SQLite

Check-in [a9db017eab]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge recent trunk changes into the sessions branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | sessions
Files: files | file ages | folders
SHA1: a9db017eabdefafcda87c497e8bafa07002ac0fe
User & Date: drh 2014-07-24 16:23:51.251
Context
2014-07-29
12:40
Merge recent trunk changes, and especially the fix for the R-Tree problem described in ticket [d2889096e7bdeac6]. (check-in: 8f1beeade0 user: drh tags: sessions)
2014-07-24
16:23
Merge recent trunk changes into the sessions branch. (check-in: a9db017eab user: drh tags: sessions)
12:39
Add the readfile(FILENAME) and writefile(FILENAME,CONTENT) SQL functions to the command-line shell. (check-in: fb1048cb2b user: drh tags: trunk)
2014-06-30
20:02
Merge the latest trunk enhancements into the sessions branch. (check-in: a5d94eaba6 user: drh tags: sessions)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.in.
1006
1007
1008
1009
1010
1011
1012



1013
1014
1015
1016
1017
1018
1019
	rm -f lemon$(BEXE) lempar.c parse.* sqlite*.tar.gz
	rm -f mkkeywordhash$(BEXE) keywordhash.h
	rm -f *.da *.bb *.bbg gmon.out
	rm -rf quota2a quota2b quota2c
	rm -rf tsrc .target_source
	rm -f tclsqlite3$(TEXE)
	rm -f testfixture$(TEXE) test.db



	rm -f sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def
	rm -f sqlite3.c
	rm -f sqlite3rc.h
	rm -f shell.c sqlite3ext.h
	rm -f sqlite3_analyzer$(TEXE) sqlite3_analyzer.c
	rm -f sqlite-*-output.vsix
	rm -f mptester mptester.exe







>
>
>







1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
	rm -f lemon$(BEXE) lempar.c parse.* sqlite*.tar.gz
	rm -f mkkeywordhash$(BEXE) keywordhash.h
	rm -f *.da *.bb *.bbg gmon.out
	rm -rf quota2a quota2b quota2c
	rm -rf tsrc .target_source
	rm -f tclsqlite3$(TEXE)
	rm -f testfixture$(TEXE) test.db
	rm -f LogEst$(TEXE) fts3view$(TEXE) rollback-test$(TEXE) showdb$(TEXE)
	rm -f showjournal$(TEXE) showstat4$(TEXE) showwal$(TEXE) speedtest1$(TEXE)
	rm -f wordcount$(TEXE)
	rm -f sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def
	rm -f sqlite3.c
	rm -f sqlite3rc.h
	rm -f shell.c sqlite3ext.h
	rm -f sqlite3_analyzer$(TEXE) sqlite3_analyzer.c
	rm -f sqlite-*-output.vsix
	rm -f mptester mptester.exe
Changes to Makefile.msc.
1471
1472
1473
1474
1475
1476
1477




1478
1479
1480
1481
1482
1483
1484
showjournal.exe:	$(TOP)\tool\showjournal.c $(SQLITE3C)
	$(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \
		$(TOP)\tool\showjournal.c $(SQLITE3C)

showwal.exe:	$(TOP)\tool\showwal.c $(SQLITE3C)
	$(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \
		$(TOP)\tool\showwal.c $(SQLITE3C)





rollback-test.exe:	$(TOP)\tool\rollback-test.c $(SQLITE3C)
	$(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \
		$(TOP)\tool\rollback-test.c $(SQLITE3C)

LogEst.exe:	$(TOP)\tool\logest.c sqlite3.h
	$(LTLINK) -Fe$@ $(TOP)\tool\LogEst.c







>
>
>
>







1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
showjournal.exe:	$(TOP)\tool\showjournal.c $(SQLITE3C)
	$(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \
		$(TOP)\tool\showjournal.c $(SQLITE3C)

showwal.exe:	$(TOP)\tool\showwal.c $(SQLITE3C)
	$(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \
		$(TOP)\tool\showwal.c $(SQLITE3C)

fts3view.exe:	$(TOP)\ext\fts3\tool\fts3view.c $(SQLITE3C)
	$(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \
		$(TOP)\ext\fts3\tool\fts3view.c $(SQLITE3C)

rollback-test.exe:	$(TOP)\tool\rollback-test.c $(SQLITE3C)
	$(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \
		$(TOP)\tool\rollback-test.c $(SQLITE3C)

LogEst.exe:	$(TOP)\tool\logest.c sqlite3.h
	$(LTLINK) -Fe$@ $(TOP)\tool\LogEst.c
1504
1505
1506
1507
1508
1509
1510



1511
1512
1513
1514
1515
1516
1517
	-rmdir /Q/S quota2b
	-rmdir /Q/S quota2c
	-rmdir /Q/S tsrc
	del /Q .target_source
	del /Q tclsqlite3.exe tclsqlite3.exp
	del /Q testloadext.dll testloadext.exp
	del /Q testfixture.exe testfixture.exp test.db



	del /Q sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def
	del /Q sqlite3.c sqlite3-*.c
	del /Q sqlite3rc.h
	del /Q shell.c sqlite3ext.h
	del /Q sqlite3_analyzer.exe sqlite3_analyzer.exp sqlite3_analyzer.c
	del /Q sqlite-*-output.vsix
	del /Q mptester.exe







>
>
>







1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
	-rmdir /Q/S quota2b
	-rmdir /Q/S quota2c
	-rmdir /Q/S tsrc
	del /Q .target_source
	del /Q tclsqlite3.exe tclsqlite3.exp
	del /Q testloadext.dll testloadext.exp
	del /Q testfixture.exe testfixture.exp test.db
	del /Q LogEst.exe fts3view.exe rollback-test.exe showdb.exe
	del /Q showjournal.exe showstat4.exe showwal.exe speedtest1.exe
	del /Q wordcount.exe
	del /Q sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def
	del /Q sqlite3.c sqlite3-*.c
	del /Q sqlite3rc.h
	del /Q shell.c sqlite3ext.h
	del /Q sqlite3_analyzer.exe sqlite3_analyzer.exp sqlite3_analyzer.c
	del /Q sqlite-*-output.vsix
	del /Q mptester.exe
Changes to ext/fts3/fts3.c.
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
**
** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
** to by the argument to point to the "simple" tokenizer implementation.
** And so on.
*/
void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
#ifdef SQLITE_ENABLE_FTS4_UNICODE61
void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
#endif
#ifdef SQLITE_ENABLE_ICU
void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
#endif

/*
** Initialize the fts3 extension. If this extension is built as part
** of the sqlite library, then this function is called directly by
** SQLite. If fts3 is built as a dynamically loadable extension, this
** function is called by the sqlite3_extension_init() entry point.
*/
int sqlite3Fts3Init(sqlite3 *db){
  int rc = SQLITE_OK;
  Fts3Hash *pHash = 0;
  const sqlite3_tokenizer_module *pSimple = 0;
  const sqlite3_tokenizer_module *pPorter = 0;
#ifdef SQLITE_ENABLE_FTS4_UNICODE61
  const sqlite3_tokenizer_module *pUnicode = 0;
#endif

#ifdef SQLITE_ENABLE_ICU
  const sqlite3_tokenizer_module *pIcu = 0;
  sqlite3Fts3IcuTokenizerModule(&pIcu);
#endif

#ifdef SQLITE_ENABLE_FTS4_UNICODE61
  sqlite3Fts3UnicodeTokenizer(&pUnicode);
#endif

#ifdef SQLITE_TEST
  rc = sqlite3Fts3InitTerm(db);
  if( rc!=SQLITE_OK ) return rc;
#endif







|

















|








|







3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
**
** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
** to by the argument to point to the "simple" tokenizer implementation.
** And so on.
*/
void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
#ifndef SQLITE_DISABLE_FTS3_UNICODE
void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
#endif
#ifdef SQLITE_ENABLE_ICU
void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
#endif

/*
** Initialize the fts3 extension. If this extension is built as part
** of the sqlite library, then this function is called directly by
** SQLite. If fts3 is built as a dynamically loadable extension, this
** function is called by the sqlite3_extension_init() entry point.
*/
int sqlite3Fts3Init(sqlite3 *db){
  int rc = SQLITE_OK;
  Fts3Hash *pHash = 0;
  const sqlite3_tokenizer_module *pSimple = 0;
  const sqlite3_tokenizer_module *pPorter = 0;
#ifndef SQLITE_DISABLE_FTS3_UNICODE
  const sqlite3_tokenizer_module *pUnicode = 0;
#endif

#ifdef SQLITE_ENABLE_ICU
  const sqlite3_tokenizer_module *pIcu = 0;
  sqlite3Fts3IcuTokenizerModule(&pIcu);
#endif

#ifndef SQLITE_DISABLE_FTS3_UNICODE
  sqlite3Fts3UnicodeTokenizer(&pUnicode);
#endif

#ifdef SQLITE_TEST
  rc = sqlite3Fts3InitTerm(db);
  if( rc!=SQLITE_OK ) return rc;
#endif
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
  }

  /* Load the built-in tokenizers into the hash table */
  if( rc==SQLITE_OK ){
    if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
     || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) 

#ifdef SQLITE_ENABLE_FTS4_UNICODE61
     || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode) 
#endif
#ifdef SQLITE_ENABLE_ICU
     || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
#endif
    ){
      rc = SQLITE_NOMEM;







|







3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
  }

  /* Load the built-in tokenizers into the hash table */
  if( rc==SQLITE_OK ){
    if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
     || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) 

#ifndef SQLITE_DISABLE_FTS3_UNICODE
     || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode) 
#endif
#ifdef SQLITE_ENABLE_ICU
     || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
#endif
    ){
      rc = SQLITE_NOMEM;
Changes to ext/fts3/fts3Int.h.
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);

/* fts3_tokenize_vtab.c */
int sqlite3Fts3InitTok(sqlite3*, Fts3Hash *);

/* fts3_unicode2.c (functions generated by parsing unicode text files) */
#ifdef SQLITE_ENABLE_FTS4_UNICODE61
int sqlite3FtsUnicodeFold(int, int);
int sqlite3FtsUnicodeIsalnum(int);
int sqlite3FtsUnicodeIsdiacritic(int);
#endif

#endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */
#endif /* _FTSINT_H */







|







581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);

/* fts3_tokenize_vtab.c */
int sqlite3Fts3InitTok(sqlite3*, Fts3Hash *);

/* fts3_unicode2.c (functions generated by parsing unicode text files) */
#ifndef SQLITE_DISABLE_FTS3_UNICODE
int sqlite3FtsUnicodeFold(int, int);
int sqlite3FtsUnicodeIsalnum(int);
int sqlite3FtsUnicodeIsdiacritic(int);
#endif

#endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */
#endif /* _FTSINT_H */
Changes to ext/fts3/fts3_unicode.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** Implementation of the "unicode" full-text-search tokenizer.
*/

#ifdef SQLITE_ENABLE_FTS4_UNICODE61

#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** Implementation of the "unicode" full-text-search tokenizer.
*/

#ifndef SQLITE_DISABLE_FTS3_UNICODE

#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
  pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer));
  if( pNew==NULL ) return SQLITE_NOMEM;
  memset(pNew, 0, sizeof(unicode_tokenizer));
  pNew->bRemoveDiacritic = 1;

  for(i=0; rc==SQLITE_OK && i<nArg; i++){
    const char *z = azArg[i];
    int n = strlen(z);

    if( n==19 && memcmp("remove_diacritics=1", z, 19)==0 ){
      pNew->bRemoveDiacritic = 1;
    }
    else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){
      pNew->bRemoveDiacritic = 0;
    }







|







227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
  pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer));
  if( pNew==NULL ) return SQLITE_NOMEM;
  memset(pNew, 0, sizeof(unicode_tokenizer));
  pNew->bRemoveDiacritic = 1;

  for(i=0; rc==SQLITE_OK && i<nArg; i++){
    const char *z = azArg[i];
    int n = (int)strlen(z);

    if( n==19 && memcmp("remove_diacritics=1", z, 19)==0 ){
      pNew->bRemoveDiacritic = 1;
    }
    else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){
      pNew->bRemoveDiacritic = 0;
    }
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    if( z>=zTerm ) break;
    READ_UTF8(z, zTerm, iCode);
  }while( unicodeIsAlnum(p, iCode) 
       || sqlite3FtsUnicodeIsdiacritic(iCode)
  );

  /* Set the output variables and return. */
  pCsr->iOff = (z - pCsr->aInput);
  *paToken = pCsr->zToken;
  *pnToken = zOut - pCsr->zToken;
  *piStart = (zStart - pCsr->aInput);
  *piEnd = (zEnd - pCsr->aInput);
  *piPos = pCsr->iToken++;
  return SQLITE_OK;
}

/*
** Set *ppModule to a pointer to the sqlite3_tokenizer_module 
** structure for the unicode tokenizer.







|

|
|
|







359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    if( z>=zTerm ) break;
    READ_UTF8(z, zTerm, iCode);
  }while( unicodeIsAlnum(p, iCode) 
       || sqlite3FtsUnicodeIsdiacritic(iCode)
  );

  /* Set the output variables and return. */
  pCsr->iOff = (int)(z - pCsr->aInput);
  *paToken = pCsr->zToken;
  *pnToken = (int)(zOut - pCsr->zToken);
  *piStart = (int)(zStart - pCsr->aInput);
  *piEnd = (int)(zEnd - pCsr->aInput);
  *piPos = pCsr->iToken++;
  return SQLITE_OK;
}

/*
** Set *ppModule to a pointer to the sqlite3_tokenizer_module 
** structure for the unicode tokenizer.
386
387
388
389
390
391
392
393
    unicodeNext,
    0,
  };
  *ppModule = &module;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
#endif /* ifndef SQLITE_ENABLE_FTS4_UNICODE61 */







|
386
387
388
389
390
391
392
393
    unicodeNext,
    0,
  };
  *ppModule = &module;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
#endif /* ifndef SQLITE_DISABLE_FTS3_UNICODE */
Changes to ext/fts3/fts3_unicode2.c.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
******************************************************************************
*/

/*
** DO NOT EDIT THIS MACHINE GENERATED FILE.
*/

#if defined(SQLITE_ENABLE_FTS4_UNICODE61)
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)

#include <assert.h>

/*
** Return true if the argument corresponds to a unicode codepoint
** classified as either a letter or a number. Otherwise false.







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
******************************************************************************
*/

/*
** DO NOT EDIT THIS MACHINE GENERATED FILE.
*/

#ifndef SQLITE_DISABLE_FTS3_UNICODE
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)

#include <assert.h>

/*
** Return true if the argument corresponds to a unicode codepoint
** classified as either a letter or a number. Otherwise false.
358
359
360
361
362
363
364
365
  else if( c>=66560 && c<66600 ){
    ret = c + 40;
  }

  return ret;
}
#endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */
#endif /* !defined(SQLITE_ENABLE_FTS4_UNICODE61) */







|
358
359
360
361
362
363
364
365
  else if( c>=66560 && c<66600 ){
    ret = c + 40;
  }

  return ret;
}
#endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */
#endif /* !defined(SQLITE_DISABLE_FTS3_UNICODE) */
Changes to ext/fts3/tool/fts3view.c.
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  n = 0;
  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    n = sqlite3_column_int(pStmt, 0);
  }
  sqlite3_finalize(pStmt);
  nLeaf = nSeg - nIdx;
  printf("Leaf segments larger than %5d bytes.... %9d   %5.2f%%\n",
         pgsz-45, n, n*100.0/nLeaf);

  pStmt = prepare(db, "SELECT max(level%%1024) FROM '%q_segdir'", zTab);
  mxLevel = 0;
  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    mxLevel = sqlite3_column_int(pStmt, 0);
  }
  sqlite3_finalize(pStmt);







|







372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  n = 0;
  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    n = sqlite3_column_int(pStmt, 0);
  }
  sqlite3_finalize(pStmt);
  nLeaf = nSeg - nIdx;
  printf("Leaf segments larger than %5d bytes.... %9d   %5.2f%%\n",
         pgsz-45, n, nLeaf>0 ? n*100.0/nLeaf : 0.0);

  pStmt = prepare(db, "SELECT max(level%%1024) FROM '%q_segdir'", zTab);
  mxLevel = 0;
  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    mxLevel = sqlite3_column_int(pStmt, 0);
  }
  sqlite3_finalize(pStmt);
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
){
  sqlite3_int64 iChild;
  sqlite3_int64 iPrefix;
  sqlite3_int64 nTerm;
  sqlite3_int64 n;
  sqlite3_int64 iDocsz;
  int iHeight;
  int i = 0;
  int cnt = 0;
  char zTerm[1000];

  i += getVarint(aData, &n);
  iHeight = (int)n;
  printf("height: %d\n", iHeight);
  if( iHeight>0 ){







|







550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
){
  sqlite3_int64 iChild;
  sqlite3_int64 iPrefix;
  sqlite3_int64 nTerm;
  sqlite3_int64 n;
  sqlite3_int64 iDocsz;
  int iHeight;
  sqlite3_int64 i = 0;
  int cnt = 0;
  char zTerm[1000];

  i += getVarint(aData, &n);
  iHeight = (int)n;
  printf("height: %d\n", iHeight);
  if( iHeight>0 ){
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
      iPrefix = 0;
    }
    i += getVarint(aData+i, &nTerm);
    if( iPrefix+nTerm+1 >= sizeof(zTerm) ){
      fprintf(stderr, "term to long\n");
      exit(1);
    }
    memcpy(zTerm+iPrefix, aData+i, nTerm);
    zTerm[iPrefix+nTerm] = 0;
    i += nTerm;
    if( iHeight==0 ){
      i += getVarint(aData+i, &iDocsz);
      printf("term: %-25s doclist %7lld bytes offset %d\n", zTerm, iDocsz, i);
      i += iDocsz;
    }else{
      printf("term: %-25s child %lld\n", zTerm, ++iChild);
    }
  }
}
  







|




|







572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
      iPrefix = 0;
    }
    i += getVarint(aData+i, &nTerm);
    if( iPrefix+nTerm+1 >= sizeof(zTerm) ){
      fprintf(stderr, "term to long\n");
      exit(1);
    }
    memcpy(zTerm+iPrefix, aData+i, (size_t)nTerm);
    zTerm[iPrefix+nTerm] = 0;
    i += nTerm;
    if( iHeight==0 ){
      i += getVarint(aData+i, &iDocsz);
      printf("term: %-25s doclist %7lld bytes offset %lld\n", zTerm, iDocsz, i);
      i += iDocsz;
    }else{
      printf("term: %-25s child %lld\n", zTerm, ++iChild);
    }
  }
}
  
745
746
747
748
749
750
751
752

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
** is azExtra[2].
**
** If the --raw option is present in azExtra, then a hex dump is provided.
** Otherwise a decoding is shown.
*/
static void showDoclist(sqlite3 *db, const char *zTab){
  const unsigned char *aData;
  sqlite3_int64 offset, nData;

  sqlite3_stmt *pStmt;

  offset = atoi64(azExtra[1]);
  nData = atoi64(azExtra[2]);
  pStmt = prepareToGetSegment(db, zTab, azExtra[0]);
  if( sqlite3_step(pStmt)!=SQLITE_ROW ){
    sqlite3_finalize(pStmt);
    return;
  }
  aData = sqlite3_column_blob(pStmt, 0);
  printf("Doclist at %s offset %lld of size %lld bytes:\n",
         azExtra[0], offset, nData);
  if( findOption("raw", 0, 0)!=0 ){
    printBlob(aData+offset, nData);
  }else{
    decodeDoclist(aData+offset, nData);
  }
  sqlite3_finalize(pStmt);







|
>



|






|







745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
** is azExtra[2].
**
** If the --raw option is present in azExtra, then a hex dump is provided.
** Otherwise a decoding is shown.
*/
static void showDoclist(sqlite3 *db, const char *zTab){
  const unsigned char *aData;
  sqlite3_int64 offset;
  int nData;
  sqlite3_stmt *pStmt;

  offset = atoi64(azExtra[1]);
  nData = atoi(azExtra[2]);
  pStmt = prepareToGetSegment(db, zTab, azExtra[0]);
  if( sqlite3_step(pStmt)!=SQLITE_ROW ){
    sqlite3_finalize(pStmt);
    return;
  }
  aData = sqlite3_column_blob(pStmt, 0);
  printf("Doclist at %s offset %lld of size %d bytes:\n",
         azExtra[0], offset, nData);
  if( findOption("raw", 0, 0)!=0 ){
    printBlob(aData+offset, nData);
  }else{
    decodeDoclist(aData+offset, nData);
  }
  sqlite3_finalize(pStmt);
Changes to ext/misc/spellfix.c.
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVTab,
  char **pzErr
){
  spellfix1_vtab *pNew = 0;
  const char *zModule = argv[0];
  const char *zDbName = argv[1];
  const char *zTableName = argv[2];
  int nDbName;
  int rc = SQLITE_OK;
  int i;

  nDbName = (int)strlen(zDbName);







|







1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVTab,
  char **pzErr
){
  spellfix1_vtab *pNew = 0;
  /* const char *zModule = argv[0]; // not used */
  const char *zDbName = argv[1];
  const char *zTableName = argv[2];
  int nDbName;
  int rc = SQLITE_OK;
  int i;

  nDbName = (int)strlen(zDbName);
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
         "  k2 TEXT\n"
         ");\n",
         zDbName, zTableName
      );
      spellfix1DbExec(&rc, db,
         "CREATE INDEX IF NOT EXISTS \"%w\".\"%w_vocab_index_langid_k2\" "
            "ON \"%w_vocab\"(langid,k2);",
         zDbName, zModule, zTableName
      );
    }
    for(i=3; rc==SQLITE_OK && i<argc; i++){
      if( strncmp(argv[i],"edit_cost_table=",16)==0 && pNew->zCostTable==0 ){
        pNew->zCostTable = spellfix1Dequote(&argv[i][16]);
        if( pNew->zCostTable==0 ) rc = SQLITE_NOMEM;
        continue;







|







1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
         "  k2 TEXT\n"
         ");\n",
         zDbName, zTableName
      );
      spellfix1DbExec(&rc, db,
         "CREATE INDEX IF NOT EXISTS \"%w\".\"%w_vocab_index_langid_k2\" "
            "ON \"%w_vocab\"(langid,k2);",
         zDbName, zTableName, zTableName
      );
    }
    for(i=3; rc==SQLITE_OK && i<argc; i++){
      if( strncmp(argv[i],"edit_cost_table=",16)==0 && pNew->zCostTable==0 ){
        pNew->zCostTable = spellfix1Dequote(&argv[i][16]);
        if( pNew->zCostTable==0 ) rc = SQLITE_NOMEM;
        continue;
Changes to main.mk.
650
651
652
653
654
655
656




