Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Pull all the latest trunk changes over into the apple-osx branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA1: |
8a048423f0e409d2332558cb5148e5a1 |
User & Date: | drh 2012-01-03 21:54:09.582 |
Context
2012-01-14
| ||
14:13 | Merge the latest trunk changes into the apple-osx branch. (check-in: 2cc414cd14 user: drh tags: apple-osx) | |
2012-01-03
| ||
21:54 | Pull all the latest trunk changes over into the apple-osx branch. (check-in: 8a048423f0 user: drh tags: apple-osx) | |
14:50 | Make sure filenames passed into sqlite3OsOpen() always have the extra zero-terminators needed by sqlite3_uri_parameter(). (check-in: d73e93cfdc user: drh tags: trunk) | |
2011-12-08
| ||
21:08 | Merge the latest trunk changes into the apple-osx branch. (check-in: 59e0d4f3d9 user: drh tags: apple-osx) | |
Changes
Changes to Makefile.msc.
︙ | ︙ | |||
45 46 47 48 49 50 51 | # C Compile and options for use in building executables that # will run on the target platform. (BCC and TCC are usually the # same unless your are cross-compiling.) # TCC = cl.exe -W3 -DSQLITE_OS_WIN=1 -I. -I$(TOP)\src -fp:precise | < < < | 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | # C Compile and options for use in building executables that # will run on the target platform. (BCC and TCC are usually the # same unless your are cross-compiling.) # TCC = cl.exe -W3 -DSQLITE_OS_WIN=1 -I. -I$(TOP)\src -fp:precise # The mksqlite3c.tcl and mksqlite3h.tcl scripts will pull in # any extension header files by default. For non-amalgamation # builds, we need to make sure the compiler can find these. # !IF $(USE_AMALGAMATION)==0 TCC = $(TCC) -I$(TOP)\ext\fts3 TCC = $(TCC) -I$(TOP)\ext\rtree |
︙ | ︙ |
Changes to ext/fts3/fts3_write.c.
︙ | ︙ | |||
1382 1383 1384 1385 1386 1387 1388 | sqlite3_int64 iStartLeaf, /* First leaf to traverse */ sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ sqlite3_int64 iEndBlock, /* Final block of segment */ const char *zRoot, /* Buffer containing root node */ int nRoot, /* Size of buffer containing root node */ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ ){ | < | 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 | sqlite3_int64 iStartLeaf, /* First leaf to traverse */ sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ sqlite3_int64 iEndBlock, /* Final block of segment */ const char *zRoot, /* Buffer containing root node */ int nRoot, /* Size of buffer containing root node */ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ ){ Fts3SegReader *pReader; /* Newly allocated SegReader object */ int nExtra = 0; /* Bytes to allocate segment root node */ assert( iStartLeaf<=iEndLeaf ); if( iStartLeaf==0 ){ nExtra = nRoot + FTS3_NODE_PADDING; } |
︙ | ︙ | |||
1410 1411 1412 1413 1414 1415 1416 | pReader->aNode = (char *)&pReader[1]; pReader->nNode = nRoot; memcpy(pReader->aNode, zRoot, nRoot); memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); }else{ pReader->iCurrentBlock = iStartLeaf-1; } | < < | < < < | | 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 | pReader->aNode = (char *)&pReader[1]; pReader->nNode = nRoot; memcpy(pReader->aNode, zRoot, nRoot); memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); }else{ pReader->iCurrentBlock = iStartLeaf-1; } *ppReader = pReader; return SQLITE_OK; } /* ** This is a comparison function used as a qsort() callback when sorting ** an array of pending terms by term. This occurs as part of flushing ** the contents of the pending-terms hash table to the database. */ |
︙ | ︙ | |||
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 | int iIndex, /* Index for p->aIndex */ const char *zTerm, /* Term to search for */ int nTerm, /* Size of buffer zTerm */ int bPrefix, /* True for a prefix iterator */ Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ ){ Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ int nElem = 0; /* Size of array at aElem */ int rc = SQLITE_OK; /* Return Code */ Fts3Hash *pHash; pHash = &p->aIndex[iIndex].hPending; if( bPrefix ){ int nAlloc = 0; /* Size of allocated array at aElem */ | > < | 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 | int iIndex, /* Index for p->aIndex */ const char *zTerm, /* Term to search for */ int nTerm, /* Size of buffer zTerm */ int bPrefix, /* True for a prefix iterator */ Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ ){ Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ Fts3HashElem *pE; /* Iterator variable */ Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ int nElem = 0; /* Size of array at aElem */ int rc = SQLITE_OK; /* Return Code */ Fts3Hash *pHash; pHash = &p->aIndex[iIndex].hPending; if( bPrefix ){ int nAlloc = 0; /* Size of allocated array at aElem */ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ char *zKey = (char *)fts3HashKey(pE); int nKey = fts3HashKeysize(pE); if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ if( nElem==nAlloc ){ Fts3HashElem **aElem2; |
︙ | ︙ | |||
1508 1509 1510 1511 1512 1513 1514 | */ if( nElem>1 ){ qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); } }else{ /* The query is a simple term lookup that matches at most one term in | | > > > > > | | 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 | */ if( nElem>1 ){ qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); } }else{ /* The query is a simple term lookup that matches at most one term in ** the index. All that is required is a straight hash-lookup. ** ** Because the stack address of pE may be accessed via the aElem pointer ** below, the "Fts3HashElem *pE" must be declared so that it is valid ** within this entire function, not just this "else{...}" block. */ pE = fts3HashFindElem(pHash, zTerm, nTerm); if( pE ){ aElem = &pE; nElem = 1; } } if( nElem>0 ){ |
︙ | ︙ |
Changes to ext/rtree/rtree.c.
︙ | ︙ | |||
1190 1191 1192 1193 1194 1195 1196 | */ static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ RtreeMatchArg *p; sqlite3_rtree_geometry *pGeom; int nBlob; /* Check that value is actually a blob. */ | | | 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 | */ static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ RtreeMatchArg *p; sqlite3_rtree_geometry *pGeom; int nBlob; /* Check that value is actually a blob. */ if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR; /* Check that the blob is roughly the right size. */ nBlob = sqlite3_value_bytes(pValue); if( nBlob<(int)sizeof(RtreeMatchArg) || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0 ){ return SQLITE_ERROR; |
︙ | ︙ |
Changes to src/analyze.c.
︙ | ︙ | |||
525 526 527 528 529 530 531 532 533 534 535 536 537 538 | sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); } sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount); sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1); sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq); sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt); sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt); sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum, (char*)&stat3InitFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2); #endif /* SQLITE_ENABLE_STAT3 */ /* The block of memory cells initialized here is used as follows. ** | > | 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); } sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount); sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1); sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq); sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt); sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt); sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum); sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum, (char*)&stat3InitFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2); #endif /* SQLITE_ENABLE_STAT3 */ /* The block of memory cells initialized here is used as follows. ** |
︙ | ︙ |
Changes to src/backup.c.
︙ | ︙ | |||
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | sqlite3BtreeEnter(pTo); sqlite3BtreeEnter(pFrom); assert( sqlite3BtreeIsInTrans(pTo) ); pFd = sqlite3PagerFile(sqlite3BtreePager(pTo)); if( pFd->pMethods ){ i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom); sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte); } /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set ** to 0. This is used by the implementations of sqlite3_backup_step() ** and sqlite3_backup_finish() to detect that they are being called ** from this function, not directly by the user. */ | > > | 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | sqlite3BtreeEnter(pTo); sqlite3BtreeEnter(pFrom); assert( sqlite3BtreeIsInTrans(pTo) ); pFd = sqlite3PagerFile(sqlite3BtreePager(pTo)); if( pFd->pMethods ){ i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom); sqlite3BeginBenignMalloc(); sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte); sqlite3EndBenignMalloc(); } /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set ** to 0. This is used by the implementations of sqlite3_backup_step() ** and sqlite3_backup_finish() to detect that they are being called ** from this function, not directly by the user. */ |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
4002 4003 4004 4005 4006 4007 4008 | && pBt->inTransaction==TRANS_READ /* (4) */ && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ && pBt->pPage1->aData[19]==0x01 /* (5) */ ){ u8 aSave[4]; u8 *aWrite = &pBuf[-4]; memcpy(aSave, aWrite, 4); | | | 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 | && pBt->inTransaction==TRANS_READ /* (4) */ && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ && pBt->pPage1->aData[19]==0x01 /* (5) */ ){ u8 aSave[4]; u8 *aWrite = &pBuf[-4]; memcpy(aSave, aWrite, 4); rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); nextPage = get4byte(aWrite); memcpy(aWrite, aSave, 4); }else #endif { DbPage *pDbPage; |
︙ | ︙ | |||
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 | szNew[i] = szRight; szNew[i-1] = szLeft; } /* Either we found one or more cells (cntnew[0])>0) or pPage is ** a virtual root page. A virtual root page is when the real root ** page is page 1 and we are the only child of that page. */ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); TRACE(("BALANCE: old: %d %d %d ", apOld[0]->pgno, nOld>=2 ? apOld[1]->pgno : 0, nOld>=3 ? apOld[2]->pgno : 0 )); | > > > > > > | 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 | szNew[i] = szRight; szNew[i-1] = szLeft; } /* Either we found one or more cells (cntnew[0])>0) or pPage is ** a virtual root page. A virtual root page is when the real root ** page is page 1 and we are the only child of that page. ** ** UPDATE: The assert() below is not necessarily true if the database ** file is corrupt. The corruption will be detected and reported later ** in this procedure so there is no need to act upon it now. */ #if 0 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); #endif TRACE(("BALANCE: old: %d %d %d ", apOld[0]->pgno, nOld>=2 ? apOld[1]->pgno : 0, nOld>=3 ? apOld[2]->pgno : 0 )); |
︙ | ︙ |
Changes to src/btreeInt.h.
︙ | ︙ | |||
366 367 368 369 370 371 372 | #define TRANS_NONE 0 #define TRANS_READ 1 #define TRANS_WRITE 2 /* ** An instance of this object represents a single database file. ** | | | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | #define TRANS_NONE 0 #define TRANS_READ 1 #define TRANS_WRITE 2 /* ** An instance of this object represents a single database file. ** ** A single database file can be in use at the same time by two ** or more database connections. When two or more connections are ** sharing the same database file, each connection has it own ** private Btree object for the file and each of those Btrees points ** to this one BtShared object. BtShared.nRef is the number of ** connections currently sharing this database file. ** ** Fields in this structure are accessed under the BtShared.mutex |
︙ | ︙ | |||
472 473 474 475 476 477 478 | /* ** A cursor is a pointer to a particular entry within a particular ** b-tree within a database file. ** ** The entry is identified by its MemPage and the index in ** MemPage.aCell[] of the entry. ** | | | 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | /* ** A cursor is a pointer to a particular entry within a particular ** b-tree within a database file. ** ** The entry is identified by its MemPage and the index in ** MemPage.aCell[] of the entry. ** ** A single database file can be shared by two more database connections, ** but cursors cannot be shared. Each cursor is associated with a ** particular database connection identified BtCursor.pBtree.db. ** ** Fields in this structure are accessed under the BtShared.mutex ** found at self->pBt->mutex. */ struct BtCursor { |
︙ | ︙ | |||
633 634 635 636 637 638 639 | int mxErr; /* Stop accumulating errors when this reaches zero */ int nErr; /* Number of messages written to zErrMsg so far */ int mallocFailed; /* A memory allocation error has occurred */ StrAccum errMsg; /* Accumulate the error message text here */ }; /* | | | 633 634 635 636 637 638 639 640 641 642 643 644 645 | int mxErr; /* Stop accumulating errors when this reaches zero */ int nErr; /* Number of messages written to zErrMsg so far */ int mallocFailed; /* A memory allocation error has occurred */ StrAccum errMsg; /* Accumulate the error message text here */ }; /* ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte |
Changes to src/expr.c.
︙ | ︙ | |||
866 867 868 869 870 871 872 | for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ Expr *pOldExpr = pOldItem->pExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; | | | 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 | for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ Expr *pOldExpr = pOldItem->pExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; pItem->iOrderByCol = pOldItem->iOrderByCol; pItem->iAlias = pOldItem->iAlias; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from |
︙ | ︙ | |||
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 | if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ pEList = p->pEList; if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ return 1; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** This function is used by the implementation of the IN (...) operator. ** It's job is to find or create a b-tree structure that may be used ** either to test for membership of the (...) set or to iterate through ** its members, skipping duplicates. ** | > > > > > > > > > | 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 | if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ pEList = p->pEList; if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ return 1; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** Code an OP_Once instruction and allocate space for its flag. Return the ** address of the new instruction. */ int sqlite3CodeOnce(Parse *pParse){ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); } /* ** This function is used by the implementation of the IN (...) operator. ** It's job is to find or create a b-tree structure that may be used ** either to test for membership of the (...) set or to iterate through ** its members, skipping duplicates. ** |
︙ | ︙ | |||
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 | */ #ifndef SQLITE_OMIT_SUBQUERY int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ Select *p; /* SELECT to the right of IN operator */ int eType = 0; /* Type of RHS table. IN_INDEX_* */ int iTab = pParse->nTab++; /* Cursor of the RHS table */ int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ assert( pX->op==TK_IN ); /* Check to see if an existing table or index can be used to ** satisfy the query. This is preferable to generating a new ** ephemeral table. */ p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ sqlite3 *db = pParse->db; /* Database connection */ | > < | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 | */ #ifndef SQLITE_OMIT_SUBQUERY int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ Select *p; /* SELECT to the right of IN operator */ int eType = 0; /* Type of RHS table. IN_INDEX_* */ int iTab = pParse->nTab++; /* Cursor of the RHS table */ int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ assert( pX->op==TK_IN ); /* Check to see if an existing table or index can be used to ** satisfy the query. This is preferable to generating a new ** ephemeral table. */ p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ sqlite3 *db = pParse->db; /* Database connection */ Table *pTab; /* Table <table>. */ Expr *pExpr; /* Expression <column> */ int iCol; /* Index of column <column> */ int iDb; /* Database idx for pTab */ assert( p ); /* Because of isCandidateForInOpt(p) */ assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ |
︙ | ︙ | |||
1466 1467 1468 1469 1470 1471 1472 | /* This function is only called from two places. In both cases the vdbe ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ | < | | 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 | /* This function is only called from two places. In both cases the vdbe ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ int iAddr; iAddr = sqlite3CodeOnce(pParse); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); eType = IN_INDEX_ROWID; sqlite3VdbeJumpHere(v, iAddr); }else{ Index *pIdx; /* Iterator variable */ |
︙ | ︙ | |||
1495 1496 1497 1498 1499 1500 1501 | int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) ){ | < | > > | 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 | int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) ){ int iAddr; char *pKey; pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); iAddr = sqlite3CodeOnce(pParse); sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, pKey,P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIdx->zName)); eType = IN_INDEX_INDEX; sqlite3VdbeJumpHere(v, iAddr); if( prNotFound && !pTab->aCol[iCol].notNull ){ *prNotFound = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); } } } } } if( eType==0 ){ /* Could not found an existing table or index to use as the RHS b-tree. ** We will have to generate an ephemeral table to do the job. */ double savedNQueryLoop = pParse->nQueryLoop; int rMayHaveNull = 0; eType = IN_INDEX_EPH; if( prNotFound ){ *prNotFound = rMayHaveNull = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); }else{ testcase( pParse->nQueryLoop>(double)1 ); pParse->nQueryLoop = (double)1; if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ eType = IN_INDEX_ROWID; } } |
︙ | ︙ | |||
1597 1598 1599 1600 1601 1602 1603 | ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ | | < | | 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 | ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ testAddr = sqlite3CodeOnce(pParse); } #ifndef SQLITE_OMIT_EXPLAIN if( pParse->explain==2 ){ char *zMsg = sqlite3MPrintf( pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId |
︙ | ︙ | |||
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 | sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); pExpr->iTable = iMem; pExpr->op2 = pExpr->op; pExpr->op = TK_REGISTER; } return inReg; } /* ** Return TRUE if pExpr is an constant expression that is appropriate ** for factoring out of a loop. Appropriate expressions are: ** ** * Any expression that evaluates to two or more opcodes. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 | sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); pExpr->iTable = iMem; pExpr->op2 = pExpr->op; pExpr->op = TK_REGISTER; } return inReg; } #if defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Generate a human-readable explanation of an expression tree. */ void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ int op; /* The opcode being coded */ const char *zBinOp = 0; /* Binary operator */ const char *zUniOp = 0; /* Unary operator */ if( pExpr==0 ){ op = TK_NULL; }else{ op = pExpr->op; } switch( op ){ case TK_AGG_COLUMN: { sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", pExpr->iTable, pExpr->iColumn); break; } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); }else{ sqlite3ExplainPrintf(pOut, "{%d:%d}", pExpr->iTable, pExpr->iColumn); } break; } case TK_INTEGER: { if( pExpr->flags & EP_IntValue ){ sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); }else{ sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); } break; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); break; } #endif case TK_STRING: { sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); break; } case TK_NULL: { sqlite3ExplainPrintf(pOut,"NULL"); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); break; } #endif case TK_VARIABLE: { sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", pExpr->u.zToken, pExpr->iColumn); break; } case TK_REGISTER: { sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); break; } case TK_AS: { sqlite3ExplainExpr(pOut, pExpr->pLeft); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ const char *zAff = "unk"; switch( sqlite3AffinityType(pExpr->u.zToken) ){ case SQLITE_AFF_TEXT: zAff = "TEXT"; break; case SQLITE_AFF_NONE: zAff = "NONE"; break; case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; case SQLITE_AFF_REAL: zAff = "REAL"; break; } sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut, ")"); break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: zBinOp = "LT"; break; case TK_LE: zBinOp = "LE"; break; case TK_GT: zBinOp = "GT"; break; case TK_GE: zBinOp = "GE"; break; case TK_NE: zBinOp = "NE"; break; case TK_EQ: zBinOp = "EQ"; break; case TK_IS: zBinOp = "IS"; break; case TK_ISNOT: zBinOp = "ISNOT"; break; case TK_AND: zBinOp = "AND"; break; case TK_OR: zBinOp = "OR"; break; case TK_PLUS: zBinOp = "ADD"; break; case TK_STAR: zBinOp = "MUL"; break; case TK_MINUS: zBinOp = "SUB"; break; case TK_REM: zBinOp = "REM"; break; case TK_BITAND: zBinOp = "BITAND"; break; case TK_BITOR: zBinOp = "BITOR"; break; case TK_SLASH: zBinOp = "DIV"; break; case TK_LSHIFT: zBinOp = "LSHIFT"; break; case TK_RSHIFT: zBinOp = "RSHIFT"; break; case TK_CONCAT: zBinOp = "CONCAT"; break; case TK_UMINUS: zUniOp = "UMINUS"; break; case TK_UPLUS: zUniOp = "UPLUS"; break; case TK_BITNOT: zUniOp = "BITNOT"; break; case TK_NOT: zUniOp = "NOT"; break; case TK_ISNULL: zUniOp = "ISNULL"; break; case TK_NOTNULL: zUniOp = "NOTNULL"; break; case TK_AGG_FUNCTION: case TK_CONST_FUNC: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; }else{ pFarg = pExpr->x.pList; } sqlite3ExplainPrintf(pOut, "%sFUNCTION:%s(", op==TK_AGG_FUNCTION ? "AGG_" : "", pExpr->u.zToken); if( pFarg ){ sqlite3ExplainExprList(pOut, pFarg); } sqlite3ExplainPrintf(pOut, ")"); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: { sqlite3ExplainPrintf(pOut, "EXISTS("); sqlite3ExplainSelect(pOut, pExpr->x.pSelect); sqlite3ExplainPrintf(pOut,")"); break; } case TK_SELECT: { sqlite3ExplainPrintf(pOut, "("); sqlite3ExplainSelect(pOut, pExpr->x.pSelect); sqlite3ExplainPrintf(pOut, ")"); break; } case TK_IN: { sqlite3ExplainPrintf(pOut, "IN("); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut, ","); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ sqlite3ExplainSelect(pOut, pExpr->x.pSelect); }else{ sqlite3ExplainExprList(pOut, pExpr->x.pList); } sqlite3ExplainPrintf(pOut, ")"); break; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { Expr *pX = pExpr->pLeft; Expr *pY = pExpr->x.pList->a[0].pExpr; Expr *pZ = pExpr->x.pList->a[1].pExpr; sqlite3ExplainPrintf(pOut, "BETWEEN("); sqlite3ExplainExpr(pOut, pX); sqlite3ExplainPrintf(pOut, ","); sqlite3ExplainExpr(pOut, pY); sqlite3ExplainPrintf(pOut, ","); sqlite3ExplainExpr(pOut, pZ); sqlite3ExplainPrintf(pOut, ")"); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. */ sqlite3ExplainPrintf(pOut, "%s(%d)", pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); break; } case TK_CASE: { sqlite3ExplainPrintf(pOut, "CASE("); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut, ","); sqlite3ExplainExprList(pOut, pExpr->x.pList); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { const char *zType = "unk"; switch( pExpr->affinity ){ case OE_Rollback: zType = "rollback"; break; case OE_Abort: zType = "abort"; break; case OE_Fail: zType = "fail"; break; case OE_Ignore: zType = "ignore"; break; } sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); break; } #endif } if( zBinOp ){ sqlite3ExplainPrintf(pOut,"%s(", zBinOp); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut,","); sqlite3ExplainExpr(pOut, pExpr->pRight); sqlite3ExplainPrintf(pOut,")"); }else if( zUniOp ){ sqlite3ExplainPrintf(pOut,"%s(", zUniOp); sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut,")"); } } #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ #if defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Generate a human-readable explanation of an expression list. */ void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ int i; if( pList==0 || pList->nExpr==0 ){ sqlite3ExplainPrintf(pOut, "(empty-list)"); return; }else if( pList->nExpr==1 ){ sqlite3ExplainExpr(pOut, pList->a[0].pExpr); }else{ sqlite3ExplainPush(pOut); for(i=0; i<pList->nExpr; i++){ sqlite3ExplainPrintf(pOut, "item[%d] = ", i); sqlite3ExplainPush(pOut); sqlite3ExplainExpr(pOut, pList->a[i].pExpr); sqlite3ExplainPop(pOut); if( i<pList->nExpr-1 ){ sqlite3ExplainNL(pOut); } } sqlite3ExplainPop(pOut); } } #endif /* SQLITE_DEBUG */ /* ** Return TRUE if pExpr is an constant expression that is appropriate ** for factoring out of a loop. Appropriate expressions are: ** ** * Any expression that evaluates to two or more opcodes. ** |
︙ | ︙ |
Changes to src/global.c.
︙ | ︙ | |||
143 144 145 146 147 148 149 | SQLITE_THREADSAFE==1, /* bFullMutex */ SQLITE_USE_URI, /* bOpenUri */ 0x7ffffffe, /* mxStrlen */ 128, /* szLookaside */ 500, /* nLookaside */ {0,0,0,0,0,0,0,0}, /* m */ {0,0,0,0,0,0,0,0,0}, /* mutex */ | | | 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | SQLITE_THREADSAFE==1, /* bFullMutex */ SQLITE_USE_URI, /* bOpenUri */ 0x7ffffffe, /* mxStrlen */ 128, /* szLookaside */ 500, /* nLookaside */ {0,0,0,0,0,0,0,0}, /* m */ {0,0,0,0,0,0,0,0,0}, /* mutex */ {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */ (void*)0, /* pHeap */ 0, /* nHeap */ 0, 0, /* mnHeap, mxHeap */ (void*)0, /* pScratch */ 0, /* szScratch */ 0, /* nScratch */ (void*)0, /* pPage */ |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
235 236 237 238 239 240 241 242 243 244 245 246 247 248 | assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); | > | 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); |
︙ | ︙ |
Changes to src/loadext.c.
︙ | ︙ | |||
621 622 623 624 625 626 627 628 629 630 631 632 633 634 | ** Load all automatic extensions. ** ** If anything goes wrong, set an error in the database connection. */ void sqlite3AutoLoadExtensions(sqlite3 *db){ int i; int go = 1; int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*); wsdAutoextInit; if( wsdAutoext.nExt==0 ){ /* Common case: early out without every having to acquire a mutex */ return; } | > | 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 | ** Load all automatic extensions. ** ** If anything goes wrong, set an error in the database connection. */ void sqlite3AutoLoadExtensions(sqlite3 *db){ int i; int go = 1; int rc; int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*); wsdAutoextInit; if( wsdAutoext.nExt==0 ){ /* Common case: early out without every having to acquire a mutex */ return; } |
︙ | ︙ | |||
643 644 645 646 647 648 649 | go = 0; }else{ xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) wsdAutoext.aExt[i]; } sqlite3_mutex_leave(mutex); zErrmsg = 0; | | | | 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 | go = 0; }else{ xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) wsdAutoext.aExt[i]; } sqlite3_mutex_leave(mutex); zErrmsg = 0; if( xInit && (rc = xInit(db, &zErrmsg, &sqlite3Apis))!=0 ){ sqlite3Error(db, rc, "automatic extension loading failed: %s", zErrmsg); go = 0; } sqlite3_free(zErrmsg); } } |
Changes to src/main.c.
