SQLite

Check-in [aa48867cfa]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Registerify the AUTOINCREMENT processing and the OP_IsNull and OP_NotNull operators. (CVS 4692)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: aa48867cfa04da265b906e5b583bc7ac6b6a1157
User & Date: drh 2008-01-07 19:20:25.000
Context
2008-01-08
02:57
Progress toward registerification of the constraint checking logic for INSERT and UPDATE. (CVS 4693) (check-in: b9bf509e39 user: drh tags: trunk)
2008-01-07
19:20
Registerify the AUTOINCREMENT processing and the OP_IsNull and OP_NotNull operators. (CVS 4692) (check-in: aa48867cfa user: drh tags: trunk)
10:16
Comment changes in select.c. (CVS 4691) (check-in: 38020592f1 user: danielk1977 tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.335 2008/01/06 00:25:22 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.336 2008/01/07 19:20:25 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

2145
2146
2147
2148
2149
2150
2151
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp0(v, op);
      stackChng = 0;
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      int dest;
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      dest = sqlite3VdbeCurrentAddr(v) + 2;
      sqlite3VdbeAddOp2(v, op, 1, dest);
      sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);

      stackChng = 0;
      inReg = target;
      break;
    }
    case TK_AGG_FUNCTION: {
      AggInfo *pInfo = pExpr->pAggInfo;
      if( pInfo==0 ){







|




<
|

>







2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141

2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp0(v, op);
      stackChng = 0;
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      int addr;
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);

      addr = sqlite3VdbeAddOp0(v, op);
      sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
      sqlite3VdbeJumpHere(v, addr);
      stackChng = 0;
      inReg = target;
      break;
    }
    case TK_AGG_FUNCTION: {
      AggInfo *pInfo = pExpr->pAggInfo;
      if( pInfo==0 ){
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250

2251
2252
2253
2254
2255


2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
      }
      inReg = pExpr->iColumn;
      /* sqlite3VdbeAddOp1(v, OP_SCopy, pExpr->iColumn);
      VdbeComment((v, "load subquery result")); */
      break;
    }
    case TK_IN: {
      int addr;
      char affinity;
      int ckOffset = pParse->ckOffset;
      int eType;
      int iLabel = sqlite3VdbeMakeLabel(v);

      eType = sqlite3FindInIndex(pParse, pExpr, 0);

      /* Figure out the affinity to use to create a key from the results
      ** of the expression. affinityStr stores a static string suitable for
      ** P4 of OP_MakeRecord.
      */
      affinity = comparisonAffinity(pExpr);

      sqlite3VdbeAddOp1(v, OP_Integer, 1);
      pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);

      /* Code the <expr> from "<expr> IN (...)". The temporary table
      ** pExpr->iTable contains the values that make up the (...) set.
      */
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      addr = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
      sqlite3VdbeAddOp1(v, OP_Pop, 2);
      sqlite3VdbeAddOp0(v, OP_Null);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iLabel);

      if( eType==IN_INDEX_ROWID ){
        int iAddr = sqlite3VdbeCurrentAddr(v)+3;
        sqlite3VdbeAddOp2(v, OP_MustBeInt, 1, iAddr);
        sqlite3VdbeAddOp2(v, OP_NotExists, pExpr->iTable, iAddr);
        sqlite3VdbeAddOp2(v, OP_Goto, pExpr->iTable, iLabel);


      }else{
        sqlite3VdbeAddOp4(v, OP_MakeRecord, 1, 0, 0,
                             &affinity, 1);   /* addr + 4 */
        sqlite3VdbeAddOp2(v, OP_Found, pExpr->iTable, iLabel);
      }
      sqlite3VdbeAddOp2(v, OP_AddImm, 0, -1);                  /* addr + 6 */
      sqlite3VdbeResolveLabel(v, iLabel);

      break;
    }
#endif
    case TK_BETWEEN: {
      Expr *pLeft = pExpr->pLeft;
      struct ExprList_item *pLItem = pExpr->pList->a;
      Expr *pRight = pLItem->pExpr;







|



<
















|
|


|
>

<
|
|
|
>
>

|
<
|

|
|
|







2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228

2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251

2252
2253
2254
2255
2256
2257
2258

2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
      }
      inReg = pExpr->iColumn;
      /* sqlite3VdbeAddOp1(v, OP_SCopy, pExpr->iColumn);
      VdbeComment((v, "load subquery result")); */
      break;
    }
    case TK_IN: {
      int j1, j2, j3, j4, j5;
      char affinity;
      int ckOffset = pParse->ckOffset;
      int eType;


      eType = sqlite3FindInIndex(pParse, pExpr, 0);

      /* Figure out the affinity to use to create a key from the results
      ** of the expression. affinityStr stores a static string suitable for
      ** P4 of OP_MakeRecord.
      */
      affinity = comparisonAffinity(pExpr);

      sqlite3VdbeAddOp1(v, OP_Integer, 1);
      pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);

      /* Code the <expr> from "<expr> IN (...)". The temporary table
      ** pExpr->iTable contains the values that make up the (...) set.
      */
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp0(v, OP_SCopy);
      j1 = sqlite3VdbeAddOp0(v, OP_NotNull);
      sqlite3VdbeAddOp1(v, OP_Pop, 2);
      sqlite3VdbeAddOp0(v, OP_Null);
      j2  = sqlite3VdbeAddOp0(v, OP_Goto);
      sqlite3VdbeJumpHere(v, j1);
      if( eType==IN_INDEX_ROWID ){

        j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, 1);
        j4 = sqlite3VdbeAddOp1(v, OP_NotExists, pExpr->iTable);
        j5 = sqlite3VdbeAddOp0(v, OP_Goto);
        sqlite3VdbeJumpHere(v, j3);
        sqlite3VdbeJumpHere(v, j4);
      }else{
        sqlite3VdbeAddOp4(v, OP_MakeRecord, 1, 0, 0, &affinity, 1);

        j5 = sqlite3VdbeAddOp1(v, OP_Found, pExpr->iTable);
      }
      sqlite3VdbeAddOp2(v, OP_AddImm, 0, -1);
      sqlite3VdbeJumpHere(v, j2);
      sqlite3VdbeJumpHere(v, j5);
      break;
    }
#endif
    case TK_BETWEEN: {
      Expr *pLeft = pExpr->pLeft;
      struct ExprList_item *pLItem = pExpr->pList->a;
      Expr *pRight = pLItem->pExpr;
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp2(v, op, 1, dest);
      break;
    }
    case TK_BETWEEN: {
      /* The expression "x BETWEEN y AND z" is implemented as:
      **
      ** 1 IF (x < y) GOTO 3
      ** 2 IF (x <= z) GOTO <dest>







