SQLite

Check-in [9c09ac353d]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Add the Mem.szMalloc element to the Mem object and use it to keep track of the size of the Mem.zMalloc allocation.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 9c09ac353df6041808cace41880f4729ee73f5e1
User & Date: drh 2014-09-18 21:25:33.845
Context
2014-09-19
04:42
Add the sqlite3VdbeMemClearAndResize() function. Fix a sorting-index prefilter problem. (check-in: 987a7a2119 user: drh tags: trunk)
00:43
Add the sqlite3VdbeMemClearAndResize() interface to be used in place of sqlite3VdbeMemGrow(). A C++ style comment was left in this check-in by mistake, and so it has been moved into a branch to avoid problems in any future bisects on windows. (check-in: 5b9b898779 user: drh tags: Cplusplus-comment)
2014-09-18
21:25
Add the Mem.szMalloc element to the Mem object and use it to keep track of the size of the Mem.zMalloc allocation. (check-in: 9c09ac353d user: drh tags: trunk)
18:55
Correct typos in comments. No changes to code. (check-in: 5587993211 user: mistachkin tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/malloc.c.
447
448
449
450
451
452
453
454


455
456
457
458
459
460
461
462

463
464
465
466
467
468
469
*/
int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
  return sqlite3GlobalConfig.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *p){
  assert( db!=0 );


  assert( sqlite3_mutex_held(db->mutex) );
  if( isLookaside(db, p) ){
    return db->lookaside.sz;
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
    assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
    assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
    return sqlite3GlobalConfig.m.xSize(p);

  }
}
sqlite3_uint64 sqlite3_msize(void *p){
  return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
}

/*







|
>
>
|
|
|
|
|
|
|
|
>







447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
*/
int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
  return sqlite3GlobalConfig.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *p){
  if( db==0 ){
    return sqlite3MallocSize(p);
  }else{
    assert( sqlite3_mutex_held(db->mutex) );
    if( isLookaside(db, p) ){
      return db->lookaside.sz;
    }else{
      assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
      assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
      return sqlite3GlobalConfig.m.xSize(p);
    }
  }
}
sqlite3_uint64 sqlite3_msize(void *p){
  return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
}

/*
Changes to src/test_func.c.
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    if( iCurrent==iIdx ){
      sqlite3_result_value(context, &mem);
    }

    sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob







|







500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    if( iCurrent==iIdx ){
      sqlite3_result_value(context, &mem);
    }

    if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.zMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}







|







587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.szMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}
Changes to src/utf.c.
316
317
318
319
320
321
322

323
324
325
326
327
328
329

  c = pMem->flags;
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask);
  pMem->enc = desiredEnc;
  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;


translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);







>







316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

  c = pMem->flags;
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask);
  pMem->enc = desiredEnc;
  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;
  pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z);

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);
Changes to src/vdbe.c.
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->zMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;







|

|







1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->szMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/
case OP_Move: {
  char *zMalloc;   /* Holding variable for allocated memory */
  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  do{
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    sqlite3VdbeMemRelease(pOut);
    zMalloc = pOut->zMalloc;
    memcpy(pOut, pIn1, sizeof(Mem));
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
      pOut->pScopyFrom += p1 - pOp->p2;
    }
#endif
    pIn1->flags = MEM_Undefined;
    pIn1->zMalloc = zMalloc;
    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}








<

















|
<
<





<
<







1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168


1169
1170
1171
1172
1173


1174
1175
1176
1177
1178
1179
1180
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/
case OP_Move: {

  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  do{
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    sqlite3VdbeMemMove(pOut, pIn1);


#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
      pOut->pScopyFrom += p1 - pOp->p2;
    }
#endif