︙ | ︙ | |||
48 49 50 51 52 53 54 | const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function ** returns an integer equal to SQLITE_VERSION_NUMBER. */ int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } | | | | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function ** returns an integer equal to SQLITE_VERSION_NUMBER. */ int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns ** zero if and only if SQLite was compiled with mutexing code omitted due to ** the SQLITE_THREADSAFE compile-time option being set to 0. */ int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** If the following function pointer is not NULL and if |
︙ | ︙ | |||
238 239 240 241 242 243 244 | #endif /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT ** compile-time option. */ #ifdef SQLITE_EXTRA_INIT if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ | | | > > > > | 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | #endif /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT ** compile-time option. */ #ifdef SQLITE_EXTRA_INIT if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ int SQLITE_EXTRA_INIT(const char*); rc = SQLITE_EXTRA_INIT(0); } #endif return rc; } /* ** Undo the effects of sqlite3_initialize(). Must not be called while ** there are outstanding database connections or memory allocations or ** while any part of SQLite is otherwise in use in any thread. This ** routine is not threadsafe. But it is safe to invoke this routine ** on when SQLite is already shut down. If SQLite is already shut down ** when this routine is invoked, then this routine is a harmless no-op. */ int sqlite3_shutdown(void){ if( sqlite3GlobalConfig.isInit ){ #ifdef SQLITE_EXTRA_SHUTDOWN void SQLITE_EXTRA_SHUTDOWN(void); SQLITE_EXTRA_SHUTDOWN(); #endif sqlite3_os_end(); sqlite3_reset_auto_extension(); sqlite3GlobalConfig.isInit = 0; } if( sqlite3GlobalConfig.isPCacheInit ){ sqlite3PcacheShutdown(); sqlite3GlobalConfig.isPCacheInit = 0; |
︙ | ︙ | |||
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 | /* ** Free up as much memory as we can from the given database ** connection. */ int sqlite3_db_release_memory(sqlite3 *db){ int i; sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); sqlite3PagerShrink(pPager); } } sqlite3BtreeLeaveAll(db); return SQLITE_OK; } /* ** Configuration settings for an individual database connection */ int sqlite3_db_config(sqlite3 *db, int op, ...){ | > > | 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | /* ** Free up as much memory as we can from the given database ** connection. */ int sqlite3_db_release_memory(sqlite3 *db){ int i; sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); sqlite3PagerShrink(pPager); } } sqlite3BtreeLeaveAll(db); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Configuration settings for an individual database connection */ int sqlite3_db_config(sqlite3 *db, int op, ...){ |
︙ | ︙ | |||
2256 2257 2258 2259 2260 2261 2262 | */ sqlite3Error(db, SQLITE_OK, 0); sqlite3RegisterBuiltinFunctions(db); /* Load automatic extensions - extensions that have been registered ** using the sqlite3_automatic_extension() API. */ | > > | | | | > | 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 | */ sqlite3Error(db, SQLITE_OK, 0); sqlite3RegisterBuiltinFunctions(db); /* Load automatic extensions - extensions that have been registered ** using the sqlite3_automatic_extension() API. */ rc = sqlite3_errcode(db); if( rc==SQLITE_OK ){ sqlite3AutoLoadExtensions(db); rc = sqlite3_errcode(db); if( rc!=SQLITE_OK ){ goto opendb_out; } } #ifdef SQLITE_ENABLE_FTS1 if( !db->mallocFailed ){ extern int sqlite3Fts1Init(sqlite3*); rc = sqlite3Fts1Init(db); } |
︙ | ︙ | |||
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 | ** undo this setting. */ case SQLITE_TESTCTRL_LOCALTIME_FAULT: { sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); break; } } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; } /* ** This is a utility routine, useful to VFS implementations, that checks ** to see if a database file was a URI that contained a specific query ** parameter, and if so obtains the value of the query parameter. ** ** The zFilename argument is the filename pointer passed into the xOpen() ** method of a VFS implementation. The zParam argument is the name of the ** query parameter we seek. This routine returns the value of the zParam ** parameter if it exists. If the parameter does not exist, this routine ** returns a NULL pointer. */ const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ zFilename += sqlite3Strlen30(zFilename) + 1; while( zFilename[0] ){ int x = strcmp(zFilename, zParam); zFilename += sqlite3Strlen30(zFilename) + 1; if( x==0 ) return zFilename; zFilename += sqlite3Strlen30(zFilename) + 1; } return 0; } /* ** Return the filename of the database associated with a database ** connection. */ const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ int i; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 | ** undo this setting. */ case SQLITE_TESTCTRL_LOCALTIME_FAULT: { sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); break; } #if defined(SQLITE_ENABLE_TREE_EXPLAIN) /* sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, ** sqlite3_stmt*,const char**); ** ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds ** a string that describes the optimized parse tree. This test-control ** returns a pointer to that string. */ case SQLITE_TESTCTRL_EXPLAIN_STMT: { sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*); const char **pzRet = va_arg(ap, const char**); *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt); break; } #endif } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; } /* ** This is a utility routine, useful to VFS implementations, that checks ** to see if a database file was a URI that contained a specific query ** parameter, and if so obtains the value of the query parameter. ** ** The zFilename argument is the filename pointer passed into the xOpen() ** method of a VFS implementation. The zParam argument is the name of the ** query parameter we seek. This routine returns the value of the zParam ** parameter if it exists. If the parameter does not exist, this routine ** returns a NULL pointer. */ const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ if( zFilename==0 ) return 0; zFilename += sqlite3Strlen30(zFilename) + 1; while( zFilename[0] ){ int x = strcmp(zFilename, zParam); zFilename += sqlite3Strlen30(zFilename) + 1; if( x==0 ) return zFilename; zFilename += sqlite3Strlen30(zFilename) + 1; } return 0; } /* ** Return a boolean value for a query parameter. */ int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ const char *z = sqlite3_uri_parameter(zFilename, zParam); return z ? sqlite3GetBoolean(z) : (bDflt!=0); } /* ** Return a 64-bit integer value for a query parameter. */ sqlite3_int64 sqlite3_uri_int64( const char *zFilename, /* Filename as passed to xOpen */ const char *zParam, /* URI parameter sought */ sqlite3_int64 bDflt /* return if parameter is missing */ ){ const char *z = sqlite3_uri_parameter(zFilename, zParam); sqlite3_int64 v; if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){ bDflt = v; } return bDflt; } /* ** Return the filename of the database associated with a database ** connection. */ const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ int i; |
︙ | ︙ |
Changes to src/malloc.c.
︙ | ︙ | |||
126 127 128 129 130 131 132 | ** Set the soft heap-size limit for the library. Passing a zero or ** negative value indicates no limit. */ sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ sqlite3_int64 priorLimit; sqlite3_int64 excess; #ifndef SQLITE_OMIT_AUTOINIT | | > | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | ** Set the soft heap-size limit for the library. Passing a zero or ** negative value indicates no limit. */ sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ sqlite3_int64 priorLimit; sqlite3_int64 excess; #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return -1; #endif sqlite3_mutex_enter(mem0.mutex); priorLimit = mem0.alarmThreshold; sqlite3_mutex_leave(mem0.mutex); if( n<0 ) return priorLimit; if( n>0 ){ sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); |
︙ | ︙ |
Changes to src/mem1.c.
︙ | ︙ | |||
24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ** used when no other memory allocator is specified using compile-time ** macros. */ #ifdef SQLITE_SYSTEM_MALLOC #if (!defined(__APPLE__)) #define SQLITE_MALLOC(x) malloc(x) #define SQLITE_FREE(x) free(x) #define SQLITE_REALLOC(x,y) realloc((x),(y)) #else | > > > > > > > > | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ** used when no other memory allocator is specified using compile-time ** macros. */ #ifdef SQLITE_SYSTEM_MALLOC #if (!defined(__APPLE__)) /* ** Windows systems have malloc_usable_size() but it is called _msize() */ #if !defined(HAVE_MALLOC_USABLE_SIZE) && SQLITE_OS_WIN # define HAVE_MALLOC_USABLE_SIZE 1 # define malloc_usable_size _msize #endif #define SQLITE_MALLOC(x) malloc(x) #define SQLITE_FREE(x) free(x) #define SQLITE_REALLOC(x,y) realloc((x),(y)) #else |
︙ | ︙ |
Changes to src/os.c.
︙ | ︙ | |||
138 139 140 141 142 143 144 | sqlite3_file *pFile, int flags, int *pFlagsOut ){ int rc; int openFlags; DO_OS_MALLOC_TEST(0); | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | sqlite3_file *pFile, int flags, int *pFlagsOut ){ int rc; int openFlags; DO_OS_MALLOC_TEST(0); /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before ** reaching the VFS. */ #if SQLITE_ENABLE_DATA_PROTECTION openFlags = flags & (0x87f7f | SQLITE_OPEN_FILEPROTECTION_MASK); #else openFlags = flags & 0x87f7f; |
︙ | ︙ |
Changes to src/os.h.
︙ | ︙ | |||
60 61 62 63 64 65 66 | # define SQLITE_OS_OS2 0 # endif #else # ifndef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 # endif #endif | < < < < < < < < < < < < < < < < < < < < | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | # define SQLITE_OS_OS2 0 # endif #else # ifndef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 # endif #endif /* ** Define the maximum size of a temporary filename */ #if SQLITE_OS_WIN # include <windows.h> # define SQLITE_TEMPNAME_SIZE (MAX_PATH+50) |
︙ | ︙ | |||
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | # include <os2.h> # include <uconv.h> # define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP) #else # define SQLITE_TEMPNAME_SIZE 200 #endif /* If the SET_FULLSYNC macro is not defined above, then make it ** a no-op */ #ifndef SET_FULLSYNC # define SET_FULLSYNC(x,y) #endif /* ** The default size of a disk sector */ #ifndef SQLITE_DEFAULT_SECTOR_SIZE | > > > > > > > > > > > > > > > > > > > | | 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | # include <os2.h> # include <uconv.h> # define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP) #else # define SQLITE_TEMPNAME_SIZE 200 #endif /* ** Determine if we are dealing with Windows NT. */ #if defined(_WIN32_WINNT) # define SQLITE_OS_WINNT 1 #else # define SQLITE_OS_WINNT 0 #endif /* ** Determine if we are dealing with WindowsCE - which has a much ** reduced API. */ #if defined(_WIN32_WCE) # define SQLITE_OS_WINCE 1 #else # define SQLITE_OS_WINCE 0 #endif /* If the SET_FULLSYNC macro is not defined above, then make it ** a no-op */ #ifndef SET_FULLSYNC # define SET_FULLSYNC(x,y) #endif /* ** The default size of a disk sector */ #ifndef SQLITE_DEFAULT_SECTOR_SIZE # define SQLITE_DEFAULT_SECTOR_SIZE 4096 #endif /* ** Temporary files are named starting with this prefix followed by 16 random ** alphanumeric characters, and no file extension. They are stored in the ** OS's standard temporary file directory, and are deleted prior to exit. ** If sqlite is being embedded in another program, you may wish to change the |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
121 122 123 124 125 126 127 128 129 130 131 132 133 134 | #include <unistd.h> #include <time.h> #include <sys/time.h> #include <errno.h> #ifndef SQLITE_OMIT_WAL #include <sys/mman.h> #endif #if SQLITE_ENABLE_LOCKING_STYLE # include <sys/ioctl.h> # include <uuid/uuid.h> # if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \ (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000)) # define HAVE_GETHOSTUUID 1 | > | 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | #include <unistd.h> #include <time.h> #include <sys/time.h> #include <errno.h> #ifndef SQLITE_OMIT_WAL #include <sys/mman.h> #endif #if SQLITE_ENABLE_LOCKING_STYLE # include <sys/ioctl.h> # include <uuid/uuid.h> # if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \ (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000)) # define HAVE_GETHOSTUUID 1 |
︙ | ︙ | |||
210 211 212 213 214 215 216 217 218 219 220 221 222 223 | /* ** The unixFile structure is subclass of sqlite3_file specific to the unix ** VFS implementations. */ typedef struct unixFile unixFile; struct unixFile { sqlite3_io_methods const *pMethod; /* Always the first entry */ unixInodeInfo *pInode; /* Info about locks on this inode */ int h; /* The file descriptor */ unsigned char eFileLock; /* The type of lock held on this fd */ unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ int lastErrno; /* The unix errno from last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ | > | 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | /* ** The unixFile structure is subclass of sqlite3_file specific to the unix ** VFS implementations. */ typedef struct unixFile unixFile; struct unixFile { sqlite3_io_methods const *pMethod; /* Always the first entry */ sqlite3_vfs *pVfs; /* The VFS that created this unixFile */ unixInodeInfo *pInode; /* Info about locks on this inode */ int h; /* The file descriptor */ unsigned char eFileLock; /* The type of lock held on this fd */ unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ int lastErrno; /* The unix errno from last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ |
︙ | ︙ | |||
264 265 266 267 268 269 270 271 272 273 274 275 276 277 | #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ #ifndef SQLITE_DISABLE_DIRSYNC # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ #else # define UNIXFILE_DIRSYNC 0x00 #endif /* ** Include code that is common to all os_*.c files */ #include "os_common.h" /* | > | 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ #ifndef SQLITE_DISABLE_DIRSYNC # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ #else # define UNIXFILE_DIRSYNC 0x00 #endif #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ /* ** Include code that is common to all os_*.c files */ #include "os_common.h" /* |
︙ | ︙ | |||
2371 2372 2373 2374 2375 2376 2377 | } /* To fully unlock the database, delete the lock file */ assert( eFileLock==NO_LOCK ); rc = osRmdir(zLockFile); if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile); if( rc<0 ){ | < > | 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 | } /* To fully unlock the database, delete the lock file */ assert( eFileLock==NO_LOCK ); rc = osRmdir(zLockFile); if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile); if( rc<0 ){ int tErrno = errno; rc = 0; if( ENOENT != tErrno ){ #if OSLOCKING_CHECK_BUSY_IOERR rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); #else rc = SQLITE_IOERR_UNLOCK; #endif } |
︙ | ︙ | |||
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 | *pLockstate = SQLITE_LOCKSTATE_OFF; } return SQLITE_OK; } #endif /* (SQLITE_ENABLE_APPLE_SPI>0) && defined(__APPLE__) */ /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ | > > > > > > > > > > > > > > > > | 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 | *pLockstate = SQLITE_LOCKSTATE_OFF; } return SQLITE_OK; } #endif /* (SQLITE_ENABLE_APPLE_SPI>0) && defined(__APPLE__) */ /* ** If *pArg is inititially negative then this is a query. Set *pArg to ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. ** ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. */ static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ if( *pArg<0 ){ *pArg = (pFile->ctrlFlags & mask)!=0; }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ |
︙ | ︙ | |||
4330 4331 4332 4333 4334 4335 4336 | int rc; SimulateIOErrorBenign(1); rc = fcntlSizeHint(pFile, *(i64 *)pArg); SimulateIOErrorBenign(0); return rc; } case SQLITE_FCNTL_PERSIST_WAL: { | < < | > > | | | < | > > | 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 | int rc; SimulateIOErrorBenign(1); rc = fcntlSizeHint(pFile, *(i64 *)pArg); SimulateIOErrorBenign(0); return rc; } case SQLITE_FCNTL_PERSIST_WAL: { unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); return SQLITE_OK; } #ifndef NDEBUG /* The pager calls this method to signal that it has done ** a rollback and that the database is therefore unchanged and ** it hence it is OK for the transaction change counter to be ** unchanged. |
︙ | ︙ | |||
4394 4395 4396 4397 4398 4399 4400 | ** larger for some devices. ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ | | | | > > > > > > > > > > | > > > | | > | 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 | ** larger for some devices. ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int unixSectorSize(sqlite3_file *pFile){ (void)pFile; return SQLITE_DEFAULT_SECTOR_SIZE; } /* ** Return the device characteristics for the file. ** ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. ** However, that choice is contraversial since technically the underlying ** file system does not always provide powersafe overwrites. (In other ** words, after a power-loss event, parts of the file that were never ** written might end up being altered.) However, non-PSOW behavior is very, ** very rare. And asserting PSOW makes a large reduction in the amount ** of required I/O for journaling, since a lot of padding is eliminated. ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control ** available to turn it off and URI query parameter available to turn it off. */ static int unixDeviceCharacteristics(sqlite3_file *id){ unixFile *p = (unixFile*)id; if( p->ctrlFlags & UNIXFILE_PSOW ){ return SQLITE_IOCAP_POWERSAFE_OVERWRITE; }else{ return 0; } } #ifndef SQLITE_OMIT_WAL /* ** Object used to represent an shared memory buffer. |
︙ | ︙ | |||
4675 4676 4677 4678 4679 4680 4681 | rc = SQLITE_CANTOPEN_BKPT; goto shm_open_err; } } #endif #ifdef SQLITE_SHM_DIRECTORY | | | | 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 | rc = SQLITE_CANTOPEN_BKPT; goto shm_open_err; } } #endif #ifdef SQLITE_SHM_DIRECTORY nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31; #else nShmFilename = 6 + (int)strlen(zBasePath); #endif pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename ); if( pShmNode==0 ){ rc = SQLITE_NOMEM; goto shm_open_err; } memset(pShmNode, 0, sizeof(*pShmNode)); |
︙ | ︙ | |||
4704 4705 4706 4707 4708 4709 4710 | pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_NOMEM; goto shm_open_err; } if( pInode->bProcessLock==0 ){ | < | < | 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 | pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_NOMEM; goto shm_open_err; } if( pInode->bProcessLock==0 ){ int openFlags = O_RDWR | O_CREAT; if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ openFlags = O_RDONLY; pShmNode->isReadonly = 1; } pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777)); if( pShmNode->h<0 ){ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); goto shm_open_err; |
︙ | ︙ | |||
5409 5410 5411 5412 5413 5414 5415 5416 5417 | #endif /* No locking occurs in temporary files */ assert( zFilename!=0 || noLock ); OSTRACE(("OPEN %-3d %s\n", h, zFilename)); pNew->h = h; pNew->zPath = zFilename; if( memcmp(pVfs->zName,"unix-excl",10)==0 ){ | > > > > > < < | | 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 | #endif /* No locking occurs in temporary files */ assert( zFilename!=0 || noLock ); OSTRACE(("OPEN %-3d %s\n", h, zFilename)); pNew->h = h; pNew->pVfs = pVfs; pNew->zPath = zFilename; pNew->ctrlFlags = 0; if( sqlite3_uri_boolean(zFilename, "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pNew->ctrlFlags |= UNIXFILE_PSOW; } if( memcmp(pVfs->zName,"unix-excl",10)==0 ){ pNew->ctrlFlags |= UNIXFILE_EXCL; } if( isReadOnly ){ pNew->ctrlFlags |= UNIXFILE_RDONLY; } if( syncDir ){ pNew->ctrlFlags |= UNIXFILE_DIRSYNC; } |
︙ | ︙ | |||
5750 5751 5752 5753 5754 5755 5756 | ** "<path to db>-walNN" ** ** where NN is a decimal number. The NN naming schemes are ** used by the test_multiplex.c module. */ nDb = sqlite3Strlen30(zPath) - 1; #ifdef SQLITE_ENABLE_8_3_NAMES | | | 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 | ** "<path to db>-walNN" ** ** where NN is a decimal number. The NN naming schemes are ** used by the test_multiplex.c module. */ nDb = sqlite3Strlen30(zPath) - 1; #ifdef SQLITE_ENABLE_8_3_NAMES while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--; if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK; #else while( zPath[nDb]!='-' ){ assert( nDb>0 ); assert( zPath[nDb]!='\n' ); nDb--; } |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
55 56 57 58 59 60 61 | typedef struct winFile winFile; struct winFile { const sqlite3_io_methods *pMethod; /*** Must be first ***/ sqlite3_vfs *pVfs; /* The VFS used to open this file */ HANDLE h; /* Handle for accessing the file */ u8 locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ | | < > > > > > > | 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | typedef struct winFile winFile; struct winFile { const sqlite3_io_methods *pMethod; /*** Must be first ***/ sqlite3_vfs *pVfs; /* The VFS used to open this file */ HANDLE h; /* Handle for accessing the file */ u8 locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ u8 ctrlFlags; /* Flags. See WINFILE_* below */ DWORD lastErrno; /* The Windows errno from the last I/O error */ winShm *pShm; /* Instance of shared memory on this file */ const char *zPath; /* Full pathname of this file */ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ #if SQLITE_OS_WINCE LPWSTR zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif }; /* ** Allowed values for winFile.ctrlFlags */ #define WINFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ #define WINFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ /* * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the * various Win32 API heap functions instead of our own. */ #ifdef SQLITE_WIN32_MALLOC /* * The initial size of the Win32-specific heap. This value may be zero. |
︙ | ︙ | |||
141 142 143 144 145 146 147 | static int winMemRoundup(int n); static int winMemInit(void *pAppData); static void winMemShutdown(void *pAppData); const sqlite3_mem_methods *sqlite3MemGetWin32(void); #endif /* SQLITE_WIN32_MALLOC */ | < < < < < < < < | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | static int winMemRoundup(int n); static int winMemInit(void *pAppData); static void winMemShutdown(void *pAppData); const sqlite3_mem_methods *sqlite3MemGetWin32(void); #endif /* SQLITE_WIN32_MALLOC */ /* ** The following variable is (normally) set once and never changes ** thereafter. It records whether the operating system is Win9x ** or WinNT. ** ** 0: Operating system unknown. ** 1: Operating system is Win9x. |
︙ | ︙ | |||
914 915 916 917 918 919 920 921 922 923 924 925 926 927 | ** Space to hold the returned string is obtained from malloc. */ static LPWSTR utf8ToUnicode(const char *zFilename){ int nChar; LPWSTR zWideFilename; nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0); zWideFilename = sqlite3_malloc( nChar*sizeof(zWideFilename[0]) ); if( zWideFilename==0 ){ return 0; } nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar); if( nChar==0 ){ | > > > | 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 | ** Space to hold the returned string is obtained from malloc. */ static LPWSTR utf8ToUnicode(const char *zFilename){ int nChar; LPWSTR zWideFilename; nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0); if( nChar==0 ){ return 0; } zWideFilename = sqlite3_malloc( nChar*sizeof(zWideFilename[0]) ); if( zWideFilename==0 ){ return 0; } nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar); if( nChar==0 ){ |
︙ | ︙ | |||
936 937 938 939 940 941 942 943 944 945 946 947 948 949 | ** obtained from sqlite3_malloc(). */ static char *unicodeToUtf8(LPCWSTR zWideFilename){ int nByte; char *zFilename; nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0); zFilename = sqlite3_malloc( nByte ); if( zFilename==0 ){ return 0; } nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte, 0, 0); if( nByte == 0 ){ | > > > | 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 | ** obtained from sqlite3_malloc(). */ static char *unicodeToUtf8(LPCWSTR zWideFilename){ int nByte; char *zFilename; nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0); if( nByte == 0 ){ return 0; } zFilename = sqlite3_malloc( nByte ); if( zFilename==0 ){ return 0; } nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte, 0, 0); if( nByte == 0 ){ |
︙ | ︙ | |||
963 964 965 966 967 968 969 970 971 972 973 974 975 976 | static LPWSTR mbcsToUnicode(const char *zFilename){ int nByte; LPWSTR zMbcsFilename; int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP; nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, NULL, 0)*sizeof(WCHAR); zMbcsFilename = sqlite3_malloc( nByte*sizeof(zMbcsFilename[0]) ); if( zMbcsFilename==0 ){ return 0; } nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte); if( nByte==0 ){ | > > > | 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 | static LPWSTR mbcsToUnicode(const char *zFilename){ int nByte; LPWSTR zMbcsFilename; int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP; nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, NULL, 0)*sizeof(WCHAR); if( nByte==0 ){ return 0; } zMbcsFilename = sqlite3_malloc( nByte*sizeof(zMbcsFilename[0]) ); if( zMbcsFilename==0 ){ return 0; } nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte); if( nByte==0 ){ |
︙ | ︙ | |||
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 | */ static char *unicodeToMbcs(LPCWSTR zWideFilename){ int nByte; char *zFilename; int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP; nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0); zFilename = sqlite3_malloc( nByte ); if( zFilename==0 ){ return 0; } nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte, 0, 0); if( nByte == 0 ){ | > > > | 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 | */ static char *unicodeToMbcs(LPCWSTR zWideFilename){ int nByte; char *zFilename; int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP; nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0); if( nByte == 0 ){ return 0; } zFilename = sqlite3_malloc( nByte ); if( zFilename==0 ){ return 0; } nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte, 0, 0); if( nByte == 0 ){ |