|







2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp2(v, op, 0, dest);
      break;
    }
    case TK_BETWEEN: {
      /* The expression "x BETWEEN y AND z" is implemented as:
      **
      ** 1 IF (x < y) GOTO 3
      ** 2 IF (x <= z) GOTO <dest>
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
      sqlite3ExprCode(pParse, pExpr->pRight, 0);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp2(v, op, 1, dest);
      break;
    }
    case TK_BETWEEN: {
      /* The expression is "x BETWEEN y AND z". It is implemented as:
      **
      ** 1 IF (x >= y) GOTO 3
      ** 2 GOTO <dest>







|







2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
      sqlite3ExprCode(pParse, pExpr->pRight, 0);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp2(v, op, 0, dest);
      break;
    }
    case TK_BETWEEN: {
      /* The expression is "x BETWEEN y AND z". It is implemented as:
      **
      ** 1 IF (x >= y) GOTO 3
      ** 2 GOTO <dest>
Changes to src/insert.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.214 2008/01/06 00:25:22 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.215 2008/01/07 19:20:25 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149


150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
  return 0;
}

#ifndef SQLITE_OMIT_AUTOINCREMENT
/*
** Write out code to initialize the autoincrement logic.  This code
** looks up the current autoincrement value in the sqlite_sequence
** table and stores that value in a memory cell.  Code generated by
** autoIncStep() will keep that memory cell holding the largest
** rowid value.  Code generated by autoIncEnd() will write the new
** largest value of the counter back into the sqlite_sequence table.
**
** This routine returns the index of the mem[] cell that contains
** the maximum rowid counter.
**
** Two memory cells are allocated.  The next memory cell befor the


** one returned holds the rowid in sqlite_sequence where we will
** write back the revised maximum rowid.

*/
static int autoIncBegin(
  Parse *pParse,      /* Parsing context */
  int iDb,            /* Index of the database holding pTab */
  Table *pTab         /* The table we are writing to */
){
  int memId = 0;
  if( pTab->autoInc ){
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int iCur = pParse->nTab;
    int addr;
    assert( v );
    addr = sqlite3VdbeCurrentAddr(v);
    pParse->nMem += 2;
    memId = pParse->nMem;
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);

    sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+12);
    sqlite3VdbeAddOp2(v, OP_Column, iCur, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp2(v, OP_Ne, 0x100, addr+11);
    sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0);
    sqlite3VdbeAddOp2(v, OP_Move, 0, memId-1);
    sqlite3VdbeAddOp2(v, OP_Column, iCur, 1);
    sqlite3VdbeAddOp2(v, OP_Move, 0, memId);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+12);
    sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+3);
    sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  }
  return memId;
}

/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the top of the stack holds a
** new rowid that is about to be inserted.  If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated.  The stack is unchanged.
*/
static void autoIncStep(Parse *pParse, int memId, int iRowid){
  if( memId>0 ){
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, iRowid);
  }
}

/*
** After doing one or more inserts, the maximum rowid is stored
** in mem[memId].  Generate code to write this value back into the
** the sqlite_sequence table.
*/
static void autoIncEnd(
  Parse *pParse,     /* The parsing context */
  int iDb,           /* Index of the database holding pTab */
  Table *pTab,       /* Table we are inserting into */
  int memId          /* Memory cell holding the maximum rowid */
){
  if( pTab->autoInc ){
    int iCur = pParse->nTab;
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int addr;

    assert( v );
    addr = sqlite3VdbeCurrentAddr(v);
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    sqlite3VdbeAddOp2(v, OP_SCopy, memId-1, 0);
    sqlite3VdbeAddOp2(v, OP_NotNull, -1, addr+6);
    sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp1(v, OP_NewRowid, iCur);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp2(v, OP_SCopy, memId, 0);
    sqlite3VdbeAddOp2(v, OP_MakeRecord, 2, 0);
    sqlite3CodeInsert(pParse, iCur, OPFLAG_APPEND);
    sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  }
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/







|
|






|
>
>
|
|
>






|




|

|
|
|

>
|


|
|
<
|
<
|
|













|

|





|












|
>

<

|
<
|
|
|
|
|
|
|







134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
  return 0;
}

#ifndef SQLITE_OMIT_AUTOINCREMENT
/*
** Write out code to initialize the autoincrement logic.  This code
** looks up the current autoincrement value in the sqlite_sequence
** table and stores that value in a register.  Code generated by
** autoIncStep() will keep that register holding the largest
** rowid value.  Code generated by autoIncEnd() will write the new
** largest value of the counter back into the sqlite_sequence table.
**
** This routine returns the index of the mem[] cell that contains
** the maximum rowid counter.
**
** Three consecutive registers are allocated by this routine.  The
** first two hold the name of the target table and the maximum rowid 
** inserted into the target table, respectively.
** The third holds the rowid in sqlite_sequence where we will
** write back the revised maximum rowid.  This routine returns the
** index of the second of these three registers.
*/
static int autoIncBegin(
  Parse *pParse,      /* Parsing context */
  int iDb,            /* Index of the database holding pTab */
  Table *pTab         /* The table we are writing to */
){
  int memId = 0;      /* Register holding maximum rowid */
  if( pTab->autoInc ){
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int iCur = pParse->nTab;
    int addr;               /* Address of the top of the loop */
    assert( v );
    pParse->nMem++;         /* Holds name of table */
    memId = ++pParse->nMem;
    pParse->nMem++;
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    addr = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
    sqlite3VdbeAddOp2(v, OP_Column, iCur, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp2(v, OP_Ne, 0x100, addr+7);
    sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);

    sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);

    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
    sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+1);
    sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  }
  return memId;
}

/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the top of the stack holds a
** new rowid that is about to be inserted.  If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated.  The stack is unchanged.
*/
static void autoIncStep(Parse *pParse, int memId, int regRowid){
  if( memId>0 ){
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
  }
}

/*
** After doing one or more inserts, the maximum rowid is stored
** in reg[memId].  Generate code to write this value back into the
** the sqlite_sequence table.
*/
static void autoIncEnd(
  Parse *pParse,     /* The parsing context */
  int iDb,           /* Index of the database holding pTab */
  Table *pTab,       /* Table we are inserting into */
  int memId          /* Memory cell holding the maximum rowid */
){
  if( pTab->autoInc ){
    int iCur = pParse->nTab;
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int j1;

    assert( v );

    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);

    sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
    sqlite3VdbeJumpHere(v, j1);
    sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
    sqlite3VdbeAddOp3(v, OP_RegMakeRec, memId-1, 2, memId-1);
    sqlite3VdbeAddOp3(v, OP_Insert, iCur, memId-1, memId+1);
    sqlite3VdbeChangeP5(v, -1, OPFLAG_APPEND);
    sqlite3VdbeAddOp1(v, OP_Close, iCur);
  }
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/
337
338
339
340
341
342
343