    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}

Changes to src/vdbeInt.h.
170
171
172
173
174
175
176
177


178
179
180
181
182
183
184
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  int n;              /* Number of characters in string value, excluding '\0' */
  char *z;            /* String or BLOB value */
  /* ShallowCopy only needs to copy the information above */
  char *zMalloc;      /* Dynamic buffer allocated by sqlite3_malloc() */


  sqlite3 *db;        /* The associated database connection */
  void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif
};







|
>
>







170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  int n;              /* Number of characters in string value, excluding '\0' */
  char *z;            /* String or BLOB value */
  /* ShallowCopy only needs to copy the information above */
  char *zMalloc;      /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */
  int szMalloc;       /* Size of the zMalloc allocation */
  int iPadding1;      /* Padding for 8-byte alignment */
  sqlite3 *db;        /* The associated database connection */
  void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif
};
Changes to src/vdbeapi.c.
805
806
807
808
809
810
811


812
813
814
815
816
817
818
    = {
        /* .u          = */ {0},
        /* .flags      = */ MEM_Null,
        /* .enc        = */ 0,
        /* .n          = */ 0,
        /* .z          = */ 0,
        /* .zMalloc    = */ 0,


        /* .db         = */ 0,
        /* .xDel       = */ 0,
#ifdef SQLITE_DEBUG
        /* .pScopyFrom = */ 0,
        /* .pFiller    = */ 0,
#endif
      };







>
>







805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
    = {
        /* .u          = */ {0},
        /* .flags      = */ MEM_Null,
        /* .enc        = */ 0,
        /* .n          = */ 0,
        /* .z          = */ 0,
        /* .zMalloc    = */ 0,
        /* .szMalloc   = */ 0,
        /* .iPadding1  = */ 0,
        /* .db         = */ 0,
        /* .xDel       = */ 0,
#ifdef SQLITE_DEBUG
        /* .pScopyFrom = */ 0,
        /* .pFiller    = */ 0,
#endif
      };
Changes to src/vdbeaux.c.
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);
        }else{
          Mem *p = (Mem*)p4;
          sqlite3DbFree(db, p->zMalloc);
          sqlite3DbFree(db, p);
        }
        break;
      }
      case P4_VTAB : {
        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
        break;







|







694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);
        }else{
          Mem *p = (Mem*)p4;
          if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
          sqlite3DbFree(db, p);
        }
        break;
      }
      case P4_VTAB : {
        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
        break;
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
static void releaseMemArray(Mem *p, int N){
  if( p && N ){
    Mem *pEnd;
    sqlite3 *db = p->db;
    u8 malloc_failed = db->mallocFailed;
    if( db->pnBytesFreed ){
      for(pEnd=&p[N]; p<pEnd; p++){
        sqlite3DbFree(db, p->zMalloc);
      }
      return;
    }
    for(pEnd=&p[N]; p<pEnd; p++){
      assert( (&p[1])==pEnd || p[0].db==p[1].db );
      assert( sqlite3VdbeCheckMemInvariants(p) );








|







1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
static void releaseMemArray(Mem *p, int N){
  if( p && N ){
    Mem *pEnd;
    sqlite3 *db = p->db;
    u8 malloc_failed = db->mallocFailed;
    if( db->pnBytesFreed ){
      for(pEnd=&p[N]; p<pEnd; p++){
        if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
      }
      return;
    }
    for(pEnd=&p[N]; p<pEnd; p++){
      assert( (&p[1])==pEnd || p[0].db==p[1].db );
      assert( sqlite3VdbeCheckMemInvariants(p) );

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
      */
      testcase( p->flags & MEM_Agg );
      testcase( p->flags & MEM_Dyn );
      testcase( p->flags & MEM_Frame );
      testcase( p->flags & MEM_RowSet );
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->zMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->zMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }
    db->mallocFailed = malloc_failed;
  }
}







|

|







1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
      */
      testcase( p->flags & MEM_Agg );
      testcase( p->flags & MEM_Dyn );
      testcase( p->flags & MEM_Frame );
      testcase( p->flags & MEM_RowSet );
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->szMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->szMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }
    db->mallocFailed = malloc_failed;
  }
}
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
  while( idx<szHdr && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    if( (++u)>=p->nField ) break;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
}







|







3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
  while( idx<szHdr && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->szMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    if( (++u)>=p->nField ) break;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
}
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  if( pKeyInfo->db==0 ) return 1;
  mem1.enc = pKeyInfo->enc;
  mem1.db = pKeyInfo->db;
  /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */

  /* Compilers may complain that mem1.u.i is potentially uninitialized.
  ** We could initialize it, as shown here, to silence those complaints.
  ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
  ** the unnecessary initialization has a measurable negative performance
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.







|







3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  if( pKeyInfo->db==0 ) return 1;
  mem1.enc = pKeyInfo->enc;
  mem1.db = pKeyInfo->db;
  /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */

  /* Compilers may complain that mem1.u.i is potentially uninitialized.
  ** We could initialize it, as shown here, to silence those complaints.
  ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
  ** the unnecessary initialization has a measurable negative performance
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
    if( rc!=0 ){
      assert( mem1.zMalloc==0 );  /* See comment below */
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;  /* Invert the result for DESC sort order. */
      }
      goto debugCompareEnd;
    }
    i++;
  }while( idx1<szHdr1 && i<pPKey2->nField );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  rc = pPKey2->default_rc;

debugCompareEnd:







|












|







3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
    if( rc!=0 ){
      assert( mem1.szMalloc==0 );  /* See comment below */
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;  /* Invert the result for DESC sort order. */
      }
      goto debugCompareEnd;
    }
    i++;
  }while( idx1<szHdr1 && i<pPKey2->nField );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
  */
  assert( mem1.szMalloc==0 );

  /* rc==0 here means that one of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  rc = pPKey2->default_rc;

debugCompareEnd:
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    c1.db = c2.db = pMem1->db;
    c1.flags = c2.flags = 0;
    c1.zMalloc = c2.zMalloc = 0;
    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);







|
|
<







3298
3299
3300
3301
3302
3303
3304
3305
3306

3307
3308
3309
3310
3311
3312
3313
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
    sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);

    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
    if( d1>(unsigned)nKey1 ){ 
      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
      return 0;  /* Corruption */
    }
    i = 0;
  }

  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
  assert( pPKey2->pKeyInfo->nField>0 );
  assert( idx1<=szHdr1 || CORRUPT_DB );
  do{
    u32 serial_type;







|







3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
    if( d1>(unsigned)nKey1 ){ 
      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
      return 0;  /* Corruption */
    }
    i = 0;
  }

  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
  assert( pPKey2->pKeyInfo->nField>0 );
  assert( idx1<=szHdr1 || CORRUPT_DB );
  do{
    u32 serial_type;
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
    }

    if( rc!=0 ){
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
      assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
      assert( mem1.zMalloc==0 );  /* See comment below */
      return rc;
    }

    i++;
    pRhs++;
    d1 += sqlite3VdbeSerialTypeLen(serial_type);
    idx1 += sqlite3VarintLen(serial_type);
  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed







|












|







3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
    }

    if( rc!=0 ){
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
      assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
      assert( mem1.szMalloc==0 );  /* See comment below */
      return rc;
    }

    i++;
    pRhs++;
    d1 += sqlite3VdbeSerialTypeLen(serial_type);
    idx1 += sqlite3VarintLen(serial_type);
  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
  assert( mem1.szMalloc==0 );

  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
  *rowid = v.u.i;
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;

  /* Jump here if database corruption is detected after m has been
  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
  testcase( m.zMalloc!=0 );
  sqlite3VdbeMemRelease(&m);
  return SQLITE_CORRUPT_BKPT;
}

/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked.  Write into *pRes a number







|







3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
  *rowid = v.u.i;
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;

  /* Jump here if database corruption is detected after m has been
  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
  testcase( m.szMalloc!=0 );
  sqlite3VdbeMemRelease(&m);
  return SQLITE_CORRUPT_BKPT;
}

