Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge latest trunk changes into this branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | schemalint |
Files: | files | file ages | folders |
SHA3-256: |
b1533bc455f52f570c0f4b8aaa0da802 |
User & Date: | dan 2017-04-20 17:35:46.403 |
Context
2017-04-21
| ||
19:53 | Update the README.md file in the ext/expert/ directory. (check-in: 3b2ff4e069 user: dan tags: schemalint) | |
2017-04-20
| ||
17:35 | Merge latest trunk changes into this branch. (check-in: b1533bc455 user: dan tags: schemalint) | |
17:03 | Avoid creating a temp table in the user database in the sqlite3_expert code. (check-in: 4e36699643 user: dan tags: schemalint) | |
2017-04-19
| ||
13:25 | Further improvements to coverage of fts3 module. (check-in: 6b21d0fdeb user: dan tags: trunk) | |
Changes
Changes to ext/expert/sqlite3expert.c.
︙ | ︙ | |||
24 25 26 27 28 29 30 31 | typedef struct IdxColumn IdxColumn; typedef struct IdxConstraint IdxConstraint; typedef struct IdxScan IdxScan; typedef struct IdxStatement IdxStatement; typedef struct IdxTable IdxTable; typedef struct IdxWrite IdxWrite; #define UNIQUE_TABLE_NAME "t592690916721053953805701627921227776" | > > > > > < | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | typedef struct IdxColumn IdxColumn; typedef struct IdxConstraint IdxConstraint; typedef struct IdxScan IdxScan; typedef struct IdxStatement IdxStatement; typedef struct IdxTable IdxTable; typedef struct IdxWrite IdxWrite; /* ** A temp table name that we assume no user database will actually use. ** If this assumption proves incorrect triggers on the table with the ** conflicting name will be ignored. */ #define UNIQUE_TABLE_NAME "t592690916721053953805701627921227776" /* ** A single constraint. Equivalent to either "col = ?" or "col < ?" (or ** any other type of single-ended range constraint on a column). ** ** pLink: ** Used to temporarily link IdxConstraint objects into lists while |
︙ | ︙ | |||
234 235 236 237 238 239 240 241 242 243 244 245 246 247 | pEntry->pNext = pHash->pFirst; pHash->pFirst = pEntry; } return 0; } static IdxHashEntry *idxHashFind(IdxHash *pHash, const char *zKey, int nKey){ int iHash; IdxHashEntry *pEntry; if( nKey<0 ) nKey = strlen(zKey); iHash = idxHashString(zKey, nKey); assert( iHash>=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ | > > > > | 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | pEntry->pNext = pHash->pFirst; pHash->pFirst = pEntry; } return 0; } /* ** If zKey/nKey is present in the hash table, return a pointer to the ** hash-entry object. */ static IdxHashEntry *idxHashFind(IdxHash *pHash, const char *zKey, int nKey){ int iHash; IdxHashEntry *pEntry; if( nKey<0 ) nKey = strlen(zKey); iHash = idxHashString(zKey, nKey); assert( iHash>=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ |
︙ | ︙ |
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
368 369 370 371 372 373 374 | if( (c & 0x80)==0 ) break; } *v = b; return (int)(p - pStart); } /* | | | | > > | 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | if( (c & 0x80)==0 ) break; } *v = b; return (int)(p - pStart); } /* ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to ** a non-negative 32-bit integer before it is returned. */ int sqlite3Fts3GetVarint32(const char *p, int *pi){ u32 a; #ifndef fts3GetVarint32 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *pi, 1); #else a = (*p++); assert( a & 0x80 ); #endif GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *pi, 2); GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *pi, 3); GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4); a = (a & 0x0FFFFFFF ); *pi = (int)(a | ((u32)(*p & 0x07) << 28)); assert( 0==(a & 0x80000000) ); assert( *pi>=0 ); return 5; } /* ** Return the number of bytes required to encode v as a varint */ int sqlite3Fts3VarintLen(sqlite3_uint64 v){ |
︙ | ︙ | |||
1215 1216 1217 1218 1219 1220 1221 | }else{ for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){ struct Fts4Option *pOp = &aFts4Opt[iOpt]; if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){ break; } } | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > | 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 | }else{ for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){ struct Fts4Option *pOp = &aFts4Opt[iOpt]; if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){ break; } } switch( iOpt ){ case 0: /* MATCHINFO */ if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){ sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal); rc = SQLITE_ERROR; } bNoDocsize = 1; break; case 1: /* PREFIX */ sqlite3_free(zPrefix); zPrefix = zVal; zVal = 0; break; case 2: /* COMPRESS */ sqlite3_free(zCompress); zCompress = zVal; zVal = 0; break; case 3: /* UNCOMPRESS */ sqlite3_free(zUncompress); zUncompress = zVal; zVal = 0; break; case 4: /* ORDER */ if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) ){ sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal); rc = SQLITE_ERROR; } bDescIdx = (zVal[0]=='d' || zVal[0]=='D'); break; case 5: /* CONTENT */ sqlite3_free(zContent); zContent = zVal; zVal = 0; break; case 6: /* LANGUAGEID */ assert( iOpt==6 ); sqlite3_free(zLanguageid); zLanguageid = zVal; zVal = 0; break; case 7: /* NOTINDEXED */ azNotindexed[nNotindexed++] = zVal; zVal = 0; break; default: assert( iOpt==SizeofArray(aFts4Opt) ); sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z); rc = SQLITE_ERROR; break; } sqlite3_free(zVal); } } /* Otherwise, the argument is a column name. */ else { |
︙ | ︙ | |||
1842 1843 1844 1845 1846 1847 1848 | ** the size of zBuffer if required. */ if( !isFirstTerm ){ zCsr += fts3GetVarint32(zCsr, &nPrefix); } isFirstTerm = 0; zCsr += fts3GetVarint32(zCsr, &nSuffix); | > | | 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 | ** the size of zBuffer if required. */ if( !isFirstTerm ){ zCsr += fts3GetVarint32(zCsr, &nPrefix); } isFirstTerm = 0; zCsr += fts3GetVarint32(zCsr, &nSuffix); assert( nPrefix>=0 && nSuffix>=0 ); if( &zCsr[nSuffix]>zEnd ){ rc = FTS_CORRUPT_VTAB; goto finish_scan; } if( nPrefix+nSuffix>nAlloc ){ char *zNew; nAlloc = (nPrefix+nSuffix) * 2; zNew = (char *)sqlite3_realloc(zBuffer, nAlloc); |
︙ | ︙ | |||
2652 2653 2654 2655 2656 2657 2658 | nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); pOut[nOut++] = 0x02; bWritten = 1; } fts3ColumnlistCopy(0, &p); } | | | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 | nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); pOut[nOut++] = 0x02; bWritten = 1; } fts3ColumnlistCopy(0, &p); } while( p<pEnd ){ sqlite3_int64 iCol; p++; p += sqlite3Fts3GetVarint(p, &iCol); if( *p==0x02 ){ if( bWritten==0 ){ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); bWritten = 1; |
︙ | ︙ | |||
3332 3333 3334 3335 3336 3337 3338 | int rc = SQLITE_OK; /* Return Code */ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; Fts3Table *p = (Fts3Table *)pCursor->pVtab; /* The column value supplied by SQLite must be in range. */ assert( iCol>=0 && iCol<=p->nColumn+2 ); | | | | > > > | > > | > | | < < | | > > > > | < | < > | < < < < < | | > > > | < > | 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 | int rc = SQLITE_OK; /* Return Code */ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; Fts3Table *p = (Fts3Table *)pCursor->pVtab; /* The column value supplied by SQLite must be in range. */ assert( iCol>=0 && iCol<=p->nColumn+2 ); switch( iCol-p->nColumn ){ case 0: /* The special 'table-name' column */ sqlite3_result_blob(pCtx, &pCsr, sizeof(Fts3Cursor*), SQLITE_TRANSIENT); sqlite3_result_subtype(pCtx, SQLITE_BLOB); break; case 1: /* The docid column */ sqlite3_result_int64(pCtx, pCsr->iPrevId); break; case 2: if( pCsr->pExpr ){ sqlite3_result_int64(pCtx, pCsr->iLangid); break; }else if( p->zLanguageid==0 ){ sqlite3_result_int(pCtx, 0); break; }else{ iCol = p->nColumn; /* fall-through */ } default: /* A user column. Or, if this is a full-table scan, possibly the ** language-id column. Seek the cursor. */ rc = fts3CursorSeek(0, pCsr); if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); } break; } assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); return rc; } /* |
︙ | ︙ | |||
3438 3439 3440 3441 3442 3443 3444 | ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code ** if an error occurs. */ static int fts3SetHasStat(Fts3Table *p){ int rc = SQLITE_OK; if( p->bHasStat==2 ){ | < | | < < < < | < < | > | 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 | ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code ** if an error occurs. */ static int fts3SetHasStat(Fts3Table *p){ int rc = SQLITE_OK; if( p->bHasStat==2 ){ char *zTbl = sqlite3_mprintf("%s_stat", p->zName); if( zTbl ){ int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0); sqlite3_free(zTbl); p->bHasStat = (res==SQLITE_OK); }else{ rc = SQLITE_NOMEM; } } return rc; } |
︙ | ︙ | |||
