SQLite

Check-in [a6cb09d7af]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Add internal support for collating sequences. This breaks 244 tests. (CVS 1420)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: a6cb09d7af537726acc87b9133f68c81e839e047
User & Date: drh 2004-05-20 22:16:29.000
Context
2004-05-20
23:37
Fix a bug that prevented sorting by index. Down to 162 failed tests. (CVS 1421) (check-in: b032b646b7 user: drh tags: trunk)
22:16
Add internal support for collating sequences. This breaks 244 tests. (CVS 1420) (check-in: a6cb09d7af user: drh tags: trunk)
13:54
sqlite3MemCompare now takes a CollSeq* argument. (CVS 1419) (check-in: 5c1e47a252 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.144 2004/05/20 02:01:27 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.145 2004/05/20 22:16:29 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
1402
1403
1404
1405
1406
1407
1408



1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    releasePage(pCur->pPage);
    sqliteFree(pCur);
  }
  unlockBtreeIfUnused(pBt);
  return rc;
}




void sqlite3BtreeSetCompare(
  BtCursor *pCur,
  int(* xCmp)(void*,int,const void*,int,const void*),
  void *pArg
){
  pCur->xCompare = xCmp ? xCmp : dfltCompare;
  pCur->pArg = pArg;
}

/*
** Close a cursor.  The read lock on the database file is released







>
>
>

|
|
|







1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
    releasePage(pCur->pPage);
    sqliteFree(pCur);
  }
  unlockBtreeIfUnused(pBt);
  return rc;
}

/*
** Change the value of the comparison function used by a cursor.
*/
void sqlite3BtreeSetCompare(
  BtCursor *pCur,     /* The cursor to whose comparison function is changed */
  int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
  void *pArg          /* First argument to xCmp() */
){
  pCur->xCompare = xCmp ? xCmp : dfltCompare;
  pCur->pArg = pArg;
}

/*
** Close a cursor.  The read lock on the database file is released
Changes to src/build.c.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**     PRAGMA
**
** $Id: build.c,v 1.189 2004/05/20 12:41:20 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Check to see if the schema for the database needs







|







19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**     PRAGMA
**
** $Id: build.c,v 1.190 2004/05/20 22:16:29 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Check to see if the schema for the database needs
587
588
589
590
591
592
593

594
595
596
597
598
599
600
  pCol->zName = z;
 
  /* If there is no type specified, columns have the default affinity
  ** 'NUMERIC'. If there is a type specified, then sqlite3AddColumnType()
  ** will be called next to set pCol->affinity correctly.
  */
  pCol->affinity = SQLITE_AFF_NUMERIC;

  p->nCol++;
}

/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
** been seen on a column.  This routine sets the notNull flag on







>







587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
  pCol->zName = z;
 
  /* If there is no type specified, columns have the default affinity
  ** 'NUMERIC'. If there is a type specified, then sqlite3AddColumnType()
  ** will be called next to set pCol->affinity correctly.
  */
  pCol->affinity = SQLITE_AFF_NUMERIC;
  pCol->pColl = pParse->db->pDfltColl;
  p->nCol++;
}

/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
** been seen on a column.  This routine sets the notNull flag on
699
700
701
702
703
704
705
706


707
708
709
710
711
712
713
  pTab->hasPrimKey = 1;
  if( pList==0 ){
    iCol = pTab->nCol - 1;
    pTab->aCol[iCol].isPrimKey = 1;
  }else{
    for(i=0; i<pList->nId; i++){
      for(iCol=0; iCol<pTab->nCol; iCol++){
        if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;


      }
      if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
    }
    if( pList->nId>1 ) iCol = -1;
  }
  if( iCol>=0 && iCol<pTab->nCol ){
    zType = pTab->aCol[iCol].zType;







|
>
>







700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
  pTab->hasPrimKey = 1;
  if( pList==0 ){
    iCol = pTab->nCol - 1;
    pTab->aCol[iCol].isPrimKey = 1;
  }else{
    for(i=0; i<pList->nId; i++){
      for(iCol=0; iCol<pTab->nCol; iCol++){
        if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
          break;
        }
      }
      if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
    }
    if( pList->nId>1 ) iCol = -1;
  }
  if( iCol>=0 && iCol<pTab->nCol ){
    zType = pTab->aCol[iCol].zType;
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747


748
749
750
751
752
753
754
755

756
757
758
759
760


761
762





763


764
765
















766














767
768
769
770
771
772
773

primary_key_exit:
  sqlite3IdListDelete(pList);
  return;
}

/*
** Return the appropriate collating type given a type name.
**
** The collation type is text (SQLITE_SO_TEXT) if the type
** name contains the character stream "text" or "blob" or
** "clob".  Any other type name is collated as numeric
** (SQLITE_SO_NUM).
*/
int sqlite3CollateType(const char *zType, int nType){
  int i;
  for(i=0; i<nType-3; i++){
    int c = *(zType++) | 0x60;
    if( (c=='b' || c=='c') && sqlite3StrNICmp(zType, "lob", 3)==0 ){
      return SQLITE_SO_TEXT;
    }
    if( c=='c' && sqlite3StrNICmp(zType, "har", 3)==0 ){
      return SQLITE_SO_TEXT;
    }
    if( c=='t' && sqlite3StrNICmp(zType, "ext", 3)==0 ){
      return SQLITE_SO_TEXT;


    }
  }
  return SQLITE_SO_NUM;
}

/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.  A "COLLATE" clause has

** been seen on a column.  This routine sets the Column.sortOrder on
** the column currently under construction.
*/
void sqlite3AddCollateType(Parse *pParse, int collType){
  Table *p;


  int i;
  if( (p = pParse->pNewTable)==0 ) return;





  i = p->nCol-1;



  /* FIX ME */
















  /* if( i>=0 ) p->aCol[i].sortOrder = collType; */














}

/*
** Scan the column type name zType (length nType) and return the
** associated affinity type.
*/
char sqlite3AffinityType(const char *zType, int nType){







|
<
|
<
<
|

|
|
<
<
|
<
|
|
<
<
|
<
>
>
|
<
|



<
<
>
|
<

|

>
>
|

>
>
>
>
>
|
>
>

|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>







725
726
727
728
729
730
731
732

733


734
735
736
737


738

739
740


741

742
743
744

745
746
747
748


749
750

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

primary_key_exit:
  sqlite3IdListDelete(pList);
  return;
}

/*
** Return a pointer to CollSeq given the name of a collating sequence.

** If the collating sequence did not previously exist, create it but


** assign it an NULL comparison function.
*/
CollSeq *sqlite3CollateType(Parse *pParse, const char *zType, int nType){
  CollSeq *pColl;


  sqlite *db = pParse->db;


  pColl = sqlite3HashFind(&db->aCollSeq, zType, nType);


  if( pColl==0 ){

    sqlite3ChangeCollatingFunction(db, zType, nType, 0, 0);
    pColl = sqlite3HashFind(&db->aCollSeq, zType, nType);
  }

  return pColl;
}

/*


** Set the collation function of the most recently parsed table column
** to the CollSeq given.

*/
void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
  Table *p;
  CollSeq *pColl;
  sqlite *db = pParse->db;

  if( (p = pParse->pNewTable)==0 ) return;
  pColl = sqlite3HashFind(&db->aCollSeq, zType, nType);
  if( pColl==0 ){
    pColl = sqlite3ChangeCollatingFunction(db, zType, nType, 0, 0);
  }
  if( pColl ){
    p->aCol[p->nCol-1].pColl = pColl;
  }
}

/*
** Create or modify a collating sequence entry in the sqlite.aCollSeq
** table.
**
** Once an entry is added to the sqlite.aCollSeq table, it can never
** be removed, though is comparison function or user data can be changed.
**
** Return a pointer to the collating function that was created or modified.
*/
CollSeq *sqlite3ChangeCollatingFunction(
  sqlite *db,             /* Database into which to insert the collation */
  const char *zName,      /* Name of the collation */
  int nName,              /* Number of characters in zName */
  void *pUser,            /* First argument to xCmp */
  int (*xCmp)(void*,int,const void*,int,const void*) /* Comparison function */
){
  CollSeq *pColl;

  pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
  if( pColl==0 ){
    pColl = sqliteMallocRaw( sizeof(*pColl) + nName + 1 );
    if( pColl==0 ){
      return 0;
    }
    pColl->zName = (char*)&pColl[1];
    pColl->reverseOrder = 0;
    memcpy(pColl->zName, zName, nName+1);
    sqlite3HashInsert(&db->aCollSeq, pColl->zName, nName, pColl);
  }
  pColl->pUser = pUser;
  pColl->xCmp = xCmp;
  return pColl;
}

/*
** Scan the column type name zType (length nType) and return the
** associated affinity type.
*/
char sqlite3AffinityType(const char *zType, int nType){
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
    if( pList==0 ) goto exit_create_index;
  }

  /* 
  ** Allocate the index structure. 
  */
  pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
                        sizeof(int)*pList->nId );
  if( pIndex==0 ) goto exit_create_index;
  pIndex->aiColumn = (int*)&pIndex[1];
  pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
  strcpy(pIndex->zName, zName);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nId;
  pIndex->onError = onError;
  pIndex->autoIndex = pName==0;
  pIndex->iDb = isTemp ? 1 : db->init.iDb;







|

|







1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
    if( pList==0 ) goto exit_create_index;
  }

  /* 
  ** Allocate the index structure. 
  */
  pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
                        (sizeof(int) + sizeof(CollSeq*))*pList->nId );
  if( pIndex==0 ) goto exit_create_index;
  pIndex->aiColumn = (int*)&pIndex->keyInfo.aColl[pList->nId];
  pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
  strcpy(pIndex->zName, zName);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nId;
  pIndex->onError = onError;
  pIndex->autoIndex = pName==0;
  pIndex->iDb = isTemp ? 1 : db->init.iDb;
1628
1629
1630
1631
1632
1633
1634

1635

1636
1637
1638
1639
1640
1641
1642
    if( j>=pTab->nCol ){
      sqlite3ErrorMsg(pParse, "table %s has no column named %s",
        pTab->zName, pList->a[i].zName);
      sqliteFree(pIndex);
      goto exit_create_index;
    }
    pIndex->aiColumn[i] = j;

  }


  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
  */
  if( !pParse->explain ){
    Index *p;
    p = sqlite3HashInsert(&db->aDb[pIndex->iDb].idxHash, 







>

>







1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
    if( j>=pTab->nCol ){
      sqlite3ErrorMsg(pParse, "table %s has no column named %s",
        pTab->zName, pList->a[i].zName);
      sqliteFree(pIndex);
      goto exit_create_index;
    }
    pIndex->aiColumn[i] = j;
    pIndex->keyInfo.aColl[i] = pTab->aCol[j].pColl;
  }
  pIndex->keyInfo.nField = pList->nId;

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
  */
  if( !pParse->explain ){
    Index *p;
    p = sqlite3HashInsert(&db->aDb[pIndex->iDb].idxHash, 
1709
1710
1711
1712
1713
1714
1715
1716
1717


1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728

1729
1730
1731
1732
1733
1734
1735
    sqlite3VdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
    sqlite3VdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
    pIndex->tnum = 0;
    if( pTable ){
      sqlite3VdbeCode(v,
          OP_Dup,       0,      0,
          OP_Integer,   isTemp, 0,
          OP_OpenWrite, 1,      0,
      0);


    }
    addr = sqlite3VdbeAddOp(v, OP_String, 0, 0);
    if( pStart && pEnd ){
      n = Addr(pEnd->z) - Addr(pStart->z) + 1;
      sqlite3VdbeChangeP3(v, addr, pStart->z, n);
    }
    sqlite3VdbeOp3(v, OP_MakeRecord, 5, 0, "tttit", P3_STATIC);
    sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0);
    if( pTable ){
      sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
      sqlite3VdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);

      sqlite3VdbeAddOp(v, OP_SetNumColumns, 2, pTab->nCol);
      lbl2 = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_Rewind, 2, lbl2);
      lbl1 = sqlite3VdbeAddOp(v, OP_Recno, 2, 0);
      for(i=0; i<pIndex->nColumn; i++){
        int iCol = pIndex->aiColumn[i];
        if( pTab->iPKey==iCol ){







<

>
>










|
>







1743
1744
1745
1746
1747
1748
1749

1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
    sqlite3VdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
    sqlite3VdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
    pIndex->tnum = 0;
    if( pTable ){
      sqlite3VdbeCode(v,
          OP_Dup,       0,      0,
          OP_Integer,   isTemp, 0,

      0);
      sqlite3VdbeOp3(v, OP_OpenWrite, 1, 0,
                     (char*)&pIndex->keyInfo, P3_KEYINFO);
    }
    addr = sqlite3VdbeAddOp(v, OP_String, 0, 0);
    if( pStart && pEnd ){
      n = Addr(pEnd->z) - Addr(pStart->z) + 1;
      sqlite3VdbeChangeP3(v, addr, pStart->z, n);
    }
    sqlite3VdbeOp3(v, OP_MakeRecord, 5, 0, "tttit", P3_STATIC);
    sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0);
    if( pTable ){
      sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
      sqlite3VdbeAddOp(v, OP_OpenRead, 2, pTab->tnum);
      /* VdbeComment((v, "%s", pTab->zName)); */
      sqlite3VdbeAddOp(v, OP_SetNumColumns, 2, pTab->nCol);
      lbl2 = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_Rewind, 2, lbl2);
      lbl1 = sqlite3VdbeAddOp(v, OP_Recno, 2, 0);
      for(i=0; i<pIndex->nColumn; i++){
        int iCol = pIndex->aiColumn[i];
        if( pTab->iPKey==iCol ){
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.124 2004/05/20 13:54:54 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

char const *sqlite3AffinityString(char affinity){
  switch( affinity ){
    case SQLITE_AFF_INTEGER: return "i";







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.125 2004/05/20 22:16:29 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

char const *sqlite3AffinityString(char affinity){
  switch( affinity ){
    case SQLITE_AFF_INTEGER: return "i";
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
      if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
        cnt++;
        pExpr->iTable = pItem->iCursor;
        pExpr->iDb = pTab->iDb;
        /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
        pExpr->iColumn = j==pTab->iPKey ? -1 : j;
        pExpr->affinity = pTab->aCol[j].affinity;

        /* FIX ME: Expr::dataType will be removed... */
        pExpr->dataType =
            (pCol->affinity==SQLITE_AFF_TEXT?SQLITE_SO_TEXT:SQLITE_SO_NUM);
        break;
      }
    }
  }

  /* If we have not already resolved the name, then maybe 
  ** it is a new.* or old.* trigger argument reference







<
<
<
<







584
585
586
587
588
589
590




591
592
593
594
595
596
597
      if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
        cnt++;
        pExpr->iTable = pItem->iCursor;
        pExpr->iDb = pTab->iDb;
        /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
        pExpr->iColumn = j==pTab->iPKey ? -1 : j;
        pExpr->affinity = pTab->aCol[j].affinity;




        break;
      }
    }
  }

  /* If we have not already resolved the name, then maybe 
  ** it is a new.* or old.* trigger argument reference
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
      pExpr->iDb = pTab->iDb;
      cntTab++;
      for(j=0; j < pTab->nCol; j++, pCol++) {
        if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
          cnt++;
          pExpr->iColumn = j==pTab->iPKey ? -1 : j;
          pExpr->affinity = pTab->aCol[j].affinity;
          /* FIX ME: Expr::dataType will be removed... */
          pExpr->dataType =
              (pCol->affinity==SQLITE_AFF_TEXT?SQLITE_SO_TEXT:SQLITE_SO_NUM);
          break;
        }
      }
    }
  }

  /*
  ** Perhaps the name is a reference to the ROWID
  */
  if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
    cnt = 1;
    pExpr->iColumn = -1;
    pExpr->dataType = SQLITE_SO_NUM;
    pExpr->affinity = SQLITE_AFF_INTEGER;
  }

  /*
  ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
  ** might refer to an result-set alias.  This happens, for example, when
  ** we are resolving names in the WHERE clause of the following command:







<
<
<












<







616
617
618
619
620
621
622



623
624
625
626
627
628
629
630
631
632
633
634

635
636
637
638
639
640
641
      pExpr->iDb = pTab->iDb;
      cntTab++;
      for(j=0; j < pTab->nCol; j++, pCol++) {
        if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
          cnt++;
          pExpr->iColumn = j==pTab->iPKey ? -1 : j;
          pExpr->affinity = pTab->aCol[j].affinity;



          break;
        }
      }
    }
  }

  /*
  ** Perhaps the name is a reference to the ROWID
  */
  if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
    cnt = 1;
    pExpr->iColumn = -1;

    pExpr->affinity = SQLITE_AFF_INTEGER;
  }

  /*
  ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
  ** might refer to an result-set alias.  This happens, for example, when
  ** we are resolving names in the WHERE clause of the following command:
801
802
803
804
805
806
807


808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827



828

829
830
831
832
833
834
835
      }
      break;
    }

    case TK_IN: {
      char affinity;
      Vdbe *v = sqlite3GetVdbe(pParse);


      if( v==0 ) return 1;
      if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
        return 1;
      }
      affinity = sqlite3ExprAffinity(pExpr->pLeft);

