be used unless the selected <column> is guaranteed
** to be unique - either because it is an INTEGER PRIMARY KEY or it
** has a UNIQUE constraint or UNIQUE index.
**
** If the prNotFound parameter is not 0, then the b-tree will be used 
** for fast set membership tests. In this case an epheremal table must 
** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
** be found with <column> as its left-most column.
**







** When the b-tree is being used for membership tests, the calling function
** needs to know whether or not the structure contains an SQL NULL 
** value in order to correctly evaluate expressions like "X IN (Y, Z)".

** If there is any chance that the (...) might contain a NULL value at
** runtime, then a register is allocated and the register number written
** to *prNotFound. If there is no chance that the (...) contains a
** NULL value, then *prNotFound is left unchanged.
**
** If a register is allocated and its location stored in *prNotFound, then
** its initial value is NULL.  If the (...) does not remain constant
** for the duration of the query (i.e. the SELECT within the (...)
** is a correlated subquery) then the value of the allocated register is
** reset to NULL each time the subquery is rerun. This allows the
** caller to use vdbe code equivalent to the following:
**
**   if( register==NULL ){
**     has_null = <test if data structure contains null>
**     register = 1
**   }
**
** in order to avoid running the <test if data structure contains null>
** test more often than is necessary.
*/
#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
  Select *p;                            /* SELECT to the right of IN operator */
  int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
  int iTab = pParse->nTab++;            /* Cursor of the RHS table */
  int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
  Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */

  assert( pX->op==TK_IN );


  /* Check to see if an existing table or index can be used to
  ** satisfy the query.  This is preferable to generating a new 
  ** ephemeral table.
  */
  p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
  if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









|









>
>









|

>
>
>
>
>
>
>
|
|
|



|
|



>
>
>
>
>
>
>

|
<
>
|

|
|

|
<
<
|
<
<
<
<
|
<
|
<
<
<


|



|



>







1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573

1574
1575
1576
1577
1578
1579
1580


1581




1582

1583



1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
** address of the new instruction.
*/
int sqlite3CodeOnce(Parse *pParse){
  Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
  return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
}

/*
** Generate code that checks the left-most column of index table iCur to see if
** it contains any NULL entries.  Cause the register at regHasNull to be set
** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
** to be set to NULL if iCur contains one or more NULL values.
*/
static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
  int j1;
  sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
  j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
  sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
  VdbeComment((v, "first_entry_in(%d)", iCur));
  sqlite3VdbeJumpHere(v, j1);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
** The argument is an IN operator with a list (not a subquery) on the 
** right-hand side.  Return TRUE if that list is constant.
*/
static int sqlite3InRhsIsConstant(Expr *pIn){
  Expr *pLHS;
  int res;
  assert( !ExprHasProperty(pIn, EP_xIsSelect) );
  pLHS = pIn->pLeft;
  pIn->pLeft = 0;
  res = sqlite3ExprIsConstant(pIn);
  pIn->pLeft = pLHS;
  return res;
}
#endif

/*
** This function is used by the implementation of the IN (...) operator.
** The pX parameter is the expression on the RHS of the IN operator, which
** might be either a list of expressions or a subquery.
**
** The job of this routine is to find or create a b-tree object that can
** be used either to test for membership in the RHS set or to iterate through
** all members of the RHS set, skipping duplicates.
**
** A cursor is opened on the b-tree object that is the RHS of the IN operator
** and pX->iTable is set to the index of that cursor.
**
** The returned value of this function indicates the b-tree type, as follows:
**
**   IN_INDEX_ROWID      - The cursor was opened on a database table.
**   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
**   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
**   IN_INDEX_EPH        - The cursor was opened on a specially created and
**                         populated epheremal table.
**   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
**                         implemented as a sequence of comparisons.
**
** An existing b-tree might be used if the RHS expression pX is a simple
** subquery such as:
**
**     SELECT <column> FROM <table>
**
** If the RHS of the IN operator is a list or a more complex subquery, then
** an ephemeral table might need to be generated from the RHS and then
** pX->iTable made to point to the ephermeral table instead of an
** existing table.
**
** The inFlags parameter must contain exactly one of the bits
** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
** fast membership test.  When the IN_INDEX_LOOP bit is set, the
** IN index will be used to loop over all values of the RHS of the
** IN operator.
**
** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
** through the set members) then the b-tree must not contain duplicates.
** An epheremal table must be used unless the selected <column> is guaranteed
** to be unique - either because it is an INTEGER PRIMARY KEY or it
** has a UNIQUE constraint or UNIQUE index.
**
** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 
** for fast set membership tests) then an epheremal table must 
** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
** be found with <column> as its left-most column.
**
** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
** if the RHS of the IN operator is a list (not a subquery) then this
** routine might decide that creating an ephemeral b-tree for membership
** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
** calling routine should implement the IN operator using a sequence
** of Eq or Ne comparison operations.
**
** When the b-tree is being used for membership tests, the calling function
** might need to know whether or not the RHS side of the IN operator

** contains a NULL.  If prRhsHasNull is not a NULL pointer and 
** if there is any chance that the (...) might contain a NULL value at
** runtime, then a register is allocated and the register number written
** to *prRhsHasNull. If there is no chance that the (...) contains a
** NULL value, then *prRhsHasNull is left unchanged.
**
** If a register is allocated and its location stored in *prRhsHasNull, then


** the value in that register will be NULL if the b-tree contains one or more




** NULL values, and it will be some non-NULL value if the b-tree contains no

** NULL values.



*/
#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
  Select *p;                            /* SELECT to the right of IN operator */
  int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
  int iTab = pParse->nTab++;            /* Cursor of the RHS table */
  int mustBeUnique;                     /* True if RHS must be unique */
  Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */

  assert( pX->op==TK_IN );
  mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;

  /* Check to see if an existing table or index can be used to
  ** satisfy the query.  This is preferable to generating a new 
  ** ephemeral table.
  */
  p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
  if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
















1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640


1641
1642
1643
1644
1645
1646
1647
      ** it is not, it is not possible to use any index.
      */
      int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);

      for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
        if( (pIdx->aiColumn[0]==iCol)
         && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
         && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None))
        ){
          int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
          sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
          sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
          VdbeComment((v, "%s", pIdx->zName));
          assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
          eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];

          if( prNotFound && !pTab->aCol[iCol].notNull ){
            *prNotFound = ++pParse->nMem;
            sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
          }
          sqlite3VdbeJumpHere(v, iAddr);
        }
      }
    }
  }

















  if( eType==0 ){
    /* Could not found an existing table or index to use as the RHS b-tree.
    ** We will have to generate an ephemeral table to do the job.
    */
    u32 savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
    eType = IN_INDEX_EPH;
    if( prNotFound ){
      *prNotFound = rMayHaveNull = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
    }else{
      pParse->nQueryLoop = 0;
      if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
        eType = IN_INDEX_ROWID;
      }


    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
  }else{
    pX->iTable = iTab;
  }
  return eType;







|








|
|
|







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|





|
<
<
<




>
>







1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693



1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
      ** it is not, it is not possible to use any index.
      */
      int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);

      for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
        if( (pIdx->aiColumn[0]==iCol)
         && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
         && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
        ){
          int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
          sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
          sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
          VdbeComment((v, "%s", pIdx->zName));
          assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
          eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];

          if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
            *prRhsHasNull = ++pParse->nMem;
            sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
          }
          sqlite3VdbeJumpHere(v, iAddr);
        }
      }
    }
  }

  /* If no preexisting index is available for the IN clause
  ** and IN_INDEX_NOOP is an allowed reply
  ** and the RHS of the IN operator is a list, not a subquery
  ** and the RHS is not contant or has two or fewer terms,
  ** then it is not worth creating an ephermeral table to evaluate
  ** the IN operator so return IN_INDEX_NOOP.
  */
  if( eType==0
   && (inFlags & IN_INDEX_NOOP_OK)
   && !ExprHasProperty(pX, EP_xIsSelect)
   && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
  ){
    eType = IN_INDEX_NOOP;
  }
     

  if( eType==0 ){
    /* Could not find an existing table or index to use as the RHS b-tree.
    ** We will have to generate an ephemeral table to do the job.
    */
    u32 savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
    eType = IN_INDEX_EPH;
    if( inFlags & IN_INDEX_LOOP ){



      pParse->nQueryLoop = 0;
      if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
        eType = IN_INDEX_ROWID;
      }
    }else if( prRhsHasNull ){
      *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
  }else{
    pX->iTable = iTab;
  }
  return eType;
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
** to some integer key column of a table B-Tree. In this case, use an
** intkey B-Tree to store the set of IN(...) values instead of the usual
** (slower) variable length keys B-Tree.
**
** If rMayHaveNull is non-zero, that means that the operation is an IN
** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
** Furthermore, the IN is in a WHERE clause and that we really want
** to iterate over the RHS of the IN operator in order to quickly locate
** all corresponding LHS elements.  All this routine does is initialize
** the register given by rMayHaveNull to NULL.  Calling routines will take
** care of changing this register value to non-NULL if the RHS is NULL-free.
**
** If rMayHaveNull is zero, that means that the subquery is being used
** for membership testing only.  There is no need to initialize any
** registers to indicate the presence or absence of NULLs on the RHS.
**
** For a SELECT or EXISTS operator, return the register that holds the
** result.  For IN operators or if an error occurs, the return value is 0.
*/
#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3CodeSubselect(
  Parse *pParse,          /* Parsing context */
  Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
  int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
  int isRowid             /* If true, LHS of IN operator is a rowid */
){
  int testAddr = -1;                      /* One-time test address */
  int rReg = 0;                           /* Register storing resulting */
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( NEVER(v==0) ) return 0;
  sqlite3ExprCachePush(pParse);

  /* This code must be run in its entirety every time it is encountered
  ** if any of the following is true:
  **
  **    *  The right-hand side is a correlated subquery
  **    *  The right-hand side is an expression list containing variables
  **    *  We are inside a trigger
  **
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
  */
  if( !ExprHasProperty(pExpr, EP_VarSelect) ){
    testAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
  }

#ifndef SQLITE_OMIT_EXPLAIN
  if( pParse->explain==2 ){
    char *zMsg = sqlite3MPrintf(
        pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
        pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;              /* Affinity of the LHS of the IN */
      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
      KeyInfo *pKeyInfo = 0;      /* Key information */

      if( rMayHaveNull ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
      }

      affinity = sqlite3ExprAffinity(pLeft);

      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
      ** expression it is handled the same way.  An ephemeral table is 
      ** filled with single-field index keys representing the results
      ** from the SELECT or the <exprlist>.
      **







<
<
|
|
|
<
<
<
<








|


|
















|





|













<
<
<
<







1723
1724
1725
1726
1727
1728
1729


1730
1731
1732




1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780




1781
1782
1783
1784
1785
1786
1787
** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
** to some integer key column of a table B-Tree. In this case, use an
** intkey B-Tree to store the set of IN(...) values instead of the usual
** (slower) variable length keys B-Tree.
**
** If rMayHaveNull is non-zero, that means that the operation is an IN
** (not a SELECT or EXISTS) and that the RHS might contains NULLs.


