SQLite

Check-in [982b753d0b]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update this branch with the latest changes from the trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | tempfiles-lazy-open
Files: files | file ages | folders
SHA1: 982b753d0b6a3ed9fba33ed41523b2cd42280276
User & Date: dan 2016-04-11 09:39:25.021
Context
2016-04-11
18:07
Fixes for OOM and IO error handling with temp file databases. (check-in: 4eb06e843a user: dan tags: tempfiles-lazy-open)
09:39
Update this branch with the latest changes from the trunk. (check-in: 982b753d0b user: dan tags: tempfiles-lazy-open)
01:43
Back off of the parser optimization in the previous check-in, slightly, to preserve some backwards compatibility regarding some undocumented behavior in the '#AAA' style query parameter. (check-in: ef1966c246 user: drh tags: trunk)
2016-04-06
18:20
For a pager backed by a temp file, store the main journal in memory until it is at least sqlite3_config.nStmtSpill bytes in size. Prevent the backup API from being used to change the page-size of a temp file. (check-in: 84c557010c user: dan tags: tempfiles-lazy-open)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
8135
8136
8137
8138
8139
8140
8141






















8142
8143
8144
8145
8146
8147
8148
  assert( pCur->eState==CURSOR_VALID );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);























  /* If the page containing the entry to delete is not a leaf page, move
  ** the cursor to the largest entry in the tree that is smaller than
  ** the entry being deleted. This cell will replace the cell being deleted
  ** from the internal node. The 'previous' entry is used for this instead
  ** of the 'next' entry, as the previous entry is always a part of the
  ** sub-tree headed by the child page of the cell being deleted. This makes







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
  assert( pCur->eState==CURSOR_VALID );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the bPreserve flag is set to true, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 
  ** returning. 
  **
  ** Or, if the current delete will not cause a rebalance, then the cursor
  ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
  ** before or after the deleted entry. In this case set bSkipnext to true.  */
  if( bPreserve ){
    if( !pPage->leaf 
     || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
    ){
      /* A b-tree rebalance will be required after deleting this entry.
      ** Save the cursor key.  */
      rc = saveCursorKey(pCur);
      if( rc ) return rc;
    }else{
      bSkipnext = 1;
    }
  }

  /* If the page containing the entry to delete is not a leaf page, move
  ** the cursor to the largest entry in the tree that is smaller than
  ** the entry being deleted. This cell will replace the cell being deleted
  ** from the internal node. The 'previous' entry is used for this instead
  ** of the 'next' entry, as the previous entry is always a part of the
  ** sub-tree headed by the child page of the cell being deleted. This makes
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }

  /* If the bPreserve flag is set to true, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 
  ** returning. 
  **
  ** Or, if the current delete will not cause a rebalance, then the cursor
  ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
  ** before or after the deleted entry. In this case set bSkipnext to true.  */
  if( bPreserve ){
    if( !pPage->leaf 
     || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
    ){
      /* A b-tree rebalance will be required after deleting this entry.
      ** Save the cursor key.  */
      rc = saveCursorKey(pCur);
      if( rc ) return rc;
    }else{
      bSkipnext = 1;
    }
  }

  /* Make the page containing the entry to be deleted writable. Then free any
  ** overflow pages associated with the entry and finally remove the cell
  ** itself from within the page.  */
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell, &szCell);
  dropCell(pPage, iCellIdx, szCell, &rc);







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







8184
8185
8186
8187
8188
8189
8190






















8191
8192
8193
8194
8195
8196
8197

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }























  /* Make the page containing the entry to be deleted writable. Then free any
  ** overflow pages associated with the entry and finally remove the cell
  ** itself from within the page.  */
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell, &szCell);
  dropCell(pPage, iCellIdx, szCell, &rc);
Changes to src/delete.c.
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  SrcList *pSelectSrc = NULL;  /* SELECT rowid FROM x ... (dup of pSrc) */
  Select *pSelect = NULL;      /* Complete SELECT tree */

  /* Check that there isn't an ORDER BY without a LIMIT clause.
  */
  if( pOrderBy && (pLimit == 0) ) {
    sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
    goto limit_where_cleanup_2;
  }

  /* We only need to generate a select expression if there
  ** is a limit/offset term to enforce.
  */
  if( pLimit == 0 ) {
    /* if pLimit is null, pOffset will always be null as well. */







|







139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  SrcList *pSelectSrc = NULL;  /* SELECT rowid FROM x ... (dup of pSrc) */
  Select *pSelect = NULL;      /* Complete SELECT tree */

  /* Check that there isn't an ORDER BY without a LIMIT clause.
  */
  if( pOrderBy && (pLimit == 0) ) {
    sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
    goto limit_where_cleanup;
  }