657
658
659
660
661
662
663
showjournal$(EXE):	$(TOP)/tool/showjournal.c sqlite3.o
	$(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o showjournal$(EXE) \
		$(TOP)/tool/showjournal.c sqlite3.o $(THREADLIB)

showwal$(EXE):	$(TOP)/tool/showwal.c sqlite3.o
	$(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o showwal$(EXE) \
		$(TOP)/tool/showwal.c sqlite3.o $(THREADLIB)





rollback-test$(EXE):	$(TOP)/tool/rollback-test.c sqlite3.o
	$(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o rollback-test$(EXE) \
		$(TOP)/tool/rollback-test.c sqlite3.o $(THREADLIB)

LogEst$(EXE):	$(TOP)/tool/logest.c sqlite3.h
	$(TCC) -o LogEst$(EXE) $(TOP)/tool/logest.c







>
>
>
>







650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
showjournal$(EXE):	$(TOP)/tool/showjournal.c sqlite3.o
	$(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o showjournal$(EXE) \
		$(TOP)/tool/showjournal.c sqlite3.o $(THREADLIB)

showwal$(EXE):	$(TOP)/tool/showwal.c sqlite3.o
	$(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o showwal$(EXE) \
		$(TOP)/tool/showwal.c sqlite3.o $(THREADLIB)

fts3view$(EXE):	$(TOP)/ext/fts3/tool/fts3view.c sqlite3.o
	$(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o fts3view$(EXE) \
		$(TOP)/ext/fts3/tool/fts3view.c sqlite3.o $(THREADLIB)

rollback-test$(EXE):	$(TOP)/tool/rollback-test.c sqlite3.o
	$(TCC) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -o rollback-test$(EXE) \
		$(TOP)/tool/rollback-test.c sqlite3.o $(THREADLIB)

LogEst$(EXE):	$(TOP)/tool/logest.c sqlite3.h
	$(TCC) -o LogEst$(EXE) $(TOP)/tool/logest.c
698
699
700
701
702
703
704









705
706
707
708
709
710
711
	rm -rf quota2a quota2b quota2c
	rm -rf tsrc target_source
	rm -f testloadext.dll libtestloadext.so
	rm -f amalgamation-testfixture amalgamation-testfixture.exe
	rm -f fts3-testfixture fts3-testfixture.exe
	rm -f testfixture testfixture.exe
	rm -f threadtest3 threadtest3.exe









	rm -f sqlite3.c sqlite3-*.c fts?amal.c tclsqlite3.c
	rm -f sqlite3rc.h
	rm -f shell.c sqlite3ext.h
	rm -f sqlite3_analyzer sqlite3_analyzer.exe sqlite3_analyzer.c
	rm -f sqlite-*-output.vsix
	rm -f mptester mptester.exe
	rm -f showdb







>
>
>
>
>
>
>
>
>






<
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

	rm -rf quota2a quota2b quota2c
	rm -rf tsrc target_source
	rm -f testloadext.dll libtestloadext.so
	rm -f amalgamation-testfixture amalgamation-testfixture.exe
	rm -f fts3-testfixture fts3-testfixture.exe
	rm -f testfixture testfixture.exe
	rm -f threadtest3 threadtest3.exe
	rm -f LogEst LogEst.exe
	rm -f fts3view fts3view.exe
	rm -f rollback-test rollback-test.exe
	rm -f showdb showdb.exe
	rm -f showjournal showjournal.exe
	rm -f showstat4 showstat4.exe
	rm -f showwal showwal.exe
	rm -f speedtest1 speedtest1.exe
	rm -f wordcount wordcount.exe
	rm -f sqlite3.c sqlite3-*.c fts?amal.c tclsqlite3.c
	rm -f sqlite3rc.h
	rm -f shell.c sqlite3ext.h
	rm -f sqlite3_analyzer sqlite3_analyzer.exe sqlite3_analyzer.c
	rm -f sqlite-*-output.vsix
	rm -f mptester mptester.exe

Changes to src/analyze.c.
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1
    **   ...
    **   regChng = N
    **   goto chng_addr_N
    */
    addrNextRow = sqlite3VdbeCurrentAddr(v);
    for(i=0; i<nCol; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
      aGotoChng[i] = 
      sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
      VdbeCoverage(v);
    }
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng);
    aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto);

    /*
    **  chng_addr_0:
    **   regPrev(0) = idx(0)
    **  chng_addr_1:
    **   regPrev(1) = idx(1)
    **  ...
    */
    sqlite3VdbeJumpHere(v, addrGotoChng0);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, aGotoChng[i]);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
    }

    /*
    **  chng_addr_N:
    **   regRowid = idx(rowid)            // STAT34 only







|








|










|







1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1
    **   ...
    **   regChng = N
    **   goto chng_addr_N
    */
    addrNextRow = sqlite3VdbeCurrentAddr(v);
    for(i=0; i<nCol-1; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
      aGotoChng[i] = 
      sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
      VdbeCoverage(v);
    }
    sqlite3VdbeAddOp2(v, OP_Integer, nCol-1, regChng);
    aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto);

    /*
    **  chng_addr_0:
    **   regPrev(0) = idx(0)
    **  chng_addr_1:
    **   regPrev(1) = idx(1)
    **  ...
    */
    sqlite3VdbeJumpHere(v, addrGotoChng0);
    for(i=0; i<nCol-1; i++){
      sqlite3VdbeJumpHere(v, aGotoChng[i]);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
    }

    /*
    **  chng_addr_N:
    **   regRowid = idx(rowid)            // STAT34 only
1316
1317
1318
1319
1320
1321
1322

1323
1324
1325
1326
1327
1328
1329
  sqlite3 *db = pParse->db;
  int iDb;
  int i;
  char *z, *zDb;
  Table *pTab;
  Index *pIdx;
  Token *pTableName;


  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    return;
  }







>







1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
  sqlite3 *db = pParse->db;
  int iDb;
  int i;
  char *z, *zDb;
  Table *pTab;
  Index *pIdx;
  Token *pTableName;
  Vdbe *v;

  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    return;
  }
1363
1364
1365
1366
1367
1368
1369


1370
1371
1372
1373
1374
1375
1376
        }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
          analyzeTable(pParse, pTab, 0);
        }
        sqlite3DbFree(db, z);
      }
    }   
  }


}

/*
** Used to pass information from the analyzer reader through to the
** callback routine.
*/
typedef struct analysisInfo analysisInfo;







>
>







1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
        }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
          analyzeTable(pParse, pTab, 0);
        }
        sqlite3DbFree(db, z);
      }
    }   
  }
  v = sqlite3GetVdbe(pParse);
  if( v ) sqlite3VdbeAddOp0(v, OP_Expire);
}

/*
** Used to pass information from the analyzer reader through to the
** callback routine.
*/
typedef struct analysisInfo analysisInfo;
1421
1422
1423
1424
1425
1426
1427
1428

1429
1430
1431
1432
1433
1434
1435







1436
1437
1438
1439
1440
1441
1442
    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  assert( pIndex!=0 );
#else
  if( pIndex )
#endif
  {

    if( strcmp(z, "unordered")==0 ){
      pIndex->bUnordered = 1;
    }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
      int v32 = 0;
      sqlite3GetInt32(z+3, &v32);
      pIndex->szIdxRow = sqlite3LogEst(v32);
    }







  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**







<
>
|


<
<
|

>
>
>
>
>
>
>







1424
1425
1426
1427
1428
1429
1430

1431
1432
1433
1434


1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  assert( pIndex!=0 );
#else
  if( pIndex )
#endif

  while( z[0] ){
    if( sqlite3_strglob("unordered*", z)==0 ){
      pIndex->bUnordered = 1;
    }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){


      pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));
    }
#ifdef SQLITE_ENABLE_COSTMULT
    else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
      pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
    }
#endif
    while( z[0]!=0 && z[0]!=' ' ) z++;
    while( z[0]==' ' ) z++;
  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**
1469
1470
1471
1472
1473
1474
1475

1476
1477
1478
1479
1480



1481
1482
1483
1484
1485
1486
1487
    pIndex = sqlite3PrimaryKeyIndex(pTable);
  }else{
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }
  z = argv[2];

  if( pIndex ){

    decodeIntArray((char*)z, pIndex->nKeyCol+1, 0, pIndex->aiRowLogEst, pIndex);
    if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
  }else{
    Index fakeIdx;
    fakeIdx.szIdxRow = pTable->szTabRow;



    decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
    pTable->szTabRow = fakeIdx.szIdxRow;
  }

  return 0;
}








>





>
>
>







1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
    pIndex = sqlite3PrimaryKeyIndex(pTable);
  }else{
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }
  z = argv[2];

  if( pIndex ){
    pIndex->bUnordered = 0;
    decodeIntArray((char*)z, pIndex->nKeyCol+1, 0, pIndex->aiRowLogEst, pIndex);
    if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
  }else{
    Index fakeIdx;
    fakeIdx.szIdxRow = pTable->szTabRow;
#ifdef SQLITE_ENABLE_COSTMULT
    fakeIdx.pTable = pTable;
#endif
    decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
    pTable->szTabRow = fakeIdx.szIdxRow;
  }

  return 0;
}

1515
1516
1517
1518
1519
1520
1521









1522
1523
1524
1525
1526
1527
1528
1529
** stored in pIdx->aSample[]. 
*/
static void initAvgEq(Index *pIdx){
  if( pIdx ){
    IndexSample *aSample = pIdx->aSample;
    IndexSample *pFinal = &aSample[pIdx->nSample-1];
    int iCol;









    for(iCol=0; iCol<pIdx->nKeyCol; iCol++){
      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */
      tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
      tRowcnt avgEq = 0;
      tRowcnt nDLt = pFinal->anDLt[iCol];

      /* Set nSum to the number of distinct (iCol+1) field prefixes that







>
>
>
>
>
>
>
>
>
|







1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
** stored in pIdx->aSample[]. 
*/
static void initAvgEq(Index *pIdx){
  if( pIdx ){
    IndexSample *aSample = pIdx->aSample;
    IndexSample *pFinal = &aSample[pIdx->nSample-1];
    int iCol;
    int nCol = 1;
    if( pIdx->nSampleCol>1 ){
      /* If this is stat4 data, then calculate aAvgEq[] values for all
      ** sample columns except the last. The last is always set to 1, as
      ** once the trailing PK fields are considered all index keys are
      ** unique.  */
      nCol = pIdx->nSampleCol-1;
      pIdx->aAvgEq[nCol] = 1;
    }
    for(iCol=0; iCol<nCol; iCol++){
      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */
      tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
      tRowcnt avgEq = 0;
      tRowcnt nDLt = pFinal->anDLt[iCol];

      /* Set nSum to the number of distinct (iCol+1) field prefixes that
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
        }
      }
      if( nDLt>nSum ){
        avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum);
      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;
      if( pIdx->nSampleCol==1 ) break;
    }
  }
}

/*
** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
** is supplied instead, find the PRIMARY KEY index for that table.







<







1559
1560
1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572
        }
      }
      if( nDLt>nSum ){
        avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum);
      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;

    }
  }
}

/*
** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
** is supplied instead, find the PRIMARY KEY index for that table.
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621


1622

1623

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    int nIdxCol = 1;              /* Number of columns in stat4 records */
    int nAvgCol = 1;              /* Number of entries in Index.aAvgEq */

    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */
    int nByte;      /* Bytes of space required */
    int i;          /* Bytes of space required */
    tRowcnt *pSpace;

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
    assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
    /* Index.nSample is non-zero at this point if data has already been
    ** loaded from the stat4 table. In this case ignore stat3 data.  */
    if( pIdx==0 || pIdx->nSample ) continue;
    if( bStat3==0 ){


      nIdxCol = pIdx->nKeyCol+1;

      nAvgCol = pIdx->nKeyCol;

    }
    pIdx->nSampleCol = nIdxCol;
    nByte = sizeof(IndexSample) * nSample;
    nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
    nByte += nAvgCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */

    pIdx->aSample = sqlite3DbMallocZero(db, nByte);
    if( pIdx->aSample==0 ){
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }
    pSpace = (tRowcnt*)&pIdx->aSample[nSample];
    pIdx->aAvgEq = pSpace; pSpace += nAvgCol;
    for(i=0; i<nSample; i++){
      pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
    }
    assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
  }







<

















>
>
|
>
|
>




|







|







1617
1618
1619
1620
1621
1622
1623

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    int nIdxCol = 1;              /* Number of columns in stat4 records */


    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */
    int nByte;      /* Bytes of space required */
    int i;          /* Bytes of space required */
    tRowcnt *pSpace;

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
    assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
    /* Index.nSample is non-zero at this point if data has already been
    ** loaded from the stat4 table. In this case ignore stat3 data.  */
    if( pIdx==0 || pIdx->nSample ) continue;
    if( bStat3==0 ){
      assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
      if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
        nIdxCol = pIdx->nKeyCol;
      }else{
        nIdxCol = pIdx->nColumn;
      }
    }
    pIdx->nSampleCol = nIdxCol;
    nByte = sizeof(IndexSample) * nSample;
    nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
    nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */

    pIdx->aSample = sqlite3DbMallocZero(db, nByte);
    if( pIdx->aSample==0 ){
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }
    pSpace = (tRowcnt*)&pIdx->aSample[nSample];
    pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
    for(i=0; i<nSample; i++){
      pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
    }
    assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
  }
Changes to src/build.c.
109
110
111
112
113
114
115













116
117
118
119
120
121
122
                      p->zName, P4_STATIC);
  }
}
#else
  #define codeTableLocks(x)
#endif














/*
** This routine is called after a single SQL statement has been
** parsed and a VDBE program to execute that statement has been
** prepared.  This routine puts the finishing touches on the
** VDBE program and resets the pParse structure for the next
** parse.
**







>
>
>
>
>
>
>
>
>
>
>
>
>







109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
                      p->zName, P4_STATIC);
  }
}
#else
  #define codeTableLocks(x)
#endif

/*
** Return TRUE if the given yDbMask object is empty - if it contains no
** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
** macros when SQLITE_MAX_ATTACHED is greater than 30.
*/
#if SQLITE_MAX_ATTACHED>30
int sqlite3DbMaskAllZero(yDbMask m){
  int i;
  for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
  return 1;
}
#endif

/*
** This routine is called after a single SQL statement has been
** parsed and a VDBE program to execute that statement has been
** prepared.  This routine puts the finishing touches on the
** VDBE program and resets the pParse structure for the next
** parse.
**
145
146
147
148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

    /* The cookie mask contains one bit for each database file open.
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    ** set for each database that is used.  Generate code to start a
    ** transaction on each used database and to verify the schema cookie
    ** on each used database.
    */
    if( db->mallocFailed==0 && (pParse->cookieMask || pParse->pConstExpr) ){
      yDbMask mask;

      int iDb, i;
      assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
      sqlite3VdbeJumpHere(v, 0);
      for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
        if( (mask & pParse->cookieMask)==0 ) continue;
        sqlite3VdbeUsesBtree(v, iDb);
        sqlite3VdbeAddOp4Int(v,
          OP_Transaction,                    /* Opcode */
          iDb,                               /* P1 */
          (mask & pParse->writeMask)!=0,     /* P2 */
          pParse->cookieValue[iDb],          /* P3 */
          db->aDb[iDb].pSchema->iGeneration  /* P4 */
        );
        if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      for(i=0; i<pParse->nVtabLock; i++){







|
|
>



|
|




|







158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    /* The cookie mask contains one bit for each database file open.
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    ** set for each database that is used.  Generate code to start a
    ** transaction on each used database and to verify the schema cookie
    ** on each used database.
    */
    if( db->mallocFailed==0 
     && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
    ){
      int iDb, i;
      assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
      sqlite3VdbeJumpHere(v, 0);
      for(iDb=0; iDb<db->nDb; iDb++){
        if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
        sqlite3VdbeUsesBtree(v, iDb);
        sqlite3VdbeAddOp4Int(v,
          OP_Transaction,                    /* Opcode */
          iDb,                               /* P1 */
          DbMaskTest(pParse->writeMask,iDb), /* P2 */
          pParse->cookieValue[iDb],          /* P3 */
          db->aDb[iDb].pSchema->iGeneration  /* P4 */
        );
        if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      for(i=0; i<pParse->nVtabLock; i++){
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  }else{
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;
  pParse->nSet = 0;
  pParse->nVar = 0;
  pParse->cookieMask = 0;
}

/*
** Run the parser and code generator recursively in order to generate
** code for the SQL statement given onto the end of the pParse context
** currently under construction.  When the parser is run recursively
** this way, the final OP_Halt is not appended and other initialization







|







226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
  }else{
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;
  pParse->nSet = 0;
  pParse->nVar = 0;
  DbMaskZero(pParse->cookieMask);
}

/*
** Run the parser and code generator recursively in order to generate
** code for the SQL statement given onto the end of the pParse context
** currently under construction.  When the parser is run recursively
** this way, the final OP_Halt is not appended and other initialization
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
** for database iDb.  The code to actually verify the schema cookie
** will occur at the end of the top-level VDBE and will be generated
** later, by sqlite3FinishCoding().
*/
void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  sqlite3 *db = pToplevel->db;
  yDbMask mask;

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 || iDb==1 );
  assert( iDb<SQLITE_MAX_ATTACHED+2 );
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  mask = ((yDbMask)1)<<iDb;
  if( (pToplevel->cookieMask & mask)==0 ){
    pToplevel->cookieMask |= mask;
    pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
    if( !OMIT_TEMPDB && iDb==1 ){
      sqlite3OpenTempDatabase(pToplevel);
    }
  }
}








<





<
|
|







3853
3854
3855
3856
3857
3858
3859

3860
3861
3862
3863
3864

3865
3866
3867
3868
3869
3870
3871
3872
3873
** for database iDb.  The code to actually verify the schema cookie
** will occur at the end of the top-level VDBE and will be generated
** later, by sqlite3FinishCoding().
*/
void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  sqlite3 *db = pToplevel->db;


  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 || iDb==1 );
  assert( iDb<SQLITE_MAX_ATTACHED+2 );
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );

  if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
    DbMaskSet(pToplevel->cookieMask, iDb);
    pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
    if( !OMIT_TEMPDB && iDb==1 ){
      sqlite3OpenTempDatabase(pToplevel);
    }
  }
}

3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
** rollback the whole transaction.  For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
*/
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  sqlite3CodeVerifySchema(pParse, iDb);
  pToplevel->writeMask |= ((yDbMask)1)<<iDb;
  pToplevel->isMultiWrite |= setStatement;
}

/*
** Indicate that the statement currently under construction might write
** more than one entry (example: deleting one row then inserting another,
** inserting multiple rows in a table, or inserting a row and index entries.)







|







3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
** rollback the whole transaction.  For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
*/
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  sqlite3CodeVerifySchema(pParse, iDb);
  DbMaskSet(pToplevel->writeMask, iDb);
  pToplevel->isMultiWrite |= setStatement;
}

/*
** Indicate that the statement currently under construction might write
** more than one entry (example: deleting one row then inserting another,
** inserting multiple rows in a table, or inserting a row and index entries.)
Changes to src/expr.c.
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087






2088

2089
2090
2091
2092
2093
2094
2095
    if( negFlag ) i = -i;
    sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  }else{
    int c;
    i64 value;
    const char *z = pExpr->u.zToken;
    assert( z!=0 );
    c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
    if( c==0 || (c==2 && negFlag) ){
      char *zV;
      if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
      zV = dup8bytes(v, (char*)&value);
      sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
    }else{
#ifdef SQLITE_OMIT_FLOATING_POINT
      sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
#else






      codeReal(v, z, negFlag, iMem);

#endif
    }
  }
}

/*
** Clear a cache entry.







|









>
>
>
>
>
>
|
>







2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
    if( negFlag ) i = -i;
    sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  }else{
    int c;
    i64 value;
    const char *z = pExpr->u.zToken;
    assert( z!=0 );
    c = sqlite3DecOrHexToI64(z, &value);
    if( c==0 || (c==2 && negFlag) ){
      char *zV;
      if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
      zV = dup8bytes(v, (char*)&value);
      sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
    }else{
#ifdef SQLITE_OMIT_FLOATING_POINT
      sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
#else
#ifndef SQLITE_OMIT_HEX_INTEGER
      if( sqlite3_strnicmp(z,"0x",2)==0 ){
        sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
      }else
#endif
      {
        codeReal(v, z, negFlag, iMem);
      }
#endif
    }
  }
}