︙ | ︙ | |||
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 | } if( type>=PENDING_LOCK ){ osUnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0); } pFile->locktype = (u8)locktype; return rc; } /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ winFile *pFile = (winFile*)id; switch( op ){ | > > > > > > > > > > > > > > > > | 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 | } if( type>=PENDING_LOCK ){ osUnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0); } pFile->locktype = (u8)locktype; return rc; } /* ** If *pArg is inititially negative then this is a query. Set *pArg to ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. ** ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. */ static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){ if( *pArg<0 ){ *pArg = (pFile->ctrlFlags & mask)!=0; }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ winFile *pFile = (winFile*)id; switch( op ){ |
︙ | ︙ | |||
2153 2154 2155 2156 2157 2158 2159 | *(int*)pArg = pFile->bPersistWal; }else{ pFile->bPersistWal = bPersist!=0; } return SQLITE_OK; } case SQLITE_FCNTL_PERSIST_WAL: { | | | > > | < < > | > > | 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 | *(int*)pArg = pFile->bPersistWal; }else{ pFile->bPersistWal = bPersist!=0; } return SQLITE_OK; } case SQLITE_FCNTL_PERSIST_WAL: { winModeBit(pFile, WINFILE_PERSIST_WAL, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { winModeBit(pFile, WINFILE_PSOW, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("win32"); return SQLITE_OK; } case SQLITE_FCNTL_SYNC_OMITTED: { return SQLITE_OK; } case SQLITE_FCNTL_WIN32_AV_RETRY: { int *a = (int*)pArg; |
︙ | ︙ | |||
2193 2194 2195 2196 2197 2198 2199 | ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int winSectorSize(sqlite3_file *id){ | | | | | > | 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 | ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int winSectorSize(sqlite3_file *id){ (void)id; return SQLITE_DEFAULT_SECTOR_SIZE; } /* ** Return a vector of device characteristics. */ static int winDeviceCharacteristics(sqlite3_file *id){ winFile *p = (winFile*)id; return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN | ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0); } #ifndef SQLITE_OMIT_WAL /* ** Windows will only let you create file view mappings ** on allocation size granularity boundaries. |
︙ | ︙ | |||
2442 2443 2444 2445 2446 2447 2448 | /* Allocate space for the new sqlite3_shm object. Also speculatively ** allocate space for a new winShmNode and filename. */ p = sqlite3_malloc( sizeof(*p) ); if( p==0 ) return SQLITE_IOERR_NOMEM; memset(p, 0, sizeof(*p)); nName = sqlite3Strlen30(pDbFd->zPath); | | | 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 | /* Allocate space for the new sqlite3_shm object. Also speculatively ** allocate space for a new winShmNode and filename. */ p = sqlite3_malloc( sizeof(*p) ); if( p==0 ) return SQLITE_IOERR_NOMEM; memset(p, 0, sizeof(*p)); nName = sqlite3Strlen30(pDbFd->zPath); pNew = sqlite3_malloc( sizeof(*pShmNode) + nName + 16 ); if( pNew==0 ){ sqlite3_free(p); return SQLITE_IOERR_NOMEM; } memset(pNew, 0, sizeof(*pNew)); pNew->zFilename = (char*)&pNew[1]; sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath); |
︙ | ︙ | |||
3167 3168 3169 3170 3171 3172 3173 | memset(pFile, 0, sizeof(*pFile)); pFile->pMethod = &winIoMethod; pFile->h = h; pFile->lastErrno = NO_ERROR; pFile->pVfs = pVfs; pFile->pShm = 0; pFile->zPath = zName; | > | > | 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 | memset(pFile, 0, sizeof(*pFile)); pFile->pMethod = &winIoMethod; pFile->h = h; pFile->lastErrno = NO_ERROR; pFile->pVfs = pVfs; pFile->pShm = 0; pFile->zPath = zName; if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pFile->ctrlFlags |= WINFILE_PSOW; } #if SQLITE_OS_WINCE if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB && !winceCreateLock(zName, pFile) ){ osCloseHandle(h); sqlite3_free(zConverted); |
︙ | ︙ | |||
3412 3413 3414 3415 3416 3417 3418 | return SQLITE_OK; }else{ return SQLITE_IOERR_NOMEM; } #endif } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 | return SQLITE_OK; }else{ return SQLITE_IOERR_NOMEM; } #endif } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ /* ** Interfaces for opening a shared library, finding entry points |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
612 613 614 615 616 617 618 619 620 621 622 623 624 625 | u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ u8 useJournal; /* Use a rollback journal on this file */ u8 noReadlock; /* Do not bother to obtain readlocks */ u8 noSync; /* Do not sync the journal if true */ u8 fullSync; /* Do extra syncs of the journal for robustness */ u8 ckptSyncFlags; /* SYNC_NORMAL or SYNC_FULL for checkpoint */ u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ u8 tempFile; /* zFilename is a temporary file */ u8 readOnly; /* True for a read-only database */ u8 memDb; /* True to inhibit all file I/O */ /************************************************************************** ** The following block contains those class members that change during | > | 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ u8 useJournal; /* Use a rollback journal on this file */ u8 noReadlock; /* Do not bother to obtain readlocks */ u8 noSync; /* Do not sync the journal if true */ u8 fullSync; /* Do extra syncs of the journal for robustness */ u8 ckptSyncFlags; /* SYNC_NORMAL or SYNC_FULL for checkpoint */ u8 walSyncFlags; /* SYNC_NORMAL or SYNC_FULL for wal writes */ u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ u8 tempFile; /* zFilename is a temporary file */ u8 readOnly; /* True for a read-only database */ u8 memDb; /* True to inhibit all file I/O */ /************************************************************************** ** The following block contains those class members that change during |
︙ | ︙ | |||
782 783 784 785 786 787 788 | #ifndef SQLITE_OMIT_WAL static int pagerUseWal(Pager *pPager){ return (pPager->pWal!=0); } #else # define pagerUseWal(x) 0 # define pagerRollbackWal(x) 0 | | | 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 | #ifndef SQLITE_OMIT_WAL static int pagerUseWal(Pager *pPager){ return (pPager->pWal!=0); } #else # define pagerUseWal(x) 0 # define pagerRollbackWal(x) 0 # define pagerWalFrames(v,w,x,y) 0 # define pagerOpenWalIfPresent(z) SQLITE_OK # define pagerBeginReadTransaction(z) SQLITE_OK #endif #ifndef NDEBUG /* ** Usage: |
︙ | ︙ | |||
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 | ** ** For temporary files the effective sector size is always 512 bytes. ** ** Otherwise, for non-temporary files, the effective sector size is ** the value returned by the xSectorSize() method rounded up to 32 if ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it ** is greater than MAX_SECTOR_SIZE. */ static void setSectorSize(Pager *pPager){ assert( isOpen(pPager->fd) || pPager->tempFile ); | > > > > > > > > > | > > > | < | | > | | | | | | > | 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 | ** ** For temporary files the effective sector size is always 512 bytes. ** ** Otherwise, for non-temporary files, the effective sector size is ** the value returned by the xSectorSize() method rounded up to 32 if ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it ** is greater than MAX_SECTOR_SIZE. ** ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set ** the effective sector size to its minimum value (512). The purpose of ** pPager->sectorSize is to define the "blast radius" of bytes that ** might change if a crash occurs while writing to a single byte in ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector ** size. For backwards compatibility of the rollback journal file format, ** we cannot reduce the effective sector size below 512. */ static void setSectorSize(Pager *pPager){ assert( isOpen(pPager->fd) || pPager->tempFile ); if( pPager->tempFile || (sqlite3OsDeviceCharacteristics(pPager->fd) & SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 ){ /* Sector size doesn't matter for temporary files. Also, the file ** may not have been opened yet, in which case the OsSectorSize() ** call will segfault. */ pPager->sectorSize = 512; }else{ pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); if( pPager->sectorSize<32 ){ pPager->sectorSize = 512; } if( pPager->sectorSize>MAX_SECTOR_SIZE ){ assert( MAX_SECTOR_SIZE>=512 ); pPager->sectorSize = MAX_SECTOR_SIZE; } } } /* ** Playback the journal and thus restore the database file to ** the state it was in before we started making changes. ** |
︙ | ︙ | |||
2959 2960 2961 2962 2963 2964 2965 | ** The list of pages passed into this routine is always sorted by page number. ** Hence, if page 1 appears anywhere on the list, it will be the first page. */ static int pagerWalFrames( Pager *pPager, /* Pager object */ PgHdr *pList, /* List of frames to log */ Pgno nTruncate, /* Database size after this commit */ | | < | 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 | ** The list of pages passed into this routine is always sorted by page number. ** Hence, if page 1 appears anywhere on the list, it will be the first page. */ static int pagerWalFrames( Pager *pPager, /* Pager object */ PgHdr *pList, /* List of frames to log */ Pgno nTruncate, /* Database size after this commit */ int isCommit /* True if this is a commit */ ){ int rc; /* Return code */ #if defined(SQLITE_DEBUG) || defined(SQLITE_CHECK_PAGES) PgHdr *p; /* For looping over pages */ #endif assert( pPager->pWal ); |
︙ | ︙ | |||
2991 2992 2993 2994 2995 2996 2997 | if( p->pgno<=nTruncate ) ppNext = &p->pDirty; } assert( pList ); } if( pList->pgno==1 ) pager_write_changecounter(pList); rc = sqlite3WalFrames(pPager->pWal, | | | 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 | if( p->pgno<=nTruncate ) ppNext = &p->pDirty; } assert( pList ); } if( pList->pgno==1 ) pager_write_changecounter(pList); rc = sqlite3WalFrames(pPager->pWal, pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags ); if( rc==SQLITE_OK && pPager->pBackup ){ PgHdr *p; for(p=pList; p; p=p->pDirty){ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); } } |
︙ | ︙ | |||
3271 3272 3273 3274 3275 3276 3277 | /* Finally, rollback pages from the sub-journal. Page that were ** previously rolled back out of the main journal (and are hence in pDone) ** will be skipped. Out-of-range pages are also skipped. */ if( pSavepoint ){ u32 ii; /* Loop counter */ | | | | 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 | /* Finally, rollback pages from the sub-journal. Page that were ** previously rolled back out of the main journal (and are hence in pDone) ** will be skipped. Out-of-range pages are also skipped. */ if( pSavepoint ){ u32 ii; /* Loop counter */ i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); if( pagerUseWal(pPager) ){ rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); } for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ assert( offset==(i64)ii*(4+pPager->pageSize) ); rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); } assert( rc!=SQLITE_DONE ); } sqlite3BitvecDestroy(pDone); if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 | }else if( bCkptFullFsync ){ pPager->syncFlags = SQLITE_SYNC_NORMAL; pPager->ckptSyncFlags = SQLITE_SYNC_FULL; }else{ pPager->syncFlags = SQLITE_SYNC_NORMAL; pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; } } #endif /* ** The following global variable is incremented whenever the library ** attempts to open a temporary file. This information is used for ** testing and analysis only. | > > > > | 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 | }else if( bCkptFullFsync ){ pPager->syncFlags = SQLITE_SYNC_NORMAL; pPager->ckptSyncFlags = SQLITE_SYNC_FULL; }else{ pPager->syncFlags = SQLITE_SYNC_NORMAL; pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; } pPager->walSyncFlags = pPager->syncFlags; if( pPager->fullSync ){ pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS; } } #endif /* ** The following global variable is incremented whenever the library ** attempts to open a temporary file. This information is used for ** testing and analysis only. |
︙ | ︙ | |||
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 | /* Before the first write, give the VFS a hint of what the final ** file size will be. */ assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); if( rc==SQLITE_OK && pPager->dbSize>pPager->dbHintSize ){ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); pPager->dbHintSize = pPager->dbSize; } while( rc==SQLITE_OK && pList ){ Pgno pgno = pList->pgno; /* If there are dirty pages in the page cache with page numbers greater | > > | 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 | /* Before the first write, give the VFS a hint of what the final ** file size will be. */ assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); if( rc==SQLITE_OK && pPager->dbSize>pPager->dbHintSize ){ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; sqlite3BeginBenignMalloc(); sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); sqlite3EndBenignMalloc(); pPager->dbHintSize = pPager->dbSize; } while( rc==SQLITE_OK && pList ){ Pgno pgno = pList->pgno; /* If there are dirty pages in the page cache with page numbers greater |
︙ | ︙ | |||
4129 4130 4131 4132 4133 4134 4135 | ); rc = openSubJournal(pPager); /* If the sub-journal was opened successfully (or was already open), ** write the journal record into the file. */ if( rc==SQLITE_OK ){ void *pData = pPg->pData; | | | 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 | ); rc = openSubJournal(pPager); /* If the sub-journal was opened successfully (or was already open), ** write the journal record into the file. */ if( rc==SQLITE_OK ){ void *pData = pPg->pData; i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); char *pData2; CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); rc = write32bits(pPager->sjfd, offset, pPg->pgno); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); |
︙ | ︙ | |||
4202 4203 4204 4205 4206 4207 4208 | pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ if( subjRequiresPage(pPg) ){ rc = subjournalPage(pPg); } if( rc==SQLITE_OK ){ | | | 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 | pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ if( subjRequiresPage(pPg) ){ rc = subjournalPage(pPg); } if( rc==SQLITE_OK ){ rc = pagerWalFrames(pPager, pPg, 0, 0); } }else{ /* Sync the journal file if required. */ if( pPg->flags&PGHDR_NEED_SYNC || pPager->eState==PAGER_WRITER_CACHEMOD ){ |
︙ | ︙ | |||
4361 4362 4363 4364 4365 4366 4367 | rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); nPathname = sqlite3Strlen30(zPathname); z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; while( *z ){ z += sqlite3Strlen30(z)+1; z += sqlite3Strlen30(z)+1; } | | > | 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 | rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); nPathname = sqlite3Strlen30(zPathname); z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; while( *z ){ z += sqlite3Strlen30(z)+1; z += sqlite3Strlen30(z)+1; } nUri = (int)(&z[1] - zUri); assert( nUri>=0 ); if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ /* This branch is taken when the journal path required by ** the database being opened will be more than pVfs->mxPathname ** bytes in length. This means the database cannot be opened, ** as it will not be possible to open the journal file or even ** check for a hot-journal before reading. */ |
︙ | ︙ | |||
4395 4396 4397 4398 4399 4400 4401 | */ pPtr = (u8 *)sqlite3MallocZero( ROUND8(sizeof(*pPager)) + /* Pager structure */ ROUND8(pcacheSize) + /* PCache object */ ROUND8(pVfs->szOsFile) + /* The main db file */ journalFileSize * 2 + /* The two journal files */ nPathname + 1 + nUri + /* zFilename */ | | | | 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 | */ pPtr = (u8 *)sqlite3MallocZero( ROUND8(sizeof(*pPager)) + /* Pager structure */ ROUND8(pcacheSize) + /* PCache object */ ROUND8(pVfs->szOsFile) + /* The main db file */ journalFileSize * 2 + /* The two journal files */ nPathname + 1 + nUri + /* zFilename */ nPathname + 8 + 2 /* zJournal */ #ifndef SQLITE_OMIT_WAL + nPathname + 4 + 2 /* zWal */ #endif ); assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); if( !pPtr ){ sqlite3_free(zPathname); return SQLITE_NOMEM; } |
︙ | ︙ | |||
4420 4421 4422 4423 4424 4425 4426 | /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */ if( zPathname ){ assert( nPathname>0 ); pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri); memcpy(pPager->zFilename, zPathname, nPathname); memcpy(&pPager->zFilename[nPathname+1], zUri, nUri); memcpy(pPager->zJournal, zPathname, nPathname); | | | | 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 | /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */ if( zPathname ){ assert( nPathname>0 ); pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri); memcpy(pPager->zFilename, zPathname, nPathname); memcpy(&pPager->zFilename[nPathname+1], zUri, nUri); memcpy(pPager->zJournal, zPathname, nPathname); memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+1); sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal); #ifndef SQLITE_OMIT_WAL pPager->zWal = &pPager->zJournal[nPathname+8+1]; memcpy(pPager->zWal, zPathname, nPathname); memcpy(&pPager->zWal[nPathname], "-wal\000", 4+1); sqlite3FileSuffix3(pPager->zFilename, pPager->zWal); #endif sqlite3_free(zPathname); } pPager->pVfs = pVfs; pPager->vfsFlags = vfsFlags; |
︙ | ︙ | |||
4543 4544 4545 4546 4547 4548 4549 | pPager->changeCountDone = pPager->tempFile; pPager->memDb = (u8)memDb; pPager->readOnly = (u8)readOnly; assert( useJournal || pPager->tempFile ); pPager->noSync = pPager->tempFile; pPager->fullSync = pPager->noSync ?0:1; pPager->syncFlags = pPager->noSync ? 0 : SQLITE_SYNC_NORMAL; | < | > > > > > | > > > | < > | 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 | pPager->changeCountDone = pPager->tempFile; pPager->memDb = (u8)memDb; pPager->readOnly = (u8)readOnly; assert( useJournal || pPager->tempFile ); pPager->noSync = pPager->tempFile; pPager->fullSync = pPager->noSync ?0:1; pPager->syncFlags = pPager->noSync ? 0 : SQLITE_SYNC_NORMAL; pPager->ckptSyncFlags = pPager->syncFlags; if( pPager->noSync ){ assert( pPager->fullSync==0 ); assert( pPager->syncFlags==0 ); assert( pPager->walSyncFlags==0 ); assert( pPager->ckptSyncFlags==0 ); }else{ pPager->fullSync = 1; pPager->syncFlags = SQLITE_SYNC_NORMAL; pPager->walSyncFlags = SQLITE_SYNC_NORMAL | WAL_SYNC_TRANSACTIONS; pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; } /* pPager->pFirst = 0; */ /* pPager->pFirstSynced = 0; */ /* pPager->pLast = 0; */ pPager->nExtra = (u16)nExtra; pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; assert( isOpen(pPager->fd) || tempFile ); setSectorSize(pPager); |
︙ | ︙ | |||
5691 5692 5693 5694 5695 5696 5697 | int sqlite3PagerSync(Pager *pPager){ int rc = SQLITE_OK; if( !pPager->noSync ){ assert( !MEMDB ); rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); }else if( isOpen(pPager->fd) ){ assert( !MEMDB ); | | > > > | 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 | int sqlite3PagerSync(Pager *pPager){ int rc = SQLITE_OK; if( !pPager->noSync ){ assert( !MEMDB ); rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); }else if( isOpen(pPager->fd) ){ assert( !MEMDB ); rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC_OMITTED, 0); if( rc==SQLITE_NOTFOUND ){ rc = SQLITE_OK; } } return rc; } /* ** This function may only be called while a write-transaction is active in ** rollback. If the connection is in WAL mode, this call is a no-op. |
︙ | ︙ | |||
5788 5789 5790 5791 5792 5793 5794 | ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ rc = sqlite3PagerGet(pPager, 1, &pPageOne); pList = pPageOne; pList->pDirty = 0; } assert( rc==SQLITE_OK ); if( ALWAYS(pList) ){ | | < < | 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 | ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ rc = sqlite3PagerGet(pPager, 1, &pPageOne); pList = pPageOne; pList->pDirty = 0; } assert( rc==SQLITE_OK ); if( ALWAYS(pList) ){ rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); } sqlite3PagerUnref(pPageOne); if( rc==SQLITE_OK ){ sqlite3PcacheCleanAll(pPager->pPCache); } }else{ /* The following block updates the change-counter. Exactly how it |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
390 391 392 393 394 395 396 397 398 399 400 401 402 403 | %endif SQLITE_OMIT_VIEW //////////////////////// The SELECT statement ///////////////////////////////// // cmd ::= select(X). { SelectDest dest = {SRT_Output, 0, 0, 0, 0}; sqlite3Select(pParse, X, &dest); sqlite3SelectDelete(pParse->db, X); } %type select {Select*} %destructor select {sqlite3SelectDelete(pParse->db, $$);} %type oneselect {Select*} %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} | > > > | 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | %endif SQLITE_OMIT_VIEW //////////////////////// The SELECT statement ///////////////////////////////// // cmd ::= select(X). { SelectDest dest = {SRT_Output, 0, 0, 0, 0}; sqlite3Select(pParse, X, &dest); sqlite3ExplainBegin(pParse->pVdbe); sqlite3ExplainSelect(pParse->pVdbe, X); sqlite3ExplainFinish(pParse->pVdbe); sqlite3SelectDelete(pParse->db, X); } %type select {Select*} %destructor select {sqlite3SelectDelete(pParse->db, $$);} %type oneselect {Select*} %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} |
︙ | ︙ |
Changes to src/pcache.c.
︙ | ︙ | |||
201 202 203 204 205 206 207 | /* ** Compute the number of pages of cache requested. */ static int numberOfCachePages(PCache *p){ if( p->szCache>=0 ){ return p->szCache; }else{ | | | 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | /* ** Compute the number of pages of cache requested. */ static int numberOfCachePages(PCache *p){ if( p->szCache>=0 ){ return p->szCache; }else{ return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); } } /* ** Try to obtain a page from the cache. */ int sqlite3PcacheFetch( |
︙ | ︙ |
Changes to src/pcache1.c.
︙ | ︙ | |||
44 45 46 47 48 49 50 | ** ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single ** PGroup which is the pcache1.grp global variable and its mutex is ** SQLITE_MUTEX_STATIC_LRU. */ struct PGroup { sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ | | | | | | 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | ** ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single ** PGroup which is the pcache1.grp global variable and its mutex is ** SQLITE_MUTEX_STATIC_LRU. */ struct PGroup { sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ unsigned int nMinPage; /* Sum of nMin for purgeable caches */ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ unsigned int nCurrentPage; /* Number of purgeable pages allocated */ PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */ }; /* Each page cache is an instance of the following object. Every ** open database file (including each in-memory database and each ** temporary or transient database) has a single page cache which ** is an instance of this object. |
︙ | ︙ | |||
710 711 712 713 714 715 716 | ** 5. Otherwise, allocate and return a new page buffer. */ static sqlite3_pcache_page *pcache1Fetch( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ | | | 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 | ** 5. Otherwise, allocate and return a new page buffer. */ static sqlite3_pcache_page *pcache1Fetch( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ unsigned int nPinned; PCache1 *pCache = (PCache1 *)p; PGroup *pGroup; PgHdr1 *pPage = 0; assert( pCache->bPurgeable || createFlag!=1 ); assert( pCache->bPurgeable || pCache->nMin==0 ); assert( pCache->bPurgeable==0 || pCache->nMin==10 ); |
︙ | ︙ | |||
745 746 747 748 749 750 751 752 | ** this point. */ #ifdef SQLITE_MUTEX_OMIT pGroup = pCache->pGroup; #endif /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ nPinned = pCache->nPage - pCache->nRecyclable; | > < | | 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 | ** this point. */ #ifdef SQLITE_MUTEX_OMIT pGroup = pCache->pGroup; #endif /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ assert( pCache->nPage >= pCache->nRecyclable ); nPinned = pCache->nPage - pCache->nRecyclable; assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); assert( pCache->n90pct == pCache->nMax*9/10 ); if( createFlag==1 && ( nPinned>=pGroup->mxPinned || nPinned>=pCache->n90pct || pcache1UnderMemoryPressure(pCache) )){ goto fetch_out; } if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){ goto fetch_out; |
︙ | ︙ | |||
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 | */ static void pcache1Destroy(sqlite3_pcache *p){ PCache1 *pCache = (PCache1 *)p; PGroup *pGroup = pCache->pGroup; assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); pcache1EnterMutex(pGroup); pcache1TruncateUnsafe(pCache, 0); pGroup->nMaxPage -= pCache->nMax; pGroup->nMinPage -= pCache->nMin; pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; pcache1EnforceMaxPage(pGroup); pcache1LeaveMutex(pGroup); sqlite3_free(pCache->apHash); sqlite3_free(pCache); } | > > | 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 | */ static void pcache1Destroy(sqlite3_pcache *p){ PCache1 *pCache = (PCache1 *)p; PGroup *pGroup = pCache->pGroup; assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); pcache1EnterMutex(pGroup); pcache1TruncateUnsafe(pCache, 0); assert( pGroup->nMaxPage >= pCache->nMax ); pGroup->nMaxPage -= pCache->nMax; assert( pGroup->nMinPage >= pCache->nMin ); pGroup->nMinPage -= pCache->nMin; pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; pcache1EnforceMaxPage(pGroup); pcache1LeaveMutex(pGroup); sqlite3_free(pCache->apHash); sqlite3_free(pCache); } |
︙ | ︙ | |||
1006 1007 1008 1009 1010 1011 1012 | ){ PgHdr1 *p; int nRecyclable = 0; for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){ nRecyclable++; } *pnCurrent = pcache1.grp.nCurrentPage; | | | | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 | ){ PgHdr1 *p; int nRecyclable = 0; for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){ nRecyclable++; } *pnCurrent = pcache1.grp.nCurrentPage; *pnMax = (int)pcache1.grp.nMaxPage; *pnMin = (int)pcache1.grp.nMinPage; *pnRecyclable = nRecyclable; } #endif |
Changes to src/printf.c.