  /* We only need to generate a select expression if there
  ** is a limit/offset term to enforce.
  */
  if( pLimit == 0 ) {
    /* if pLimit is null, pOffset will always be null as well. */
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
  ** becomes:
  **   DELETE FROM table_a WHERE rowid IN ( 
  **     SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
  **   );
  */

  pSelectRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
  if( pSelectRowid == 0 ) goto limit_where_cleanup_2;
  pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid);
  if( pEList == 0 ) goto limit_where_cleanup_2;

  /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
  ** and the SELECT subtree. */
  pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0);
  if( pSelectSrc == 0 ) {
    sqlite3ExprListDelete(pParse->db, pEList);
    goto limit_where_cleanup_2;
  }

  /* generate the SELECT expression tree. */
  pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0,
                             pOrderBy,0,pLimit,pOffset);
  if( pSelect == 0 ) return 0;

  /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */
  pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
  if( pWhereRowid == 0 ) goto limit_where_cleanup_1;
  pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0);
  if( pInClause == 0 ) goto limit_where_cleanup_1;

  pInClause->x.pSelect = pSelect;
  pInClause->flags |= EP_xIsSelect;
  sqlite3ExprSetHeightAndFlags(pParse, pInClause);
  return pInClause;

  /* something went wrong. clean up anything allocated. */
limit_where_cleanup_1:
  sqlite3SelectDelete(pParse->db, pSelect);
  return 0;

limit_where_cleanup_2:
  sqlite3ExprDelete(pParse->db, pWhere);
  sqlite3ExprListDelete(pParse->db, pOrderBy);
  sqlite3ExprDelete(pParse->db, pLimit);
  sqlite3ExprDelete(pParse->db, pOffset);
  return 0;
}
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) */







|

|






|









<
|
<
<
<
<
|


<
|
<
<
<
<







161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187




188
189
190

191




192
193
194
195
196
197
198
  ** becomes:
  **   DELETE FROM table_a WHERE rowid IN ( 
  **     SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
  **   );
  */

  pSelectRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
  if( pSelectRowid == 0 ) goto limit_where_cleanup;
  pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid);
  if( pEList == 0 ) goto limit_where_cleanup;

  /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
  ** and the SELECT subtree. */
  pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0);
  if( pSelectSrc == 0 ) {
    sqlite3ExprListDelete(pParse->db, pEList);
    goto limit_where_cleanup;
  }

  /* generate the SELECT expression tree. */
  pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0,
                             pOrderBy,0,pLimit,pOffset);
  if( pSelect == 0 ) return 0;

  /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */
  pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);

  pInClause = pWhereRowid ? sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0) : 0;




  sqlite3PExprAddSelect(pParse, pInClause, pSelect);
  return pInClause;


limit_where_cleanup:




  sqlite3ExprDelete(pParse->db, pWhere);
  sqlite3ExprListDelete(pParse->db, pOrderBy);
  sqlite3ExprDelete(pParse->db, pLimit);
  sqlite3ExprDelete(pParse->db, pOffset);
  return 0;
}
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) */
Changes to src/expr.c.
557
558
559
560
561
562
563
















564
565
566
567
568
569
570
    sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
  }
  if( p ) {
    sqlite3ExprCheckHeight(pParse, p->nHeight);
  }
  return p;
}

















/*
** If the expression is always either TRUE or FALSE (respectively),
** then return 1.  If one cannot determine the truth value of the
** expression at compile-time return 0.
**
** This is an optimization.  If is OK to return 0 here even if







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
  }
  if( p ) {
    sqlite3ExprCheckHeight(pParse, p->nHeight);
  }
  return p;
}

/*
** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
** do a memory allocation failure) then delete the pSelect object.
*/
void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
  if( pExpr ){
    pExpr->x.pSelect = pSelect;
    ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
    sqlite3ExprSetHeightAndFlags(pParse, pExpr);
  }else{
    assert( pParse->db->mallocFailed );
    sqlite3SelectDelete(pParse->db, pSelect);
  }
}


/*
** If the expression is always either TRUE or FALSE (respectively),
** then return 1.  If one cannot determine the truth value of the
** expression at compile-time return 0.
**
** This is an optimization.  If is OK to return 0 here even if
Changes to src/memjournal.c.
90
91
92
93
94
95
96

97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  if( (iAmt+iOfst)>p->endpoint.iOffset ){
    return SQLITE_IOERR_SHORT_READ;
  }
#endif

  assert( (iAmt+iOfst)<=p->endpoint.iOffset );

  if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
    sqlite3_int64 iOff = 0;
    for(pChunk=p->pFirst; 
        ALWAYS(pChunk) && (iOff+p->nChunkSize)<=iOfst;
        pChunk=pChunk->pNext
    ){
      iOff += p->nChunkSize;
    }
  }else{
    pChunk = p->readpoint.pChunk;

  }

  iChunkOffset = (int)(iOfst%p->nChunkSize);
  do {
    int iSpace = p->nChunkSize - iChunkOffset;
    int nCopy = MIN(nRead, (p->nChunkSize - iChunkOffset));
    memcpy(zOut, (u8*)pChunk->zChunk + iChunkOffset, nCopy);
    zOut += nCopy;
    nRead -= iSpace;
    iChunkOffset = 0;
  } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
  p->readpoint.iOffset = iOfst+iAmt;
  p->readpoint.pChunk = pChunk;

  return SQLITE_OK;
}

/*
** Free the list of FileChunk structures headed at MemJournal.pFirst.