      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
      ** expression it is handled the same way. A temporary table is 
      ** filled with single-field index keys representing the results
      ** from the SELECT or the <exprlist>.
      **
      ** If the 'x' expression is a column value, or the SELECT...
      ** statement returns a column value, then the affinity of that
      ** column is used to build the index keys. If both 'x' and the
      ** SELECT... statement are columns, then numeric affinity is used
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;



      sqlite3VdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);


      if( pExpr->pSelect ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */







>
>




















>
>
>
|
>







793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
      }
      break;
    }

    case TK_IN: {
      char affinity;
      Vdbe *v = sqlite3GetVdbe(pParse);
      KeyInfo keyInfo;

      if( v==0 ) return 1;
      if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
        return 1;
      }
      affinity = sqlite3ExprAffinity(pExpr->pLeft);

      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
      ** expression it is handled the same way. A temporary table is 
      ** filled with single-field index keys representing the results
      ** from the SELECT or the <exprlist>.
      **
      ** If the 'x' expression is a column value, or the SELECT...
      ** statement returns a column value, then the affinity of that
      ** column is used to build the index keys. If both 'x' and the
      ** SELECT... statement are columns, then numeric affinity is used
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      memset(&keyInfo, 0, sizeof(keyInfo));
      keyInfo.nField = 1;
      keyInfo.aColl[0] = pParse->db->pDfltColl;
      sqlite3VdbeOp3(v, OP_OpenTemp, pExpr->iTable, 0, \
           (char*)&keyInfo, P3_KEYINFO);

      if( pExpr->pSelect ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        pExpr->op = TK_AGG_FUNCTION;
        if( pIsAgg ) *pIsAgg = 1;
      }
      for(i=0; nErr==0 && i<n; i++){
        nErr = sqlite3ExprCheck(pParse, pExpr->pList->a[i].pExpr,
                               allowAgg && !is_agg, pIsAgg);
      }
      if( pDef==0 ){
        /* Already reported an error */
      }else if( pDef->dataType>=0 ){
        if( pDef->dataType<n ){
          pExpr->dataType = 
             sqlite3ExprType(pExpr->pList->a[pDef->dataType].pExpr);
        }else{
          pExpr->dataType = SQLITE_SO_NUM;
        }
      }else if( pDef->dataType==SQLITE_ARGS ){
        pDef->dataType = SQLITE_SO_TEXT;
        for(i=0; i<n; i++){
          if( sqlite3ExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
            pExpr->dataType = SQLITE_SO_NUM;
            break;
          }
        }
      }else if( pDef->dataType==SQLITE_NUMERIC ){
        pExpr->dataType = SQLITE_SO_NUM;
      }else{
        pExpr->dataType = SQLITE_SO_TEXT;
      }
    }
    default: {
      if( pExpr->pLeft ){
        nErr = sqlite3ExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
      }
      if( nErr==0 && pExpr->pRight ){
        nErr = sqlite3ExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);







<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<







996
997
998
999
1000
1001
1002




1003


1004














1005
1006
1007
1008
1009
1010
1011
        pExpr->op = TK_AGG_FUNCTION;
        if( pIsAgg ) *pIsAgg = 1;
      }
      for(i=0; nErr==0 && i<n; i++){
        nErr = sqlite3ExprCheck(pParse, pExpr->pList->a[i].pExpr,
                               allowAgg && !is_agg, pIsAgg);
      }




      /** TODO:  Compute pExpr->affinity based on the expected return


      ** type of the function */














    }
    default: {
      if( pExpr->pLeft ){
        nErr = sqlite3ExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
      }
      if( nErr==0 && pExpr->pRight ){
        nErr = sqlite3ExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
1043
1044
1045
1046
1047
1048
1049
1050
1051




1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
      break;
    }
  }
  return nErr;
}

/*
** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
** given expression should sort as numeric values or as text.




**
** The sqlite3ExprResolveIds() and sqlite3ExprCheck() routines must have
** both been called on the expression before it is passed to this routine.
*/
int sqlite3ExprType(Expr *p){
  if( p==0 ) return SQLITE_SO_NUM;
  while( p ) switch( p->op ){
    case TK_PLUS:
    case TK_MINUS:
    case TK_STAR:
    case TK_SLASH:
    case TK_AND:
    case TK_OR:
    case TK_ISNULL:
    case TK_NOTNULL:
    case TK_NOT:
    case TK_UMINUS:
    case TK_UPLUS:
    case TK_BITAND:
    case TK_BITOR:
    case TK_BITNOT:
    case TK_LSHIFT:
    case TK_RSHIFT:
    case TK_REM:
    case TK_INTEGER:
    case TK_FLOAT:
    case TK_IN:
    case TK_BETWEEN:
    case TK_GLOB:
    case TK_LIKE:
      return SQLITE_SO_NUM;

    case TK_STRING:
    case TK_NULL:
    case TK_CONCAT:
    case TK_VARIABLE:
      return SQLITE_SO_TEXT;

    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ:
      if( sqlite3ExprType(p->pLeft)==SQLITE_SO_NUM ){
        return SQLITE_SO_NUM;
      }
      p = p->pRight;
      break;

    case TK_AS:
      p = p->pLeft;
      break;

    case TK_COLUMN:
    case TK_FUNCTION:
    case TK_AGG_FUNCTION:
      return p->dataType;

    case TK_SELECT:
      assert( p->pSelect );
      assert( p->pSelect->pEList );
      assert( p->pSelect->pEList->nExpr>0 );
      p = p->pSelect->pEList->a[0].pExpr;
      break;

    case TK_CASE: {
      if( p->pRight && sqlite3ExprType(p->pRight)==SQLITE_SO_NUM ){
        return SQLITE_SO_NUM;
      }
      if( p->pList ){
        int i;
        ExprList *pList = p->pList;
        for(i=1; i<pList->nExpr; i+=2){
          if( sqlite3ExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
            return SQLITE_SO_NUM;
          }
        }
      }
      return SQLITE_SO_TEXT;
    }

    default:
      assert( p->op==TK_ABORT );  /* Can't Happen */
      break;
  }
  return SQLITE_SO_NUM;
}

/*
** Generate an instruction that will put the integer describe by
** text z[0..n-1] on the stack.
*/
static void codeInteger(Vdbe *v, const char *z, int n){







|
|
>
>
>
>





|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
|

<
<
<
<
<
<
<
<
<
<
<
<




|
<
<
|

|
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<


<
|

|







1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040



























1041

1042
1043












1044
1045
1046
1047
1048


1049
1050
1051





1052
1053














1054
1055

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
      break;
    }
  }
  return nErr;
}

/*
** Return one of the SQLITE_AFF_* affinity types that indicates the likely
** data type of the result of the given expression.
**
** Not every expression has a fixed type.  If the type cannot be determined
** at compile-time, then try to return the type affinity if the expression
** is a column.  Otherwise just return SQLITE_AFF_NONE.
**
** The sqlite3ExprResolveIds() and sqlite3ExprCheck() routines must have
** both been called on the expression before it is passed to this routine.
*/
int sqlite3ExprType(Expr *p){
  if( p==0 ) return SQLITE_AFF_NONE;
  while( p ) switch( p->op ){



























    case TK_CONCAT:

      return SQLITE_AFF_TEXT;













    case TK_AS:
      p = p->pLeft;
      break;

    case TK_NULL:


      return SQLITE_AFF_NONE;

    case TK_SELECT:   /*** FIX ME ****/





    case TK_COLUMN:   /*** FIX ME ****/
    case TK_CASE:     /*** FIX ME ****/















    default:

      return SQLITE_AFF_NUMERIC;
  }
  return SQLITE_AFF_NONE;
}

/*
** Generate an instruction that will put the integer describe by
** text z[0..n-1] on the stack.
*/
static void codeInteger(Vdbe *v, const char *z, int n){
1440
1441
1442
1443
1444
1445
1446

1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
  Vdbe *v;
  if( pList==0 ) return 0;
  v = sqlite3GetVdbe(pParse);
  n = pList->nExpr;
  for(pItem=pList->a, i=0; i<n; i++, pItem++){
    sqlite3ExprCode(pParse, pItem->pExpr);
    if( includeTypes ){

      sqlite3VdbeOp3(v, OP_String, 0, 0, 
         sqlite3ExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
         P3_STATIC);
    }
  }
  return includeTypes ? n*2 : n;
}

/*
** Generate code for a boolean expression such that a jump is made







>
|
<
<







1360
1361
1362
1363
1364
1365
1366
1367
1368


1369
1370
1371
1372
1373
1374
1375
  Vdbe *v;
  if( pList==0 ) return 0;
  v = sqlite3GetVdbe(pParse);
  n = pList->nExpr;
  for(pItem=pList->a, i=0; i<n; i++, pItem++){
    sqlite3ExprCode(pParse, pItem->pExpr);
    if( includeTypes ){
      /** DEPRECATED.  This will go away with the new function interface **/
      sqlite3VdbeOp3(v, OP_String, 0, 0, "numeric", P3_STATIC);


    }
  }
  return includeTypes ? n*2 : n;
}

/*
** Generate code for a boolean expression such that a jump is made
Changes to src/insert.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.104 2004/05/20 02:42:16 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P3 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.105 2004/05/20 22:16:29 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P3 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

1010
1011
1012
*/
int sqlite3OpenTableAndIndices(Parse *pParse, Table *pTab, int base){
  int i;
  Index *pIdx;
  Vdbe *v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
  sqlite3VdbeOp3(v, OP_OpenWrite, base, pTab->tnum, pTab->zName, P3_STATIC);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol);
  for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenWrite, i+base, pIdx->tnum, pIdx->zName, P3_STATIC);

  }
  return i;
}







|



|
>



998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
*/
int sqlite3OpenTableAndIndices(Parse *pParse, Table *pTab, int base){
  int i;
  Index *pIdx;
  Vdbe *v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
  sqlite3VdbeAddOp(v, OP_OpenWrite, base, pTab->tnum);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol);
  for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenWrite, i+base, pIdx->tnum,
                   (char*)&pIdx->keyInfo, P3_KEYINFO);
  }
  return i;
}
Changes to src/main.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.177 2004/05/20 11:00:52 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** A pointer to this structure is used to communicate information







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.178 2004/05/20 22:16:29 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** A pointer to this structure is used to communicate information
370
371
372
373
374
375
376


















377
378
379
380
381
382
383
** following global constant always lets us know.
*/
#ifdef SQLITE_UTF8
const char sqlite3_encoding[] = "UTF-8";
#else
const char sqlite3_encoding[] = "iso8859";
#endif



















/*
** Open a new SQLite database.  Construct an "sqlite" structure to define
** the state of this database and return a pointer to that structure.
**
** An attempt is made to initialize the in-memory data structures that
** hold the database schema.  But if this fails (because the schema file







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
** following global constant always lets us know.
*/
#ifdef SQLITE_UTF8
const char sqlite3_encoding[] = "UTF-8";
#else
const char sqlite3_encoding[] = "iso8859";
#endif

/*
** This is the default collating function named "BINARY" which is always
** available.
*/
static int binaryCollatingFunc(
  void *NotUsed,
  int nKey1, const void *pKey1,
  int nKey2, const void *pKey2
){
  int rc, n;
  n = nKey1<nKey2 ? nKey1 : nKey2;
  rc = memcmp(pKey1, pKey2, n);
  if( rc==0 ){
    rc = nKey1 - nKey2;
  }
  return rc;
}

/*
** Open a new SQLite database.  Construct an "sqlite" structure to define
** the state of this database and return a pointer to that structure.
**
** An attempt is made to initialize the in-memory data structures that
** hold the database schema.  But if this fails (because the schema file
395
396
397
398
399
400
401

402
403
404
405
406
407


408
409
410
411
412
413
414
  db->onError = OE_Default;
  db->priorNewRowid = 0;
  db->magic = SQLITE_MAGIC_BUSY;
  db->nDb = 2;
  db->aDb = db->aDbStatic;
  /* db->flags |= SQLITE_ShortColNames; */
  sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 1);

  for(i=0; i<db->nDb; i++){
    sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1);
  }


  
  /* Open the backend database driver */
  if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
    db->temp_store = 2;
  }
  rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
  if( rc!=SQLITE_OK ){







>






>
>







413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
  db->onError = OE_Default;
  db->priorNewRowid = 0;
  db->magic = SQLITE_MAGIC_BUSY;
  db->nDb = 2;
  db->aDb = db->aDbStatic;
  /* db->flags |= SQLITE_ShortColNames; */
  sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 1);
  sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
  for(i=0; i<db->nDb; i++){
    sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1);
  }
  db->pDfltColl =
     sqlite3ChangeCollatingFunction(db, "BINARY", 6, 0, binaryCollatingFunc);
  
  /* Open the backend database driver */
  if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
    db->temp_store = 2;
  }
  rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
  if( rc!=SQLITE_OK ){
Changes to src/parse.y.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains SQLite's grammar for SQL.  Process this file
** using the lemon parser generator to generate C code that runs
** the parser.  Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.115 2004/05/20 12:41:20 drh Exp $
*/
%token_prefix TK_
%token_type {Token}
%default_type {Token}
%extra_argument {Parse *pParse}
%syntax_error {
  if( pParse->zErrMsg==0 ){







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains SQLite's grammar for SQL.  Process this file
** using the lemon parser generator to generate C code that runs
** the parser.  Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.116 2004/05/20 22:16:29 drh Exp $
*/
%token_prefix TK_
%token_type {Token}
%default_type {Token}
%extra_argument {Parse *pParse}
%syntax_error {
  if( pParse->zErrMsg==0 ){
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
ccons ::= NOT NULL onconf(R).               {sqlite3AddNotNull(pParse, R);}
ccons ::= PRIMARY KEY sortorder onconf(R).  {sqlite3AddPrimaryKey(pParse,0,R);}
ccons ::= UNIQUE onconf(R).           {sqlite3CreateIndex(pParse,0,0,0,R,0,0);}
ccons ::= CHECK LP expr RP onconf.
ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
                                {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
ccons ::= defer_subclause(D).   {sqlite3DeferForeignKey(pParse,D);}
ccons ::= COLLATE id(C).  {
   sqlite3AddCollateType(pParse, sqlite3CollateType(C.z, C.n));
}

// The next group of rules parses the arguments to a REFERENCES clause
// that determine if the referential integrity checking is deferred or
// or immediate and which determine what action to take if a ref-integ
// check fails.
//
%type refargs {int}







|
<
<







189
190
191
192
193
194
195
196


197
198
199
200
201
202
203
ccons ::= NOT NULL onconf(R).               {sqlite3AddNotNull(pParse, R);}
ccons ::= PRIMARY KEY sortorder onconf(R).  {sqlite3AddPrimaryKey(pParse,0,R);}
ccons ::= UNIQUE onconf(R).           {sqlite3CreateIndex(pParse,0,0,0,R,0,0);}
ccons ::= CHECK LP expr RP onconf.
ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
                                {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
ccons ::= defer_subclause(D).   {sqlite3DeferForeignKey(pParse,D);}
ccons ::= COLLATE id(C).  {sqlite3AddCollateType(pParse, C.z, C.n);}



// The next group of rules parses the arguments to a REFERENCES clause
// that determine if the referential integrity checking is deferred or
// or immediate and which determine what action to take if a ref-integ
// check fails.
//
%type refargs {int}
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
%destructor sortlist {sqlite3ExprListDelete($$);}
%type sortitem {Expr*}
%destructor sortitem {sqlite3ExprDelete($$);}

orderby_opt(A) ::= .                          {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
sortlist(A) ::= sortlist(X) COMMA sortitem(Y) collate(C) sortorder(Z). {
  A = sqlite3ExprListAppend(X,Y,0);
  if( A ) A->a[A->nExpr-1].sortOrder = C+Z;
}
sortlist(A) ::= sortitem(Y) collate(C) sortorder(Z). {
  A = sqlite3ExprListAppend(0,Y,0);
  if( A ) A->a[0].sortOrder = C+Z;
}
sortitem(A) ::= expr(X).   {A = X;}

%type sortorder {int}
%type collate {int}

sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
sortorder(A) ::= .              {A = SQLITE_SO_ASC;}
collate(C) ::= .                {C = SQLITE_SO_UNK;}
collate(C) ::= COLLATE id(X).   {C = sqlite3CollateType(X.z, X.n);}

%type groupby_opt {ExprList*}
%destructor groupby_opt {sqlite3ExprListDelete($$);}
groupby_opt(A) ::= .                      {A = 0;}
groupby_opt(A) ::= GROUP BY exprlist(X).  {A = X;}

%type having_opt {Expr*}







|
|


|
|




|




|
|







431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
%destructor sortlist {sqlite3ExprListDelete($$);}
%type sortitem {Expr*}
%destructor sortitem {sqlite3ExprDelete($$);}

orderby_opt(A) ::= .                          {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
sortlist(A) ::= sortlist(X) COMMA sortitem(Y) collate(C) sortorder(Z). {
  A = sqlite3ExprListAppend(X,Y,&C);
  if( A ) A->a[A->nExpr-1].sortOrder = Z;
}
sortlist(A) ::= sortitem(Y) collate(C) sortorder(Z). {
  A = sqlite3ExprListAppend(0,Y,&C);
  if( A ) A->a[0].sortOrder = Z;
}
sortitem(A) ::= expr(X).   {A = X;}

%type sortorder {int}
%type collate {Token}

sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
sortorder(A) ::= .              {A = SQLITE_SO_ASC;}
collate(C) ::= .                {C.z = 0; C.n = 0;}
collate(C) ::= COLLATE id(X).   {C = X;}