︙ | ︙ | |||
132 133 134 135 136 137 138 | return (char)digit; } #endif /* SQLITE_OMIT_FLOATING_POINT */ /* ** Append N space characters to the given string buffer. */ | | | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | return (char)digit; } #endif /* SQLITE_OMIT_FLOATING_POINT */ /* ** Append N space characters to the given string buffer. */ void sqlite3AppendSpace(StrAccum *pAccum, int N){ static const char zSpaces[] = " "; while( N>=(int)sizeof(zSpaces)-1 ){ sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); N -= sizeof(zSpaces)-1; } if( N>0 ){ sqlite3StrAccumAppend(pAccum, zSpaces, N); |
︙ | ︙ | |||
660 661 662 663 664 665 666 | ** "length" characters long. The field width is "width". Do ** the output. */ if( !flag_leftjustify ){ register int nspace; nspace = width-length; if( nspace>0 ){ | | | | 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 | ** "length" characters long. The field width is "width". Do ** the output. */ if( !flag_leftjustify ){ register int nspace; nspace = width-length; if( nspace>0 ){ sqlite3AppendSpace(pAccum, nspace); } } if( length>0 ){ sqlite3StrAccumAppend(pAccum, bufpt, length); } if( flag_leftjustify ){ register int nspace; nspace = width-length; if( nspace>0 ){ sqlite3AppendSpace(pAccum, nspace); } } sqlite3_free(zExtra); }/* End for loop over the format string */ } /* End of function */ /* |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
795 796 797 798 799 800 801 | int flags = pE->flags & EP_ExpCollate; sqlite3ExprDelete(db, pE); pItem->pExpr = pE = sqlite3Expr(db, TK_INTEGER, 0); if( pE==0 ) return 1; pE->pColl = pColl; pE->flags |= EP_IntValue | flags; pE->u.iValue = iCol; | | | 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 | int flags = pE->flags & EP_ExpCollate; sqlite3ExprDelete(db, pE); pItem->pExpr = pE = sqlite3Expr(db, TK_INTEGER, 0); if( pE==0 ) return 1; pE->pColl = pColl; pE->flags |= EP_IntValue | flags; pE->u.iValue = iCol; pItem->iOrderByCol = (u16)iCol; pItem->done = 1; }else{ moreToDo = 1; } } pSelect = pSelect->pNext; } |
︙ | ︙ | |||
844 845 846 847 848 849 850 | sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); return 1; } #endif pEList = pSelect->pEList; assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ | | | | | 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 | sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); return 1; } #endif pEList = pSelect->pEList; assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ if( pItem->iOrderByCol ){ if( pItem->iOrderByCol>pEList->nExpr ){ resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr); return 1; } resolveAlias(pParse, pEList, pItem->iOrderByCol-1, pItem->pExpr, zType); } } return 0; } /* ** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect. |
︙ | ︙ | |||
896 897 898 899 900 901 902 | Expr *pE = pItem->pExpr; iCol = resolveAsName(pParse, pSelect->pEList, pE); if( iCol>0 ){ /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ | | | | | 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | Expr *pE = pItem->pExpr; iCol = resolveAsName(pParse, pSelect->pEList, pE); if( iCol>0 ){ /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ pItem->iOrderByCol = (u16)iCol; continue; } if( sqlite3ExprIsInteger(pE, &iCol) ){ /* The ORDER BY term is an integer constant. Again, set the column ** number so that sqlite3ResolveOrderGroupBy() will convert the ** order-by term to a copy of the result-set expression */ if( iCol<1 ){ resolveOutOfRangeError(pParse, zType, i+1, nResult); return 1; } pItem->iOrderByCol = (u16)iCol; continue; } /* Otherwise, treat the ORDER BY term as an ordinary expression */ pItem->iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } } return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); } |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
2215 2216 2217 2218 2219 2220 2221 | ** the ORDER BY clause covers every term of the result set. Add ** terms to the ORDER BY clause as necessary. */ if( op!=TK_ALL ){ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ struct ExprList_item *pItem; for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ | | | | | | | 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 | ** the ORDER BY clause covers every term of the result set. Add ** terms to the ORDER BY clause as necessary. */ if( op!=TK_ALL ){ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ struct ExprList_item *pItem; for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ assert( pItem->iOrderByCol>0 ); if( pItem->iOrderByCol==i ) break; } if( j==nOrderBy ){ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return SQLITE_NOMEM; pNew->flags |= EP_IntValue; pNew->u.iValue = i; pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i; } } } /* Compute the comparison permutation and keyinfo that is used with ** the permutation used to determine if the next ** row of results comes from selectA or selectB. Also add explicit ** collations to the ORDER BY clause terms so that when the subqueries ** to the right and the left are evaluated, they use the correct ** collation. */ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->iOrderByCol - 1; } pKeyMerge = sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); if( pKeyMerge ){ pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; pKeyMerge->nField = (u16)nOrderBy; pKeyMerge->enc = ENC(db); |
︙ | ︙ | |||
2584 2585 2586 2587 2588 2589 2590 | } } } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* | | | < | 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 | } } } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** This routine attempts to flatten subqueries as a performance optimization. ** This routine returns 1 if it makes changes and 0 if no flattening occurs. ** ** To understand the concept of flattening, consider the following ** query: ** ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 ** ** The default way of implementing this query is to execute the |
︙ | ︙ | |||
2628 2629 2630 2631 2632 2633 2634 | ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT ** sub-queries that were excluded from this optimization. Restriction ** (4) has since been expanded to exclude all DISTINCT subqueries. ** ** (6) The subquery does not use aggregates or the outer query is not ** DISTINCT. ** | | > > > | 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 | ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT ** sub-queries that were excluded from this optimization. Restriction ** (4) has since been expanded to exclude all DISTINCT subqueries. ** ** (6) The subquery does not use aggregates or the outer query is not ** DISTINCT. ** ** (7) The subquery has a FROM clause. TODO: For subqueries without ** A FROM clause, consider adding a FROM close with the special ** table sqlite_once that consists of a single row containing a ** single NULL. ** ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** ** (10) The subquery does not use aggregates or the outer query does not |
︙ | ︙ | |||
2661 2662 2663 2664 2665 2666 2667 | ** ** (17) The sub-query is not a compound select, or it is a UNION ALL ** compound clause made up entirely of non-aggregate queries, and ** the parent query: ** ** * is not itself part of a compound select, ** * is not an aggregate or DISTINCT query, and | | | > > > | | 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 | ** ** (17) The sub-query is not a compound select, or it is a UNION ALL ** compound clause made up entirely of non-aggregate queries, and ** the parent query: ** ** * is not itself part of a compound select, ** * is not an aggregate or DISTINCT query, and ** * is not a join ** ** The parent and sub-query may contain WHERE clauses. Subject to ** rules (11), (13) and (14), they may also contain ORDER BY, ** LIMIT and OFFSET clauses. The subquery cannot use any compound ** operator other than UNION ALL because all the other compound ** operators have an implied DISTINCT which is disallowed by ** restriction (4). ** ** (18) If the sub-query is a compound select, then all terms of the ** ORDER by clause of the parent must be simple references to ** columns of the sub-query. ** ** (19) The subquery does not use LIMIT or the outer query does not ** have a WHERE clause. ** ** (20) If the sub-query is a compound select, then it must not use ** an ORDER BY clause. Ticket #3773. We could relax this constraint ** somewhat by saying that the terms of the ORDER BY clause must ** appear as unmodified result columns in the outer query. But we ** have other optimizations in mind to deal with that case. ** ** (21) The subquery does not use LIMIT or the outer query is not ** DISTINCT. (See ticket [752e1646fc]). ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
︙ | ︙ | |||
2806 2807 2808 2809 2810 2811 2812 2813 2814 | } if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ return 0; } for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 || (pSub1->pPrior && pSub1->op!=TK_ALL) | > | > | | 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 | } if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ return 0; } for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); assert( pSub->pSrc!=0 ); if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 || (pSub1->pPrior && pSub1->op!=TK_ALL) || pSub1->pSrc->nSrc<1 ){ return 0; } testcase( pSub1->pSrc->nSrc>1 ); } /* Restriction 18. */ if( p->pOrderBy ){ int ii; for(ii=0; ii<p->pOrderBy->nExpr; ii++){ if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0; } } } /***** If we reach this point, flattening is permitted. *****/ /* Authorize the subquery */ |
︙ | ︙ | |||
3841 3842 3843 3844 3845 3846 3847 | int onceAddr = 0; int retAddr; assert( pItem->addrFillSub==0 ); pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); pItem->addrFillSub = topAddr+1; VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); | | < | | 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 | int onceAddr = 0; int retAddr; assert( pItem->addrFillSub==0 ); pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); pItem->addrFillSub = topAddr+1; VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); if( pItem->isCorrelated==0 ){ /* If the subquery is no correlated and if we are not inside of ** a trigger, then we only need to compute the value of the subquery ** once. */ onceAddr = sqlite3CodeOnce(pParse); } sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); |
︙ | ︙ | |||
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 | pParse->nMem += pGroupBy->nExpr; iBMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); VdbeComment((v, "clear abort flag")); sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); VdbeComment((v, "indicate accumulator empty")); /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | > | 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 | pParse->nMem += pGroupBy->nExpr; iBMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); VdbeComment((v, "clear abort flag")); sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); VdbeComment((v, "indicate accumulator empty")); sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
︙ | ︙ | |||
4490 4491 4492 4493 4494 4495 4496 | } sqlite3DbFree(db, sAggInfo.aCol); sqlite3DbFree(db, sAggInfo.aFunc); return rc; } | | < < < < < | < < < < < < | < | < | < | | < | | | < | | < < < < < < | | < < < < | | | < | > | < < | < | | | | | | | | | > | | | | | | | | | | | | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > | 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 | } sqlite3DbFree(db, sAggInfo.aCol); sqlite3DbFree(db, sAggInfo.aFunc); return rc; } #if defined(SQLITE_ENABLE_TREE_EXPLAIN) void sqlite3PrintExpr(Expr *p); void sqlite3PrintExprList(ExprList *pList); void sqlite3PrintSelect(Select *p, int indent); /* ** Generate a human-readable description of a the Select object. */ static void explainOneSelect(Vdbe *pVdbe, Select *p){ sqlite3ExplainPrintf(pVdbe, "SELECT "); if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ if( p->selFlags & SF_Distinct ){ sqlite3ExplainPrintf(pVdbe, "DISTINCT "); } if( p->selFlags & SF_Aggregate ){ sqlite3ExplainPrintf(pVdbe, "agg_flag "); } sqlite3ExplainNL(pVdbe); sqlite3ExplainPrintf(pVdbe, " "); } sqlite3ExplainExprList(pVdbe, p->pEList); sqlite3ExplainNL(pVdbe); if( p->pSrc && p->pSrc->nSrc ){ int i; sqlite3ExplainPrintf(pVdbe, "FROM "); sqlite3ExplainPush(pVdbe); for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); if( pItem->pSelect ){ sqlite3ExplainSelect(pVdbe, pItem->pSelect); if( pItem->pTab ){ sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); } }else if( pItem->zName ){ sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); } if( pItem->zAlias ){ sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); } if( pItem->jointype & JT_LEFT ){ sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); } sqlite3ExplainNL(pVdbe); } sqlite3ExplainPop(pVdbe); } if( p->pWhere ){ sqlite3ExplainPrintf(pVdbe, "WHERE "); sqlite3ExplainExpr(pVdbe, p->pWhere); sqlite3ExplainNL(pVdbe); } if( p->pGroupBy ){ sqlite3ExplainPrintf(pVdbe, "GROUPBY "); sqlite3ExplainExprList(pVdbe, p->pGroupBy); sqlite3ExplainNL(pVdbe); } if( p->pHaving ){ sqlite3ExplainPrintf(pVdbe, "HAVING "); sqlite3ExplainExpr(pVdbe, p->pHaving); sqlite3ExplainNL(pVdbe); } if( p->pOrderBy ){ sqlite3ExplainPrintf(pVdbe, "ORDERBY "); sqlite3ExplainExprList(pVdbe, p->pOrderBy); sqlite3ExplainNL(pVdbe); } if( p->pLimit ){ sqlite3ExplainPrintf(pVdbe, "LIMIT "); sqlite3ExplainExpr(pVdbe, p->pLimit); sqlite3ExplainNL(pVdbe); } if( p->pOffset ){ sqlite3ExplainPrintf(pVdbe, "OFFSET "); sqlite3ExplainExpr(pVdbe, p->pOffset); sqlite3ExplainNL(pVdbe); } } void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ if( p==0 ){ sqlite3ExplainPrintf(pVdbe, "(null-select)"); return; } while( p->pPrior ) p = p->pPrior; sqlite3ExplainPush(pVdbe); while( p ){ explainOneSelect(pVdbe, p); p = p->pNext; if( p==0 ) break; sqlite3ExplainNL(pVdbe); sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); } sqlite3ExplainPrintf(pVdbe, "END"); sqlite3ExplainPop(pVdbe); } /* End of the structure debug printing code *****************************************************************************/ #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ |
Changes to src/shell.c.
︙ | ︙ | |||
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 | } /* echo the sql statement if echo on */ if( pArg && pArg->echoOn ){ const char *zStmtSql = sqlite3_sql(pStmt); fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql); } /* perform the first step. this will tell us if we ** have a result set or not and how wide it is. */ rc = sqlite3_step(pStmt); /* if we have a result set... */ if( SQLITE_ROW == rc ){ | > > > > > > > > > | 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 | } /* echo the sql statement if echo on */ if( pArg && pArg->echoOn ){ const char *zStmtSql = sqlite3_sql(pStmt); fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql); } /* Output TESTCTRL_EXPLAIN text of requested */ if( pArg && pArg->mode==MODE_Explain ){ const char *zExplain = 0; sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, pStmt, &zExplain); if( zExplain && zExplain[0] ){ fprintf(pArg->out, "%s", zExplain); } } /* perform the first step. this will tell us if we ** have a result set or not and how wide it is. */ rc = sqlite3_step(pStmt); /* if we have a result set... */ if( SQLITE_ROW == rc ){ |
︙ | ︙ | |||
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 | ".separator STRING Change separator used by output mode and .import\n" ".show Show the current values for various settings\n" ".stats ON|OFF Turn stats on or off\n" ".tables ?TABLE? List names of tables\n" " If TABLE specified, only list tables matching\n" " LIKE pattern TABLE.\n" ".timeout MS Try opening locked tables for MS milliseconds\n" ".width NUM1 NUM2 ... Set column widths for \"column\" mode\n" ; static char zTimerHelp[] = ".timer ON|OFF Turn the CPU timer measurement on or off\n" ; | > | 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 | ".separator STRING Change separator used by output mode and .import\n" ".show Show the current values for various settings\n" ".stats ON|OFF Turn stats on or off\n" ".tables ?TABLE? List names of tables\n" " If TABLE specified, only list tables matching\n" " LIKE pattern TABLE.\n" ".timeout MS Try opening locked tables for MS milliseconds\n" ".vfsname ?AUX? Print the name of the VFS stack\n" ".width NUM1 NUM2 ... Set column widths for \"column\" mode\n" ; static char zTimerHelp[] = ".timer ON|OFF Turn the CPU timer measurement on or off\n" ; |
︙ | ︙ | |||
2331 2332 2333 2334 2335 2336 2337 | if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0 && nArg==2 ){ enableTimer = booleanValue(azArg[1]); }else if( c=='v' && strncmp(azArg[0], "version", n)==0 ){ | | > > > > > > > > > > > > | 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 | if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0 && nArg==2 ){ enableTimer = booleanValue(azArg[1]); }else if( c=='v' && strncmp(azArg[0], "version", n)==0 ){ printf("SQLite %s %s\n" /*extra-version-info*/, sqlite3_libversion(), sqlite3_sourceid()); }else if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){ const char *zDbName = nArg==2 ? azArg[1] : "main"; char *zVfsName = 0; if( p->db ){ sqlite3_file_control(p->db, zDbName, SQLITE_FCNTL_VFSNAME, &zVfsName); if( zVfsName ){ printf("%s\n", zVfsName); sqlite3_free(zVfsName); } } }else if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){ int j; assert( nArg<=ArraySize(azArg) ); for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){ p->colWidth[j-1] = atoi(azArg[j]); } |
︙ | ︙ | |||
2928 2929 2930 2931 2932 2933 2934 | /* Run commands received from standard input */ if( stdin_is_interactive ){ char *zHome; char *zHistory = 0; int nHistory; printf( | | | 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 | /* Run commands received from standard input */ if( stdin_is_interactive ){ char *zHome; char *zHistory = 0; int nHistory; printf( "SQLite version %s %.19s\n" /*extra-version-info*/ "Enter \".help\" for instructions\n" "Enter SQL statements terminated with a \";\"\n", sqlite3_libversion(), sqlite3_sourceid() ); zHome = find_home_dir(); if( zHome ){ nHistory = strlen30(zHome) + 20; |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
168 169 170 171 172 173 174 | const char *sqlite3_compileoption_get(int N); #endif /* ** CAPI3REF: Test To See If The Library Is Threadsafe ** ** ^The sqlite3_threadsafe() function returns zero if and only if | | | 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | const char *sqlite3_compileoption_get(int N); #endif /* ** CAPI3REF: Test To See If The Library Is Threadsafe ** ** ^The sqlite3_threadsafe() function returns zero if and only if ** SQLite was compiled with mutexing code omitted due to the ** [SQLITE_THREADSAFE] compile-time option being set to 0. ** ** SQLite can be compiled with or without mutexes. When ** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes ** are enabled and SQLite is threadsafe. When the ** [SQLITE_THREADSAFE] macro is 0, ** the mutexes are omitted. Without the mutexes, it is not safe |
︙ | ︙ | |||
362 363 364 365 366 367 368 | /* ** CAPI3REF: Result Codes ** KEYWORDS: SQLITE_OK {error code} {error codes} ** KEYWORDS: {result code} {result codes} ** ** Many SQLite functions return an integer result code from the set shown | | | 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | /* ** CAPI3REF: Result Codes ** KEYWORDS: SQLITE_OK {error code} {error codes} ** KEYWORDS: {result code} {result codes} ** ** Many SQLite functions return an integer result code from the set shown ** here in order to indicate success or failure. ** ** New error codes may be added in future versions of SQLite. ** ** See also: [SQLITE_IOERR_READ | extended result codes], ** [sqlite3_vtab_on_conflict()] [SQLITE_ROLLBACK | result codes]. */ #define SQLITE_OK 0 /* Successful result */ |
︙ | ︙ | |||
501 502 503 504 505 506 507 | ** mean that writes of blocks that are nnn bytes in size and ** are aligned to an address which is an integer multiple of ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means ** that when data is appended to a file, the data is appended ** first then the size of the file is extended, never the other ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls | | > > > > > | 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 | ** mean that writes of blocks that are nnn bytes in size and ** are aligned to an address which is an integer multiple of ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means ** that when data is appended to a file, the data is appended ** first then the size of the file is extended, never the other ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls ** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that ** after reboot following a crash or power loss, the only bytes in a ** file that were written at the application level might have changed ** and that adjacent bytes, even bytes within the same sector are ** guaranteed to be unchanged. */ #define SQLITE_IOCAP_ATOMIC 0x00000001 #define SQLITE_IOCAP_ATOMIC512 0x00000002 #define SQLITE_IOCAP_ATOMIC1K 0x00000004 #define SQLITE_IOCAP_ATOMIC2K 0x00000008 #define SQLITE_IOCAP_ATOMIC4K 0x00000010 #define SQLITE_IOCAP_ATOMIC8K 0x00000020 #define SQLITE_IOCAP_ATOMIC16K 0x00000040 #define SQLITE_IOCAP_ATOMIC32K 0x00000080 #define SQLITE_IOCAP_ATOMIC64K 0x00000100 #define SQLITE_IOCAP_SAFE_APPEND 0x00000200 #define SQLITE_IOCAP_SEQUENTIAL 0x00000400 #define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800 #define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000 /* ** CAPI3REF: File Locking Levels ** ** SQLite uses one of these integer values as the second ** argument to calls it makes to the xLock() and xUnlock() methods ** of an [sqlite3_io_methods] object. |
︙ | ︙ | |||
736 737 738 739 740 741 742 | ** VFSes do not need this signal and should silently ignore this opcode. ** Applications should not call [sqlite3_file_control()] with this ** opcode as doing so may disrupt the operation of the specialized VFSes ** that do require it. ** ** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic ** retry counts and intervals for certain disk I/O operations for the | | | | 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | ** VFSes do not need this signal and should silently ignore this opcode. ** Applications should not call [sqlite3_file_control()] with this ** opcode as doing so may disrupt the operation of the specialized VFSes ** that do require it. ** ** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic ** retry counts and intervals for certain disk I/O operations for the ** windows [VFS] in order to provide robustness in the presence of ** anti-virus programs. By default, the windows VFS will retry file read, ** file write, and file delete operations up to 10 times, with a delay ** of 25 milliseconds before the first retry and with the delay increasing ** by an additional 25 milliseconds with each subsequent retry. This ** opcode allows these two values (10 retries and 25 milliseconds of delay) ** to be adjusted. The values are changed for all database connections ** within the same process. The argument is a pointer to an array of two ** integers where the first integer i the new retry count and the second ** integer is the delay. If either integer is negative, then the setting ** is not changed but instead the prior value of that setting is written ** into the array entry, allowing the current retry settings to be ** interrogated. The zDbName parameter is ignored. |
︙ | ︙ | |||
763 764 765 766 767 768 769 770 771 772 773 774 775 | ** have write permission on the directory containing the database file want ** to read the database file, as the WAL and shared memory files must exist ** in order for the database to be readable. The fourth parameter to ** [sqlite3_file_control()] for this opcode should be a pointer to an integer. ** That integer is 0 to disable persistent WAL mode or 1 to enable persistent ** WAL mode. If the integer is -1, then it is overwritten with the current ** WAL persistence setting. ** ** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening ** a write transaction to indicate that, unless it is rolled back for some ** reason, the entire database file will be overwritten by the current ** transaction. This is used by VACUUM operations. */ | > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | < < < | | 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 | ** have write permission on the directory containing the database file want ** to read the database file, as the WAL and shared memory files must exist ** in order for the database to be readable. The fourth parameter to ** [sqlite3_file_control()] for this opcode should be a pointer to an integer. ** That integer is 0 to disable persistent WAL mode or 1 to enable persistent ** WAL mode. If the integer is -1, then it is overwritten with the current ** WAL persistence setting. ** ** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the ** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting ** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the ** xDeviceCharacteristics methods. The fourth parameter to ** [sqlite3_file_control()] for this opcode should be a pointer to an integer. ** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage ** mode. If the integer is -1, then it is overwritten with the current ** zero-damage mode setting. ** ** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening ** a write transaction to indicate that, unless it is rolled back for some ** reason, the entire database file will be overwritten by the current ** transaction. This is used by VACUUM operations. ** ** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of ** all [VFSes] in the VFS stack. The names are of all VFS shims and the ** final bottom-level VFS are written into memory obtained from ** [sqlite3_malloc()] and the result is stored in the char* variable ** that the fourth parameter of [sqlite3_file_control()] points to. ** The caller is responsible for freeing the memory when done. As with ** all file-control actions, there is no guarantee that this will actually ** do anything. Callers should initialize the char* variable to a NULL ** pointer in case this file-control is not implemented. This file-control ** is intended for diagnostic use only. */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_GET_LOCKPROXYFILE 2 #define SQLITE_SET_LOCKPROXYFILE 3 #define SQLITE_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 #define SQLITE_FCNTL_CHUNK_SIZE 6 #define SQLITE_FCNTL_FILE_POINTER 7 #define SQLITE_FCNTL_SYNC_OMITTED 8 #define SQLITE_FCNTL_WIN32_AV_RETRY 9 #define SQLITE_FCNTL_PERSIST_WAL 10 #define SQLITE_FCNTL_OVERWRITE 11 #define SQLITE_FCNTL_VFSNAME 12 #define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13 /* ** CAPI3REF: Mutex Handle ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks ** at the internal representation of an [sqlite3_mutex]. It only |