>










>











|







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  if( (iAmt+iOfst)>p->endpoint.iOffset ){
    return SQLITE_IOERR_SHORT_READ;
  }
#endif

  assert( (iAmt+iOfst)<=p->endpoint.iOffset );
  assert( p->readpoint.iOffset==0 || p->readpoint.pChunk!=0 );
  if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
    sqlite3_int64 iOff = 0;
    for(pChunk=p->pFirst; 
        ALWAYS(pChunk) && (iOff+p->nChunkSize)<=iOfst;
        pChunk=pChunk->pNext
    ){
      iOff += p->nChunkSize;
    }
  }else{
    pChunk = p->readpoint.pChunk;
    assert( pChunk!=0 );
  }

  iChunkOffset = (int)(iOfst%p->nChunkSize);
  do {
    int iSpace = p->nChunkSize - iChunkOffset;
    int nCopy = MIN(nRead, (p->nChunkSize - iChunkOffset));
    memcpy(zOut, (u8*)pChunk->zChunk + iChunkOffset, nCopy);
    zOut += nCopy;
    nRead -= iSpace;
    iChunkOffset = 0;
  } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
  p->readpoint.iOffset = pChunk ? iOfst+iAmt : 0;
  p->readpoint.pChunk = pChunk;

  return SQLITE_OK;
}

/*
** Free the list of FileChunk structures headed at MemJournal.pFirst.
Changes to src/os_unix.c.
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514






1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
** routine to lower a locking level.
*/
static int unixLock(sqlite3_file *id, int eFileLock){
  /* The following describes the implementation of the various locks and
  ** lock transitions in terms of the POSIX advisory shared and exclusive
  ** lock primitives (called read-locks and write-locks below, to avoid
  ** confusion with SQLite lock names). The algorithms are complicated
  ** slightly in order to be compatible with windows systems simultaneously
  ** accessing the same database file, in case that is ever required.
  **
  ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
  ** byte', each single bytes at well known offsets, and the 'shared byte
  ** range', a range of 510 bytes at a well known offset.
  **
  ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
  ** byte'.  If this is successful, a random byte from the 'shared byte
  ** range' is read-locked and the lock on the 'pending byte' released.






  **
  ** A process may only obtain a RESERVED lock after it has a SHARED lock.
  ** A RESERVED lock is implemented by grabbing a write-lock on the
  ** 'reserved byte'. 
  **
  ** A process may only obtain a PENDING lock after it has obtained a
  ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
  ** on the 'pending byte'. This ensures that no new SHARED locks can be
  ** obtained, but existing SHARED locks are allowed to persist. A process
  ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
  ** This property is used by the algorithm for rolling back a journal file
  ** after a crash.
  **
  ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
  ** implemented by obtaining a write-lock on the entire 'shared byte
  ** range'. Since all other locks require a read-lock on one of the bytes
  ** within this range, this ensures that no other locks are held on the
  ** database. 
  **
  ** The reason a single byte cannot be used instead of the 'shared byte
  ** range' is that some versions of windows do not support read-locks. By
  ** locking a random byte from a range, concurrent SHARED locks may exist
  ** even if the locking primitive used is always a write-lock.
  */
  int rc = SQLITE_OK;
  unixFile *pFile = (unixFile*)id;
  unixInodeInfo *pInode;
  struct flock lock;
  int tErrno = 0;








|







|
|
>
>
>
>
>
>


















<
<
<
<
<







1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538





1539
1540
1541
1542
1543
1544
1545
** routine to lower a locking level.
*/
static int unixLock(sqlite3_file *id, int eFileLock){
  /* The following describes the implementation of the various locks and
  ** lock transitions in terms of the POSIX advisory shared and exclusive
  ** lock primitives (called read-locks and write-locks below, to avoid
  ** confusion with SQLite lock names). The algorithms are complicated
  ** slightly in order to be compatible with Windows95 systems simultaneously
  ** accessing the same database file, in case that is ever required.
  **
  ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
  ** byte', each single bytes at well known offsets, and the 'shared byte
  ** range', a range of 510 bytes at a well known offset.
  **
  ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
  ** byte'.  If this is successful, 'shared byte range' is read-locked
  ** and the lock on the 'pending byte' released.  (Legacy note:  When
  ** SQLite was first developed, Windows95 systems were still very common,
  ** and Widnows95 lacks a shared-lock capability.  So on Windows95, a
  ** single randomly selected by from the 'shared byte range' is locked.
  ** Windows95 is now pretty much extinct, but this work-around for the
  ** lack of shared-locks on Windows95 lives on, for backwards
  ** compatibility.)
  **
  ** A process may only obtain a RESERVED lock after it has a SHARED lock.
  ** A RESERVED lock is implemented by grabbing a write-lock on the
  ** 'reserved byte'. 
  **
  ** A process may only obtain a PENDING lock after it has obtained a
  ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
  ** on the 'pending byte'. This ensures that no new SHARED locks can be
  ** obtained, but existing SHARED locks are allowed to persist. A process
  ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
  ** This property is used by the algorithm for rolling back a journal file
  ** after a crash.
  **
  ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
  ** implemented by obtaining a write-lock on the entire 'shared byte
  ** range'. Since all other locks require a read-lock on one of the bytes
  ** within this range, this ensures that no other locks are held on the
  ** database. 