%type groupby_opt {ExprList*}
%destructor groupby_opt {sqlite3ExprListDelete($$);}
groupby_opt(A) ::= .                      {A = 0;}
groupby_opt(A) ::= GROUP BY exprlist(X).  {A = X;}

%type having_opt {Expr*}
Changes to src/pragma.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
** $Id: pragma.c,v 1.26 2004/05/18 22:17:46 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Interpret the given string as a boolean value.
*/













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
** $Id: pragma.c,v 1.27 2004/05/20 22:16:29 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Interpret the given string as a boolean value.
*/
634
635
636
637
638
639
640
641
642
643
644
645
646

647
648
649
650
651
652
653
      for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        sqlite3VdbeAddOp(v, OP_Integer, i, 0);
        sqlite3VdbeOp3(v, OP_OpenRead, 1, pTab->tnum, pTab->zName, 0);
        sqlite3VdbeAddOp(v, OP_SetNumColumns, 1, pTab->nCol);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          if( pIdx->tnum==0 ) continue;
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
          sqlite3VdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, pIdx->zName, 0);

        }
        sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
        sqlite3VdbeAddOp(v, OP_MemStore, 1, 1);
        loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0);
        sqlite3VdbeAddOp(v, OP_MemIncr, 1, 0);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int k, jmp2;







|




|
>







634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
      for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        sqlite3VdbeAddOp(v, OP_Integer, i, 0);
        sqlite3VdbeAddOp(v, OP_OpenRead, 1, pTab->tnum);
        sqlite3VdbeAddOp(v, OP_SetNumColumns, 1, pTab->nCol);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          if( pIdx->tnum==0 ) continue;
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
          sqlite3VdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, 
                         (char*)&pIdx->keyInfo, P3_KEYINFO);
        }
        sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
        sqlite3VdbeAddOp(v, OP_MemStore, 1, 1);
        loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0);
        sqlite3VdbeAddOp(v, OP_MemIncr, 1, 0);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int k, jmp2;
Changes to src/select.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.170 2004/05/20 03:02:47 drh Exp $
*/
#include "sqliteInt.h"


/*
** Allocate a new Select structure and return a pointer to that
** structure.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.171 2004/05/20 22:16:29 drh Exp $
*/
#include "sqliteInt.h"


/*
** Allocate a new Select structure and return a pointer to that
** structure.
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
  char *zSortOrder;
  int i;
  zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
  if( zSortOrder==0 ) return;
  for(i=0; i<pOrderBy->nExpr; i++){
    int order = pOrderBy->a[i].sortOrder;
    int type;
    int c;
    if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
      type = SQLITE_SO_TEXT;
    }else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){
      type = SQLITE_SO_NUM;
    }else{
      type = sqlite3ExprType(pOrderBy->a[i].pExpr);
    }
    if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){
      c = type==SQLITE_SO_TEXT ? 'A' : '+';
    }else{
      c = type==SQLITE_SO_TEXT ? 'D' : '-';
    }
    zSortOrder[i] = c;
    sqlite3ExprCode(pParse, pOrderBy->a[i].pExpr);
  }
  zSortOrder[pOrderBy->nExpr] = 0;
  sqlite3VdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
  sqlite3VdbeAddOp(v, OP_SortPut, 0, 0);
}

/*
** This routine adds a P3 argument to the last VDBE opcode that was
** inserted. The P3 argument added is a string suitable for the 
** OP_MakeKey or OP_MakeIdxKey opcodes.  The string consists of
** characters 't' or 'n' depending on whether or not the various
** fields of the key to be generated should be treated as numeric
** or as text.  See the OP_MakeKey and OP_MakeIdxKey opcode
** documentation for additional information about the P3 string.
** See also the sqlite3AddIdxKeyType() routine.
*/
void sqlite3AddKeyType(Vdbe *v, ExprList *pEList){
  int nColumn = pEList->nExpr;
  char *zType = sqliteMalloc( nColumn+1 );
  int i;
  if( zType==0 ) return;
  for(i=0; i<nColumn; i++){
    zType[i] = sqlite3ExprType(pEList->a[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't';
  }
  zType[i] = 0;
  sqlite3VdbeChangeP3(v, -1, zType, P3_DYNAMIC);
}

/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab and nColumn are both zero, then the pEList expressions
** are evaluated in order to get the data for this row.  If nColumn>0
** then data is pulled from srcTab and pEList is used only to get the







<

<
<
<
<
<
<
<
|
|

|









<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







320
321
322
323
324
325
326

327







328
329
330
331
332
333
334
335
336
337
338
339
340






















341
342
343
344
345
346
347
static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
  char *zSortOrder;
  int i;
  zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
  if( zSortOrder==0 ) return;
  for(i=0; i<pOrderBy->nExpr; i++){
    int order = pOrderBy->a[i].sortOrder;

    int c;







    if( order==SQLITE_SO_ASC ){
      c = 'A';
    }else{
      c = 'D';
    }
    zSortOrder[i] = c;
    sqlite3ExprCode(pParse, pOrderBy->a[i].pExpr);
  }
  zSortOrder[pOrderBy->nExpr] = 0;
  sqlite3VdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
  sqlite3VdbeAddOp(v, OP_SortPut, 0, 0);
}























/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab and nColumn are both zero, then the pEList expressions
** are evaluated in order to get the data for this row.  If nColumn>0
** then data is pulled from srcTab and pEList is used only to get the
428
429
430
431
432
433
434

435
436
437
438
439
440
441
442
443
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( distinct>=0 && pEList && pEList->nExpr>0 ){
#if NULL_ALWAYS_DISTINCT
    sqlite3VdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqlite3VdbeCurrentAddr(v)+7);
#endif

    sqlite3VdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
    sqlite3AddKeyType(v, pEList);
    sqlite3VdbeAddOp(v, OP_Distinct, distinct, sqlite3VdbeCurrentAddr(v)+3);
    sqlite3VdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
    sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
    sqlite3VdbeAddOp(v, OP_String, 0, 0);
    sqlite3VdbeAddOp(v, OP_PutStrKey, distinct, 0);
  }








>

<







398
399
400
401
402
403
404
405
406

407
408
409
410
411
412
413
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( distinct>=0 && pEList && pEList->nExpr>0 ){
#if NULL_ALWAYS_DISTINCT
    sqlite3VdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqlite3VdbeCurrentAddr(v)+7);
#endif
    /* Deliberately leave the affinity string off of the following OP_MakeKey */
    sqlite3VdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);

    sqlite3VdbeAddOp(v, OP_Distinct, distinct, sqlite3VdbeCurrentAddr(v)+3);
    sqlite3VdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
    sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
    sqlite3VdbeAddOp(v, OP_String, 0, 0);
    sqlite3VdbeAddOp(v, OP_PutStrKey, distinct, 0);
  }

678
679
680
681
682
683
684
685
686

687
688
689
690
691
692
693
694
695
696
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zType = "INTEGER";
      }else{
        zType = pTab->aCol[iCol].zType;
      }
    }else{
      if( sqlite3ExprType(p)==SQLITE_SO_TEXT ){
        zType = "TEXT";

      }else{
        zType = "NUMERIC";
      }
    }
    sqlite3VdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
  }
}

/*
** Generate code that will tell the VDBE the names of columns







<
|
>
|
<
<







648
649
650
651
652
653
654

655
656
657


658
659
660
661
662
663
664
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zType = "INTEGER";
      }else{
        zType = pTab->aCol[iCol].zType;
      }
    }else{

      zType = "ANY";
      /** TODO:  Perhaps something related to the affinity of the 
      ** exprsssion? */


    }
    sqlite3VdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
  }
}

/*
** Generate code that will tell the VDBE the names of columns
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
** value of the top-level node is filled with iTable parameter.
**
** If there are prior SELECT clauses, they are processed first.  A match
** in an earlier SELECT takes precedence over a later SELECT.
**
** Any entry that does not match is flagged as an error.  The number
** of errors is returned.
**
** This routine does NOT correctly initialize the Expr.dataType  field
** of the ORDER BY expressions.  The multiSelectSortOrder() routine
** must be called to do that after the individual select statements
** have all been analyzed.  This routine is unable to compute Expr.dataType
** because it must be called before the individual select statements
** have been analyzed.
*/
static int matchOrderbyToColumn(
  Parse *pParse,          /* A place to leave error messages */
  Select *pSelect,        /* Match to result columns of this SELECT */
  ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
  int iTable,             /* Insert this value in iTable */
  int mustComplete        /* If TRUE all ORDER BYs must match */







<
<
<
<
<
<
<







1043
1044
1045
1046
1047
1048
1049







1050
1051
1052
1053
1054
1055
1056
** value of the top-level node is filled with iTable parameter.
**
** If there are prior SELECT clauses, they are processed first.  A match
** in an earlier SELECT takes precedence over a later SELECT.
**
** Any entry that does not match is flagged as an error.  The number
** of errors is returned.







*/
static int matchOrderbyToColumn(
  Parse *pParse,          /* A place to leave error messages */
  Select *pSelect,        /* Match to result columns of this SELECT */
  ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
  int iTable,             /* Insert this value in iTable */
  int mustComplete        /* If TRUE all ORDER BYs must match */
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

1234
1235
1236
1237
1238
1239
1240
  Vdbe *v = pParse->pVdbe;
  if( v==0 ){
    v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
  }
  return v;
}

/*
** This routine sets the Expr.dataType field on all elements of
** the pOrderBy expression list.  The pOrderBy list will have been
** set up by matchOrderbyToColumn().  Hence each expression has
** a TK_COLUMN as its root node.  The Expr.iColumn refers to a 
** column in the result set.   The datatype is set to SQLITE_SO_TEXT
** if the corresponding column in p and every SELECT to the left of
** p has a datatype of SQLITE_SO_TEXT.  If the cooressponding column
** in p or any of the left SELECTs is SQLITE_SO_NUM, then the datatype
** of the order-by expression is set to SQLITE_SO_NUM.
**
** Examples:
**
**     CREATE TABLE one(a INTEGER, b TEXT);
**     CREATE TABLE two(c VARCHAR(5), d FLOAT);
**
**     SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
**
** The primary sort key will use SQLITE_SO_NUM because the "d" in
** the second SELECT is numeric.  The 1st column of the first SELECT
** is text but that does not matter because a numeric always overrides
** a text.
**
** The secondary key will use the SQLITE_SO_TEXT sort order because
** both the (second) "b" in the first SELECT and the "c" in the second
** SELECT have a datatype of text.
*/ 
static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
  int i;
  ExprList *pEList;
  if( pOrderBy==0 ) return;
  if( p==0 ){
    for(i=0; i<pOrderBy->nExpr; i++){
      pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT;
    }
    return;
  }
  multiSelectSortOrder(p->pPrior, pOrderBy);
  pEList = p->pEList;
  for(i=0; i<pOrderBy->nExpr; i++){
    Expr *pE = pOrderBy->a[i].pExpr;
    if( pE->dataType==SQLITE_SO_NUM ) continue;
    assert( pE->iColumn>=0 );
    if( pEList->nExpr>pE->iColumn ){
      pE->dataType = sqlite3ExprType(pEList->a[pE->iColumn].pExpr);
    }
  }
}

static void multiSelectAffinity(Select *p, char *zAff){
  int i;

  if( !p ) return;
  multiSelectAffinity(p->pPrior, zAff);

  for(i=0; i<p->pEList->nExpr; i++){
    if( zAff[i]=='\0' ){
      zAff[i] = sqlite3ExprAffinity(p->pEList->a[i].pExpr);
    }
  }
}


/*
** Compute the iLimit and iOffset fields of the SELECT based on the
** nLimit and nOffset fields.  nLimit and nOffset hold the integers
** that appear in the original SQL statement after the LIMIT and OFFSET
** keywords.  Or that hold -1 and 0 if those keywords are omitted.
** iLimit and iOffset are the integer memory register numbers for







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|












>







1127
1128
1129
1130
1131
1132
1133
















































1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
  Vdbe *v = pParse->pVdbe;
  if( v==0 ){
    v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
  }
  return v;
}

















































#if 0  /***** This routine needs deleting *****/
static void multiSelectAffinity(Select *p, char *zAff){
  int i;

  if( !p ) return;
  multiSelectAffinity(p->pPrior, zAff);

  for(i=0; i<p->pEList->nExpr; i++){
    if( zAff[i]=='\0' ){
      zAff[i] = sqlite3ExprAffinity(p->pEList->a[i].pExpr);
    }
  }
}
#endif

/*
** Compute the iLimit and iOffset fields of the SELECT based on the
** nLimit and nOffset fields.  nLimit and nOffset hold the integers
** that appear in the original SQL statement after the LIMIT and OFFSET
** keywords.  Or that hold -1 and 0 if those keywords are omitted.
** iLimit and iOffset are the integer memory register numbers for
1273
1274
1275
1276
1277
1278
1279





























1280
1281
1282
1283
1284
1285
1286
    Vdbe *v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;
    sqlite3VdbeAddOp(v, OP_Integer, -p->nOffset, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, iMem, 1);
    p->iOffset = iMem;
  }
}






























/*
** This routine is called to process a query that is really the union
** or intersection of two or more separate queries.
**
** "p" points to the right-most of the two queries.  the query on the
** left is p->pPrior.  The left query could also be a compound query







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
    Vdbe *v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;
    sqlite3VdbeAddOp(v, OP_Integer, -p->nOffset, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, iMem, 1);
    p->iOffset = iMem;
  }
}

/*
** Generate VDBE instructions that will open a transient table that
** will be used for an index or to store keyed results for a compound
** select.  In other words, open a transient table that needs a
** KeyInfo structure.  The number of columns in the KeyInfo is determined
** by the result set of the SELECT statement in the second argument.
**
** Make the new table a KeyAsData table if keyAsData is true.
*/
static void openTempIndex(Parse *pParse, Select *p, int iTab, int keyAsData){
  KeyInfo *pKeyInfo;
  int nColumn = p->pEList->nExpr;
  sqlite *db = pParse->db;
  int i;
  Vdbe *v = pParse->pVdbe;

  pKeyInfo = sqliteMalloc( sizeof(*pKeyInfo)+nColumn*sizeof(CollSeq*) );
  if( pKeyInfo==0 ) return;
  pKeyInfo->nField = nColumn;
  for(i=0; i<nColumn; i++){
    pKeyInfo->aColl[i] = db->pDfltColl;
  }
  sqlite3VdbeOp3(v, OP_OpenTemp, iTab, 0, (char*)pKeyInfo, P3_KEYINFO);
  sqliteFree(pKeyInfo);
  if( keyAsData ){
    sqlite3VdbeAddOp(v, OP_KeyAsData, iTab, 1);
  }
}

/*
** This routine is called to process a query that is really the union
** or intersection of two or more separate queries.
**
** "p" points to the right-most of the two queries.  the query on the
** left is p->pPrior.  The left query could also be a compound query
1316
1317
1318
1319
1320
1321
1322

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

1338
1339
1340
1341
1342
1343
1344
  char *aff           /* If eDest is SRT_Union, the affinity string */
){
  int rc = SQLITE_OK;  /* Success code from a subroutine */
  Select *pPrior;     /* Another SELECT immediately to our left */
  Vdbe *v;            /* Generate code to this VDBE */
  char *affStr = 0;


  if( !aff ){
    int len;
    rc = fillInColumnList(pParse, p);
    if( rc!=SQLITE_OK ){
      goto multi_select_end;
    }
    len = p->pEList->nExpr+1;
    affStr = (char *)sqliteMalloc(p->pEList->nExpr+1);
    if( !affStr ){
      rc = SQLITE_NOMEM;
      goto multi_select_end;
    }
    memset(affStr, (int)SQLITE_AFF_NUMERIC, len-1);
    aff = affStr;
  }


  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last SELECT in the series may have an ORDER BY or LIMIT.
  */
  if( p==0 || p->pPrior==0 ){
    rc = 1;
    goto multi_select_end;







>















>







1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
  char *aff           /* If eDest is SRT_Union, the affinity string */
){
  int rc = SQLITE_OK;  /* Success code from a subroutine */
  Select *pPrior;     /* Another SELECT immediately to our left */
  Vdbe *v;            /* Generate code to this VDBE */
  char *affStr = 0;

#if 0 /* NOT USED */
  if( !aff ){
    int len;
    rc = fillInColumnList(pParse, p);
    if( rc!=SQLITE_OK ){
      goto multi_select_end;
    }
    len = p->pEList->nExpr+1;
    affStr = (char *)sqliteMalloc(p->pEList->nExpr+1);
    if( !affStr ){
      rc = SQLITE_NOMEM;
      goto multi_select_end;
    }
    memset(affStr, (int)SQLITE_AFF_NUMERIC, len-1);
    aff = affStr;
  }
#endif

  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last SELECT in the series may have an ORDER BY or LIMIT.
  */
  if( p==0 || p->pPrior==0 ){
    rc = 1;
    goto multi_select_end;
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
        unionTab = pParse->nTab++;
        if( p->pOrderBy 
        && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
          rc = 1;
          goto multi_select_end;
        }
        if( p->op!=TK_ALL ){
          sqlite3VdbeAddOp(v, OP_OpenTemp, unionTab, 1);
          sqlite3VdbeAddOp(v, OP_KeyAsData, unionTab, 1);
        }else{
          sqlite3VdbeAddOp(v, OP_OpenTemp, unionTab, 0);
        }
        assert( p->pEList );
      }