︙ | ︙ | |||
839 840 841 842 843 844 845 | ** ** [[sqlite3_vfs.xOpen]] ** ^SQLite guarantees that the zFilename parameter to xOpen ** is either a NULL pointer or string obtained ** from xFullPathname() with an optional suffix added. ** ^If a suffix is added to the zFilename parameter, it will ** consist of a single "-" character followed by no more than | | | 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 | ** ** [[sqlite3_vfs.xOpen]] ** ^SQLite guarantees that the zFilename parameter to xOpen ** is either a NULL pointer or string obtained ** from xFullPathname() with an optional suffix added. ** ^If a suffix is added to the zFilename parameter, it will ** consist of a single "-" character followed by no more than ** 11 alphanumeric and/or "-" characters. ** ^SQLite further guarantees that ** the string will be valid and unchanged until xClose() is ** called. Because of the previous sentence, ** the [sqlite3_file] can safely store a pointer to the ** filename if it needs to remember the filename for some reason. ** If the zFilename parameter to xOpen is a NULL pointer then xOpen ** must invent its own temporary name for the file. ^Whenever the |
︙ | ︙ | |||
1990 1991 1992 1993 1994 1995 1996 | ** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf(). ** ** These routines all implement some additional formatting ** options that are useful for constructing SQL statements. ** All of the usual printf() formatting options apply. In addition, there ** is are "%q", "%Q", and "%z" options. ** | | | 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 | ** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf(). ** ** These routines all implement some additional formatting ** options that are useful for constructing SQL statements. ** All of the usual printf() formatting options apply. In addition, there ** is are "%q", "%Q", and "%z" options. ** ** ^(The %q option works like %s in that it substitutes a nul-terminated ** string from the argument list. But %q also doubles every '\'' character. ** %q is designed for use inside a string literal.)^ By doubling each '\'' ** character it escapes that character and allows it to be inserted into ** the string. ** ** For example, assume the string variable zText contains text as follows: ** |
︙ | ︙ | |||
2598 2599 2600 2601 2602 2603 2604 | int flags, /* Flags */ const char *zVfs /* Name of VFS module to use */ ); /* ** CAPI3REF: Obtain Values For URI Parameters ** | | | | | | | > > | > > > > > > > > > > > > | | | > > | 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 | int flags, /* Flags */ const char *zVfs /* Name of VFS module to use */ ); /* ** CAPI3REF: Obtain Values For URI Parameters ** ** These are utility routines, useful to VFS implementations, that check ** to see if a database file was a URI that contained a specific query ** parameter, and if so obtains the value of that query parameter. ** ** If F is the filename pointer passed into the xOpen() method of a VFS ** implementation and P is the name of the query parameter, then ** sqlite3_uri_parameter(F,P) returns the value of the P ** parameter if it exists or a NULL pointer if P does not appear as a ** query parameter on F. If P is a query parameter of F ** has no explicit value, then sqlite3_uri_parameter(F,P) returns ** a pointer to an empty string. ** ** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean ** parameter and returns true (1) or false (0) according to the value ** of P. The value of P is true if it is "yes" or "true" or "on" or ** a non-zero number and is false otherwise. If P is not a query parameter ** on F then sqlite3_uri_boolean(F,P,B) returns (B!=0). ** ** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a ** 64-bit signed integer and returns that integer, or D if P does not ** exist. If the value of P is something other than an integer, then ** zero is returned. ** ** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and ** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and ** is not a pathname pointer that SQLite passed into the xOpen VFS method, ** then the behavior of this routine is undefined and probably undesirable. */ const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam); int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault); sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64); /* ** CAPI3REF: Error Codes And Messages ** ** ^The sqlite3_errcode() interface returns the numeric [result code] or ** [extended result code] for the most recent failed sqlite3_* API call |
︙ | ︙ | |||
3494 3495 3496 3497 3498 3499 3500 | ** ^The values returned by [sqlite3_column_bytes()] and ** [sqlite3_column_bytes16()] do not include the zero terminators at the end ** of the string. ^For clarity: the values returned by ** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of ** bytes in the string, not the number of characters. ** ** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(), | | | 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 | ** ^The values returned by [sqlite3_column_bytes()] and ** [sqlite3_column_bytes16()] do not include the zero terminators at the end ** of the string. ^For clarity: the values returned by ** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of ** bytes in the string, not the number of characters. ** ** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(), ** even empty strings, are always zero-terminated. ^The return ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. ** ** ^The object returned by [sqlite3_column_value()] is an ** [unprotected sqlite3_value] object. An unprotected sqlite3_value object ** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. ** If the [unprotected sqlite3_value] object returned by ** [sqlite3_column_value()] is used in any other way, including calls |
︙ | ︙ | |||
4579 4580 4581 4582 4583 4584 4585 | ** See also: [sqlite3_db_release_memory()] */ int sqlite3_release_memory(int); /* ** CAPI3REF: Free Memory Used By A Database Connection ** | | | 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 | ** See also: [sqlite3_db_release_memory()] */ int sqlite3_release_memory(int); /* ** CAPI3REF: Free Memory Used By A Database Connection ** ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap ** memory as possible from database connection D. Unlike the ** [sqlite3_release_memory()] interface, this interface is effect even ** when then [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is ** omitted. ** ** See also: [sqlite3_release_memory()] */ |
︙ | ︙ | |||
4603 4604 4605 4606 4607 4608 4609 | ** as heap memory usages approaches the limit. ** ^The soft heap limit is "soft" because even though SQLite strives to stay ** below the limit, it will exceed the limit rather than generate ** an [SQLITE_NOMEM] error. In other words, the soft heap limit ** is advisory only. ** ** ^The return value from sqlite3_soft_heap_limit64() is the size of | | > | 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 | ** as heap memory usages approaches the limit. ** ^The soft heap limit is "soft" because even though SQLite strives to stay ** below the limit, it will exceed the limit rather than generate ** an [SQLITE_NOMEM] error. In other words, the soft heap limit ** is advisory only. ** ** ^The return value from sqlite3_soft_heap_limit64() is the size of ** the soft heap limit prior to the call, or negative in the case of an ** error. ^If the argument N is negative ** then no change is made to the soft heap limit. Hence, the current ** size of the soft heap limit can be determined by invoking ** sqlite3_soft_heap_limit64() with a negative argument. ** ** ^If the argument N is zero then the soft heap limit is disabled. ** ** ^(The soft heap limit is not enforced in the current implementation |
︙ | ︙ | |||
5559 5560 5561 5562 5563 5564 5565 | ** with the SQLITE_DEBUG flag. ^External mutex implementations ** are only required to provide these routines if SQLITE_DEBUG is ** defined and if NDEBUG is not defined. ** ** ^These routines should return true if the mutex in their argument ** is held or not held, respectively, by the calling thread. ** | | | 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 | ** with the SQLITE_DEBUG flag. ^External mutex implementations ** are only required to provide these routines if SQLITE_DEBUG is ** defined and if NDEBUG is not defined. ** ** ^These routines should return true if the mutex in their argument ** is held or not held, respectively, by the calling thread. ** ** ^The implementation is not required to provide versions of these ** routines that actually work. If the implementation does not provide working ** versions of these routines, it should at least provide stubs that always ** return true so that one does not get spurious assertion failures. ** ** ^If the argument to sqlite3_mutex_held() is a NULL pointer then ** the routine should return 1. This seems counter-intuitive since ** clearly the mutex cannot be held if it does not exist. But |
︙ | ︙ | |||
5689 5690 5691 5692 5693 5694 5695 | #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 | > | | 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 | #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_LAST 19 /* ** CAPI3REF: SQLite Runtime Status ** ** ^This interface is used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for |
︙ | ︙ | |||
6040 6041 6042 6043 6044 6045 6046 | ** the application may discard the parameter after the call to ** [sqlite3_config()] returns.)^ ** ** [[the xInit() page cache method]] ** ^(The xInit() method is called once for each effective ** call to [sqlite3_initialize()])^ ** (usually only once during the lifetime of the process). ^(The xInit() | | | 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 | ** the application may discard the parameter after the call to ** [sqlite3_config()] returns.)^ ** ** [[the xInit() page cache method]] ** ^(The xInit() method is called once for each effective ** call to [sqlite3_initialize()])^ ** (usually only once during the lifetime of the process). ^(The xInit() ** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^ ** The intent of the xInit() method is to set up global data structures ** required by the custom page cache implementation. ** ^(If the xInit() method is NULL, then the ** built-in default page cache is used instead of the application defined ** page cache.)^ ** ** [[the xShutdown() page cache method]] |
︙ | ︙ | |||
6066 6067 6068 6069 6070 6071 6072 | ** ^SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). ** ** [[the xCreate() page cache methods]] ** ^SQLite invokes the xCreate() method to construct a new cache instance. ** SQLite will typically create one cache instance for each open database file, ** though this is not guaranteed. ^The | | | 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 | ** ^SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). ** ** [[the xCreate() page cache methods]] ** ^SQLite invokes the xCreate() method to construct a new cache instance. ** SQLite will typically create one cache instance for each open database file, ** though this is not guaranteed. ^The ** first parameter, szPage, is the size in bytes of the pages that must ** be allocated by the cache. ^szPage will always a power of two. ^The ** second parameter szExtra is a number of bytes of extra storage ** associated with each page cache entry. ^The szExtra parameter will ** a number less than 250. SQLite will use the ** extra szExtra bytes on each page to store metadata about the underlying ** database page on disk. The value passed into szExtra depends ** on the SQLite version, the target platform, and how SQLite was compiled. |
︙ | ︙ | |||
6161 6162 6163 6164 6165 6166 6167 | ** of these pages are pinned, they are implicitly unpinned, meaning that ** they can be safely discarded. ** ** [[the xDestroy() page cache method]] ** ^The xDestroy() method is used to delete a cache allocated by xCreate(). ** All resources associated with the specified cache should be freed. ^After ** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*] | | | 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 | ** of these pages are pinned, they are implicitly unpinned, meaning that ** they can be safely discarded. ** ** [[the xDestroy() page cache method]] ** ^The xDestroy() method is used to delete a cache allocated by xCreate(). ** All resources associated with the specified cache should be freed. ^After ** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*] ** handle invalid, and will not use it with any other sqlite3_pcache_methods2 ** functions. ** ** [[the xShrink() page cache method]] ** ^SQLite invokes the xShrink() method when it wants the page cache to ** free up as much of heap memory as possible. The page cache implementation ** is not obligated to free any memory, but well-behaved implementions should ** do their best. |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
121 122 123 124 125 126 127 128 129 130 131 132 133 134 | #if defined(THREADSAFE) # define SQLITE_THREADSAFE THREADSAFE #else # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ #endif #endif /* ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. ** It determines whether or not the features related to ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can ** be overridden at runtime using the sqlite3_config() API. */ #if !defined(SQLITE_DEFAULT_MEMSTATUS) | > > > > > > > > | 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | #if defined(THREADSAFE) # define SQLITE_THREADSAFE THREADSAFE #else # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ #endif #endif /* ** Powersafe overwrite is on by default. But can be turned off using ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. */ #ifndef SQLITE_POWERSAFE_OVERWRITE # define SQLITE_POWERSAFE_OVERWRITE 1 #endif /* ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. ** It determines whether or not the features related to ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can ** be overridden at runtime using the sqlite3_config() API. */ #if !defined(SQLITE_DEFAULT_MEMSTATUS) |
︙ | ︙ | |||
1713 1714 1715 1716 1717 1718 1719 | #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ #define EP_FixedDest 0x0200 /* Result needed in a specific register */ #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ | | | | | | 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 | #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ #define EP_FixedDest 0x0200 /* Result needed in a specific register */ #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ #define EP_Hint 0x1000 /* Optimizer hint. Not required for correctness */ #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ /* ** The following are the meanings of bits in the Expr.flags2 field. */ #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ |
︙ | ︙ | |||
1778 1779 1780 1781 1782 1783 1784 | int iECursor; /* VDBE Cursor associated with this ExprList */ struct ExprList_item { Expr *pExpr; /* The list of expressions */ char *zName; /* Token associated with this expression */ char *zSpan; /* Original text of the expression */ u8 sortOrder; /* 1 for DESC or 0 for ASC */ u8 done; /* A flag to indicate when processing is finished */ | | | 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 | int iECursor; /* VDBE Cursor associated with this ExprList */ struct ExprList_item { Expr *pExpr; /* The list of expressions */ char *zName; /* Token associated with this expression */ char *zSpan; /* Original text of the expression */ u8 sortOrder; /* 1 for DESC or 0 for ASC */ u8 done; /* A flag to indicate when processing is finished */ u16 iOrderByCol; /* For ORDER BY, column number in result set */ u16 iAlias; /* Index into Parse.aAlias[] for zName */ } *a; /* One entry for each expression */ }; /* ** An instance of this structure is used by the parser to record both ** the parse tree for an expression and the span of input text for an |
︙ | ︙ | |||
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 | int aTempReg[8]; /* Holding area for temporary registers */ int nRangeReg; /* Size of the temporary register block */ int iRangeReg; /* First register in temporary register block */ int nErr; /* Number of errors seen */ int nTab; /* Number of previously allocated VDBE cursors */ int nMem; /* Number of memory cells used so far */ int nSet; /* Number of sets used so far */ int ckBase; /* Base register of data during check constraints */ int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ int iCacheCnt; /* Counter used to generate aColCache[].lru values */ u8 nColCache; /* Number of entries in aColCache[] */ u8 iColCache; /* Next entry in aColCache[] to replace */ struct yColCache { int iTable; /* Table cursor number */ | > | 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 | int aTempReg[8]; /* Holding area for temporary registers */ int nRangeReg; /* Size of the temporary register block */ int iRangeReg; /* First register in temporary register block */ int nErr; /* Number of errors seen */ int nTab; /* Number of previously allocated VDBE cursors */ int nMem; /* Number of memory cells used so far */ int nSet; /* Number of sets used so far */ int nOnce; /* Number of OP_Once instructions so far */ int ckBase; /* Base register of data during check constraints */ int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ int iCacheCnt; /* Counter used to generate aColCache[].lru values */ u8 nColCache; /* Number of entries in aColCache[] */ u8 iColCache; /* Next entry in aColCache[] to replace */ struct yColCache { int iTable; /* Table cursor number */ |
︙ | ︙ | |||
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 | char *sqlite3MAppendf(sqlite3*,char*,const char*,...); #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) void *sqlite3TestTextToPtr(const char*); #endif void sqlite3SetString(char **, sqlite3*, const char*, ...); void sqlite3ErrorMsg(Parse*, const char*, ...); int sqlite3Dequote(char*); int sqlite3KeywordCode(const unsigned char*, int); int sqlite3RunParser(Parse*, const char*, char **); void sqlite3FinishCoding(Parse*); int sqlite3GetTempReg(Parse*); | > > > > > > > > > > > > > > > > > > > > > > > | 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 | char *sqlite3MAppendf(sqlite3*,char*,const char*,...); #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) void *sqlite3TestTextToPtr(const char*); #endif /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ #if defined(SQLITE_ENABLE_TREE_EXPLAIN) void sqlite3ExplainBegin(Vdbe*); void sqlite3ExplainPrintf(Vdbe*, const char*, ...); void sqlite3ExplainNL(Vdbe*); void sqlite3ExplainPush(Vdbe*); void sqlite3ExplainPop(Vdbe*); void sqlite3ExplainFinish(Vdbe*); void sqlite3ExplainSelect(Vdbe*, Select*); void sqlite3ExplainExpr(Vdbe*, Expr*); void sqlite3ExplainExprList(Vdbe*, ExprList*); const char *sqlite3VdbeExplanation(Vdbe*); #else # define sqlite3ExplainBegin(X) # define sqlite3ExplainSelect(A,B) # define sqlite3ExplainExpr(A,B) # define sqlite3ExplainExprList(A,B) # define sqlite3ExplainFinish(X) # define sqlite3VdbeExplanation(X) 0 #endif void sqlite3SetString(char **, sqlite3*, const char*, ...); void sqlite3ErrorMsg(Parse*, const char*, ...); int sqlite3Dequote(char*); int sqlite3KeywordCode(const unsigned char*, int); int sqlite3RunParser(Parse*, const char*, char **); void sqlite3FinishCoding(Parse*); int sqlite3GetTempReg(Parse*); |
︙ | ︙ | |||
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 | void sqlite3AddCheckConstraint(Parse*, Expr*); void sqlite3AddColumnType(Parse*,Token*); void sqlite3AddDefaultValue(Parse*,ExprSpan*); void sqlite3AddCollateType(Parse*, Token*); void sqlite3EndTable(Parse*,Token*,Token*,Select*); int sqlite3ParseUri(const char*,const char*,unsigned int*, sqlite3_vfs**,char**,char **); Bitvec *sqlite3BitvecCreate(u32); int sqlite3BitvecTest(Bitvec*, u32); int sqlite3BitvecSet(Bitvec*, u32); void sqlite3BitvecClear(Bitvec*, u32, void*); void sqlite3BitvecDestroy(Bitvec*); u32 sqlite3BitvecSize(Bitvec*); | > | 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 | void sqlite3AddCheckConstraint(Parse*, Expr*); void sqlite3AddColumnType(Parse*,Token*); void sqlite3AddDefaultValue(Parse*,ExprSpan*); void sqlite3AddCollateType(Parse*, Token*); void sqlite3EndTable(Parse*,Token*,Token*,Select*); int sqlite3ParseUri(const char*,const char*,unsigned int*, sqlite3_vfs**,char**,char **); int sqlite3CodeOnce(Parse *); Bitvec *sqlite3BitvecCreate(u32); int sqlite3BitvecTest(Bitvec*, u32); int sqlite3BitvecSet(Bitvec*, u32); void sqlite3BitvecClear(Bitvec*, u32, void*); void sqlite3BitvecDestroy(Bitvec*); u32 sqlite3BitvecSize(Bitvec*); |
︙ | ︙ | |||
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 | FuncDestructor *pDestructor ); int sqlite3ApiExit(sqlite3 *db, int); int sqlite3OpenTempDatabase(Parse *); void sqlite3StrAccumInit(StrAccum*, char*, int, int); void sqlite3StrAccumAppend(StrAccum*,const char*,int); char *sqlite3StrAccumFinish(StrAccum*); void sqlite3StrAccumReset(StrAccum*); void sqlite3SelectDestInit(SelectDest*,int,int); Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); void sqlite3BackupRestart(sqlite3_backup *); void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); | > | 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 | FuncDestructor *pDestructor ); int sqlite3ApiExit(sqlite3 *db, int); int sqlite3OpenTempDatabase(Parse *); void sqlite3StrAccumInit(StrAccum*, char*, int, int); void sqlite3StrAccumAppend(StrAccum*,const char*,int); void sqlite3AppendSpace(StrAccum*,int); char *sqlite3StrAccumFinish(StrAccum*); void sqlite3StrAccumReset(StrAccum*); void sqlite3SelectDestInit(SelectDest*,int,int); Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); void sqlite3BackupRestart(sqlite3_backup *); void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 | int b; if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR; if( b ){ flags |= SQLITE_OPEN_FULLMUTEX; flags &= ~SQLITE_OPEN_NOMUTEX; }else{ flags &= ~SQLITE_OPEN_FULLMUTEX; } }else{ Tcl_AppendResult(interp, "unknown option: ", zArg, (char*)0); return TCL_ERROR; } } if( objc<3 || (objc&1)!=1 ){ | > > > > > > > > | 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 | int b; if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR; if( b ){ flags |= SQLITE_OPEN_FULLMUTEX; flags &= ~SQLITE_OPEN_NOMUTEX; }else{ flags &= ~SQLITE_OPEN_FULLMUTEX; } }else if( strcmp(zArg, "-uri")==0 ){ int b; if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR; if( b ){ flags |= SQLITE_OPEN_URI; }else{ flags &= ~SQLITE_OPEN_URI; } }else{ Tcl_AppendResult(interp, "unknown option: ", zArg, (char*)0); return TCL_ERROR; } } if( objc<3 || (objc&1)!=1 ){ |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 | } if( Tcl_GetIntFromObj(interp, objv[2], &bPersist) ) return TCL_ERROR; rc = sqlite3_file_control(db, NULL, SQLITE_FCNTL_PERSIST_WAL, (void*)&bPersist); sqlite3_snprintf(sizeof(z), z, "%d %d", rc, bPersist); Tcl_AppendResult(interp, z, (char*)0); return TCL_OK; } /* ** tclcmd: sqlite3_vfs_list ** ** Return a tcl list containing the names of all registered vfs's. */ static int vfs_list( | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 | } if( Tcl_GetIntFromObj(interp, objv[2], &bPersist) ) return TCL_ERROR; rc = sqlite3_file_control(db, NULL, SQLITE_FCNTL_PERSIST_WAL, (void*)&bPersist); sqlite3_snprintf(sizeof(z), z, "%d %d", rc, bPersist); Tcl_AppendResult(interp, z, (char*)0); return TCL_OK; } /* ** tclcmd: file_control_powersafe_overwrite DB PSOW-FLAG ** ** This TCL command runs the sqlite3_file_control interface with ** the SQLITE_FCNTL_POWERSAFE_OVERWRITE opcode. */ static int file_control_powersafe_overwrite( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; int rc; int b; char z[100]; if( objc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetStringFromObj(objv[0], 0), " DB FLAG", 0); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[2], &b) ) return TCL_ERROR; rc = sqlite3_file_control(db,NULL,SQLITE_FCNTL_POWERSAFE_OVERWRITE,(void*)&b); sqlite3_snprintf(sizeof(z), z, "%d %d", rc, b); Tcl_AppendResult(interp, z, (char*)0); return TCL_OK; } /* ** tclcmd: file_control_vfsname DB ?AUXDB? ** ** Return a string that describes the stack of VFSes. */ static int file_control_vfsname( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; const char *zDbName = "main"; char *zVfsName = 0; if( objc!=2 && objc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetStringFromObj(objv[0], 0), " DB ?AUXDB?", 0); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } if( objc==3 ){ zDbName = Tcl_GetString(objv[2]); } sqlite3_file_control(db, zDbName, SQLITE_FCNTL_VFSNAME,(void*)&zVfsName); Tcl_AppendResult(interp, zVfsName, (char*)0); sqlite3_free(zVfsName); return TCL_OK; } /* ** tclcmd: sqlite3_vfs_list ** ** Return a tcl list containing the names of all registered vfs's. */ static int vfs_list( |
︙ | ︙ | |||
6249 6250 6251 6252 6253 6254 6255 | { "file_control_truncate_test", file_control_truncate_test, 0 }, { "file_control_replace_test", file_control_replace_test, 0 }, #endif { "file_control_chunksize_test", file_control_chunksize_test, 0 }, { "file_control_sizehint_test", file_control_sizehint_test, 0 }, { "file_control_win32_av_retry", file_control_win32_av_retry, 0 }, { "file_control_persist_wal", file_control_persist_wal, 0 }, | | > | 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 | { "file_control_truncate_test", file_control_truncate_test, 0 }, { "file_control_replace_test", file_control_replace_test, 0 }, #endif { "file_control_chunksize_test", file_control_chunksize_test, 0 }, { "file_control_sizehint_test", file_control_sizehint_test, 0 }, { "file_control_win32_av_retry", file_control_win32_av_retry, 0 }, { "file_control_persist_wal", file_control_persist_wal, 0 }, { "file_control_powersafe_overwrite",file_control_powersafe_overwrite,0}, { "file_control_vfsname", file_control_vfsname, 0 }, { "sqlite3_vfs_list", vfs_list, 0 }, { "sqlite3_create_function_v2", test_create_function_v2, 0 }, { "path_is_local", path_is_local, 0 }, { "path_is_dos", path_is_dos, 0 }, /* Functions from os.h */ #ifndef SQLITE_OMIT_UTF16 |
︙ | ︙ |
Changes to src/test6.c.