  */
  int rc = SQLITE_OK;
  unixFile *pFile = (unixFile*)id;
  unixInodeInfo *pInode;
  struct flock lock;
  int tErrno = 0;

Changes to src/parse.y.
867
868
869
870
871
872
873
874
875



876
877
878


879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
  Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
  spanSet(&A,&X,&Z); /*A-overwrites-X*/
  A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
}
term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
term(A) ::= STRING(X).             {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
expr(A) ::= VARIABLE(X).     {
  Token t = X; /*A-overwrites-X*/
  if( t.n>=2 && t.z[0]=='#' && sqlite3Isdigit(t.z[1]) ){



    /* When doing a nested parse, one can include terms in an expression
    ** that look like this:   #1 #2 ...  These terms refer to registers
    ** in the virtual machine.  #N is the N-th register. */


    spanSet(&A, &t, &t);
    if( pParse->nested==0 ){
      sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
      A.pExpr = 0;
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &t);
      if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable);
    }
  }else{
    spanExpr(&A, pParse, TK_VARIABLE, t);
    sqlite3ExprAssignVarNumber(pParse, A.pExpr);
  }
}
expr(A) ::= expr(A) COLLATE ids(C). {
  A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1);
  A.zEnd = &C.z[C.n];
}
%ifndef SQLITE_OMIT_CAST







<
|
>
>
>



>
>








<
<
<







867
868
869
870
871
872
873

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890



891
892
893
894
895
896
897
  Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
  spanSet(&A,&X,&Z); /*A-overwrites-X*/
  A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
}
term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
term(A) ::= STRING(X).             {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
expr(A) ::= VARIABLE(X).     {

  if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
    spanExpr(&A, pParse, TK_VARIABLE, X);
    sqlite3ExprAssignVarNumber(pParse, A.pExpr);
  }else{
    /* When doing a nested parse, one can include terms in an expression
    ** that look like this:   #1 #2 ...  These terms refer to registers
    ** in the virtual machine.  #N is the N-th register. */
    Token t = X; /*A-overwrites-X*/
    assert( t.n>=2 );
    spanSet(&A, &t, &t);
    if( pParse->nested==0 ){
      sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
      A.pExpr = 0;
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &t);
      if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable);
    }



  }
}
expr(A) ::= expr(A) COLLATE ids(C). {
  A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1);
  A.zEnd = &C.z[C.n];
}
%ifndef SQLITE_OMIT_CAST
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
      exprNot(pParse, N, &A);
    }
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= LP(B) select(X) RP(E). {
    spanSet(&A,&B,&E); /*A-overwrites-B*/
    A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = X;
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, X);
    }
  }
  expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E).  [IN] {
    A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = Y;
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, Y);
    }
    exprNot(pParse, N, &A);
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z). [IN] {
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);

    A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SrcListDelete(pParse->db, pSrc);
    }
    exprNot(pParse, N, &A);
    A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
  }
  expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
    Expr *p;
    spanSet(&A,&B,&E); /*A-overwrites-B*/
    p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
    if( p ){
      p->x.pSelect = Y;
      ExprSetProperty(p, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, p);
    }else{
      sqlite3SelectDelete(pParse->db, Y);
    }
  }
%endif SQLITE_OMIT_SUBQUERY

/* CASE expressions */
expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
  spanSet(&A,&C,&E);  /*A-overwrites-C*/
  A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0);







<
<
<
|
<
<
<



<
<
<
|
<
<
<





>

<
<
<
|
<
<
<







<
<
<
|
<
<
<







1119
1120
1121
1122
1123
1124
1125



1126



1127
1128
1129



1130



1131
1132
1133
1134
1135
1136
1137



1138



1139
1140
1141
1142
1143
1144
1145



1146



1147
1148
1149
1150
1151
1152
1153
      exprNot(pParse, N, &A);
    }
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= LP(B) select(X) RP(E). {
    spanSet(&A,&B,&E); /*A-overwrites-B*/
    A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);



    sqlite3PExprAddSelect(pParse, A.pExpr, X);