/*
** Clear a cache entry.
Changes to src/main.c.
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
#endif
#if SQLITE_MAX_VDBE_OP<40
# error SQLITE_MAX_VDBE_OP must be at least 40
#endif
#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
#endif
#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62
# error SQLITE_MAX_ATTACHED must be between 0 and 62
#endif
#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
#endif
#if SQLITE_MAX_COLUMN>32767
# error SQLITE_MAX_COLUMN must not exceed 32767
#endif







|
|







2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
#endif
#if SQLITE_MAX_VDBE_OP<40
# error SQLITE_MAX_VDBE_OP must be at least 40
#endif
#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
#endif
#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125
# error SQLITE_MAX_ATTACHED must be between 0 and 125
#endif
#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
#endif
#if SQLITE_MAX_COLUMN>32767
# error SQLITE_MAX_COLUMN must not exceed 32767
#endif
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
sqlite3_int64 sqlite3_uri_int64(
  const char *zFilename,    /* Filename as passed to xOpen */
  const char *zParam,       /* URI parameter sought */
  sqlite3_int64 bDflt       /* return if parameter is missing */
){
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  sqlite3_int64 v;
  if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
    bDflt = v;
  }
  return bDflt;
}

/*
** Return the Btree pointer identified by zDbName.  Return NULL if not found.







|







3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
sqlite3_int64 sqlite3_uri_int64(
  const char *zFilename,    /* Filename as passed to xOpen */
  const char *zParam,       /* URI parameter sought */
  sqlite3_int64 bDflt       /* return if parameter is missing */
){
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  sqlite3_int64 v;
  if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){
    bDflt = v;
  }
  return bDflt;
}

/*
** Return the Btree pointer identified by zDbName.  Return NULL if not found.
Changes to src/pragma.c.
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
  **
  ** Get or set the size limit on rollback journal files.
  */
  case PragTyp_JOURNAL_SIZE_LIMIT: {
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite3Atoi64(zRight, &iLimit, sqlite3Strlen30(zRight), SQLITE_UTF8);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(pParse, "journal_size_limit", iLimit);
    break;
  }








|







1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
  **
  ** Get or set the size limit on rollback journal files.
  */
  case PragTyp_JOURNAL_SIZE_LIMIT: {
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite3DecOrHexToI64(zRight, &iLimit);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(pParse, "journal_size_limit", iLimit);
    break;
  }

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
  */
  case PragTyp_MMAP_SIZE: {
    sqlite3_int64 sz;
#if SQLITE_MAX_MMAP_SIZE>0
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( zRight ){
      int ii;
      sqlite3Atoi64(zRight, &sz, sqlite3Strlen30(zRight), SQLITE_UTF8);
      if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
      if( pId2->n==0 ) db->szMmap = sz;
      for(ii=db->nDb-1; ii>=0; ii--){
        if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
          sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
        }
      }







|







1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
  */
  case PragTyp_MMAP_SIZE: {
    sqlite3_int64 sz;
#if SQLITE_MAX_MMAP_SIZE>0
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( zRight ){
      int ii;
      sqlite3DecOrHexToI64(zRight, &sz);
      if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
      if( pId2->n==0 ) db->szMmap = sz;
      for(ii=db->nDb-1; ii>=0; ii--){
        if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
          sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
        }
      }
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
  **   PRAGMA soft_heap_limit = N
  **
  ** Call sqlite3_soft_heap_limit64(N).  Return the result.  If N is omitted,
  ** use -1.
  */
  case PragTyp_SOFT_HEAP_LIMIT: {
    sqlite3_int64 N;
    if( zRight && sqlite3Atoi64(zRight, &N, 1000000, SQLITE_UTF8)==SQLITE_OK ){
      sqlite3_soft_heap_limit64(N);
    }
    returnSingleInt(pParse, "soft_heap_limit",  sqlite3_soft_heap_limit64(-1));
    break;
  }

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)







|







2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
  **   PRAGMA soft_heap_limit = N
  **
  ** Call sqlite3_soft_heap_limit64(N).  Return the result.  If N is omitted,
  ** use -1.
  */
  case PragTyp_SOFT_HEAP_LIMIT: {
    sqlite3_int64 N;
    if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
      sqlite3_soft_heap_limit64(N);
    }
    returnSingleInt(pParse, "soft_heap_limit",  sqlite3_soft_heap_limit64(-1));
    break;
  }

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
Changes to src/shell.c.
60
61
62
63
64
65
66

67
68
69
70
71
72
73
# define read_history(X)
# define write_history(X)
# define stifle_history(X)
#endif

#if defined(_WIN32) || defined(WIN32)
# include <io.h>

#define isatty(h) _isatty(h)
#ifndef access
# define access(f,m) _access((f),(m))
#endif
#undef popen
#define popen _popen
#undef pclose







>







60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# define read_history(X)
# define write_history(X)
# define stifle_history(X)
#endif

#if defined(_WIN32) || defined(WIN32)
# include <io.h>
# include <fcntl.h>
#define isatty(h) _isatty(h)
#ifndef access
# define access(f,m) _access((f),(m))
#endif
#undef popen
#define popen _popen
#undef pclose
454
455
456
457
458
459
460

461
462
463
464
465
466
467
  FILE *traceOut;        /* Output for sqlite3_trace() */
  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int writableSchema;    /* True if PRAGMA writable_schema=ON */
  int showHeader;        /* True to show column names in List or Column mode */
  char *zDestTable;      /* Name of destination table when MODE_Insert */
  char separator[20];    /* Separator character for MODE_List */

  int colWidth[100];     /* Requested width of each column when in column mode*/
  int actualWidth[100];  /* Actual width of each column */
  char nullvalue[20];    /* The text to print when a NULL comes back from
                         ** the database */
  struct previous_mode_data explainPrev;
                         /* Holds the mode information just before
                         ** .explain ON */







>







455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
  FILE *traceOut;        /* Output for sqlite3_trace() */
  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int writableSchema;    /* True if PRAGMA writable_schema=ON */
  int showHeader;        /* True to show column names in List or Column mode */
  char *zDestTable;      /* Name of destination table when MODE_Insert */
  char separator[20];    /* Separator character for MODE_List */
  char newline[20];      /* Record separator in MODE_Csv */
  int colWidth[100];     /* Requested width of each column when in column mode*/
  int actualWidth[100];  /* Actual width of each column */
  char nullvalue[20];    /* The text to print when a NULL comes back from
                         ** the database */
  struct previous_mode_data explainPrev;
                         /* Holds the mode information just before
                         ** .explain ON */
655
656
657
658
659
660
661
662

663
664
665
666
667
668
669
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   
};

/*
** Output a single term of CSV.  Actually, p->separator is used for
** the separator, which may or may not be a comma.  p->nullvalue is
** the null value.  Strings are quoted if necessary.

*/
static void output_csv(struct callback_data *p, const char *z, int bSep){
  FILE *out = p->out;
  if( z==0 ){
    fprintf(out,"%s",p->nullvalue);
  }else{
    int i;







|
>







657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   
};

/*
** Output a single term of CSV.  Actually, p->separator is used for
** the separator, which may or may not be a comma.  p->nullvalue is
** the null value.  Strings are quoted if necessary.  The separator
** is only issued if bSep is true.
*/
static void output_csv(struct callback_data *p, const char *z, int bSep){
  FILE *out = p->out;
  if( z==0 ){
    fprintf(out,"%s",p->nullvalue);
  }else{
    int i;
851
852
853
854
855
856
857




858
859
860
861
862
863
864
865
866
867
868





869
870
871
872
873
874
875
        output_c_string(p->out, azArg[i] ? azArg[i] : p->nullvalue);
        if(i<nArg-1) fprintf(p->out, "%s", p->separator);
      }
      fprintf(p->out,"\n");
      break;
    }
    case MODE_Csv: {




      if( p->cnt++==0 && p->showHeader ){
        for(i=0; i<nArg; i++){
          output_csv(p, azCol[i] ? azCol[i] : "", i<nArg-1);
        }
        fprintf(p->out,"\n");
      }
      if( azArg==0 ) break;
      for(i=0; i<nArg; i++){
        output_csv(p, azArg[i], i<nArg-1);
      }
      fprintf(p->out,"\n");





      break;
    }
    case MODE_Insert: {
      p->cnt++;
      if( azArg==0 ) break;
      fprintf(p->out,"INSERT INTO %s VALUES(",p->zDestTable);
      for(i=0; i<nArg; i++){







>
>
>
>




|

|
|
|
|
|
>
>
>
>
>







854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
        output_c_string(p->out, azArg[i] ? azArg[i] : p->nullvalue);
        if(i<nArg-1) fprintf(p->out, "%s", p->separator);
      }
      fprintf(p->out,"\n");
      break;
    }
    case MODE_Csv: {
#if defined(WIN32) || defined(_WIN32)
      fflush(p->out);
      _setmode(_fileno(p->out), _O_BINARY);
#endif
      if( p->cnt++==0 && p->showHeader ){
        for(i=0; i<nArg; i++){
          output_csv(p, azCol[i] ? azCol[i] : "", i<nArg-1);
        }
        fprintf(p->out,"%s",p->newline);
      }
      if( azArg>0 ){
        for(i=0; i<nArg; i++){
          output_csv(p, azArg[i], i<nArg-1);
        }
        fprintf(p->out,"%s",p->newline);
      }
#if defined(WIN32) || defined(_WIN32)
      fflush(p->out);
      _setmode(_fileno(p->out), _O_TEXT);
#endif
      break;
    }
    case MODE_Insert: {
      p->cnt++;
      if( azArg==0 ) break;
      fprintf(p->out,"INSERT INTO %s VALUES(",p->zDestTable);
      for(i=0; i<nArg; i++){
1615
1616
1617
1618
1619
1620
1621
1622

1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639































































1640
1641
1642
1643
1644
1645
1646
  ".quit                  Exit this program\n"
  ".read FILENAME         Execute SQL in FILENAME\n"
  ".restore ?DB? FILE     Restore content of DB (default \"main\") from FILE\n"
  ".save FILE             Write in-memory database into FILE\n"
  ".schema ?TABLE?        Show the CREATE statements\n"
  "                         If TABLE specified, only show tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".separator STRING      Change separator used by output mode and .import\n"

  ".shell CMD ARGS...     Run CMD ARGS... in a system shell\n"
  ".show                  Show the current values for various settings\n"
  ".stats on|off          Turn stats on or off\n"
  ".system CMD ARGS...    Run CMD ARGS... in a system shell\n"
  ".tables ?TABLE?        List names of tables\n"
  "                         If TABLE specified, only list tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".timeout MS            Try opening locked tables for MS milliseconds\n"
  ".timer on|off          Turn SQL timer on or off\n"
  ".trace FILE|off        Output each SQL statement as it is run\n"
  ".vfsname ?AUX?         Print the name of the VFS stack\n"
  ".width NUM1 NUM2 ...   Set column widths for \"column\" mode\n"
  "                         Negative values right-justify\n"
;

/* Forward reference */
static int process_input(struct callback_data *p, FILE *in);
































































/*
** Make sure the database is open.  If it is not, then open it.  If
** the database fails to open, print an error message and exit.
*/
static void open_db(struct callback_data *p, int keepAlive){
  if( p->db==0 ){







|
>

















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
  ".quit                  Exit this program\n"
  ".read FILENAME         Execute SQL in FILENAME\n"
  ".restore ?DB? FILE     Restore content of DB (default \"main\") from FILE\n"
  ".save FILE             Write in-memory database into FILE\n"
  ".schema ?TABLE?        Show the CREATE statements\n"
  "                         If TABLE specified, only show tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".separator STRING ?NL? Change separator used by output mode and .import\n"
  "                         NL is the end-of-line mark for CSV\n"
  ".shell CMD ARGS...     Run CMD ARGS... in a system shell\n"
  ".show                  Show the current values for various settings\n"
  ".stats on|off          Turn stats on or off\n"
  ".system CMD ARGS...    Run CMD ARGS... in a system shell\n"
  ".tables ?TABLE?        List names of tables\n"
  "                         If TABLE specified, only list tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".timeout MS            Try opening locked tables for MS milliseconds\n"
  ".timer on|off          Turn SQL timer on or off\n"
  ".trace FILE|off        Output each SQL statement as it is run\n"
  ".vfsname ?AUX?         Print the name of the VFS stack\n"
  ".width NUM1 NUM2 ...   Set column widths for \"column\" mode\n"
  "                         Negative values right-justify\n"
;

/* Forward reference */
static int process_input(struct callback_data *p, FILE *in);
/*
** Implementation of the "readfile(X)" SQL function.  The entire content
** of the file named X is read and returned as a BLOB.  NULL is returned
** if the file does not exist or is unreadable.
*/
static void readfileFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const char *zName;
  FILE *in;
  long nIn;
  void *pBuf;

  zName = (const char*)sqlite3_value_text(argv[0]);
  if( zName==0 ) return;
  in = fopen(zName, "rb");
  if( in==0 ) return;
  fseek(in, 0, SEEK_END);
  nIn = ftell(in);
  rewind(in);
  pBuf = sqlite3_malloc( nIn );
  if( pBuf && 1==fread(pBuf, nIn, 1, in) ){
    sqlite3_result_blob(context, pBuf, nIn, sqlite3_free);
  }else{
    sqlite3_free(pBuf);
  }
  fclose(in);
}

/*
** Implementation of the "writefile(X,Y)" SQL function.  The argument Y
** is written into file X.  The number of bytes written is returned.  Or
** NULL is returned if something goes wrong, such as being unable to open
** file X for writing.
*/
static void writefileFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  FILE *out;
  const char *z;
  int n;
  sqlite3_int64 rc;
  const char *zFile;

  zFile = (const char*)sqlite3_value_text(argv[0]);
  if( zFile==0 ) return;
  out = fopen(zFile, "wb");
  if( out==0 ) return;
  z = (const char*)sqlite3_value_blob(argv[1]);
  if( z==0 ){
    n = 0;
    rc = 0;
  }else{
    n = sqlite3_value_bytes(argv[1]);
    rc = fwrite(z, 1, n, out);
  }
  fclose(out);
  sqlite3_result_int64(context, rc);
}

/*
** Make sure the database is open.  If it is not, then open it.  If
** the database fails to open, print an error message and exit.
*/
static void open_db(struct callback_data *p, int keepAlive){
  if( p->db==0 ){
1656
1657
1658
1659
1660
1661
1662




1663
1664
1665
1666
1667
1668
1669
          p->zDbFilename, sqlite3_errmsg(db));
      if( keepAlive ) return;
      exit(1);
    }
#ifndef SQLITE_OMIT_LOAD_EXTENSION
    sqlite3_enable_load_extension(p->db, 1);
#endif




  }
}

/*
** Do C-language style dequoting.
**
**    \t    -> tab







>
>
>
>







1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
          p->zDbFilename, sqlite3_errmsg(db));
      if( keepAlive ) return;
      exit(1);
    }
#ifndef SQLITE_OMIT_LOAD_EXTENSION
    sqlite3_enable_load_extension(p->db, 1);
#endif
    sqlite3_create_function(db, "readfile", 1, SQLITE_UTF8, 0,
                            readfileFunc, 0, 0);
    sqlite3_create_function(db, "writefile", 2, SQLITE_UTF8, 0,
                            writefileFunc, 0, 0);
  }
}

/*
** Do C-language style dequoting.
**
**    \t    -> tab
2412
2413
2414
2415
2416
2417
2418

2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436













2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451

2452
2453
2454
2455
2456
2457
2458
      memcpy(p->colWidth,p->explainPrev.colWidth,sizeof(p->colWidth));
    }
  }else

  if( c=='f' && strncmp(azArg[0], "fullschema", n)==0 ){
    struct callback_data data;
    char *zErrMsg = 0;

    if( nArg!=1 ){
      fprintf(stderr, "Usage: .fullschema\n");
      rc = 1;
      goto meta_command_exit;
    }
    open_db(p, 0);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 0;
    data.mode = MODE_Semi;
    rc = sqlite3_exec(p->db,
       "SELECT sql FROM"
       "  (SELECT sql sql, type type, tbl_name tbl_name, name name, rowid x"
       "     FROM sqlite_master UNION ALL"
       "   SELECT sql, type, tbl_name, name, rowid FROM sqlite_temp_master) "
       "WHERE type!='meta' AND sql NOTNULL AND name NOT LIKE 'sqlite_%'"
       "ORDER BY rowid",
       callback, &data, &zErrMsg
    );













    sqlite3_exec(p->db, "SELECT 'ANALYZE sqlite_master;'",
                 callback, &data, &zErrMsg);
    data.mode = MODE_Insert;
    data.zDestTable = "sqlite_stat1";
    shell_exec(p->db, "SELECT * FROM sqlite_stat1",
               shell_callback, &data,&zErrMsg);
    data.zDestTable = "sqlite_stat3";
    shell_exec(p->db, "SELECT * FROM sqlite_stat3",
               shell_callback, &data,&zErrMsg);
    data.zDestTable = "sqlite_stat4";
    shell_exec(p->db, "SELECT * FROM sqlite_stat4",
               shell_callback, &data, &zErrMsg);
    data.mode = MODE_Semi;
    shell_exec(p->db, "SELECT 'ANALYZE sqlite_master;'",
               shell_callback, &data, &zErrMsg);

  }else

  if( c=='h' && strncmp(azArg[0], "headers", n)==0 ){
    if( nArg==2 ){
      p->showHeader = booleanValue(azArg[1]);
    }else{
      fprintf(stderr, "Usage: .headers on|off\n");







>


















>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
<
|
<
>







2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542

2543

2544
2545
2546
2547
2548
2549
2550
2551
      memcpy(p->colWidth,p->explainPrev.colWidth,sizeof(p->colWidth));
    }
  }else

  if( c=='f' && strncmp(azArg[0], "fullschema", n)==0 ){
    struct callback_data data;
    char *zErrMsg = 0;
    int doStats = 0;
    if( nArg!=1 ){
      fprintf(stderr, "Usage: .fullschema\n");
      rc = 1;
      goto meta_command_exit;
    }
    open_db(p, 0);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 0;
    data.mode = MODE_Semi;
    rc = sqlite3_exec(p->db,
       "SELECT sql FROM"
       "  (SELECT sql sql, type type, tbl_name tbl_name, name name, rowid x"
       "     FROM sqlite_master UNION ALL"
       "   SELECT sql, type, tbl_name, name, rowid FROM sqlite_temp_master) "
       "WHERE type!='meta' AND sql NOTNULL AND name NOT LIKE 'sqlite_%'"
       "ORDER BY rowid",
       callback, &data, &zErrMsg
    );
    if( rc==SQLITE_OK ){
      sqlite3_stmt *pStmt;
      rc = sqlite3_prepare_v2(p->db,
               "SELECT rowid FROM sqlite_master"
               " WHERE name GLOB 'sqlite_stat[134]'",
               -1, &pStmt, 0);
      doStats = sqlite3_step(pStmt)==SQLITE_ROW;
      sqlite3_finalize(pStmt);
    }
    if( doStats==0 ){
      fprintf(p->out, "/* No STAT tables available */\n");
    }else{
      fprintf(p->out, "ANALYZE sqlite_master;\n");
      sqlite3_exec(p->db, "SELECT 'ANALYZE sqlite_master'",
                   callback, &data, &zErrMsg);
      data.mode = MODE_Insert;
      data.zDestTable = "sqlite_stat1";
      shell_exec(p->db, "SELECT * FROM sqlite_stat1",
                 shell_callback, &data,&zErrMsg);
      data.zDestTable = "sqlite_stat3";
      shell_exec(p->db, "SELECT * FROM sqlite_stat3",
                 shell_callback, &data,&zErrMsg);
      data.zDestTable = "sqlite_stat4";
      shell_exec(p->db, "SELECT * FROM sqlite_stat4",
                 shell_callback, &data, &zErrMsg);

      fprintf(p->out, "ANALYZE sqlite_master;\n");

    }
  }else

  if( c=='h' && strncmp(azArg[0], "headers", n)==0 ){
    if( nArg==2 ){
      p->showHeader = booleanValue(azArg[1]);
    }else{
      fprintf(stderr, "Usage: .headers on|off\n");
2734
2735
2736
2737
2738
2739
2740

2741
2742
2743
2744
2745
2746
2747
      p->mode = MODE_Html;
    }else if( c2=='t' && strncmp(azArg[1],"tcl",n2)==0 ){
      p->mode = MODE_Tcl;
      sqlite3_snprintf(sizeof(p->separator), p->separator, " ");
    }else if( c2=='c' && strncmp(azArg[1],"csv",n2)==0 ){
      p->mode = MODE_Csv;
      sqlite3_snprintf(sizeof(p->separator), p->separator, ",");

    }else if( c2=='t' && strncmp(azArg[1],"tabs",n2)==0 ){
      p->mode = MODE_List;
      sqlite3_snprintf(sizeof(p->separator), p->separator, "\t");
    }else if( c2=='i' && strncmp(azArg[1],"insert",n2)==0 ){
      p->mode = MODE_Insert;
      set_table_name(p, nArg>=3 ? azArg[2] : "table");
    }else {