      /* Code the SELECT statements to our left







<
|







1365
1366
1367
1368
1369
1370
1371

1372
1373
1374
1375
1376
1377
1378
1379
        unionTab = pParse->nTab++;
        if( p->pOrderBy 
        && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
          rc = 1;
          goto multi_select_end;
        }
        if( p->op!=TK_ALL ){

          openTempIndex(pParse, p, unionTab, 1);
        }else{
          sqlite3VdbeAddOp(v, OP_OpenTemp, unionTab, 0);
        }
        assert( p->pEList );
      }

      /* Code the SELECT statements to our left
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
          generateColumnTypes(pParse, p->pSrc, p->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
        computeLimitRegisters(pParse, p);
        iStart = sqlite3VdbeCurrentAddr(v);
        multiSelectSortOrder(p, p->pOrderBy);
        rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
                             p->pOrderBy, -1, eDest, iParm, 
                             iCont, iBreak, 0);
        if( rc ){
          rc = 1;
          goto multi_select_end;
        }







<







1421
1422
1423
1424
1425
1426
1427

1428
1429
1430
1431
1432
1433
1434
          generateColumnTypes(pParse, p->pSrc, p->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
        computeLimitRegisters(pParse, p);
        iStart = sqlite3VdbeCurrentAddr(v);

        rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
                             p->pOrderBy, -1, eDest, iParm, 
                             iCont, iBreak, 0);
        if( rc ){
          rc = 1;
          goto multi_select_end;
        }
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
      */
      tab1 = pParse->nTab++;
      tab2 = pParse->nTab++;
      if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
        rc = 1;
        goto multi_select_end;
      }
      sqlite3VdbeAddOp(v, OP_OpenTemp, tab1, 1);
      sqlite3VdbeAddOp(v, OP_KeyAsData, tab1, 1);
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */
      sqlite3VdbeAddOp(v, OP_OpenTemp, tab2, 1);
      sqlite3VdbeAddOp(v, OP_KeyAsData, tab2, 1);
      p->pPrior = 0;
      nLimit = p->nLimit;
      p->nLimit = -1;
      nOffset = p->nOffset;
      p->nOffset = 0;
      rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
      p->pPrior = pPrior;







<
|











<
|







1453
1454
1455
1456
1457
1458
1459

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

1472
1473
1474
1475
1476
1477
1478
1479
      */
      tab1 = pParse->nTab++;
      tab2 = pParse->nTab++;
      if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
        rc = 1;
        goto multi_select_end;
      }

      openTempIndex(pParse, p, tab1, 1);
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */

      openTempIndex(pParse, p, tab2, 1);
      p->pPrior = 0;
      nLimit = p->nLimit;
      p->nLimit = -1;
      nOffset = p->nOffset;
      p->nOffset = 0;
      rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
      p->pPrior = pPrior;
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
      computeLimitRegisters(pParse, p);
      iStart = sqlite3VdbeAddOp(v, OP_FullKey, tab1, 0);
      sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
      multiSelectSortOrder(p, p->pOrderBy);
      rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
                             p->pOrderBy, -1, eDest, iParm, 
                             iCont, iBreak, 0);
      if( rc ){
        rc = 1;
        goto multi_select_end;
      }







<







1493
1494
1495
1496
1497
1498
1499

1500
1501
1502
1503
1504
1505
1506
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
      computeLimitRegisters(pParse, p);
      iStart = sqlite3VdbeAddOp(v, OP_FullKey, tab1, 0);
      sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);

      rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
                             p->pOrderBy, -1, eDest, iParm, 
                             iCont, iBreak, 0);
      if( rc ){
        rc = 1;
        goto multi_select_end;
      }
1580
1581
1582
1583
1584
1585
1586

1587
1588
1589
1590
1591
1592
1593
1594

1595
1596
1597
1598
1599
1600
1601
    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
      " do not have the same number of result columns", selectOpName(p->op));
    rc = 1;
    goto multi_select_end;
  }

multi_select_end:

  if( affStr ){
    if( rc!=SQLITE_OK ){
      sqliteFree(affStr);
    }else{
      multiSelectAffinity(p, affStr);
      sqlite3VdbeOp3(v, OP_Noop, 0, 0, affStr, P3_DYNAMIC);
    }
  }

  return rc;
}

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 







>








>







1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
      " do not have the same number of result columns", selectOpName(p->op));
    rc = 1;
    goto multi_select_end;
  }

multi_select_end:
#if 0  /*** NOT USED ****/
  if( affStr ){
    if( rc!=SQLITE_OK ){
      sqliteFree(affStr);
    }else{
      multiSelectAffinity(p, affStr);
      sqlite3VdbeOp3(v, OP_Noop, 0, 0, affStr, P3_DYNAMIC);
    }
  }
#endif
  return rc;
}

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
    }else{
      Expr *pNew;
      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
      pNew = pEList->a[pExpr->iColumn].pExpr;
      assert( pNew!=0 );
      pExpr->op = pNew->op;
      pExpr->dataType = pNew->dataType;
      assert( pExpr->pLeft==0 );
      pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
      assert( pExpr->pRight==0 );
      pExpr->pRight = sqlite3ExprDup(pNew->pRight);
      assert( pExpr->pList==0 );
      pExpr->pList = sqlite3ExprListDup(pNew->pList);
      pExpr->iTable = pNew->iTable;







<







1559
1560
1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572
    }else{
      Expr *pNew;
      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
      pNew = pEList->a[pExpr->iColumn].pExpr;
      assert( pNew!=0 );
      pExpr->op = pNew->op;

      assert( pExpr->pLeft==0 );
      pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
      assert( pExpr->pRight==0 );
      pExpr->pRight = sqlite3ExprDup(pNew->pRight);
      assert( pExpr->pList==0 );
      pExpr->pList = sqlite3ExprListDup(pNew->pList);
      pExpr->iTable = pNew->iTable;
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

2023
2024
2025
2026
2027
2028
2029
  ** or last entry in the main table.
  */
  sqlite3CodeVerifySchema(pParse, pTab->iDb);
  base = pSrc->a[0].iCursor;
  computeLimitRegisters(pParse, p);
  if( pSrc->a[0].pSelect==0 ){
    sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol);
  }
  cont = sqlite3VdbeMakeLabel(v);
  if( pIdx==0 ){
    sqlite3VdbeAddOp(v, seekOp, base, 0);
  }else{
    sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);

    sqlite3VdbeAddOp(v, seekOp, base+1, 0);
    sqlite3VdbeAddOp(v, OP_IdxRecno, base+1, 0);
    sqlite3VdbeAddOp(v, OP_Close, base+1, 0);
    sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
  }
  eList.nExpr = 1;
  memset(&eListItem, 0, sizeof(eListItem));







|







|
>







1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
  ** or last entry in the main table.
  */
  sqlite3CodeVerifySchema(pParse, pTab->iDb);
  base = pSrc->a[0].iCursor;
  computeLimitRegisters(pParse, p);
  if( pSrc->a[0].pSelect==0 ){
    sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenRead, base, pTab->tnum);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol);
  }
  cont = sqlite3VdbeMakeLabel(v);
  if( pIdx==0 ){
    sqlite3VdbeAddOp(v, seekOp, base, 0);
  }else{
    sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum,
                   (char*)&pIdx->keyInfo, P3_KEYINFO);
    sqlite3VdbeAddOp(v, seekOp, base+1, 0);
    sqlite3VdbeAddOp(v, OP_IdxRecno, base+1, 0);
    sqlite3VdbeAddOp(v, OP_Close, base+1, 0);
    sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
  }
  eList.nExpr = 1;
  memset(&eListItem, 0, sizeof(eListItem));
2270
2271
2272
2273
2274
2275
2276

2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290

2291
2292
2293
2294
2295
2296
2297
  /* Identify column names if we will be using them in a callback.  This
  ** step is skipped if the output is going to some other destination.
  */
  if( eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }


  /* If the destination is SRT_Union, then set the number of columns in
  ** the records that will be inserted into the temporary table. The caller
  ** couldn't do this, in case the select statement is of the form 
  ** "SELECT * FROM ....". 
  **
  ** We need to do this before we start inserting records into the 
  ** temporary table (which has had OP_KeyAsData executed on it), because
  ** it is required by the key comparison function. So do it now, even
  ** though this means that OP_SetNumColumns may be executed on the same
  ** cursor more than once.
  */
  if( eDest==SRT_Union ){
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iParm, pEList->nExpr);
  }


  /* Generate code for all sub-queries in the FROM clause
  */
  for(i=0; i<pTabList->nSrc; i++){
    const char *zSavedAuthContext;
    int needRestoreContext;








>














>







2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
  /* Identify column names if we will be using them in a callback.  This
  ** step is skipped if the output is going to some other destination.
  */
  if( eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }

#if 1  /* I do not think we need the following code any more.... */
  /* If the destination is SRT_Union, then set the number of columns in
  ** the records that will be inserted into the temporary table. The caller
  ** couldn't do this, in case the select statement is of the form 
  ** "SELECT * FROM ....". 
  **
  ** We need to do this before we start inserting records into the 
  ** temporary table (which has had OP_KeyAsData executed on it), because
  ** it is required by the key comparison function. So do it now, even
  ** though this means that OP_SetNumColumns may be executed on the same
  ** cursor more than once.
  */
  if( eDest==SRT_Union ){
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iParm, pEList->nExpr);
  }
#endif

  /* Generate code for all sub-queries in the FROM clause
  */
  for(i=0; i<pTabList->nSrc; i++){
    const char *zSavedAuthContext;
    int needRestoreContext;

2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
    sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
  }

  /* Open a temporary table to use for the distinct set.
  */
  if( isDistinct ){
    distinct = pParse->nTab++;
    sqlite3VdbeAddOp(v, OP_OpenTemp, distinct, 1);
  }else{
    distinct = -1;
  }

  /* Begin the database scan
  */
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 







|







2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
    sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
  }

  /* Open a temporary table to use for the distinct set.
  */
  if( isDistinct ){
    distinct = pParse->nTab++;
    openTempIndex(pParse, p, distinct, 0);
  }else{
    distinct = -1;
  }

  /* Begin the database scan
  */
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 
2443
2444
2445
2446
2447
2448
2449


2450
2451
2452
2453
2454
2455
2456
2457
2458
  else{
    AggExpr *pAgg;
    if( pGroupBy ){
      int lbl1;
      for(i=0; i<pGroupBy->nExpr; i++){
        sqlite3ExprCode(pParse, pGroupBy->a[i].pExpr);
      }


      sqlite3VdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
      sqlite3AddKeyType(v, pGroupBy);
      lbl1 = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_AggFocus, 0, lbl1);
      for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
        if( pAgg->isAgg ) continue;
        sqlite3ExprCode(pParse, pAgg->pExpr);
        sqlite3VdbeAddOp(v, OP_AggSet, 0, i);
      }







>
>

<







2387
2388
2389
2390
2391
2392
2393
2394
2395
2396

2397
2398
2399
2400
2401
2402
2403
  else{
    AggExpr *pAgg;
    if( pGroupBy ){
      int lbl1;
      for(i=0; i<pGroupBy->nExpr; i++){
        sqlite3ExprCode(pParse, pGroupBy->a[i].pExpr);
      }
      /* No affinity string is attached to the following OP_MakeKey 
      ** because we do not need to do any coercion of datatypes. */
      sqlite3VdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);

      lbl1 = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_AggFocus, 0, lbl1);
      for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
        if( pAgg->isAgg ) continue;
        sqlite3ExprCode(pParse, pAgg->pExpr);
        sqlite3VdbeAddOp(v, OP_AggSet, 0, i);
      }
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.240 2004/05/20 11:00:52 danielk1977 Exp $
*/
#include "config.h"
#include "sqlite.h"
#include "hash.h"
#include "parse.h"
#include <stdio.h>
#include <stdlib.h>













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.241 2004/05/20 22:16:30 drh Exp $
*/
#include "config.h"
#include "sqlite.h"
#include "hash.h"
#include "parse.h"
#include <stdio.h>
#include <stdlib.h>
256
257
258
259
260
261
262


263
264
265
266
267
268
269
typedef struct TriggerStep TriggerStep;
typedef struct TriggerStack TriggerStack;
typedef struct FKey FKey;
typedef struct Db Db;
typedef struct AuthContext AuthContext;
typedef struct KeyClass KeyClass;
typedef struct CollSeq CollSeq;



/*
** Each database file to be accessed by the system is an instance
** of the following structure.  There are normally two of these structures
** in the sqlite.aDb[] array.  aDb[0] is the main database file and
** aDb[1] is the database file used to hold temporary tables.  Additional
** databases may be attached.







>
>







256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
typedef struct TriggerStep TriggerStep;
typedef struct TriggerStack TriggerStack;
typedef struct FKey FKey;
typedef struct Db Db;
typedef struct AuthContext AuthContext;
typedef struct KeyClass KeyClass;
typedef struct CollSeq CollSeq;
typedef struct KeyInfo KeyInfo;


/*
** Each database file to be accessed by the system is an instance
** of the following structure.  There are normally two of these structures
** in the sqlite.aDb[] array.  aDb[0] is the main database file and
** aDb[1] is the database file used to hold temporary tables.  Additional
** databases may be attached.
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  int nTable;                   /* Number of tables in the database */
  void *pBusyArg;               /* 1st Argument to the busy callback */
  int (*xBusyCallback)(void *,const char*,int);  /* The busy callback */
  void *pCommitArg;             /* Argument to xCommitCallback() */   
  int (*xCommitCallback)(void*);/* Invoked at every commit. */
  Hash aFunc;                   /* All functions that can be in SQL exprs */
  Hash aCollSeq;                /* All collating sequences */
  CollSeq *pDfltColl;           /* The default collating sequence (memcmp) */
  i64 lastRowid;                /* ROWID of most recent insert (see above) */
  i64 priorNewRowid;            /* Last randomly generated ROWID */
  int magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Number of rows changed (see above) */
  int lsChange;                 /* Last statement change count (see above) */
  int csChange;                 /* Current statement change count (see above) */
  struct sqlite3InitInfo {       /* Information used during initialization */







|







374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
  int nTable;                   /* Number of tables in the database */
  void *pBusyArg;               /* 1st Argument to the busy callback */
  int (*xBusyCallback)(void *,const char*,int);  /* The busy callback */
  void *pCommitArg;             /* Argument to xCommitCallback() */   
  int (*xCommitCallback)(void*);/* Invoked at every commit. */
  Hash aFunc;                   /* All functions that can be in SQL exprs */
  Hash aCollSeq;                /* All collating sequences */
  CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
  i64 lastRowid;                /* ROWID of most recent insert (see above) */
  i64 priorNewRowid;            /* Last randomly generated ROWID */
  int magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Number of rows changed (see above) */
  int lsChange;                 /* Last statement change count (see above) */
  int csChange;                 /* Current statement change count (see above) */
  struct sqlite3InitInfo {       /* Information used during initialization */
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
  char *zName;         /* Name of the collating sequence */
  u8 reverseOrder;     /* Compare in reverse order.  Used by OP_Sort only */
  void *pUser;         /* First argument to xCmp() */
  int (*xCmp)(void*,int,const void*,int,const void*); /* Comparison function */
};

/*
** The allowed sort orders.
**
** The TEXT and NUM values use bits that do not overlap with DESC and ASC.
** That way the two can be combined into a single number.
*/
#define SQLITE_SO_UNK       0  /* Use the default collating type.  (SCT_NUM) */
#define SQLITE_SO_TEXT      2  /* Sort using memcmp() */
#define SQLITE_SO_NUM       4  /* Sort using sqlite3Compare() */
#define SQLITE_SO_TYPEMASK  6  /* Mask to extract the collating sequence */
#define SQLITE_SO_ASC       0  /* Sort in ascending order */
#define SQLITE_SO_DESC      1  /* Sort in descending order */
#define SQLITE_SO_DIRMASK   1  /* Mask to extract the sort direction */

/*
** Column affinity types.
*/
#define SQLITE_AFF_INTEGER  'i'
#define SQLITE_AFF_NUMERIC  'n'
#define SQLITE_AFF_TEXT     't'







|
<
<
<

<
<
<
<

|
<







489
490
491
492
493
494
495
496



497




498
499

500
501
502
503
504
505
506
  char *zName;         /* Name of the collating sequence */
  u8 reverseOrder;     /* Compare in reverse order.  Used by OP_Sort only */
  void *pUser;         /* First argument to xCmp() */
  int (*xCmp)(void*,int,const void*,int,const void*); /* Comparison function */
};

/*
** A sort order can be either ASC or DESC.