  }
  expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E).  [IN] {
    A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0);



    sqlite3PExprAddSelect(pParse, A.pExpr, Y);



    exprNot(pParse, N, &A);
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z). [IN] {
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
    Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
    A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0);



    sqlite3PExprAddSelect(pParse, A.pExpr, pSelect);



    exprNot(pParse, N, &A);
    A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
  }
  expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
    Expr *p;
    spanSet(&A,&B,&E); /*A-overwrites-B*/
    p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);



    sqlite3PExprAddSelect(pParse, p, Y);



  }
%endif SQLITE_OMIT_SUBQUERY

/* CASE expressions */
expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
  spanSet(&A,&C,&E);  /*A-overwrites-C*/
  A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0);
Changes to src/sqlite.h.in.
8077
8078
8079
8080
8081
8082
8083
8084
8085

8086

8087
8088
8089
8090
8091


8092

8093
8094

8095

8096


8097
8098
8099
8100
8101
8102
8103
8104
  sqlite3_snapshot **ppSnapshot
);

/*
** CAPI3REF: Start a read transaction on an historical snapshot
** EXPERIMENTAL
**
** ^The [sqlite3_snapshot_open(D,S,P)] interface attempts to move the
** read transaction that is currently open on schema S of

** [database connection] D so that it refers to historical [snapshot] P.

** ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK on success
** or an appropriate [error code] if it fails.
**
** ^In order to succeed, a call to [sqlite3_snapshot_open(D,S,P)] must be
** the first operation, apart from other sqlite3_snapshot_open() calls,


** following the [BEGIN] that starts a new read transaction.

** ^A [snapshot] will fail to open if it has been overwritten by a 
** [checkpoint].

** ^A [snapshot] will fail to open if the database connection D has not

** previously completed at least one read operation against the database 


** file.  (Hint: Run "[PRAGMA application_id]" against a newly opened
** database connection in order to make it ready to use snapshots.)
**
** The [sqlite3_snapshot_open()] interface is only available when the
** SQLITE_ENABLE_SNAPSHOT compile-time option is used.
*/
SQLITE_EXPERIMENTAL int sqlite3_snapshot_open(
  sqlite3 *db,







|
|
>
|
>




|
>
>
|
>
|

>
|
>
|
>
>
|







8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
  sqlite3_snapshot **ppSnapshot
);

/*
** CAPI3REF: Start a read transaction on an historical snapshot
** EXPERIMENTAL
**
** ^The [sqlite3_snapshot_open(D,S,P)] interface starts a
** read transaction for schema S of
** [database connection] D such that the read transaction
** refers to historical [snapshot] P, rather than the most
** recent change to the database.
** ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK on success
** or an appropriate [error code] if it fails.
**
** ^In order to succeed, a call to [sqlite3_snapshot_open(D,S,P)] must be
** the first operation following the [BEGIN] that takes the schema S
** out of [autocommit mode].
** ^In other words, schema S must not currently be in
** a transaction for [sqlite3_snapshot_open(D,S,P)] to work, but the
** database connection D must be out of [autocommit mode].
** ^A [snapshot] will fail to open if it has been overwritten by a
** [checkpoint].
** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the
** database connection D does not know that the database file for
** schema S is in [WAL mode].  A database connection might not know
** that the database file is in [WAL mode] if there has been no prior
** I/O on that database connection, or if the database entered [WAL mode] 
** after the most recent I/O on the database connection.)^
** (Hint: Run "[PRAGMA application_id]" against a newly opened
** database connection in order to make it ready to use snapshots.)
**
** The [sqlite3_snapshot_open()] interface is only available when the
** SQLITE_ENABLE_SNAPSHOT compile-time option is used.
*/
SQLITE_EXPERIMENTAL int sqlite3_snapshot_open(
  sqlite3 *db,
Changes to src/sqliteInt.h.
3445
3446
3447
3448
3449
3450
3451

3452
3453
3454
3455
3456
3457
3458
#ifdef SQLITE_DEBUG
int sqlite3NoTempsInRange(Parse*,int,int);
#endif
Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
Expr *sqlite3Expr(sqlite3*,int,const char*);
void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);

Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
void sqlite3ExprAssignVarNumber(Parse*, Expr*);
void sqlite3ExprDelete(sqlite3*, Expr*);
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
void sqlite3ExprListSetSortOrder(ExprList*,int);
void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);







>







3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
#ifdef SQLITE_DEBUG
int sqlite3NoTempsInRange(Parse*,int,int);
#endif
Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
Expr *sqlite3Expr(sqlite3*,int,const char*);
void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
void sqlite3PExprAddSelect(Parse*, Expr*, Select*);
Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
void sqlite3ExprAssignVarNumber(Parse*, Expr*);
void sqlite3ExprDelete(sqlite3*, Expr*);
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
void sqlite3ExprListSetSortOrder(ExprList*,int);
void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
Changes to src/util.c.
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
** Convert a LogEst into an integer.
**
** Note that this routine is only used when one or more of various
** non-standard compile-time options is enabled.
*/
u64 sqlite3LogEstToInt(LogEst x){
  u64 n;
  if( x<10 ) return 1;
  n = x%10;
  x /= 10;
  if( n>=5 ) n -= 2;
  else if( n>=1 ) n -= 1;
#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
    defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
  if( x>60 ) return (u64)LARGEST_INT64;







<







1444
1445
1446
1447
1448
1449
1450

1451
1452
1453
1454
1455
1456
1457
** Convert a LogEst into an integer.
**
** Note that this routine is only used when one or more of various
** non-standard compile-time options is enabled.
*/
u64 sqlite3LogEstToInt(LogEst x){
  u64 n;

  n = x%10;
  x /= 10;
  if( n>=5 ) n -= 2;
  else if( n>=1 ) n -= 1;
#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
    defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
  if( x>60 ) return (u64)LARGEST_INT64;
Changes to src/vdbe.c.
2751
2752
2753
2754
2755
2756
2757


2758
2759
2760
2761
2762
2763
2764
2765
        len -= pRec->u.nZero;
      }
    }
    nData += len;
    testcase( serial_type==127 );
    testcase( serial_type==128 );
    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);


  }while( (--pRec)>=pData0 );

  /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
  ** which determines the total number of bytes in the header. The varint
  ** value is the size of the header in bytes including the size varint
  ** itself. */
  testcase( nHdr==126 );
  testcase( nHdr==127 );







>
>
|







2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
        len -= pRec->u.nZero;
      }
    }
    nData += len;
    testcase( serial_type==127 );
    testcase( serial_type==128 );
    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
    if( pRec==pData0 ) break;
    pRec--;
  }while(1);

  /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
  ** which determines the total number of bytes in the header. The varint
  ** value is the size of the header in bytes including the size varint
  ** itself. */
  testcase( nHdr==126 );
  testcase( nHdr==127 );
Changes to src/vdbeaux.c.
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

static void vdbeFreeOpArray(sqlite3 *, Op *, int);

/*
** Delete a P4 value if necessary.
*/
static void freeP4(sqlite3 *db, int p4type, void *p4){
  if( p4 ){
    assert( db );
    switch( p4type ){
      case P4_FUNCCTX: {
        freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
        /* Fall through into the next case */
      }
      case P4_REAL:
      case P4_INT64:
      case P4_DYNAMIC:
      case P4_INTARRAY: {
        sqlite3DbFree(db, p4);
        break;
      }
      case P4_KEYINFO: {
        if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
        break;
      }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
      case P4_EXPR: {
        sqlite3ExprDelete(db, (Expr*)p4);
        break;
      }
#endif
      case P4_MPRINTF: {
        if( db->pnBytesFreed==0 ) sqlite3_free(p4);
        break;
      }
      case P4_FUNCDEF: {
        freeEphemeralFunction(db, (FuncDef*)p4);
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);
        }else{
          Mem *p = (Mem*)p4;
          if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
          sqlite3DbFree(db, p);
        }
        break;
      }
      case P4_VTAB : {
        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
        break;
      }
    }
  }
}

/*
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain 







<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<







787
788
789
790
791
792
793

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

838
839
840
841
842
843
844

static void vdbeFreeOpArray(sqlite3 *, Op *, int);

/*
** Delete a P4 value if necessary.
*/
static void freeP4(sqlite3 *db, int p4type, void *p4){

  assert( db );
  switch( p4type ){
    case P4_FUNCCTX: {
      freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
      /* Fall through into the next case */
    }
    case P4_REAL:
    case P4_INT64:
    case P4_DYNAMIC:
    case P4_INTARRAY: {
      sqlite3DbFree(db, p4);
      break;
    }
    case P4_KEYINFO: {
      if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
      break;
    }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    case P4_EXPR: {
      sqlite3ExprDelete(db, (Expr*)p4);
      break;
    }
#endif
    case P4_MPRINTF: {
      if( db->pnBytesFreed==0 ) sqlite3_free(p4);
      break;
    }
    case P4_FUNCDEF: {
      freeEphemeralFunction(db, (FuncDef*)p4);
      break;
    }
    case P4_MEM: {
      if( db->pnBytesFreed==0 ){
        sqlite3ValueFree((sqlite3_value*)p4);
      }else{
        Mem *p = (Mem*)p4;
        if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
        sqlite3DbFree(db, p);
      }
      break;
    }
    case P4_VTAB : {
      if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
      break;

    }
  }
}

/*
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain 
Changes to src/where.c.
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