** All this routine does is initialize the register given by rMayHaveNull
** to NULL.  Calling routines will take care of changing this register
** value to non-NULL if the RHS is NULL-free.




**
** For a SELECT or EXISTS operator, return the register that holds the
** result.  For IN operators or if an error occurs, the return value is 0.
*/
#ifndef SQLITE_OMIT_SUBQUERY
int sqlite3CodeSubselect(
  Parse *pParse,          /* Parsing context */
  Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
  int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
  int isRowid             /* If true, LHS of IN operator is a rowid */
){
  int jmpIfDynamic = -1;                      /* One-time test address */
  int rReg = 0;                           /* Register storing resulting */
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( NEVER(v==0) ) return 0;
  sqlite3ExprCachePush(pParse);

  /* This code must be run in its entirety every time it is encountered
  ** if any of the following is true:
  **
  **    *  The right-hand side is a correlated subquery
  **    *  The right-hand side is an expression list containing variables
  **    *  We are inside a trigger
  **
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
  */
  if( !ExprHasProperty(pExpr, EP_VarSelect) ){
    jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
  }

#ifndef SQLITE_OMIT_EXPLAIN
  if( pParse->explain==2 ){
    char *zMsg = sqlite3MPrintf(
        pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
        pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;              /* Affinity of the LHS of the IN */
      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
      KeyInfo *pKeyInfo = 0;      /* Key information */





      affinity = sqlite3ExprAffinity(pLeft);

      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
      ** expression it is handled the same way.  An ephemeral table is 
      ** filled with single-field index keys representing the results
      ** from the SELECT or the <exprlist>.
      **
1750
1751
1752
1753
1754
1755
1756

1757
1758
1759
1760
1761
1762
1763
1764


1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */

        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pExpr->x.pSelect->iLimit = 0;


        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
          sqlite3KeyInfoUnref(pKeyInfo);
          return 0;
        }
        pEList = pExpr->x.pSelect->pEList;
        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
        assert( pEList!=0 );
        assert( pEList->nExpr>0 );
        assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
        pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
                                                         pEList->a[0].pExpr);
      }else if( ALWAYS(pExpr->x.pList!=0) ){







>







|
>
>

|



|







1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        Select *pSelect = pExpr->x.pSelect;
        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pSelect->iLimit = 0;
        testcase( pSelect->selFlags & SF_Distinct );
        pSelect->selFlags &= ~SF_Distinct;
        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
        if( sqlite3Select(pParse, pSelect, &dest) ){
          sqlite3KeyInfoUnref(pKeyInfo);
          return 0;
        }
        pEList = pSelect->pEList;
        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
        assert( pEList!=0 );
        assert( pEList->nExpr>0 );
        assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
        pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
                                                         pEList->a[0].pExpr);
      }else if( ALWAYS(pExpr->x.pList!=0) ){
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
          assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
          pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
        }

        /* Loop through each expression in <exprlist>. */
        r1 = sqlite3GetTempReg(pParse);
        r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
          Expr *pE2 = pItem->pExpr;
          int iValToIns;

          /* If the expression is not constant then we will need to
          ** disable the test that was generated above that makes sure
          ** this code only executes once.  Because for a non-constant
          ** expression we need to rerun this code each time.
          */
          if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
            sqlite3VdbeChangeToNoop(v, testAddr);
            testAddr = -1;
          }

          /* Evaluate the expression and insert it into the temp table */
          if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
            sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
          }else{
            r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);







|









|
|
|







1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
          assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
          pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
        }

        /* Loop through each expression in <exprlist>. */
        r1 = sqlite3GetTempReg(pParse);
        r2 = sqlite3GetTempReg(pParse);
        if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
          Expr *pE2 = pItem->pExpr;
          int iValToIns;

          /* If the expression is not constant then we will need to
          ** disable the test that was generated above that makes sure
          ** this code only executes once.  Because for a non-constant
          ** expression we need to rerun this code each time.
          */
          if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
            sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
            jmpIfDynamic = -1;
          }

          /* Evaluate the expression and insert it into the temp table */
          if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
            sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
          }else{
            r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1876
1877
1878
1879
1880
1881
1882



1883

1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
      }
      rReg = dest.iSDParm;
      ExprSetVVAProperty(pExpr, EP_NoReduce);
      break;
    }
  }




  if( testAddr>=0 ){

    sqlite3VdbeJumpHere(v, testAddr);
  }
  sqlite3ExprCachePop(pParse);

  return rReg;
}
#endif /* SQLITE_OMIT_SUBQUERY */

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Generate code for an IN expression.
**
**      x IN (SELECT ...)
**      x IN (value, value, ...)
**
** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
** is an array of zero or more values.  The expression is true if the LHS is
** contained within the RHS.  The value of the expression is unknown (NULL)
** if the LHS is NULL or if the LHS is not contained within the RHS and the
** RHS contains one or more NULL values.
**
** This routine generates code will jump to destIfFalse if the LHS is not 
** contained within the RHS.  If due to NULLs we cannot determine if the LHS
** is contained in the RHS then jump to destIfNull.  If the LHS is contained
** within the RHS then fall through.
*/
static void sqlite3ExprCodeIN(
  Parse *pParse,        /* Parsing and code generating context */
  Expr *pExpr,          /* The IN expression */







>
>
>
|
>
|




















|







1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
      }
      rReg = dest.iSDParm;
      ExprSetVVAProperty(pExpr, EP_NoReduce);
      break;
    }
  }

  if( rHasNullFlag ){
    sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
  }

  if( jmpIfDynamic>=0 ){
    sqlite3VdbeJumpHere(v, jmpIfDynamic);
  }
  sqlite3ExprCachePop(pParse);

  return rReg;
}
#endif /* SQLITE_OMIT_SUBQUERY */

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Generate code for an IN expression.
**
**      x IN (SELECT ...)
**      x IN (value, value, ...)
**
** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
** is an array of zero or more values.  The expression is true if the LHS is
** contained within the RHS.  The value of the expression is unknown (NULL)
** if the LHS is NULL or if the LHS is not contained within the RHS and the
** RHS contains one or more NULL values.
**
** This routine generates code that jumps to destIfFalse if the LHS is not 
** contained within the RHS.  If due to NULLs we cannot determine if the LHS
** is contained in the RHS then jump to destIfNull.  If the LHS is contained
** within the RHS then fall through.
*/
static void sqlite3ExprCodeIN(
  Parse *pParse,        /* Parsing and code generating context */
  Expr *pExpr,          /* The IN expression */
1921
1922
1923
1924
1925
1926
1927
1928


1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941











































1942
1943
1944

1945
1946
1947
1948
1949
1950
1951
1952
1953
1954

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973

1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992


1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

  /* Compute the RHS.   After this step, the table with cursor
  ** pExpr->iTable will contains the values that make up the RHS.
  */
  v = pParse->pVdbe;
  assert( v!=0 );       /* OOM detected prior to this routine */
  VdbeNoopComment((v, "begin IN expr"));
  eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);



  /* Figure out the affinity to use to create a key from the results
  ** of the expression. affinityStr stores a static string suitable for
  ** P4 of OP_MakeRecord.
  */
  affinity = comparisonAffinity(pExpr);

  /* Code the LHS, the <expr> from "<expr> IN (...)".
  */
  sqlite3ExprCachePush(pParse);
  r1 = sqlite3GetTempReg(pParse);
  sqlite3ExprCode(pParse, pExpr->pLeft, r1);












































  /* If the LHS is NULL, then the result is either false or NULL depending
  ** on whether the RHS is empty or not, respectively.
  */

  if( destIfNull==destIfFalse ){
    /* Shortcut for the common case where the false and NULL outcomes are
    ** the same. */
    sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
  }else{
    int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
    VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
    sqlite3VdbeJumpHere(v, addr1);

  }

  if( eType==IN_INDEX_ROWID ){
    /* In this case, the RHS is the ROWID of table b-tree
    */
    sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
    sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
    VdbeCoverage(v);
  }else{
    /* In this case, the RHS is an index b-tree.
    */
    sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);

    /* If the set membership test fails, then the result of the 
    ** "x IN (...)" expression must be either 0 or NULL. If the set
    ** contains no NULL values, then the result is 0. If the set 
    ** contains one or more NULL values, then the result of the
    ** expression is also NULL.
    */

    if( rRhsHasNull==0 || destIfFalse==destIfNull ){
      /* This branch runs if it is known at compile time that the RHS
      ** cannot contain NULL values. This happens as the result
      ** of a "NOT NULL" constraint in the database schema.
      **
      ** Also run this branch if NULL is equivalent to FALSE
      ** for this particular IN operator.
      */
      sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
      VdbeCoverage(v);
    }else{
      /* In this branch, the RHS of the IN might contain a NULL and
      ** the presence of a NULL on the RHS makes a difference in the
      ** outcome.
      */
      int j1, j2;

      /* First check to see if the LHS is contained in the RHS.  If so,
      ** then the presence of NULLs in the RHS does not matter, so jump


      ** over all of the code that follows.
      */
      j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
      VdbeCoverage(v);

      /* Here we begin generating code that runs if the LHS is not
      ** contained within the RHS.  Generate additional code that
      ** tests the RHS for NULLs.  If the RHS contains a NULL then
      ** jump to destIfNull.  If there are no NULLs in the RHS then
      ** jump to destIfFalse.
      */
      sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); VdbeCoverage(v);
      sqlite3VdbeAddOp2(v, OP_IfNot, rRhsHasNull, destIfFalse); VdbeCoverage(v);
      j2 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
      VdbeCoverage(v);
      sqlite3VdbeAddOp2(v, OP_Integer, 0, rRhsHasNull);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
      sqlite3VdbeJumpHere(v, j2);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, rRhsHasNull);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);

      /* The OP_Found at the top of this branch jumps here when true, 
      ** causing the overall IN expression evaluation to fall through.
      */
      sqlite3VdbeJumpHere(v, j1);
    }
  }
  sqlite3ReleaseTempReg(pParse, r1);
  sqlite3ExprCachePop(pParse);
  VdbeComment((v, "end IN expr"));
}
#endif /* SQLITE_OMIT_SUBQUERY */







|
>
>













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
>
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|
|
|
|
<
<
<
<
<
<
<
|
<
<
|
<
|
|
<
<
|
<
<
<
<







1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102







2103


2104

2105
2106


2107




2108
2109
2110
2111
2112
2113
2114

  /* Compute the RHS.   After this step, the table with cursor
  ** pExpr->iTable will contains the values that make up the RHS.
  */
  v = pParse->pVdbe;
  assert( v!=0 );       /* OOM detected prior to this routine */
  VdbeNoopComment((v, "begin IN expr"));
  eType = sqlite3FindInIndex(pParse, pExpr,
                             IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
                             destIfFalse==destIfNull ? 0 : &rRhsHasNull);