*/




#define SQLITE_SO_ASC       0  /* Sort in ascending order */
#define SQLITE_SO_DESC      1  /* Sort in ascending order */


/*
** Column affinity types.
*/
#define SQLITE_AFF_INTEGER  'i'
#define SQLITE_AFF_NUMERIC  'n'
#define SQLITE_AFF_TEXT     't'
637
638
639
640
641
642
643















644
645
646
647
648
649
650
#define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
#define OE_SetNull  7   /* Set the foreign key value to NULL */
#define OE_SetDflt  8   /* Set the foreign key value to its default */
#define OE_Cascade  9   /* Cascade the changes */

#define OE_Default  99  /* Do whatever the default action is */
















/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure.  For example, suppose
** we have the following table and index:







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
#define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
#define OE_SetNull  7   /* Set the foreign key value to NULL */
#define OE_SetDflt  8   /* Set the foreign key value to its default */
#define OE_Cascade  9   /* Cascade the changes */

#define OE_Default  99  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the 
** comparison of the two index keys.
**
** If the KeyInfo.incrKey value is true and the comparison would
** otherwise be equal, then return a result as if the second key larger.
*/
struct KeyInfo {
  u8 incrKey;         /* Increase 2nd key by epsilon before comparison */
  int nField;         /* Number of entries in aColl[] */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure.  For example, suppose
** we have the following table and index:
674
675
676
677
678
679
680

681
682
683
684
685
686
687
  Table *pTable;   /* The SQL table being indexed */
  int tnum;        /* Page containing root of this index in database file */
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  u8 iDb;          /* Index in sqlite.aDb[] of where this index is stored */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */

};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and







>







683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
  Table *pTable;   /* The SQL table being indexed */
  int tnum;        /* Page containing root of this index in database file */
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  u8 iDb;          /* Index in sqlite.aDb[] of where this index is stored */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  KeyInfo keyInfo; /* Info on how to order keys.  MUST BE LAST */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
** The Expr.pSelect field points to a SELECT statement.  The SELECT might
** be the right operand of an IN operator.  Or, if a scalar SELECT appears
** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
** operand.
*/
struct Expr {
  u8 op;                 /* Operation performed by this node */
  u8 dataType;           /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */
  char affinity;         /* The affinity of the column or 0 if not a column */
  u8 iDb;                /* Database referenced by this expression */
  u8 flags;              /* Various flags.  See below */
  Expr *pLeft, *pRight;  /* Left and right subnodes */
  ExprList *pList;       /* A list of expressions used as function arguments
                         ** or in "<expr> IN (<expr-list)" */
  Token token;           /* An operand token */







<







738
739
740
741
742
743
744

745
746
747
748
749
750
751
** The Expr.pSelect field points to a SELECT statement.  The SELECT might
** be the right operand of an IN operator.  Or, if a scalar SELECT appears
** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
** operand.
*/
struct Expr {
  u8 op;                 /* Operation performed by this node */

  char affinity;         /* The affinity of the column or 0 if not a column */
  u8 iDb;                /* Database referenced by this expression */
  u8 flags;              /* Various flags.  See below */
  Expr *pLeft, *pRight;  /* Left and right subnodes */
  ExprList *pList;       /* A list of expressions used as function arguments
                         ** or in "<expr> IN (<expr-list)" */
  Token token;           /* An operand token */
1196
1197
1198
1199
1200
1201
1202
1203
1204


1205
1206
1207
1208
1209
1210
1211
void sqlite3OpenMasterTable(Vdbe *v, int);
void sqlite3StartTable(Parse*,Token*,Token*,int,int);
void sqlite3AddColumn(Parse*,Token*);
void sqlite3AddNotNull(Parse*, int);
void sqlite3AddPrimaryKey(Parse*, IdList*, int);
void sqlite3AddColumnType(Parse*,Token*,Token*);
void sqlite3AddDefaultValue(Parse*,Token*,int);
int sqlite3CollateType(const char*, int);
void sqlite3AddCollateType(Parse*, int);


void sqlite3EndTable(Parse*,Token*,Select*);
void sqlite3CreateView(Parse*,Token*,Token*,Select*,int);
int sqlite3ViewGetColumnNames(Parse*,Table*);
void sqlite3DropTable(Parse*, Token*, int);
void sqlite3DeleteTable(sqlite*, Table*);
void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
IdList *sqlite3IdListAppend(IdList*, Token*);







<
|
>
>







1205
1206
1207
1208
1209
1210
1211

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
void sqlite3OpenMasterTable(Vdbe *v, int);
void sqlite3StartTable(Parse*,Token*,Token*,int,int);
void sqlite3AddColumn(Parse*,Token*);
void sqlite3AddNotNull(Parse*, int);
void sqlite3AddPrimaryKey(Parse*, IdList*, int);
void sqlite3AddColumnType(Parse*,Token*,Token*);
void sqlite3AddDefaultValue(Parse*,Token*,int);

void sqlite3AddCollateType(Parse*, const char*, int);
CollSeq *sqlite3ChangeCollatingFunction(sqlite*,const char*,int,
                  void*, int(*)(void*,int,const void*,int,const void*));
void sqlite3EndTable(Parse*,Token*,Select*);
void sqlite3CreateView(Parse*,Token*,Token*,Select*,int);
int sqlite3ViewGetColumnNames(Parse*,Table*);
void sqlite3DropTable(Parse*, Token*, int);
void sqlite3DeleteTable(sqlite*, Table*);
void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
IdList *sqlite3IdListAppend(IdList*, Token*);
1339
1340
1341
1342
1343
1344
1345
1346
void sqlite3TableAffinityStr(Vdbe *, Table *);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
char const *sqlite3AffinityString(char affinity);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3atoi64(const char*, i64*);
void sqlite3Error(sqlite *, int, const char*,...);








<
1349
1350
1351
1352
1353
1354
1355

void sqlite3TableAffinityStr(Vdbe *, Table *);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
char const *sqlite3AffinityString(char affinity);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3atoi64(const char*, i64*);
void sqlite3Error(sqlite *, int, const char*,...);

Changes to src/test1.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the printf() interface to SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test1.c,v 1.42 2004/05/20 11:00:52 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include "os.h"
#include <stdlib.h>
#include <string.h>








|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the printf() interface to SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test1.c,v 1.43 2004/05/20 22:16:30 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include "os.h"
#include <stdlib.h>
#include <string.h>

1402
1403
1404
1405
1406
1407
1408











































1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

1464
1465
1466
1467
1468
1469
1470
  Tcl_ObjSetVar2(interp, objv[4], 0, pTail, 0);
  // Tcl_DecrRefCount(pTail);

  if( makePointerStr(interp, zBuf, pStmt) ) return TCL_ERROR;
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}












































/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest1_Init(Tcl_Interp *interp){
  extern int sqlite3_search_count;
  extern int sqlite3_interrupt_count;
  extern int sqlite3_open_file_count;
  extern int sqlite3_current_time;
  static struct {
     char *zName;
     Tcl_CmdProc *xProc;
  } aCmd[] = {
     { "sqlite3_mprintf_int",             (Tcl_CmdProc*)sqlite3_mprintf_int    },
     { "sqlite3_mprintf_str",             (Tcl_CmdProc*)sqlite3_mprintf_str    },
     { "sqlite3_mprintf_double",          (Tcl_CmdProc*)sqlite3_mprintf_double },
     { "sqlite3_mprintf_scaled",          (Tcl_CmdProc*)sqlite3_mprintf_scaled },
     { "sqlite3_mprintf_z_test",          (Tcl_CmdProc*)test_mprintf_z        },
     { "sqlite3_open",                    (Tcl_CmdProc*)sqlite_test_open      },
     { "sqlite3_last_insert_rowid",       (Tcl_CmdProc*)test_last_rowid       },
     { "sqlite3_exec_printf",             (Tcl_CmdProc*)test_exec_printf      },
     { "sqlite3_get_table_printf",        (Tcl_CmdProc*)test_get_table_printf },
     { "sqlite3_close",                   (Tcl_CmdProc*)sqlite_test_close     },
     { "sqlite3_create_function",         (Tcl_CmdProc*)test_create_function  },
     { "sqlite3_create_aggregate",        (Tcl_CmdProc*)test_create_aggregate },
     { "sqlite_register_test_function",  (Tcl_CmdProc*)test_register_func    },
     { "sqlite_abort",                   (Tcl_CmdProc*)sqlite_abort          },
     { "sqlite_datatypes",               (Tcl_CmdProc*)sqlite_datatypes      },
#ifdef MEMORY_DEBUG
     { "sqlite_malloc_fail",             (Tcl_CmdProc*)sqlite_malloc_fail    },
     { "sqlite_malloc_stat",             (Tcl_CmdProc*)sqlite_malloc_stat    },
#endif
     { "sqlite_compile",                 (Tcl_CmdProc*)test_compile          },
     { "sqlite_step",                    (Tcl_CmdProc*)test_step             },
     { "sqlite_finalize",                (Tcl_CmdProc*)test_finalize         },
     { "sqlite_bind",                    (Tcl_CmdProc*)test_bind             },
     { "sqlite_reset",                   (Tcl_CmdProc*)test_reset            },
     { "breakpoint",                     (Tcl_CmdProc*)test_breakpoint       },
  };
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
  } aObjCmd[] = {
     { "sqlite3_bind_int32",            (Tcl_ObjCmdProc*)test_bind_int32    },
     { "sqlite3_bind_int64",            (Tcl_ObjCmdProc*)test_bind_int64    },
     { "sqlite3_bind_double",           (Tcl_ObjCmdProc*)test_bind_double   },
     { "sqlite3_bind_null",             (Tcl_ObjCmdProc*)test_bind_null     },
     { "sqlite3_bind_text",             (Tcl_ObjCmdProc*)test_bind_text     },
     { "sqlite3_bind_text16",           (Tcl_ObjCmdProc*)test_bind_text16   },
     { "sqlite3_bind_blob",             (Tcl_ObjCmdProc*)test_bind_blob     },
     { "sqlite3_errcode",               (Tcl_ObjCmdProc*)test_errcode       },
     { "sqlite3_errmsg",                (Tcl_ObjCmdProc*)test_errmsg        },
     { "sqlite3_errmsg16",              (Tcl_ObjCmdProc*)test_errmsg16      },
     { "sqlite3_prepare",               (Tcl_ObjCmdProc*)test_prepare       },
     { "sqlite3_prepare16",             (Tcl_ObjCmdProc*)test_prepare16     },

  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

















>







1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
  Tcl_ObjSetVar2(interp, objv[4], 0, pTail, 0);
  // Tcl_DecrRefCount(pTail);

  if( makePointerStr(interp, zBuf, pStmt) ) return TCL_ERROR;
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}


/*
** This is a collating function named "REVERSE" which sorts text
** in reverse order.
*/
static int reverseCollatingFunc(
  void *NotUsed,
  int nKey1, const void *pKey1,
  int nKey2, const void *pKey2
){
  int rc, n;
  n = nKey1<nKey2 ? nKey1 : nKey2;
  rc = memcmp(pKey1, pKey2, n);
  if( rc==0 ){
    rc = nKey1 - nKey2;
  }
  return -rc;
}

/*
** Usage: add_reverse_collating_func DB 
**
** This routine adds a collation named "REVERSE" to database given.
** REVERSE is used for testing only.
*/
static int reverse_collfunc(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3 *db;

  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  sqlite3ChangeCollatingFunction(db, "REVERSE", 7, 0, reverseCollatingFunc);
  return TCL_OK;
}


/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest1_Init(Tcl_Interp *interp){
  extern int sqlite3_search_count;
  extern int sqlite3_interrupt_count;
  extern int sqlite3_open_file_count;
  extern int sqlite3_current_time;
  static struct {
     char *zName;
     Tcl_CmdProc *xProc;
  } aCmd[] = {
     { "sqlite3_mprintf_int",           (Tcl_CmdProc*)sqlite3_mprintf_int    },
     { "sqlite3_mprintf_str",           (Tcl_CmdProc*)sqlite3_mprintf_str    },
     { "sqlite3_mprintf_double",        (Tcl_CmdProc*)sqlite3_mprintf_double },
     { "sqlite3_mprintf_scaled",        (Tcl_CmdProc*)sqlite3_mprintf_scaled },
     { "sqlite3_mprintf_z_test",        (Tcl_CmdProc*)test_mprintf_z        },
     { "sqlite3_open",                  (Tcl_CmdProc*)sqlite_test_open      },
     { "sqlite3_last_insert_rowid",     (Tcl_CmdProc*)test_last_rowid       },
     { "sqlite3_exec_printf",           (Tcl_CmdProc*)test_exec_printf      },
     { "sqlite3_get_table_printf",      (Tcl_CmdProc*)test_get_table_printf },
     { "sqlite3_close",                 (Tcl_CmdProc*)sqlite_test_close     },
     { "sqlite3_create_function",       (Tcl_CmdProc*)test_create_function  },
     { "sqlite3_create_aggregate",      (Tcl_CmdProc*)test_create_aggregate },
     { "sqlite_register_test_function", (Tcl_CmdProc*)test_register_func    },
     { "sqlite_abort",                  (Tcl_CmdProc*)sqlite_abort          },
     { "sqlite_datatypes",              (Tcl_CmdProc*)sqlite_datatypes      },
#ifdef MEMORY_DEBUG
     { "sqlite_malloc_fail",            (Tcl_CmdProc*)sqlite_malloc_fail    },
     { "sqlite_malloc_stat",            (Tcl_CmdProc*)sqlite_malloc_stat    },
#endif
     { "sqlite_compile",                (Tcl_CmdProc*)test_compile          },
     { "sqlite_step",                   (Tcl_CmdProc*)test_step             },
     { "sqlite_finalize",               (Tcl_CmdProc*)test_finalize         },
     { "sqlite_bind",                   (Tcl_CmdProc*)test_bind             },
     { "sqlite_reset",                  (Tcl_CmdProc*)test_reset            },
     { "breakpoint",                    (Tcl_CmdProc*)test_breakpoint       },
  };
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
  } aObjCmd[] = {
     { "sqlite3_bind_int32",            (Tcl_ObjCmdProc*)test_bind_int32    },
     { "sqlite3_bind_int64",            (Tcl_ObjCmdProc*)test_bind_int64    },
     { "sqlite3_bind_double",           (Tcl_ObjCmdProc*)test_bind_double   },
     { "sqlite3_bind_null",             (Tcl_ObjCmdProc*)test_bind_null     },
     { "sqlite3_bind_text",             (Tcl_ObjCmdProc*)test_bind_text     },
     { "sqlite3_bind_text16",           (Tcl_ObjCmdProc*)test_bind_text16   },
     { "sqlite3_bind_blob",             (Tcl_ObjCmdProc*)test_bind_blob     },
     { "sqlite3_errcode",               (Tcl_ObjCmdProc*)test_errcode       },
     { "sqlite3_errmsg",                (Tcl_ObjCmdProc*)test_errmsg        },
     { "sqlite3_errmsg16",              (Tcl_ObjCmdProc*)test_errmsg16      },
     { "sqlite3_prepare",               (Tcl_ObjCmdProc*)test_prepare       },
     { "sqlite3_prepare16",             (Tcl_ObjCmdProc*)test_prepare16     },
     { "add_reverse_collating_func",    (Tcl_ObjCmdProc*)reverse_collfunc   },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
1478
1479
1480
1481
1482
1483
1484
1485
1486
      (char*)&sqlite3_open_file_count, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_current_time", 
      (char*)&sqlite3_current_time, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_static_bind_value",
      (char*)&sqlite_static_bind_value, TCL_LINK_STRING);
  return TCL_OK;
}









<
<
1522
1523
1524
1525
1526
1527
1528


      (char*)&sqlite3_open_file_count, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_current_time", 
      (char*)&sqlite3_current_time, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_static_bind_value",
      (char*)&sqlite_static_bind_value, TCL_LINK_STRING);
  return TCL_OK;
}


Changes to src/update.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
** $Id: update.c,v 1.77 2004/05/19 14:56:57 drh Exp $
*/
#include "sqliteInt.h"

/*
** Process an UPDATE statement.
**
**   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
** $Id: update.c,v 1.78 2004/05/20 22:16:30 drh Exp $
*/
#include "sqliteInt.h"

/*
** Process an UPDATE statement.
**
**   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
327
328
329
330
331
332
333
334

335
336
337
338
339
340
341
          break;
        }
      }
    }
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
        sqlite3VdbeAddOp(v, OP_OpenWrite, iCur+i+1, pIdx->tnum);

        assert( pParse->nTab>iCur+i+1 );
      }
    }

    /* Loop over every record that needs updating.  We have to load
    ** the old data for each record to be updated because some columns
    ** might not change and we will need to copy the old value.







|
>







327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
          break;
        }
      }
    }
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
        sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum,
                       (char*)&pIdx->keyInfo, P3_KEYINFO);
        assert( pParse->nTab>iCur+i+1 );
      }
    }

    /* Loop over every record that needs updating.  We have to load
    ** the old data for each record to be updated because some columns
    ** might not change and we will need to copy the old value.
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.308 2004/05/20 13:54:54 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.309 2004/05/20 22:16:30 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206

2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225

2226

2227
2228
2229
2230
2231
2232
2233
**  Character      Column affinity
**  ------------------------------
**  'n'            NUMERIC
**  'i'            INTEGER
**  't'            TEXT
**  'o'            NONE
**
** If P3 is NULL then all index fields have the affinity NUMERIC.
*/
case OP_MakeKey:
case OP_MakeIdxKey: {
  Mem *pRec;
  Mem *pData0;
  int nField;
  u64 rowid;
  int nByte = 0;
  int addRowid;
  int containsNull = 0;
  char *zKey;      /* The new key */
  int offset = 0;
  char *zAffinity = pOp->p3;
 
  assert( zAffinity );
  nField = pOp->p1;

  pData0 = &pTos[1-nField];
  assert( pData0>=p->aStack );

  addRowid = ((pOp->opcode==OP_MakeIdxKey)?1:0);