/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked.  Write into *pRes a number
Changes to src/vdbemem.c.
29
30
31
32
33
34
35




36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
  /* If MEM_Dyn is set then Mem.xDel!=0.  
  ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
  */
  assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );

  /* Cannot be both MEM_Int and MEM_Real at the same time */
  assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );





  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
  **   (1) Memory in Mem.zMalloc and managed by the Mem object
  **   (2) Memory to be freed using Mem.xDel
  **   (3) An ephemeral string or blob
  **   (4) A static string or blob
  */
  if( (p->flags & (MEM_Str|MEM_Blob)) && p->z!=0 ){
    assert( 
      ((p->z==p->zMalloc)? 1 : 0) +
      ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
      ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
      ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
    );
  }
  return 1;
}







>
>
>
>









|

|







29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  /* If MEM_Dyn is set then Mem.xDel!=0.  
  ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
  */
  assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );

  /* Cannot be both MEM_Int and MEM_Real at the same time */
  assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );

  /* The szMalloc field holds the correct memory allocation size */
  assert( p->szMalloc==0
       || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );

  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
  **   (1) Memory in Mem.zMalloc and managed by the Mem object
  **   (2) Memory to be freed using Mem.xDel
  **   (3) An ephemeral string or blob
  **   (4) A static string or blob
  */
  if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
    assert( 
      ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
      ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
      ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
      ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
    );
  }
  return 1;
}
108
109
110
111
112
113
114

115

116
117
118
119
120
121
122
123
124
125
126

127


128
129
130
131
132
133
134
  assert( (pMem->flags&MEM_RowSet)==0 );

  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );


  if( pMem->zMalloc==0 || sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){

    if( n<32 ) n = 32;
    if( bPreserve && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      sqlite3VdbeMemSetNull(pMem);
      pMem->z = 0;

      return SQLITE_NOMEM;


    }
  }

  if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){







>
|
>

|



|





>

>
>







112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  assert( (pMem->flags&MEM_RowSet)==0 );

  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
  if( pMem->szMalloc<n ){
    if( n<32 ) n = 32;
    if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      sqlite3VdbeMemSetNull(pMem);
      pMem->z = 0;
      pMem->szMalloc = 0;
      return SQLITE_NOMEM;
    }else{
      pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
    }
  }

  if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int f;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  ExpandBlob(pMem);
  f = pMem->flags;
  if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
    if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
      return SQLITE_NOMEM;
    }
    pMem->z[pMem->n] = 0;
    pMem->z[pMem->n+1] = 0;
    pMem->flags |= MEM_Term;
#ifdef SQLITE_DEBUG







|







160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int f;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  ExpandBlob(pMem);
  f = pMem->flags;
  if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){
    if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
      return SQLITE_NOMEM;
    }
    pMem->z[pMem->n] = 0;
    pMem->z[pMem->n+1] = 0;
    pMem->flags |= MEM_Term;
#ifdef SQLITE_DEBUG
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( (pMem->flags & MEM_Dyn)==0 );
    sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*







|







306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( (pMem->flags & MEM_Dyn)==0 );
    if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
** the unusual case where there really is memory in p that needs
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
  if( VdbeMemDynamic(p) ){
    vdbeMemClearExternAndSetNull(p);
  }
  if( p->zMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->zMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory resources held by the Mem.  Both the memory that is
** free by Mem.xDel and the Mem.zMalloc allocation are freed.
**
** Use this routine prior to clean up prior to abandoning a Mem, or to
** reset a Mem back to its minimum memory utilization.
**
** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
** prior to inserting new content into the Mem.
*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( sqlite3VdbeCheckMemInvariants(p) );
  if( VdbeMemDynamic(p) || p->zMalloc ){
    vdbeMemClear(p);
  }
}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then