  /* Figure out the affinity to use to create a key from the results
  ** of the expression. affinityStr stores a static string suitable for
  ** P4 of OP_MakeRecord.
  */
  affinity = comparisonAffinity(pExpr);

  /* Code the LHS, the <expr> from "<expr> IN (...)".
  */
  sqlite3ExprCachePush(pParse);
  r1 = sqlite3GetTempReg(pParse);
  sqlite3ExprCode(pParse, pExpr->pLeft, r1);

  /* If sqlite3FindInIndex() did not find or create an index that is
  ** suitable for evaluating the IN operator, then evaluate using a
  ** sequence of comparisons.
  */
  if( eType==IN_INDEX_NOOP ){
    ExprList *pList = pExpr->x.pList;
    CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
    int labelOk = sqlite3VdbeMakeLabel(v);
    int r2, regToFree;
    int regCkNull = 0;
    int ii;
    assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
    if( destIfNull!=destIfFalse ){
      regCkNull = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
    }
    for(ii=0; ii<pList->nExpr; ii++){
      r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
      if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
        sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
      }
      if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
        sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
                          (void*)pColl, P4_COLLSEQ);
        VdbeCoverageIf(v, ii<pList->nExpr-1);
        VdbeCoverageIf(v, ii==pList->nExpr-1);
        sqlite3VdbeChangeP5(v, affinity);
      }else{
        assert( destIfNull==destIfFalse );
        sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
                          (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
        sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
      }
      sqlite3ReleaseTempReg(pParse, regToFree);
    }
    if( regCkNull ){
      sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
    }
    sqlite3VdbeResolveLabel(v, labelOk);
    sqlite3ReleaseTempReg(pParse, regCkNull);
  }else{
  
    /* If the LHS is NULL, then the result is either false or NULL depending
    ** on whether the RHS is empty or not, respectively.
    */
    if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
      if( destIfNull==destIfFalse ){
        /* Shortcut for the common case where the false and NULL outcomes are
        ** the same. */
        sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
      }else{
        int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
        sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
        VdbeCoverage(v);
        sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
        sqlite3VdbeJumpHere(v, addr1);
      }
    }
  
    if( eType==IN_INDEX_ROWID ){
      /* In this case, the RHS is the ROWID of table b-tree
      */
      sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
      sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
      VdbeCoverage(v);
    }else{
      /* In this case, the RHS is an index b-tree.
      */
      sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
  
      /* If the set membership test fails, then the result of the 
      ** "x IN (...)" expression must be either 0 or NULL. If the set
      ** contains no NULL values, then the result is 0. If the set 
      ** contains one or more NULL values, then the result of the
      ** expression is also NULL.
      */
      assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
      if( rRhsHasNull==0 ){
        /* This branch runs if it is known at compile time that the RHS
        ** cannot contain NULL values. This happens as the result
        ** of a "NOT NULL" constraint in the database schema.
        **
        ** Also run this branch if NULL is equivalent to FALSE
        ** for this particular IN operator.
        */
        sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
        VdbeCoverage(v);
      }else{
        /* In this branch, the RHS of the IN might contain a NULL and
        ** the presence of a NULL on the RHS makes a difference in the
        ** outcome.
        */
        int j1;
  
        /* First check to see if the LHS is contained in the RHS.  If so,
        ** then the answer is TRUE the presence of NULLs in the RHS does
        ** not matter.  If the LHS is not contained in the RHS, then the
        ** answer is NULL if the RHS contains NULLs and the answer is
        ** FALSE if the RHS is NULL-free.
        */
        j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
        VdbeCoverage(v);







        sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);


        VdbeCoverage(v);

        sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
        sqlite3VdbeJumpHere(v, j1);


      }




    }
  }
  sqlite3ReleaseTempReg(pParse, r1);
  sqlite3ExprCachePop(pParse);
  VdbeComment((v, "end IN expr"));
}
#endif /* SQLITE_OMIT_SUBQUERY */
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
      assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
      testcase( regFree1==0 );
      addr = sqlite3VdbeAddOp1(v, op, r1);
      VdbeCoverageIf(v, op==TK_ISNULL);
      VdbeCoverageIf(v, op==TK_NOTNULL);
      sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
      sqlite3VdbeJumpHere(v, addr);
      break;
    }
    case TK_AGG_FUNCTION: {
      AggInfo *pInfo = pExpr->pAggInfo;
      if( pInfo==0 ){
        assert( !ExprHasProperty(pExpr, EP_IntValue) );







|







2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
      assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
      testcase( regFree1==0 );
      addr = sqlite3VdbeAddOp1(v, op, r1);
      VdbeCoverageIf(v, op==TK_ISNULL);
      VdbeCoverageIf(v, op==TK_NOTNULL);
      sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
      sqlite3VdbeJumpHere(v, addr);
      break;
    }
    case TK_AGG_FUNCTION: {
      AggInfo *pInfo = pExpr->pAggInfo;
      if( pInfo==0 ){
        assert( !ExprHasProperty(pExpr, EP_IntValue) );
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
        pFarg = pExpr->x.pList;
      }
      nFarg = pFarg ? pFarg->nExpr : 0;
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
      if( pDef==0 ){
        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
        break;
      }

      /* Attempt a direct implementation of the built-in COALESCE() and
      ** IFNULL() functions.  This avoids unnecessary evalation of
      ** arguments past the first non-NULL argument.







|







2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
        pFarg = pExpr->x.pList;
      }
      nFarg = pFarg ? pFarg->nExpr : 0;
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
      if( pDef==0 || pDef->xFunc==0 ){
        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
        break;
      }

      /* Attempt a direct implementation of the built-in COALESCE() and
      ** IFNULL() functions.  This avoids unnecessary evalation of
      ** arguments past the first non-NULL argument.
Changes to src/fkey.c.
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    assert( nCol>1 );
    aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
    if( !aiCol ) return 1;
    *paiCol = aiCol;
  }

  for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->nKeyCol==nCol && pIdx->onError!=OE_None ){ 
      /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
      ** of columns. If each indexed column corresponds to a foreign key
      ** column of pFKey, then this index is a winner.  */

      if( zKey==0 ){
        /* If zKey is NULL, then this foreign key is implicitly mapped to 
        ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 







|







221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    assert( nCol>1 );
    aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
    if( !aiCol ) return 1;
    *paiCol = aiCol;
  }

  for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){ 
      /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
      ** of columns. If each indexed column corresponds to a foreign key
      ** column of pFKey, then this index is a winner.  */

      if( zKey==0 ){
        /* If zKey is NULL, then this foreign key is implicitly mapped to 
        ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 
Changes to src/insert.c.
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
     && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) 
         || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0))
    ){
      return 0;    /* Default values must be the same for all columns */
    }
  }
  for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
    if( pDestIdx->onError!=OE_None ){
      destHasUniqueIdx = 1;
    }
    for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
      if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
    }
    if( pSrcIdx==0 ){
      return 0;    /* pDestIdx has no corresponding index in pSrc */







|







1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
     && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) 
         || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0))
    ){
      return 0;    /* Default values must be the same for all columns */
    }
  }
  for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
    if( IsUniqueIndex(pDestIdx) ){
      destHasUniqueIdx = 1;
    }
    for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
      if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
    }
    if( pSrcIdx==0 ){
      return 0;    /* pDestIdx has no corresponding index in pSrc */
Changes to src/mutex.c.
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
}

/*
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;







|







77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
}

/*
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;
#endif
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
Changes to src/mutex_noop.c.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated. 
*/
static sqlite3_mutex *debugMutexAlloc(int id){
  static sqlite3_debug_mutex aStatic[6];
  sqlite3_debug_mutex *pNew = 0;
  switch( id ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      pNew = sqlite3Malloc(sizeof(*pNew));
      if( pNew ){
        pNew->id = id;







|







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated. 
*/
static sqlite3_mutex *debugMutexAlloc(int id){
  static sqlite3_debug_mutex aStatic[SQLITE_MUTEX_STATIC_APP3 - 1];
  sqlite3_debug_mutex *pNew = 0;
  switch( id ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      pNew = sqlite3Malloc(sizeof(*pNew));
      if( pNew ){
        pNew->id = id;
Changes to src/mutex_unix.c.
92
93
94
95
96
97
98
99
100
101
102



103
104
105
106
107
108
109
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM



** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does







|



>
>
>







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** <li>  SQLITE_MUTEX_STATIC_APP3
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
124
125
126
127
128
129
130



131
132
133
134
135
136
137
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *pthreadMutexAlloc(int iType){
  static sqlite3_mutex staticMutexes[] = {



    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER
  };







>
>
>







127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *pthreadMutexAlloc(int iType){
  static sqlite3_mutex staticMutexes[] = {
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER
  };
Changes to src/mutex_w32.c.
76
77
78
79
80
81
82
83



84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
  return winMutexNotheld2(p, tid);
}
#endif

/*
** Initialize and deinitialize the mutex subsystem.
*/
static sqlite3_mutex winMutex_staticMutexes[6] = {



  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER
};

static int winMutex_isInit = 0;


/* As winMutexInit() and winMutexEnd() are called as part of the
** sqlite3_initialize() and sqlite3_shutdown() processing, the
** "interlocked" magic used in this section may not strictly
** necessary.
*/
static LONG winMutex_lock = 0;

int sqlite3_win32_is_nt(void); /* os_win.c */
void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */

static int winMutexInit(void){
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){







|
>
>
>









>

|
|
|
<

|







76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
  return winMutexNotheld2(p, tid);
}
#endif

/*
** Initialize and deinitialize the mutex subsystem.
*/
static sqlite3_mutex winMutex_staticMutexes[] = {
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER
};

static int winMutex_isInit = 0;
static int winMutex_isNt = -1; /* <0 means "need to query" */

/* As the winMutexInit() and winMutexEnd() functions are called as part
** of the sqlite3_initialize() and sqlite3_shutdown() processing, the
** "interlocked" magic used here is probably not strictly necessary.