︙ | ︙ | |||
701 702 703 704 705 706 707 | int *piDeviceChar, int *piSectorSize ){ struct DeviceFlag { char *zName; int iValue; } aFlag[] = { | | | | | | | | | | | | > | 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | int *piDeviceChar, int *piSectorSize ){ struct DeviceFlag { char *zName; int iValue; } aFlag[] = { { "atomic", SQLITE_IOCAP_ATOMIC }, { "atomic512", SQLITE_IOCAP_ATOMIC512 }, { "atomic1k", SQLITE_IOCAP_ATOMIC1K }, { "atomic2k", SQLITE_IOCAP_ATOMIC2K }, { "atomic4k", SQLITE_IOCAP_ATOMIC4K }, { "atomic8k", SQLITE_IOCAP_ATOMIC8K }, { "atomic16k", SQLITE_IOCAP_ATOMIC16K }, { "atomic32k", SQLITE_IOCAP_ATOMIC32K }, { "atomic64k", SQLITE_IOCAP_ATOMIC64K }, { "sequential", SQLITE_IOCAP_SEQUENTIAL }, { "safe_append", SQLITE_IOCAP_SAFE_APPEND }, { "powersafe_overwrite", SQLITE_IOCAP_POWERSAFE_OVERWRITE }, { 0, 0 } }; int i; int iDc = 0; int iSectorSize = 0; int setSectorsize = 0; |
︙ | ︙ |
Changes to src/test_journal.c.
︙ | ︙ | |||
387 388 389 390 391 392 393 | } } } iTrunk = decodeUint32(&aData[32]); while( rc==SQLITE_OK && iTrunk>0 ){ u32 nLeaf; u32 iLeaf; | | | 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | } } } iTrunk = decodeUint32(&aData[32]); while( rc==SQLITE_OK && iTrunk>0 ){ u32 nLeaf; u32 iLeaf; sqlite3_int64 iOff = (i64)(iTrunk-1)*pMain->nPagesize; rc = sqlite3OsRead(p, aData, pMain->nPagesize, iOff); nLeaf = decodeUint32(&aData[4]); for(iLeaf=0; rc==SQLITE_OK && iLeaf<nLeaf; iLeaf++){ u32 pgno = decodeUint32(&aData[8+4*iLeaf]); sqlite3BitvecSet(pMain->pWritable, pgno); } iTrunk = decodeUint32(aData); |
︙ | ︙ |
Changes to src/test_multiplex.c.
︙ | ︙ | |||
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | #define sqlite3_mutex_enter(X) #define sqlite3_mutex_try(X) SQLITE_OK #define sqlite3_mutex_leave(X) #define sqlite3_mutex_held(X) ((void)(X),1) #define sqlite3_mutex_notheld(X) ((void)(X),1) #endif /* SQLITE_THREADSAFE==0 */ /************************ Shim Definitions ******************************/ #ifndef SQLITE_MULTIPLEX_VFS_NAME # define SQLITE_MULTIPLEX_VFS_NAME "multiplex" #endif /* This is the limit on the chunk size. It may be changed by calling ** the xFileControl() interface. It will be rounded up to a ** multiple of MAX_PAGE_SIZE. We default it here to 2GiB less 64KiB. */ #ifndef SQLITE_MULTIPLEX_CHUNK_SIZE # define SQLITE_MULTIPLEX_CHUNK_SIZE 2147418112 #endif /* This used to be the default limit on number of chunks, but | > > > | | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | #define sqlite3_mutex_enter(X) #define sqlite3_mutex_try(X) SQLITE_OK #define sqlite3_mutex_leave(X) #define sqlite3_mutex_held(X) ((void)(X),1) #define sqlite3_mutex_notheld(X) ((void)(X),1) #endif /* SQLITE_THREADSAFE==0 */ /* First chunk for rollback journal files */ #define SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET 400 /************************ Shim Definitions ******************************/ #ifndef SQLITE_MULTIPLEX_VFS_NAME # define SQLITE_MULTIPLEX_VFS_NAME "multiplex" #endif /* This is the limit on the chunk size. It may be changed by calling ** the xFileControl() interface. It will be rounded up to a ** multiple of MAX_PAGE_SIZE. We default it here to 2GiB less 64KiB. */ #ifndef SQLITE_MULTIPLEX_CHUNK_SIZE # define SQLITE_MULTIPLEX_CHUNK_SIZE 2147418112 #endif /* This used to be the default limit on number of chunks, but ** it is no longer enforced. There is currently no limit to the ** number of chunks. ** ** May be changed by calling the xFileControl() interface. */ #ifndef SQLITE_MULTIPLEX_MAX_CHUNKS # define SQLITE_MULTIPLEX_MAX_CHUNKS 12 #endif |
︙ | ︙ | |||
126 127 128 129 130 131 132 | char *z; /* Name of this chunk */ } *aReal; /* list of all chunks */ int nReal; /* Number of chunks */ char *zName; /* Base filename of this group */ int nName; /* Length of base filename */ int flags; /* Flags used for original opening */ unsigned int szChunk; /* Chunk size used for this group */ | | > | 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | char *z; /* Name of this chunk */ } *aReal; /* list of all chunks */ int nReal; /* Number of chunks */ char *zName; /* Base filename of this group */ int nName; /* Length of base filename */ int flags; /* Flags used for original opening */ unsigned int szChunk; /* Chunk size used for this group */ unsigned char bEnabled; /* TRUE to use Multiplex VFS for this file */ unsigned char bTruncate; /* TRUE to enable truncation of databases */ multiplexGroup *pNext, *pPrev; /* Doubly linked list of all group objects */ }; /* ** An instance of the following object represents each open connection ** to a file that is multiplex'ed. This object is a ** subclass of sqlite3_file. The sqlite3_file object for the underlying |
︙ | ︙ | |||
210 211 212 213 214 215 216 | const char *z2 = z; if( z==0 ) return 0; while( *z2 ){ z2++; } return 0x3fffffff & (int)(z2 - z); } /* | | | | | < < | < < < | | > > > > > > > > | < < | < > | | | > | < | < < | | < < < > | < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < | | < < < < < < < < > > > > | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > > > > > > > > > > > > > > > > > > > | 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | const char *z2 = z; if( z==0 ) return 0; while( *z2 ){ z2++; } return 0x3fffffff & (int)(z2 - z); } /* ** Generate the file-name for chunk iChunk of the group with base name ** zBase. The file-name is written to buffer zOut before returning. Buffer ** zOut must be allocated by the caller so that it is at least (nBase+4) ** bytes in size, where nBase is the length of zBase, not including the ** nul-terminator. */ static void multiplexFilename( const char *zBase, /* Filename for chunk 0 */ int nBase, /* Size of zBase in bytes (without \0) */ int flags, /* Flags used to open file */ int iChunk, /* Chunk to generate filename for */ char *zOut /* Buffer to write generated name to */ ){ memcpy(zOut, zBase, nBase+1); if( iChunk!=0 && iChunk!=SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET ){ int n = nBase; #ifdef SQLITE_ENABLE_8_3_NAMES int i; for(i=n-1; i>0 && i>=n-4 && zOut[i]!='.'; i--){} if( i>=n-4 ) n = i+1; if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ /* The extensions on overflow files for main databases are 001, 002, ** 003 and so forth. To avoid name collisions, add 400 to the ** extensions of journal files so that they are 401, 402, 403, .... */ iChunk += SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET; } #endif sqlite3_snprintf(4,&zOut[n],"%03d",iChunk); } } /* Compute the filename for the iChunk-th chunk */ static int multiplexSubFilename(multiplexGroup *pGroup, int iChunk){ if( iChunk>=pGroup->nReal ){ struct multiplexReal *p; p = sqlite3_realloc(pGroup->aReal, (iChunk+1)*sizeof(*p)); if( p==0 ){ return SQLITE_NOMEM; } memset(&p[pGroup->nReal], 0, sizeof(p[0])*(iChunk+1-pGroup->nReal)); pGroup->aReal = p; pGroup->nReal = iChunk+1; } if( pGroup->zName && pGroup->aReal[iChunk].z==0 ){ char *z; int n = pGroup->nName; pGroup->aReal[iChunk].z = z = sqlite3_malloc( n+4 ); if( z==0 ){ return SQLITE_NOMEM; } multiplexFilename(pGroup->zName, pGroup->nName, pGroup->flags, iChunk, z); } return SQLITE_OK; } /* Translate an sqlite3_file* that is really a multiplexGroup* into ** the sqlite3_file* for the underlying original VFS. ** ** For chunk 0, the pGroup->flags determines whether or not a new file ** is created if it does not already exist. For chunks 1 and higher, the ** file is created only if createFlag is 1. */ static sqlite3_file *multiplexSubOpen( multiplexGroup *pGroup, /* The multiplexor group */ int iChunk, /* Which chunk to open. 0==original file */ int *rc, /* Result code in and out */ int *pOutFlags, /* Output flags */ int createFlag /* True to create if iChunk>0 */ ){ sqlite3_file *pSubOpen = 0; sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ #ifdef SQLITE_ENABLE_8_3_NAMES /* If JOURNAL_8_3_OFFSET is set to (say) 400, then any overflow files are ** part of a database journal are named db.401, db.402, and so on. A ** database may therefore not grow to larger than 400 chunks. Attempting ** to open chunk 401 indicates the database is full. */ if( iChunk>=SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET ){ *rc = SQLITE_FULL; return 0; } #endif *rc = multiplexSubFilename(pGroup, iChunk); if( (*rc)==SQLITE_OK && (pSubOpen = pGroup->aReal[iChunk].p)==0 ){ int flags, bExists; createFlag = (pGroup->flags & SQLITE_OPEN_CREATE)!=0; flags = pGroup->flags; if( createFlag ){ flags |= SQLITE_OPEN_CREATE; }else if( iChunk==0 ){ /* Fall through */ }else if( pGroup->aReal[iChunk].z==0 ){ return 0; }else{ *rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[iChunk].z, SQLITE_ACCESS_EXISTS, &bExists); if( *rc || !bExists ) return 0; flags &= ~SQLITE_OPEN_CREATE; } pSubOpen = sqlite3_malloc( pOrigVfs->szOsFile ); if( pSubOpen==0 ){ *rc = SQLITE_IOERR_NOMEM; return 0; } pGroup->aReal[iChunk].p = pSubOpen; *rc = pOrigVfs->xOpen(pOrigVfs, pGroup->aReal[iChunk].z, pSubOpen, flags, pOutFlags); if( (*rc)!=SQLITE_OK ){ sqlite3_free(pSubOpen); pGroup->aReal[iChunk].p = 0; return 0; } } return pSubOpen; } /* ** Return the size, in bytes, of chunk number iChunk. If that chunk ** does not exist, then return 0. This function does not distingish between ** non-existant files and zero-length files. */ static sqlite3_int64 multiplexSubSize( multiplexGroup *pGroup, /* The multiplexor group */ int iChunk, /* Which chunk to open. 0==original file */ int *rc /* Result code in and out */ ){ sqlite3_file *pSub; sqlite3_int64 sz = 0; pSub = multiplexSubOpen(pGroup, iChunk, rc, NULL, 0); if( pSub==0 ) return 0; *rc = pSub->pMethods->xFileSize(pSub, &sz); return sz; } /* ** This is the implementation of the multiplex_control() SQL function. */ static void multiplexControlFunc( sqlite3_context *context, int argc, sqlite3_value **argv |
︙ | ︙ | |||
404 405 406 407 408 409 410 | multiplexGroup *pGroup, int iChunk, sqlite3_vfs *pOrigVfs ){ sqlite3_file *pSubOpen = pGroup->aReal[iChunk].p; if( pSubOpen ){ pSubOpen->pMethods->xClose(pSubOpen); | > | > | 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | multiplexGroup *pGroup, int iChunk, sqlite3_vfs *pOrigVfs ){ sqlite3_file *pSubOpen = pGroup->aReal[iChunk].p; if( pSubOpen ){ pSubOpen->pMethods->xClose(pSubOpen); if( pOrigVfs && pGroup->aReal[iChunk].z ){ pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); } sqlite3_free(pGroup->aReal[iChunk].p); } sqlite3_free(pGroup->aReal[iChunk].z); memset(&pGroup->aReal[iChunk], 0, sizeof(pGroup->aReal[iChunk])); } /* |
︙ | ︙ | |||
450 451 452 453 454 455 456 457 458 459 460 461 462 463 | sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ int nName; int sz; char *zToFree = 0; UNUSED_PARAMETER(pVfs); memset(pConn, 0, pVfs->szOsFile); /* We need to create a group structure and manage ** access to this group of files. */ multiplexEnter(); pMultiplexOpen = (multiplexConn*)pConn; | > < < < < < < < < < < < < < < | | < | | < | > > | | | | | | | | > > > > > | < > > > | | | < < < < < | > | < | > > > > > > > > > > > > > > | > > > > > > | | | | | | | | | | | > | | | | | | | | > > > | 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ int nName; int sz; char *zToFree = 0; UNUSED_PARAMETER(pVfs); memset(pConn, 0, pVfs->szOsFile); assert( zName || (flags & SQLITE_OPEN_DELETEONCLOSE) ); /* We need to create a group structure and manage ** access to this group of files. */ multiplexEnter(); pMultiplexOpen = (multiplexConn*)pConn; if( rc==SQLITE_OK ){ /* allocate space for group */ nName = zName ? multiplexStrlen30(zName) : 0; sz = sizeof(multiplexGroup) /* multiplexGroup */ + nName + 1; /* zName */ pGroup = sqlite3_malloc( sz ); if( pGroup==0 ){ rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ /* assign pointers to extra space allocated */ memset(pGroup, 0, sz); pMultiplexOpen->pGroup = pGroup; pGroup->bEnabled = -1; pGroup->bTruncate = sqlite3_uri_boolean(zName, "truncate", (flags & SQLITE_OPEN_MAIN_DB)==0); pGroup->szChunk = sqlite3_uri_int64(zName, "chunksize", SQLITE_MULTIPLEX_CHUNK_SIZE); pGroup->szChunk = (pGroup->szChunk+0xffff)&~0xffff; if( zName ){ char *p = (char *)&pGroup[1]; pGroup->zName = p; memcpy(pGroup->zName, zName, nName+1); pGroup->nName = nName; } if( pGroup->bEnabled ){ /* Make sure that the chunksize is such that the pending byte does not ** falls at the end of a chunk. A region of up to 64K following ** the pending byte is never written, so if the pending byte occurs ** near the end of a chunk, that chunk will be too small. */ #ifndef SQLITE_OMIT_WSD extern int sqlite3PendingByte; #else int sqlite3PendingByte = 0x40000000; #endif while( (sqlite3PendingByte % pGroup->szChunk)>=(pGroup->szChunk-65536) ){ pGroup->szChunk += 65536; } } pGroup->flags = flags; rc = multiplexSubFilename(pGroup, 1); if( rc==SQLITE_OK ){ pSubOpen = multiplexSubOpen(pGroup, 0, &rc, pOutFlags, 0); if( pSubOpen==0 && rc==SQLITE_OK ) rc = SQLITE_CANTOPEN; } if( rc==SQLITE_OK ){ sqlite3_int64 sz; rc = pSubOpen->pMethods->xFileSize(pSubOpen, &sz); if( rc==SQLITE_OK && zName ){ int bExists; if( sz==0 ){ if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ /* If opening a main journal file and the first chunk is zero ** bytes in size, delete any subsequent chunks from the ** file-system. */ int iChunk = 1; do { rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[iChunk].z, SQLITE_ACCESS_EXISTS, &bExists ); if( rc==SQLITE_OK && bExists ){ rc = pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); if( rc==SQLITE_OK ){ rc = multiplexSubFilename(pGroup, ++iChunk); } } }while( rc==SQLITE_OK && bExists ); } }else{ /* If the first overflow file exists and if the size of the main file ** is different from the chunk size, that means the chunk size is set ** set incorrectly. So fix it. ** ** Or, if the first overflow file does not exist and the main file is ** larger than the chunk size, that means the chunk size is too small. ** But we have no way of determining the intended chunk size, so ** just disable the multiplexor all togethre. */ rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[1].z, SQLITE_ACCESS_EXISTS, &bExists); bExists = multiplexSubSize(pGroup, 1, &rc)>0; if( rc==SQLITE_OK && bExists && sz==(sz&0xffff0000) && sz>0 && sz!=pGroup->szChunk ){ pGroup->szChunk = sz; }else if( rc==SQLITE_OK && !bExists && sz>pGroup->szChunk ){ pGroup->bEnabled = 0; } } } } if( rc==SQLITE_OK ){ if( pSubOpen->pMethods->iVersion==1 ){ pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV1; }else{ pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV2; } /* place this group at the head of our list */ pGroup->pNext = gMultiplex.pGroups; |
︙ | ︙ | |||
568 569 570 571 572 573 574 575 | ** It attempts to delete the filename specified. */ static int multiplexDelete( sqlite3_vfs *pVfs, /* The multiplex VFS */ const char *zName, /* Name of file to delete */ int syncDir ){ sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ | > | > > > > > > > > > > > > > > > > > > > > > > > > | 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 | ** It attempts to delete the filename specified. */ static int multiplexDelete( sqlite3_vfs *pVfs, /* The multiplex VFS */ const char *zName, /* Name of file to delete */ int syncDir ){ int rc; sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ rc = pOrigVfs->xDelete(pOrigVfs, zName, syncDir); if( rc==SQLITE_OK ){ /* If the main chunk was deleted successfully, also delete any subsequent ** chunks - starting with the last (highest numbered). */ int nName = strlen(zName); char *z; z = sqlite3_malloc(nName + 4); if( z==0 ){ rc = SQLITE_IOERR_NOMEM; }else{ int iChunk = 0; int bExists; do{ multiplexFilename(zName, nName, SQLITE_OPEN_MAIN_JOURNAL, ++iChunk, z); rc = pOrigVfs->xAccess(pOrigVfs, z, SQLITE_ACCESS_EXISTS, &bExists); }while( rc==SQLITE_OK && bExists ); while( rc==SQLITE_OK && iChunk>1 ){ multiplexFilename(zName, nName, SQLITE_OPEN_MAIN_JOURNAL, --iChunk, z); rc = pOrigVfs->xDelete(pOrigVfs, z, syncDir); } } sqlite3_free(z); } return rc; } static int multiplexAccess(sqlite3_vfs *a, const char *b, int c, int *d){ return gMultiplex.pOrigVfs->xAccess(gMultiplex.pOrigVfs, b, c, d); } static int multiplexFullPathname(sqlite3_vfs *a, const char *b, int c, char *d){ return gMultiplex.pOrigVfs->xFullPathname(gMultiplex.pOrigVfs, b, c, d); |
︙ | ︙ | |||
646 647 648 649 650 651 652 | sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ | | | | 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 | sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen==0 ){ rc = SQLITE_IOERR_READ; }else{ rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst); } }else{ while( iAmt > 0 ){ int i = (int)(iOfst / pGroup->szChunk); sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL, 1); if( pSubOpen ){ int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk; if( extra<0 ) extra = 0; iAmt -= extra; rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst % pGroup->szChunk); if( rc!=SQLITE_OK ) break; |
︙ | ︙ | |||
691 692 693 694 695 696 697 | sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ | | | | < < < < | < > | > | > > > > | > > > | | | < < < | > > | 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 | sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen==0 ){ rc = SQLITE_IOERR_WRITE; }else{ rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst); } }else{ while( rc==SQLITE_OK && iAmt>0 ){ int i = (int)(iOfst / pGroup->szChunk); sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL, 1); if( pSubOpen ){ int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk; if( extra<0 ) extra = 0; iAmt -= extra; rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst % pGroup->szChunk); pBuf = (char *)pBuf + iAmt; iOfst += iAmt; iAmt = extra; } } } multiplexLeave(); return rc; } /* Pass xTruncate requests thru to the original VFS after ** determining the correct chunk to operate on. Delete any ** chunks above the truncate mark. */ static int multiplexTruncate(sqlite3_file *pConn, sqlite3_int64 size){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen==0 ){ rc = SQLITE_IOERR_TRUNCATE; }else{ rc = pSubOpen->pMethods->xTruncate(pSubOpen, size); } }else{ int i; int iBaseGroup = (int)(size / pGroup->szChunk); sqlite3_file *pSubOpen; sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ /* delete the chunks above the truncate limit */ for(i = pGroup->nReal-1; i>iBaseGroup && rc==SQLITE_OK; i--){ if( pGroup->bTruncate ){ multiplexSubClose(pGroup, i, pOrigVfs); }else{ pSubOpen = multiplexSubOpen(pGroup, i, &rc, 0, 0); if( pSubOpen ){ rc = pSubOpen->pMethods->xTruncate(pSubOpen, 0); } } } if( rc==SQLITE_OK ){ pSubOpen = multiplexSubOpen(pGroup, iBaseGroup, &rc, 0, 0); if( pSubOpen ){ rc = pSubOpen->pMethods->xTruncate(pSubOpen, size % pGroup->szChunk); } } if( rc ) rc = SQLITE_IOERR_TRUNCATE; } multiplexLeave(); return rc; } /* Pass xSync requests through to the original VFS without change */ |
︙ | ︙ | |||
785 786 787 788 789 790 791 | /* Pass xFileSize requests through to the original VFS. ** Aggregate the size of all the chunks before returning. */ static int multiplexFileSize(sqlite3_file *pConn, sqlite3_int64 *pSize){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; | < | < | < < < < < < < < < < < < < < | < | < < | < < < < < < < | | | | 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 | /* Pass xFileSize requests through to the original VFS. ** Aggregate the size of all the chunks before returning. */ static int multiplexFileSize(sqlite3_file *pConn, sqlite3_int64 *pSize){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; int i; multiplexEnter(); if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen==0 ){ rc = SQLITE_IOERR_FSTAT; }else{ rc = pSubOpen->pMethods->xFileSize(pSubOpen, pSize); } }else{ *pSize = 0; for(i=0; rc==SQLITE_OK; i++){ sqlite3_int64 sz = multiplexSubSize(pGroup, i, &rc); if( sz==0 ) break; *pSize = i*(sqlite3_int64)pGroup->szChunk + sz; } } multiplexLeave(); return rc; } /* Pass xLock requests through to the original VFS unchanged. */ static int multiplexLock(sqlite3_file *pConn, int lock){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xLock(pSubOpen, lock); } return SQLITE_BUSY; } /* Pass xUnlock requests through to the original VFS unchanged. */ static int multiplexUnlock(sqlite3_file *pConn, int lock){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xUnlock(pSubOpen, lock); } return SQLITE_IOERR_UNLOCK; } /* Pass xCheckReservedLock requests through to the original VFS unchanged. */ static int multiplexCheckReservedLock(sqlite3_file *pConn, int *pResOut){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut); } return SQLITE_IOERR_CHECKRESERVEDLOCK; } /* Pass xFileControl requests through to the original VFS unchanged, |
︙ | ︙ | |||
909 910 911 912 913 914 915 | break; case SQLITE_FCNTL_SIZE_HINT: case SQLITE_FCNTL_CHUNK_SIZE: /* no-op these */ rc = SQLITE_OK; break; default: | | > > > | | | | | | | | 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 | break; case SQLITE_FCNTL_SIZE_HINT: case SQLITE_FCNTL_CHUNK_SIZE: /* no-op these */ rc = SQLITE_OK; break; default: pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg); if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ *(char**)pArg = sqlite3_mprintf("multiplex/%z", *(char**)pArg); } } break; } return rc; } /* Pass xSectorSize requests through to the original VFS unchanged. */ static int multiplexSectorSize(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen && pSubOpen->pMethods->xSectorSize ){ return pSubOpen->pMethods->xSectorSize(pSubOpen); } return DEFAULT_SECTOR_SIZE; } /* Pass xDeviceCharacteristics requests through to the original VFS unchanged. */ static int multiplexDeviceCharacteristics(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xDeviceCharacteristics(pSubOpen); } return 0; } /* Pass xShmMap requests through to the original VFS unchanged. */ static int multiplexShmMap( sqlite3_file *pConn, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int bExtend, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xShmMap(pSubOpen, iRegion, szRegion, bExtend,pp); } return SQLITE_IOERR; } /* Pass xShmLock requests through to the original VFS unchanged. */ static int multiplexShmLock( sqlite3_file *pConn, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ int flags /* What to do with the lock */ ){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xShmLock(pSubOpen, ofst, n, flags); } return SQLITE_BUSY; } /* Pass xShmBarrier requests through to the original VFS unchanged. */ static void multiplexShmBarrier(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ pSubOpen->pMethods->xShmBarrier(pSubOpen); } } /* Pass xShmUnmap requests through to the original VFS unchanged. */ static int multiplexShmUnmap(sqlite3_file *pConn, int deleteFlag){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xShmUnmap(pSubOpen, deleteFlag); } return SQLITE_OK; } /************************** Public Interfaces *****************************/ |
︙ | ︙ | |||
1175 1176 1177 1178 1179 1180 1181 | UNUSED_PARAMETER(objv); pResult = Tcl_NewObj(); multiplexEnter(); for(pGroup=gMultiplex.pGroups; pGroup; pGroup=pGroup->pNext){ pGroupTerm = Tcl_NewObj(); | > | | > > > | 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 | UNUSED_PARAMETER(objv); pResult = Tcl_NewObj(); multiplexEnter(); for(pGroup=gMultiplex.pGroups; pGroup; pGroup=pGroup->pNext){ pGroupTerm = Tcl_NewObj(); if( pGroup->zName ){ pGroup->zName[pGroup->nName] = '\0'; Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewStringObj(pGroup->zName, -1)); }else{ Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewObj()); } Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(pGroup->nName)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(pGroup->flags)); /* count number of chunks with open handles */ for(i=0; i<pGroup->nReal; i++){ |
︙ | ︙ |
Changes to src/test_osinst.c.