>







2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
      p->mode = MODE_Html;
    }else if( c2=='t' && strncmp(azArg[1],"tcl",n2)==0 ){
      p->mode = MODE_Tcl;
      sqlite3_snprintf(sizeof(p->separator), p->separator, " ");
    }else if( c2=='c' && strncmp(azArg[1],"csv",n2)==0 ){
      p->mode = MODE_Csv;
      sqlite3_snprintf(sizeof(p->separator), p->separator, ",");
      sqlite3_snprintf(sizeof(p->newline), p->newline, "\r\n");
    }else if( c2=='t' && strncmp(azArg[1],"tabs",n2)==0 ){
      p->mode = MODE_List;
      sqlite3_snprintf(sizeof(p->separator), p->separator, "\t");
    }else if( c2=='i' && strncmp(azArg[1],"insert",n2)==0 ){
      p->mode = MODE_Insert;
      set_table_name(p, nArg>=3 ? azArg[2] : "table");
    }else {
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025






3026
3027
3028
3029
3030
3031
3032
        fprintf(p->out, "%s", zBuf);
      }
    }
  }else
#endif

  if( c=='s' && strncmp(azArg[0], "separator", n)==0 ){
    if( nArg==2 ){
      sqlite3_snprintf(sizeof(p->separator), p->separator,
                       "%.*s", (int)sizeof(p->separator)-1, azArg[1]);
    }else{
      fprintf(stderr, "Usage: .separator STRING\n");
      rc = 1;
    }






  }else

  if( c=='s'
   && (strncmp(azArg[0], "shell", n)==0 || strncmp(azArg[0],"system",n)==0)
  ){
    char *zCmd;
    int i;







|
<
<
<
|


>
>
>
>
>
>







3106
3107
3108
3109
3110
3111
3112
3113



3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
        fprintf(p->out, "%s", zBuf);
      }
    }
  }else
#endif

  if( c=='s' && strncmp(azArg[0], "separator", n)==0 ){
    if( nArg<2 || nArg>3 ){



      fprintf(stderr, "Usage: .separator SEPARATOR ?NEWLINE?\n");
      rc = 1;
    }
    if( nArg>=2 ){
      sqlite3_snprintf(sizeof(p->separator), p->separator, azArg[1]);
    }
    if( nArg>=3 ){
      sqlite3_snprintf(sizeof(p->newline), p->newline, azArg[2]);
    }
  }else

  if( c=='s'
   && (strncmp(azArg[0], "shell", n)==0 || strncmp(azArg[0],"system",n)==0)
  ){
    char *zCmd;
    int i;
3059
3060
3061
3062
3063
3064
3065


3066
3067
3068
3069
3070
3071
3072
    fprintf(p->out,"%9.9s: ", "nullvalue");
      output_c_string(p->out, p->nullvalue);
      fprintf(p->out, "\n");
    fprintf(p->out,"%9.9s: %s\n","output",
            strlen30(p->outfile) ? p->outfile : "stdout");
    fprintf(p->out,"%9.9s: ", "separator");
      output_c_string(p->out, p->separator);


      fprintf(p->out, "\n");
    fprintf(p->out,"%9.9s: %s\n","stats", p->statsOn ? "on" : "off");
    fprintf(p->out,"%9.9s: ","width");
    for (i=0;i<(int)ArraySize(p->colWidth) && p->colWidth[i] != 0;i++) {
      fprintf(p->out,"%d ",p->colWidth[i]);
    }
    fprintf(p->out,"\n");







>
>







3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
    fprintf(p->out,"%9.9s: ", "nullvalue");
      output_c_string(p->out, p->nullvalue);
      fprintf(p->out, "\n");
    fprintf(p->out,"%9.9s: %s\n","output",
            strlen30(p->outfile) ? p->outfile : "stdout");
    fprintf(p->out,"%9.9s: ", "separator");
      output_c_string(p->out, p->separator);
      fprintf(p->out," ");
      output_c_string(p->out, p->newline);
      fprintf(p->out, "\n");
    fprintf(p->out,"%9.9s: %s\n","stats", p->statsOn ? "on" : "off");
    fprintf(p->out,"%9.9s: ","width");
    for (i=0;i<(int)ArraySize(p->colWidth) && p->colWidth[i] != 0;i++) {
      fprintf(p->out,"%d ",p->colWidth[i]);
    }
    fprintf(p->out,"\n");
3675
3676
3677
3678
3679
3680
3681

3682
3683
3684
3685
3686
3687
3688
  "   -interactive         force interactive I/O\n"
  "   -line                set output mode to 'line'\n"
  "   -list                set output mode to 'list'\n"
  "   -mmap N              default mmap size set to N\n"
#ifdef SQLITE_ENABLE_MULTIPLEX
  "   -multiplex           enable the multiplexor VFS\n"
#endif

  "   -nullvalue TEXT      set text string for NULL values. Default ''\n"
  "   -separator SEP       set output field separator. Default: '|'\n"
  "   -stats               print memory stats before each finalize\n"
  "   -version             show SQLite version\n"
  "   -vfs NAME            use NAME as the default VFS\n"
#ifdef SQLITE_ENABLE_VFSTRACE
  "   -vfstrace            enable tracing of all VFS calls\n"







>







3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
  "   -interactive         force interactive I/O\n"
  "   -line                set output mode to 'line'\n"
  "   -list                set output mode to 'list'\n"
  "   -mmap N              default mmap size set to N\n"
#ifdef SQLITE_ENABLE_MULTIPLEX
  "   -multiplex           enable the multiplexor VFS\n"
#endif
  "   -newline SEP         set newline character(s) for CSV\n"
  "   -nullvalue TEXT      set text string for NULL values. Default ''\n"
  "   -separator SEP       set output field separator. Default: '|'\n"
  "   -stats               print memory stats before each finalize\n"
  "   -version             show SQLite version\n"
  "   -vfs NAME            use NAME as the default VFS\n"
#ifdef SQLITE_ENABLE_VFSTRACE
  "   -vfstrace            enable tracing of all VFS calls\n"
3704
3705
3706
3707
3708
3709
3710

3711
3712
3713
3714
3715
3716
3717
/*
** Initialize the state information in data
*/
static void main_init(struct callback_data *data) {
  memset(data, 0, sizeof(*data));
  data->mode = MODE_List;
  memcpy(data->separator,"|", 2);

  data->showHeader = 0;
  sqlite3_config(SQLITE_CONFIG_URI, 1);
  sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data);
  sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> ");
  sqlite3_snprintf(sizeof(continuePrompt), continuePrompt,"   ...> ");
  sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
}







>







3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
/*
** Initialize the state information in data
*/
static void main_init(struct callback_data *data) {
  memset(data, 0, sizeof(*data));
  data->mode = MODE_List;
  memcpy(data->separator,"|", 2);
  memcpy(data->newline,"\r\n", 3);
  data->showHeader = 0;
  sqlite3_config(SQLITE_CONFIG_URI, 1);
  sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data);
  sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> ");
  sqlite3_snprintf(sizeof(continuePrompt), continuePrompt,"   ...> ");
  sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
}
3796
3797
3798
3799
3800
3801
3802

3803
3804
3805
3806
3807
3808
3809
      fprintf(stderr,"%s: Error: too many options: \"%s\"\n", Argv0, argv[i]);
      fprintf(stderr,"Use -help for a list of options.\n");
      return 1;
    }
    if( z[1]=='-' ) z++;
    if( strcmp(z,"-separator")==0
     || strcmp(z,"-nullvalue")==0

     || strcmp(z,"-cmd")==0
    ){
      (void)cmdline_option_value(argc, argv, ++i);
    }else if( strcmp(z,"-init")==0 ){
      zInitFile = cmdline_option_value(argc, argv, ++i);
    }else if( strcmp(z,"-batch")==0 ){
      /* Need to check for batch mode here to so we can avoid printing







>







3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
      fprintf(stderr,"%s: Error: too many options: \"%s\"\n", Argv0, argv[i]);
      fprintf(stderr,"Use -help for a list of options.\n");
      return 1;
    }
    if( z[1]=='-' ) z++;
    if( strcmp(z,"-separator")==0
     || strcmp(z,"-nullvalue")==0
     || strcmp(z,"-newline")==0
     || strcmp(z,"-cmd")==0
    ){
      (void)cmdline_option_value(argc, argv, ++i);
    }else if( strcmp(z,"-init")==0 ){
      zInitFile = cmdline_option_value(argc, argv, ++i);
    }else if( strcmp(z,"-batch")==0 ){
      /* Need to check for batch mode here to so we can avoid printing
3905
3906
3907
3908
3909
3910
3911



3912
3913
3914
3915
3916
3917
3918
      data.mode = MODE_Column;
    }else if( strcmp(z,"-csv")==0 ){
      data.mode = MODE_Csv;
      memcpy(data.separator,",",2);
    }else if( strcmp(z,"-separator")==0 ){
      sqlite3_snprintf(sizeof(data.separator), data.separator,
                       "%s",cmdline_option_value(argc,argv,++i));



    }else if( strcmp(z,"-nullvalue")==0 ){
      sqlite3_snprintf(sizeof(data.nullvalue), data.nullvalue,
                       "%s",cmdline_option_value(argc,argv,++i));
    }else if( strcmp(z,"-header")==0 ){
      data.showHeader = 1;
    }else if( strcmp(z,"-noheader")==0 ){
      data.showHeader = 0;







>
>
>







4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
      data.mode = MODE_Column;
    }else if( strcmp(z,"-csv")==0 ){
      data.mode = MODE_Csv;
      memcpy(data.separator,",",2);
    }else if( strcmp(z,"-separator")==0 ){
      sqlite3_snprintf(sizeof(data.separator), data.separator,
                       "%s",cmdline_option_value(argc,argv,++i));
    }else if( strcmp(z,"-newline")==0 ){
      sqlite3_snprintf(sizeof(data.newline), data.newline,
                       "%s",cmdline_option_value(argc,argv,++i));
    }else if( strcmp(z,"-nullvalue")==0 ){
      sqlite3_snprintf(sizeof(data.nullvalue), data.nullvalue,
                       "%s",cmdline_option_value(argc,argv,++i));
    }else if( strcmp(z,"-header")==0 ){
      data.showHeader = 1;
    }else if( strcmp(z,"-noheader")==0 ){
      data.showHeader = 0;
Changes to src/sqlite.h.in.
2028
2029
2030
2031
2032
2033
2034
2035

2036

2037


2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048

2049
2050
2051
2052
2053
2054
2055

2056
2057
2058
2059
2060
2061
2062
*/
int sqlite3_complete(const char *sql);
int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
**
** ^This routine sets a callback function that might be invoked whenever

** an attempt is made to open a database table that another thread

** or process has locked.


**
** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
** is returned immediately upon encountering the lock.  ^If the busy callback
** is not NULL, then the callback might be invoked with two arguments.
**
** ^The first argument to the busy handler is a copy of the void* pointer which
** is the third argument to sqlite3_busy_handler().  ^The second argument to
** the busy handler callback is the number of times that the busy handler has
** been invoked for this locking event.  ^If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.

** ^If the callback returns non-zero, then another attempt
** is made to open the database for reading and the cycle repeats.
**
** The presence of a busy handler does not guarantee that it will be invoked
** when there is lock contention. ^If SQLite determines that invoking the busy
** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.

** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
** to promote to an exclusive lock.  The first process cannot proceed
** because it is blocked by the second and the second process cannot
** proceed because it is blocked by the first.  If both processes
** invoke the busy handlers, neither will make any progress.  Therefore,







|
>
|
>
|
>
>








|

|
>

|




|
>







2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
*/
int sqlite3_complete(const char *sql);
int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
**
** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
** that might be invoked with argument P whenever
** an attempt is made to access a database table associated with
** [database connection] D when another thread
** or process has the table locked.
** The sqlite3_busy_handler() interface is used to implement
** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
**
** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
** is returned immediately upon encountering the lock.  ^If the busy callback
** is not NULL, then the callback might be invoked with two arguments.
**
** ^The first argument to the busy handler is a copy of the void* pointer which
** is the third argument to sqlite3_busy_handler().  ^The second argument to
** the busy handler callback is the number of times that the busy handler has
** been invoked for the same locking event.  ^If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned
** to the application.
** ^If the callback returns non-zero, then another attempt
** is made to access the database and the cycle repeats.
**
** The presence of a busy handler does not guarantee that it will be invoked
** when there is lock contention. ^If SQLite determines that invoking the busy
** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
** or [SQLITE_IOERR_BLOCKED] to the application instead of invoking the 
** busy handler.
** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
** to promote to an exclusive lock.  The first process cannot proceed
** because it is blocked by the second and the second process cannot
** proceed because it is blocked by the first.  If both processes
** invoke the busy handlers, neither will make any progress.  Therefore,
2080
2081
2082
2083
2084
2085
2086

2087
2088
2089
2090

2091
2092
2093
2094
2095
2096
2097
** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
** this is important.
**
** ^(There can only be a single busy handler defined for each
** [database connection].  Setting a new busy handler clears any
** previously set handler.)^  ^Note that calling [sqlite3_busy_timeout()]

** will also set or clear the busy handler.
**
** The busy callback should not take any actions which modify the
** database connection that invoked the busy handler.  Any such actions

** result in undefined behavior.
** 
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);








>
|


|
>







2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
** this is important.
**
** ^(There can only be a single busy handler defined for each
** [database connection].  Setting a new busy handler clears any
** previously set handler.)^  ^Note that calling [sqlite3_busy_timeout()]
** or evaluating [PRAGMA busy_timeout=N] will change the
** busy handler and thus clear any previously set busy handler.
**
** The busy callback should not take any actions which modify the
** database connection that invoked the busy handler.  In other words,
** the busy handler is not reentrant.  Any such actions
** result in undefined behavior.
** 
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

2108
2109
2110
2111
2112
2113
2114


2115
2116
2117
2118
2119
2120
2121
** ^Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
** ^(There can only be a single busy handler for a particular
** [database connection] any any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^


*/
int sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries
**
** This is a legacy interface that is preserved for backwards compatibility.







>
>







2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
** ^Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
** ^(There can only be a single busy handler for a particular
** [database connection] any any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^
**
** See also:  [PRAGMA busy_timeout]
*/
int sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries
**
** This is a legacy interface that is preserved for backwards compatibility.
4696
4697
4698
4699
4700
4701
4702







4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721





4722
4723
4724
4725
4726
4727
4728
**
** ^(If this global variable is made to point to a string which is
** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite when using a built-in [sqlite3_vfs | VFS]
** will be placed in that directory.)^  ^If this variable
** is a NULL pointer, then SQLite performs a search for an appropriate
** temporary file directory.







**
** It is not safe to read or modify this variable in more than one
** thread at a time.  It is not safe to read or modify this variable
** if a [database connection] is being used at the same time in a separate
** thread.
** It is intended that this variable be set once
** as part of process initialization and before any SQLite interface
** routines have been called and that this variable remain unchanged
** thereafter.
**
** ^The [temp_store_directory pragma] may modify this variable and cause
** it to point to memory obtained from [sqlite3_malloc].  ^Furthermore,
** the [temp_store_directory pragma] always assumes that any string
** that this variable points to is held in memory obtained from 
** [sqlite3_malloc] and the pragma may attempt to free that memory
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [temp_store_directory pragma] should be avoided.





**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling [sqlite3_open] or [sqlite3_open_v2].  Otherwise, various
** features that require the use of temporary files may fail.  Here is an
** example of how to do this using C++ with the Windows Runtime:
**
** <blockquote><pre>







>
>
>
>
>
>
>



















>
>
>
>
>







4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
**
** ^(If this global variable is made to point to a string which is
** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite when using a built-in [sqlite3_vfs | VFS]
** will be placed in that directory.)^  ^If this variable
** is a NULL pointer, then SQLite performs a search for an appropriate
** temporary file directory.
**
** Applications are strongly discouraged from using this global variable.
** It is required to set a temporary folder on Windows Runtime (WinRT).
** But for all other platforms, it is highly recommended that applications
** neither read nor write this variable.  This global variable is a relic
** that exists for backwards compatibility of legacy applications and should
** be avoided in new projects.
**
** It is not safe to read or modify this variable in more than one
** thread at a time.  It is not safe to read or modify this variable
** if a [database connection] is being used at the same time in a separate
** thread.
** It is intended that this variable be set once
** as part of process initialization and before any SQLite interface
** routines have been called and that this variable remain unchanged
** thereafter.
**
** ^The [temp_store_directory pragma] may modify this variable and cause
** it to point to memory obtained from [sqlite3_malloc].  ^Furthermore,
** the [temp_store_directory pragma] always assumes that any string
** that this variable points to is held in memory obtained from 
** [sqlite3_malloc] and the pragma may attempt to free that memory
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [temp_store_directory pragma] should be avoided.
** Except when requested by the [temp_store_directory pragma], SQLite
** does not free the memory that sqlite3_temp_directory points to.  If
** the application wants that memory to be freed, it must do
** so itself, taking care to only do so after all [database connection]
** objects have been destroyed.
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling [sqlite3_open] or [sqlite3_open_v2].  Otherwise, various
** features that require the use of temporary files may fail.  Here is an
** example of how to do this using C++ with the Windows Runtime:
**
** <blockquote><pre>
7134
7135
7136
7137
7138
7139
7140



7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157




7158
7159
7160
7161
7162
7163
7164
** ^The callback registered by this function replaces any existing callback
** registered using [sqlite3_wal_hook()].  ^Likewise, registering a callback
** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
** configured by this function.
**
** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
** from SQL.



**
** ^Every new [database connection] defaults to having the auto-checkpoint
** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
** pages.  The use of this interface
** is only necessary if the default setting is found to be suboptimal
** for a particular application.
*/
int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X
** on [database connection] D to be [checkpointed].  ^If X is NULL or an
** empty string, then a checkpoint is run on all databases of
** connection D.  ^If the database connection D is not in
** [WAL | write-ahead log mode] then this interface is a harmless no-op.




**
** ^The [wal_checkpoint pragma] can be used to invoke this interface
** from SQL.  ^The [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] can be used to cause this interface to be
** run whenever the WAL reaches a certain size threshold.
**
** See also: [sqlite3_wal_checkpoint_v2()]







>
>
>

















>
>
>
>







7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
** ^The callback registered by this function replaces any existing callback
** registered using [sqlite3_wal_hook()].  ^Likewise, registering a callback
** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
** configured by this function.
**
** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
** from SQL.
**
** ^Checkpoints initiated by this mechanism are
** [sqlite3_wal_checkpoint_v2|PASSIVE].
**
** ^Every new [database connection] defaults to having the auto-checkpoint
** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
** pages.  The use of this interface
** is only necessary if the default setting is found to be suboptimal
** for a particular application.
*/
int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X
** on [database connection] D to be [checkpointed].  ^If X is NULL or an
** empty string, then a checkpoint is run on all databases of
** connection D.  ^If the database connection D is not in
** [WAL | write-ahead log mode] then this interface is a harmless no-op.
** ^The [sqlite3_wal_checkpoint(D,X)] interface initiates a
** [sqlite3_wal_checkpoint_v2|PASSIVE] checkpoint.
** Use the [sqlite3_wal_checkpoint_v2()] interface to get a FULL
** or RESET checkpoint.
**
** ^The [wal_checkpoint pragma] can be used to invoke this interface
** from SQL.  ^The [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] can be used to cause this interface to be
** run whenever the WAL reaches a certain size threshold.
**
** See also: [sqlite3_wal_checkpoint_v2()]
7173
7174
7175
7176
7177
7178
7179
7180

7181
7182
7183

7184
7185
7186
7187
7188
7189
7190
7191

7192
7193
7194
7195
7196
7197
7198
** eMode parameter:
**
** <dl>
** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
**   Checkpoint as many frames as possible without waiting for any database 
**   readers or writers to finish. Sync the db file if all frames in the log
**   are checkpointed. This mode is the same as calling 
**   sqlite3_wal_checkpoint(). The busy-handler callback is never invoked.