*/
static LONG volatile winMutex_lock = 0;

int sqlite3_win32_is_nt(void); /* os_win.c */
void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */

static int winMutexInit(void){
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
146
147
148
149
150
151
152
153
154
155
156



157
158
159
160
161
162
163
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM



** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does







|



>
>
>







149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** <li>  SQLITE_MUTEX_STATIC_APP3
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
227
228
229
230
231
232
233

234
235
236
237
238
239
240
*/
static void winMutexFree(sqlite3_mutex *p){
  assert( p );
#ifdef SQLITE_DEBUG
  assert( p->nRef==0 && p->owner==0 );
  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
#endif

  DeleteCriticalSection(&p->mutex);
  sqlite3_free(p);
}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,







>







233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
*/
static void winMutexFree(sqlite3_mutex *p){
  assert( p );
#ifdef SQLITE_DEBUG
  assert( p->nRef==0 && p->owner==0 );
  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
#endif
  assert( winMutex_isInit==1 );
  DeleteCriticalSection(&p->mutex);
  sqlite3_free(p);
}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
252
253
254
255
256
257
258

259
260
261
262
263
264
265
#endif
#ifdef SQLITE_DEBUG
  assert( p );
  assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
#else
  assert( p );
#endif

  EnterCriticalSection(&p->mutex);
#ifdef SQLITE_DEBUG
  assert( p->nRef>0 || p->owner==0 );
  p->owner = tid;
  p->nRef++;
  if( p->trace ){
    OSTRACE(("ENTER-MUTEX tid=%lu, mutex=%p (%d), nRef=%d\n",







>







259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#endif
#ifdef SQLITE_DEBUG
  assert( p );
  assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
#else
  assert( p );
#endif
  assert( winMutex_isInit==1 );
  EnterCriticalSection(&p->mutex);
#ifdef SQLITE_DEBUG
  assert( p->nRef>0 || p->owner==0 );
  p->owner = tid;
  p->nRef++;
  if( p->trace ){
    OSTRACE(("ENTER-MUTEX tid=%lu, mutex=%p (%d), nRef=%d\n",
283
284
285
286
287
288
289






290
291
292
293
294
295
296
297
  ** The TryEnterCriticalSection() interface is only available on WinNT.
  ** And some windows compilers complain if you try to use it without
  ** first doing some #defines that prevent SQLite from building on Win98.
  ** For that reason, we will omit this optimization for now.  See
  ** ticket #2685.
  */
#if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0400






  if( sqlite3_win32_is_nt() && TryEnterCriticalSection(&p->mutex) ){
#ifdef SQLITE_DEBUG
    p->owner = tid;
    p->nRef++;
#endif
    rc = SQLITE_OK;
  }
#else







>
>
>
>
>
>
|







291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
  ** The TryEnterCriticalSection() interface is only available on WinNT.
  ** And some windows compilers complain if you try to use it without
  ** first doing some #defines that prevent SQLite from building on Win98.
  ** For that reason, we will omit this optimization for now.  See
  ** ticket #2685.
  */
#if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0400
  assert( winMutex_isInit==1 );
  assert( winMutex_isNt>=-1 && winMutex_isNt<=1 );
  if( winMutex_isNt<0 ){
    winMutex_isNt = sqlite3_win32_is_nt();
  }
  assert( winMutex_isNt==0 || winMutex_isNt==1 );
  if( winMutex_isNt && TryEnterCriticalSection(&p->mutex) ){
#ifdef SQLITE_DEBUG
    p->owner = tid;
    p->nRef++;
#endif
    rc = SQLITE_OK;
  }
#else
320
321
322
323
324
325
326

327
328
329
330
331
332
333
#ifdef SQLITE_DEBUG
  assert( p->nRef>0 );
  assert( p->owner==tid );
  p->nRef--;
  if( p->nRef==0 ) p->owner = 0;
  assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
#endif

  LeaveCriticalSection(&p->mutex);
#ifdef SQLITE_DEBUG
  if( p->trace ){
    OSTRACE(("LEAVE-MUTEX tid=%lu, mutex=%p (%d), nRef=%d\n",
             tid, p, p->trace, p->nRef));
  }
#endif







>







334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#ifdef SQLITE_DEBUG
  assert( p->nRef>0 );
  assert( p->owner==tid );
  p->nRef--;
  if( p->nRef==0 ) p->owner = 0;
  assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
#endif
  assert( winMutex_isInit==1 );
  LeaveCriticalSection(&p->mutex);
#ifdef SQLITE_DEBUG
  if( p->trace ){
    OSTRACE(("LEAVE-MUTEX tid=%lu, mutex=%p (%d), nRef=%d\n",
             tid, p, p->trace, p->nRef));
  }
#endif
Changes to src/os_win.c.
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
** 1:   Operating system is Win9x.
** 2:   Operating system is WinNT.
**
** In order to facilitate testing on a WinNT system, the test fixture
** can manually set this value to 1 to emulate Win98 behavior.
*/
#ifdef SQLITE_TEST
int sqlite3_os_type = 0;
#elif !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
      defined(SQLITE_WIN32_HAS_ANSI) && defined(SQLITE_WIN32_HAS_WIDE)
static int sqlite3_os_type = 0;
#endif

#ifndef SYSCALL
#  define SYSCALL sqlite3_syscall_ptr
#endif

/*







|
|
<
|







410
411
412
413
414
415
416
417
418

419
420
421
422
423
424
425
426
** 1:   Operating system is Win9x.
** 2:   Operating system is WinNT.
**
** In order to facilitate testing on a WinNT system, the test fixture
** can manually set this value to 1 to emulate Win98 behavior.
*/
#ifdef SQLITE_TEST
LONG volatile sqlite3_os_type = 0;
#else

static LONG volatile sqlite3_os_type = 0;
#endif

#ifndef SYSCALL
#  define SYSCALL sqlite3_syscall_ptr
#endif

/*
1043
1044
1045
1046
1047
1048
1049





1050
1051
1052
1053
1054
1055
1056
  { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
#else
  { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
#endif

#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
        LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)






}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "win32" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable







>
>
>
>
>







1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
  { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
#else
  { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
#endif

#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
        LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)

  { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 },

#define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG volatile*, \
        LONG,LONG))aSyscall[76].pCurrent)

}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "win32" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
#if !defined(SQLITE_WIN32_GETVERSIONEX) || !SQLITE_WIN32_GETVERSIONEX
# define osIsNT()  (1)
#elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
# define osIsNT()  (1)
#elif !defined(SQLITE_WIN32_HAS_WIDE)
# define osIsNT()  (0)
#else
# define osIsNT()  (sqlite3_win32_is_nt())
#endif

/*
** This function determines if the machine is running a version of Windows
** based on the NT kernel.
*/
int sqlite3_win32_is_nt(void){
  if( sqlite3_os_type==0 ){
#if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WIN8
    OSVERSIONINFOW sInfo;
    sInfo.dwOSVersionInfoSize = sizeof(sInfo);
    osGetVersionExW(&sInfo);
#else
    OSVERSIONINFOA sInfo;
    sInfo.dwOSVersionInfoSize = sizeof(sInfo);
    osGetVersionExA(&sInfo);
#endif

    sqlite3_os_type = (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1;
  }
  return (sqlite3_os_type == 2);
}

#ifdef SQLITE_WIN32_MALLOC
/*
** Allocate nBytes of memory.
*/
static void *winMemMalloc(int nBytes){







|







|









>
|

|







1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
#if !defined(SQLITE_WIN32_GETVERSIONEX) || !SQLITE_WIN32_GETVERSIONEX
# define osIsNT()  (1)
#elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
# define osIsNT()  (1)
#elif !defined(SQLITE_WIN32_HAS_WIDE)
# define osIsNT()  (0)
#else
# define osIsNT()  ((sqlite3_os_type==2) || sqlite3_win32_is_nt())
#endif

/*
** This function determines if the machine is running a version of Windows
** based on the NT kernel.
*/
int sqlite3_win32_is_nt(void){
  if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){
#if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WIN8
    OSVERSIONINFOW sInfo;
    sInfo.dwOSVersionInfoSize = sizeof(sInfo);
    osGetVersionExW(&sInfo);
#else
    OSVERSIONINFOA sInfo;
    sInfo.dwOSVersionInfoSize = sizeof(sInfo);
    osGetVersionExA(&sInfo);
#endif
    osInterlockedCompareExchange(&sqlite3_os_type,
        (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);
  }
  return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2;
}

#ifdef SQLITE_WIN32_MALLOC
/*
** Allocate nBytes of memory.
*/
static void *winMemMalloc(int nBytes){
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
    winGetSystemCall,    /* xGetSystemCall */
    winNextSystemCall,   /* xNextSystemCall */
  };
#endif

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==76 );

  /* get memory map allocation granularity */
  memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
#if SQLITE_OS_WINRT
  osGetNativeSystemInfo(&winSysInfo);
#else
  osGetSystemInfo(&winSysInfo);







|







5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
    winGetSystemCall,    /* xGetSystemCall */
    winNextSystemCall,   /* xNextSystemCall */
  };
#endif

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==77 );

  /* get memory map allocation granularity */
  memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
#if SQLITE_OS_WINRT
  osGetNativeSystemInfo(&winSysInfo);
#else
  osGetSystemInfo(&winSysInfo);
Changes to src/pragma.c.
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
      for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
        sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
      }
    }
  }
  break;

  case PragTyp_DATABASE_LIST: {







|







1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
      for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
        sqlite3VdbeAddOp2(v, OP_Integer, IsUniqueIndex(pIdx), 3);
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
      }
    }
  }
  break;

  case PragTyp_DATABASE_LIST: {
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static const int iLn = VDBE_OFFSET_LINENO(2);
    static const VdbeOpList endCode[] = {
      { OP_AddImm,      1, 0,        0},    /* 0 */
      { OP_IfNeg,       1, 0,        0},    /* 1 */
      { OP_String8,     0, 3,        0},    /* 2 */
      { OP_ResultRow,   3, 1,        0},
    };

    int isQuick = (sqlite3Tolower(zLeft[0])=='q');

    /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
    ** then iDb is set to the index of the database identified by <db>.







<
|
|







1806
1807
1808
1809
1810
1811
1812

1813
1814
1815
1816
1817
1818
1819
1820
1821

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static const int iLn = VDBE_OFFSET_LINENO(2);
    static const VdbeOpList endCode[] = {

      { OP_IfNeg,       1, 0,        0},    /* 0 */
      { OP_String8,     0, 3,        0},    /* 1 */
      { OP_ResultRow,   3, 1,        0},
    };

    int isQuick = (sqlite3Tolower(zLeft[0])=='q');

    /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
    ** then iDb is set to the index of the database identified by <db>.
1920
1921
1922
1923
1924
1925
1926




















1927
1928

1929
1930
1931
1932
1933

1934
1935
1936
1937
1938
1939
1940
1941
1942

1943
1944
1945
1946
1947
















1948









1949
1950
1951
1952
1953
1954
1955
        sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
        }
        pParse->nMem = MAX(pParse->nMem, 8+j);
        sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
        loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);




















        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2, jmp3, jmp4;

          if( pPk==pIdx ) continue;
          r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
                                       pPrior, r1);
          pPrior = pIdx;
          sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);  /* increment entry count */

          jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, 0, r1,
                                      pIdx->nColumn); VdbeCoverage(v);
          sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
          sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, "row ", P4_STATIC);
          sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, " missing from index ",
                            P4_STATIC);
          sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pIdx->zName, P4_TRANSIENT);

          sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
          jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
          sqlite3VdbeAddOp0(v, OP_Halt);
          sqlite3VdbeJumpHere(v, jmp4);
















          sqlite3VdbeJumpHere(v, jmp2);









          sqlite3ResolvePartIdxLabel(pParse, jmp3);
        }
        sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
        sqlite3VdbeJumpHere(v, loopTop-1);
#ifndef SQLITE_OMIT_BTREECOUNT
        sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, 
                     "wrong # of entries in index ", P4_STATIC);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
>