  /* Loop through the P1 elements that will make up the new index
  ** key. Call applyAffinity() to perform any conversion required
  ** the column affinity string P3 to modify stack elements in place.
  ** Set containsNull to 1 if a NULL value is encountered.
  **
  ** Once the value has been coerced, figure out how much space is required
  ** to store the coerced values serial-type and blob, and add this
  ** quantity to nByte.
  **
  ** TODO: Figure out if the in-place coercion causes a problem for
  ** OP_MakeKey when P2 is 0 (used by DISTINCT).
  */
  for(pRec=pData0; pRec<=pTos; pRec++){
    u64 serial_type;

    applyAffinity(pRec, zAffinity[pRec-pData0]);

    if( pRec->flags&MEM_Null ){
      containsNull = 1;
    }
    serial_type = sqlite3VdbeSerialType(pRec);
    nByte += sqlite3VarintLen(serial_type);
    nByte += sqlite3VdbeSerialTypeLen(serial_type);
  }







|














<

>



















>
|
>







2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204

2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
**  Character      Column affinity
**  ------------------------------
**  'n'            NUMERIC
**  'i'            INTEGER
**  't'            TEXT
**  'o'            NONE
**
** If P3 is NULL then datatype coercion occurs.
*/
case OP_MakeKey:
case OP_MakeIdxKey: {
  Mem *pRec;
  Mem *pData0;
  int nField;
  u64 rowid;
  int nByte = 0;
  int addRowid;
  int containsNull = 0;
  char *zKey;      /* The new key */
  int offset = 0;
  char *zAffinity = pOp->p3;
 

  nField = pOp->p1;
  assert( zAffinity==0 || strlen(zAffinity)>=nField );
  pData0 = &pTos[1-nField];
  assert( pData0>=p->aStack );

  addRowid = ((pOp->opcode==OP_MakeIdxKey)?1:0);

  /* Loop through the P1 elements that will make up the new index
  ** key. Call applyAffinity() to perform any conversion required
  ** the column affinity string P3 to modify stack elements in place.
  ** Set containsNull to 1 if a NULL value is encountered.
  **
  ** Once the value has been coerced, figure out how much space is required
  ** to store the coerced values serial-type and blob, and add this
  ** quantity to nByte.
  **
  ** TODO: Figure out if the in-place coercion causes a problem for
  ** OP_MakeKey when P2 is 0 (used by DISTINCT).
  */
  for(pRec=pData0; pRec<=pTos; pRec++){
    u64 serial_type;
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0]);
    }
    if( pRec->flags&MEM_Null ){
      containsNull = 1;
    }
    serial_type = sqlite3VdbeSerialType(pRec);
    nByte += sqlite3VarintLen(serial_type);
    nByte += sqlite3VdbeSerialTypeLen(serial_type);
  }
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
** then a read lock is acquired as part of this instruction.  A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database.  The read lock is
** released when all cursors are closed.  If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted.  But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  If P2==0 then take the root page number from the stack.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted.  But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/







|
|
|
<








|
|
|
<







2511
2512
2513
2514
2515
2516
2517
2518
2519
2520

2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531

2532
2533
2534
2535
2536
2537
2538
** then a read lock is acquired as part of this instruction.  A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database.  The read lock is
** released when all cursors are closed.  If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P3 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices.  P3 is NULL for cursors
** that are not pointing to indices.

**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  If P2==0 then take the root page number from the stack.
**
** The P3 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices.  P3 is NULL for cursors
** that are not pointing to indices.

**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
2572
2573
2574
2575
2576
2577
2578
2579

2580






2581
2582
2583
2584
2585
2586
2587
  pCur->nullRow = 1;
  if( pX==0 ) break;
  do{
    /* When opening cursors, always supply the comparison function
    ** sqlite3VdbeKeyCompare(). If the table being opened is of type
    ** INTKEY, the btree layer won't call the comparison function anyway.
    */
    rc = sqlite3BtreeCursor(pX, p2, wrFlag, sqlite3VdbeKeyCompare, pCur,

        &pCur->pCursor);






    switch( rc ){
      case SQLITE_BUSY: {
        if( db->xBusyCallback==0 ){
          p->pc = pc;
          p->rc = SQLITE_BUSY;
          p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
          return SQLITE_BUSY;







|
>
|
>
>
>
>
>
>







2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
  pCur->nullRow = 1;
  if( pX==0 ) break;
  do{
    /* When opening cursors, always supply the comparison function
    ** sqlite3VdbeKeyCompare(). If the table being opened is of type
    ** INTKEY, the btree layer won't call the comparison function anyway.
    */
    rc = sqlite3BtreeCursor(pX, p2, wrFlag,
             sqlite3VdbeKeyCompare, pOp->p3,
             &pCur->pCursor);
    pCur->pKeyInfo = (KeyInfo*)pOp->p3;
    if( pCur->pKeyInfo ){
      pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
    }else{
      pCur->pIncrKey = &pCur->bogusIncrKey;
    }
    switch( rc ){
      case SQLITE_BUSY: {
        if( db->xBusyCallback==0 ){
          p->pc = pc;
          p->rc = SQLITE_BUSY;
          p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
          return SQLITE_BUSY;
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
        goto abort_due_to_error;
      }
    }
  }while( busy );
  break;
}

/* Opcode: OpenTemp P1 P2 *
**
** Open a new cursor to a transient table.
** The transient cursor is always opened read/write even if 
** the main database is read-only.  The transient table is deleted
** automatically when the cursor is closed.
**
** The cursor points to a BTree table if P2==0 and to a BTree index
** if P2==1.  A BTree table must have an integer key and can have arbitrary
** data.  A BTree index has no data but can have an arbitrary key.
**
** This opcode is used for tables that exist for the duration of a single
** SQL statement only.  Tables created using CREATE TEMPORARY TABLE
** are opened using OP_OpenRead or OP_OpenWrite.  "Temporary" in the
** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database.  Same word; different meanings.







|






|
|
|







2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
        goto abort_due_to_error;
      }
    }
  }while( busy );
  break;
}

/* Opcode: OpenTemp P1 * P3
**
** Open a new cursor to a transient table.
** The transient cursor is always opened read/write even if 
** the main database is read-only.  The transient table is deleted
** automatically when the cursor is closed.
**
** The cursor points to a BTree table if P3==0 and to a BTree index
** if P3 is not 0.  If P3 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** This opcode is used for tables that exist for the duration of a single
** SQL statement only.  Tables created using CREATE TEMPORARY TABLE
** are opened using OP_OpenRead or OP_OpenWrite.  "Temporary" in the
** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database.  Same word; different meanings.
2645
2646
2647
2648
2649
2650
2651
2652
2653

2654
2655
2656
2657
2658


2659
2660
2661
2662

2663
2664
2665
2666
2667
2668
2669
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an INTKEY table).
    */
    if( pOp->p2 ){
      int pgno;

      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeKeyCompare,
            pCx, &pCx->pCursor);


      }
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
      pCx->intKey = 1;

    }
  }
  break;
}

/* Opcode: OpenPseudo P1 * *
**







|

>




|
>
>




>







2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an INTKEY table).
    */
    if( pOp->p3 ){
      int pgno;
      assert( pOp->p3type==P3_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeKeyCompare,
            pOp->p3, &pCx->pCursor);
        pCx->pKeyInfo = (KeyInfo*)pOp->p3;
        pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
      }
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
      pCx->intKey = 1;
      pCx->pIncrKey = &pCx->bogusIncrKey;
    }
  }
  break;
}

/* Opcode: OpenPseudo P1 * *
**
2681
2682
2683
2684
2685
2686
2687

2688
2689
2690
2691
2692
2693
2694
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  pCx = p->apCsr[i];
  sqlite3VdbeCleanupCursor(pCx);
  memset(pCx, 0, sizeof(*pCx));
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;

  break;
}

/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.







>







2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  pCx = p->apCsr[i];
  sqlite3VdbeCleanupCursor(pCx);
  memset(pCx, 0, sizeof(*pCx));
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  pCx->pIncrKey = &pCx->bogusIncrKey;
  break;
}

/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  if( pC->pCursor!=0 ){
    int res, oc;
    oc = pOp->opcode;
    pC->nullRow = 0;
    pC->incrKey = oc==OP_MoveGt || oc==OP_MoveLe;
    if( pC->intKey ){
      i64 iKey;
      assert( !pOp->p3 );
      Integerify(pTos);
      iKey = intToKey(pTos->i);
      if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
        pC->movetoTarget = iKey;
        pC->deferredMoveto = 1;
        Release(pTos);
        pTos--;
        break;
      }
      sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, &res);
      pC->lastRecno = pTos->i;
      pC->recnoIsValid = res==0;
    }else{
      if( pOp->p3 ){
        pC->incrKey = 1;
      }
      Stringify(pTos);
      sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
      pC->incrKey = 0;
      pC->recnoIsValid = 0;
    }
    pC->deferredMoveto = 0;
    pC->cacheValid = 0;
    pC->incrKey = 0;
    sqlite3_search_count++;
    if( oc==OP_MoveGe || oc==OP_MoveGt ){
      if( res<0 ){
        sqlite3BtreeNext(pC->pCursor, &res);
        pC->recnoIsValid = 0;
        if( res && pOp->p2>0 ){
          pc = pOp->p2 - 1;







|
















<
<
<


<




|







2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786



2787
2788

2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  if( pC->pCursor!=0 ){
    int res, oc;
    oc = pOp->opcode;
    pC->nullRow = 0;
    *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
    if( pC->intKey ){
      i64 iKey;
      assert( !pOp->p3 );
      Integerify(pTos);
      iKey = intToKey(pTos->i);
      if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
        pC->movetoTarget = iKey;
        pC->deferredMoveto = 1;
        Release(pTos);
        pTos--;
        break;
      }
      sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, &res);
      pC->lastRecno = pTos->i;
      pC->recnoIsValid = res==0;
    }else{



      Stringify(pTos);
      sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);

      pC->recnoIsValid = 0;
    }
    pC->deferredMoveto = 0;
    pC->cacheValid = 0;
    *pC->pIncrKey = 0;
    sqlite3_search_count++;
    if( oc==OP_MoveGe || oc==OP_MoveGt ){
      if( res<0 ){
        sqlite3BtreeNext(pC->pCursor, &res);
        pC->recnoIsValid = 0;
        if( res && pOp->p2>0 ){
          pc = pOp->p2 - 1;
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
*/
case OP_KeyAsData: {
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  pC->keyAsData = pOp->p2;
  sqlite3BtreeSetCompare(pC->pCursor, sqlite3VdbeRowCompare, pC);
  break;
}

/* Opcode: RowData P1 * *
**
** Push onto the stack the complete row data for cursor P1.
** There is no interpretation of the data.  It is just copied







|







3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
*/
case OP_KeyAsData: {
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  pC->keyAsData = pOp->p2;
  sqlite3BtreeSetCompare(pC->pCursor, sqlite3VdbeRowCompare, pC->pKeyInfo);
  break;
}

/* Opcode: RowData P1 * *
**
** Push onto the stack the complete row data for cursor P1.
** There is no interpretation of the data.  It is just copied
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
  assert( i>=0 && i<p->nCursor );
  assert( pTos>=p->aStack );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int res, rc;
 
    Stringify(pTos);
    assert( pC->deferredMoveto==0 );
    pC->incrKey = pOp->p3!=0;
    assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
    rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, pTos->z, &res);
    pC->incrKey = 0;
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else if( pOp->opcode==OP_IdxGE ){
      res++;







|


|







3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
  assert( i>=0 && i<p->nCursor );
  assert( pTos>=p->aStack );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int res, rc;
 
    Stringify(pTos);
    assert( pC->deferredMoveto==0 );
    *pC->pIncrKey = pOp->p3!=0;
    assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
    rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, pTos->z, &res);
    *pC->pIncrKey = 0;
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else if( pOp->opcode==OP_IdxGE ){
      res++;
Changes to src/vdbe.h.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.78 2004/05/20 13:54:54 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.79 2004/05/20 22:16:30 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines
35
36
37
38
39
40
41



42
43
44
45
46
47
48
*/
struct VdbeOp {
  u8 opcode;          /* What operation to perform */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  char *p3;           /* Third parameter */
  int p3type;         /* P3_STATIC, P3_DYNAMIC or P3_POINTER */



#ifdef VDBE_PROFILE
  int cnt;            /* Number of times this instruction was executed */
  long long cycles;   /* Total time spend executing this instruction */
#endif
};
typedef struct VdbeOp VdbeOp;








>
>
>







35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
*/
struct VdbeOp {
  u8 opcode;          /* What operation to perform */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  char *p3;           /* Third parameter */
  int p3type;         /* P3_STATIC, P3_DYNAMIC or P3_POINTER */
#ifndef NDEBUG
  char *zComment;     /* Comments explaining what this opcode does */
#endif
#ifdef VDBE_PROFILE
  int cnt;            /* Number of times this instruction was executed */
  long long cycles;   /* Total time spend executing this instruction */
#endif
};
typedef struct VdbeOp VdbeOp;

62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
** Allowed values of VdbeOp.p3type
*/
#define P3_NOTUSED    0   /* The P3 parameter is not used */
#define P3_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P3_STATIC   (-2)  /* Pointer to a static string */
#define P3_POINTER  (-3)  /* P3 is a pointer to some structure or object */
#define P3_COLLSEQ  (-4)  /* P3 is a pointer to a CollSeq structure */


/*
** The following macro converts a relative address in the p2 field
** of a VdbeOp structure into a negative number so that 
** sqlite3VdbeAddOpList() knows that the address is relative.  Calling
** the macro again restores the address.
*/
#define ADDR(X)  (-1-(X))

/*
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
#include "opcodes.h"

/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the 
** comparison of the two keys.
**
** If the KeyInfo.incrKey value is true and the comparison would
** otherwise be equal, then return a result as if the second key larger.
*/
typedef struct KeyInfo KeyInfo;
struct KeyInfo {
  u8 incrKey;           /* Increase value of 2nd key by epsilon */
  u8 reverseOrder;      /* If true, reverse the comparison order */
  int nField;           /* Number of entries in aColl[] */
  struct CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
*/
Vdbe *sqlite3VdbeCreate(sqlite*);
void sqlite3VdbeCreateCallback(Vdbe*, int*);
int sqlite3VdbeAddOp(Vdbe*,int,int,int);







>















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
















88
89
90
91
92
93
94
** Allowed values of VdbeOp.p3type
*/
#define P3_NOTUSED    0   /* The P3 parameter is not used */
#define P3_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P3_STATIC   (-2)  /* Pointer to a static string */
#define P3_POINTER  (-3)  /* P3 is a pointer to some structure or object */
#define P3_COLLSEQ  (-4)  /* P3 is a pointer to a CollSeq structure */
#define P3_KEYINFO  (-5)  /* P3 is a pointer to a KeyInfo structure */

/*
** The following macro converts a relative address in the p2 field
** of a VdbeOp structure into a negative number so that 
** sqlite3VdbeAddOpList() knows that the address is relative.  Calling
** the macro again restores the address.
*/
#define ADDR(X)  (-1-(X))

/*
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
#include "opcodes.h"

















/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
*/
Vdbe *sqlite3VdbeCreate(sqlite*);
void sqlite3VdbeCreateCallback(Vdbe*, int*);
int sqlite3VdbeAddOp(Vdbe*,int,int,int);
121
122
123
124
125
126
127
128





129


int sqlite3VdbeFinalize(Vdbe*,char**);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
void sqlite3VdbeTrace(Vdbe*,FILE*);
void sqlite3VdbeCompressSpace(Vdbe*,int);
int sqlite3VdbeReset(Vdbe*,char **);
int sqliteVdbeSetVariables(Vdbe*,int,const char**);






#endif










>
>
>
>
>

>
>
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
int sqlite3VdbeFinalize(Vdbe*,char**);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
void sqlite3VdbeTrace(Vdbe*,FILE*);
void sqlite3VdbeCompressSpace(Vdbe*,int);
int sqlite3VdbeReset(Vdbe*,char **);
int sqliteVdbeSetVariables(Vdbe*,int,const char**);

#ifndef NDEBUG
  void sqlite3VdbeComment(Vdbe*, const char*, ...);
# define VdbeComment(X)  sqlite3VdbeComment X
#else
# define VdbeComment(X)
#endif

#endif
Changes to src/vdbeInt.h.
68
69
70
71
72
73
74
75
76
77
78
79
80


81
82
83
84
85
86
87
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool nextRowidValid;  /* True if the nextRowid field is valid */
  Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
  Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
  Bool intKey;          /* True if the table requires integer keys */
  Bool zeroData;        /* True if table contains keys only - no data */
  Bool incrKey;         /* Searches on the table simulate OP_IncrKey */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  Btree *pBt;           /* Separate file holding temporary table */
  int nData;            /* Number of bytes in pData */
  char *pData;          /* Data for a NEW or OLD pseudo-table */
  i64 iKey;             /* Key for the NEW or OLD pseudo-table row */



  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to */
  Bool cacheValid;      /* True if the cache is valid */
  int nField;           /* Number of fields in the header */
  int nHeader;          /* Number of bytes in the entire header */
  int payloadSize;      /* Total number of bytes in the record */







|





>
>







68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool nextRowidValid;  /* True if the nextRowid field is valid */
  Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
  Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
  Bool intKey;          /* True if the table requires integer keys */
  Bool zeroData;        /* True if table contains keys only - no data */
  u8 bogusIncrKey;      /* Something for pIncrKey to point to if pKeyInfo==0 */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  Btree *pBt;           /* Separate file holding temporary table */
  int nData;            /* Number of bytes in pData */
  char *pData;          /* Data for a NEW or OLD pseudo-table */
  i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
  u8 *pIncrKey;         /* Pointer to pKeyInfo->incrKey */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to */
  Bool cacheValid;      /* True if the cache is valid */
  int nField;           /* Number of fields in the header */
  int nHeader;          /* Number of bytes in the entire header */
  int payloadSize;      /* Total number of bytes in the record */
Changes to src/vdbeaux.c.
96
97
98
99
100
101
102

103
104
105
106
107
108
109
  if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
    p2 = p->aLabel[-1-p2];
  }
  pOp->p2 = p2;
  pOp->p3 = 0;
  pOp->p3type = P3_NOTUSED;
#ifndef NDEBUG

  if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
  return i;
}

/*
** Add an opcode that includes the p3 value.