**
** <dt>SQLITE_CHECKPOINT_FULL<dd>
**   This mode blocks (calls the busy-handler callback) until there is no

**   database writer and all readers are reading from the most recent database
**   snapshot. It then checkpoints all frames in the log file and syncs the
**   database file. This call blocks database writers while it is running,
**   but not database readers.
**
** <dt>SQLITE_CHECKPOINT_RESTART<dd>
**   This mode works the same way as SQLITE_CHECKPOINT_FULL, except after 
**   checkpointing the log file it blocks (calls the busy-handler callback)

**   until all readers are reading from the database file only. This ensures 
**   that the next client to write to the database file restarts the log file 
**   from the beginning. This call blocks database writers while it is running,
**   but not database readers.
** </dl>
**
** If pnLog is not NULL, then *pnLog is set to the total number of frames in







|
>


|
>







|
>







7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
** eMode parameter:
**
** <dl>
** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
**   Checkpoint as many frames as possible without waiting for any database 
**   readers or writers to finish. Sync the db file if all frames in the log
**   are checkpointed. This mode is the same as calling 
**   sqlite3_wal_checkpoint(). The [sqlite3_busy_handler|busy-handler callback]
**   is never invoked.
**
** <dt>SQLITE_CHECKPOINT_FULL<dd>
**   This mode blocks (it invokes the
**   [sqlite3_busy_handler|busy-handler callback]) until there is no
**   database writer and all readers are reading from the most recent database
**   snapshot. It then checkpoints all frames in the log file and syncs the
**   database file. This call blocks database writers while it is running,
**   but not database readers.
**
** <dt>SQLITE_CHECKPOINT_RESTART<dd>
**   This mode works the same way as SQLITE_CHECKPOINT_FULL, except after 
**   checkpointing the log file it blocks (calls the 
**   [sqlite3_busy_handler|busy-handler callback])
**   until all readers are reading from the database file only. This ensures 
**   that the next client to write to the database file restarts the log file 
**   from the beginning. This call blocks database writers while it is running,
**   but not database readers.
** </dl>
**
** If pnLog is not NULL, then *pnLog is set to the total number of frames in
Changes to src/sqliteInt.h.
1481
1482
1483
1484
1485
1486
1487



1488
1489
1490
1491
1492
1493
1494
#endif
  LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
  int tnum;            /* Root BTree node for this table (see note above) */
  i16 iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
  i16 nCol;            /* Number of columns in this table */
  u16 nRef;            /* Number of pointers to this Table */
  LogEst szTabRow;     /* Estimated size of each table row in bytes */



  u8 tabFlags;         /* Mask of TF_* values */
  u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
#ifndef SQLITE_OMIT_ALTERTABLE
  int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  int nModuleArg;      /* Number of arguments to the module */







>
>
>







1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
#endif
  LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
  int tnum;            /* Root BTree node for this table (see note above) */
  i16 iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
  i16 nCol;            /* Number of columns in this table */
  u16 nRef;            /* Number of pointers to this Table */
  LogEst szTabRow;     /* Estimated size of each table row in bytes */
#ifdef SQLITE_ENABLE_COSTMULT
  LogEst costMult;     /* Cost multiplier for using this table */
#endif
  u8 tabFlags;         /* Mask of TF_* values */
  u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
#ifndef SQLITE_OMIT_ALTERTABLE
  int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  int nModuleArg;      /* Number of arguments to the module */
2140
2141
2142
2143
2144
2145
2146

2147
2148
2149
2150
2151
2152
2153
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */


/* Allowed return values from sqlite3WhereIsDistinct()
*/
#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
#define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
#define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
#define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */







>







2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
#define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */

/* Allowed return values from sqlite3WhereIsDistinct()
*/
#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
#define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
#define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
#define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2396
2397
2398
2399
2400
2401
2402
2403





2404
2405





2406
2407
2408
2409
2410
2411
2412
  u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
};

/*
** The yDbMask datatype for the bitmask of all attached databases.
*/
#if SQLITE_MAX_ATTACHED>30
  typedef sqlite3_uint64 yDbMask;





#else
  typedef unsigned int yDbMask;





#endif

/*
** An SQL parser context.  A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
**







|
>
>
>
>
>


>
>
>
>
>







2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
  u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
};

/*
** The yDbMask datatype for the bitmask of all attached databases.
*/
#if SQLITE_MAX_ATTACHED>30
  typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
# define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
# define DbMaskZero(M)      memset((M),0,sizeof(M))
# define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
# define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
# define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
#else
  typedef unsigned int yDbMask;
# define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
# define DbMaskZero(M)      (M)=0
# define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
# define DbMaskAllZero(M)   (M)==0
# define DbMaskNonZero(M)   (M)!=0
#endif

/*
** An SQL parser context.  A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
**
3075
3076
3077
3078
3079
3080
3081



3082
3083
3084
3085
3086
3087
3088

#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
  int sqlite3ViewGetColumnNames(Parse*,Table*);
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif




void sqlite3DropTable(Parse*, SrcList*, int, int);
void sqlite3CodeDropTable(Parse*, Table*, int, int);
void sqlite3DeleteTable(sqlite3*, Table*);
#ifndef SQLITE_OMIT_AUTOINCREMENT
  void sqlite3AutoincrementBegin(Parse *pParse);
  void sqlite3AutoincrementEnd(Parse *pParse);
#else







>
>
>







3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105

#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
  int sqlite3ViewGetColumnNames(Parse*,Table*);
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif

#if SQLITE_MAX_ATTACHED>30
  int sqlite3DbMaskAllZero(yDbMask);
#endif
void sqlite3DropTable(Parse*, SrcList*, int, int);
void sqlite3CodeDropTable(Parse*, Table*, int, int);
void sqlite3DeleteTable(sqlite3*, Table*);
#ifndef SQLITE_OMIT_AUTOINCREMENT
  void sqlite3AutoincrementBegin(Parse *pParse);
  void sqlite3AutoincrementEnd(Parse *pParse);
#else
3325
3326
3327
3328
3329
3330
3331

3332
3333
3334
3335
3336
3337
3338

const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
void sqlite3TableAffinity(Vdbe*, Table*, int);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3Atoi64(const char*, i64*, int, u8);

void sqlite3Error(sqlite3*, int, const char*,...);
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
u8 sqlite3HexToInt(int h);
int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);

#if defined(SQLITE_TEST) 
const char *sqlite3ErrName(int);







>







3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356

const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
void sqlite3TableAffinity(Vdbe*, Table*, int);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3Atoi64(const char*, i64*, int, u8);
int sqlite3DecOrHexToI64(const char*, i64*);
void sqlite3Error(sqlite3*, int, const char*,...);
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
u8 sqlite3HexToInt(int h);
int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);

#if defined(SQLITE_TEST) 
const char *sqlite3ErrName(int);
Changes to src/test_config.c.
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

#ifdef SQLITE_ENABLE_FTS3
  Tcl_SetVar2(interp, "sqlite_options", "fts3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "fts3", "0", TCL_GLOBAL_ONLY);
#endif

#if defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_ENABLE_FTS4_UNICODE61)
  Tcl_SetVar2(interp, "sqlite_options", "fts3_unicode", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "fts3_unicode", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_DISABLE_FTS4_DEFERRED
  Tcl_SetVar2(interp, "sqlite_options", "fts4_deferred", "0", TCL_GLOBAL_ONLY);







|







332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

#ifdef SQLITE_ENABLE_FTS3
  Tcl_SetVar2(interp, "sqlite_options", "fts3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "fts3", "0", TCL_GLOBAL_ONLY);
#endif

#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_DISABLE_FTS3_UNICODE)
  Tcl_SetVar2(interp, "sqlite_options", "fts3_unicode", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "fts3_unicode", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_DISABLE_FTS4_DEFERRED
  Tcl_SetVar2(interp, "sqlite_options", "fts4_deferred", "0", TCL_GLOBAL_ONLY);
Changes to src/tokenize.c.
266
267
268
269
270
271
272






273
274
275
276
277
278
279
    case '0': case '1': case '2': case '3': case '4':
    case '5': case '6': case '7': case '8': case '9': {
      testcase( z[0]=='0' );  testcase( z[0]=='1' );  testcase( z[0]=='2' );
      testcase( z[0]=='3' );  testcase( z[0]=='4' );  testcase( z[0]=='5' );
      testcase( z[0]=='6' );  testcase( z[0]=='7' );  testcase( z[0]=='8' );
      testcase( z[0]=='9' );
      *tokenType = TK_INTEGER;






      for(i=0; sqlite3Isdigit(z[i]); i++){}
#ifndef SQLITE_OMIT_FLOATING_POINT
      if( z[i]=='.' ){
        i++;
        while( sqlite3Isdigit(z[i]) ){ i++; }
        *tokenType = TK_FLOAT;
      }







>
>
>
>
>
>







266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    case '0': case '1': case '2': case '3': case '4':
    case '5': case '6': case '7': case '8': case '9': {
      testcase( z[0]=='0' );  testcase( z[0]=='1' );  testcase( z[0]=='2' );
      testcase( z[0]=='3' );  testcase( z[0]=='4' );  testcase( z[0]=='5' );
      testcase( z[0]=='6' );  testcase( z[0]=='7' );  testcase( z[0]=='8' );
      testcase( z[0]=='9' );
      *tokenType = TK_INTEGER;
#ifndef SQLITE_OMIT_HEX_INTEGER
      if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){
        for(i=3; sqlite3Isxdigit(z[i]); i++){}
        return i;
      }
#endif
      for(i=0; sqlite3Isdigit(z[i]); i++){}
#ifndef SQLITE_OMIT_FLOATING_POINT
      if( z[i]=='.' ){
        i++;
        while( sqlite3Isdigit(z[i]) ){ i++; }
        *tokenType = TK_FLOAT;
      }
Changes to src/util.c.
471
472
473
474
475
476
477
478
479
480

481
482
483
484
485
486
487
    testcase( c==(-1) );
    testcase( c==0 );
    testcase( c==(+1) );
  }
  return c;
}


/*
** Convert zNum to a 64-bit signed integer.

**
** If the zNum value is representable as a 64-bit twos-complement 
** integer, then write that value into *pNum and return 0.
**
** If zNum is exactly 9223372036854775808, return 2.  This special
** case is broken out because while 9223372036854775808 cannot be a 
** signed 64-bit integer, its negative -9223372036854775808 can be.







<

|
>







471
472
473
474
475
476
477

478
479
480
481
482
483
484
485
486
487
    testcase( c==(-1) );
    testcase( c==0 );
    testcase( c==(+1) );
  }
  return c;
}


/*
** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
** routine does *not* accept hexadecimal notation.
**
** If the zNum value is representable as a 64-bit twos-complement 
** integer, then write that value into *pNum and return 0.
**
** If zNum is exactly 9223372036854775808, return 2.  This special
** case is broken out because while 9223372036854775808 cannot be a 
** signed 64-bit integer, its negative -9223372036854775808 can be.
560
561
562
563
564
565
566
567
568
































569
570


571
572
573
574
575
576
577
578
579
580
581
582
583
584
585







586











587
588
589
590
591
592
593
      /* zNum is exactly 9223372036854775808.  Fits if negative.  The
      ** special case 2 overflow if positive */
      assert( u-1==LARGEST_INT64 );
      return neg ? 0 : 2;
    }
  }
}

/*
































** If zNum represents an integer that will fit in 32-bits, then set
** *pValue to that integer and return true.  Otherwise return false.


**
** Any non-numeric characters that following zNum are ignored.
** This is different from sqlite3Atoi64() which requires the
** input number to be zero-terminated.
*/
int sqlite3GetInt32(const char *zNum, int *pValue){
  sqlite_int64 v = 0;
  int i, c;
  int neg = 0;
  if( zNum[0]=='-' ){
    neg = 1;
    zNum++;
  }else if( zNum[0]=='+' ){
    zNum++;
  }







  while( zNum[0]=='0' ) zNum++;











  for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
    v = v*10 + c;
  }

  /* The longest decimal representation of a 32 bit integer is 10 digits:
  **
  **             1234567890









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
>















>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>







560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
      /* zNum is exactly 9223372036854775808.  Fits if negative.  The
      ** special case 2 overflow if positive */
      assert( u-1==LARGEST_INT64 );
      return neg ? 0 : 2;
    }
  }
}

/*
** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
** whereas sqlite3Atoi64() does not.
**
** Returns:
**
**     0    Successful transformation.  Fits in a 64-bit signed integer.
**     1    Integer too large for a 64-bit signed integer or is malformed
**     2    Special case of 9223372036854775808
*/
int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
#ifndef SQLITE_OMIT_HEX_INTEGER
  if( z[0]=='0'
   && (z[1]=='x' || z[1]=='X')
   && sqlite3Isxdigit(z[2])
  ){
    u64 u = 0;
    int i, k;
    for(i=2; z[i]=='0'; i++){}
    for(k=i; sqlite3Isxdigit(z[k]); k++){
      u = u*16 + sqlite3HexToInt(z[k]);
    }
    memcpy(pOut, &u, 8);
    return (z[k]==0 && k-i<=16) ? 0 : 1;
  }else
#endif /* SQLITE_OMIT_HEX_INTEGER */
  {
    return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
  }
}

/*
** If zNum represents an integer that will fit in 32-bits, then set
** *pValue to that integer and return true.  Otherwise return false.
**
** This routine accepts both decimal and hexadecimal notation for integers.
**
** Any non-numeric characters that following zNum are ignored.
** This is different from sqlite3Atoi64() which requires the
** input number to be zero-terminated.
*/
int sqlite3GetInt32(const char *zNum, int *pValue){
  sqlite_int64 v = 0;
  int i, c;
  int neg = 0;
  if( zNum[0]=='-' ){
    neg = 1;
    zNum++;
  }else if( zNum[0]=='+' ){
    zNum++;
  }
#ifndef SQLITE_OMIT_HEX_INTEGER
  else if( zNum[0]=='0'
        && (zNum[1]=='x' || zNum[1]=='X')
        && sqlite3Isxdigit(zNum[2])
  ){
    u32 u = 0;
    zNum += 2;
    while( zNum[0]=='0' ) zNum++;
    for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
      u = u*16 + sqlite3HexToInt(zNum[i]);
    }
    if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
      memcpy(pValue, &u, 4);
      return 1;
    }else{
      return 0;
    }
  }
#endif
  for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
    v = v*10 + c;
  }

  /* The longest decimal representation of a 32 bit integer is 10 digits:
  **
  **             1234567890
Changes to src/vdbe.c.
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
  Btree *pBt;
  int iMeta;
  int iGen;

  assert( p->bIsReader );
  assert( p->readOnly==0 || pOp->p2==0 );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
    rc = SQLITE_READONLY;
    goto abort_due_to_error;
  }
  pBt = db->aDb[pOp->p1].pBt;

  if( pBt ){







|







3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
  Btree *pBt;
  int iMeta;
  int iGen;

  assert( p->bIsReader );
  assert( p->readOnly==0 || pOp->p2==0 );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
    rc = SQLITE_READONLY;
    goto abort_due_to_error;
  }
  pBt = db->aDb[pOp->p1].pBt;

  if( pBt ){
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170

  assert( p->bIsReader );
  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );

  sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
  pOut->u.i = iMeta;
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.  P2==1 is the schema version.  
** P2==2 is the database format. P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  pIn3 = &aMem[pOp->p3];
  sqlite3VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */







|




















|







3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170

  assert( p->bIsReader );
  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( DbMaskTest(p->btreeMask, iDb) );

  sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
  pOut->u.i = iMeta;
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.  P2==1 is the schema version.  
** P2==2 is the database format. P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  pIn3 = &aMem[pOp->p3];
  sqlite3VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */
3211
3212
3213
3214
3215
3216
3217
3218














3219
3220
3221
3222
3223
3224
3225
**
** The P4 value may be either an integer (P4_INT32) or a pointer to
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
** structure, then said structure defines the content and collating 
** sequence of the index being opened. Otherwise, if P4 is an integer 
** value, it is set to the number of columns in the table.
**
** See also OpenWrite.














*/
/* Opcode: OpenWrite P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  Or if P5!=0 use the content of register P2 to find the
** root page.







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
**
** The P4 value may be either an integer (P4_INT32) or a pointer to
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
** structure, then said structure defines the content and collating 
** sequence of the index being opened. Otherwise, if P4 is an integer 
** value, it is set to the number of columns in the table.
**
** See also: OpenWrite, ReopenIdx
*/
/* Opcode: ReopenIdx P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** The ReopenIdx opcode works exactly like ReadOpen except that it first
** checks to see if the cursor on P1 is already open with a root page
** number of P2 and if it is this opcode becomes a no-op.  In other words,
** if the cursor is already open, do not reopen it.
**
** The ReopenIdx opcode may only be used with P5==0 and with P4 being
** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
** every other ReopenIdx or OpenRead for the same cursor number.
**
** See the OpenRead opcode documentation for additional information.
*/
/* Opcode: OpenWrite P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  Or if P5!=0 use the content of register P2 to find the
** root page.
3233
3234
3235
3236
3237
3238
3239













3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254

3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/













case OP_OpenRead:
case OP_OpenWrite: {
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || p->readOnly==0 );


  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){







>
>
>
>
>
>
>
>
>
>
>
>
>














|
>











|







3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_ReopenIdx: {
  VdbeCursor *pCur;

  assert( pOp->p5==0 );
  assert( pOp->p4type==P4_KEYINFO );
  pCur = p->apCsr[pOp->p1];
  if( pCur && pCur->pgnoRoot==pOp->p2 ){
    assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
    break;
  }
  /* If the cursor is not currently open or is open on a different
  ** index, then fall through into OP_OpenRead to force a reopen */
}
case OP_OpenRead:
case OP_OpenWrite: {
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
          || p->readOnly==0 );

  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( DbMaskTest(p->btreeMask, iDb) );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3304
3305
3306
3307
3308
3309
3310

3311
3312
3313
3314
3315
3316
3317
  assert( pOp->p1>=0 );
  assert( nField>=0 );
  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;

  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));

  /* Since it performs no memory allocation or IO, the only value that
  ** sqlite3BtreeCursor() may return is SQLITE_OK. */







>







3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
  assert( pOp->p1>=0 );
  assert( nField>=0 );
  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));

  /* Since it performs no memory allocation or IO, the only value that
  ** sqlite3BtreeCursor() may return is SQLITE_OK. */
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
  pOut->flags = MEM_Null;
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
    assert( iCnt==1 );
    assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
    iMoved = 0;  /* Not needed.  Only to silence a warning. */
    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
    pOut->flags = MEM_Int;
    pOut->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && iMoved!=0 ){
      sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);







|







4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
  pOut->flags = MEM_Null;
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
    assert( iCnt==1 );
    assert( DbMaskTest(p->btreeMask, iDb) );
    iMoved = 0;  /* Not needed.  Only to silence a warning. */
    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
    pOut->flags = MEM_Int;
    pOut->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && iMoved!=0 ){
      sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;
  assert( p->readOnly==0 );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
      assert( memIsValid(&aMem[pOp->p3]) );







|







4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;
  assert( p->readOnly==0 );
  assert( DbMaskTest(p->btreeMask, pOp->p2) );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
      assert( memIsValid(&aMem[pOp->p3]) );
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
case OP_CreateTable: {          /* out2-prerelease */
  int pgno;
  int flags;
  Db *pDb;

  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* flags = BTREE_INTKEY; */
    flags = BTREE_INTKEY;
  }else{







|







5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
case OP_CreateTable: {          /* out2-prerelease */
  int pgno;
  int flags;
  Db *pDb;

  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* flags = BTREE_INTKEY; */
    flags = BTREE_INTKEY;
  }else{
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
  }
  aRoot[j] = 0;
  assert( pOp->p5<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
                                 (int)pnErr->u.i, &nErr);
  sqlite3DbFree(db, aRoot);
  pnErr->u.i -= nErr;
  sqlite3VdbeMemSetNull(pIn1);
  if( nErr==0 ){
    assert( z==0 );







|







5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
  }
  aRoot[j] = 0;
  assert( pOp->p5<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p5) );
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
                                 (int)pnErr->u.i, &nErr);
  sqlite3DbFree(db, aRoot);
  pnErr->u.i -= nErr;
  sqlite3VdbeMemSetNull(pIn1);
  if( nErr==0 ){
    assert( z==0 );
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860


5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum: {        /* jump */
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( p->readOnly==0 );
  pBt = db->aDb[pOp->p1].pBt;
  rc = sqlite3BtreeIncrVacuum(pBt);
  VdbeBranchTaken(rc==SQLITE_DONE,2);
  if( rc==SQLITE_DONE ){
    pc = pOp->p2 - 1;
    rc = SQLITE_OK;
  }
  break;
}
#endif

/* Opcode: Expire P1 * * * *
**
** Cause precompiled statements to become expired. An expired statement
** fails with an error code of SQLITE_SCHEMA if it is ever executed 
** (via sqlite3_step()).