1657
1658
1659
1660
1661
1662
1663
1664
1665

#ifdef WHERETRACE_ENABLED
/*
** Print a WhereLoop object for debugging purposes
*/
static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
  WhereInfo *pWInfo = pWC->pWInfo;
  int nb = 1+(pWInfo->pTabList->nSrc+7)/8;
  struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
  Table *pTab = pItem->pTab;

  sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
                     p->iTab, nb, p->maskSelf, nb, p->prereq);
  sqlite3DebugPrintf(" %12s",
                     pItem->zAlias ? pItem->zAlias : pTab->zName);
  if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
    const char *zName;
    if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
      if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
        int i = sqlite3Strlen30(zName) - 1;







|


>

|







1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

#ifdef WHERETRACE_ENABLED
/*
** Print a WhereLoop object for debugging purposes
*/
static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
  WhereInfo *pWInfo = pWC->pWInfo;
  int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
  struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
  Table *pTab = pItem->pTab;
  Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
  sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
                     p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
  sqlite3DebugPrintf(" %12s",
                     pItem->zAlias ? pItem->zAlias : pTab->zName);
  if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
    const char *zName;
    if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
      if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
        int i = sqlite3Strlen30(zName) - 1;
Changes to src/wherecode.c.
937
938
939
940
941
942
943





944

945
946
947
948
949
950
951
            sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
          }
          pCompare->pLeft = 0;
          sqlite3ExprDelete(db, pCompare);
        }
      }
    }





    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);

    sqlite3ExprCachePop(pParse);
  }else
#endif /* SQLITE_OMIT_VIRTUALTABLE */

  if( (pLoop->wsFlags & WHERE_IPK)!=0
   && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
  ){







>
>
>
>
>
|
>







937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
            sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
          }
          pCompare->pLeft = 0;
          sqlite3ExprDelete(db, pCompare);
        }
      }
    }
    /* These registers need to be preserved in case there is an IN operator
    ** loop.  So we could deallocate the registers here (and potentially
    ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
    ** simpler and safer to simply not reuse the registers.
    **
    **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
    */
    sqlite3ExprCachePop(pParse);
  }else
#endif /* SQLITE_OMIT_VIRTUALTABLE */

  if( (pLoop->wsFlags & WHERE_IPK)!=0
   && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
  ){
Changes to test/bestindex1.test.
160
161
162
163
164
165
166











































































































167
168
    0 0 0 {USE TEMP B-TREE FOR ORDER BY}
  }

  do_eqp_test 2.2.$mode.6 { 
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } $plan($mode)
}












































































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    0 0 0 {USE TEMP B-TREE FOR ORDER BY}
  }

  do_eqp_test 2.2.$mode.6 { 
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } $plan($mode)
}

# 2016-04-09.
# Demonstrate a register overwrite problem when using two virtual
# tables where the outer loop uses the IN operator.
#
set G(collist) [list PrimaryKey flagA columnA]
set G(cols) [join $G(collist) ,]
set G(nulls) "NULL"

proc vtab_command {method args} {
  global G

  switch -- $method {
    xConnect {
      return "CREATE TABLE t1($G(cols))"
    }

    xBestIndex {
      set clist [lindex $args 0]
      #puts $clist
      set W [list]
      set U [list]

      set i 0
      for {set idx 0} {$idx < [llength $clist]} {incr idx} {
        array set c [lindex $clist $idx]
        if {$c(op)=="eq" && $c(usable)} {
          lappend W "[lindex $G(collist) $c(column)] = %$i%"
          lappend U use $idx
          incr i
        }
      }

      if {$W==""} {
        set sql "SELECT rowid, * FROM t1"
      } else {
        set sql "SELECT rowid, * FROM t1 WHERE [join $W { AND }]"
      }

      return [concat [list idxstr $sql] $U]
    }

    xFilter {
      foreach {idxnum idxstr vals} $args {}

      set map [list]
      for {set i 0} {$i < [llength $vals]} {incr i} {
        lappend map "%$i%" 
        set v [lindex $vals $i]
        if {[string is integer $v]} { 
          lappend map $v 
        } else {
          lappend map "'$v'"
        }
      }
      set sql [string map $map $idxstr]

      #puts "SQL: $sql"
      return [list sql $sql]
    }
  }

  return {}
}

db close
forcedelete test.db
sqlite3 db test.db
register_tcl_module db

do_execsql_test 3.1 "
  CREATE TABLE t1($G(cols));
  INSERT INTO t1 VALUES(1, 0, 'ValueA');
  INSERT INTO t1 VALUES(2, 0, 'ValueA');
  INSERT INTO t1 VALUES(3, 0, 'ValueB');
  INSERT INTO t1 VALUES(4, 0, 'ValueB');
"

do_execsql_test 3.2 {
  CREATE VIRTUAL TABLE VirtualTableA USING tcl(vtab_command);
  CREATE VIRTUAL TABLE VirtualTableB USING tcl(vtab_command);
}