>
|




|
|

|
>




|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>







1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
        sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
        }
        pParse->nMem = MAX(pParse->nMem, 8+j);
        sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
        loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
        /* Verify that all NOT NULL columns really are NOT NULL */
        for(j=0; j<pTab->nCol; j++){
          char *zErr;
          int jmp2, jmp3;
          if( j==pTab->iPKey ) continue;
          if( pTab->aCol[j].notNull==0 ) continue;
          sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
          sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
          jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
          sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
          zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
                              pTab->aCol[j].zName);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
          jmp3 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
          sqlite3VdbeAddOp0(v, OP_Halt);
          sqlite3VdbeJumpHere(v, jmp2);
          sqlite3VdbeJumpHere(v, jmp3);
        }
        /* Validate index entries for the current row */
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2, jmp3, jmp4, jmp5;
          int ckUniq = sqlite3VdbeMakeLabel(v);
          if( pPk==pIdx ) continue;
          r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
                                       pPrior, r1);
          pPrior = pIdx;
          sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);  /* increment entry count */
          /* Verify that an index entry exists for the current table row */
          jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
                                      pIdx->nColumn); VdbeCoverage(v);
          sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
          sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, "row ", P4_STATIC);
          sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, 
                            " missing from index ", P4_STATIC);
          sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
          jmp5 = sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
                                   pIdx->zName, P4_TRANSIENT);
          sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
          jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
          sqlite3VdbeAddOp0(v, OP_Halt);
          sqlite3VdbeJumpHere(v, jmp2);
          /* For UNIQUE indexes, verify that only one entry exists with the
          ** current key.  The entry is unique if (1) any column is NULL
          ** or (2) the next entry has a different key */
          if( IsUniqueIndex(pIdx) ){
            int uniqOk = sqlite3VdbeMakeLabel(v);
            int jmp6;
            int kk;
            for(kk=0; kk<pIdx->nKeyCol; kk++){
              int iCol = pIdx->aiColumn[kk];
              assert( iCol>=0 && iCol<pTab->nCol );
              if( pTab->aCol[iCol].notNull ) continue;
              sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
              VdbeCoverage(v);
            }
            jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
            sqlite3VdbeAddOp2(v, OP_Goto, 0, uniqOk);
            sqlite3VdbeJumpHere(v, jmp6);
            sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
                                 pIdx->nKeyCol); VdbeCoverage(v);
            sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
            sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
                              "non-unique entry in index ", P4_STATIC);
            sqlite3VdbeAddOp2(v, OP_Goto, 0, jmp5);
            sqlite3VdbeResolveLabel(v, uniqOk);
          }
          sqlite3VdbeJumpHere(v, jmp4);
          sqlite3ResolvePartIdxLabel(pParse, jmp3);
        }
        sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
        sqlite3VdbeJumpHere(v, loopTop-1);
#ifndef SQLITE_OMIT_BTREECOUNT
        sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, 
                     "wrong # of entries in index ", P4_STATIC);
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
          sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);
        }
#endif /* SQLITE_OMIT_BTREECOUNT */
      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
    sqlite3VdbeChangeP2(v, addr, -mxErr);
    sqlite3VdbeJumpHere(v, addr+1);
    sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
  }
  break;
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_UTF16
  /*
  **   PRAGMA encoding







|
|
|







2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
          sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);
        }
#endif /* SQLITE_OMIT_BTREECOUNT */
      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
    sqlite3VdbeChangeP3(v, addr, -mxErr);
    sqlite3VdbeJumpHere(v, addr);
    sqlite3VdbeChangeP4(v, addr+1, "ok", P4_STATIC);
  }
  break;
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_UTF16
  /*
  **   PRAGMA encoding
Changes to src/select.c.
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
  int iOffset,      /* Register holding the offset counter */
  int iContinue     /* Jump here to skip the current record */
){
  if( iOffset>0 ){
    int addr;
    sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1);
    addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "skip OFFSET records"));
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*







<
|







537
538
539
540
541
542
543

544
545
546
547
548
549
550
551
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
  int iOffset,      /* Register holding the offset counter */
  int iContinue     /* Jump here to skip the current record */
){
  if( iOffset>0 ){
    int addr;

    addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "skip OFFSET records"));
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
Changes to src/sqlite.h.in.
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891


5892
5893
5894
5895
5896
5897
5898
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_LRU2


** </ul>)^
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction







|


|
>
>







5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** </ul>)^
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
6088
6089
6090
6091
6092
6093
6094



6095
6096
6097
6098
6099
6100
6101
#define SQLITE_MUTEX_STATIC_MEM       3  /* sqlite3_malloc() */
#define SQLITE_MUTEX_STATIC_MEM2      4  /* NOT USED */
#define SQLITE_MUTEX_STATIC_OPEN      4  /* sqlite3BtreeOpen() */
#define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite3_random() */
#define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
#define SQLITE_MUTEX_STATIC_LRU2      7  /* NOT USED */
#define SQLITE_MUTEX_STATIC_PMEM      7  /* sqlite3PageMalloc() */




/*
** CAPI3REF: Retrieve the mutex for a database connection
**
** ^This interface returns a pointer the [sqlite3_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.







>
>
>







6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
#define SQLITE_MUTEX_STATIC_MEM       3  /* sqlite3_malloc() */
#define SQLITE_MUTEX_STATIC_MEM2      4  /* NOT USED */
#define SQLITE_MUTEX_STATIC_OPEN      4  /* sqlite3BtreeOpen() */
#define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite3_random() */
#define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
#define SQLITE_MUTEX_STATIC_LRU2      7  /* NOT USED */
#define SQLITE_MUTEX_STATIC_PMEM      7  /* sqlite3PageMalloc() */
#define SQLITE_MUTEX_STATIC_APP1      8  /* For use by application */
#define SQLITE_MUTEX_STATIC_APP2      9  /* For use by application */
#define SQLITE_MUTEX_STATIC_APP3     10  /* For use by application */

/*
** CAPI3REF: Retrieve the mutex for a database connection
**
** ^This interface returns a pointer the [sqlite3_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.
Changes to src/sqliteInt.h.
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
  Hash tblHash;        /* All tables indexed by name */
  Hash idxHash;        /* All (named) indices indexed by name */
  Hash trigHash;       /* All triggers indexed by name */
  Hash fkeyHash;       /* All foreign keys by referenced table name */
  Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
  u8 file_format;      /* Schema format version for this file */
  u8 enc;              /* Text encoding used by this database */
  u16 flags;           /* Flags associated with this schema */
  int cache_size;      /* Number of pages to use in the cache */
};

/*
** These macros can be used to test, set, or clear bits in the 
** Db.pSchema->flags field.
*/
#define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
#define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
#define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
#define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)

/*
** Allowed values for the DB.pSchema->flags field.
**
** The DB_SchemaLoaded flag is set after the database schema has been
** read into internal hash tables.
**







|







|
|
|
|







882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
  Hash tblHash;        /* All tables indexed by name */
  Hash idxHash;        /* All (named) indices indexed by name */
  Hash trigHash;       /* All triggers indexed by name */
  Hash fkeyHash;       /* All foreign keys by referenced table name */
  Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
  u8 file_format;      /* Schema format version for this file */
  u8 enc;              /* Text encoding used by this database */
  u16 schemaFlags;     /* Flags associated with this schema */
  int cache_size;      /* Number of pages to use in the cache */
};

/*
** These macros can be used to test, set, or clear bits in the 
** Db.pSchema->flags field.
*/
#define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
#define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
#define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
#define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)

/*
** Allowed values for the DB.pSchema->flags field.
**
** The DB_SchemaLoaded flag is set after the database schema has been
** read into internal hash tables.
**
1726
1727
1728
1729
1730
1731
1732



1733
1734
1735
1736
1737
1738
1739
#define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
#define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
#define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */

/* Return true if index X is a PRIMARY KEY index */
#define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)




/*
** Each sample stored in the sqlite_stat3 table is represented in memory 
** using a structure of this type.  See documentation at the top of the
** analyze.c source file for additional information.
*/
struct IndexSample {
  void *p;          /* Pointer to sampled record */







>
>
>







1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
#define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
#define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
#define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */

/* Return true if index X is a PRIMARY KEY index */
#define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)

/* Return true if index X is a UNIQUE index */
#define IsUniqueIndex(X)      ((X)->onError!=OE_None)

/*
** Each sample stored in the sqlite_stat3 table is represented in memory 
** using a structure of this type.  See documentation at the top of the
** analyze.c source file for additional information.
*/
struct IndexSample {
  void *p;          /* Pointer to sampled record */
3594
3595
3596
3597
3598
3599
3600



3601
3602
3603
3604







3605
3606
3607
3608
3609
3610
3611
3612
  void sqlite3BeginBenignMalloc(void);
  void sqlite3EndBenignMalloc(void);
#else
  #define sqlite3BeginBenignMalloc()
  #define sqlite3EndBenignMalloc()
#endif




#define IN_INDEX_ROWID           1
#define IN_INDEX_EPH             2
#define IN_INDEX_INDEX_ASC       3
#define IN_INDEX_INDEX_DESC      4







int sqlite3FindInIndex(Parse *, Expr *, int*);

#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
  int sqlite3JournalSize(sqlite3_vfs *);
  int sqlite3JournalCreate(sqlite3_file *);
  int sqlite3JournalExists(sqlite3_file *p);
#else







>
>
>
|
|
|
|
>
>
>
>
>
>
>
|







3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
  void sqlite3BeginBenignMalloc(void);
  void sqlite3EndBenignMalloc(void);
#else
  #define sqlite3BeginBenignMalloc()
  #define sqlite3EndBenignMalloc()
#endif

/*
** Allowed return values from sqlite3FindInIndex()
*/
#define IN_INDEX_ROWID        1   /* Search the rowid of the table */
#define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
#define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
#define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
#define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
/*
** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
*/
#define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
#define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
#define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
int sqlite3FindInIndex(Parse *, Expr *, u32, int*);