>







96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
  if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
    p2 = p->aLabel[-1-p2];
  }
  pOp->p2 = p2;
  pOp->p3 = 0;
  pOp->p3type = P3_NOTUSED;
#ifndef NDEBUG
  pOp->zComment = 0;
  if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
  return i;
}

/*
** Add an opcode that includes the p3 value.
222
223
224
225
226
227
228

229
230
231
232
233
234
235
      VdbeOp *pOut = &p->aOp[i+addr];
      pOut->opcode = pIn->opcode;
      pOut->p1 = pIn->p1;
      pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
      pOut->p3 = pIn->p3;
      pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
#ifndef NDEBUG

      if( sqlite3_vdbe_addop_trace ){
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;
  }







>







223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
      VdbeOp *pOut = &p->aOp[i+addr];
      pOut->opcode = pIn->opcode;
      pOut->p1 = pIn->p1;
      pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
      pOut->p3 = pIn->p3;
      pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
#ifndef NDEBUG
      pOut->zComment = 0;
      if( sqlite3_vdbe_addop_trace ){
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;
  }
270
271
272
273
274
275
276
277



278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296













297
298
299
300
301
302
303
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqliteMalloc().
** A value of n==0 means copy bytes of zP3 up to and including the
** first null byte.  If n>0 then copy n+1 bytes of zP3.
**
** If n==P3_STATIC  it means that zP3 is a pointer to a constant static
** string and we can just copy the pointer.  n==P3_POINTER means zP3 is
** a pointer to some object other than a string.



**
** If addr<0 then change P3 on the most recently inserted instruction.
*/
void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
  Op *pOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p==0 || p->aOp==0 ) return;
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
    sqliteFree(pOp->p3);
    pOp->p3 = 0;
  }
  if( zP3==0 ){
    pOp->p3 = 0;
    pOp->p3type = P3_NOTUSED;













  }else if( n<0 ){
    pOp->p3 = (char*)zP3;
    pOp->p3type = n;
  }else{
    sqlite3SetNString(&pOp->p3, zP3, n, 0);
    pOp->p3type = P3_DYNAMIC;
  }







|
>
>
>



















>
>
>
>
>
>
>
>
>
>
>
>
>







272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqliteMalloc().
** A value of n==0 means copy bytes of zP3 up to and including the
** first null byte.  If n>0 then copy n+1 bytes of zP3.
**
** If n==P3_STATIC  it means that zP3 is a pointer to a constant static
** string and we can just copy the pointer.  n==P3_POINTER means zP3 is
** a pointer to some object other than a string.  n==P3_COLLSEQ and
** n==P3_KEYINFO mean that zP3 is a pointer to a CollSeq or KeyInfo
** structure.  A copy is made of KeyInfo structures into memory obtained
** from sqliteMalloc.
**
** If addr<0 then change P3 on the most recently inserted instruction.
*/
void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
  Op *pOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p==0 || p->aOp==0 ) return;
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
    sqliteFree(pOp->p3);
    pOp->p3 = 0;
  }
  if( zP3==0 ){
    pOp->p3 = 0;
    pOp->p3type = P3_NOTUSED;
  }else if( n==P3_KEYINFO ){
    KeyInfo *pKeyInfo;
    int nField, nByte;
    nField = ((KeyInfo*)zP3)->nField;
    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]);
    pKeyInfo = sqliteMalloc( nByte );
    pOp->p3 = (char*)pKeyInfo;
    if( pKeyInfo ){
      memcpy(pKeyInfo, zP3, nByte);
      pOp->p3type = P3_KEYINFO;
    }else{
      pOp->p3type = P3_NOTUSED;
    }
  }else if( n<0 ){
    pOp->p3 = (char*)zP3;
    pOp->p3type = n;
  }else{
    sqlite3SetNString(&pOp->p3, zP3, n, 0);
    pOp->p3type = P3_DYNAMIC;
  }
318
319
320
321
322
323
324
325
326
327
328
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

















367
368
369
370
371
372
373
  if( p->aOp==0 ) return;
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  if( pOp->p3==0 || pOp->p3[0]==0 ) return;
  if( pOp->p3type==P3_POINTER ) return;
  if( pOp->p3type!=P3_DYNAMIC ){
    pOp->p3 = sqliteStrDup(pOp->p3);
    pOp->p3type = P3_DYNAMIC;
  }

  sqlite3Dequote(pOp->p3);
}

/*
** On the P3 argument of the given instruction, change all
** strings of whitespace characters into a single space and
** delete leading and trailing whitespace.
*/
void sqlite3VdbeCompressSpace(Vdbe *p, int addr){
  unsigned char *z;
  int i, j;
  Op *pOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
  pOp = &p->aOp[addr];
  if( pOp->p3type==P3_POINTER ){
    return;
  }
  if( pOp->p3type!=P3_DYNAMIC ){
    pOp->p3 = sqliteStrDup(pOp->p3);
    pOp->p3type = P3_DYNAMIC;
  }

  z = (unsigned char*)pOp->p3;
  if( z==0 ) return;
  i = j = 0;
  while( isspace(z[i]) ){ i++; }
  while( z[i] ){
    if( isspace(z[i]) ){
      z[j++] = ' ';
      while( isspace(z[++i]) ){}
    }else{
      z[j++] = z[i++];
    }
  }
  while( j>0 && isspace(z[j-1]) ){ j--; }
  z[j] = 0;
}


















/*
** Search the current program starting at instruction addr for the given
** opcode and P2 value.  Return the address plus 1 if found and 0 if not
** found.
*/
int sqlite3VdbeFindOp(Vdbe *p, int addr, int op, int p2){







|
<



>















|
<
<
<



>















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







336
337
338
339
340
341
342
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363



364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
  if( p->aOp==0 ) return;
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  if( pOp->p3==0 || pOp->p3[0]==0 ) return;
  if( pOp->p3type==P3_STATIC ){

    pOp->p3 = sqliteStrDup(pOp->p3);
    pOp->p3type = P3_DYNAMIC;
  }
  assert( pOp->p3type==P3_DYNAMIC );
  sqlite3Dequote(pOp->p3);
}

/*
** On the P3 argument of the given instruction, change all
** strings of whitespace characters into a single space and
** delete leading and trailing whitespace.
*/
void sqlite3VdbeCompressSpace(Vdbe *p, int addr){
  unsigned char *z;
  int i, j;
  Op *pOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
  pOp = &p->aOp[addr];
  if( pOp->p3type==P3_STATIC ){



    pOp->p3 = sqliteStrDup(pOp->p3);
    pOp->p3type = P3_DYNAMIC;
  }
  assert( pOp->p3type==P3_DYNAMIC );
  z = (unsigned char*)pOp->p3;
  if( z==0 ) return;
  i = j = 0;
  while( isspace(z[i]) ){ i++; }
  while( z[i] ){
    if( isspace(z[i]) ){
      z[j++] = ' ';
      while( isspace(z[++i]) ){}
    }else{
      z[j++] = z[i++];
    }
  }
  while( j>0 && isspace(z[j-1]) ){ j--; }
  z[j] = 0;
}

#ifndef NDEBUG
/*
** Add comment text to the most recently inserted opcode
*/
void sqlite3VdbeAddComment(Vdbe *p, const char *zFormat, ...){
  va_list ap;
  VdbeOp *pOp;
  char *zText;
  va_start(ap, zFormat);
  zText = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  pOp = &p->aOp[p->nOp-1];
  sqliteFree(pOp->zComment);
  pOp->zComment = zText;
}
#endif

/*
** Search the current program starting at instruction addr for the given
** opcode and P2 value.  Return the address plus 1 if found and 0 if not
** found.
*/
int sqlite3VdbeFindOp(Vdbe *p, int addr, int op, int p2){
499
500
501
502
503
504
505
506
507
508

509
510
511
512
513
514

515
516





















517


















518


519















520


521
522




523
524
525
526
527
528
529
** the internals of the sqlite_func structure which is only defined in
** this source file.
*/
int sqlite3_aggregate_count(sqlite_func *p){
  assert( p && p->pFunc && p->pFunc->xStep );
  return p->cnt;
}

#if !defined(NDEBUG) || defined(VDBE_PROFILE)
/*

** Print a single opcode.  This routine is used for debugging only.
*/
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
  char *zP3;
  char zPtr[40];
  if( pOp->p3type==P3_POINTER ){

    sprintf(zPtr, "ptr(%#x)", (int)pOp->p3);
    zP3 = zPtr;





















  }else{


















    zP3 = pOp->p3;


  }















  if( pOut==0 ) pOut = stdout;


  fprintf(pOut,"%4d %-12s %4d %4d %s\n",
      pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");




  fflush(pOut);
}
#endif

/*
** Give a listing of the program in the virtual machine.
**








<

>
|

|

|
|
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
|
|
>
>
>
>







532
533
534
535
536
537
538
539

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
** the internals of the sqlite_func structure which is only defined in
** this source file.
*/
int sqlite3_aggregate_count(sqlite_func *p){
  assert( p && p->pFunc && p->pFunc->xStep );
  return p->cnt;
}


/*
** Compute a string that describes the P3 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP3(Op *pOp, char *zTemp, int nTemp){
  char *zP3;
  assert( nTemp>=20 );
  switch( pOp->p3type ){
    case P3_POINTER: {
      sprintf(zTemp, "ptr(%#x)", (int)pOp->p3);
      zP3 = zTemp;
      break;
    }
    case P3_KEYINFO: {
      int i, j;
      KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
      sprintf(zTemp, "keyinfo(%d", pKeyInfo->nField);
      i = strlen(zTemp);
      for(j=0; j<pKeyInfo->nField; j++){
        CollSeq *pColl = pKeyInfo->aColl[j];
        if( pColl ){
          int n = strlen(pColl->zName);
          if( i+n>nTemp-6 ){
            strcpy(&zTemp[i],",...");
            break;
          }
          zTemp[i++] = ',';
          if( pColl->reverseOrder ){
            zTemp[i++] = '-';
          }
          strcpy(&zTemp[i], pColl->zName);
          i += n;
        }else if( i+4<nTemp-6 ){
          strcpy(&zTemp[i],",nil");
          i += 4;
        }
      }
      zTemp[i++] = ')';
      zTemp[i] = 0;
      assert( i<nTemp );
      zP3 = zTemp;
      break;
    }
    case P3_COLLSEQ: {
      CollSeq *pColl = (CollSeq*)pOp->p3;
      sprintf(zTemp, "collseq(%s%.20s)", 
         pColl->reverseOrder ? "-" : "", pColl->zName);
      zP3 = zTemp;
      break;
    }
    default: {
      zP3 = pOp->p3;
      if( zP3==0 ){
        zP3 = "";
      }
    }
  }
  return zP3;
}


#if !defined(NDEBUG) || defined(VDBE_PROFILE)
/*
** Print a single opcode.  This routine is used for debugging only.
*/
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
  char *zP3;
  char zPtr[50];
  static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
  static const char *zFormat2 = "%4d %-13s %4d %4d %-20s -- %s\n";
  if( pOut==0 ) pOut = stdout;
  zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
#ifdef NDEBUG
  fprintf(pOut, zFormat1,
      pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3);
#else
  fprintf(pOut, pOp->zComment ? zFormat2 : zFormat1,
      pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3,pOp->zComment);
#endif
  fflush(pOut);
}
#endif

/*
** Give a listing of the program in the virtual machine.
**
558
559
560
561
562
563
564

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
      p->rc = SQLITE_MISUSE;
    }else{
      p->rc = SQLITE_INTERRUPT;
    }
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, sqlite3_error_string(p->rc), (char*)0);
  }else{

    sprintf(p->zArgv[0],"%d",i);
    sprintf(p->zArgv[2],"%d", p->aOp[i].p1);
    sprintf(p->zArgv[3],"%d", p->aOp[i].p2);
    if( p->aOp[i].p3type==P3_POINTER ){
      sprintf(p->aStack[4].zShort, "ptr(%#x)", (int)p->aOp[i].p3);
      p->zArgv[4] = p->aStack[4].zShort;
    }else{
      p->zArgv[4] = p->aOp[i].p3;
    }
    p->zArgv[1] = sqlite3OpcodeNames[p->aOp[i].opcode];
    p->pc = i+1;
    p->azResColumn = p->zArgv;
    p->nResColumn = 5;
    p->rc = SQLITE_OK;
    rc = SQLITE_ROW;
  }
  return rc;







>

|
|
<
<
|
<
|
<
|







654
655
656
657
658
659
660
661
662
663
664


665

666

667
668
669
670
671
672
673
674
      p->rc = SQLITE_MISUSE;
    }else{
      p->rc = SQLITE_INTERRUPT;
    }
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, sqlite3_error_string(p->rc), (char*)0);
  }else{
    Op *pOp = &p->aOp[i];
    sprintf(p->zArgv[0],"%d",i);
    sprintf(p->zArgv[2],"%d", pOp->p1);
    sprintf(p->zArgv[3],"%d", pOp->p2);


    p->zArgv[4] =

          displayP3(pOp, p->aStack[4].zShort, sizeof(p->aStack[4].zShort));

    p->zArgv[1] = sqlite3OpcodeNames[pOp->opcode];
    p->pc = i+1;
    p->azResColumn = p->zArgv;
    p->nResColumn = 5;
    p->rc = SQLITE_OK;
    rc = SQLITE_ROW;
  }
  return rc;
1161
1162
1163
1164
1165
1166
1167

1168
1169
1170



1171
1172
1173
1174
1175
1176
1177
  }
  p->pPrev = p->pNext = 0;
  if( p->nOpAlloc==0 ){
    p->aOp = 0;
    p->nOp = 0;
  }
  for(i=0; i<p->nOp; i++){

    if( p->aOp[i].p3type==P3_DYNAMIC ){
      sqliteFree(p->aOp[i].p3);
    }



  }
  for(i=0; i<p->nVar; i++){
    if( p->apVar[i].flags&MEM_Dyn ){
      sqliteFree(p->apVar[i].z);
    }
  }
  sqliteFree(p->aOp);







>
|
|

>
>
>







1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
  }
  p->pPrev = p->pNext = 0;
  if( p->nOpAlloc==0 ){
    p->aOp = 0;
    p->nOp = 0;
  }
  for(i=0; i<p->nOp; i++){
    Op *pOp = &p->aOp[i];
    if( pOp->p3type==P3_DYNAMIC || pOp->p3type==P3_KEYINFO ){
      sqliteFree(pOp->p3);
    }
#ifndef NDEBUG
    sqliteFree(pOp->zComment);
#endif
  }
  for(i=0; i<p->nVar; i++){
    if( p->apVar[i].flags&MEM_Dyn ){
      sqliteFree(p->apVar[i].z);
    }
  }
  sqliteFree(p->aOp);
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
    extern int sqlite3_search_count;
    assert( p->intKey );
    if( p->intKey ){
      sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, &res);
    }else{
      sqlite3BtreeMoveto(p->pCursor,(char*)&p->movetoTarget,sizeof(i64),&res);
    }
    p->incrKey = 0;
    p->lastRecno = keyToInt(p->movetoTarget);
    p->recnoIsValid = res==0;
    if( res<0 ){
      sqlite3BtreeNext(p->pCursor, &res);
    }
    sqlite3_search_count++;
    p->deferredMoveto = 0;







|







1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
    extern int sqlite3_search_count;
    assert( p->intKey );
    if( p->intKey ){
      sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, &res);
    }else{
      sqlite3BtreeMoveto(p->pCursor,(char*)&p->movetoTarget,sizeof(i64),&res);
    }
    *p->pIncrKey = 0;
    p->lastRecno = keyToInt(p->movetoTarget);
    p->recnoIsValid = res==0;
    if( res<0 ){
      sqlite3BtreeNext(p->pCursor, &res);
    }
    sqlite3_search_count++;
    p->deferredMoveto = 0;
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
  return len;
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by memcmp() and
** finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
  int rc;
  int f1, f2;
  int combined_flags;







|
|







1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
  return len;
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
  int rc;
  int f1, f2;
  int combined_flags;
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536

1537
1538
1539

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562


1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581

1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
** compared to.
*/
int sqlite3VdbeKeyCompare(
  void *userData,
  int nKey1, const void *pKey1, 
  int nKey2, const void *pKey2
){
  Cursor *pC = (Cursor *)userData;
  int offset1 = 0;
  int offset2 = 0;

  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;
  

  while( offset1<nKey1 && offset2<nKey2 ){
    Mem mem1;
    Mem mem2;
    u64 serial_type1;
    u64 serial_type2;
    int rc;

    /* Read the serial types for the next element in each key. */
    offset1 += sqlite3GetVarint(&aKey1[offset1], &serial_type1);
    offset2 += sqlite3GetVarint(&aKey2[offset2], &serial_type2);