|

|
















|







356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
** the unusual case where there really is memory in p that needs
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
  if( VdbeMemDynamic(p) ){
    vdbeMemClearExternAndSetNull(p);
  }
  if( p->szMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->szMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory resources held by the Mem.  Both the memory that is
** free by Mem.xDel and the Mem.zMalloc allocation are freed.
**
** Use this routine prior to clean up prior to abandoning a Mem, or to
** reset a Mem back to its minimum memory utilization.
**
** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
** prior to inserting new content into the Mem.
*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( sqlite3VdbeCheckMemInvariants(p) );
  if( VdbeMemDynamic(p) || p->szMalloc ){
    vdbeMemClear(p);
  }
}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
**
** The minimum amount of initialization feasible is performed.
*/
void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
  assert( (flags & ~MEM_TypeMask)==0 );
  pMem->flags = flags;
  pMem->db = db;
  pMem->zMalloc = 0;
}


/*
** Delete any previous value and set the value stored in *pMem to NULL.
**
** This routine calls the Mem.xDel destructor to dispose of values that







|







597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
**
** The minimum amount of initialization feasible is performed.
*/
void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
  assert( (flags & ~MEM_TypeMask)==0 );
  pMem->flags = flags;
  pMem->db = db;
  pMem->szMalloc = 0;
}


/*
** Delete any previous value and set the value stored in *pMem to NULL.
**
** This routine calls the Mem.xDel destructor to dispose of values that
679
680
681
682
683
684
685

686
687

688
689
690
691
692
693
694
695
696
  sqlite3 *db = pMem->db;
  assert( db!=0 );
  assert( (pMem->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemRelease(pMem);
  pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
  if( db->mallocFailed ){
    pMem->flags = MEM_Null;

  }else{
    assert( pMem->zMalloc );

    pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, 
                                       sqlite3DbMallocSize(db, pMem->zMalloc));
    assert( pMem->u.pRowSet!=0 );
    pMem->flags = MEM_RowSet;
  }
}

/*
** Return true if the Mem object contains a TEXT or BLOB that is







>


>
|
<







688
689
690
691
692
693
694
695
696
697
698
699

700
701
702
703
704
705
706
  sqlite3 *db = pMem->db;
  assert( db!=0 );
  assert( (pMem->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemRelease(pMem);
  pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
  if( db->mallocFailed ){
    pMem->flags = MEM_Null;
    pMem->szMalloc = 0;
  }else{
    assert( pMem->zMalloc );
    pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
    pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);

    assert( pMem->u.pRowSet!=0 );
    pMem->flags = MEM_RowSet;
  }
}

/*
** Return true if the Mem object contains a TEXT or BLOB that is
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );

  sqlite3VdbeMemRelease(pTo);
  memcpy(pTo, pFrom, sizeof(Mem));
  pFrom->flags = MEM_Null;
  pFrom->zMalloc = 0;
}

/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
** parameter. If the value passed is SQLITE_TRANSIENT, then the 







|







795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );

  sqlite3VdbeMemRelease(pTo);
  memcpy(pTo, pFrom, sizeof(Mem));
  pFrom->flags = MEM_Null;
  pFrom->szMalloc = 0;
}

/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
** parameter. If the value passed is SQLITE_TRANSIENT, then the 
859
860
861
862
863
864
865

866
867
868
869
870
871
872
    if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
      return SQLITE_NOMEM;
    }
    memcpy(pMem->z, z, nAlloc);
  }else if( xDel==SQLITE_DYNAMIC ){
    sqlite3VdbeMemRelease(pMem);
    pMem->zMalloc = pMem->z = (char *)z;

  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->z = (char *)z;
    pMem->xDel = xDel;
    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
  }








>







869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
      return SQLITE_NOMEM;
    }
    memcpy(pMem->z, z, nAlloc);
  }else if( xDel==SQLITE_DYNAMIC ){
    sqlite3VdbeMemRelease(pMem);
    pMem->zMalloc = pMem->z = (char *)z;
    pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->z = (char *)z;
    pMem->xDel = xDel;
    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
  }

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3KeyInfoUnref(pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */








|







1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      if( aMem[i].szMalloc ) sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3KeyInfoUnref(pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */