SQLite

Check-in [b1435f26b0]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fix harmless compiler warnings.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: b1435f26b07b2208cfcca557f96342a5bd0d5328
User & Date: drh 2014-03-20 15:14:08.664
Context
2014-03-20
17:03
The "x IN (?)" optimization in check-ins [2ff3b25f40] and [e68b427afb] is incorrect, as demonstrated by the in4-5.1 test case in this check-in. The "COLLATE binary" that was being added to the RHS of IN was overriding the implicit collating sequence of the LHS. This change defines the EP_Generic expression node property that blocks all affinity or collating sequence information in the expression subtree and adds that property to the expression taken from RHS of the IN operator. (check-in: 2ea4a9f75f user: drh tags: trunk)
15:14
Fix harmless compiler warnings. (check-in: b1435f26b0 user: drh tags: trunk)
14:56
Previous check-in is not quite correct. "x IN (?)" is not exactly the same as "x==?" do to collation and affinity issues. The correct converstion should be to "x==(+? COLLATE binary)". The current check-in fixes this problem and provides test cases. Ticket [e39d032577df69] (check-in: 2ff3b25f40 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/expr.c.
61
62
63
64
65
66
67
68




69
70
71
72
73
74
75
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken.   Return a pointer to a new Expr node that
** implements the COLLATE operator.
**
** If a memory allocation error occurs, that fact is recorded in pParse->db
** and the pExpr parameter is returned unchanged.
*/
Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){




  if( pCollName->n>0 ){
    Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
    if( pNew ){
      pNew->pLeft = pExpr;
      pNew->flags |= EP_Collate|EP_Skip;
      pExpr = pNew;
    }







|
>
>
>
>







61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken.   Return a pointer to a new Expr node that
** implements the COLLATE operator.
**
** If a memory allocation error occurs, that fact is recorded in pParse->db
** and the pExpr parameter is returned unchanged.
*/
Expr *sqlite3ExprAddCollateToken(
  Parse *pParse,           /* Parsing context */
  Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
  const Token *pCollName   /* Name of collating sequence */
){
  if( pCollName->n>0 ){
    Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
    if( pNew ){
      pNew->pLeft = pExpr;
      pNew->flags |= EP_Collate|EP_Skip;
      pExpr = pNew;
    }
Changes to src/parse.y.
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to:
      **
      **      expr1 == (+?1 COLLATE binary)
      **      expr1 <> (+?2 COLLATE binary)
      */
      static const Token collBin = { "binary", 6 };
      Expr *pRHS = sqlite3ExprAddCollateToken(pParse, Y->a[0].pExpr, &collBin);
      Y->a[0].pExpr = 0;
      sqlite3ExprListDelete(pParse->db, Y);
      pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0, 0);
      A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0);
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
      if( A.pExpr ){







<
|







1027
1028
1029
1030
1031
1032
1033

1034
1035
1036
1037
1038
1039
1040
1041
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to:
      **
      **      expr1 == (+?1 COLLATE binary)
      **      expr1 <> (+?2 COLLATE binary)
      */

      Expr *pRHS = sqlite3ExprAddCollateString(pParse, Y->a[0].pExpr, "binary");
      Y->a[0].pExpr = 0;
      sqlite3ExprListDelete(pParse->db, Y);
      pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0, 0);
      A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0);
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
      if( A.pExpr ){
Changes to src/sqliteInt.h.
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
#endif

const char *sqlite3ErrStr(int);
int sqlite3ReadSchema(Parse *pParse);
CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*);
Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
Expr *sqlite3ExprSkipCollate(Expr*);
int sqlite3CheckCollSeq(Parse *, CollSeq *);
int sqlite3CheckObjectName(Parse *, const char *);
void sqlite3VdbeSetChanges(sqlite3 *, int);
int sqlite3AddInt64(i64*,i64);
int sqlite3SubInt64(i64*,i64);







|







3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
#endif

const char *sqlite3ErrStr(int);
int sqlite3ReadSchema(Parse *pParse);
CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*);
Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
Expr *sqlite3ExprSkipCollate(Expr*);
int sqlite3CheckCollSeq(Parse *, CollSeq *);
int sqlite3CheckObjectName(Parse *, const char *);
void sqlite3VdbeSetChanges(sqlite3 *, int);
int sqlite3AddInt64(i64*,i64);
int sqlite3SubInt64(i64*,i64);
Changes to src/vdbesort.c.
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        **
        ** Alternatively, if pIter2 contains the smaller of the two values,
        ** set aTree[i] to its index and update pIter1. If vdbeSorterCompare()
        ** was actually called above, then pSorter->pUnpacked now contains
        ** a value equivalent to pIter2. So set pKey2 to NULL to prevent
        ** vdbeSorterCompare() from decoding pIter2 again.  */
        if( iRes<=0 ){
          pSorter->aTree[i] = (pIter1 - pSorter->aIter);
          pIter2 = &pSorter->aIter[ pSorter->aTree[i ^ 0x0001] ];
          pKey2 = pIter2->aKey;
        }else{
          if( pIter1->pFile ) pKey2 = 0;
          pSorter->aTree[i] = (pIter2 - pSorter->aIter);
          pIter1 = &pSorter->aIter[ pSorter->aTree[i ^ 0x0001] ];
        }

      }
      *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
    }
  }else{







|




|







989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        **
        ** Alternatively, if pIter2 contains the smaller of the two values,
        ** set aTree[i] to its index and update pIter1. If vdbeSorterCompare()
        ** was actually called above, then pSorter->pUnpacked now contains
        ** a value equivalent to pIter2. So set pKey2 to NULL to prevent
        ** vdbeSorterCompare() from decoding pIter2 again.  */
        if( iRes<=0 ){
          pSorter->aTree[i] = (int)(pIter1 - pSorter->aIter);
          pIter2 = &pSorter->aIter[ pSorter->aTree[i ^ 0x0001] ];
          pKey2 = pIter2->aKey;
        }else{
          if( pIter1->pFile ) pKey2 = 0;
          pSorter->aTree[i] = (int)(pIter2 - pSorter->aIter);
          pIter1 = &pSorter->aIter[ pSorter->aTree[i ^ 0x0001] ];
        }

      }
      *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
    }
  }else{