#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
  int sqlite3JournalSize(sqlite3_vfs *);
  int sqlite3JournalCreate(sqlite3_file *);
  int sqlite3JournalExists(sqlite3_file *p);
#else
Changes to src/test1.c.
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
  extern int sqlite3_opentemp_count;
  extern int sqlite3_like_count;
  extern int sqlite3_xferopt_count;
  extern int sqlite3_pager_readdb_count;
  extern int sqlite3_pager_writedb_count;
  extern int sqlite3_pager_writej_count;
#if SQLITE_OS_WIN
  extern int sqlite3_os_type;
#endif
#ifdef SQLITE_DEBUG
  extern int sqlite3WhereTrace;
  extern int sqlite3OSTrace;
  extern int sqlite3WalTrace;
#endif
#ifdef SQLITE_TEST







|







6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
  extern int sqlite3_opentemp_count;
  extern int sqlite3_like_count;
  extern int sqlite3_xferopt_count;
  extern int sqlite3_pager_readdb_count;
  extern int sqlite3_pager_writedb_count;
  extern int sqlite3_pager_writej_count;
#if SQLITE_OS_WIN
  extern LONG volatile sqlite3_os_type;
#endif
#ifdef SQLITE_DEBUG
  extern int sqlite3WhereTrace;
  extern int sqlite3OSTrace;
  extern int sqlite3WalTrace;
#endif
#ifdef SQLITE_TEST
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
#endif
#ifndef SQLITE_OMIT_UTF16
  Tcl_LinkVar(interp, "sqlite_last_needed_collation",
      (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#if SQLITE_OS_WIN
  Tcl_LinkVar(interp, "sqlite_os_type",
      (char*)&sqlite3_os_type, TCL_LINK_INT);
#endif
#ifdef SQLITE_TEST
  {
    static const char *query_plan = "*** OBSOLETE VARIABLE ***";
    Tcl_LinkVar(interp, "sqlite_query_plan",
       (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
  }







|







6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
#endif
#ifndef SQLITE_OMIT_UTF16
  Tcl_LinkVar(interp, "sqlite_last_needed_collation",
      (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#if SQLITE_OS_WIN
  Tcl_LinkVar(interp, "sqlite_os_type",
      (char*)&sqlite3_os_type, TCL_LINK_LONG);
#endif
#ifdef SQLITE_TEST
  {
    static const char *query_plan = "*** OBSOLETE VARIABLE ***";
    Tcl_LinkVar(interp, "sqlite_query_plan",
       (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
  }
Changes to src/test_multiplex.c.
1172
1173
1174
1175
1176
1177
1178
1179

1180
1181





1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
**
** All SQLite database connections must be closed before calling this
** routine.
**
** THIS ROUTINE IS NOT THREADSAFE.  Call this routine exactly once while
** shutting down in order to free all remaining multiplex groups.
*/
int sqlite3_multiplex_shutdown(void){

  if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE;
  if( gMultiplex.pGroups ) return SQLITE_MISUSE;





  gMultiplex.isInitialized = 0;
  sqlite3_mutex_free(gMultiplex.pMutex);
  sqlite3_vfs_unregister(&gMultiplex.sThisVfs);
  memset(&gMultiplex, 0, sizeof(gMultiplex));
  return SQLITE_OK;
}

/***************************** Test Code ***********************************/
#ifdef SQLITE_TEST
#include <tcl.h>
extern const char *sqlite3ErrName(int);








|
>

|
>
>
>
>
>




|







1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
**
** All SQLite database connections must be closed before calling this
** routine.
**
** THIS ROUTINE IS NOT THREADSAFE.  Call this routine exactly once while
** shutting down in order to free all remaining multiplex groups.
*/
int sqlite3_multiplex_shutdown(int eForce){
  int rc = SQLITE_OK;
  if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE;
  if( gMultiplex.pGroups ){
    sqlite3_log(SQLITE_MISUSE, "sqlite3_multiplex_shutdown() called "
                "while database connections are still open");
    if( !eForce ) return SQLITE_MISUSE;
    rc = SQLITE_MISUSE;
  }
  gMultiplex.isInitialized = 0;
  sqlite3_mutex_free(gMultiplex.pMutex);
  sqlite3_vfs_unregister(&gMultiplex.sThisVfs);
  memset(&gMultiplex, 0, sizeof(gMultiplex));
  return rc;
}

/***************************** Test Code ***********************************/
#ifdef SQLITE_TEST
#include <tcl.h>
extern const char *sqlite3ErrName(int);

1232
1233
1234
1235
1236
1237
1238



1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc;                         /* Value returned by multiplex_shutdown() */

  UNUSED_PARAMETER(clientData);




  if( objc!=1 ){
    Tcl_WrongNumArgs(interp, 1, objv, "");
    return TCL_ERROR;
  }

  /* Call sqlite3_multiplex_shutdown() */
  rc = sqlite3_multiplex_shutdown();
  Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);

  return TCL_OK;
}

/*
** tclcmd:  sqlite3_multiplex_dump







>
>
>
|
|




|







1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc;                         /* Value returned by multiplex_shutdown() */

  UNUSED_PARAMETER(clientData);

  if( objc==2 && strcmp(Tcl_GetString(objv[1]),"-force")!=0 ){
    objc = 3;
  }
  if( (objc!=1 && objc!=2) ){
    Tcl_WrongNumArgs(interp, 1, objv, "?-force?");
    return TCL_ERROR;
  }

  /* Call sqlite3_multiplex_shutdown() */
  rc = sqlite3_multiplex_shutdown(objc==2);
  Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);

  return TCL_OK;
}

/*
** tclcmd:  sqlite3_multiplex_dump
Changes to src/test_multiplex.h.
86
87
88
89
90
91
92
93
94
95
96
97
98
99
**
** All SQLite database connections must be closed before calling this
** routine.
**
** THIS ROUTINE IS NOT THREADSAFE.  Call this routine exactly once while
** shutting down in order to free all remaining multiplex groups.
*/
extern int sqlite3_multiplex_shutdown(void);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif

#endif /* _TEST_MULTIPLEX_H */







|






86
87
88
89
90
91
92
93
94
95
96
97
98
99
**
** All SQLite database connections must be closed before calling this
** routine.
**
** THIS ROUTINE IS NOT THREADSAFE.  Call this routine exactly once while
** shutting down in order to free all remaining multiplex groups.
*/
extern int sqlite3_multiplex_shutdown(int eForce);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif

#endif /* _TEST_MULTIPLEX_H */
Changes to src/update.c.
434
435
436
437
438
439
440
441

442
443
444
445
446
447
448
    if( aToOpen[iDataCur-iBaseCur] ){
      assert( pPk!=0 );
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey);
      VdbeCoverageNeverTaken(v);
    }
    labelContinue = labelBreak;
    sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
    VdbeCoverage(v);

  }else if( pPk ){
    labelContinue = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
    addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey);
    sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0);
    VdbeCoverage(v);
  }else{







|
>







434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    if( aToOpen[iDataCur-iBaseCur] ){
      assert( pPk!=0 );
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey);
      VdbeCoverageNeverTaken(v);
    }
    labelContinue = labelBreak;
    sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
    VdbeCoverageIf(v, pPk==0);
    VdbeCoverageIf(v, pPk!=0);
  }else if( pPk ){
    labelContinue = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
    addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey);
    sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0);
    VdbeCoverage(v);
  }else{
Changes to src/vdbe.c.
112
113
114
115
116
117
118






119
120
121
122
123
124
125
** feature is used for test suite validation only and does not appear an
** production builds.
**
** M is an integer, 2 or 3, that indices how many different ways the
** branch can go.  It is usually 2.  "I" is the direction the branch
** goes.  0 means falls through.  1 means branch is taken.  2 means the
** second alternative branch is taken.






*/
#if !defined(SQLITE_VDBE_COVERAGE)
# define VdbeBranchTaken(I,M)
#else
# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
  static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
    if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){







>
>
>
>
>
>







112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
** feature is used for test suite validation only and does not appear an
** production builds.
**
** M is an integer, 2 or 3, that indices how many different ways the
** branch can go.  It is usually 2.  "I" is the direction the branch
** goes.  0 means falls through.  1 means branch is taken.  2 means the
** second alternative branch is taken.
**
** iSrcLine is the source code line (from the __LINE__ macro) that
** generated the VDBE instruction.  This instrumentation assumes that all
** source code is in a single file (the amalgamation).  Special values 1
** and 2 for the iSrcLine parameter mean that this particular branch is
** always taken or never taken, respectively.
*/
#if !defined(SQLITE_VDBE_COVERAGE)
# define VdbeBranchTaken(I,M)
#else
# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
  static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
    if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
  pOut->flags = MEM_Int;
  if( pOp->p2 ) pc = pOp->p2 - 1;
  break;
}

/* Opcode:  EndCoroutine P1 * * * *
**
** The instruction at the address in register P1 is an Yield.
** Jump to the P2 parameter of that Yield.
** After the jump, register P1 becomes undefined.
**
** See also: InitCoroutine
*/
case OP_EndCoroutine: {           /* in1 */
  VdbeOp *pCaller;







|







792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
  pOut->flags = MEM_Int;
  if( pOp->p2 ) pc = pOp->p2 - 1;
  break;
}

/* Opcode:  EndCoroutine P1 * * * *
**
** The instruction at the address in register P1 is a Yield.
** Jump to the P2 parameter of that Yield.
** After the jump, register P1 becomes undefined.
**
** See also: InitCoroutine
*/
case OP_EndCoroutine: {           /* in1 */
  VdbeOp *pCaller;
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
** into an OP_String before it is executed for the first time.  During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: {         /* same as TK_STRING, out2-prerelease */
  assert( pOp->p4.z!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);







|







985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
** into a String before it is executed for the first time.  During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: {         /* same as TK_STRING, out2-prerelease */
  assert( pOp->p4.z!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
  break;
}

/* Opcode: If P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is true.  The value
** is considered true if it is numeric and non-zero.  If the value
** in P1 is NULL then take the jump if P3 is non-zero.
*/
/* Opcode: IfNot P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is False.  The value
** is considered false if it has a numeric value of zero.  If the value
** in P1 is NULL then take the jump if P3 is zero.
*/
case OP_If:                 /* jump, in1 */
case OP_IfNot: {            /* jump, in1 */
  int c;
  pIn1 = &aMem[pOp->p1];
  if( pIn1->flags & MEM_Null ){
    c = pOp->p3;







|





|







2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
  break;
}

/* Opcode: If P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is true.  The value
** is considered true if it is numeric and non-zero.  If the value
** in P1 is NULL then take the jump if and only if P3 is non-zero.
*/
/* Opcode: IfNot P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is False.  The value
** is considered false if it has a numeric value of zero.  If the value
** in P1 is NULL then take the jump if and only if P3 is non-zero.
*/
case OP_If:                 /* jump, in1 */
case OP_IfNot: {            /* jump, in1 */
  int c;
  pIn1 = &aMem[pOp->p1];
  if( pIn1->flags & MEM_Null ){
    c = pOp->p3;
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than or equal to the key value. If there are no records 
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in forward order,
** from the begining toward the end.  In other words, the cursor is
** configured to use Next, not Prev.
**
** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
*/
/* Opcode: SeekGT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**







|







3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than or equal to the key value. If there are no records 
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end.  In other words, the cursor is
** configured to use Next, not Prev.
**
** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
*/
/* Opcode: SeekGT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
**
** This operation leaves the cursor in a state where it cannot be
** advanced in either direction.  In other words, the Next and Prev
** opcodes do not work after this operation.
**
** See also: NotFound, NoConflict, NotExists. SeekGe
*/
/* Opcode: NotFound P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If







|
|
|







3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
**
** This operation leaves the cursor in a state where it can be
** advanced in the forward direction.  The Next instruction will work,
** but not the Prev instruction.
**
** See also: NotFound, NoConflict, NotExists. SeekGe
*/
/* Opcode: NotFound P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
#endif