344
345
346
347
348
349
350

351
352
353
354
355
356
357

358
359
360
361
362
363

364
365
366
367








368
369
370
371
372
373
374
375
376
  Parse *pParse,        /* Parser context */
  SrcList *pTabList,    /* Name of table into which we are inserting */
  ExprList *pList,      /* List of values to be inserted */
  Select *pSelect,      /* A SELECT statement to use as the data source */
  IdList *pColumn,      /* Column names corresponding to IDLIST. */
  int onError           /* How to handle constraint errors */
){

  Table *pTab;          /* The table to insert into */
  char *zTab;           /* Name of the table into which we are inserting */
  const char *zDb;      /* Name of the database holding this table */
  int i, j, idx;        /* Loop counters */
  Vdbe *v;              /* Generate code into this virtual machine */
  Index *pIdx;          /* For looping over indices of the table */
  int nColumn;          /* Number of columns in the data */

  int base = 0;         /* VDBE Cursor number for pTab */
  int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
  sqlite3 *db;          /* The main database structure */
  int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
  int endOfLoop;        /* Label for the end of the insertion loop */
  int useTempTable = 0; /* Store SELECT results in intermediate table */
  int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */

  int iSelectLoop = 0;  /* Address of code that implements the SELECT */
  int iCleanup = 0;     /* Address of the cleanup code */
  int iInsertBlock = 0; /* Address of the subroutine used to insert data */
  int iCntMem = 0;      /* Memory cell used for the row counter */
  int iBaseReg;         /* Base register for data */
  int newIdx = -1;      /* Cursor for the NEW table */

  Db *pDb;              /* The database containing table being inserted into */
  int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */
  int appendFlag = 0;   /* True if the insert is likely to be an append */
  int iDb;









  int nHidden = 0;

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                 /* True if attempting to insert into a view */
  int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
#endif

  db = pParse->db;







>
|






>

<
<




>



<
<
|
>

<

|
>
>
>
>
>
>
>
>

<







338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354


355
356
357
358
359
360
361
362


363
364
365

366
367
368
369
370
371
372
373
374
375
376

377
378
379
380
381
382
383
  Parse *pParse,        /* Parser context */
  SrcList *pTabList,    /* Name of table into which we are inserting */
  ExprList *pList,      /* List of values to be inserted */
  Select *pSelect,      /* A SELECT statement to use as the data source */
  IdList *pColumn,      /* Column names corresponding to IDLIST. */
  int onError           /* How to handle constraint errors */
){
  sqlite3 *db;          /* The main database structure */
  Table *pTab;          /* The table to insert into.  aka TABLE */
  char *zTab;           /* Name of the table into which we are inserting */
  const char *zDb;      /* Name of the database holding this table */
  int i, j, idx;        /* Loop counters */
  Vdbe *v;              /* Generate code into this virtual machine */
  Index *pIdx;          /* For looping over indices of the table */
  int nColumn;          /* Number of columns in the data */
  int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
  int base = 0;         /* VDBE Cursor number for pTab */


  int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
  int endOfLoop;        /* Label for the end of the insertion loop */
  int useTempTable = 0; /* Store SELECT results in intermediate table */
  int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
  int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
  int iSelectLoop = 0;  /* Address of code that implements the SELECT */
  int iCleanup = 0;     /* Address of the cleanup code */
  int iInsertBlock = 0; /* Address of the subroutine used to insert data */


  int newIdx = -1;      /* Cursor for the NEW pseudo-table */
  int iDb;              /* Index of database holding TABLE */
  Db *pDb;              /* The database containing table being inserted into */

  int appendFlag = 0;   /* True if the insert is likely to be an append */

  /* Register allocations */
  int regFromSelect;    /* Base register for data coming from SELECT */
  int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
  int regRowCount = 0;  /* Memory cell used for the row counter */
  int regIns;           /* Block of regs holding rowid+data being inserted */
  int regRowid;         /* registers holding insert rowid */
  int regData;          /* register holding first column to insert */
  int regRecord;        /* Holds the assemblied row record */



#ifndef SQLITE_OMIT_TRIGGER
  int isView;                 /* True if attempting to insert into a view */
  int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
#endif

  db = pParse->db;
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    assert( !triggers_exist );
    assert( pList==0 );
    goto insert_cleanup;
  }
#endif /* SQLITE_OMIT_XFER_OPT */

  /* If this is an AUTOINCREMENT table, look up the sequence number in the
  ** sqlite_sequence table and store it in memory cell counterMem.  Also
  ** remember the rowid of the sqlite_sequence table entry in memory cell
  ** counterRowid.
  */
  counterMem = autoIncBegin(pParse, iDb, pTab);

  /* Figure out how many columns of data are supplied.  If the data
  ** is coming from a SELECT statement, then this step also generates
  ** all the code to implement the SELECT statement and invoke a subroutine
  ** to process each row of the result. (Template 2.) If the SELECT
  ** statement uses the the table that is being inserted into, then the
  ** subroutine is also coded here.  That subroutine stores the SELECT







|
<
<

|







458
459
460
461
462
463
464
465


466
467
468
469
470
471
472
473
474
    assert( !triggers_exist );
    assert( pList==0 );
    goto insert_cleanup;
  }
#endif /* SQLITE_OMIT_XFER_OPT */

  /* If this is an AUTOINCREMENT table, look up the sequence number in the
  ** sqlite_sequence table and store it in memory cell regAutoinc.


  */
  regAutoinc = autoIncBegin(pParse, iDb, pTab);

  /* Figure out how many columns of data are supplied.  If the data
  ** is coming from a SELECT statement, then this step also generates
  ** all the code to implement the SELECT statement and invoke a subroutine
  ** to process each row of the result. (Template 2.) If the SELECT
  ** statement uses the the table that is being inserted into, then the
  ** subroutine is also coded here.  That subroutine stores the SELECT
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

    /* Resolve the expressions in the SELECT statement and execute it. */
    rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
    if( rc || pParse->nErr || db->mallocFailed ){
      goto insert_cleanup;
    }

    iBaseReg = dest.iMem;
    iCleanup = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table.  Set to FALSE if each







|







487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

    /* Resolve the expressions in the SELECT statement and execute it. */
    rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
    if( rc || pParse->nErr || db->mallocFailed ){
      goto insert_cleanup;
    }

    regFromSelect = dest.iMem;
    iCleanup = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table.  Set to FALSE if each
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

    if( useTempTable ){
      /* Generate the subroutine that SELECT calls to process each row of
      ** the result.  Store the result in a temporary table
      */
      srcTab = pParse->nTab++;
      sqlite3VdbeResolveLabel(v, iInsertBlock);
      sqlite3VdbeAddOp2(v, OP_RegMakeRec, iBaseReg, nColumn);
      sqlite3VdbeAddOp1(v, OP_NewRowid, srcTab);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3CodeInsert(pParse, srcTab, OPFLAG_APPEND);
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);

      /* The following code runs first because the GOTO at the very top
      ** of the program jumps to it.  Create the temporary table, then jump







|







511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

    if( useTempTable ){
      /* Generate the subroutine that SELECT calls to process each row of
      ** the result.  Store the result in a temporary table
      */
      srcTab = pParse->nTab++;
      sqlite3VdbeResolveLabel(v, iInsertBlock);
      sqlite3VdbeAddOp2(v, OP_RegMakeRec, regFromSelect, nColumn);
      sqlite3VdbeAddOp1(v, OP_NewRowid, srcTab);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3CodeInsert(pParse, srcTab, OPFLAG_APPEND);
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);

      /* The following code runs first because the GOTO at the very top
      ** of the program jumps to it.  Create the temporary table, then jump
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647












648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

665
666
667

668
669

670
671
672
673
674
675
676
677
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, newIdx, pTab->nCol);
  }
    
  /* Initialize the count of rows to be inserted
  */
  if( db->flags & SQLITE_CountRows ){
    iCntMem = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, iCntMem);
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    base = pParse->nTab;
    sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
  }

  /* If the data source is a temporary table, then we have to create
  ** a loop because there might be multiple rows of data.  If the data
  ** source is a subroutine call from the SELECT statement, then we need
  ** to launch the SELECT statement processing.
  */
  if( useTempTable ){
    iBreak = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
    iCont = sqlite3VdbeCurrentAddr(v);
  }else if( pSelect ){
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
    sqlite3VdbeResolveLabel(v, iInsertBlock);
    sqlite3RegToStack(pParse, iBaseReg, nColumn);
    sqlite3VdbeAddOp2(v, OP_StackDepth, -1, 0);
  }













  /* Run the BEFORE and INSTEAD OF triggers, if there are any
  */
  endOfLoop = sqlite3VdbeMakeLabel(v);
  if( triggers_exist & TRIGGER_BEFORE ){

    /* build the NEW.* reference row.  Note that if there is an INTEGER
    ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
    ** translated into a unique ID for the row.  But on a BEFORE trigger,
    ** we do not know what the unique ID will be (because the insert has
    ** not happened yet) so we substitute a rowid of -1
    */
    if( keyColumn<0 ){
      sqlite3VdbeAddOp2(v, OP_Integer, -1, 0);
    }else if( useTempTable ){
      sqlite3VdbeAddOp2(v, OP_Column, srcTab, keyColumn);
    }else{

      assert( pSelect==0 );  /* Otherwise useTempTable is true */
      sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, 0);
      sqlite3VdbeAddOp2(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);

      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Integer, -1, 0);

      sqlite3VdbeAddOp2(v, OP_MustBeInt, 0, 0);
    }

    /* Cannot have triggers on a virtual table. If it were possible,
    ** this block would have to account for hidden column.
    */
    assert(!IsVirtual(pTab));








|
|




















|


>
>
>
>
>
>
>
>
>
>
>
>

















>


|
>
|
|
>
|







621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, newIdx, pTab->nCol);
  }
    
  /* Initialize the count of rows to be inserted
  */
  if( db->flags & SQLITE_CountRows ){
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    base = pParse->nTab;
    sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
  }

  /* If the data source is a temporary table, then we have to create
  ** a loop because there might be multiple rows of data.  If the data
  ** source is a subroutine call from the SELECT statement, then we need
  ** to launch the SELECT statement processing.
  */
  if( useTempTable ){
    iBreak = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
    iCont = sqlite3VdbeCurrentAddr(v);
  }else if( pSelect ){
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
    sqlite3VdbeResolveLabel(v, iInsertBlock);
    sqlite3RegToStack(pParse, regFromSelect, nColumn);
    sqlite3VdbeAddOp2(v, OP_StackDepth, -1, 0);
  }

  /* Allocate registers for holding the rowid of the new row,
  ** the content of the new row, and the assemblied row record.
  */
  regRecord = ++pParse->nMem;
  regRowid = regIns = pParse->nMem+1;
  pParse->nMem += pTab->nCol + 1;
  if( IsVirtual(pTab) ){
    regRowid++;
    pParse->nMem++;
  }
  regData = regRowid+1;

  /* Run the BEFORE and INSTEAD OF triggers, if there are any
  */
  endOfLoop = sqlite3VdbeMakeLabel(v);
  if( triggers_exist & TRIGGER_BEFORE ){

    /* build the NEW.* reference row.  Note that if there is an INTEGER
    ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
    ** translated into a unique ID for the row.  But on a BEFORE trigger,
    ** we do not know what the unique ID will be (because the insert has
    ** not happened yet) so we substitute a rowid of -1
    */
    if( keyColumn<0 ){
      sqlite3VdbeAddOp2(v, OP_Integer, -1, 0);
    }else if( useTempTable ){
      sqlite3VdbeAddOp2(v, OP_Column, srcTab, keyColumn);
    }else{
      int j1;
      assert( pSelect==0 );  /* Otherwise useTempTable is true */
      sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, 0);
      sqlite3VdbeAddOp0(v, OP_SCopy);
      j1 = sqlite3VdbeAddOp0(v, OP_NotNull);
      sqlite3VdbeAddOp1(v, OP_Pop, 1);
      sqlite3VdbeAddOp1(v, OP_Integer, -1);
      sqlite3VdbeJumpHere(v, j1);
      sqlite3VdbeAddOp0(v, OP_MustBeInt);
    }

    /* Cannot have triggers on a virtual table. If it were possible,
    ** this block would have to account for hidden column.
    */
    assert(!IsVirtual(pTab));

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

  /* Push the record number for the new entry onto the stack.  The
  ** record number is a randomly generate integer created by NewRowid
  ** except when the table has an INTEGER PRIMARY KEY column, in which
  ** case the record number is the same as that column. 
  */
  if( !isView ){
    int iReg = pParse->nMem+1;
    int iRowid = iReg+(IsVirtual(pTab)?1:0);
    pParse->nMem += pTab->nCol + (IsVirtual(pTab)?2:1);

    if( IsVirtual(pTab) ){
      /* The row that the VUpdate opcode will delete: none */
      sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
    }
    if( keyColumn>=0 ){
      if( useTempTable ){
        sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, iRowid);
      }else if( pSelect ){
        sqlite3VdbeAddOp2(v, OP_SCopy, -(nColumn - keyColumn - 1), iRowid);
      }else{
        VdbeOp *pOp;
        sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, 0);
        pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
        if( pOp && pOp->opcode==OP_Null ){
          appendFlag = 1;
          pOp->opcode = OP_NewRowid;
          pOp->p1 = base;
          pOp->p2 = iRowid;
          pOp->p3 = counterMem;
        }else{
          /* TODO: Avoid this use of the stack. */
          sqlite3VdbeAddOp2(v, OP_Move, 0, iRowid);
        }
      }
      /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
      ** to generate a unique primary key value.
      */
      if( !appendFlag ){
        sqlite3VdbeAddOp2(v, OP_IfMemNull, iRowid, sqlite3VdbeCurrentAddr(v)+2);
        sqlite3VdbeAddOp2(v, OP_Goto, -1, sqlite3VdbeCurrentAddr(v)+2);
        sqlite3VdbeAddOp3(v, OP_NewRowid, base, iRowid, counterMem);
        sqlite3VdbeAddOp3(v, OP_MustBeInt, 0, 0, iRowid);
      }
    }else if( IsVirtual(pTab) ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, iRowid);
    }else{
      sqlite3VdbeAddOp3(v, OP_NewRowid, base, iRowid, counterMem);
      appendFlag = 1;
    }
    autoIncStep(pParse, counterMem, iRowid);

    /* Push onto the stack, data for all columns of the new entry, beginning
    ** with the first column.
    */
    nHidden = 0;
    for(i=0; i<pTab->nCol; i++){
      int iRegStore = iRowid+1+i;
      if( i==pTab->iPKey ){
        /* The value of the INTEGER PRIMARY KEY column is always a NULL.
        ** Whenever this column is read, the record number will be substituted
        ** in its place.  So will fill this column with a NULL to avoid
        ** taking up data space with information that will never be used. */
        sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
        continue;







<
<
<
<


|



|

|








|
|


|






|

|
|


|

|


|






|







735
736
737
738
739
740
741




742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

  /* Push the record number for the new entry onto the stack.  The
  ** record number is a randomly generate integer created by NewRowid
  ** except when the table has an INTEGER PRIMARY KEY column, in which
  ** case the record number is the same as that column. 
  */
  if( !isView ){




    if( IsVirtual(pTab) ){
      /* The row that the VUpdate opcode will delete: none */
      sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
    }
    if( keyColumn>=0 ){
      if( useTempTable ){
        sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
      }else if( pSelect ){
        sqlite3VdbeAddOp2(v, OP_SCopy, -(nColumn - keyColumn - 1), regRowid);
      }else{
        VdbeOp *pOp;
        sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, 0);
        pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
        if( pOp && pOp->opcode==OP_Null ){
          appendFlag = 1;
          pOp->opcode = OP_NewRowid;
          pOp->p1 = base;
          pOp->p2 = regRowid;
          pOp->p3 = regAutoinc;
        }else{
          /* TODO: Avoid this use of the stack. */
          sqlite3VdbeAddOp2(v, OP_Move, 0, regRowid);
        }
      }
      /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
      ** to generate a unique primary key value.
      */
      if( !appendFlag ){
        sqlite3VdbeAddOp2(v, OP_IfMemNull, regRowid, sqlite3VdbeCurrentAddr(v)+2);
        sqlite3VdbeAddOp2(v, OP_Goto, -1, sqlite3VdbeCurrentAddr(v)+2);
        sqlite3VdbeAddOp3(v, OP_NewRowid, base, regRowid, regAutoinc);
        sqlite3VdbeAddOp3(v, OP_MustBeInt, 0, 0, regRowid);
      }
    }else if( IsVirtual(pTab) ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
    }else{
      sqlite3VdbeAddOp3(v, OP_NewRowid, base, regRowid, regAutoinc);
      appendFlag = 1;
    }
    autoIncStep(pParse, regAutoinc, regRowid);

    /* Push onto the stack, data for all columns of the new entry, beginning
    ** with the first column.
    */
    nHidden = 0;
    for(i=0; i<pTab->nCol; i++){
      int iRegStore = regRowid+1+i;
      if( i==pTab->iPKey ){
        /* The value of the INTEGER PRIMARY KEY column is always a NULL.
        ** Whenever this column is read, the record number will be substituted
        ** in its place.  So will fill this column with a NULL to avoid
        ** taking up data space with information that will never be used. */
        sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
        continue;
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

    /* Generate code to check constraints and generate index keys and
    ** do the insertion.
    */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      pParse->pVirtualLock = pTab;
      sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, iReg,
                     (const char*)pTab->pVtab, P4_VTAB);
    }else
#endif
    {
      sqlite3RegToStack(pParse, iReg, pTab->nCol+1);
      sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
                                     0, onError, endOfLoop);
      sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
                            (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
                            appendFlag);
    }
  }

  /* Update the count of rows that are inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0 ){
    sqlite3VdbeAddOp2(v, OP_AddImm, iCntMem, 1);
  }

  if( triggers_exist ){
    /* Code AFTER triggers */
    if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
          newIdx, -1, onError, endOfLoop, 0, 0) ){
      goto insert_cleanup;







|




|











|







820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

    /* Generate code to check constraints and generate index keys and
    ** do the insertion.
    */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      pParse->pVirtualLock = pTab;
      sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
                     (const char*)pTab->pVtab, P4_VTAB);
    }else
#endif
    {
      sqlite3RegToStack(pParse, regIns, pTab->nCol+1);
      sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
                                     0, onError, endOfLoop);
      sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
                            (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
                            appendFlag);
    }
  }

  /* Update the count of rows that are inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0 ){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }

  if( triggers_exist ){
    /* Code AFTER triggers */
    if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
          newIdx, -1, onError, endOfLoop, 0, 0) ){
      goto insert_cleanup;
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    sqlite3VdbeAddOp2(v, OP_Close, base, 0);
    for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
      sqlite3VdbeAddOp2(v, OP_Close, idx+base, 0);
    }
  }

  /* Update the sqlite_sequence table by storing the content of the
  ** counter value in memory counterMem back into the sqlite_sequence
  ** table.
  */
  autoIncEnd(pParse, iDb, pTab, counterMem);

  /*
  ** Return the number of rows inserted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, iCntMem, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
  }

insert_cleanup:
  sqlite3SrcListDelete(pTabList);
  sqlite3ExprListDelete(pList);
  sqlite3SelectDelete(pSelect);
  sqlite3IdListDelete(pColumn);
}

/*
** Generate code to do a constraint check prior to an INSERT or an UPDATE.
**
** When this routine is called, the stack contains (from bottom to top)
** the following values:
**
**    1.  The rowid of the row to be updated before the update.  This
**        value is omitted unless we are doing an UPDATE that involves a
**        change to the record number.
**
**    2.  The rowid of the row after the update.
**
**    3.  The data in the first column of the entry after the update.
**
**    i.  Data from middle columns...
**







|


|







|












|






|







870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    sqlite3VdbeAddOp2(v, OP_Close, base, 0);
    for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
      sqlite3VdbeAddOp2(v, OP_Close, idx+base, 0);
    }
  }

  /* Update the sqlite_sequence table by storing the content of the
  ** counter value in memory regAutoinc back into the sqlite_sequence
  ** table.
  */
  autoIncEnd(pParse, iDb, pTab, regAutoinc);

  /*
  ** Return the number of rows inserted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
  }

insert_cleanup:
  sqlite3SrcListDelete(pTabList);
  sqlite3ExprListDelete(pList);
  sqlite3SelectDelete(pSelect);
  sqlite3IdListDelete(pColumn);
}

/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE.
**
** When this routine is called, the stack contains (from bottom to top)
** the following values:
**
**    1.  The rowid of the row to be updated before the update.  This
**        value is omitted unless we are doing an UPDATE that involves a
**        change to the record number. (Or writing to a virtual table.)
**
**    2.  The rowid of the row after the update.
**
**    3.  The data in the first column of the entry after the update.
**
**    i.  Data from middle columns...
**
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;
    }
    sqlite3VdbeAddOp1(v, OP_SCopy, -(nCol-1-i));
    addr = sqlite3VdbeAddOp2(v, OP_NotNull, 1, 0);
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        char *zMsg = 0;







|







1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;
    }
    sqlite3VdbeAddOp1(v, OP_SCopy, -(nCol-1-i));
    addr = sqlite3VdbeAddOp0(v, OP_NotNull);
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        char *zMsg = 0;
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
  int iDbSrc;                      /* The database of pSrc */
  int iSrc, iDest;                 /* Cursors from source and destination */
  int addr1, addr2;                /* Loop addresses */
  int emptyDestTest;               /* Address of test for empty pDest */
  int emptySrcTest;                /* Address of test for empty pSrc */
  Vdbe *v;                         /* The VDBE we are building */
  KeyInfo *pKey;                   /* Key information for an index */
  int counterMem;                  /* Memory register used by AUTOINC */
  int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */

  if( pSelect==0 ){
    return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
  }
  if( pDest->pTrigger ){
    return 0;   /* tab1 must not have triggers */







|







1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
  int iDbSrc;                      /* The database of pSrc */
  int iSrc, iDest;                 /* Cursors from source and destination */
  int addr1, addr2;                /* Loop addresses */
  int emptyDestTest;               /* Address of test for empty pDest */
  int emptySrcTest;                /* Address of test for empty pSrc */
  Vdbe *v;                         /* The VDBE we are building */
  KeyInfo *pKey;                   /* Key information for an index */
  int regAutoinc;                  /* Memory register used by AUTOINC */
  int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */

  if( pSelect==0 ){
    return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
  }
  if( pDest->pTrigger ){
    return 0;   /* tab1 must not have triggers */
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
  sqlite3_xferopt_count++;
#endif
  iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
  v = sqlite3GetVdbe(pParse);
  sqlite3CodeVerifySchema(pParse, iDbSrc);
  iSrc = pParse->nTab++;
  iDest = pParse->nTab++;
  counterMem = autoIncBegin(pParse, iDbDest, pDest);
  sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
  if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
    /* If tables do not have an INTEGER PRIMARY KEY and there
    ** are indices to be copied and the destination is not empty,
    ** we have to disallow the transfer optimization because the
    ** the rowids might change which will mess up indexing.
    **







|







1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
  sqlite3_xferopt_count++;
#endif
  iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
  v = sqlite3GetVdbe(pParse);
  sqlite3CodeVerifySchema(pParse, iDbSrc);
  iSrc = pParse->nTab++;
  iDest = pParse->nTab++;
  regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
  sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
  if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
    /* If tables do not have an INTEGER PRIMARY KEY and there
    ** are indices to be copied and the destination is not empty,
    ** we have to disallow the transfer optimization because the
    ** the rowids might change which will mess up indexing.
    **
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, 0);
    sqlite3VdbeAddOp0(v, OP_Copy);
    addr2 = sqlite3VdbeAddOp2(v, OP_NotExists, iDest, 0);
    sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
                      "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, counterMem, 0);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp1(v, OP_NewRowid, iDest);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, 0);
    assert( pDest->autoInc==0 );
  }
  sqlite3VdbeAddOp2(v, OP_RowData, iSrc, 0);
  sqlite3CodeInsert(pParse,iDest,OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
  sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
  sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
  autoIncEnd(pParse, iDbDest, pDest, counterMem);
  for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
    for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
      if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
    }
    assert( pSrcIdx );
    sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
    sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);







|










|







1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, 0);
    sqlite3VdbeAddOp0(v, OP_Copy);
    addr2 = sqlite3VdbeAddOp2(v, OP_NotExists, iDest, 0);
    sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
                      "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, 0);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp1(v, OP_NewRowid, iDest);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, 0);
    assert( pDest->autoInc==0 );
  }
  sqlite3VdbeAddOp2(v, OP_RowData, iSrc, 0);
  sqlite3CodeInsert(pParse,iDest,OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
  sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
  sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
  autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
  for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
    for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
      if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
    }
    assert( pSrcIdx );
    sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
    sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
Changes to src/pragma.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
** $Id: pragma.c,v 1.161 2008/01/05 16:29:28 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/* Ignore this whole file if pragmas are disabled
*/
#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
** $Id: pragma.c,v 1.162 2008/01/07 19:20:25 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/* Ignore this whole file if pragmas are disabled
*/
#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 0);
          cnt++;
        }
      }
      if( cnt==0 ) continue;
      sqlite3VdbeAddOp2(v, OP_IntegrityCk, 1, i);
      addr = sqlite3VdbeAddOp2(v, OP_IsNull, -1, 0);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
         P4_DYNAMIC);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp0(v, OP_Concat);
      sqlite3VdbeAddOp2(v, OP_Callback, 1, 0);
      sqlite3VdbeJumpHere(v, addr);







|







878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 0);
          cnt++;
        }
      }
      if( cnt==0 ) continue;
      sqlite3VdbeAddOp2(v, OP_IntegrityCk, 1, i);
      addr = sqlite3VdbeAddOp2(v, OP_StackIsNull, -1, 0);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
         P4_DYNAMIC);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp0(v, OP_Concat);
      sqlite3VdbeAddOp2(v, OP_Callback, 1, 0);
      sqlite3VdbeJumpHere(v, addr);
Changes to src/select.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.391 2008/01/07 10:16:41 danielk1977 Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.392 2008/01/07 19:20:25 drh Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
805
806
807
808
809
810
811

812
813

814
815

816
817

818
819
820
821
822
823
824
      sqlite3VdbeAddOp1(v, OP_NewRowid, iParm);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3CodeInsert(pParse, iParm, OPFLAG_APPEND);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case SRT_Set: {

      assert( nColumn==1 );
      sqlite3VdbeAddOp2(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);

      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);

      sqlite3VdbeAddOp4(v, OP_MakeRecord, 1, 0, 0, &p->affinity, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, 0);

      break;
    }
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp2(v, OP_Move, 0, iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;







>

|
>
|
|
>


>







805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
      sqlite3VdbeAddOp1(v, OP_NewRowid, iParm);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3CodeInsert(pParse, iParm, OPFLAG_APPEND);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case SRT_Set: {
      int j1, j2;
      assert( nColumn==1 );
      sqlite3VdbeAddOp0(v, OP_SCopy);
      j1 = sqlite3VdbeAddOp0(v, OP_NotNull);
      sqlite3VdbeAddOp1(v, OP_Pop, 1);
      j2 = sqlite3VdbeAddOp0(v, OP_Goto);
      sqlite3VdbeJumpHere(v, j1);
      sqlite3VdbeAddOp4(v, OP_MakeRecord, 1, 0, 0, &p->affinity, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, 0);
      sqlite3VdbeJumpHere(v, j2);
      break;
    }
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp2(v, OP_Move, 0, iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.686 2008/01/06 00:25:22 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.687 2008/01/07 19:20:25 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137


2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155


2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167

2168
2169
2170
2171
2172
2173
2174
  }
  Release(pTos);
  pTos--;
  if( c ) pc = pOp->p2-1;
  break;
}

/* Opcode: IsNull P1 P2 *
**
** Check the top of the stack and jump to P2 if the top of the stack
** is NULL.  If P1 is positive, then pop P1 elements from the stack
** regardless of whether or not the jump is taken.  If P1 is negative,
** pop -P1 elements from the stack only if the jump is taken and leave
** the stack unchanged if the jump is not taken.
*/
case OP_IsNull: {            /* same as TK_ISNULL, no-push, jump */
  if( pTos->flags & MEM_Null ){
    pc = pOp->p2-1;
    if( pOp->p1<0 ){
      popStack(&pTos, -pOp->p1);
    }
  }
  if( pOp->p1>0 ){
    popStack(&pTos, pOp->p1);
  }
  break;
}

/* Opcode: AnyNull P1 P2 P3 * *
**
** Check P3 registers beginning with P1.  If any are NULL then jump
** to P2.


*/
case OP_AnyNull: {            /* no-push, jump, in1 */
  int n = pOp->p3;
  assert( n>0 && pOp->p1+n<=p->nMem );
  while( n>0 ){
    if( pIn1->flags & MEM_Null ){
      pc = pOp->p2-1;
      break;
    }
    n--;
    pIn1++;
  }
  break;
}

/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top abs(P1) values on the stack are all not NULL.  


** Regardless of whether or not the jump is taken, pop the stack
** P1 times if P1 is greater than zero.  But if P1 is negative,
** leave the stack unchanged.
*/
case OP_NotNull: {            /* same as TK_NOTNULL, no-push, jump */
  int i, cnt;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  assert( &pTos[1-cnt] >= p->aStack );
  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
  if( i>=cnt ) pc = pOp->p2-1;
  if( pOp->p1>0 ) popStack(&pTos, cnt);

  break;
}

/* Opcode: SetNumColumns P1 P2 *
**
** Before the OP_Column opcode can be executed on a cursor, this
** opcode must be called to set the number of fields in the table.







|







|












|

|
|
>
>

|
<
<
<
|
|
<
<
<
<






|
>
>
|
<
<

|
<
<
<
<
|
|
<
>







2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141



2142
2143




2144
2145
2146
2147
2148
2149
2150
2151
2152
2153


2154
2155




2156
2157

2158
2159
2160
2161
2162
2163
2164
2165
  }
  Release(pTos);
  pTos--;
  if( c ) pc = pOp->p2-1;
  break;
}

/* Opcode: StackIsNull P1 P2 *
**
** Check the top of the stack and jump to P2 if the top of the stack
** is NULL.  If P1 is positive, then pop P1 elements from the stack
** regardless of whether or not the jump is taken.  If P1 is negative,
** pop -P1 elements from the stack only if the jump is taken and leave
** the stack unchanged if the jump is not taken.
*/
case OP_StackIsNull: {            /* no-push, jump */
  if( pTos->flags & MEM_Null ){
    pc = pOp->p2-1;
    if( pOp->p1<0 ){
      popStack(&pTos, -pOp->p1);
    }
  }
  if( pOp->p1>0 ){
    popStack(&pTos, pOp->p1);
  }
  break;
}

/* Opcode: IsNull P1 P2 *
**
** Jump to P2 if the value in register P1 is NULL.
**
** If P1 is 0 then use the top of the stack instead of a register
** and pop the stack regardless of whether or not the jump is taken.
*/
case OP_IsNull: {            /* same as TK_ISNULL, no-push, jump, in1 */



  if( (pIn1->flags & MEM_Null)!=0 ){
    pc = pOp->p2 - 1;




  }
  break;
}

/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the value in register P1 is not NULL.  
**
** If P1 is 0 then use the top of the stack instead of a register
** and pop the stack regardless of whether or not the jump is taken.


*/
case OP_NotNull: {            /* same as TK_NOTNULL, no-push, jump, in1 */




  if( (pIn1->flags & MEM_Null)==0 ){
    pc = pOp->p2 - 1;

  }
  break;
}

/* Opcode: SetNumColumns P1 P2 *
**
** Before the OP_Column opcode can be executed on a cursor, this
** opcode must be called to set the number of fields in the table.
Changes to src/where.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.276 2008/01/05 17:39:30 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.277 2008/01/07 19:20:25 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
                                    sizeof(pLevel->aInLoop[0])*pLevel->nIn);
    pIn = pLevel->aInLoop;
    if( pIn ){
      int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column);
      pIn += pLevel->nIn - 1;
      pIn->iCur = iTab;
      pIn->topAddr = sqlite3VdbeAddOp2(v, op, iTab, 0);
      sqlite3VdbeAddOp2(v, OP_IsNull, -1, 0);
    }else{
      pLevel->nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);
}







|







1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
                                    sizeof(pLevel->aInLoop[0])*pLevel->nIn);
    pIn = pLevel->aInLoop;
    if( pIn ){
      int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column);
      pIn += pLevel->nIn - 1;
      pIn->iCur = iTab;
      pIn->topAddr = sqlite3VdbeAddOp2(v, op, iTab, 0);
      sqlite3VdbeAddOp2(v, OP_StackIsNull, -1, 0);
    }else{
      pLevel->nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);
}
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
  for(j=0; j<nEq; j++){
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
    if( pTerm==0 ) break;
    assert( (pTerm->flags & TERM_CODED)==0 );
    codeEqualityTerm(pParse, pTerm, pLevel);
    if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
      sqlite3VdbeAddOp2(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
    }
    if( termsInMem ){
      sqlite3VdbeAddOp2(v, OP_Move, 0, pLevel->iMem+j+1);
    }
  }