3555 3556 3557 3558 3559 3560 3561 | */ static int fts3FunctionArg( sqlite3_context *pContext, /* SQL function call context */ const char *zFunc, /* Function name */ sqlite3_value *pVal, /* argv[0] passed to function */ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ ){ | | | | < > | < < | | 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 | */ static int fts3FunctionArg( sqlite3_context *pContext, /* SQL function call context */ const char *zFunc, /* Function name */ sqlite3_value *pVal, /* argv[0] passed to function */ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ ){ int rc = SQLITE_OK; if( sqlite3_value_subtype(pVal)==SQLITE_BLOB ){ *ppCsr = *(Fts3Cursor**)sqlite3_value_blob(pVal); }else{ char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc); sqlite3_result_error(pContext, zErr, -1); sqlite3_free(zErr); rc = SQLITE_ERROR; } return rc; } /* ** Implementation of the snippet() function for FTS3 */ static void fts3SnippetFunc( sqlite3_context *pContext, /* SQLite function call context */ |
︙ | ︙ | |||
3953 3954 3955 3956 3957 3958 3959 | #ifdef SQLITE_TEST if( rc==SQLITE_OK ){ rc = sqlite3Fts3ExprInitTestInterface(db); } #endif /* Create the virtual table wrapper around the hash-table and overload | | | 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 | #ifdef SQLITE_TEST if( rc==SQLITE_OK ){ rc = sqlite3Fts3ExprInitTestInterface(db); } #endif /* Create the virtual table wrapper around the hash-table and overload ** the four scalar functions. If this is successful, register the ** module with sqlite. */ if( SQLITE_OK==rc && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1)) |
︙ | ︙ | |||
4536 4537 4538 4539 4540 4541 4542 | Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; u8 bEof = 0; /* This is only called if it is guaranteed that the phrase has at least ** one incremental token. In which case the bIncr flag is set. */ assert( p->bIncr==1 ); | | | 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 | Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; u8 bEof = 0; /* This is only called if it is guaranteed that the phrase has at least ** one incremental token. In which case the bIncr flag is set. */ assert( p->bIncr==1 ); if( p->nToken==1 ){ rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, &pDL->iDocid, &pDL->pList, &pDL->nList ); if( pDL->pList==0 ) bEof = 1; }else{ int bDescDoclist = pCsr->bDesc; struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS]; |
︙ | ︙ | |||
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 | ** The average document size in pages is calculated by first calculating ** determining the average size in bytes, B. If B is less than the amount ** of data that will fit on a single leaf page of an intkey table in ** this database, then the average docsize is 1. Otherwise, it is 1 plus ** the number of overflow pages consumed by a record B bytes in size. */ static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ if( pCsr->nRowAvg==0 ){ /* The average document size, which is required to calculate the cost ** of each doclist, has not yet been determined. Read the required ** data from the %_stat table to calculate it. ** ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 ** varints, where nCol is the number of columns in the FTS3 table. | > | 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 | ** The average document size in pages is calculated by first calculating ** determining the average size in bytes, B. If B is less than the amount ** of data that will fit on a single leaf page of an intkey table in ** this database, then the average docsize is 1. Otherwise, it is 1 plus ** the number of overflow pages consumed by a record B bytes in size. */ static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ int rc = SQLITE_OK; if( pCsr->nRowAvg==0 ){ /* The average document size, which is required to calculate the cost ** of each doclist, has not yet been determined. Read the required ** data from the %_stat table to calculate it. ** ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 ** varints, where nCol is the number of columns in the FTS3 table. |
︙ | ︙ | |||
4808 4809 4810 4811 4812 4813 4814 | return FTS_CORRUPT_VTAB; } pCsr->nDoc = nDoc; pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz); assert( pCsr->nRowAvg>0 ); rc = sqlite3_reset(pStmt); | < | | 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 | return FTS_CORRUPT_VTAB; } pCsr->nDoc = nDoc; pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz); assert( pCsr->nRowAvg>0 ); rc = sqlite3_reset(pStmt); } *pnPage = pCsr->nRowAvg; return rc; } /* ** This function is called to select the tokens (if any) that will be ** deferred. The array aTC[] has already been populated when this is ** called. ** |
︙ | ︙ | |||
5162 5163 5164 5165 5166 5167 5168 | }else{ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = (pLeft->bEof || pRight->bEof); if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){ | > | | 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 | }else{ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = (pLeft->bEof || pRight->bEof); if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){ assert( pRight->eType==FTSQUERY_PHRASE ); if( pRight->pPhrase->doclist.aAll ){ Fts3Doclist *pDl = &pRight->pPhrase->doclist; while( *pRc==SQLITE_OK && pRight->bEof==0 ){ memset(pDl->pList, 0, pDl->nList); fts3EvalNextRow(pCsr, pRight, pRc); } } if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){ |
︙ | ︙ | |||
5191 5192 5193 5194 5195 5196 5197 | sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); assert( pRight->bStart || pLeft->iDocid==pRight->iDocid ); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ fts3EvalNextRow(pCsr, pLeft, pRc); | | | 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 | sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); assert( pRight->bStart || pLeft->iDocid==pRight->iDocid ); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else if( pLeft->bEof || iCmp>0 ){ fts3EvalNextRow(pCsr, pRight, pRc); }else{ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); } pExpr->bEof = (pLeft->bEof && pRight->bEof); |
︙ | ︙ | |||
5283 5284 5285 5286 5287 5288 5289 | ** ** The right-hand child of a NEAR node is always a phrase. The ** left-hand child may be either a phrase or a NEAR node. There are ** no exceptions to this - it's the way the parser in fts3_expr.c works. */ if( *pRc==SQLITE_OK && pExpr->eType==FTSQUERY_NEAR | < > < < < | | | | | | | | | | | | | | | | | | | | | | | | | | < | 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 | ** ** The right-hand child of a NEAR node is always a phrase. The ** left-hand child may be either a phrase or a NEAR node. There are ** no exceptions to this - it's the way the parser in fts3_expr.c works. */ if( *pRc==SQLITE_OK && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; int nTmp = 0; /* Bytes of temp space */ char *aTmp; /* Temp space for PoslistNearMerge() */ /* Allocate temporary working space. */ for(p=pExpr; p->pLeft; p=p->pLeft){ assert( p->pRight->pPhrase->doclist.nList>0 ); nTmp += p->pRight->pPhrase->doclist.nList; } nTmp += p->pPhrase->doclist.nList; aTmp = sqlite3_malloc(nTmp*2); if( !aTmp ){ *pRc = SQLITE_NOMEM; res = 0; }else{ char *aPoslist = p->pPhrase->doclist.pList; int nToken = p->pPhrase->nToken; for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ Fts3Phrase *pPhrase = p->pRight->pPhrase; int nNear = p->nNear; res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } aPoslist = pExpr->pRight->pPhrase->doclist.pList; nToken = pExpr->pRight->pPhrase->nToken; for(p=pExpr->pLeft; p && res; p=p->pLeft){ int nNear; Fts3Phrase *pPhrase; assert( p->pParent && p->pParent->pLeft==p ); nNear = p->pParent->nNear; pPhrase = ( p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase ); res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } } sqlite3_free(aTmp); } return res; } /* ** This function is a helper function for sqlite3Fts3EvalTestDeferred(). |
︙ | ︙ |
Added ext/misc/anycollseq.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | /* ** 2017-04-16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements a run-time loadable extension to SQLite that ** registers a sqlite3_collation_needed() callback to register a fake ** collating function for any unknown collating sequence. The fake ** collating function works like BINARY. ** ** This extension can be used to load schemas that contain one or more ** unknown collating sequences. */ #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #include <string.h> static int anyCollFunc( void *NotUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int rc, n; n = nKey1<nKey2 ? nKey1 : nKey2; rc = memcmp(pKey1, pKey2, n); if( rc==0 ) rc = nKey1 - nKey2; return rc; } static void anyCollNeeded( void *NotUsed, sqlite3 *db, int eTextRep, const char *zCollName ){ sqlite3_create_collation(db, zCollName, eTextRep, 0, anyCollFunc); } #ifdef _WIN32 __declspec(dllexport) #endif int sqlite3_anycollseq_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); rc = sqlite3_collation_needed(db, 0, anyCollNeeded); return rc; } |
Changes to src/expr.c.