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p4type==P4_INT32 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
#ifdef SQLITE_DEBUG
  pC->seekOp = 0;
#endif
  pIn3 = &aMem[pOp->p3];
  assert( pC->pCursor!=0 );
  assert( pC->isTable==0 );
  pFree = 0;  /* Not needed.  Only used to suppress a compiler warning. */
  if( pOp->p4.i>0 ){
    r.pKeyInfo = pC->pKeyInfo;







|







3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
#endif

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p4type==P4_INT32 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif
  pIn3 = &aMem[pOp->p3];
  assert( pC->pCursor!=0 );
  assert( pC->isTable==0 );
  pFree = 0;  /* Not needed.  Only used to suppress a compiler warning. */
  if( pOp->p4.i>0 ){
    r.pKeyInfo = pC->pKeyInfo;
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
/* Opcode: Delete P1 P2 * P4 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** P1 must not be pseudo-table.  It has to be a real table with
** multiple rows.
**







|







4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
/* Opcode: Delete P1 P2 * P4 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within a Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** P1 must not be pseudo-table.  It has to be a real table with
** multiple rows.
**
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
  break;
}

/* Opcode: SorterCompare P1 P2 P3 P4
** Synopsis:  if key(P1)!=trim(r[P3],P4) goto P2
**
** P1 is a sorter cursor. This instruction compares a prefix of the
** the record blob in register P3 against a prefix of the entry that 
** the sorter cursor currently points to.  Only the first P4 fields
** of r[P3] and the sorter record are compared.
**
** If either P3 or the sorter contains a NULL in one of their significant
** fields (not counting the P4 fields at the end which are ignored) then
** the comparison is assumed to be equal.
**







|







4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
  break;
}

/* Opcode: SorterCompare P1 P2 P3 P4
** Synopsis:  if key(P1)!=trim(r[P3],P4) goto P2
**
** P1 is a sorter cursor. This instruction compares a prefix of the
** record blob in register P3 against a prefix of the entry that 
** the sorter cursor currently points to.  Only the first P4 fields
** of r[P3] and the sorter record are compared.
**
** If either P3 or the sorter contains a NULL in one of their significant
** fields (not counting the P4 fields at the end which are ignored) then
** the comparison is assumed to be equal.
**
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
  assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
  assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);

  /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
  ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
  assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
       || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
       || pC->seekOp==OP_Rewind );
  assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
       || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
       || pC->seekOp==OP_Last );

  rc = pOp->p4.xAdvance(pC->pCursor, &res);
next_tail:
  pC->cacheStatus = CACHE_STALE;







|







4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
  assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
  assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);

  /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
  ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
  assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
       || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
       || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
  assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
       || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
       || pC->seekOp==OP_Last );

  rc = pOp->p4.xAdvance(pC->pCursor, &res);
next_tail:
  pC->cacheStatus = CACHE_STALE;
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605

5606
5607
5608
5609
5610
5611
5612
5613

5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
  VdbeBranchTaken( pIn1->u.i>0, 2);
  if( pIn1->u.i>0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfNeg P1 P2 * * *
** Synopsis: if r[P1]<0 goto P2
**

** If the value of register P1 is less than zero, jump to P2. 
**
** It is illegal to use this instruction on a register that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_IfNeg: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );

  VdbeBranchTaken(pIn1->u.i<0, 2);
  if( pIn1->u.i<0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfZero P1 P2 P3 * *
** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
**
** The register P1 must contain an integer.  Add literal P3 to the
** value in register P1.  If the result is exactly 0, jump to P2. 
**
** It is illegal to use this instruction on a register that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_IfZero: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  pIn1->u.i += pOp->p3;
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( pIn1->u.i==0 ){







|
|

>
|
<
<
<




>












<
<
<







5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613



5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630



5631
5632
5633
5634
5635
5636
5637
  VdbeBranchTaken( pIn1->u.i>0, 2);
  if( pIn1->u.i>0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfNeg P1 P2 P3 * *
** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
**
** Register P1 must contain an integer.  Add literal P3 to the value in
** register P1 then if the value of register P1 is less than zero, jump to P2. 



*/
case OP_IfNeg: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  pIn1->u.i += pOp->p3;
  VdbeBranchTaken(pIn1->u.i<0, 2);
  if( pIn1->u.i<0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfZero P1 P2 P3 * *
** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
**
** The register P1 must contain an integer.  Add literal P3 to the
** value in register P1.  If the result is exactly 0, jump to P2. 



*/
case OP_IfZero: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  pIn1->u.i += pOp->p3;
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( pIn1->u.i==0 ){
Changes to src/where.c.
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
  **      where X is a constant value. The collation sequences of the
  **      comparison and select-list expressions must match those of the index.
  **
  **   3. All of those index columns for which the WHERE clause does not
  **      contain a "col=X" term are subject to a NOT NULL constraint.
  */
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->onError==OE_None ) continue;
    for(i=0; i<pIdx->nKeyCol; i++){
      i16 iCol = pIdx->aiColumn[i];
      if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){
        int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i);
        if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){
          break;
        }







|







1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
  **      where X is a constant value. The collation sequences of the
  **      comparison and select-list expressions must match those of the index.
  **
  **   3. All of those index columns for which the WHERE clause does not
  **      contain a "col=X" term are subject to a NOT NULL constraint.
  */
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( !IsUniqueIndex(pIdx) ) continue;
    for(i=0; i<pIdx->nKeyCol; i++){
      i16 iCol = pIdx->aiColumn[i];
      if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){
        int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i);
        if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){
          break;
        }
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
    ){
      testcase( iEq==0 );
      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);
    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    VdbeCoverageIf(v, bRev);







|







2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
    ){
      testcase( iEq==0 );
      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    VdbeCoverageIf(v, bRev);
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
      }
      assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
                        ** changes "x IN (?)" into "x=?". */

    }else if( eOp & (WO_EQ) ){
      pNew->wsFlags |= WHERE_COLUMN_EQ;
      if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){
        if( iCol>=0 && pProbe->onError==OE_None ){
          pNew->wsFlags |= WHERE_UNQ_WANTED;
        }else{
          pNew->wsFlags |= WHERE_ONEROW;
        }
      }
    }else if( eOp & WO_ISNULL ){
      pNew->wsFlags |= WHERE_COLUMN_NULL;







|







4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
      }
      assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
                        ** changes "x IN (?)" into "x=?". */

    }else if( eOp & (WO_EQ) ){
      pNew->wsFlags |= WHERE_COLUMN_EQ;
      if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){
        if( iCol>=0 && !IsUniqueIndex(pProbe) ){
          pNew->wsFlags |= WHERE_UNQ_WANTED;
        }else{
          pNew->wsFlags |= WHERE_ONEROW;
        }
      }
    }else if( eOp & WO_ISNULL ){
      pNew->wsFlags |= WHERE_COLUMN_NULL;
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
      }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
        return 0;
      }else{
        nKeyCol = pIndex->nKeyCol;
        nColumn = pIndex->nColumn;
        assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
        assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable));
        isOrderDistinct = pIndex->onError!=OE_None;
      }

      /* Loop through all columns of the index and deal with the ones
      ** that are not constrained by == or IN.
      */
      rev = revSet = 0;
      distinctColumns = 0;







|







5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
      }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
        return 0;
      }else{
        nKeyCol = pIndex->nKeyCol;
        nColumn = pIndex->nColumn;
        assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
        assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable));
        isOrderDistinct = IsUniqueIndex(pIndex);
      }

      /* Loop through all columns of the index and deal with the ones
      ** that are not constrained by == or IN.
      */
      rev = revSet = 0;
      distinctColumns = 0;
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
    pLoop->u.btree.nEq = 1;
    /* TUNING: Cost of a rowid lookup is 10 */
    pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
  }else{
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pLoop->aLTermSpace==pLoop->aLTerm );
      assert( ArraySize(pLoop->aLTermSpace)==4 );
      if( pIdx->onError==OE_None 
       || pIdx->pPartIdxWhere!=0 
       || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 
      ) continue;
      for(j=0; j<pIdx->nKeyCol; j++){
        pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
        if( pTerm==0 ) break;
        pLoop->aLTerm[j] = pTerm;







|







5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
    pLoop->u.btree.nEq = 1;
    /* TUNING: Cost of a rowid lookup is 10 */
    pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
  }else{
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pLoop->aLTermSpace==pLoop->aLTerm );
      assert( ArraySize(pLoop->aLTermSpace)==4 );
      if( !IsUniqueIndex(pIdx)
       || pIdx->pPartIdxWhere!=0 
       || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 
      ) continue;
      for(j=0; j<pIdx->nKeyCol; j++){
        pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
        if( pTerm==0 ) break;
        pLoop->aLTerm[j] = pTerm;
Changes to test/in4.test.
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
  SELECT * FROM t3 WHERE x IN (10);
} {10 10 10}
do_execsql_test in4-3.44 {
  EXPLAIN
  SELECT * FROM t3 WHERE x IN (10);
} {~/OpenEphemeral/}
do_execsql_test in4-3.45 {
  SELECT * FROM t3 WHERE x NOT IN (10,11);
} {1 1 1}
do_execsql_test in4-3.46 {
  EXPLAIN
  SELECT * FROM t3 WHERE x NOT IN (10,11);
} {/OpenEphemeral/}
do_execsql_test in4-3.47 {
  SELECT * FROM t3 WHERE x NOT IN (10);
} {1 1 1}
do_execsql_test in4-3.48 {
  EXPLAIN
  SELECT * FROM t3 WHERE x NOT IN (10);







|



|







227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
  SELECT * FROM t3 WHERE x IN (10);
} {10 10 10}
do_execsql_test in4-3.44 {
  EXPLAIN
  SELECT * FROM t3 WHERE x IN (10);
} {~/OpenEphemeral/}
do_execsql_test in4-3.45 {
  SELECT * FROM t3 WHERE x NOT IN (10,11,99999);
} {1 1 1}
do_execsql_test in4-3.46 {
  EXPLAIN
  SELECT * FROM t3 WHERE x NOT IN (10,11,99999);
} {/OpenEphemeral/}
do_execsql_test in4-3.47 {
  SELECT * FROM t3 WHERE x NOT IN (10);
} {1 1 1}
do_execsql_test in4-3.48 {
  EXPLAIN
  SELECT * FROM t3 WHERE x NOT IN (10);
Changes to test/multiplex.test.
70
71
72
73
74
75
76






77
78
79
80
81
82
83
    forcedelete [multiplex_name $name $i]
    forcedelete [multiplex_name $name-journal $i]
    forcedelete [multiplex_name $name-wal $i]
  }
}

db close







multiplex_delete test.db
multiplex_delete test2.db

#-------------------------------------------------------------------------
#   multiplex-1.1.*: Test initialize and shutdown.