︙ | ︙ | |||
385 386 387 388 389 390 391 | } /* ** File control method. For custom operations on an vfslog-file. */ static int vfslogFileControl(sqlite3_file *pFile, int op, void *pArg){ VfslogFile *p = (VfslogFile *)pFile; | | > > > > | 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | } /* ** File control method. For custom operations on an vfslog-file. */ static int vfslogFileControl(sqlite3_file *pFile, int op, void *pArg){ VfslogFile *p = (VfslogFile *)pFile; int rc = p->pReal->pMethods->xFileControl(p->pReal, op, pArg); if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ *(char**)pArg = sqlite3_mprintf("vfslog/%z", *(char**)pArg); } return rc; } /* ** Return the sector-size in bytes for an vfslog-file. */ static int vfslogSectorSize(sqlite3_file *pFile){ int rc; |
︙ | ︙ |
Changes to src/test_quota.c.
︙ | ︙ | |||
23 24 25 26 27 28 29 | ** However, before returning SQLITE_FULL, the write requests invoke ** a callback function that is configurable for each quota group. ** This callback has the opportunity to enlarge the quota. If the ** callback does enlarge the quota such that the total size of all ** files within the group is less than the new quota, then the write ** continues as if nothing had happened. */ | | | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ** However, before returning SQLITE_FULL, the write requests invoke ** a callback function that is configurable for each quota group. ** This callback has the opportunity to enlarge the quota. If the ** callback does enlarge the quota such that the total size of all ** files within the group is less than the new quota, then the write ** continues as if nothing had happened. */ #include "test_quota.h" #include <string.h> #include <assert.h> /* ** For an build without mutexes, no-op the mutex calls. */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0 |
︙ | ︙ | |||
106 107 108 109 110 111 112 113 114 115 116 117 118 119 | ** VFS is appended to this structure. */ struct quotaConn { sqlite3_file base; /* Base class - must be first */ quotaFile *pFile; /* The underlying file */ /* The underlying VFS sqlite3_file is appended to this object */ }; /************************* Global Variables **********************************/ /* ** All global variables used by this file are containing within the following ** gQuota structure. */ static struct { | > > > > > > > > > > > > | 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | ** VFS is appended to this structure. */ struct quotaConn { sqlite3_file base; /* Base class - must be first */ quotaFile *pFile; /* The underlying file */ /* The underlying VFS sqlite3_file is appended to this object */ }; /* ** An instance of the following object records the state of an ** open file. This object is opaque to all users - the internal ** structure is only visible to the functions below. */ struct quota_FILE { FILE *f; /* Open stdio file pointer */ sqlite3_int64 iOfst; /* Current offset into the file */ quotaFile *pFile; /* The file record in the quota system */ }; /************************* Global Variables **********************************/ /* ** All global variables used by this file are containing within the following ** gQuota structure. */ static struct { |
︙ | ︙ | |||
221 222 223 224 225 226 227 228 229 | ** '?' Matches exactly one character. ** ** [...] Matches one character from the enclosed list of ** characters. ** ** [^...] Matches one character not in the enclosed list. ** */ static int quotaStrglob(const char *zGlob, const char *z){ | > > | > | | 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | ** '?' Matches exactly one character. ** ** [...] Matches one character from the enclosed list of ** characters. ** ** [^...] Matches one character not in the enclosed list. ** ** / Matches "/" or "\\" ** */ static int quotaStrglob(const char *zGlob, const char *z){ int c, c2, cx; int invert; int seen; while( (c = (*(zGlob++)))!=0 ){ if( c=='*' ){ while( (c=(*(zGlob++))) == '*' || c=='?' ){ if( c=='?' && (*(z++))==0 ) return 0; } if( c==0 ){ return 1; }else if( c=='[' ){ while( *z && quotaStrglob(zGlob-1,z)==0 ){ z++; } return (*z)!=0; } cx = (c=='/') ? '\\' : c; while( (c2 = (*(z++)))!=0 ){ while( c2!=c && c2!=cx ){ c2 = *(z++); if( c2==0 ) return 0; } if( quotaStrglob(zGlob,z) ) return 1; } return 0; }else if( c=='?' ){ |
︙ | ︙ | |||
279 280 281 282 283 284 285 286 287 288 289 290 291 292 | seen = 1; } prior_c = c2; } c2 = *(zGlob++); } if( c2==0 || (seen ^ invert)==0 ) return 0; }else{ if( c!=(*(z++)) ) return 0; } } return *z==0; } | > > > | 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 | seen = 1; } prior_c = c2; } c2 = *(zGlob++); } if( c2==0 || (seen ^ invert)==0 ) return 0; }else if( c=='/' ){ if( z[0]!='/' && z[0]!='\\' ) return 0; z++; }else{ if( c!=(*(z++)) ) return 0; } } return *z==0; } |
︙ | ︙ | |||
309 310 311 312 313 314 315 | quotaConn *p = (quotaConn*)pConn; return (sqlite3_file*)&p[1]; } /* Find a file in a quota group and return a pointer to that file. ** Return NULL if the file is not in the group. */ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 | quotaConn *p = (quotaConn*)pConn; return (sqlite3_file*)&p[1]; } /* Find a file in a quota group and return a pointer to that file. ** Return NULL if the file is not in the group. */ static quotaFile *quotaFindFile( quotaGroup *pGroup, /* Group in which to look for the file */ const char *zName, /* Full pathname of the file */ int createFlag /* Try to create the file if not found */ ){ quotaFile *pFile = pGroup->pFiles; while( pFile && strcmp(pFile->zFilename, zName)!=0 ){ pFile = pFile->pNext; } if( pFile==0 && createFlag ){ int nName = strlen(zName); pFile = (quotaFile *)sqlite3_malloc( sizeof(*pFile) + nName + 1 ); if( pFile ){ memset(pFile, 0, sizeof(*pFile)); pFile->zFilename = (char*)&pFile[1]; memcpy(pFile->zFilename, zName, nName+1); pFile->pNext = pGroup->pFiles; if( pGroup->pFiles ) pGroup->pFiles->ppPrev = &pFile->pNext; pFile->ppPrev = &pGroup->pFiles; pGroup->pFiles = pFile; pFile->pGroup = pGroup; } } return pFile; } /* ** Figure out if we are dealing with Unix, Windows, or some other ** operating system. After the following block of preprocess macros, ** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER ** will defined to either 1 or 0. One of the four will be 1. The other ** three will be 0. */ #if defined(SQLITE_OS_OTHER) # if SQLITE_OS_OTHER==1 # undef SQLITE_OS_UNIX # define SQLITE_OS_UNIX 0 # undef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 # undef SQLITE_OS_OS2 # define SQLITE_OS_OS2 0 # else # undef SQLITE_OS_OTHER # endif #endif #if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER) # define SQLITE_OS_OTHER 0 # ifndef SQLITE_OS_WIN # if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) \ || defined(__MINGW32__) || defined(__BORLANDC__) # define SQLITE_OS_WIN 1 # define SQLITE_OS_UNIX 0 # define SQLITE_OS_OS2 0 # elif defined(__EMX__) || defined(_OS2) || defined(OS2) \ || defined(_OS2_) || defined(__OS2__) # define SQLITE_OS_WIN 0 # define SQLITE_OS_UNIX 0 # define SQLITE_OS_OS2 1 # else # define SQLITE_OS_WIN 0 # define SQLITE_OS_UNIX 1 # define SQLITE_OS_OS2 0 # endif # else # define SQLITE_OS_UNIX 0 # define SQLITE_OS_OS2 0 # endif #else # ifndef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 # endif #endif #if SQLITE_OS_UNIX # include <unistd.h> #endif #if SQLITE_OS_WIN # include <windows.h> # include <io.h> #endif /* ** Translate UTF8 to MBCS for use in fopen() calls. Return a pointer to the ** translated text.. Call quota_mbcs_free() to deallocate any memory ** used to store the returned pointer when done. */ static char *quota_utf8_to_mbcs(const char *zUtf8){ #if SQLITE_OS_WIN int n; /* Bytes in zUtf8 */ int nWide; /* number of UTF-16 characters */ int nMbcs; /* Bytes of MBCS */ LPWSTR zTmpWide; /* The UTF16 text */ char *zMbcs; /* The MBCS text */ int codepage; /* Code page used by fopen() */ n = strlen(zUtf8); nWide = MultiByteToWideChar(CP_UTF8, 0, zUtf8, -1, NULL, 0); if( nWide==0 ) return 0; zTmpWide = (LPWSTR)sqlite3_malloc( (nWide+1)*sizeof(zTmpWide[0]) ); if( zTmpWide==0 ) return 0; MultiByteToWideChar(CP_UTF8, 0, zUtf8, -1, zTmpWide, nWide); codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP; nMbcs = WideCharToMultiByte(codepage, 0, zTmpWide, nWide, 0, 0, 0, 0); zMbcs = nMbcs ? (char*)sqlite3_malloc( nMbcs+1 ) : 0; if( zMbcs ){ WideCharToMultiByte(codepage, 0, zTmpWide, nWide, zMbcs, nMbcs, 0, 0); } sqlite3_free(zTmpWide); return zMbcs; #else return (char*)zUtf8; /* No-op on unix */ #endif } /* ** Deallocate any memory allocated by quota_utf8_to_mbcs(). */ static void quota_mbcs_free(char *zOld){ #if SQLITE_OS_WIN sqlite3_free(zOld); #else /* No-op on unix */ #endif } /************************* VFS Method Wrappers *****************************/ /* ** This is the xOpen method used for the "quota" VFS. ** ** Most of the work is done by the underlying original VFS. This method ** simply links the new file into the appropriate quota group if it is a |
︙ | ︙ | |||
360 361 362 363 364 365 366 | }else{ /* If we get to this point, it means the file needs to be quota tracked. */ pQuotaOpen = (quotaConn*)pConn; pSubOpen = quotaSubOpen(pConn); rc = pOrigVfs->xOpen(pOrigVfs, zName, pSubOpen, flags, pOutFlags); if( rc==SQLITE_OK ){ | | < < < | | | | < < < < < < < < | < | 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | }else{ /* If we get to this point, it means the file needs to be quota tracked. */ pQuotaOpen = (quotaConn*)pConn; pSubOpen = quotaSubOpen(pConn); rc = pOrigVfs->xOpen(pOrigVfs, zName, pSubOpen, flags, pOutFlags); if( rc==SQLITE_OK ){ pFile = quotaFindFile(pGroup, zName, 1); if( pFile==0 ){ quotaLeave(); pSubOpen->pMethods->xClose(pSubOpen); return SQLITE_NOMEM; } pFile->deleteOnClose = (flags & SQLITE_OPEN_DELETEONCLOSE)!=0; pFile->nRef++; pQuotaOpen->pFile = pFile; if( pSubOpen->pMethods->iVersion==1 ){ pQuotaOpen->base.pMethods = &gQuota.sIoMethodsV1; }else{ pQuotaOpen->base.pMethods = &gQuota.sIoMethodsV2; } |
︙ | ︙ | |||
419 420 421 422 423 424 425 | /* If the file just deleted is a member of a quota group, then remove ** it from that quota group. */ if( rc==SQLITE_OK ){ quotaEnter(); pGroup = quotaGroupFind(zName); if( pGroup ){ | | | 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 | /* If the file just deleted is a member of a quota group, then remove ** it from that quota group. */ if( rc==SQLITE_OK ){ quotaEnter(); pGroup = quotaGroupFind(zName); if( pGroup ){ pFile = quotaFindFile(pGroup, zName, 0); if( pFile ){ if( pFile->nRef ){ pFile->deleteOnClose = 1; }else{ quotaRemoveFile(pFile); quotaGroupDeref(pGroup); } |
︙ | ︙ | |||
451 452 453 454 455 456 457 | sqlite3_file *pSubOpen = quotaSubOpen(pConn); int rc; rc = pSubOpen->pMethods->xClose(pSubOpen); quotaEnter(); pFile->nRef--; if( pFile->nRef==0 ){ quotaGroup *pGroup = pFile->pGroup; | | > > > | 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | sqlite3_file *pSubOpen = quotaSubOpen(pConn); int rc; rc = pSubOpen->pMethods->xClose(pSubOpen); quotaEnter(); pFile->nRef--; if( pFile->nRef==0 ){ quotaGroup *pGroup = pFile->pGroup; if( pFile->deleteOnClose ){ gQuota.pOrigVfs->xDelete(gQuota.pOrigVfs, pFile->zFilename, 0); quotaRemoveFile(pFile); } quotaGroupDeref(pGroup); } quotaLeave(); return rc; } /* Pass xRead requests directory thru to the original VFS without |
︙ | ︙ | |||
585 586 587 588 589 590 591 | return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut); } /* Pass xFileControl requests through to the original VFS unchanged. */ static int quotaFileControl(sqlite3_file *pConn, int op, void *pArg){ sqlite3_file *pSubOpen = quotaSubOpen(pConn); | | > > > > > > | 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut); } /* Pass xFileControl requests through to the original VFS unchanged. */ static int quotaFileControl(sqlite3_file *pConn, int op, void *pArg){ sqlite3_file *pSubOpen = quotaSubOpen(pConn); int rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg); #if defined(SQLITE_FCNTL_VFSNAME) if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ *(char**)pArg = sqlite3_mprintf("quota/%z", *(char**)pArg); } #endif return rc; } /* Pass xSectorSize requests through to the original VFS unchanged. */ static int quotaSectorSize(sqlite3_file *pConn){ sqlite3_file *pSubOpen = quotaSubOpen(pConn); return pSubOpen->pMethods->xSectorSize(pSubOpen); |
︙ | ︙ | |||
801 802 803 804 805 806 807 | */ int sqlite3_quota_file(const char *zFilename){ char *zFull; sqlite3_file *fd; int rc; int outFlags = 0; sqlite3_int64 iSize; | | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 | */ int sqlite3_quota_file(const char *zFilename){ char *zFull; sqlite3_file *fd; int rc; int outFlags = 0; sqlite3_int64 iSize; fd = (sqlite3_file*)sqlite3_malloc(gQuota.sThisVfs.szOsFile + gQuota.sThisVfs.mxPathname+1); if( fd==0 ) return SQLITE_NOMEM; zFull = gQuota.sThisVfs.szOsFile + (char*)fd; rc = gQuota.pOrigVfs->xFullPathname(gQuota.pOrigVfs, zFilename, gQuota.sThisVfs.mxPathname+1, zFull); if( rc==SQLITE_OK ){ rc = quotaOpen(&gQuota.sThisVfs, zFull, fd, SQLITE_OPEN_READONLY | SQLITE_OPEN_MAIN_DB, &outFlags); } if( rc==SQLITE_OK ){ fd->pMethods->xFileSize(fd, &iSize); fd->pMethods->xClose(fd); }else if( rc==SQLITE_CANTOPEN ){ quotaGroup *pGroup; quotaFile *pFile; quotaEnter(); pGroup = quotaGroupFind(zFull); if( pGroup ){ pFile = quotaFindFile(pGroup, zFull, 0); if( pFile ) quotaRemoveFile(pFile); } quotaLeave(); } sqlite3_free(fd); return rc; } /* ** Open a potentially quotaed file for I/O. */ quota_FILE *sqlite3_quota_fopen(const char *zFilename, const char *zMode){ quota_FILE *p = 0; char *zFull = 0; char *zFullTranslated; int rc; quotaGroup *pGroup; quotaFile *pFile; zFull = (char*)sqlite3_malloc(gQuota.sThisVfs.mxPathname + 1); if( zFull==0 ) return 0; rc = gQuota.pOrigVfs->xFullPathname(gQuota.pOrigVfs, zFilename, gQuota.sThisVfs.mxPathname+1, zFull); if( rc ) goto quota_fopen_error; p = (quota_FILE*)sqlite3_malloc(sizeof(*p)); if( p==0 ) goto quota_fopen_error; memset(p, 0, sizeof(*p)); zFullTranslated = quota_utf8_to_mbcs(zFull); if( zFullTranslated==0 ) goto quota_fopen_error; p->f = fopen(zFullTranslated, zMode); quota_mbcs_free(zFullTranslated); if( p->f==0 ) goto quota_fopen_error; quotaEnter(); pGroup = quotaGroupFind(zFull); if( pGroup ){ pFile = quotaFindFile(pGroup, zFull, 1); if( pFile==0 ){ quotaLeave(); goto quota_fopen_error; } pFile->nRef++; p->pFile = pFile; } quotaLeave(); sqlite3_free(zFull); return p; quota_fopen_error: sqlite3_free(zFull); if( p && p->f ) fclose(p->f); sqlite3_free(p); return 0; } /* ** Read content from a quota_FILE */ size_t sqlite3_quota_fread( void *pBuf, /* Store the content here */ size_t size, /* Size of each element */ size_t nmemb, /* Number of elements to read */ quota_FILE *p /* Read from this quota_FILE object */ ){ return fread(pBuf, size, nmemb, p->f); } /* ** Write content into a quota_FILE. Invoke the quota callback and block ** the write if we exceed quota. */ size_t sqlite3_quota_fwrite( void *pBuf, /* Take content to write from here */ size_t size, /* Size of each element */ size_t nmemb, /* Number of elements */ quota_FILE *p /* Write to this quota_FILE objecct */ ){ sqlite3_int64 iOfst; sqlite3_int64 iEnd; sqlite3_int64 szNew; quotaFile *pFile; iOfst = ftell(p->f); iEnd = iOfst + size*nmemb; pFile = p->pFile; if( pFile && pFile->iSize<iEnd ){ quotaGroup *pGroup = pFile->pGroup; quotaEnter(); szNew = pGroup->iSize - pFile->iSize + iEnd; if( szNew>pGroup->iLimit && pGroup->iLimit>0 ){ if( pGroup->xCallback ){ pGroup->xCallback(pFile->zFilename, &pGroup->iLimit, szNew, pGroup->pArg); } if( szNew>pGroup->iLimit && pGroup->iLimit>0 ){ iEnd = pGroup->iLimit - pGroup->iSize + pFile->iSize; nmemb = (iEnd - iOfst)/size; iEnd = iOfst + size*nmemb; szNew = pGroup->iSize - pFile->iSize + iEnd; } } pGroup->iSize = szNew; pFile->iSize = iEnd; quotaLeave(); } return fwrite(pBuf, size, nmemb, p->f); } /* ** Close an open quota_FILE stream. */ int sqlite3_quota_fclose(quota_FILE *p){ int rc; quotaFile *pFile; rc = fclose(p->f); pFile = p->pFile; if( pFile ){ quotaEnter(); pFile->nRef--; if( pFile->nRef==0 ){ quotaGroup *pGroup = pFile->pGroup; if( pFile->deleteOnClose ){ gQuota.pOrigVfs->xDelete(gQuota.pOrigVfs, pFile->zFilename, 0); quotaRemoveFile(pFile); } quotaGroupDeref(pGroup); } quotaLeave(); } sqlite3_free(p); return rc; } /* ** Flush memory buffers for a quota_FILE to disk. */ int sqlite3_quota_fflush(quota_FILE *p, int doFsync){ int rc; rc = fflush(p->f); if( rc==0 && doFsync ){ #if SQLITE_OS_UNIX rc = fsync(fileno(p->f)); #endif #if SQLITE_OS_WIN rc = _commit(_fileno(p->f)); #endif } return rc!=0; } /* ** Seek on a quota_FILE stream. */ int sqlite3_quota_fseek(quota_FILE *p, long offset, int whence){ return fseek(p->f, offset, whence); } /* ** rewind a quota_FILE stream. */ void sqlite3_quota_rewind(quota_FILE *p){ rewind(p->f); } /* ** Tell the current location of a quota_FILE stream. */ long sqlite3_quota_ftell(quota_FILE *p){ return ftell(p->f); } /* ** Remove a managed file. Update quotas accordingly. */ int sqlite3_quota_remove(const char *zFilename){ char *zFull; /* Full pathname for zFilename */ int nFull; /* Number of bytes in zFilename */ int rc; /* Result code */ quotaGroup *pGroup; /* Group containing zFilename */ quotaFile *pFile; /* A file in the group */ quotaFile *pNextFile; /* next file in the group */ int diff; /* Difference between filenames */ char c; /* First character past end of pattern */ zFull = (char*)sqlite3_malloc(gQuota.sThisVfs.mxPathname + 1); if( zFull==0 ) return SQLITE_NOMEM; rc = gQuota.pOrigVfs->xFullPathname(gQuota.pOrigVfs, zFilename, gQuota.sThisVfs.mxPathname+1, zFull); if( rc ){ sqlite3_free(zFull); return rc; } /* Figure out the length of the full pathname. If the name ends with ** / (or \ on windows) then remove the trailing /. */ nFull = strlen(zFull); if( nFull>0 && (zFull[nFull-1]=='/' || zFull[nFull-1]=='\\') ){ nFull--; zFull[nFull] = 0; } quotaEnter(); pGroup = quotaGroupFind(zFull); if( pGroup ){ for(pFile=pGroup->pFiles; pFile && rc==SQLITE_OK; pFile=pNextFile){ pNextFile = pFile->pNext; diff = memcmp(zFull, pFile->zFilename, nFull); if( diff==0 && ((c = pFile->zFilename[nFull])==0 || c=='/' || c=='\\') ){ if( pFile->nRef ){ pFile->deleteOnClose = 1; }else{ rc = gQuota.pOrigVfs->xDelete(gQuota.pOrigVfs, pFile->zFilename, 0); quotaRemoveFile(pFile); quotaGroupDeref(pGroup); } } } } quotaLeave(); sqlite3_free(zFull); return rc; } /***************************** Test Code ***********************************/ #ifdef SQLITE_TEST #include <tcl.h> /* ** Argument passed to a TCL quota-over-limit callback. |
︙ | ︙ | |||
1056 1057 1058 1059 1060 1061 1062 1063 1064 | Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewStringObj(pGroup->zPattern, -1)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewWideIntObj(pGroup->iLimit)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewWideIntObj(pGroup->iSize)); for(pFile=pGroup->pFiles; pFile; pFile=pFile->pNext){ pFileTerm = Tcl_NewObj(); Tcl_ListObjAppendElement(interp, pFileTerm, | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | > > > > > > > > > > | 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 | Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewStringObj(pGroup->zPattern, -1)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewWideIntObj(pGroup->iLimit)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewWideIntObj(pGroup->iSize)); for(pFile=pGroup->pFiles; pFile; pFile=pFile->pNext){ int i; char zTemp[1000]; pFileTerm = Tcl_NewObj(); sqlite3_snprintf(sizeof(zTemp), zTemp, "%s", pFile->zFilename); for(i=0; zTemp[i]; i++){ if( zTemp[i]=='\\' ) zTemp[i] = '/'; } Tcl_ListObjAppendElement(interp, pFileTerm, Tcl_NewStringObj(zTemp, -1)); Tcl_ListObjAppendElement(interp, pFileTerm, Tcl_NewWideIntObj(pFile->iSize)); Tcl_ListObjAppendElement(interp, pFileTerm, Tcl_NewWideIntObj(pFile->nRef)); Tcl_ListObjAppendElement(interp, pFileTerm, Tcl_NewWideIntObj(pFile->deleteOnClose)); Tcl_ListObjAppendElement(interp, pGroupTerm, pFileTerm); } Tcl_ListObjAppendElement(interp, pResult, pGroupTerm); } quotaLeave(); Tcl_SetObjResult(interp, pResult); return TCL_OK; } /* ** tclcmd: sqlite3_quota_fopen FILENAME MODE */ static int test_quota_fopen( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ const char *zFilename; /* File pattern to configure */ const char *zMode; /* Mode string */ quota_FILE *p; /* Open string object */ char zReturn[50]; /* Name of pointer to return */ /* Process arguments */ if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "FILENAME MODE"); return TCL_ERROR; } zFilename = Tcl_GetString(objv[1]); zMode = Tcl_GetString(objv[2]); p = sqlite3_quota_fopen(zFilename, zMode); sqlite3_snprintf(sizeof(zReturn), zReturn, "%p", p); Tcl_SetResult(interp, zReturn, TCL_VOLATILE); return TCL_OK; } /* Defined in test1.c */ extern void *sqlite3TestTextToPtr(const char*); /* ** tclcmd: sqlite3_quota_fread HANDLE SIZE NELEM */ static int test_quota_fread( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ quota_FILE *p; char *zBuf; int sz; int nElem; int got; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE SIZE NELEM"); return TCL_ERROR; } p = sqlite3TestTextToPtr(Tcl_GetString(objv[1])); if( Tcl_GetIntFromObj(interp, objv[2], &sz) ) return TCL_ERROR; if( Tcl_GetIntFromObj(interp, objv[3], &nElem) ) return TCL_ERROR; zBuf = (char*)sqlite3_malloc( sz*nElem + 1 ); if( zBuf==0 ){ Tcl_SetResult(interp, "out of memory", TCL_STATIC); return TCL_ERROR; } got = sqlite3_quota_fread(zBuf, sz, nElem, p); if( got<0 ) got = 0; zBuf[got*sz] = 0; Tcl_SetResult(interp, zBuf, TCL_VOLATILE); sqlite3_free(zBuf); return TCL_OK; } /* ** tclcmd: sqlite3_quota_fwrite HANDLE SIZE NELEM CONTENT */ static int test_quota_fwrite( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ quota_FILE *p; char *zBuf; int sz; int nElem; int got; if( objc!=5 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE SIZE NELEM CONTENT"); return TCL_ERROR; } p = sqlite3TestTextToPtr(Tcl_GetString(objv[1])); if( Tcl_GetIntFromObj(interp, objv[2], &sz) ) return TCL_ERROR; if( Tcl_GetIntFromObj(interp, objv[3], &nElem) ) return TCL_ERROR; zBuf = Tcl_GetString(objv[4]); got = sqlite3_quota_fwrite(zBuf, sz, nElem, p); Tcl_SetObjResult(interp, Tcl_NewIntObj(got)); return TCL_OK; } /* ** tclcmd: sqlite3_quota_fclose HANDLE */ static int test_quota_fclose( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ quota_FILE *p; int rc; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE"); return TCL_ERROR; } p = sqlite3TestTextToPtr(Tcl_GetString(objv[1])); rc = sqlite3_quota_fclose(p); Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); return TCL_OK; } /* ** tclcmd: sqlite3_quota_fflush HANDLE ?HARDSYNC? */ static int test_quota_fflush( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ quota_FILE *p; int rc; int doSync = 0; if( objc!