** 
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is affected. 
*/
case OP_Expire: {
  if( !pOp->p1 ){
    sqlite3ExpirePreparedStatements(db);
  }else{
    p->expired = 1;
  }







|














|
<
|
>
>


|







5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887

5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum: {        /* jump */
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pBt = db->aDb[pOp->p1].pBt;
  rc = sqlite3BtreeIncrVacuum(pBt);
  VdbeBranchTaken(rc==SQLITE_DONE,2);
  if( rc==SQLITE_DONE ){
    pc = pOp->p2 - 1;
    rc = SQLITE_OK;
  }
  break;
}
#endif

/* Opcode: Expire P1 * * * *
**
** Cause precompiled statements to expire.  When an expired statement

** is executed using sqlite3_step() it will either automatically
** reprepare itself (if it was originally created using sqlite3_prepare_v2())
** or it will fail with SQLITE_SCHEMA.
** 
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is expired.
*/
case OP_Expire: {
  if( !pOp->p1 ){
    sqlite3ExpirePreparedStatements(db);
  }else{
    p->expired = 1;
  }
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {
  u8 isWriteLock = (u8)pOp->p3;
  if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
    int p1 = pOp->p1; 
    assert( p1>=0 && p1<db->nDb );
    assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
    assert( isWriteLock==0 || isWriteLock==1 );
    rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
    if( (rc&0xFF)==SQLITE_LOCKED ){
      const char *z = pOp->p4.z;
      sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
    }
  }







|







5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {
  u8 isWriteLock = (u8)pOp->p3;
  if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
    int p1 = pOp->p1; 
    assert( p1>=0 && p1<db->nDb );
    assert( DbMaskTest(p->btreeMask, p1) );
    assert( isWriteLock==0 || isWriteLock==1 );
    rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
    if( (rc&0xFF)==SQLITE_LOCKED ){
      const char *z = pOp->p4.z;
      sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
    }
  }
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
    sqlite3DbFree(db, z);
  }
#ifdef SQLITE_USE_FCNTL_TRACE
  zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
  if( zTrace ){
    int i;
    for(i=0; i<db->nDb; i++){
      if( (MASKBIT(i) & p->btreeMask)==0 ) continue;
      sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
    }
  }
#endif /* SQLITE_USE_FCNTL_TRACE */
#ifdef SQLITE_DEBUG
  if( (db->flags & SQLITE_SqlTrace)!=0
   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0







|







6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
    sqlite3DbFree(db, z);
  }
#ifdef SQLITE_USE_FCNTL_TRACE
  zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
  if( zTrace ){
    int i;
    for(i=0; i<db->nDb; i++){
      if( DbMaskTest(p->btreeMask, i)==0 ) continue;
      sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
    }
  }
#endif /* SQLITE_USE_FCNTL_TRACE */
#ifdef SQLITE_DEBUG
  if( (db->flags & SQLITE_SqlTrace)!=0
   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
Changes to src/vdbeInt.h.
72
73
74
75
76
77
78

79
80
81
82
83
84
85
  u8 nullRow;           /* True if pointing to a row with no data */
  u8 rowidIsValid;      /* True if lastRowid is valid */
  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isTable:1;       /* True if a table requiring integer keys */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */

  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  i64 lastRowid;        /* Rowid being deleted by OP_Delete */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */

  /* Cached information about the header for the data record that the







>







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  u8 nullRow;           /* True if pointing to a row with no data */
  u8 rowidIsValid;      /* True if lastRowid is valid */
  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isTable:1;       /* True if a table requiring integer keys */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  Pgno pgnoRoot;        /* Root page of the open btree cursor */
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  i64 lastRowid;        /* Rowid being deleted by OP_Delete */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */

  /* Cached information about the header for the data record that the
Changes to src/vdbeapi.c.
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
}

/*
** Return true if the prepared statement is in need of being reset.
*/
int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
  Vdbe *v = (Vdbe*)pStmt;
  return v!=0 && v->pc>0 && v->magic==VDBE_MAGIC_RUN;
}

/*
** Return a pointer to the next prepared statement after pStmt associated
** with database connection pDb.  If pStmt is NULL, return the first
** prepared statement for the database connection.  Return NULL if there
** are no more.







|







1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
}

/*
** Return true if the prepared statement is in need of being reset.
*/
int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
  Vdbe *v = (Vdbe*)pStmt;
  return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN;
}

/*
** Return a pointer to the next prepared statement after pStmt associated
** with database connection pDb.  If pStmt is NULL, return the first
** prepared statement for the database connection.  Return NULL if there
** are no more.
Changes to src/vdbeaux.c.
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, pParse->aLabel);
  pParse->aLabel = 0;
  pParse->nLabel = 0;
  *pMaxFuncArgs = nMaxArgs;
  assert( p->bIsReader!=0 || p->btreeMask==0 );
}

/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );







|







496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, pParse->aLabel);
  pParse->aLabel = 0;
  pParse->nLabel = 0;
  *pMaxFuncArgs = nMaxArgs;
  assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
}

/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
** returned program.
*/
VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
  VdbeOp *aOp = p->aOp;
  assert( aOp && !p->db->mallocFailed );

  /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
  assert( p->btreeMask==0 );

  resolveP2Values(p, pnMaxArg);
  *pnOp = p->nOp;
  p->aOp = 0;
  return aOp;
}








|







523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
** returned program.
*/
VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
  VdbeOp *aOp = p->aOp;
  assert( aOp && !p->db->mallocFailed );

  /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
  assert( DbMaskAllZero(p->btreeMask) );

  resolveP2Values(p, pnMaxArg);
  *pnOp = p->nOp;
  p->aOp = 0;
  return aOp;
}

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
** attached databases that will be use.  A mask of these databases
** is maintained in p->btreeMask.  The p->lockMask value is the subset of
** p->btreeMask of databases that will require a lock.
*/
void sqlite3VdbeUsesBtree(Vdbe *p, int i){
  assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
  assert( i<(int)sizeof(p->btreeMask)*8 );
  p->btreeMask |= ((yDbMask)1)<<i;
  if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
    p->lockMask |= ((yDbMask)1)<<i;
  }
}

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure







|

|







1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
** attached databases that will be use.  A mask of these databases
** is maintained in p->btreeMask.  The p->lockMask value is the subset of
** p->btreeMask of databases that will require a lock.
*/
void sqlite3VdbeUsesBtree(Vdbe *p, int i){
  assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
  assert( i<(int)sizeof(p->btreeMask)*8 );
  DbMaskSet(p->btreeMask, i);
  if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
    DbMaskSet(p->lockMask, i);
  }
}

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
** statement p will ever use.  Let N be the number of bits in p->btreeMask
** corresponding to btrees that use shared cache.  Then the runtime of
** this routine is N*N.  But as N is rarely more than 1, this should not
** be a problem.
*/
void sqlite3VdbeEnter(Vdbe *p){
  int i;
  yDbMask mask;
  sqlite3 *db;
  Db *aDb;
  int nDb;
  if( p->lockMask==0 ) return;  /* The common case */
  db = p->db;
  aDb = db->aDb;
  nDb = db->nDb;
  for(i=0, mask=1; i<nDb; i++, mask += mask){
    if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
      sqlite3BtreeEnter(aDb[i].pBt);
    }
  }
}
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
*/
void sqlite3VdbeLeave(Vdbe *p){
  int i;
  yDbMask mask;
  sqlite3 *db;
  Db *aDb;
  int nDb;
  if( p->lockMask==0 ) return;  /* The common case */
  db = p->db;
  aDb = db->aDb;
  nDb = db->nDb;
  for(i=0, mask=1; i<nDb; i++, mask += mask){
    if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
      sqlite3BtreeLeave(aDb[i].pBt);
    }
  }
}
#endif

#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)







<



|



|
|












<



|



|
|







1138
1139
1140
1141
1142
1143
1144

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
** statement p will ever use.  Let N be the number of bits in p->btreeMask
** corresponding to btrees that use shared cache.  Then the runtime of
** this routine is N*N.  But as N is rarely more than 1, this should not
** be a problem.
*/
void sqlite3VdbeEnter(Vdbe *p){
  int i;

  sqlite3 *db;
  Db *aDb;
  int nDb;
  if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
  db = p->db;
  aDb = db->aDb;
  nDb = db->nDb;
  for(i=0; i<nDb; i++){
    if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
      sqlite3BtreeEnter(aDb[i].pBt);
    }
  }
}
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
*/
void sqlite3VdbeLeave(Vdbe *p){
  int i;

  sqlite3 *db;
  Db *aDb;
  int nDb;
  if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
  db = p->db;
  aDb = db->aDb;
  nDb = db->nDb;
  for(i=0; i<nDb; i++){
    if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
      sqlite3BtreeLeave(aDb[i].pBt);
    }
  }
}
#endif

#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
static void checkActiveVdbeCnt(sqlite3 *db){
  Vdbe *p;
  int cnt = 0;
  int nWrite = 0;
  int nRead = 0;
  p = db->pVdbe;
  while( p ){
    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
      cnt++;
      if( p->readOnly==0 ) nWrite++;
      if( p->bIsReader ) nRead++;
    }
    p = p->pNext;
  }
  assert( cnt==db->nVdbeActive );







|







2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
static void checkActiveVdbeCnt(sqlite3 *db){
  Vdbe *p;
  int cnt = 0;
  int nWrite = 0;
  int nRead = 0;
  p = db->pVdbe;
  while( p ){
    if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
      cnt++;
      if( p->readOnly==0 ) nWrite++;
      if( p->bIsReader ) nRead++;
    }
    p = p->pNext;
  }
  assert( cnt==db->nVdbeActive );
Changes to src/where.c.
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
      iLower = 0;
      iUpper = aSample[0].anLt[iCol];
    }else{
      i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
      iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol];
      iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
    }
    aStat[1] = (pIdx->nKeyCol>iCol ? pIdx->aAvgEq[iCol] : 1);
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;







|







1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
      iLower = 0;
      iUpper = aSample[0].anLt[iCol];
    }else{
      i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
      iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol];
      iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
    }
    aStat[1] = pIdx->aAvgEq[iCol];
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
3418
3419
3420
3421
3422
3423
3424

3425
3426
3427
3428
3429
3430
3431
    int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
    int regRowset = 0;                        /* Register for RowSet object */
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */

    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
    Table *pTab = pTabItem->pTab;
   
    pTerm = pLoop->aLTerm[0];
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );







>







3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
    int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
    int regRowset = 0;                        /* Register for RowSet object */
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
    Table *pTab = pTabItem->pTab;
   
    pTerm = pLoop->aLTerm[0];
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
3513
3514
3515
3516
3517
3518
3519


3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
      }
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */


    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int j1 = 0;                     /* Address of jump operation */
        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                        WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          /* This is the sub-WHERE clause body.  First skip over







>
>












<
|







3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534

3535
3536
3537
3538
3539
3540
3541
3542
      }
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                  WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY;
    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int j1 = 0;                     /* Address of jump operation */
        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,

                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          /* This is the sub-WHERE clause body.  First skip over
3617
3618
3619
3620
3621
3622
3623

3624
3625
3626
3627
3628
3629
3630
          assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
          if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
           && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
           && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
          ){
            assert( pSubWInfo->a[0].iIdxCur==iCovCur );
            pCov = pSubLoop->u.btree.pIndex;

          }else{
            pCov = 0;
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }







>







3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
          assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
          if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
           && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
           && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
          ){
            assert( pSubWInfo->a[0].iIdxCur==iCovCur );
            pCov = pSubLoop->u.btree.pIndex;
            wctrlFlags |= WHERE_REOPEN_IDX;
          }else{
            pCov = 0;
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
4223
4224
4225
4226
4227
4228
4229










4230
4231
4232
4233
4234
4235
4236
    }
    if( j<0 ){
      pLoop->nOut += (pTerm->truthProb<=0 ? pTerm->truthProb : -1);
    }
  }
}











/*
** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 
** index pIndex. Try to match one more.
**
** When this function is called, pBuilder->pNew->nOut contains the 
** number of rows expected to be visited by filtering using the nEq 
** terms only. If it is modified, this value is restored before this 







>
>
>
>
>
>
>
>
>
>







4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
    }
    if( j<0 ){
      pLoop->nOut += (pTerm->truthProb<=0 ? pTerm->truthProb : -1);
    }
  }
}

/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
# define ApplyCostMultiplier(C,T)  C += T
#else
# define ApplyCostMultiplier(C,T)
#endif

/*
** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 
** index pIndex. Try to match one more.
**
** When this function is called, pBuilder->pNew->nOut contains the 
** number of rows expected to be visited by filtering using the nEq 
** terms only. If it is modified, this value is restored before this 
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
          if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){
            testcase( eOp & WO_EQ );
            testcase( eOp & WO_ISNULL );
            rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
          }else{
            rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
          }
          assert( rc!=SQLITE_OK || nOut>0 );
          if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
          if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
          if( nOut ){
            pNew->nOut = sqlite3LogEst(nOut);
            if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
            pNew->nOut -= nIn;
          }







<







4432
4433
4434
4435
4436
4437
4438

4439
4440
4441
4442
4443
4444
4445
          if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){
            testcase( eOp & WO_EQ );
            testcase( eOp & WO_ISNULL );
            rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
          }else{
            rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
          }

          if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
          if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
          if( nOut ){
            pNew->nOut = sqlite3LogEst(nOut);
            if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
            pNew->nOut -= nIn;
          }
4451
4452
4453
4454
4455
4456
4457

4458
4459
4460
4461
4462
4463
4464
    ** seek only. Then, if this is a non-covering index, add the cost of
    ** visiting the rows in the main table.  */
    rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
    pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
    if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
      pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
    }


    nOutUnadjusted = pNew->nOut;
    pNew->rRun += nInMul + nIn;
    pNew->nOut += nInMul + nIn;
    whereLoopOutputAdjust(pBuilder->pWC, pNew);
    rc = whereLoopInsert(pBuilder, pNew);








>







4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
    ** seek only. Then, if this is a non-covering index, add the cost of
    ** visiting the rows in the main table.  */
    rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
    pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
    if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
      pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
    }
    ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);

    nOutUnadjusted = pNew->nOut;
    pNew->rRun += nInMul + nIn;
    pNew->nOut += nInMul + nIn;
    whereLoopOutputAdjust(pBuilder->pWC, pNew);
    rc = whereLoopInsert(pBuilder, pNew);

4570
4571
4572
4573
4574
4575
4576








4577
4578
4579
4580
4581
4582
4583
**
**     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
**     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
**
** Normally, nSeek is 1. nSeek values greater than 1 come about if the 
** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 
** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.








*/
static int whereLoopAddBtree(
  WhereLoopBuilder *pBuilder, /* WHERE clause information */
  Bitmask mExtra              /* Extra prerequesites for using this table */
){
  WhereInfo *pWInfo;          /* WHERE analysis context */
  Index *pProbe;              /* An index we are evaluating */







>
>
>
>
>
>
>
>







4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
**
**     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
**     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
**
** Normally, nSeek is 1. nSeek values greater than 1 come about if the 
** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 
** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
**
** The estimated values (nRow, nVisit, nSeek) often contain a large amount
** of uncertainty.  For this reason, scoring is designed to pick plans that
** "do the least harm" if the estimates are inaccurate.  For example, a
** log(nRow) factor is omitted from a non-covering index scan in order to
** bias the scoring in favor of using an index, since the worst-case
** performance of using an index is far better than the worst-case performance
** of a full table scan.
*/
static int whereLoopAddBtree(
  WhereLoopBuilder *pBuilder, /* WHERE clause information */
  Bitmask mExtra              /* Extra prerequesites for using this table */
){
  WhereInfo *pWInfo;          /* WHERE analysis context */
  Index *pProbe;              /* An index we are evaluating */
4657
4658
4659
4660
4661
4662
4663

4664
4665
4666
4667
4668
4669
4670
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** approximately 7*N*log2(N) where N is the number of rows in
        ** the table being indexed. */
        pNew->rSetup = rLogSize + rSize + 28;  assert( 28==sqlite3LogEst(7) );

        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowning how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
        pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
        pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
        pNew->wsFlags = WHERE_AUTO_INDEX;







>







4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** approximately 7*N*log2(N) where N is the number of rows in
        ** the table being indexed. */
        pNew->rSetup = rLogSize + rSize + 28;  assert( 28==sqlite3LogEst(7) );
        ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowning how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
        pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
        pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
        pNew->wsFlags = WHERE_AUTO_INDEX;
4698
4699
4700
4701
4702
4703
4704

4705
4706
4707
4708
4709
4710
4711
      /* Integer primary key index */
      pNew->wsFlags = WHERE_IPK;

      /* Full table scan */
      pNew->iSortIdx = b ? iSortIdx : 0;
      /* TUNING: Cost of full table scan is (N*3.0). */
      pNew->rRun = rSize + 16;

      whereLoopOutputAdjust(pWC, pNew);
      rc = whereLoopInsert(pBuilder, pNew);
      pNew->nOut = rSize;
      if( rc ) break;
    }else{
      Bitmask m;
      if( pProbe->isCovering ){







>







4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
      /* Integer primary key index */
      pNew->wsFlags = WHERE_IPK;

      /* Full table scan */
      pNew->iSortIdx = b ? iSortIdx : 0;
      /* TUNING: Cost of full table scan is (N*3.0). */
      pNew->rRun = rSize + 16;
      ApplyCostMultiplier(pNew->rRun, pTab->costMult);
      whereLoopOutputAdjust(pWC, pNew);
      rc = whereLoopInsert(pBuilder, pNew);
      pNew->nOut = rSize;
      if( rc ) break;
    }else{
      Bitmask m;
      if( pProbe->isCovering ){
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
        ** between 1.1 and 3.0, depending on the relative sizes of the
        ** index and table rows. If this is a non-covering index scan,
        ** also add the cost of visiting table rows (N*3.0).  */
        pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
        if( m!=0 ){
          pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
        }

        whereLoopOutputAdjust(pWC, pNew);
        rc = whereLoopInsert(pBuilder, pNew);
        pNew->nOut = rSize;
        if( rc ) break;
      }
    }








|







4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
        ** between 1.1 and 3.0, depending on the relative sizes of the
        ** index and table rows. If this is a non-covering index scan,
        ** also add the cost of visiting table rows (N*3.0).  */
        pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
        if( m!=0 ){
          pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
        }
        ApplyCostMultiplier(pNew->rRun, pTab->costMult);
        whereLoopOutputAdjust(pWC, pNew);
        rc = whereLoopInsert(pBuilder, pNew);
        pNew->nOut = rSize;
        if( rc ) break;
      }
    }

6208
6209
6210
6211
6212
6213
6214

6215
6216
6217
6218
6219
6220
6221
          iIndexCur++;
          pJ = pJ->pNext;
        }
        op = OP_OpenWrite;
        pWInfo->aiCurOnePass[1] = iIndexCur;
      }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
        iIndexCur = iIdxCur;

      }else{
        iIndexCur = pParse->nTab++;
      }
      pLevel->iIdxCur = iIndexCur;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      if( op ){







>







6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
          iIndexCur++;
          pJ = pJ->pNext;
        }
        op = OP_OpenWrite;
        pWInfo->aiCurOnePass[1] = iIndexCur;
      }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
        iIndexCur = iIdxCur;
        if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx;
      }else{
        iIndexCur = pParse->nTab++;
      }
      pLevel->iIdxCur = iIndexCur;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      if( op ){
Changes to test/analyze6.test.
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}







|







87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3),(2,3,4),(3,4,5);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
Changes to test/analyze9.test.
1015
1016
1017
1018
1019
1020
1021






























1022




1023





1024




























foreach {tn where res} {
  1 "c='one' AND a='B' AND d < 20"   {/*INDEX i3 (c=? AND a=?)*/}
  2 "c='one' AND a='A' AND d < 20"   {/*INDEX i4 (d<?)*/}
} {
  do_eqp_test 22.2.$tn "SELECT * FROM t3 WHERE $where" $res
}































finish_test














































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
foreach {tn where res} {
  1 "c='one' AND a='B' AND d < 20"   {/*INDEX i3 (c=? AND a=?)*/}
  2 "c='one' AND a='A' AND d < 20"   {/*INDEX i4 (d<?)*/}
} {
  do_eqp_test 22.2.$tn "SELECT * FROM t3 WHERE $where" $res
}

proc int_to_char {i} {
  set ret ""
  set char [list a b c d e f g h i j]
  foreach {div} {1000 100 10 1} {
    append ret [lindex $char [expr ($i / $div) % 10]]
  }
  set ret
}
db func int_to_char int_to_char

do_execsql_test 23.0 {
  CREATE TABLE t4(
    a COLLATE nocase, b, c, 
    d, e, f, 
    PRIMARY KEY(c, b, a)
  ) WITHOUT ROWID;
  CREATE INDEX i41 ON t4(e);
  CREATE INDEX i42 ON t4(f);

  WITH data(a, b, c, d, e, f) AS (
    SELECT int_to_char(0), 'xyz', 'zyx', '*', 0, 0
    UNION ALL
    SELECT 
      int_to_char(f+1), b, c, d, (e+1) % 2, f+1
    FROM data WHERE f<1024
  )
  INSERT INTO t4 SELECT a, b, c, d, e, f FROM data;
  ANALYZE;
} {}

do_eqp_test 23.1 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'AEA') AND f<300
} {
  0 0 0 {SEARCH TABLE t4 USING INDEX i41 (e=? AND c=? AND b=? AND a<?)}
}
do_eqp_test 23.2 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'JJJ') AND f<300
} {
  0 0 0 {SEARCH TABLE t4 USING INDEX i42 (f<?)}
}

do_execsql_test 24.0 {
  CREATE TABLE t5(c, d, b, e, a, PRIMARY KEY(a, b, c)) WITHOUT ROWID;
  WITH data(a, b, c, d, e) AS (
    SELECT 'z', 'y', 0, 0, 0
    UNION ALL
    SELECT 
      a, CASE WHEN b='y' THEN 'n' ELSE 'y' END, c+1, e/250, e+1 
    FROM data
    WHERE e<1000
  )
  INSERT INTO t5(a, b, c, d, e) SELECT * FROM data;
  CREATE INDEX t5d ON t5(d);
  CREATE INDEX t5e ON t5(e);
  ANALYZE;
}

foreach {tn where eqp} {
  1 "d=0 AND a='z' AND b='n' AND e<200" {/*t5d (d=? AND a=? AND b=?)*/}
  2 "d=0 AND a='z' AND b='n' AND e<100" {/*t5e (e<?)*/}

  3 "d=0 AND e<300"                     {/*t5d (d=?)*/}
  4 "d=0 AND e<200"                     {/*t5e (e<?)*/}
} {
  do_eqp_test 24.$tn "SeLeCt * FROM t5 WHERE $where" $eqp
}

finish_test
Added test/analyzeC.test.














































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# 2014-07-22
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains automated tests used to verify that the text terms
# at the end of sqlite_stat1.stat are processed correctly.
#
#  (1) "unordered" means that the index cannot be used for ORDER BY
#      or for range queries
#
#  (2) "sz=NNN" sets the relative size of the index entries
#
#  (3) All other fields are silently ignored
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix analyzeC