do_execsql_test 3.3 { SELECT primarykey FROM VirtualTableA } {1 2 3 4}

do_execsql_test 3.4 {
  SELECT * FROM 
  VirtualTableA a CROSS JOIN VirtualTableB b ON b.PrimaryKey=a.PrimaryKey
  WHERE a.ColumnA IN ('ValueA', 'ValueB') AND a.FlagA=0
} {
  1 0 ValueA 1 0 ValueA
  2 0 ValueA 2 0 ValueA
  3 0 ValueB 3 0 ValueB
  4 0 ValueB 4 0 ValueB
}

do_execsql_test 3.5 {
  SELECT * FROM 
  VirtualTableA a CROSS JOIN VirtualTableB b ON b.PrimaryKey=a.PrimaryKey
  WHERE a.FlagA=0 AND a.ColumnA IN ('ValueA', 'ValueB') 
} {
  1 0 ValueA 1 0 ValueA
  2 0 ValueA 2 0 ValueA
  3 0 ValueB 3 0 ValueB
  4 0 ValueB 4 0 ValueB
}


finish_test
Changes to test/delete4.test.
135
136
137
138
139
140
141
142



143
















144
145
  INSERT INTO t4 VALUES(14, 'abcde','xyzzy');
  CREATE INDEX idx_t4_3 ON t4 (col0);
  CREATE INDEX idx_t4_0 ON t4 (col1, col0);
  DELETE FROM t4 WHERE col0=69 OR col0>7;
  PRAGMA integrity_check;
} {ok}























finish_test







|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
  INSERT INTO t4 VALUES(14, 'abcde','xyzzy');
  CREATE INDEX idx_t4_3 ON t4 (col0);
  CREATE INDEX idx_t4_0 ON t4 (col1, col0);
  DELETE FROM t4 WHERE col0=69 OR col0>7;
  PRAGMA integrity_check;
} {ok}

# 2016-04-09
# Ticket https://sqlite.org/src/info/a306e56ff68b8fa5
# Failure to completely delete when reverse_unordered_selects is
# engaged.
#
db close
forcedelete test.db
sqlite3 db test.db
do_execsql_test 5.0 {
  PRAGMA page_size=1024;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX x1 ON t1(b, c);
  INSERT INTO t1(a,b,c) VALUES(1, 1, zeroblob(80));
  INSERT INTO t1(a,b,c) SELECT a+1, 1, c FROM t1;
  INSERT INTO t1(a,b,c) SELECT a+2, 1, c FROM t1;
  INSERT INTO t1(a,b,c) SELECT a+10, 2, c FROM t1 WHERE b=1;
  INSERT INTO t1(a,b,c) SELECT a+20, 3, c FROM t1 WHERE b=1;
  PRAGMA reverse_unordered_selects = ON;
  DELETE FROM t1 WHERE b=2;
  SELECT a FROM t1 WHERE b=2;
} {}

finish_test
Changes to test/savepoint7.test.
90
91
92
93
94
95
96


































97
98
        INSERT INTO t2 VALUES($a,$b,$c);
        ROLLBACK TO x2;
      }
    }
  } msg]
  list $rc $msg [db eval {SELECT * FROM t2}]
} {1 {abort due to ROLLBACK} {}}



































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        INSERT INTO t2 VALUES($a,$b,$c);
        ROLLBACK TO x2;
      }
    }
  } msg]
  list $rc $msg [db eval {SELECT * FROM t2}]
} {1 {abort due to ROLLBACK} {}}

# Ticket: https://www.sqlite.org/src/tktview/7f7f8026eda387d544b
# Segfault in the in-memory journal logic triggered by a tricky
# combination of SAVEPOINT operations.
#
unset -nocomplain i
for {set i 248} {$i<=253} {incr i} {
  do_test savepoint7-3.$i {
    db close
    forcedelete test.db
    sqlite3 db test.db
    db eval {
      PRAGMA page_size=1024;
      PRAGMA temp_store=MEMORY;
      BEGIN;
      CREATE TABLE t1(x INTEGER PRIMARY KEY, y TEXT);
      WITH RECURSIVE c(x) AS (VALUES(1) UNION SELECT x+1 FROM c WHERE x<$::i)
      INSERT INTO t1(x,y) SELECT x*10, printf('%04d%.800c',x,'*') FROM c;
      SAVEPOINT one;
        SELECT count(*) FROM t1;
        WITH RECURSIVE c(x) AS (VALUES(1) UNION SELECT x+1 FROM c WHERE x<$::i)
        INSERT INTO t1(x,y) SELECT x*10+1, printf('%04d%.800c',x,'*') FROM c;
      ROLLBACK TO one;
        SELECT count(*) FROM t1;
        SAVEPOINT twoB;
          WITH RECURSIVE c(x) AS (VALUES(1) UNION SELECT x+1 FROM c WHERE x<10)
          INSERT INTO t1(x,y) SELECT x*10+2, printf('%04d%.800c',x,'*') FROM c;
        ROLLBACK TO twoB;
      RELEASE one;
      COMMIT;
    }
  } [list $i $i]
}


finish_test