︙ | ︙ | |||
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 | break; } case TK_VECTOR: { sqlite3ErrorMsg(pParse, "row value misused"); break; } /* ** Form A: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form B: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END | > > > > > > > > > > > | 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 | break; } case TK_VECTOR: { sqlite3ErrorMsg(pParse, "row value misused"); break; } case TK_IF_NULL_ROW: { int addrINR; addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); sqlite3ExprCachePush(pParse); inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); sqlite3ExprCachePop(pParse); sqlite3VdbeJumpHere(v, addrINR); sqlite3VdbeChangeP3(v, addrINR, inReg); break; } /* ** Form A: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form B: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
188 189 190 191 192 193 194 195 196 197 198 199 200 201 | A = 0; sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); } } columnlist ::= columnlist COMMA columnname carglist. columnlist ::= columnname carglist. columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} // Define operator precedence early so that this is the first occurrence // of the operator tokens in the grammer. Keeping the operators together // causes them to be assigned integer values that are close together, // which keeps parser tables smaller. // // The token values assigned to these symbols is determined by the order | > > > > > > > > > > > > > > > > > | 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | A = 0; sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); } } columnlist ::= columnlist COMMA columnname carglist. columnlist ::= columnname carglist. columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} // The following directive causes tokens ABORT, AFTER, ASC, etc. to // fallback to ID if they will not parse as their original value. // This obviates the need for the "id" nonterminal. // %fallback ID ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT %ifdef SQLITE_OMIT_COMPOUND_SELECT EXCEPT INTERSECT UNION %endif SQLITE_OMIT_COMPOUND_SELECT REINDEX RENAME CTIME_KW IF . %wildcard ANY. // Define operator precedence early so that this is the first occurrence // of the operator tokens in the grammer. Keeping the operators together // causes them to be assigned integer values that are close together, // which keeps parser tables smaller. // // The token values assigned to these symbols is determined by the order |
︙ | ︙ | |||
218 219 220 221 222 223 224 | %right BITNOT. // An IDENTIFIER can be a generic identifier, or one of several // keywords. Any non-standard keyword can also be an identifier. // %token_class id ID|INDEXED. | < < < < < < < < < < < < < < < < < | 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | %right BITNOT. // An IDENTIFIER can be a generic identifier, or one of several // keywords. Any non-standard keyword can also be an identifier. // %token_class id ID|INDEXED. // And "ids" is an identifer-or-string. // %token_class ids ID|STRING. // The name of a column or table can be any of the following: // |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
1326 1327 1328 1329 1330 1331 1332 | pIdx = 0; aiCols = 0; if( pParent ){ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); assert( x==0 ); } addrOk = sqlite3VdbeMakeLabel(v); | < < < < < < < < < | > | < < > | | > | < | | > > > | | | | | > > > > > | | > > | > > > | 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 | pIdx = 0; aiCols = 0; if( pParent ){ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); assert( x==0 ); } addrOk = sqlite3VdbeMakeLabel(v); /* Generate code to read the child key values into registers ** regRow..regRow+n. If any of the child key values are NULL, this ** row cannot cause an FK violation. Jump directly to addrOk in ** this case. */ for(j=0; j<pFK->nCol; j++){ int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom; sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j); sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); } /* Generate code to query the parent index for a matching parent ** key. If a match is found, jump to addrOk. */ if( pIdx ){ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey, sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); VdbeCoverage(v); }else if( pParent ){ int jmp = sqlite3VdbeCurrentAddr(v)+2; sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v); sqlite3VdbeGoto(v, addrOk); assert( pFK->nCol==1 ); } /* Generate code to report an FK violation to the caller. */ if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1); } sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1); sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); sqlite3VdbeResolveLabel(v, addrOk); sqlite3DbFree(db, aiCols); } sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrTop); |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 | ** ** All references to columns in table iTable are to be replaced by corresponding ** expressions in pEList. */ typedef struct SubstContext { Parse *pParse; /* The parsing context */ int iTable; /* Replace references to this table */ ExprList *pEList; /* Replacement expressions */ } SubstContext; /* Forward Declarations */ static void substExprList(SubstContext*, ExprList*); static void substSelect(SubstContext*, Select*, int); | > > | 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 | ** ** All references to columns in table iTable are to be replaced by corresponding ** expressions in pEList. */ typedef struct SubstContext { Parse *pParse; /* The parsing context */ int iTable; /* Replace references to this table */ int iNewTable; /* New table number */ int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ ExprList *pEList; /* Replacement expressions */ } SubstContext; /* Forward Declarations */ static void substExprList(SubstContext*, ExprList*); static void substSelect(SubstContext*, Select*, int); |
︙ | ︙ | |||
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 | ** of the subquery rather the result set of the subquery. */ static Expr *substExpr( SubstContext *pSubst, /* Description of the substitution */ Expr *pExpr /* Expr in which substitution occurs */ ){ if( pExpr==0 ) return 0; if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else{ Expr *pNew; Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); assert( pExpr->pLeft==0 && pExpr->pRight==0 ); if( sqlite3ExprIsVector(pCopy) ){ sqlite3VectorErrorMsg(pSubst->pParse, pCopy); }else{ sqlite3 *db = pSubst->pParse->db; pNew = sqlite3ExprDup(db, pCopy, 0); if( pNew && (pExpr->flags & EP_FromJoin) ){ pNew->iRightJoinTable = pExpr->iRightJoinTable; pNew->flags |= EP_FromJoin; } sqlite3ExprDelete(db, pExpr); pExpr = pNew; | > > > > > > > > > > > | 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 | ** of the subquery rather the result set of the subquery. */ static Expr *substExpr( SubstContext *pSubst, /* Description of the substitution */ Expr *pExpr /* Expr in which substitution occurs */ ){ if( pExpr==0 ) return 0; if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){ pExpr->iRightJoinTable = pSubst->iNewTable; } if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else{ Expr *pNew; Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; Expr ifNullRow; assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); assert( pExpr->pLeft==0 && pExpr->pRight==0 ); if( sqlite3ExprIsVector(pCopy) ){ sqlite3VectorErrorMsg(pSubst->pParse, pCopy); }else{ sqlite3 *db = pSubst->pParse->db; if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ memset(&ifNullRow, 0, sizeof(ifNullRow)); ifNullRow.op = TK_IF_NULL_ROW; ifNullRow.pLeft = pCopy; ifNullRow.iTable = pSubst->iNewTable; pCopy = &ifNullRow; } pNew = sqlite3ExprDup(db, pCopy, 0); if( pNew && (pExpr->flags & EP_FromJoin) ){ pNew->iRightJoinTable = pExpr->iRightJoinTable; pNew->flags |= EP_FromJoin; } sqlite3ExprDelete(db, pExpr); pExpr = pNew; |
︙ | ︙ | |||
3280 3281 3282 3283 3284 3285 3286 | ** (1) The subquery and the outer query do not both use aggregates. ** ** (2) The subquery is not an aggregate or (2a) the outer query is not a join ** and (2b) the outer query does not use subqueries other than the one ** FROM-clause subquery that is a candidate for flattening. (2b is ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) ** | | | | | 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 | ** (1) The subquery and the outer query do not both use aggregates. ** ** (2) The subquery is not an aggregate or (2a) the outer query is not a join ** and (2b) the outer query does not use subqueries other than the one ** FROM-clause subquery that is a candidate for flattening. (2b is ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) ** ** (3) The subquery is not the right operand of a LEFT JOIN ** or the subquery is not itself a join. ** ** (4) The subquery is not DISTINCT. ** ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT ** sub-queries that were excluded from this optimization. Restriction ** (4) has since been expanded to exclude all DISTINCT subqueries. ** ** (6) The subquery does not use aggregates or the outer query is not ** DISTINCT. ** ** (7) The subquery has a FROM clause. TODO: For subqueries without ** A FROM clause, consider adding a FROM clause with the special ** table sqlite_once that consists of a single row containing a ** single NULL. ** ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. |
︙ | ︙ | |||
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 | Select *pParent; /* Current UNION ALL term of the other query */ Select *pSub; /* The inner query or "subquery" */ Select *pSub1; /* Pointer to the rightmost select in sub-query */ SrcList *pSrc; /* The FROM clause of the outer query */ SrcList *pSubSrc; /* The FROM clause of the subquery */ ExprList *pList; /* The result set of the outer query */ int iParent; /* VDBE cursor number of the pSub result set temp table */ int i; /* Loop counter */ Expr *pWhere; /* The WHERE clause */ struct SrcList_item *pSubitem; /* The subquery */ sqlite3 *db = pParse->db; /* Check to see if flattening is permitted. Return 0 if not. */ | > > | 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 | Select *pParent; /* Current UNION ALL term of the other query */ Select *pSub; /* The inner query or "subquery" */ Select *pSub1; /* Pointer to the rightmost select in sub-query */ SrcList *pSrc; /* The FROM clause of the outer query */ SrcList *pSubSrc; /* The FROM clause of the subquery */ ExprList *pList; /* The result set of the outer query */ int iParent; /* VDBE cursor number of the pSub result set temp table */ int iNewParent = -1;/* Replacement table for iParent */ int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ int i; /* Loop counter */ Expr *pWhere; /* The WHERE clause */ struct SrcList_item *pSubitem; /* The subquery */ sqlite3 *db = pParse->db; /* Check to see if flattening is permitted. Return 0 if not. */ |
︙ | ︙ | |||
3425 3426 3427 3428 3429 3430 3431 | if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 ){ return 0; /* Restriction (2b) */ } } | | | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 | if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 ){ return 0; /* Restriction (2b) */ } } pSubSrc = pSub->pSrc; assert( pSubSrc ); /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET ** because they could be computed at compile-time. But when LIMIT and OFFSET ** became arbitrary expressions, we were forced to add restrictions (13) ** and (14). */ |
︙ | ︙ | |||
3463 3464 3465 3466 3467 3468 3469 | if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ return 0; /* Restrictions (22) and (24) */ } if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ return 0; /* Restriction (23) */ } | | | | < | < < < < < < < < < < < < < < < < < > > | > | 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 | if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ return 0; /* Restrictions (22) and (24) */ } if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ return 0; /* Restriction (23) */ } /* ** If the subquery is the right operand of a LEFT JOIN, then the ** subquery may not be a join itself. Example of why this is not allowed: ** ** t1 LEFT OUTER JOIN (t2 JOIN t3) ** ** If we flatten the above, we would get ** ** (t1 LEFT OUTER JOIN t2) JOIN t3 ** ** which is not at all the same thing. ** ** See also tickets #306, #350, and #3300. */ if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ isLeftJoin = 1; if( pSubSrc->nSrc>1 ){ return 0; /* Restriction (3) */ } } /* Restriction 17: If the sub-query is a compound SELECT, then it must ** use only the UNION ALL operator. And none of the simple select queries ** that make up the compound SELECT are allowed to be aggregate or distinct ** queries. */ |
︙ | ︙ | |||
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 | /* Transfer the FROM clause terms from the subquery into the ** outer query. */ for(i=0; i<nSubSrc; i++){ sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); pSrc->a[i+iFrom] = pSubSrc->a[i]; memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); } pSrc->a[iFrom].fg.jointype = jointype; /* Now begin substituting subquery result set expressions for ** references to the iParent in the outer query. ** | > | 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 | /* Transfer the FROM clause terms from the subquery into the ** outer query. */ for(i=0; i<nSubSrc; i++){ sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); pSrc->a[i+iFrom] = pSubSrc->a[i]; iNewParent = pSubSrc->a[i].iCursor; memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); } pSrc->a[iFrom].fg.jointype = jointype; /* Now begin substituting subquery result set expressions for ** references to the iParent in the outer query. ** |
︙ | ︙ | |||
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 | } assert( pParent->pOrderBy==0 ); assert( pSub->pPrior==0 ); pParent->pOrderBy = pOrderBy; pSub->pOrderBy = 0; } pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); if( subqueryIsAgg ){ assert( pParent->pHaving==0 ); pParent->pHaving = pParent->pWhere; pParent->pWhere = pWhere; pParent->pHaving = sqlite3ExprAnd(db, sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving ); assert( pParent->pGroupBy==0 ); pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); }else{ pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); } if( db->mallocFailed==0 ){ SubstContext x; x.pParse = pParse; x.iTable = iParent; x.pEList = pSub->pEList; substSelect(&x, pParent, 0); } /* The flattened query is distinct if either the inner or the ** outer query is distinct. */ | > > > > > | 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 | } assert( pParent->pOrderBy==0 ); assert( pSub->pPrior==0 ); pParent->pOrderBy = pOrderBy; pSub->pOrderBy = 0; } pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); if( isLeftJoin ){ setJoinExpr(pWhere, iNewParent); } if( subqueryIsAgg ){ assert( pParent->pHaving==0 ); pParent->pHaving = pParent->pWhere; pParent->pWhere = pWhere; pParent->pHaving = sqlite3ExprAnd(db, sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving ); assert( pParent->pGroupBy==0 ); pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); }else{ pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); } if( db->mallocFailed==0 ){ SubstContext x; x.pParse = pParse; x.iTable = iParent; x.iNewTable = iNewParent; x.isLeftJoin = isLeftJoin; x.pEList = pSub->pEList; substSelect(&x, pParent, 0); } /* The flattened query is distinct if either the inner or the ** outer query is distinct. */ |
︙ | ︙ | |||
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 | if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ nChng++; while( pSubq ){ SubstContext x; pNew = sqlite3ExprDup(pParse->db, pWhere, 0); x.pParse = pParse; x.iTable = iCursor; x.pEList = pSubq->pEList; pNew = substExpr(&x, pNew); pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); pSubq = pSubq->pPrior; } } return nChng; | > > | 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 | if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ nChng++; while( pSubq ){ SubstContext x; pNew = sqlite3ExprDup(pParse->db, pWhere, 0); x.pParse = pParse; x.iTable = iCursor; x.iNewTable = iCursor; x.isLeftJoin = 0; x.pEList = pSubq->pEList; pNew = substExpr(&x, pNew); pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); pSubq = pSubq->pPrior; } } return nChng; |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
423 424 425 426 427 428 429 430 431 432 433 434 435 436 | z = sqlite3_vmprintf(zFormat, ap); va_end(ap); utf8_printf(iotrace, "%s", z); sqlite3_free(z); } #endif /* ** Determines if a string is a number of not. */ static int isNumber(const char *z, int *realnum){ if( *z=='-' || *z=='+' ) z++; if( !IsDigit(*z) ){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | z = sqlite3_vmprintf(zFormat, ap); va_end(ap); utf8_printf(iotrace, "%s", z); sqlite3_free(z); } #endif /* ** Output string zUtf to stream pOut as w characters. If w is negative, ** then right-justify the text. W is the width in UTF-8 characters, not ** in bytes. This is different from the %*.*s specification in printf ** since with %*.*s the width is measured in bytes, not characters. */ static void utf8_width_print(FILE *pOut, int w, const char *zUtf){ int i; int n; int aw = w<0 ? -w : w; char zBuf[1000]; if( aw>sizeof(zBuf)/3 ) aw = sizeof(zBuf)/3; for(i=n=0; zUtf[i]; i++){ if( (zUtf[i]&0xc0)!=0x80 ){ n++; if( n==aw ){ do{ i++; }while( (zUtf[i]&0xc0)==0x80 ); break; } } } if( n>=aw ){ utf8_printf(pOut, "%.*s", i, zUtf); }else if( w<0 ){ utf8_printf(pOut, "%*s%s", aw-n, "", zUtf); }else{ utf8_printf(pOut, "%s%*s", zUtf, aw-n, ""); } } /* ** Determines if a string is a number of not. */ static int isNumber(const char *z, int *realnum){ if( *z=='-' || *z=='+' ) z++; if( !IsDigit(*z) ){ |
︙ | ︙ | |||
1874 1875 1876 1877 1878 1879 1880 | n = strlen30(azArg && azArg[i] ? azArg[i] : p->nullValue); if( w<n ) w = n; } if( i<ArraySize(p->actualWidth) ){ p->actualWidth[i] = w; } if( showHdr ){ | < | | < < < < | 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 | n = strlen30(azArg && azArg[i] ? azArg[i] : p->nullValue); if( w<n ) w = n; } if( i<ArraySize(p->actualWidth) ){ p->actualWidth[i] = w; } if( showHdr ){ utf8_width_print(p->out, w, azCol[i]); utf8_printf(p->out, "%s", i==nArg-1 ? rowSep : " "); } } if( showHdr ){ for(i=0; i<nArg; i++){ int w; if( i<ArraySize(p->actualWidth) ){ w = p->actualWidth[i]; |
︙ | ︙ | |||
1916 1917 1918 1919 1920 1921 1922 | } if( i==1 && p->aiIndent && p->pStmt ){ if( p->iIndent<p->nIndent ){ utf8_printf(p->out, "%*.s", p->aiIndent[p->iIndent], ""); } p->iIndent++; } | < < | | < < < < < | 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 | } if( i==1 && p->aiIndent && p->pStmt ){ if( p->iIndent<p->nIndent ){ utf8_printf(p->out, "%*.s", p->aiIndent[p->iIndent], ""); } p->iIndent++; } utf8_width_print(p->out, w, azArg[i] ? azArg[i] : p->nullValue); utf8_printf(p->out, "%s", i==nArg-1 ? rowSep : " "); } break; } case MODE_Semi: { /* .schema and .fullschema output */ printSchemaLine(p->out, azArg[0], ";\n"); break; } |
︙ | ︙ |
Changes to src/treeview.c.
︙ | ︙ | |||
465 466 467 468 469 470 471 472 473 474 475 476 477 478 | sqlite3TreeViewBareExprList(pView, pExpr->x.pList, "VECTOR"); break; } case TK_SELECT_COLUMN: { sqlite3TreeViewLine(pView, "SELECT-COLUMN %d", pExpr->iColumn); sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0); break; } default: { sqlite3TreeViewLine(pView, "op=%d", pExpr->op); break; } } if( zBinOp ){ | > > > > > | 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 | sqlite3TreeViewBareExprList(pView, pExpr->x.pList, "VECTOR"); break; } case TK_SELECT_COLUMN: { sqlite3TreeViewLine(pView, "SELECT-COLUMN %d", pExpr->iColumn); sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0); break; } case TK_IF_NULL_ROW: { sqlite3TreeViewLine(pView, "IF-NULL-ROW %d", pExpr->iTable); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } default: { sqlite3TreeViewLine(pView, "op=%d", pExpr->op); break; } } if( zBinOp ){ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
482 483 484 485 486 487 488 489 490 491 492 493 494 495 | } if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); } static void registerTrace(int iReg, Mem *p){ printf("REG[%d] = ", iReg); memTracePrint(p); printf("\n"); } #endif #ifdef SQLITE_DEBUG # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) #else # define REGISTER_TRACE(R,M) | > | 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | } if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); } static void registerTrace(int iReg, Mem *p){ printf("REG[%d] = ", iReg); memTracePrint(p); printf("\n"); sqlite3VdbeCheckMemInvariants(p); } #endif #ifdef SQLITE_DEBUG # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) #else # define REGISTER_TRACE(R,M) |
︙ | ︙ | |||
1147 1148 1149 1150 1151 1152 1153 | ** instruction, but do not free any string or blob memory associated with ** the register, so that if the value was a string or blob that was ** previously copied using OP_SCopy, the copies will continue to be valid. */ case OP_SoftNull: { assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pOut = &aMem[pOp->p1]; | | | 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 | ** instruction, but do not free any string or blob memory associated with ** the register, so that if the value was a string or blob that was ** previously copied using OP_SCopy, the copies will continue to be valid. */ case OP_SoftNull: { assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pOut = &aMem[pOp->p1]; pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; break; } /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this |
︙ | ︙ | |||
1490 1491 1492 1493 1494 1495 1496 | pIn1 = &aMem[pOp->p1]; type1 = numericType(pIn1); pIn2 = &aMem[pOp->p2]; type2 = numericType(pIn2); pOut = &aMem[pOp->p3]; flags = pIn1->flags | pIn2->flags; | < | 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 | pIn1 = &aMem[pOp->p1]; type1 = numericType(pIn1); pIn2 = &aMem[pOp->p2]; type2 = numericType(pIn2); pOut = &aMem[pOp->p3]; flags = pIn1->flags | pIn2->flags; if( (type1 & type2 & MEM_Int)!=0 ){ iA = pIn1->u.i; iB = pIn2->u.i; bIntint = 1; switch( pOp->opcode ){ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; |
︙ | ︙ | |||
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 | if( iA==-1 ) iA = 1; iB %= iA; break; } } pOut->u.i = iB; MemSetTypeFlag(pOut, MEM_Int); }else{ bIntint = 0; fp_math: rA = sqlite3VdbeRealValue(pIn1); rB = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: rB += rA; break; | > > | 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 | if( iA==-1 ) iA = 1; iB %= iA; break; } } pOut->u.i = iB; MemSetTypeFlag(pOut, MEM_Int); }else if( (flags & MEM_Null)!=0 ){ goto arithmetic_result_is_null; }else{ bIntint = 0; fp_math: rA = sqlite3VdbeRealValue(pIn1); rB = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: rB += rA; break; |
︙ | ︙ | |||
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 | pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); if( (pIn1->flags & MEM_Null)==0 ){ goto jump_to_p2; } break; } /* Opcode: Column P1 P2 P3 P4 P5 ** Synopsis: r[P3]=PX ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Extract the P2-th column | > > > > > > > > > > > > > > > > > | 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 | pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); if( (pIn1->flags & MEM_Null)==0 ){ goto jump_to_p2; } break; } /* Opcode: IfNullRow P1 P2 P3 * * ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 ** ** Check the cursor P1 to see if it is currently pointing at a NULL row. ** If it is, then set register P3 to NULL and jump immediately to P2. ** If P1 is not on a NULL row, then fall through without making any ** changes. */ case OP_IfNullRow: { /* jump */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); if( p->apCsr[pOp->p1]->nullRow ){ sqlite3VdbeMemSetNull(aMem + pOp->p3); goto jump_to_p2; } break; } /* Opcode: Column P1 P2 P3 P4 P5 ** Synopsis: r[P3]=PX ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Extract the P2-th column |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
36 37 38 39 40 41 42 43 44 45 46 47 48 49 | ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); /* Cannot be both MEM_Int and MEM_Real at the same time */ assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); /* The szMalloc field holds the correct memory allocation size */ assert( p->szMalloc==0 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** | > > > > | 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); /* Cannot be both MEM_Int and MEM_Real at the same time */ assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); /* Cannot be both MEM_Null and some other type */ assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob))==0 ); /* The szMalloc field holds the correct memory allocation size */ assert( p->szMalloc==0 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 | pOp->p1 = pLevel->iIdxCur; } assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 || pWInfo->eOnePass ); }else if( pOp->opcode==OP_Rowid ){ pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRowid; } } } } /* Final cleanup */ | > > | 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 | pOp->p1 = pLevel->iIdxCur; } assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 || pWInfo->eOnePass ); }else if( pOp->opcode==OP_Rowid ){ pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRowid; }else if( pOp->opcode==OP_IfNullRow ){ pOp->p1 = pLevel->iIdxCur; } } } } /* Final cleanup */ |
︙ | ︙ |
Changes to test/fkey5.test.
︙ | ︙ | |||
384 385 386 387 388 389 390 391 392 | PRAGMA foreign_key_check(k2); } {} do_execsql_test 9.4 { INSERT INTO k2 VALUES('six', 'seven'); PRAGMA foreign_key_check(k2); } {k2 3 s1 0} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | PRAGMA foreign_key_check(k2); } {} do_execsql_test 9.4 { INSERT INTO k2 VALUES('six', 'seven'); PRAGMA foreign_key_check(k2); } {k2 3 s1 0} #------------------------------------------------------------------------- # Test using a WITHOUT ROWID table as the child table with an INTEGER # PRIMARY KEY as the parent key. # reset_db do_execsql_test 10.1 { CREATE TABLE p30 (id INTEGER PRIMARY KEY); CREATE TABLE IF NOT EXISTS c30 ( line INTEGER, master REFERENCES p30(id), PRIMARY KEY(master) ) WITHOUT ROWID; INSERT INTO p30 (id) VALUES (1); INSERT INTO c30 (master, line) VALUES (1, 999); } do_execsql_test 10.2 { PRAGMA foreign_key_check; } do_execsql_test 10.3 { INSERT INTO c30 VALUES(45, 45); PRAGMA foreign_key_check; } {c30 {} p30 0} #------------------------------------------------------------------------- # Test "foreign key mismatch" errors. # reset_db do_execsql_test 11.0 { CREATE TABLE tt(y); CREATE TABLE c11(x REFERENCES tt(y)); } do_catchsql_test 11.1 { PRAGMA foreign_key_check; } {1 {foreign key mismatch - "c11" referencing "tt"}} finish_test |
Changes to test/fts3aa.test.
︙ | ︙ | |||
239 240 241 242 243 244 245 246 247 | do_execsql_test 8.4 { SELECT docid FROM t0 WHERE t0 MATCH 'abc'; } {6 5} do_execsql_test 8.5 { SELECT docid FROM t0 WHERE t0 MATCH '"abc abc"'; } {} finish_test | > > > > > > | 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | do_execsql_test 8.4 { SELECT docid FROM t0 WHERE t0 MATCH 'abc'; } {6 5} do_execsql_test 8.5 { SELECT docid FROM t0 WHERE t0 MATCH '"abc abc"'; } {} do_execsql_test 9.1 { CREATE VIRTUAL TABLE t9 USING fts4(a, "", '---'); } do_execsql_test 9.2 { CREATE VIRTUAL TABLE t10 USING fts3(<, b, c); } finish_test |
Added test/fts3corrupt3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | # 2010 October 27 # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # Test that the FTS3 extension does not crash when it encounters a # corrupt data structure on disk. # set testdir [file dirname $argv0] source $testdir/tester.tcl # If SQLITE_ENABLE_FTS3 is not defined, omit this file. ifcapable !fts3 { finish_test ; return } set ::testprefix fts3corrupt3 #------------------------------------------------------------------------- # Test that fts3 does not choke on an oversized varint. # do_execsql_test 1.0 { PRAGMA page_size = 512; CREATE VIRTUAL TABLE t1 USING fts3; BEGIN; INSERT INTO t1 VALUES('one'); INSERT INTO t1 VALUES('one'); INSERT INTO t1 VALUES('one'); COMMIT; } do_execsql_test 1.1 { SELECT quote(root) from t1_segdir; } {X'00036F6E6509010200010200010200'} do_execsql_test 1.2 { UPDATE t1_segdir SET root = X'00036F6E650EFFFFFFFFFFFFFFFFFFFFFFFF0200'; } do_catchsql_test 1.3 { SELECT rowid FROM t1 WHERE t1 MATCH 'one' } {0 -1} #------------------------------------------------------------------------- # Interior node with the prefix or suffix count of an entry set to a # negative value. # set doc1 [string repeat "x " 600] set doc2 [string repeat "y " 600] set doc3 [string repeat "z " 600] do_execsql_test 2.0 { CREATE VIRTUAL TABLE t2 USING fts3; BEGIN; INSERT INTO t2 VALUES($doc1); INSERT INTO t2 VALUES($doc2); INSERT INTO t2 VALUES($doc3); COMMIT; } do_execsql_test 2.1 { SELECT quote(root) from t2_segdir; } {X'0101017900017A'} finish_test |
Changes to test/fts3fault.test.
︙ | ︙ | |||
14 15 16 17 18 19 20 | source $testdir/tester.tcl set ::testprefix fts3fault # If SQLITE_ENABLE_FTS3 is not defined, omit this file. ifcapable !fts3 { finish_test ; return } | < < | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | source $testdir/tester.tcl set ::testprefix fts3fault # If SQLITE_ENABLE_FTS3 is not defined, omit this file. ifcapable !fts3 { finish_test ; return } # Test error handling in the sqlite3Fts3Init() function. This is the # function that registers the FTS3 module and various support functions # with SQLite. # do_faultsim_test 1 -body { sqlite3 db test.db expr 0 |
︙ | ︙ | |||
156 157 158 159 160 161 162 | } -test { faultsim_test_result {1 {unrecognized parameter: matchnfo=fts3}} \ {1 {vtable constructor failed: t1}} \ {1 {SQL logic error or missing database}} } | < < | 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | } -test { faultsim_test_result {1 {unrecognized parameter: matchnfo=fts3}} \ {1 {vtable constructor failed: t1}} \ {1 {SQL logic error or missing database}} } proc mit {blob} { set scan(littleEndian) i* set scan(bigEndian) I* binary scan $blob $scan($::tcl_platform(byteOrder)) r return $r } |
︙ | ︙ | |||
229 230 231 232 233 234 235 236 237 | do_faultsim_test 9.1 -prep { faultsim_restore_and_reopen } -body { execsql { SELECT offsets(t9) FROM t9 WHERE t9 MATCH 'to*' } } -test { faultsim_test_result {0 {{0 0 20 39 0 0 64 2}}} } finish_test | > > > > > > > > | 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | do_faultsim_test 9.1 -prep { faultsim_restore_and_reopen } -body { execsql { SELECT offsets(t9) FROM t9 WHERE t9 MATCH 'to*' } } -test { faultsim_test_result {0 {{0 0 20 39 0 0 64 2}}} } do_faultsim_test 10.1 -prep { faultsim_delete_and_reopen } -body { execsql { CREATE VIRTUAL TABLE t1 USING fts4(a, b, languageid=d) } } -test { faultsim_test_result {0 {}} } finish_test |
Changes to test/fts3fault2.test.