# Baseline case.  Range queries work OK.  Indexes can be used for
# ORDER BY.
#
do_execsql_test 1.0 {
  CREATE TABLE t1(a,b,c);
  INSERT INTO t1(a,b,c)
    VALUES(1,2,3),(7,8,9),(4,5,6),(10,11,12),(4,8,12),(1,11,111);
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);
  ANALYZE;
  DELETE FROM sqlite_stat1;
  INSERT INTO sqlite_stat1(tbl,idx,stat)
    VALUES('t1','t1a','12345 2'),('t1','t1b','12345 4');
  ANALYZE sqlite_master;
  SELECT *, '#' FROM t1 WHERE a BETWEEN 3 AND 8 ORDER BY c;
} {4 5 6 # 7 8 9 # 4 8 12 #}
do_execsql_test 1.1 {
  EXPLAIN QUERY PLAN
  SELECT *, '#' FROM t1 WHERE a BETWEEN 3 AND 8 ORDER BY c;
} {/.* USING INDEX t1a .a>. AND a<...*/}
do_execsql_test 1.2 {
  SELECT c FROM t1 ORDER BY a;
} {3 111 6 12 9 12}
do_execsql_test 1.3 {
  EXPLAIN QUERY PLAN
  SELECT c FROM t1 ORDER BY a;
} {/.*SCAN TABLE t1 USING INDEX t1a.*/}
do_execsql_test 1.3x {
  EXPLAIN QUERY PLAN
  SELECT c FROM t1 ORDER BY a;
} {~/.*B-TREE FOR ORDER BY.*/}

# Now mark the t1a index as "unordered".  Range queries and ORDER BY no
# longer use the index, but equality queries do.
#
do_execsql_test 2.0 {
  UPDATE sqlite_stat1 SET stat='12345 2 unordered' WHERE idx='t1a';
  ANALYZE sqlite_master;
  SELECT *, '#' FROM t1 WHERE a BETWEEN 3 AND 8 ORDER BY c;
} {4 5 6 # 7 8 9 # 4 8 12 #}
do_execsql_test 2.1 {
  EXPLAIN QUERY PLAN
  SELECT *, '#' FROM t1 WHERE a BETWEEN 3 AND 8 ORDER BY c;
} {~/.*USING INDEX.*/}
do_execsql_test 2.2 {
  SELECT c FROM t1 ORDER BY a;
} {3 111 6 12 9 12}
do_execsql_test 2.3 {
  EXPLAIN QUERY PLAN
  SELECT c FROM t1 ORDER BY a;
} {~/.*USING INDEX.*/}
do_execsql_test 2.3x {
  EXPLAIN QUERY PLAN
  SELECT c FROM t1 ORDER BY a;
} {/.*B-TREE FOR ORDER BY.*/}

# Ignore extraneous text parameters in the sqlite_stat1.stat field.
#
do_execsql_test 3.0 {
  UPDATE sqlite_stat1 SET stat='12345 2 whatever=5 unordered xyzzy=11'
   WHERE idx='t1a';
  ANALYZE sqlite_master;
  SELECT *, '#' FROM t1 WHERE a BETWEEN 3 AND 8 ORDER BY c;
} {4 5 6 # 7 8 9 # 4 8 12 #}
do_execsql_test 3.1 {
  EXPLAIN QUERY PLAN
  SELECT *, '#' FROM t1 WHERE a BETWEEN 3 AND 8 ORDER BY c;
} {~/.*USING INDEX.*/}
do_execsql_test 3.2 {
  SELECT c FROM t1 ORDER BY a;
} {3 111 6 12 9 12}
do_execsql_test 3.3 {
  EXPLAIN QUERY PLAN
  SELECT c FROM t1 ORDER BY a;
} {~/.*USING INDEX.*/}
do_execsql_test 3.3x {
  EXPLAIN QUERY PLAN
  SELECT c FROM t1 ORDER BY a;
} {/.*B-TREE FOR ORDER BY.*/}

# The sz=NNN parameter determines which index to scan
#
do_execsql_test 4.0 {
  DROP INDEX t1a;
  CREATE INDEX t1ab ON t1(a,b);
  CREATE INDEX t1ca ON t1(c,a);
  DELETE FROM sqlite_stat1;
  INSERT INTO sqlite_stat1(tbl,idx,stat)
    VALUES('t1','t1ab','12345 3 2 sz=10'),('t1','t1ca','12345 3 2 sz=20');
  ANALYZE sqlite_master;
  SELECT count(a) FROM t1;
} {6}
do_execsql_test 4.1 {
  EXPLAIN QUERY PLAN
  SELECT count(a) FROM t1;
} {/.*INDEX t1ab.*/}
do_execsql_test 4.2 {
  DELETE FROM sqlite_stat1;
  INSERT INTO sqlite_stat1(tbl,idx,stat)
    VALUES('t1','t1ab','12345 3 2 sz=20'),('t1','t1ca','12345 3 2 sz=10');
  ANALYZE sqlite_master;
  SELECT count(a) FROM t1;
} {6}
do_execsql_test 4.3 {
  EXPLAIN QUERY PLAN
  SELECT count(a) FROM t1;
} {/.*INDEX t1ca.*/}


# The sz=NNN parameter works even if there is other extraneous text
# in the sqlite_stat1.stat column.
#
do_execsql_test 5.0 {
  DELETE FROM sqlite_stat1;
  INSERT INTO sqlite_stat1(tbl,idx,stat)
    VALUES('t1','t1ab','12345 3 2 x=5 sz=10 y=10'),
          ('t1','t1ca','12345 3 2 whatever sz=20 junk');
  ANALYZE sqlite_master;
  SELECT count(a) FROM t1;
} {6}
do_execsql_test 5.1 {
  EXPLAIN QUERY PLAN
  SELECT count(a) FROM t1;
} {/.*INDEX t1ab.*/}
do_execsql_test 5.2 {
  DELETE FROM sqlite_stat1;
  INSERT INTO sqlite_stat1(tbl,idx,stat)
    VALUES('t1','t1ca','12345 3 2 x=5 sz=10 y=10'),
          ('t1','t1ab','12345 3 2 whatever sz=20 junk');
  ANALYZE sqlite_master;
  SELECT count(a) FROM t1;
} {6}
do_execsql_test 5.3 {
  EXPLAIN QUERY PLAN
  SELECT count(a) FROM t1;
} {/.*INDEX t1ca.*/}




finish_test
Changes to test/capi3d.test.
139
140
141
142
143
144
145





































146
147
  sqlite3_stmt_busy $STMT
} {0}

do_test capi3d-3.99 {
  sqlite3_finalize $STMT
  sqlite3_stmt_busy 0
} {0}






































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  sqlite3_stmt_busy $STMT
} {0}

do_test capi3d-3.99 {
  sqlite3_finalize $STMT
  sqlite3_stmt_busy 0
} {0}

#--------------------------------------------------------------------------
# Test the sqlite3_stmt_busy() function with ROLLBACK statements.
#
reset_db

do_execsql_test capi3d-4.1 {
  CREATE TABLE t4(x,y);
  BEGIN;
}

do_test capi3d-4.2.1 {
  breakpoint
  set ::s1 [sqlite3_prepare_v2 db "ROLLBACK" -1 notused]
  sqlite3_step $::s1
} {SQLITE_DONE}

do_test capi3d-4.2.2 {
  sqlite3_stmt_busy $::s1
} {1}

do_catchsql_test capi3d-4.2.3 {
  VACUUM
} {1 {cannot VACUUM - SQL statements in progress}}

do_test capi3d-4.2.4 {
  sqlite3_reset $::s1
} {SQLITE_OK}

do_catchsql_test capi3d-4.2.5 {
  VACUUM
} {0 {}}

do_test capi3d-4.2.6 {
  sqlite3_finalize $::s1
} {SQLITE_OK}


finish_test
Added test/hexlit.test.




































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# 2014-07-23
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for hexadecimal literals


set testdir [file dirname $argv0]
source $testdir/tester.tcl

proc hexlit1 {tnum val ans} {
  do_execsql_test hexlit-$tnum "SELECT $val" $ans
}

hexlit1 100 0x0 0
hexlit1 101 0x0000000000000000000000000000000000000000000001 1
hexlit1 102 0x2 2
hexlit1 103 0x4 4
hexlit1 104 0x8 8
hexlit1 105 0x00000000000000000000000000000000000000000000010 16
hexlit1 103 0x20 32
hexlit1 106 0x40 64
hexlit1 107 0x80 128
hexlit1 108 0x100 256
hexlit1 109 0x200 512
hexlit1 110 0X400 1024
hexlit1 111 0x800 2048
hexlit1 112 0x1000 4096
hexlit1 113 0x2000 8192
hexlit1 114 0x4000 16384
hexlit1 115 0x8000 32768
hexlit1 116 0x10000 65536
hexlit1 117 0x20000 131072
hexlit1 118 0x40000 262144
hexlit1 119 0x80000 524288
hexlit1 120 0x100000 1048576
hexlit1 121 0x200000 2097152
hexlit1 122 0x400000 4194304
hexlit1 123 0x800000 8388608
hexlit1 124 0x1000000 16777216
hexlit1 125 0x2000000 33554432
hexlit1 126 0x4000000 67108864
hexlit1 127 0x8000000 134217728
hexlit1 128 0x10000000 268435456
hexlit1 129 0x20000000 536870912
hexlit1 130 0x40000000 1073741824
hexlit1 131 0x80000000 2147483648
hexlit1 132 0x100000000 4294967296
hexlit1 133 0x200000000 8589934592
hexlit1 134 0x400000000 17179869184
hexlit1 135 0x800000000 34359738368
hexlit1 136 0x1000000000 68719476736
hexlit1 137 0x2000000000 137438953472
hexlit1 138 0x4000000000 274877906944
hexlit1 139 0x8000000000 549755813888
hexlit1 140 0x10000000000 1099511627776
hexlit1 141 0x20000000000 2199023255552
hexlit1 142 0x40000000000 4398046511104
hexlit1 143 0x80000000000 8796093022208
hexlit1 144 0x100000000000 17592186044416
hexlit1 145 0x200000000000 35184372088832
hexlit1 146 0x400000000000 70368744177664
hexlit1 147 0x800000000000 140737488355328
hexlit1 148 0x1000000000000 281474976710656
hexlit1 149 0x2000000000000 562949953421312
hexlit1 150 0x4000000000000 1125899906842624
hexlit1 151 0x8000000000000 2251799813685248
hexlit1 152 0x10000000000000 4503599627370496
hexlit1 153 0x20000000000000 9007199254740992
hexlit1 154 0x40000000000000 18014398509481984
hexlit1 155 0x80000000000000 36028797018963968
hexlit1 156 0x100000000000000 72057594037927936
hexlit1 157 0x200000000000000 144115188075855872
hexlit1 158 0x400000000000000 288230376151711744
hexlit1 159 0x800000000000000 576460752303423488
hexlit1 160 0X1000000000000000 1152921504606846976
hexlit1 161 0x2000000000000000 2305843009213693952
hexlit1 162 0X4000000000000000 4611686018427387904
hexlit1 163 0x8000000000000000 -9223372036854775808
hexlit1 164 0XFFFFFFFFFFFFFFFF -1

for {set n 1} {$n < 0x10} {incr n} {
  hexlit1 200.$n.1 0X[format %03X $n] $n
  hexlit1 200.$n.2 0x[format %03X $n] $n
  hexlit1 200.$n.3 0X[format %03x $n] $n
  hexlit1 200.$n.4 0x[format %03x $n] $n
}

# String literals that look like hex do not get cast or coerced.
#
do_execsql_test hexlit-300 {
  CREATE TABLE t1(x INT, y REAL);
  INSERT INTO t1 VALUES('1234','4567'),('0x1234','0x4567');
  SELECT typeof(x), x, typeof(y), y, '#' FROM t1 ORDER BY rowid;
} {integer 1234 real 4567.0 # text 0x1234 text 0x4567 #}
do_execsql_test hexlit-301 {
  SELECT CAST('0x1234' AS INTEGER);
} {0}

# Oversized hex literals are rejected
#
do_catchsql_test hexlist-400 {
  SELECT 0x10000000000000000;
} {1 {hex literal too big: 0x10000000000000000}}


finish_test
Changes to test/join.test.
31
32
33
34
35
36
37











38
39
40
41
42
43
44
    CREATE TABLE t2(b,c,d);
    INSERT INTO t2 VALUES(1,2,3);
    INSERT INTO t2 VALUES(2,3,4);
    INSERT INTO t2 VALUES(3,4,5);
    SELECT * FROM t2;
  }  
} {1 2 3 2 3 4 3 4 5}












do_test join-1.3 {
  execsql2 {
    SELECT * FROM t1 NATURAL JOIN t2;
  }
} {a 1 b 2 c 3 d 4 a 2 b 3 c 4 d 5}
do_test join-1.3.1 {







>
>
>
>
>
>
>
>
>
>
>







31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    CREATE TABLE t2(b,c,d);
    INSERT INTO t2 VALUES(1,2,3);
    INSERT INTO t2 VALUES(2,3,4);
    INSERT INTO t2 VALUES(3,4,5);
    SELECT * FROM t2;
  }  
} {1 2 3 2 3 4 3 4 5}

# A FROM clause of the form:  "<table>, <table> ON <expr>" is not
# allowed by the SQLite syntax diagram, nor by any other SQL database
# engine that we are aware of.  Nevertheless, historic versions of
# SQLite have allowed it.  We need to continue to support it moving
# forward to prevent breakage of legacy applications.  Though, we will
# not advertise it as being supported.
#
do_execsql_test join-1.2.1 {
  SELECT t1.rowid, t2.rowid, '|' FROM t1, t2 ON t1.a=t2.b;
} {1 1 | 2 2 | 3 3 |}

do_test join-1.3 {
  execsql2 {
    SELECT * FROM t1 NATURAL JOIN t2;
  }
} {a 1 b 2 c 3 d 4 a 2 b 3 c 4 d 5}
do_test join-1.3.1 {
Changes to test/shell1.test.
584
585
586
587
588
589
590
591
592
593
594
595



596
597
598
599
600
601
602
603
604
605
CREATE VIEW v2 AS SELECT x+1 AS y FROM t1;
CREATE VIEW v1 AS SELECT y+1 FROM v2;}}
db eval {DROP VIEW v1; DROP VIEW v2; DROP TABLE t1;}

# .separator STRING      Change separator used by output mode and .import
do_test shell1-3.22.1 {
  catchcmd "test.db" ".separator"
} {1 {Usage: .separator STRING}}
do_test shell1-3.22.2 {
  catchcmd "test.db" ".separator FOO"
} {0 {}}
do_test shell1-3.22.3 {



  # too many arguments
  catchcmd "test.db" ".separator FOO BAD"
} {1 {Usage: .separator STRING}}

# .show                  Show the current values for various settings
do_test shell1-3.23.1 {
  set res [catchcmd "test.db" ".show"]
  list [regexp {echo:} $res] \
       [regexp {explain:} $res] \
       [regexp {headers:} $res] \







|




>
>
>

|
|







584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
CREATE VIEW v2 AS SELECT x+1 AS y FROM t1;
CREATE VIEW v1 AS SELECT y+1 FROM v2;}}
db eval {DROP VIEW v1; DROP VIEW v2; DROP TABLE t1;}

# .separator STRING      Change separator used by output mode and .import
do_test shell1-3.22.1 {
  catchcmd "test.db" ".separator"
} {1 {Usage: .separator SEPARATOR ?NEWLINE?}}
do_test shell1-3.22.2 {
  catchcmd "test.db" ".separator FOO"
} {0 {}}
do_test shell1-3.22.3 {
  catchcmd "test.db" ".separator ABC XYZ"
} {0 {}}
do_test shell1-3.22.4 {
  # too many arguments
  catchcmd "test.db" ".separator FOO BAD BAD2"
} {1 {Usage: .separator SEPARATOR ?NEWLINE?}}

# .show                  Show the current values for various settings
do_test shell1-3.23.1 {
  set res [catchcmd "test.db" ".show"]
  list [regexp {echo:} $res] \
       [regexp {explain:} $res] \
       [regexp {headers:} $res] \
Changes to test/shell5.test.
51
52
53
54
55
56
57
58
59
60
61
62



63
64
65
66
67
68
69
70
71
72
  # too many arguments
  catchcmd "test.db" ".import FOO BAR BAD"
} {1 {Usage: .import FILE TABLE}}

# .separator STRING      Change separator used by output mode and .import
do_test shell5-1.2.1 {
  catchcmd "test.db" ".separator"
} {1 {Usage: .separator STRING}}
do_test shell5-1.2.2 {
  catchcmd "test.db" ".separator FOO"
} {0 {}}
do_test shell5-1.2.3 {



  # too many arguments
  catchcmd "test.db" ".separator FOO BAD"
} {1 {Usage: .separator STRING}}

# separator should default to "|"
do_test shell5-1.3.1 {
  set res [catchcmd "test.db" ".show"]
  list [regexp {separator: \"\|\"} $res]
} {1}








|

|


>
>
>

|
|







51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  # too many arguments
  catchcmd "test.db" ".import FOO BAR BAD"
} {1 {Usage: .import FILE TABLE}}

# .separator STRING      Change separator used by output mode and .import
do_test shell5-1.2.1 {
  catchcmd "test.db" ".separator"
} {1 {Usage: .separator SEPARATOR ?NEWLINE?}}
do_test shell5-1.2.2 {
  catchcmd "test.db" ".separator ONE"
} {0 {}}
do_test shell5-1.2.3 {
  catchcmd "test.db" ".separator ONE TWO"
} {0 {}}
do_test shell5-1.2.4 {
  # too many arguments
  catchcmd "test.db" ".separator ONE TWO THREE"
} {1 {Usage: .separator SEPARATOR ?NEWLINE?}}

# separator should default to "|"
do_test shell5-1.3.1 {
  set res [catchcmd "test.db" ".show"]
  list [regexp {separator: \"\|\"} $res]
} {1}

Changes to test/where2.test.
747
748
749
750
751
752
753








754
755
  EXPLAIN QUERY PLAN
    SELECT a.x, b.x
      FROM t12 AS a JOIN t12 AS b ON a.y=b.x
     WHERE (b.x=$abc OR b.y=$abc);
} {/.*SEARCH TABLE t12 AS b .*SEARCH TABLE t12 AS b .*/}
}










finish_test







>
>
>
>
>
>
>
>


747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
  EXPLAIN QUERY PLAN
    SELECT a.x, b.x
      FROM t12 AS a JOIN t12 AS b ON a.y=b.x
     WHERE (b.x=$abc OR b.y=$abc);
} {/.*SEARCH TABLE t12 AS b .*SEARCH TABLE t12 AS b .*/}
}

# Verify that all necessary OP_OpenRead opcodes occur in the OR optimization.
#
do_execsql_test where2-13.1 {
  CREATE TABLE t13(a,b);
  CREATE INDEX t13a ON t13(a);
  INSERT INTO t13 VALUES(4,5);
  SELECT * FROM t13 WHERE (1=2 AND a=3) OR a=4;
} {4 5}

finish_test
Changes to tool/showdb.c.
1
2
3
4
5
6
7
8
9
10
11


12
13
14
15
16
17
18
/*
** A utility for printing all or part of an SQLite database file.
*/
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#if !defined(_MSC_VER)
#include <unistd.h>


#endif

#include <stdlib.h>
#include <string.h>
#include "sqlite3.h"













>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
** A utility for printing all or part of an SQLite database file.
*/
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#if !defined(_MSC_VER)
#include <unistd.h>
#else
#include <io.h>
#endif

#include <stdlib.h>
#include <string.h>
#include "sqlite3.h"


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
  int ofst, int nByte,       /* Start and size of decode */
  const char *zMsg           /* Message to append */
){
  int i, j;
  int val = aData[ofst];
  char zBuf[100];
  sprintf(zBuf, " %03x: %02x", ofst, aData[ofst]);
  i = strlen(zBuf);
  for(j=1; j<4; j++){
    if( j>=nByte ){
      sprintf(&zBuf[i], "   ");
    }else{
      sprintf(&zBuf[i], " %02x", aData[ofst+j]);
      val = val*256 + aData[ofst+j];
    }
    i += strlen(&zBuf[i]);
  }
  sprintf(&zBuf[i], "   %9d", val);
  printf("%s  %s\n", zBuf, zMsg);
}

/*
** Decode the database header.







|







|







139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
  int ofst, int nByte,       /* Start and size of decode */
  const char *zMsg           /* Message to append */
){
  int i, j;
  int val = aData[ofst];
  char zBuf[100];
  sprintf(zBuf, " %03x: %02x", ofst, aData[ofst]);
  i = (int)strlen(zBuf);
  for(j=1; j<4; j++){
    if( j>=nByte ){
      sprintf(&zBuf[i], "   ");
    }else{
      sprintf(&zBuf[i], " %02x", aData[ofst+j]);
      val = val*256 + aData[ofst+j];
    }
    i += (int)strlen(&zBuf[i]);
  }
  sprintf(&zBuf[i], "   %9d", val);
  printf("%s  %s\n", zBuf, zMsg);
}

/*
** Decode the database header.
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
  print_decode_line(aData, 92, 4, "Change counter for version number");
  print_decode_line(aData, 96, 4, "SQLite version number");
}

/*
** Describe cell content.
*/
static int describeContent(
  unsigned char *a,       /* Cell content */
  int nLocal,             /* Bytes in a[] */
  char *zDesc             /* Write description here */
){
  int nDesc = 0;
  int n, i, j;
  i64 x, v;
  const unsigned char *pData;
  const unsigned char *pLimit;
  char sep = ' ';

  pLimit = &a[nLocal];
  n = decodeVarint(a, &x);
  pData = &a[x];







|

|


|
|
|







188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
  print_decode_line(aData, 92, 4, "Change counter for version number");
  print_decode_line(aData, 96, 4, "SQLite version number");
}

