SQLite

Check-in [a159e9d247]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Reverse the order of two conditionals in a test in order to achieve coverage of them both. Also: clarifications to comments in btree.c. (CVS 6912)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: a159e9d24708dfe6c5a98d220e39f3b1b2a3d281
User & Date: drh 2009-07-20 19:30:01.000
Context
2009-07-21
11:52
Changes to btree.c in support of coverage testing. (CVS 6913) (check-in: 4cf23e9e86 user: drh tags: trunk)
2009-07-20
19:30
Reverse the order of two conditionals in a test in order to achieve coverage of them both. Also: clarifications to comments in btree.c. (CVS 6912) (check-in: a159e9d247 user: drh tags: trunk)
17:11
Modify various routines inside btree.c to take a pointer to the return-code as a parameter and to no-op if the return-code storage location already contains a non-zero code. (CVS 6911) (check-in: 7dcf2a7872 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.692 2009/07/20 17:11:50 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.693 2009/07/20 19:30:01 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
** balancing routine to fix this problem (see the balance() routine). 
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
**
** The third argument to this function, aOvflSpace, is a pointer to a
** buffer page-size bytes in size. If, in inserting cells into the parent
** page (pParent), the parent page becomes overfull, this buffer is
** used to store the parents overflow cells. Because this function inserts
** a maximum of four divider cells into the parent page, and the maximum
** size of a cell stored within an internal node is always less than 1/4
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
** enough for all overflow cells.
**
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.







|
|
|







5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
** balancing routine to fix this problem (see the balance() routine). 
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
**
** The third argument to this function, aOvflSpace, is a pointer to a
** buffer big enough to hold one page. If while inserting cells into the parent
** page (pParent) the parent page becomes overfull, this buffer is
** used to store the parent's overflow cells. Because this function inserts
** a maximum of four divider cells into the parent page, and the maximum
** size of a cell stored within an internal node is always less than 1/4
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
** enough for all overflow cells.
**
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.
5642
5643
5644
5645
5646
5647
5648
5649

5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666

5667
5668
5669
5670
5671
5672
5673
#if 0
  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#endif

  /* At this point pParent may have at most one overflow cell. And if
  ** this overflow cell is present, it must be the cell with 
  ** index iParentIdx. This scenario comes about when this function
  ** is called (indirectly) from sqlite3BtreeDelete(). */

  assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
  assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );

  if( !aOvflSpace ){
    return SQLITE_NOMEM;
  }

  /* Find the sibling pages to balance. Also locate the cells in pParent 
  ** that divide the siblings. An attempt is made to find NN siblings on 
  ** either side of pPage. More siblings are taken from one side, however, 
  ** if there are fewer than NN siblings on the other side. If pParent
  ** has NB or fewer children then all children of pParent are taken.  
  **
  ** This loop also drops the divider cells from the parent page. This
  ** way, the remainder of the function does not have to deal with any
  ** overflow cells in the parent page, as if one existed it has already
  ** been removed.  */

  i = pParent->nOverflow + pParent->nCell;
  if( i<2 ){
    nxDiv = 0;
    nOld = i+1;
  }else{
    nOld = 3;
    if( iParentIdx==0 ){                 







|
>















|
|
>







5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
#if 0
  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#endif

  /* At this point pParent may have at most one overflow cell. And if
  ** this overflow cell is present, it must be the cell with 
  ** index iParentIdx. This scenario comes about when this function
  ** is called (indirectly) from sqlite3BtreeDelete().
  */
  assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
  assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );

  if( !aOvflSpace ){
    return SQLITE_NOMEM;
  }

  /* Find the sibling pages to balance. Also locate the cells in pParent 
  ** that divide the siblings. An attempt is made to find NN siblings on 
  ** either side of pPage. More siblings are taken from one side, however, 
  ** if there are fewer than NN siblings on the other side. If pParent
  ** has NB or fewer children then all children of pParent are taken.  
  **
  ** This loop also drops the divider cells from the parent page. This
  ** way, the remainder of the function does not have to deal with any
  ** overflow cells in the parent page, since if any existed they will
  ** have already been removed.
  */
  i = pParent->nOverflow + pParent->nCell;
  if( i<2 ){
    nxDiv = 0;
    nOld = i+1;
  }else{
    nOld = 3;
    if( iParentIdx==0 ){                 
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
    if( rc ){
      memset(apOld, 0, i*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;

    if( pParent->nOverflow && i+nxDiv==pParent->aOvfl[0].idx ){
      apDiv[i] = pParent->aOvfl[0].pCell;
      pgno = get4byte(apDiv[i]);
      szNew[i] = cellSizePtr(pParent, apDiv[i]);
      pParent->nOverflow = 0;
    }else{
      apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
      pgno = get4byte(apDiv[i]);







|







5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
    if( rc ){
      memset(apOld, 0, i*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;

    if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
      apDiv[i] = pParent->aOvfl[0].pCell;
      pgno = get4byte(apDiv[i]);
      szNew[i] = cellSizePtr(pParent, apDiv[i]);
      pParent->nOverflow = 0;
    }else{
      apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
      pgno = get4byte(apDiv[i]);