︙ | ︙ | |||
169 170 171 172 173 174 175 176 177 | faultsim_restore_and_reopen db eval {SELECT * FROM sqlite_master} } -body { execsql { SELECT docid FROM t6 WHERE t6 MATCH '"a* b"' } } -test { faultsim_test_result {0 -1} } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | faultsim_restore_and_reopen db eval {SELECT * FROM sqlite_master} } -body { execsql { SELECT docid FROM t6 WHERE t6 MATCH '"a* b"' } } -test { faultsim_test_result {0 -1} } #------------------------------------------------------------------------- # Inject faults into a query for an N-byte prefix that uses a prefix=N+1 # index. reset_db do_execsql_test 7.0 { CREATE VIRTUAL TABLE t7 USING fts4(x,prefix=2); INSERT INTO t7 VALUES('the quick brown fox'); INSERT INTO t7 VALUES('jumped over the'); INSERT INTO t7 VALUES('lazy dog'); } do_faultsim_test 7.1 -faults oom* -body { execsql { SELECT docid FROM t7 WHERE t7 MATCH 't*' } } -test { faultsim_test_result {0 {1 2}} } #------------------------------------------------------------------------- # Inject faults into a opening an existing fts3 table that has been # upgraded to add an %_stat table. # reset_db do_execsql_test 8.0 { CREATE VIRTUAL TABLE t8 USING fts3; INSERT INTO t8 VALUES('the quick brown fox'); INSERT INTO t8 VALUES('jumped over the'); INSERT INTO t8 VALUES('lazy dog'); INSERT INTO t8(t8) VALUES('automerge=8'); SELECT name FROM sqlite_master WHERE name LIKE 't8%'; } { t8 t8_content t8_segments t8_segdir t8_stat } faultsim_save_and_close do_faultsim_test 8.1 -faults oom* -prep { faultsim_restore_and_reopen } -body { execsql { INSERT INTO t8 VALUES('one two three') } } -test { faultsim_test_result {0 {}} } do_faultsim_test 8.2 -faults oom* -prep { faultsim_restore_and_reopen } -body { execsql { ALTER TABLE t8 RENAME TO t8ii } } -test { faultsim_test_result {0 {}} } #------------------------------------------------------------------------- reset_db set chunkconfig [fts3_configure_incr_load 1 1] do_execsql_test 9.0 { PRAGMA page_size = 512; CREATE VIRTUAL TABLE t9 USING fts3; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50 ) INSERT INTO t9 SELECT 'one two three' FROM s; } do_faultsim_test 8.2 -faults io* -body { execsql { SELECT count(*) FROM t9 WHERE t9 MATCH '"one two three"' } } -test { faultsim_test_result {0 50} } eval fts3_configure_incr_load $chunkconfig finish_test |
Added test/fts3misc.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | # 2017 March 22 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing the FTS3 module. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix fts3misc # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } #------------------------------------------------------------------------- # A self-join. # do_execsql_test 1.0 { CREATE VIRTUAL TABLE t1 USING fts3(a, b); INSERT INTO t1 VALUES('one', 'i'); INSERT INTO t1 VALUES('one', 'ii'); INSERT INTO t1 VALUES('two', 'i'); INSERT INTO t1 VALUES('two', 'ii'); } do_execsql_test 1.1 { SELECT a.a, b.b FROM t1 a, t1 b WHERE a.t1 MATCH 'two' AND b.t1 MATCH 'i' } {two i two i two i two i} #------------------------------------------------------------------------- # FTS tables with 128 or more columns. # proc v1 {v} { set vector [list a b c d e f g h] set res [list] for {set i 0} {$i<8} {incr i} { if {$v & (1 << $i)} { lappend res [lindex $vector $i] } } set res } proc v2 {v} { set vector [list d e f g h i j k] set res [list] for {set i 0} {$i<8} {incr i} { if {$v & (1 << $i)} { lappend res [lindex $vector $i] } } set res } db func v1 v1 db func v2 v2 do_test 2.0 { set cols [list] for {set i 0} {$i<200} {incr i} { lappend cols "c$i" } execsql "CREATE VIRTUAL TABLE t2 USING fts3([join $cols ,])" execsql { WITH data(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM data WHERE i<200 ) INSERT INTO t2(c198, c199) SELECT v1(i), v2(i) FROM data; } } {} do_execsql_test 2.1 { SELECT rowid FROM t2 WHERE t2 MATCH '"a b c"' } { 7 15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159 167 175 183 191 199 } do_execsql_test 2.2 { SELECT rowid FROM t2 WHERE t2 MATCH '"g h i"' } { 56 57 58 59 60 61 62 63 120 121 122 123 124 125 126 127 184 185 186 187 188 189 190 191 } do_execsql_test 2.3 { SELECT rowid FROM t2 WHERE t2 MATCH '"i h"' } { } do_execsql_test 2.4 { SELECT rowid FROM t2 WHERE t2 MATCH '"f e"' } { } do_execsql_test 2.5 { SELECT rowid FROM t2 WHERE t2 MATCH '"e f"' } { 6 7 14 15 22 23 30 31 38 39 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 70 71 78 79 86 87 94 95 102 103 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 134 135 142 143 150 151 158 159 166 167 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 198 199 } #------------------------------------------------------------------------- # Range constraints on the docid using non-integer values. # do_execsql_test 2.6 { SELECT rowid FROM t2 WHERE t2 MATCH 'e' AND rowid BETWEEN NULL AND 45; } {} do_execsql_test 2.7 { SELECT rowid FROM t2 WHERE t2 MATCH 'e' AND rowid BETWEEN 11.5 AND 48.2; } { 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 34 35 38 39 42 43 46 47 48 } do_execsql_test 2.8 { SELECT rowid FROM t2 WHERE t2 MATCH 'e' AND rowid BETWEEN '11.5' AND '48.2'; } { 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 34 35 38 39 42 43 46 47 48 } #------------------------------------------------------------------------- # Phrase query tests. # do_execsql_test 3.1.1 { CREATE VIRTUAL TABLE t3 USING fts3; INSERT INTO t3 VALUES('a b c'); INSERT INTO t3 VALUES('d e f'); INSERT INTO t3 VALUES('a b d'); INSERT INTO t3 VALUES('1 2 3 4 5 6 7 8 9 10 11'); } do_execsql_test 3.1.2 { SELECT * FROM t3 WHERE t3 MATCH '"a b x y"' ORDER BY docid DESC } do_execsql_test 3.1.3 { SELECT * FROM t3 WHERE t3 MATCH '"a b c" OR "a b x y"' ORDER BY docid DESC } {{a b c}} do_execsql_test 3.1.4 { SELECT * FROM t3 WHERE t3 MATCH '"a* b* x* a*"' } do_execsql_test 3.1.5 { SELECT rowid FROM t3 WHERE t3 MATCH '"2 3 4 5 6 7 8 9"' } {4} #------------------------------------------------------------------------- # reset_db do_execsql_test 4.0 { PRAGMA page_size = 512; CREATE VIRTUAL TABLE t4 USING fts4; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<8000 ) INSERT INTO t4 SELECT 'a b c a b c a b c' FROM s; } do_execsql_test 4.1 { SELECT count(*) FROM t4 WHERE t4 MATCH '"a b c" OR "c a b"' } {8000} do_execsql_test 4.2 { SELECT quote(value) from t4_stat where id=0 } {X'C03EC0B204C0A608'} do_execsql_test 4.3 { UPDATE t4_stat SET value = X'C03EC0B204C0A60800' WHERE id=0; } do_catchsql_test 4.4 { SELECT count(*) FROM t4 WHERE t4 MATCH '"a b c" OR "c a b"' } {1 {database disk image is malformed}} do_execsql_test 4.5 { UPDATE t4_stat SET value = X'00C03EC0B204C0A608' WHERE id=0; } do_catchsql_test 4.6 { SELECT count(*) FROM t4 WHERE t4 MATCH '"a b c" OR "c a b"' } {1 {database disk image is malformed}} #------------------------------------------------------------------------- # reset_db do_execsql_test 5.0 { CREATE VIRTUAL TABLE t5 USING fts4; INSERT INTO t5 VALUES('a x x x x b x x x x c'); INSERT INTO t5 VALUES('a x x x x b x x x x c'); INSERT INTO t5 VALUES('a x x x x b x x x x c'); } do_execsql_test 5.1 { SELECT rowid FROM t5 WHERE t5 MATCH 'a NEAR/4 b NEAR/4 c' } {1 2 3} do_execsql_test 5.2 { SELECT rowid FROM t5 WHERE t5 MATCH 'a NEAR/3 b NEAR/4 c' } {} do_execsql_test 5.3 { SELECT rowid FROM t5 WHERE t5 MATCH 'a NEAR/4 b NEAR/3 c' } {} do_execsql_test 5.4 { SELECT rowid FROM t5 WHERE t5 MATCH 'y NEAR/4 b NEAR/4 c' } {} do_execsql_test 5.5 { SELECT rowid FROM t5 WHERE t5 MATCH 'x OR a NEAR/3 b NEAR/3 c' } {1 2 3} do_execsql_test 5.5 { SELECT rowid FROM t5 WHERE t5 MATCH 'x OR y NEAR/3 b NEAR/3 c' } {1 2 3} #------------------------------------------------------------------------- # reset_db do_execsql_test 6.0 { CREATE VIRTUAL TABLE t6 USING fts4; BEGIN; WITH s(i) AS (SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50000) INSERT INTO t6 SELECT 'x x x x x x x x x x x' FROM s; INSERT INTO t6 VALUES('x x x x x x x x x x x A'); INSERT INTO t6 VALUES('x x x x x x x x x x x B'); INSERT INTO t6 VALUES('x x x x x x x x x x x A'); INSERT INTO t6 VALUES('x x x x x x x x x x x B'); WITH s(i) AS (SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50000) INSERT INTO t6 SELECT 'x x x x x x x x x x x' FROM s; COMMIT; } breakpoint do_execsql_test 6.1 { SELECT rowid FROM t6 WHERE t6 MATCH 'b OR "x a"' } {50001 50002 50003 50004} finish_test |
Changes to test/fts4langid.test.