>
>
>
>
>
>







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    forcedelete [multiplex_name $name $i]
    forcedelete [multiplex_name $name-journal $i]
    forcedelete [multiplex_name $name-wal $i]
  }
}

db close
sqlite3_shutdown
test_sqlite3_log xLog
proc xLog {error_code msg} {
  lappend ::log $error_code $msg 
}
unset -nocomplain log

multiplex_delete test.db
multiplex_delete test2.db

#-------------------------------------------------------------------------
#   multiplex-1.1.*: Test initialize and shutdown.

190
191
192
193
194
195
196

197
198
199
200
201
202



203
204
205
206
207
208
209

do_test multiplex-2.3.1 {
  sqlite3 db2 test2.x
  db2 close
} {}



do_test multiplex-2.4.1 {
  sqlite3_multiplex_shutdown
} {SQLITE_MISUSE}
do_test multiplex-2.4.2 {
  execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) }
} {}



do_test multiplex-2.4.4 { file size [multiplex_name test.x 0] } {7168}
do_test multiplex-2.4.5 {
  db close
  sqlite3 db test.x
  db eval vacuum
  db close
  glob test.x*







>






>
>
>







196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

do_test multiplex-2.3.1 {
  sqlite3 db2 test2.x
  db2 close
} {}


unset -nocomplain ::log
do_test multiplex-2.4.1 {
  sqlite3_multiplex_shutdown
} {SQLITE_MISUSE}
do_test multiplex-2.4.2 {
  execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) }
} {}
do_test multiplex-2.4.3 {
  set ::log
} {SQLITE_MISUSE {sqlite3_multiplex_shutdown() called while database connections are still open}}
do_test multiplex-2.4.4 { file size [multiplex_name test.x 0] } {7168}
do_test multiplex-2.4.5 {
  db close
  sqlite3 db test.x
  db eval vacuum
  db close
  glob test.x*
585
586
587
588
589
590
591

592



593
  multiplex_delete test.x
  sqlite3_multiplex_shutdown
} {SQLITE_OK}

}



catch { sqlite3_multiplex_shutdown }



finish_test







>

>
>
>

595
596
597
598
599
600
601
602
603
604
605
606
607
  multiplex_delete test.x
  sqlite3_multiplex_shutdown
} {SQLITE_OK}

}


catch { db close }
catch { sqlite3_multiplex_shutdown }
sqlite3_shutdown
test_sqlite3_log 
sqlite3_initialize
finish_test
Changes to test/pragma.test.
427
428
429
430
431
432
433
434

























435
436
437
438
439
440
441
  do_test pragma-3.19 {
    catch {db close}
    forcedelete test.db test.db-journal
    sqlite3 db test.db
    db eval {PRAGMA integrity_check}
  } {ok}
}
#exit


























# Test modifying the cache_size of an attached database.
ifcapable pager_pragmas&&attach {
do_test pragma-4.1 {
  execsql {
    ATTACH 'test2.db' AS aux;
    pragma aux.cache_size;







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
  do_test pragma-3.19 {
    catch {db close}
    forcedelete test.db test.db-journal
    sqlite3 db test.db
    db eval {PRAGMA integrity_check}
  } {ok}
}

# Verify that PRAGMA integrity_check catches UNIQUE and NOT NULL
# constraint violations.
#
do_execsql_test pragma-3.20 {
  CREATE TABLE t1(a,b);
  CREATE INDEX t1a ON t1(a);
  INSERT INTO t1 VALUES(1,1),(2,2),(3,3),(2,4),(NULL,5),(NULL,6);
  PRAGMA writable_schema=ON;
  UPDATE sqlite_master SET sql='CREATE UNIQUE INDEX t1a ON t1(a)'
   WHERE name='t1a';
  UPDATE sqlite_master SET sql='CREATE TABLE t1(a NOT NULL,b)'
   WHERE name='t1';
  PRAGMA writable_schema=OFF;
  ALTER TABLE t1 RENAME TO t1x;
  PRAGMA integrity_check;
} {{non-unique entry in index t1a} {NULL value in t1x.a} {non-unique entry in index t1a} {NULL value in t1x.a}}
do_execsql_test pragma-3.21 {
  PRAGMA integrity_check(3);
} {{non-unique entry in index t1a} {NULL value in t1x.a} {non-unique entry in index t1a}}
do_execsql_test pragma-3.22 {
  PRAGMA integrity_check(2);
} {{non-unique entry in index t1a} {NULL value in t1x.a}}
do_execsql_test pragma-3.21 {
  PRAGMA integrity_check(1);
} {{non-unique entry in index t1a}}

# Test modifying the cache_size of an attached database.
ifcapable pager_pragmas&&attach {
do_test pragma-4.1 {
  execsql {
    ATTACH 'test2.db' AS aux;
    pragma aux.cache_size;
Changes to test/table.test.
721
722
723
724
725
726
727















































728
729
do_test table-15.2 {
  execsql {BEGIN}
  for {set i 0} {$i<2000} {incr i} {
    execsql "DROP TABLE tbl$i"
  }
  execsql {COMMIT}
} {}
















































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
do_test table-15.2 {
  execsql {BEGIN}
  for {set i 0} {$i<2000} {incr i} {
    execsql "DROP TABLE tbl$i"
  }
  execsql {COMMIT}
} {}

# Ticket 3a88d85f36704eebe134f7f48aebf00cd6438c1a (2014-08-05)
# The following SQL script segfaults while running the INSERT statement:
#
#    CREATE TABLE t1(x DEFAULT(max(1)));
#    INSERT INTO t1(rowid) VALUES(1);
#
# The problem appears to be the use of an aggregate function as part of
# the default value for a column. This problem has been in the code since
# at least 2006-01-01 and probably before that. This problem was detected
# and reported on the sqlite-users@sqlite.org mailing list by Zsbán Ambrus. 
#
do_execsql_test table-16.1 {
  CREATE TABLE t16(x DEFAULT(max(1)));
  INSERT INTO t16(x) VALUES(123);
  SELECT rowid, x FROM t16;
} {1 123}
do_catchsql_test table-16.2 {
  INSERT INTO t16(rowid) VALUES(4);
} {1 {unknown function: max()}}
do_execsql_test table-16.3 {
  DROP TABLE t16;
  CREATE TABLE t16(x DEFAULT(abs(1)));
  INSERT INTO t16(rowid) VALUES(4);
  SELECT rowid, x FROM t16;
} {4 1}
do_catchsql_test table-16.4 {
  DROP TABLE t16;
  CREATE TABLE t16(x DEFAULT(avg(1)));
  INSERT INTO t16(rowid) VALUES(123);
  SELECT rowid, x FROM t16;
} {1 {unknown function: avg()}}
do_catchsql_test table-16.5 {
  DROP TABLE t16;
  CREATE TABLE t16(x DEFAULT(count()));
  INSERT INTO t16(rowid) VALUES(123);
  SELECT rowid, x FROM t16;
} {1 {unknown function: count()}}
do_catchsql_test table-16.6 {
  DROP TABLE t16;
  CREATE TABLE t16(x DEFAULT(group_concat('x',',')));
  INSERT INTO t16(rowid) VALUES(123);
  SELECT rowid, x FROM t16;
} {1 {unknown function: group_concat()}}
do_catchsql_test table-16.7 {
  INSERT INTO t16 DEFAULT VALUES;
} {1 {unknown function: group_concat()}}

finish_test
Changes to test/tester.tcl.
884
885
886
887
888
889
890

891
892
893
894
895
896
897
  }
}

# Run this routine last
#
proc finish_test {} {
  catch {db close}

  catch {db2 close}
  catch {db3 close}
  if {0==[info exists ::SLAVE]} { finalize_testing }
}
proc finalize_testing {} {
  global sqlite_open_file_count








>







884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  }
}

# Run this routine last
#
proc finish_test {} {
  catch {db close}
  catch {db1 close}
  catch {db2 close}
  catch {db3 close}
  if {0==[info exists ::SLAVE]} { finalize_testing }
}
proc finalize_testing {} {
  global sqlite_open_file_count

Changes to test/tkt-80e031a00f.test.
156
157
158
159
160
161
162




163
164
165
166
167
168
169
do_execsql_test tkt-80e031a00f.319 {SELECT 'c' NOT IN t7} 0
do_execsql_test tkt-80e031a00f.320 {SELECT 'c' IN t7n} 1
do_execsql_test tkt-80e031a00f.321 {SELECT 'd' NOT IN t7n} 0
do_execsql_test tkt-80e031a00f.322 {SELECT 'b' IN t8} 1
do_execsql_test tkt-80e031a00f.323 {SELECT 'c' NOT IN t8} 0
do_execsql_test tkt-80e031a00f.324 {SELECT 'c' IN t8n} 1
do_execsql_test tkt-80e031a00f.325 {SELECT 'd' NOT IN t8n} 0




#
# Row 4:
do_execsql_test tkt-80e031a00f.400 {SELECT 1 IN (2,3,4,null)} {{}}
do_execsql_test tkt-80e031a00f.401 {SELECT 1 NOT IN (2,3,4,null)} {{}}
do_execsql_test tkt-80e031a00f.402 {SELECT 'a' IN ('b','c',null,'d')} {{}}
do_execsql_test tkt-80e031a00f.403 {SELECT 'a' NOT IN (null,'b','c','d')} {{}}
do_execsql_test tkt-80e031a00f.404 {SELECT 1 IN t4n} {{}}







>
>
>
>







156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
do_execsql_test tkt-80e031a00f.319 {SELECT 'c' NOT IN t7} 0
do_execsql_test tkt-80e031a00f.320 {SELECT 'c' IN t7n} 1
do_execsql_test tkt-80e031a00f.321 {SELECT 'd' NOT IN t7n} 0
do_execsql_test tkt-80e031a00f.322 {SELECT 'b' IN t8} 1
do_execsql_test tkt-80e031a00f.323 {SELECT 'c' NOT IN t8} 0
do_execsql_test tkt-80e031a00f.324 {SELECT 'c' IN t8n} 1
do_execsql_test tkt-80e031a00f.325 {SELECT 'd' NOT IN t8n} 0
do_execsql_test tkt-80e031a00f.326 {SELECT 'a' IN (NULL,'a')} 1
do_execsql_test tkt-80e031a00f.327 {SELECT 'a' IN (NULL,'b')} {{}}
do_execsql_test tkt-80e031a00f.328 {SELECT 'a' NOT IN (NULL,'a')} 0
do_execsql_test tkt-80e031a00f.329 {SELECT 'a' NOT IN (NULL,'b')} {{}}
#
# Row 4:
do_execsql_test tkt-80e031a00f.400 {SELECT 1 IN (2,3,4,null)} {{}}
do_execsql_test tkt-80e031a00f.401 {SELECT 1 NOT IN (2,3,4,null)} {{}}
do_execsql_test tkt-80e031a00f.402 {SELECT 'a' IN ('b','c',null,'d')} {{}}
do_execsql_test tkt-80e031a00f.403 {SELECT 'a' NOT IN (null,'b','c','d')} {{}}
do_execsql_test tkt-80e031a00f.404 {SELECT 1 IN t4n} {{}}