    /* If either of the varints just read in are 0 (not a type), then
    ** this is the end of the keys. The remaining data in each key is
    ** the varint rowid. Compare these as signed integers and return
    ** the result.
    */
    if( !serial_type1 || !serial_type2 ){
      assert( !serial_type1 && !serial_type2 );
      assert( !pC || !pC->incrKey );
      sqlite3GetVarint(&aKey1[offset1], &serial_type1);
      sqlite3GetVarint(&aKey2[offset2], &serial_type2);
      return ( (i64)serial_type1 - (i64)serial_type2 );
    }



    /* Assert that there is enough space left in each key for the blob of
    ** data to go with the serial type just read. This assert may fail if
    ** the file is corrupted.  Then read the value from each key into mem1
    ** and mem2 respectively.
    */
    offset1 += sqlite3VdbeSerialGet(&aKey1[offset1], serial_type1, &mem1);
    offset2 += sqlite3VdbeSerialGet(&aKey2[offset2], serial_type2, &mem2);

    rc = sqlite3MemCompare(&mem1, &mem2, 0);
    if( mem1.flags&MEM_Dyn ){
      sqliteFree(mem1.z);
    }
    if( mem2.flags&MEM_Dyn ){
      sqliteFree(mem2.z);
    }
    if( rc!=0 ){
      return rc;
    }

  }

  /* One of the keys ran out of fields, but all the fields up to that point
  ** were equal. If the incrKey flag is true, then the second key is
  ** treated as larger.
  */
  if( pC && pC->incrKey ){
    assert( offset2==nKey2 );
    return -1;
  }

  if( offset1<nKey1 ){
    return 1;
  }







|


>



>


















<




>
>









|









>






|







1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
** compared to.
*/
int sqlite3VdbeKeyCompare(
  void *userData,
  int nKey1, const void *pKey1, 
  int nKey2, const void *pKey2
){
  KeyInfo *pKeyInfo = (KeyInfo*)userData;
  int offset1 = 0;
  int offset2 = 0;
  int i = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;
  
  assert( pKeyInfo!=0 );
  while( offset1<nKey1 && offset2<nKey2 ){
    Mem mem1;
    Mem mem2;
    u64 serial_type1;
    u64 serial_type2;
    int rc;

    /* Read the serial types for the next element in each key. */
    offset1 += sqlite3GetVarint(&aKey1[offset1], &serial_type1);
    offset2 += sqlite3GetVarint(&aKey2[offset2], &serial_type2);

    /* If either of the varints just read in are 0 (not a type), then
    ** this is the end of the keys. The remaining data in each key is
    ** the varint rowid. Compare these as signed integers and return
    ** the result.
    */
    if( !serial_type1 || !serial_type2 ){
      assert( !serial_type1 && !serial_type2 );

      sqlite3GetVarint(&aKey1[offset1], &serial_type1);
      sqlite3GetVarint(&aKey2[offset2], &serial_type2);
      return ( (i64)serial_type1 - (i64)serial_type2 );
    }

    assert( i<pKeyInfo->nField );

    /* Assert that there is enough space left in each key for the blob of
    ** data to go with the serial type just read. This assert may fail if
    ** the file is corrupted.  Then read the value from each key into mem1
    ** and mem2 respectively.
    */
    offset1 += sqlite3VdbeSerialGet(&aKey1[offset1], serial_type1, &mem1);
    offset2 += sqlite3VdbeSerialGet(&aKey2[offset2], serial_type2, &mem2);

    rc = sqlite3MemCompare(&mem1, &mem2, pKeyInfo->aColl[i]);
    if( mem1.flags&MEM_Dyn ){
      sqliteFree(mem1.z);
    }
    if( mem2.flags&MEM_Dyn ){
      sqliteFree(mem2.z);
    }
    if( rc!=0 ){
      return rc;
    }
    i++;
  }

  /* One of the keys ran out of fields, but all the fields up to that point
  ** were equal. If the incrKey flag is true, then the second key is
  ** treated as larger.
  */
  if( pKeyInfo->incrKey ){
    assert( offset2==nKey2 );
    return -1;
  }

  if( offset1<nKey1 ){
    return 1;
  }
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
** by compound SELECT operators. 
*/
int sqlite3VdbeRowCompare(
  void *userData,
  int nKey1, const void *pKey1, 
  int nKey2, const void *pKey2
){
  Cursor *pC = (Cursor *)userData;
  int offset1 = 0;
  int offset2 = 0;
  int toffset1 = 0;
  int toffset2 = 0;
  int i;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;

  assert( pC );
  assert( pC->nField>0 );

  for( i=0; i<pC->nField; i++ ){
    u64 dummy;
    offset1 += sqlite3GetVarint(&aKey1[offset1], &dummy);
    offset2 += sqlite3GetVarint(&aKey1[offset1], &dummy);
  }

  for( i=0; i<pC->nField; i++ ){
    Mem mem1;
    Mem mem2;
    u64 serial_type1;
    u64 serial_type2;
    int rc;

    /* Read the serial types for the next element in each key. */
    toffset1 += sqlite3GetVarint(&aKey1[toffset1], &serial_type1);
    toffset2 += sqlite3GetVarint(&aKey2[toffset2], &serial_type2);

    assert( serial_type1 && serial_type2 );

    /* Assert that there is enough space left in each key for the blob of
    ** data to go with the serial type just read. This assert may fail if
    ** the file is corrupted.  Then read the value from each key into mem1
    ** and mem2 respectively.
    */
    offset1 += sqlite3VdbeSerialGet(&aKey1[offset1], serial_type1, &mem1);
    offset2 += sqlite3VdbeSerialGet(&aKey2[offset2], serial_type2, &mem2);

    rc = sqlite3MemCompare(&mem1, &mem2, 0);
    if( mem1.flags&MEM_Dyn ){
      sqliteFree(mem1.z);
    }
    if( mem2.flags&MEM_Dyn ){
      sqliteFree(mem2.z);
    }
    if( rc!=0 ){







|








|
|

|





|




















|







1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
** by compound SELECT operators. 
*/
int sqlite3VdbeRowCompare(
  void *userData,
  int nKey1, const void *pKey1, 
  int nKey2, const void *pKey2
){
  KeyInfo *pKeyInfo = (KeyInfo*)userData;
  int offset1 = 0;
  int offset2 = 0;
  int toffset1 = 0;
  int toffset2 = 0;
  int i;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;

  assert( pKeyInfo );
  assert( pKeyInfo->nField>0 );

  for( i=0; i<pKeyInfo->nField; i++ ){
    u64 dummy;
    offset1 += sqlite3GetVarint(&aKey1[offset1], &dummy);
    offset2 += sqlite3GetVarint(&aKey1[offset1], &dummy);
  }

  for( i=0; i<pKeyInfo->nField; i++ ){
    Mem mem1;
    Mem mem2;
    u64 serial_type1;
    u64 serial_type2;
    int rc;

    /* Read the serial types for the next element in each key. */
    toffset1 += sqlite3GetVarint(&aKey1[toffset1], &serial_type1);
    toffset2 += sqlite3GetVarint(&aKey2[toffset2], &serial_type2);

    assert( serial_type1 && serial_type2 );

    /* Assert that there is enough space left in each key for the blob of
    ** data to go with the serial type just read. This assert may fail if
    ** the file is corrupted.  Then read the value from each key into mem1
    ** and mem2 respectively.
    */
    offset1 += sqlite3VdbeSerialGet(&aKey1[offset1], serial_type1, &mem1);
    offset2 += sqlite3VdbeSerialGet(&aKey2[offset2], serial_type2, &mem2);

    rc = sqlite3MemCompare(&mem1, &mem2, pKeyInfo->aColl[i]);
    if( mem1.flags&MEM_Dyn ){
      sqliteFree(mem1.z);
    }
    if( mem2.flags&MEM_Dyn ){
      sqliteFree(mem2.z);
    }
    if( rc!=0 ){
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718


1719
1720
1721
1722
1723
1724
1725

  sqlite3GetVarint(&buf[len], &r);
  *rowid = r;
  return SQLITE_OK;
}

/*
** Compare the key of index entry that cursor pC is point to against
** the key string in pKey (of length nKey).  Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pKey.  Return SQLITE_OK on success.


*/
int sqlite3VdbeIdxKeyCompare(
  Cursor *pC,                 /* The cursor to compare against */
  int nKey, const u8 *pKey,   /* The key to compare */
  int *res                    /* Write the comparison result here */
){
  unsigned char *pCellKey;







|



>
>







1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

  sqlite3GetVarint(&buf[len], &r);
  *rowid = r;
  return SQLITE_OK;
}

/*
** Compare the key of the index entry that cursor pC is point to against
** the key string in pKey (of length nKey).  Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pKey.  Return SQLITE_OK on success.
**
** pKey might contain fewer terms than the cursor.
*/
int sqlite3VdbeIdxKeyCompare(
  Cursor *pC,                 /* The cursor to compare against */
  int nKey, const u8 *pKey,   /* The key to compare */
  int *res                    /* Write the comparison result here */
){
  unsigned char *pCellKey;
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
      return rc;
    }
  }
 
  len = nCellKey-2;
  while( pCellKey[len] && --len );

  *res = sqlite3VdbeKeyCompare(pC, len, pCellKey, nKey, pKey);
  
  if( freeCellKey ){
    sqliteFree(pCellKey);
  }
  return SQLITE_OK;
}







|






1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
      return rc;
    }
  }
 
  len = nCellKey-2;
  while( pCellKey[len] && --len );

  *res = sqlite3VdbeKeyCompare(pC->pKeyInfo, len, pCellKey, nKey, pKey);
  
  if( freeCellKey ){
    sqliteFree(pCellKey);
  }
  return SQLITE_OK;
}
Changes to src/where.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.
**
** $Id: where.c,v 1.99 2004/05/19 20:41:04 drh Exp $
*/
#include "sqliteInt.h"

/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by an AND operator.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.
**
** $Id: where.c,v 1.100 2004/05/20 22:16:30 drh Exp $
*/
#include "sqliteInt.h"

/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by an AND operator.
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
  int i, j;
  Index *pMatch;
  Index *pIdx;
  int sortOrder;

  assert( pOrderBy!=0 );
  assert( pOrderBy->nExpr>0 );
  sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
  for(i=0; i<pOrderBy->nExpr; i++){
    Expr *p;
    if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
      /* Indices can only be used if all ORDER BY terms are either
      ** DESC or ASC.  Indices cannot be used on a mixture. */
      return 0;
    }
    if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
      /* Do not sort by index if there is a COLLATE clause */
      return 0;
    }
    p = pOrderBy->a[i].pExpr;
    if( p->op!=TK_COLUMN || p->iTable!=base ){
      /* Can not use an index sort on anything that is not a column in the
      ** left-most table of the FROM clause */







|


|




|







218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
  int i, j;
  Index *pMatch;
  Index *pIdx;
  int sortOrder;

  assert( pOrderBy!=0 );
  assert( pOrderBy->nExpr>0 );
  sortOrder = pOrderBy->a[0].sortOrder;
  for(i=0; i<pOrderBy->nExpr; i++){
    Expr *p;
    if( pOrderBy->a[i].sortOrder!=sortOrder ){
      /* Indices can only be used if all ORDER BY terms are either
      ** DESC or ASC.  Indices cannot be used on a mixture. */
      return 0;
    }
    if( pOrderBy->a[i].zName!=0 ){
      /* Do not sort by index if there is a COLLATE clause */
      return 0;
    }
    p = pOrderBy->a[i].pExpr;
    if( p->op!=TK_COLUMN || p->iTable!=base ){
      /* Can not use an index sort on anything that is not a column in the
      ** left-most table of the FROM clause */
674
675
676
677
678
679
680
681
682
683
684
685
686
687

688
689
690
691
692
693
694
  for(i=0; i<pTabList->nSrc; i++){
    Table *pTab;
    Index *pIx;

    pTab = pTabList->a[i].pTab;
    if( pTab->isTransient || pTab->pSelect ) continue;
    sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
                     pTab->zName, P3_STATIC);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, pTabList->a[i].iCursor, pTab->nCol);
    sqlite3CodeVerifySchema(pParse, pTab->iDb);
    if( (pIx = pWInfo->a[i].pIdx)!=0 ){
      sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
      sqlite3VdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum,pIx->zName,0);

    }
  }

  /* Generate the code to do the search
  */
  loopMask = 0;
  for(i=0; i<pTabList->nSrc; i++){







|
<




|
>







674
675
676
677
678
679
680
681

682
683
684
685
686
687
688
689
690
691
692
693
694
  for(i=0; i<pTabList->nSrc; i++){
    Table *pTab;
    Index *pIx;

    pTab = pTabList->a[i].pTab;
    if( pTab->isTransient || pTab->pSelect ) continue;
    sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum);

    sqlite3VdbeAddOp(v, OP_SetNumColumns, pTabList->a[i].iCursor, pTab->nCol);
    sqlite3CodeVerifySchema(pParse, pTab->iDb);
    if( (pIx = pWInfo->a[i].pIdx)!=0 ){
      sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
      sqlite3VdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum,
                     (char*)&pIx->keyInfo, P3_KEYINFO);
    }
  }

  /* Generate the code to do the search
  */
  loopMask = 0;
  for(i=0; i<pTabList->nSrc; i++){
Changes to test/btree6.test.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is btree database backend - specifically
# the B+tree tables.  B+trees store all data on the leaves rather
# that storing data with keys on interior nodes.
#
# $Id: btree6.test,v 1.3 2004/05/13 11:34:17 danielk1977 Exp $


set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Insert many entries into the table that cursor $cur points to.







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is btree database backend - specifically
# the B+tree tables.  B+trees store all data on the leaves rather
# that storing data with keys on interior nodes.
#
# $Id: btree6.test,v 1.4 2004/05/20 22:16:31 drh Exp $


set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Insert many entries into the table that cursor $cur points to.
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
set cur [btree_cursor $b1 $tab 1]
set btree_trace 0
expr srand(1)

# Do the tests.
#
set cnt 0
for {set i 1} {$i<=100} {incr i} {
  do_test btree6-1.$i.1 {
    random_inserts $cur 200
    incr cnt 200
    check_table $cur $cnt
  } {}
  do_test btree6-1.$i.2 {
    btree_integrity_check $b1 1 $tab







|







98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
set cur [btree_cursor $b1 $tab 1]
set btree_trace 0
expr srand(1)

# Do the tests.
#
set cnt 0
for {set i 1} {$i<=40} {incr i} {
  do_test btree6-1.$i.1 {
    random_inserts $cur 200
    incr cnt 200
    check_table $cur $cnt
  } {}
  do_test btree6-1.$i.2 {
    btree_integrity_check $b1 1 $tab
Changes to test/tester.tcl.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.32 2004/05/12 11:24:03 danielk1977 Exp $

# Make sure tclsqlite was compiled correctly.  Abort now with an
# error message if not.
#
if {[sqlite -tcl-uses-utf]} {
  if {"\u1234"=="u1234"} {
    puts stderr "***** BUILD PROBLEM *****"













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.33 2004/05/20 22:16:31 drh Exp $

# Make sure tclsqlite was compiled correctly.  Abort now with an
# error message if not.
#
if {[sqlite -tcl-uses-utf]} {
  if {"\u1234"=="u1234"} {
    puts stderr "***** BUILD PROBLEM *****"
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
# Set the test counters to zero
#
set nErr 0
set nTest 0
set nProb 0
set skip_test 0
set failList {}


# Invoke the do_test procedure to run a single test 
#
proc do_test {name cmd expected} {
  global argv nErr nTest skip_test
  if {$skip_test} {
    set skip_test 0
    return
  }
  if {[llength $argv]==0} { 
    set go 1
  } else {







>




|







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Set the test counters to zero
#
set nErr 0
set nTest 0
set nProb 0
set skip_test 0
set failList {}
set maxErr 1000

# Invoke the do_test procedure to run a single test 
#
proc do_test {name cmd expected} {
  global argv nErr nTest skip_test maxErr
  if {$skip_test} {
    set skip_test 0
    return
  }
  if {[llength $argv]==0} { 
    set go 1
  } else {
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
  incr nTest
  puts -nonewline $name...
  flush stdout
  if {[catch {uplevel #0 "$cmd;\n"} result]} {
    puts "\nError: $result"
    incr nErr
    lappend ::failList $name
    if {$nErr>100} {puts "*** Giving up..."; finalize_testing}
  } elseif {[string compare $result $expected]} {
    puts "\nExpected: \[$expected\]\n     Got: \[$result\]"
    incr nErr
    lappend ::failList $name
    if {$nErr>=100} {puts "*** Giving up..."; finalize_testing}
  } else {
    puts " Ok"
  }
}

# The procedure uses the special "sqlite_malloc_stat" command
# (which is only available if SQLite is compiled with -DMEMORY_DEBUG=1)







|




|







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  incr nTest
  puts -nonewline $name...
  flush stdout
  if {[catch {uplevel #0 "$cmd;\n"} result]} {
    puts "\nError: $result"
    incr nErr
    lappend ::failList $name
    if {$nErr>$maxErr} {puts "*** Giving up..."; finalize_testing}
  } elseif {[string compare $result $expected]} {
    puts "\nExpected: \[$expected\]\n     Got: \[$result\]"
    incr nErr
    lappend ::failList $name
    if {$nErr>=$maxErr} {puts "*** Giving up..."; finalize_testing}
  } else {
    puts " Ok"
  }
}

# The procedure uses the special "sqlite_malloc_stat" command
# (which is only available if SQLite is compiled with -DMEMORY_DEBUG=1)