/*
** Describe cell content.
*/
static i64 describeContent(
  unsigned char *a,       /* Cell content */
  i64 nLocal,             /* Bytes in a[] */
  char *zDesc             /* Write description here */
){
  i64 nDesc = 0;
  int n, j;
  i64 i, x, v;
  const unsigned char *pData;
  const unsigned char *pLimit;
  char sep = ' ';

  pLimit = &a[nLocal];
  n = decodeVarint(a, &x);
  pData = &a[x];
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
      sprintf(zDesc, "real");
      pData += 8;
    }else if( x==8 ){
      sprintf(zDesc, "0");
    }else if( x==9 ){
      sprintf(zDesc, "1");
    }else if( x>=12 ){
      int size = (x-12)/2;
      if( (x&1)==0 ){
        sprintf(zDesc, "blob(%d)", size);
      }else{
        sprintf(zDesc, "txt(%d)", size);
      }
      pData += size;
    }
    j = strlen(zDesc);
    zDesc += j;
    nDesc += j;
  }
  return nDesc;
}

/*
** Compute the local payload size given the total payload size and
** the page size.
*/
static int localPayload(i64 nPayload, char cType){
  int maxLocal;
  int minLocal;
  int surplus;
  int nLocal;
  if( cType==13 ){
    /* Table leaf */
    maxLocal = pagesize-35;
    minLocal = (pagesize-12)*32/255-23;
  }else{
    maxLocal = (pagesize-12)*64/255-23;
    minLocal = (pagesize-12)*32/255-23;







|

|

|



|










|
|
|
|
|







235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
      sprintf(zDesc, "real");
      pData += 8;
    }else if( x==8 ){
      sprintf(zDesc, "0");
    }else if( x==9 ){
      sprintf(zDesc, "1");
    }else if( x>=12 ){
      i64 size = (x-12)/2;
      if( (x&1)==0 ){
        sprintf(zDesc, "blob(%lld)", size);
      }else{
        sprintf(zDesc, "txt(%lld)", size);
      }
      pData += size;
    }
    j = (int)strlen(zDesc);
    zDesc += j;
    nDesc += j;
  }
  return nDesc;
}

/*
** Compute the local payload size given the total payload size and
** the page size.
*/
static i64 localPayload(i64 nPayload, char cType){
  i64 maxLocal;
  i64 minLocal;
  i64 surplus;
  i64 nLocal;
  if( cType==13 ){
    /* Table leaf */
    maxLocal = pagesize-35;
    minLocal = (pagesize-12)*32/255-23;
  }else{
    maxLocal = (pagesize-12)*64/255-23;
    minLocal = (pagesize-12)*32/255-23;
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
  

/*
** Create a description for a single cell.
**
** The return value is the local cell size.
*/
static int describeCell(
  unsigned char cType,    /* Page type */
  unsigned char *a,       /* Cell content */
  int showCellContent,    /* Show cell content if true */
  char **pzDesc           /* Store description here */
){
  int i;
  int nDesc = 0;
  int n = 0;
  int leftChild;
  i64 nPayload;
  i64 rowid;
  int nLocal;
  static char zDesc[1000];
  i = 0;
  if( cType<=5 ){
    leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3];
    a += 4;
    n += 4;
    sprintf(zDesc, "lx: %d ", leftChild);







|






|




|







286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
  

/*
** Create a description for a single cell.
**
** The return value is the local cell size.
*/
static i64 describeCell(
  unsigned char cType,    /* Page type */
  unsigned char *a,       /* Cell content */
  int showCellContent,    /* Show cell content if true */
  char **pzDesc           /* Store description here */
){
  int i;
  i64 nDesc = 0;
  int n = 0;
  int leftChild;
  i64 nPayload;
  i64 rowid;
  i64 nLocal;
  static char zDesc[1000];
  i = 0;
  if( cType<=5 ){
    leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3];
    a += 4;
    n += 4;
    sprintf(zDesc, "lx: %d ", leftChild);
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
static void decodeCell(
  unsigned char *a,       /* Page content (without the page-1 header) */
  unsigned pgno,          /* Page number */
  int iCell,              /* Cell index */
  int szPgHdr,            /* Size of the page header.  0 or 100 */
  int ofst                /* Cell begins at a[ofst] */
){
  int i, j, k;
  int leftChild;

  i64 nPayload;
  i64 rowid;
  i64 nHdr;
  i64 iType;
  int nLocal;
  unsigned char *x = a + ofst;
  unsigned char *end;
  unsigned char cType = a[0];
  int nCol = 0;
  int szCol[2000];
  int ofstCol[2000];
  int typeCol[2000];

  printf("Cell[%d]:\n", iCell);
  if( cType<=5 ){
    leftChild = ((x[0]*256 + x[1])*256 + x[2])*256 + x[3];
    printBytes(a, x, 4);
    printf("left child page:: %d\n", leftChild);
    x += 4;
  }
  if( cType!=5 ){
    i = decodeVarint(x, &nPayload);
    printBytes(a, x, i);
    nLocal = localPayload(nPayload, cType);
    if( nLocal==nPayload ){
      printf("payload-size: %d\n", (int)nPayload);
    }else{
      printf("payload-size: %d (%d local, %d overflow)\n",
             (int)nPayload, nLocal, (int)(nPayload-nLocal));
    }
    x += i;
  }else{
    nPayload = nLocal = 0;
  }
  end = x + nLocal;
  if( cType==5 || cType==13 ){







|

>




|




















|

|
|







371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
static void decodeCell(
  unsigned char *a,       /* Page content (without the page-1 header) */
  unsigned pgno,          /* Page number */
  int iCell,              /* Cell index */
  int szPgHdr,            /* Size of the page header.  0 or 100 */
  int ofst                /* Cell begins at a[ofst] */
){
  int i, j;
  int leftChild;
  i64 k;
  i64 nPayload;
  i64 rowid;
  i64 nHdr;
  i64 iType;
  i64 nLocal;
  unsigned char *x = a + ofst;
  unsigned char *end;
  unsigned char cType = a[0];
  int nCol = 0;
  int szCol[2000];
  int ofstCol[2000];
  int typeCol[2000];

  printf("Cell[%d]:\n", iCell);
  if( cType<=5 ){
    leftChild = ((x[0]*256 + x[1])*256 + x[2])*256 + x[3];
    printBytes(a, x, 4);
    printf("left child page:: %d\n", leftChild);
    x += 4;
  }
  if( cType!=5 ){
    i = decodeVarint(x, &nPayload);
    printBytes(a, x, i);
    nLocal = localPayload(nPayload, cType);
    if( nLocal==nPayload ){
      printf("payload-size: %lld\n", nPayload);
    }else{
      printf("payload-size: %lld (%lld local, %lld overflow)\n",
             nPayload, nLocal, nPayload-nLocal);
    }
    x += i;
  }else{
    nPayload = nLocal = 0;
  }
  end = x + nLocal;
  if( cType==5 || cType==13 ){
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
           sprintf(zNm, (iType&1)==0 ? "blob(%d)" : "text(%d)", sz);
           zTypeName = zNm;
           break;
         }
       }
       printf("%s\n", zTypeName);
       szCol[nCol] = sz;
       ofstCol[nCol] = k;
       typeCol[nCol] = (int)iType;
       k += sz;
       nCol++;
       j += i;
    }
    for(i=0; i<nCol && ofstCol[i]+szCol[i]<=nLocal; i++){
       int s = ofstCol[i];







|







451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
           sprintf(zNm, (iType&1)==0 ? "blob(%d)" : "text(%d)", sz);
           zTypeName = zNm;
           break;
         }
       }
       printf("%s\n", zTypeName);
       szCol[nCol] = sz;
       ofstCol[nCol] = (int)k;
       typeCol[nCol] = (int)iType;
       k += sz;
       nCol++;
       j += i;
    }
    for(i=0; i<nCol && ofstCol[i]+szCol[i]<=nLocal; i++){
       int s = ofstCol[i];
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
         printf("%s\n", zConst);
       }
       j = ofstCol[i] + szCol[i];
    }
  }
  if( j<nLocal ){
    printBytes(a, x+j, 0);
    printf("... %d bytes of content ...\n", nLocal-j);
  }
  if( nLocal<nPayload ){
    printBytes(a, x+nLocal, 4);
    printf("overflow-page: %d\n", decodeInt32(x+nLocal));
  }
}








|







505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
         printf("%s\n", zConst);
       }
       j = ofstCol[i] + szCol[i];
    }
  }
  if( j<nLocal ){
    printBytes(a, x+j, 0);
    printf("... %lld bytes of content ...\n", nLocal-j);
  }
  if( nLocal<nPayload ){
    printBytes(a, x+nLocal, 4);
    printf("overflow-page: %d\n", decodeInt32(x+nLocal));
  }
}

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    memset(zMap, '1', hdrSize);
    memset(&zMap[hdrSize], 'H', iCellPtr);
    memset(&zMap[hdrSize+iCellPtr], 'P', 2*nCell);
  }
  for(i=0; i<nCell; i++){
    int cofst = iCellPtr + i*2;
    char *zDesc;
    int n;

    cofst = a[cofst]*256 + a[cofst+1];
    n = describeCell(a[0], &a[cofst-hdrSize], showCellContent, &zDesc);
    if( showMap ){
      char zBuf[30];
      memset(&zMap[cofst], '*', n);
      zMap[cofst] = '[';
      zMap[cofst+n-1] = ']';
      sprintf(zBuf, "%d", i);
      j = strlen(zBuf);
      if( j<=n-2 ) memcpy(&zMap[cofst+1], zBuf, j);
    }
    if( cellToDecode==(-2) ){
      printf(" %03x: cell[%d] %s\n", cofst, i, zDesc);
    }else if( cellToDecode==(-1) || cellToDecode==i ){
      decodeCell(a, pgno, i, hdrSize, cofst-hdrSize);
    }







|





|



|







584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    memset(zMap, '1', hdrSize);
    memset(&zMap[hdrSize], 'H', iCellPtr);
    memset(&zMap[hdrSize+iCellPtr], 'P', 2*nCell);
  }
  for(i=0; i<nCell; i++){
    int cofst = iCellPtr + i*2;
    char *zDesc;
    i64 n;

    cofst = a[cofst]*256 + a[cofst+1];
    n = describeCell(a[0], &a[cofst-hdrSize], showCellContent, &zDesc);
    if( showMap ){
      char zBuf[30];
      memset(&zMap[cofst], '*', (size_t)n);
      zMap[cofst] = '[';
      zMap[cofst+n-1] = ']';
      sprintf(zBuf, "%d", i);
      j = (int)strlen(zBuf);
      if( j<=n-2 ) memcpy(&zMap[cofst+1], zBuf, j);
    }
    if( cellToDecode==(-2) ){
      printf(" %03x: cell[%d] %s\n", cofst, i, zDesc);
    }else if( cellToDecode==(-1) || cellToDecode==i ){
      decodeCell(a, pgno, i, hdrSize, cofst-hdrSize);
    }
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
  int pgno,               /* page containing the cell */
  int cellno              /* Index of the cell on the page */
){
  int i;
  int n = 0;
  i64 nPayload;
  i64 rowid;
  int nLocal;
  i = 0;
  if( cType<=5 ){
    a += 4;
    n += 4;
  }
  if( cType!=5 ){
    i = decodeVarint(a, &nPayload);







|







691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
  int pgno,               /* page containing the cell */
  int cellno              /* Index of the cell on the page */
){
  int i;
  int n = 0;
  i64 nPayload;
  i64 rowid;
  i64 nLocal;
  i = 0;
  if( cType<=5 ){
    a += 4;
    n += 4;
  }
  if( cType!=5 ){
    i = decodeVarint(a, &nPayload);
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
  zPageUse = 0;
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void ptrmap_coverage_report(const char *zDbName){
  unsigned int pgno;
  unsigned char *aHdr;
  unsigned char *a;
  int usable;
  int perPage;
  unsigned int i;

  /* Avoid the pathological case */
  if( mxPage<1 ){
    printf("empty database\n");
    return;
  }








|




|







892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
  zPageUse = 0;
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void ptrmap_coverage_report(const char *zDbName){
  int pgno;
  unsigned char *aHdr;
  unsigned char *a;
  int usable;
  int perPage;
  int i;

  /* Avoid the pathological case */
  if( mxPage<1 ){
    printf("empty database\n");
    return;
  }

Changes to tool/showwal.c.
1
2
3
4
5
6
7
8


9




10
11
12
13
14
15
16
/*
** A utility for printing content from a write-ahead log file.
*/
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>


#include <unistd.h>




#include <stdlib.h>
#include <string.h>


static int pagesize = 1024;     /* Size of a database page */
static int fd = -1;             /* File descriptor for reading the WAL file */
static int mxFrame = 0;         /* Last frame */








>
>

>
>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
** A utility for printing content from a write-ahead log file.
*/
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#if !defined(_MSC_VER)
#include <unistd.h>
#else
#include <io.h>
#endif

#include <stdlib.h>
#include <string.h>


static int pagesize = 1024;     /* Size of a database page */
static int fd = -1;             /* File descriptor for reading the WAL file */
static int mxFrame = 0;         /* Last frame */
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  int asHex,                 /* If true, output value as hex */
  const char *zMsg           /* Message to append */
){
  int i, j;
  int val = aData[ofst];
  char zBuf[100];
  sprintf(zBuf, " %03x: %02x", ofst, aData[ofst]);
  i = strlen(zBuf);
  for(j=1; j<4; j++){
    if( j>=nByte ){
      sprintf(&zBuf[i], "   ");
    }else{
      sprintf(&zBuf[i], " %02x", aData[ofst+j]);
      val = val*256 + aData[ofst+j];
    }
    i += strlen(&zBuf[i]);
  }
  if( asHex ){
    sprintf(&zBuf[i], "  0x%08x", val);
  }else{
    sprintf(&zBuf[i], "   %9d", val);
  }
  printf("%s  %s\n", zBuf, zMsg);







|







|







174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
  int asHex,                 /* If true, output value as hex */
  const char *zMsg           /* Message to append */
){
  int i, j;
  int val = aData[ofst];
  char zBuf[100];
  sprintf(zBuf, " %03x: %02x", ofst, aData[ofst]);
  i = (int)strlen(zBuf);
  for(j=1; j<4; j++){
    if( j>=nByte ){
      sprintf(&zBuf[i], "   ");
    }else{
      sprintf(&zBuf[i], " %02x", aData[ofst+j]);
      val = val*256 + aData[ofst+j];
    }
    i += (int)strlen(&zBuf[i]);
  }
  if( asHex ){
    sprintf(&zBuf[i], "  0x%08x", val);
  }else{
    sprintf(&zBuf[i], "   %9d", val);
  }
  printf("%s  %s\n", zBuf, zMsg);
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    }
  }
  free(aData);
}
/*
** Describe cell content.
*/
static int describeContent(
  unsigned char *a,       /* Cell content */
  int nLocal,             /* Bytes in a[] */
  char *zDesc             /* Write description here */
){
  int nDesc = 0;
  int n, i, j;
  i64 x, v;
  const unsigned char *pData;
  const unsigned char *pLimit;
  char sep = ' ';

  pLimit = &a[nLocal];
  n = decodeVarint(a, &x);
  pData = &a[x];







|

|



|
|







275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    }
  }
  free(aData);
}
/*
** Describe cell content.
*/
static i64 describeContent(
  unsigned char *a,       /* Cell content */
  i64 nLocal,             /* Bytes in a[] */
  char *zDesc             /* Write description here */
){
  int nDesc = 0;
  int n, j;
  i64 i, x, v;
  const unsigned char *pData;
  const unsigned char *pLimit;
  char sep = ' ';

  pLimit = &a[nLocal];
  n = decodeVarint(a, &x);
  pData = &a[x];
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
      sprintf(zDesc, "real");
      pData += 8;
    }else if( x==8 ){
      sprintf(zDesc, "0");
    }else if( x==9 ){
      sprintf(zDesc, "1");
    }else if( x>=12 ){
      int size = (x-12)/2;
      if( (x&1)==0 ){
        sprintf(zDesc, "blob(%d)", size);
      }else{
        sprintf(zDesc, "txt(%d)", size);
      }
      pData += size;
    }
    j = strlen(zDesc);
    zDesc += j;
    nDesc += j;
  }
  return nDesc;
}

/*
** Compute the local payload size given the total payload size and
** the page size.
*/
static int localPayload(i64 nPayload, char cType){
  int maxLocal;
  int minLocal;
  int surplus;
  int nLocal;
  if( cType==13 ){
    /* Table leaf */
    maxLocal = pagesize-35;
    minLocal = (pagesize-12)*32/255-23;
  }else{
    maxLocal = (pagesize-12)*64/255-23;
    minLocal = (pagesize-12)*32/255-23;







|

|

|



|










|
|
|
|
|







322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
      sprintf(zDesc, "real");
      pData += 8;
    }else if( x==8 ){
      sprintf(zDesc, "0");
    }else if( x==9 ){
      sprintf(zDesc, "1");
    }else if( x>=12 ){
      i64 size = (x-12)/2;
      if( (x&1)==0 ){
        sprintf(zDesc, "blob(%lld)", size);
      }else{
        sprintf(zDesc, "txt(%lld)", size);
      }
      pData += size;
    }
    j = (int)strlen(zDesc);
    zDesc += j;
    nDesc += j;
  }
  return nDesc;
}

/*
** Compute the local payload size given the total payload size and
** the page size.
*/
static i64 localPayload(i64 nPayload, char cType){
  i64 maxLocal;
  i64 minLocal;
  i64 surplus;
  i64 nLocal;
  if( cType==13 ){
    /* Table leaf */
    maxLocal = pagesize-35;
    minLocal = (pagesize-12)*32/255-23;
  }else{
    maxLocal = (pagesize-12)*64/255-23;
    minLocal = (pagesize-12)*32/255-23;
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
}

/*
** Create a description for a single cell.
**
** The return value is the local cell size.
*/
static int describeCell(
  unsigned char cType,    /* Page type */
  unsigned char *a,       /* Cell content */
  int showCellContent,    /* Show cell content if true */
  char **pzDesc           /* Store description here */
){
  int i;
  int nDesc = 0;
  int n = 0;
  int leftChild;
  i64 nPayload;
  i64 rowid;
  int nLocal;
  static char zDesc[1000];
  i = 0;
  if( cType<=5 ){
    leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3];
    a += 4;
    n += 4;
    sprintf(zDesc, "lx: %d ", leftChild);







|






|




|







372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
}

/*
** Create a description for a single cell.
**
** The return value is the local cell size.
*/
static i64 describeCell(
  unsigned char cType,    /* Page type */
  unsigned char *a,       /* Cell content */
  int showCellContent,    /* Show cell content if true */
  char **pzDesc           /* Store description here */
){
  int i;
  i64 nDesc = 0;
  int n = 0;
  int leftChild;
  i64 nPayload;
  i64 rowid;
  i64 nLocal;
  static char zDesc[1000];
  i = 0;
  if( cType<=5 ){
    leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3];
    a += 4;
    n += 4;
    sprintf(zDesc, "lx: %d ", leftChild);
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    memset(zMap, '1', hdrSize);
    memset(&zMap[hdrSize], 'H', iCellPtr);
    memset(&zMap[hdrSize+iCellPtr], 'P', 2*nCell);
  }
  for(i=0; i<nCell; i++){
    int cofst = iCellPtr + i*2;
    char *zDesc;
    int n;

    cofst = a[cofst]*256 + a[cofst+1];
    n = describeCell(a[0], &a[cofst-hdrSize], showCellContent, &zDesc);
    if( showMap ){
      char zBuf[30];
      memset(&zMap[cofst], '*', n);
      zMap[cofst] = '[';
      zMap[cofst+n-1] = ']';
      sprintf(zBuf, "%d", i);
      j = strlen(zBuf);
      if( j<=n-2 ) memcpy(&zMap[cofst+1], zBuf, j);
    }
    printf(" %03x: cell[%d] %s\n", cofst, i, zDesc);
  }
  if( showMap ){
    for(i=0; i<pagesize; i+=64){
      printf(" %03x: %.64s\n", i, &zMap[i]);







|





|



|







481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    memset(zMap, '1', hdrSize);
    memset(&zMap[hdrSize], 'H', iCellPtr);
    memset(&zMap[hdrSize+iCellPtr], 'P', 2*nCell);
  }
  for(i=0; i<nCell; i++){
    int cofst = iCellPtr + i*2;
    char *zDesc;
    i64 n;

    cofst = a[cofst]*256 + a[cofst+1];
    n = describeCell(a[0], &a[cofst-hdrSize], showCellContent, &zDesc);
    if( showMap ){
      char zBuf[30];
      memset(&zMap[cofst], '*', (size_t)n);
      zMap[cofst] = '[';
      zMap[cofst+n-1] = ']';
      sprintf(zBuf, "%d", i);
      j = (int)strlen(zBuf);
      if( j<=n-2 ) memcpy(&zMap[cofst+1], zBuf, j);
    }
    printf(" %03x: cell[%d] %s\n", cofst, i, zDesc);
  }
  if( showMap ){
    for(i=0; i<pagesize; i+=64){
      printf(" %03x: %.64s\n", i, &zMap[i]);