︙ | ︙ | |||
10 11 12 13 14 15 16 | #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing the languageid=xxx FTS4 option. # set testdir [file dirname $argv0] source $testdir/tester.tcl | < | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing the languageid=xxx FTS4 option. # set testdir [file dirname $argv0] source $testdir/tester.tcl # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } |
︙ | ︙ | |||
336 337 338 339 340 341 342 343 344 345 346 347 348 349 | do_test_query1 3.3.2 {"zero one two"} { rowid_list "zero one two" } do_test_query1 3.3.3 {zero one two} { and_merge_lists [rowid_list zero] [rowid_list one] [rowid_list two] } do_test_query1 3.3.4 {"zero one" OR "one two"} { or_merge_lists [rowid_list "zero one"] [rowid_list "one two"] } #------------------------------------------------------------------------- # Test cases 4.* # proc build_multilingual_db_2 {db} { $db eval { CREATE VIRTUAL TABLE t4 USING fts4( | > > > > > > > | 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | do_test_query1 3.3.2 {"zero one two"} { rowid_list "zero one two" } do_test_query1 3.3.3 {zero one two} { and_merge_lists [rowid_list zero] [rowid_list one] [rowid_list two] } do_test_query1 3.3.4 {"zero one" OR "one two"} { or_merge_lists [rowid_list "zero one"] [rowid_list "one two"] } do_execsql_test 3.4 { CREATE TABLE t8c(a, b); CREATE VIRTUAL TABLE t8 USING fts4(content=t8c, languageid=langid); INSERT INTO t8(docid, a, b) VALUES(-1, 'one two three', 'x y z'); SELECT docid FROM t8 WHERE t8 MATCH 'one x' AND langid=0 } {-1} #------------------------------------------------------------------------- # Test cases 4.* # proc build_multilingual_db_2 {db} { $db eval { CREATE VIRTUAL TABLE t4 USING fts4( |
︙ | ︙ |
Changes to test/permutations.test.
︙ | ︙ | |||
262 263 264 265 266 267 268 269 270 271 272 273 274 275 | fts3offsets.test fts3prefix2.test fts3prefix.test fts3query.test fts3shared.test fts3snippet.test fts3sort.test fts3tok1.test fts3tok_err.test fts3varint.test fts4aa.test fts4check.test fts4content.test fts4docid.test fts4growth2.test fts4growth.test fts4incr.test fts4langid.test fts4lastrowid.test fts4merge2.test fts4merge4.test fts4merge.test fts4noti.test fts4onepass.test fts4opt.test fts4unicode.test } test_suite "fts5" -prefix "" -description { All FTS5 tests. } -files [glob -nocomplain $::testdir/../ext/fts5/test/*.test] test_suite "fts5-light" -prefix "" -description { | > > | 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | fts3offsets.test fts3prefix2.test fts3prefix.test fts3query.test fts3shared.test fts3snippet.test fts3sort.test fts3tok1.test fts3tok_err.test fts3varint.test fts4aa.test fts4check.test fts4content.test fts4docid.test fts4growth2.test fts4growth.test fts4incr.test fts4langid.test fts4lastrowid.test fts4merge2.test fts4merge4.test fts4merge.test fts4noti.test fts4onepass.test fts4opt.test fts4unicode.test fts3corrupt3.test fts3misc.test } test_suite "fts5" -prefix "" -description { All FTS5 tests. } -files [glob -nocomplain $::testdir/../ext/fts5/test/*.test] test_suite "fts5-light" -prefix "" -description { |
︙ | ︙ |
Changes to tool/addopcodes.tcl.
︙ | ︙ | |||
35 36 37 38 39 40 41 42 43 44 45 46 47 48 | AGG_FUNCTION AGG_COLUMN UMINUS UPLUS REGISTER VECTOR SELECT_COLUMN ASTERISK SPAN SPACE ILLEGAL } if {[lrange $extras end-1 end]!="SPACE ILLEGAL"} { error "SPACE and ILLEGAL must be the last two token codes and they\ | > | 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | AGG_FUNCTION AGG_COLUMN UMINUS UPLUS REGISTER VECTOR SELECT_COLUMN IF_NULL_ROW ASTERISK SPAN SPACE ILLEGAL } if {[lrange $extras end-1 end]!="SPACE ILLEGAL"} { error "SPACE and ILLEGAL must be the last two token codes and they\ |
︙ | ︙ |
Changes to tool/showwal.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #include <fcntl.h> #define ISDIGIT(X) isdigit((unsigned char)(X)) #define ISPRINT(X) isprint((unsigned char)(X)) #if !defined(_MSC_VER) #include <unistd.h> #else #include <io.h> #endif #include <stdlib.h> #include <string.h> | > | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | #include <fcntl.h> #define ISDIGIT(X) isdigit((unsigned char)(X)) #define ISPRINT(X) isprint((unsigned char)(X)) #if !defined(_MSC_VER) #include <unistd.h> #include <sys/types.h> #else #include <io.h> #endif #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
575 576 577 578 579 580 581 582 583 584 585 586 587 588 | nByte = pagesize; } ofst = 32 + hdrSize + (iStart-1)*(pagesize+24) + 24; a = getContent(ofst, nByte); decode_btree_page(a, iStart, hdrSize, zLeft+1); free(a); continue; }else{ iEnd = iStart; } if( iStart<1 || iEnd<iStart || iEnd>mxFrame ){ fprintf(stderr, "Page argument should be LOWER?..UPPER?. Range 1 to %d\n", mxFrame); | > > > > > > > > | 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | nByte = pagesize; } ofst = 32 + hdrSize + (iStart-1)*(pagesize+24) + 24; a = getContent(ofst, nByte); decode_btree_page(a, iStart, hdrSize, zLeft+1); free(a); continue; #if !defined(_MSC_VER) }else if( zLeft && strcmp(zLeft,"truncate")==0 ){ /* Frame number followed by "truncate" truncates the WAL file ** after that frame */ off_t newSize = 32 + iStart*(pagesize+24); truncate(argv[1], newSize); continue; #endif }else{ iEnd = iStart; } if( iStart<1 || iEnd<iStart || iEnd>mxFrame ){ fprintf(stderr, "Page argument should be LOWER?..UPPER?. Range 1 to %d\n", mxFrame); |
︙ | ︙ |