  /* Make sure all the constraint values are on the top of the stack







|







1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
  for(j=0; j<nEq; j++){
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
    if( pTerm==0 ) break;
    assert( (pTerm->flags & TERM_CODED)==0 );
    codeEqualityTerm(pParse, pTerm, pLevel);
    if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
      sqlite3VdbeAddOp2(v, OP_StackIsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
    }
    if( termsInMem ){
      sqlite3VdbeAddOp2(v, OP_Move, 0, pLevel->iMem+j+1);
    }
  }

  /* Make sure all the constraint values are on the top of the stack
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight, 0);
        sqlite3VdbeAddOp2(v, OP_IsNull, -(nEq*2+1), nxt);
        topEq = pTerm->eOperator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
        testOp = OP_IdxGE;
      }else{
        testOp = nEq>0 ? OP_IdxGE : OP_Noop;
        topEq = 1;
      }







|







2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight, 0);
        sqlite3VdbeAddOp2(v, OP_StackIsNull, -(nEq*2+1), nxt);
        topEq = pTerm->eOperator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
        testOp = OP_IdxGE;
      }else{
        testOp = nEq>0 ? OP_IdxGE : OP_Noop;
        topEq = 1;
      }
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight, 0);
        sqlite3VdbeAddOp2(v, OP_IsNull, -(nEq+1), nxt);
        btmEq = pTerm->eOperator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
      }else{
        btmEq = 1;
      }
      if( nEq>0 || btmLimit || (isMinQuery&&!bRev) ){
        int nCol = nEq + btmLimit;







|







2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight, 0);
        sqlite3VdbeAddOp2(v, OP_StackIsNull, -(nEq+1), nxt);
        btmEq = pTerm->eOperator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
      }else{
        btmEq = 1;
      }
      if( nEq>0 || btmLimit || (isMinQuery&&!bRev) ){
        int nCol = nEq + btmLimit;
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
        sqlite3VdbeAddOp2(v, testOp, iIdxCur, nxt);
        if( (topEq && !bRev) || (!btmEq && bRev) ){
          sqlite3VdbeChangeP4(v, -1, "+", P4_STATIC);
        }
      }
      if( topLimit | btmLimit ){
        sqlite3VdbeAddOp2(v, OP_Column, iIdxCur, nEq);
        sqlite3VdbeAddOp2(v, OP_IsNull, 1, cont);
      }
      if( !omitTable ){
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, 0);
        sqlite3VdbeAddOp2(v, OP_MoveGe, iCur, 0);
      }

      /* Record the instruction used to terminate the loop.







|







2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
        sqlite3VdbeAddOp2(v, testOp, iIdxCur, nxt);
        if( (topEq && !bRev) || (!btmEq && bRev) ){
          sqlite3VdbeChangeP4(v, -1, "+", P4_STATIC);
        }
      }
      if( topLimit | btmLimit ){
        sqlite3VdbeAddOp2(v, OP_Column, iIdxCur, nEq);
        sqlite3VdbeAddOp2(v, OP_StackIsNull, 1, cont);
      }
      if( !omitTable ){
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, 0);
        sqlite3VdbeAddOp2(v, OP_MoveGe, iCur, 0);
      }

      /* Record the instruction used to terminate the loop.
Changes to test/tester.tcl.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.95 2008/01/04 19:10:29 danielk1977 Exp $


set tcl_precision 15
set sqlite_pending_byte 0x0010000

# 
# Check the command-line arguments for a default soft-heap-limit.













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.96 2008/01/07 19:20:25 drh Exp $


set tcl_precision 15
set sqlite_pending_byte 0x0010000

# 
# Check the command-line arguments for a default soft-heap-limit.
47
48
49
50
51
52
53














54
55
56
57
58
59
60
for {set i 0} {$i<[llength $argv]} {incr i} {
  if {[regexp {^--backtrace=(\d+)$} [lindex $argv $i] all value]} {
    sqlite3_memdebug_backtrace $value
    set argv [lreplace $argv $i $i]
  }
}
















# Use the pager codec if it is available
#
if {[sqlite3 -has-codec] && [info command sqlite_orig]==""} {
  rename sqlite3 sqlite_orig
  proc sqlite3 {args} {
    if {[llength $args]==2 && [string index [lindex $args 0] 0]!="-"} {







>
>
>
>
>
>
>
>
>
>
>
>
>
>







47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
for {set i 0} {$i<[llength $argv]} {incr i} {
  if {[regexp {^--backtrace=(\d+)$} [lindex $argv $i] all value]} {
    sqlite3_memdebug_backtrace $value
    set argv [lreplace $argv $i $i]
  }
}

# 
# Check the command-line arguments to set the maximum number of
# errors tolerated before halting.
#
if {![info exists maxErr]} {
  set maxErr 1000
}
for {set i 0} {$i<[llength $argv]} {incr i} {
  if {[regexp {^--maxerror=(\d+)$} [lindex $argv $i] all maxErr]} {
    set argv [lreplace $argv $i $i]
  }
}
#puts "Max error = $maxErr"


# Use the pager codec if it is available
#
if {[sqlite3 -has-codec] && [info command sqlite_orig]==""} {
  rename sqlite3 sqlite_orig
  proc sqlite3 {args} {
    if {[llength $args]==2 && [string index [lindex $args 0] 0]!="-"} {
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

# Set the test counters to zero
#
set nErr 0
set nTest 0
set skip_test 0
set failList {}
set maxErr 1000
if {![info exists speedTest]} {
  set speedTest 0
}

# Invoke the do_test procedure to run a single test 
#
proc do_test {name cmd expected} {







<







96
97
98
99
100
101
102

103
104
105
106
107
108
109

# Set the test counters to zero
#
set nErr 0
set nTest 0
set skip_test 0
set failList {}

if {![info exists speedTest]} {
  set speedTest 0
}

# Invoke the do_test procedure to run a single test 
#
proc do_test {name cmd expected} {