=2 && objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE ?HARDSYNC?"); return TCL_ERROR; } p = sqlite3TestTextToPtr(Tcl_GetString(objv[1])); if( objc==3 ){ if( Tcl_GetBooleanFromObj(interp, objv[2], &doSync) ) return TCL_ERROR; } rc = sqlite3_quota_fflush(p, doSync); Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); return TCL_OK; } /* ** tclcmd: sqlite3_quota_fseek HANDLE OFFSET WHENCE */ static int test_quota_fseek( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ quota_FILE *p; int ofst; const char *zWhence; int whence; int rc; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE OFFSET WHENCE"); return TCL_ERROR; } p = sqlite3TestTextToPtr(Tcl_GetString(objv[1])); if( Tcl_GetIntFromObj(interp, objv[2], &ofst) ) return TCL_ERROR; zWhence = Tcl_GetString(objv[3]); if( strcmp(zWhence, "SEEK_SET")==0 ){ whence = SEEK_SET; }else if( strcmp(zWhence, "SEEK_CUR")==0 ){ whence = SEEK_CUR; }else if( strcmp(zWhence, "SEEK_END")==0 ){ whence = SEEK_END; }else{ Tcl_AppendResult(interp, "WHENCE should be SEEK_SET, SEEK_CUR, or SEEK_END", (char*)0); return TCL_ERROR; } rc = sqlite3_quota_fseek(p, ofst, whence); Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); return TCL_OK; } /* ** tclcmd: sqlite3_quota_rewind HANDLE */ static int test_quota_rewind( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ quota_FILE *p; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE"); return TCL_ERROR; } p = sqlite3TestTextToPtr(Tcl_GetString(objv[1])); sqlite3_quota_rewind(p); return TCL_OK; } /* ** tclcmd: sqlite3_quota_ftell HANDLE */ static int test_quota_ftell( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ quota_FILE *p; sqlite3_int64 x; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE"); return TCL_ERROR; } p = sqlite3TestTextToPtr(Tcl_GetString(objv[1])); x = sqlite3_quota_ftell(p); Tcl_SetObjResult(interp, Tcl_NewWideIntObj(x)); return TCL_OK; } /* ** tclcmd: sqlite3_quota_remove FILENAME */ static int test_quota_remove( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ const char *zFilename; /* File pattern to configure */ int rc; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "FILENAME"); return TCL_ERROR; } zFilename = Tcl_GetString(objv[1]); rc = sqlite3_quota_remove(zFilename); Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); return TCL_OK; } /* ** tclcmd: sqlite3_quota_glob PATTERN TEXT ** ** Test the glob pattern matching. Return 1 if TEXT matches PATTERN ** and return 0 if it does not. */ static int test_quota_glob( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ const char *zPattern; /* The glob pattern */ const char *zText; /* Text to compare agains the pattern */ int rc; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "PATTERN TEXT"); return TCL_ERROR; } zPattern = Tcl_GetString(objv[1]); zText = Tcl_GetString(objv[2]); rc = quotaStrglob(zPattern, zText); Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); return TCL_OK; } /* ** This routine registers the custom TCL commands defined in this ** module. This should be the only procedure visible from outside ** of this module. */ int Sqlitequota_Init(Tcl_Interp *interp){ static struct { char *zName; Tcl_ObjCmdProc *xProc; } aCmd[] = { { "sqlite3_quota_initialize", test_quota_initialize }, { "sqlite3_quota_shutdown", test_quota_shutdown }, { "sqlite3_quota_set", test_quota_set }, { "sqlite3_quota_file", test_quota_file }, { "sqlite3_quota_dump", test_quota_dump }, { "sqlite3_quota_fopen", test_quota_fopen }, { "sqlite3_quota_fread", test_quota_fread }, { "sqlite3_quota_fwrite", test_quota_fwrite }, { "sqlite3_quota_fclose", test_quota_fclose }, { "sqlite3_quota_fflush", test_quota_fflush }, { "sqlite3_quota_fseek", test_quota_fseek }, { "sqlite3_quota_rewind", test_quota_rewind }, { "sqlite3_quota_ftell", test_quota_ftell }, { "sqlite3_quota_remove", test_quota_remove }, { "sqlite3_quota_glob", test_quota_glob }, }; int i; for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); } return TCL_OK; } #endif |
Added src/test_quota.h.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | /* ** 2011 December 1 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the interface definition for the quota a VFS shim. ** ** This particular shim enforces a quota system on files. One or more ** database files are in a "quota group" that is defined by a GLOB ** pattern. A quota is set for the combined size of all files in the ** the group. A quota of zero means "no limit". If the total size ** of all files in the quota group is greater than the limit, then ** write requests that attempt to enlarge a file fail with SQLITE_FULL. ** ** However, before returning SQLITE_FULL, the write requests invoke ** a callback function that is configurable for each quota group. ** This callback has the opportunity to enlarge the quota. If the ** callback does enlarge the quota such that the total size of all ** files within the group is less than the new quota, then the write ** continues as if nothing had happened. */ #ifndef _QUOTA_H_ #include "sqlite3.h" #include <stdio.h> /* Make this callable from C++ */ #ifdef __cplusplus extern "C" { #endif /* ** Initialize the quota VFS shim. Use the VFS named zOrigVfsName ** as the VFS that does the actual work. Use the default if ** zOrigVfsName==NULL. ** ** The quota VFS shim is named "quota". It will become the default ** VFS if makeDefault is non-zero. ** ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once ** during start-up. */ int sqlite3_quota_initialize(const char *zOrigVfsName, int makeDefault); /* ** Shutdown the quota system. ** ** All SQLite database connections must be closed before calling this ** routine. ** ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while ** shutting down in order to free all remaining quota groups. */ int sqlite3_quota_shutdown(void); /* ** Create or destroy a quota group. ** ** The quota group is defined by the zPattern. When calling this routine ** with a zPattern for a quota group that already exists, this routine ** merely updates the iLimit, xCallback, and pArg values for that quota ** group. If zPattern is new, then a new quota group is created. ** ** The zPattern is always compared against the full pathname of the file. ** Even if APIs are called with relative pathnames, SQLite converts the ** name to a full pathname before comparing it against zPattern. zPattern ** is a glob pattern with the following matching rules: ** ** '*' Matches any sequence of zero or more characters. ** ** '?' Matches exactly one character. ** ** [...] Matches one character from the enclosed list of ** characters. "]" can be part of the list if it is ** the first character. Within the list "X-Y" matches ** characters X or Y or any character in between the ** two. Ex: "[0-9]" matches any digit. ** ** [^...] Matches one character not in the enclosed list. ** ** / Matches either / or \. This allows glob patterns ** containing / to work on both unix and windows. ** ** Note that, unlike unix shell globbing, the directory separator "/" ** can match a wildcard. So, for example, the pattern "/abc/xyz/" "*" ** matches any files anywhere in the directory hierarchy beneath ** /abc/xyz. ** ** The glob algorithm works on bytes. Multi-byte UTF8 characters are ** matched as if each byte were a separate character. ** ** If the iLimit for a quota group is set to zero, then the quota group ** is disabled and will be deleted when the last database connection using ** the quota group is closed. ** ** Calling this routine on a zPattern that does not exist and with a ** zero iLimit is a no-op. ** ** A quota group must exist with a non-zero iLimit prior to opening ** database connections if those connections are to participate in the ** quota group. Creating a quota group does not affect database connections ** that are already open. ** ** The patterns that define the various quota groups should be distinct. ** If the same filename matches more than one quota group pattern, then ** the behavior of this package is undefined. */ int sqlite3_quota_set( const char *zPattern, /* The filename pattern */ sqlite3_int64 iLimit, /* New quota to set for this quota group */ void (*xCallback)( /* Callback invoked when going over quota */ const char *zFilename, /* Name of file whose size increases */ sqlite3_int64 *piLimit, /* IN/OUT: The current limit */ sqlite3_int64 iSize, /* Total size of all files in the group */ void *pArg /* Client data */ ), void *pArg, /* client data passed thru to callback */ void (*xDestroy)(void*) /* Optional destructor for pArg */ ); /* ** Bring the named file under quota management, assuming its name matches ** the glob pattern of some quota group. Or if it is already under ** management, update its size. If zFilename does not match the glob ** pattern of any quota group, this routine is a no-op. */ int sqlite3_quota_file(const char *zFilename); /* ** The following object serves the same role as FILE in the standard C ** library. It represents an open connection to a file on disk for I/O. ** ** A single quota_FILE should not be used by two or more threads at the ** same time. Multiple threads can be using different quota_FILE objects ** simultaneously, but not the same quota_FILE object. */ typedef struct quota_FILE quota_FILE; /* ** Create a new quota_FILE object used to read and/or write to the ** file zFilename. The zMode parameter is as with standard library zMode. */ quota_FILE *sqlite3_quota_fopen(const char *zFilename, const char *zMode); /* ** Perform I/O against a quota_FILE object. When doing writes, the ** quota mechanism may result in a short write, in order to prevent ** the sum of sizes of all files from going over quota. */ size_t sqlite3_quota_fread(void*, size_t, size_t, quota_FILE*); size_t sqlite3_quota_fwrite(void*, size_t, size_t, quota_FILE*); /* ** Flush all written content held in memory buffers out to disk. ** This is the equivalent of fflush() in the standard library. ** ** If the hardSync parameter is true (non-zero) then this routine ** also forces OS buffers to disk - the equivalent of fsync(). ** ** This routine return zero on success and non-zero if something goes ** wrong. */ int sqlite3_quota_fflush(quota_FILE*, int hardSync); /* ** Close a quota_FILE object and free all associated resources. The ** file remains under quota management. */ int sqlite3_quota_fclose(quota_FILE*); /* ** Move the read/write pointer for a quota_FILE object. Or tell the ** current location of the read/write pointer. */ int sqlite3_quota_fseek(quota_FILE*, long, int); void sqlite3_quota_rewind(quota_FILE*); long sqlite3_quota_ftell(quota_FILE*); /* ** Delete a file from the disk, if that file is under quota management. ** Adjust quotas accordingly. ** ** If zFilename is the name of a directory that matches one of the ** quota glob patterns, then all files under quota management that ** are contained within that directory are deleted. ** ** A standard SQLite result code is returned (SQLITE_OK, SQLITE_NOMEM, etc.) ** When deleting a directory of files, if the deletion of any one ** file fails (for example due to an I/O error), then this routine ** returns immediately, with the error code, and does not try to ** delete any of the other files in the specified directory. ** ** All files are removed from quota management and deleted from disk. ** However, no attempt is made to remove empty directories. ** ** This routine is a no-op for files that are not under quota management. */ int sqlite3_quota_remove(const char *zFilename); #ifdef __cplusplus } /* end of the 'extern "C"' block */ #endif #endif /* _QUOTA_H_ */ |
Changes to src/test_stat.c.
︙ | ︙ | |||
365 366 367 368 369 370 371 | Btree *pBt = pTab->db->aDb[0].pBt; Pager *pPager = sqlite3BtreePager(pBt); sqlite3_file *fd; sqlite3_int64 x[2]; /* The default page size and offset */ pCsr->szPage = sqlite3BtreeGetPageSize(pBt); | | | 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | Btree *pBt = pTab->db->aDb[0].pBt; Pager *pPager = sqlite3BtreePager(pBt); sqlite3_file *fd; sqlite3_int64 x[2]; /* The default page size and offset */ pCsr->szPage = sqlite3BtreeGetPageSize(pBt); pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1); /* If connected to a ZIPVFS backend, override the page size and ** offset with actual values obtained from ZIPVFS. */ fd = sqlite3PagerFile(pPager); x[0] = pCsr->iPageno; if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){ |
︙ | ︙ |
Changes to src/test_vfs.c.
︙ | ︙ | |||
1158 1159 1160 1161 1162 1163 1164 | case CMD_DEVCHAR: { struct DeviceFlag { char *zName; int iValue; } aFlag[] = { { "default", -1 }, | | | | | | | | | | | | > | 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | case CMD_DEVCHAR: { struct DeviceFlag { char *zName; int iValue; } aFlag[] = { { "default", -1 }, { "atomic", SQLITE_IOCAP_ATOMIC }, { "atomic512", SQLITE_IOCAP_ATOMIC512 }, { "atomic1k", SQLITE_IOCAP_ATOMIC1K }, { "atomic2k", SQLITE_IOCAP_ATOMIC2K }, { "atomic4k", SQLITE_IOCAP_ATOMIC4K }, { "atomic8k", SQLITE_IOCAP_ATOMIC8K }, { "atomic16k", SQLITE_IOCAP_ATOMIC16K }, { "atomic32k", SQLITE_IOCAP_ATOMIC32K }, { "atomic64k", SQLITE_IOCAP_ATOMIC64K }, { "sequential", SQLITE_IOCAP_SEQUENTIAL }, { "safe_append", SQLITE_IOCAP_SAFE_APPEND }, { "undeletable_when_open", SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN }, { "powersafe_overwrite", SQLITE_IOCAP_POWERSAFE_OVERWRITE }, { 0, 0 } }; Tcl_Obj *pRet; int iFlag; if( objc>3 ){ Tcl_WrongNumArgs(interp, 2, objv, "?ATTR-LIST?"); |
︙ | ︙ | |||
1203 1204 1205 1206 1207 1208 1209 | if( aFlag[idx].iValue<0 && nFlags>1 ){ Tcl_AppendResult(interp, "bad flags: ", Tcl_GetString(objv[2]), 0); return TCL_ERROR; } iNew |= aFlag[idx].iValue; } | | | 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 | if( aFlag[idx].iValue<0 && nFlags>1 ){ Tcl_AppendResult(interp, "bad flags: ", Tcl_GetString(objv[2]), 0); return TCL_ERROR; } iNew |= aFlag[idx].iValue; } p->iDevchar = iNew| 0x10000000; } pRet = Tcl_NewObj(); for(iFlag=0; iFlag<sizeof(aFlag)/sizeof(aFlag[0]); iFlag++){ if( p->iDevchar & aFlag[iFlag].iValue ){ Tcl_ListObjAppendElement( interp, pRet, Tcl_NewStringObj(aFlag[iFlag].zName, -1) |
︙ | ︙ |
Changes to src/test_vfstrace.c.
︙ | ︙ | |||
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 | case SQLITE_FCNTL_CHUNK_SIZE: { sqlite3_snprintf(sizeof(zBuf), zBuf, "CHUNK_SIZE,%d", *(int*)pArg); zOp = zBuf; break; } case SQLITE_FCNTL_FILE_POINTER: zOp = "FILE_POINTER"; break; case SQLITE_FCNTL_SYNC_OMITTED: zOp = "SYNC_OMITTED"; break; case 0xca093fa0: zOp = "DB_UNCHANGED"; break; default: { sqlite3_snprintf(sizeof zBuf, zBuf, "%d", op); zOp = zBuf; break; } } vfstrace_printf(pInfo, "%s.xFileControl(%s,%s)", pInfo->zVfsName, p->zFName, zOp); rc = p->pReal->pMethods->xFileControl(p->pReal, op, pArg); vfstrace_print_errcode(pInfo, " -> %s\n", rc); return rc; } /* ** Return the sector-size in bytes for an vfstrace-file. */ static int vfstraceSectorSize(sqlite3_file *pFile){ | > > > > > > > > | 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | case SQLITE_FCNTL_CHUNK_SIZE: { sqlite3_snprintf(sizeof(zBuf), zBuf, "CHUNK_SIZE,%d", *(int*)pArg); zOp = zBuf; break; } case SQLITE_FCNTL_FILE_POINTER: zOp = "FILE_POINTER"; break; case SQLITE_FCNTL_SYNC_OMITTED: zOp = "SYNC_OMITTED"; break; case SQLITE_FCNTL_WIN32_AV_RETRY: zOp = "WIN32_AV_RETRY"; break; case SQLITE_FCNTL_PERSIST_WAL: zOp = "PERSIST_WAL"; break; case SQLITE_FCNTL_OVERWRITE: zOp = "OVERWRITE"; break; case SQLITE_FCNTL_VFSNAME: zOp = "VFSNAME"; break; case 0xca093fa0: zOp = "DB_UNCHANGED"; break; default: { sqlite3_snprintf(sizeof zBuf, zBuf, "%d", op); zOp = zBuf; break; } } vfstrace_printf(pInfo, "%s.xFileControl(%s,%s)", pInfo->zVfsName, p->zFName, zOp); rc = p->pReal->pMethods->xFileControl(p->pReal, op, pArg); vfstrace_print_errcode(pInfo, " -> %s\n", rc); if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ *(char**)pArg = sqlite3_mprintf("vfstrace.%s/%z", pInfo->zVfsName, *(char**)pArg); } return rc; } /* ** Return the sector-size in bytes for an vfstrace-file. */ static int vfstraceSectorSize(sqlite3_file *pFile){ |
︙ | ︙ |
Changes to src/tokenize.c.
︙ | ︙ | |||
119 120 121 122 123 124 125 | testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case '-': { if( z[1]=='-' ){ | | | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case '-': { if( z[1]=='-' ){ /* IMP: R-50417-27976 -- syntax diagram for comments */ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } *tokenType = TK_MINUS; return 1; } |
︙ | ︙ | |||
152 153 154 155 156 157 158 | return 1; } case '/': { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } | | | 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | return 1; } case '/': { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } /* IMP: R-50417-27976 -- syntax diagram for comments */ for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } case '%': { *tokenType = TK_REM; |
︙ | ︙ |
Changes to src/trigger.c.
︙ | ︙ | |||
900 901 902 903 904 905 906 907 908 909 910 911 912 913 | transferParseError(pParse, pSubParse); if( db->mallocFailed==0 ){ pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg); } pProgram->nMem = pSubParse->nMem; pProgram->nCsr = pSubParse->nTab; pProgram->token = (void *)pTrigger; pPrg->aColmask[0] = pSubParse->oldmask; pPrg->aColmask[1] = pSubParse->newmask; sqlite3VdbeDelete(v); } assert( !pSubParse->pAinc && !pSubParse->pZombieTab ); | > | 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 | transferParseError(pParse, pSubParse); if( db->mallocFailed==0 ){ pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg); } pProgram->nMem = pSubParse->nMem; pProgram->nCsr = pSubParse->nTab; pProgram->nOnce = pSubParse->nOnce; pProgram->token = (void *)pTrigger; pPrg->aColmask[0] = pSubParse->oldmask; pPrg->aColmask[1] = pSubParse->newmask; sqlite3VdbeDelete(v); } assert( !pSubParse->pAinc && !pSubParse->pZombieTab ); |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
122 123 124 125 126 127 128 | #endif int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */ /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid; /* The old rowid */ int regNewRowid; /* The new rowid */ | | | | 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | #endif int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */ /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid; /* The old rowid */ int regNewRowid; /* The new rowid */ int regNew; /* Content of the NEW.* table in triggers */ int regOld = 0; /* Content of OLD.* table in triggers */ int regRowSet = 0; /* Rowset of rows to be updated */ memset(&sContext, 0, sizeof(sContext)); db = pParse->db; if( pParse->nErr || db->mallocFailed ){ goto update_cleanup; } |
︙ | ︙ | |||
272 273 274 275 276 277 278 279 280 281 282 283 284 285 | pWhere = 0; pTabList = 0; goto update_cleanup; } #endif /* Allocate required registers. */ regOldRowid = regNewRowid = ++pParse->nMem; if( pTrigger || hasFK ){ regOld = pParse->nMem + 1; pParse->nMem += pTab->nCol; } if( chngRowid || pTrigger || hasFK ){ regNewRowid = ++pParse->nMem; | > | 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | pWhere = 0; pTabList = 0; goto update_cleanup; } #endif /* Allocate required registers. */ regRowSet = ++pParse->nMem; regOldRowid = regNewRowid = ++pParse->nMem; if( pTrigger || hasFK ){ regOld = pParse->nMem + 1; pParse->nMem += pTab->nCol; } if( chngRowid || pTrigger || hasFK ){ regNewRowid = ++pParse->nMem; |
︙ | ︙ | |||
306 307 308 309 310 311 312 | */ if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } /* Begin the database scan */ | | < | 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | */ if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } /* Begin the database scan */ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED ); if( pWInfo==0 ) goto update_cleanup; okOnePass = pWInfo->okOnePass; /* Remember the rowid of every item to be updated. */ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid); if( !okOnePass ){ sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid); } /* End the database scan loop. */ sqlite3WhereEnd(pWInfo); |
︙ | ︙ | |||
421 422 423 424 425 426 427 428 429 | ** the database after the BEFORE triggers are fired anyway (as the trigger ** may have modified them). So not loading those that are not going to ** be used eliminates some redundant opcodes. */ newmask = sqlite3TriggerColmask( pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError ); for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ | > | | 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | ** the database after the BEFORE triggers are fired anyway (as the trigger ** may have modified them). So not loading those that are not going to ** be used eliminates some redundant opcodes. */ newmask = sqlite3TriggerColmask( pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError ); sqlite3VdbeAddOp3(v, OP_Null, 0, regNew, regNew+pTab->nCol-1); for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ /*sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);*/ }else{ j = aXRef[i]; if( j>=0 ){ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i); }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask&(1<<i)) ){ /* This branch loads the value of a column that will not be changed ** into a register. This is done if there are no BEFORE triggers, or |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 | ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than ** three characters, then shorten the suffix on z[] to be the last three ** characters of the original suffix. ** ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always ** do the suffix shortening regardless of URI parameter. ** ** Examples: ** ** test.db-journal => test.nal ** test.db-wal => test.wal ** test.db-shm => test.shm */ void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ #if SQLITE_ENABLE_8_3_NAMES<2 | > > > > > > < | < | | 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 | ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than ** three characters, then shorten the suffix on z[] to be the last three ** characters of the original suffix. ** ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always ** do the suffix shortening regardless of URI parameter. ** ** Assume that zBaseFilename contains two \000 terminator bytes (so that ** it can be harmlessly passed into sqlite3_uri_parameter()) and copy both ** zero terminator bytes into the end of the revised name. ** ** Examples: ** ** test.db-journal => test.nal ** test.db-wal => test.wal ** test.db-shm => test.shm ** test.db-mj7f3319fa => test.9fa */ void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ assert( zBaseFilename[strlen(zBaseFilename)+1]==0 ); #if SQLITE_ENABLE_8_3_NAMES<2 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) #endif { int i, sz; sz = sqlite3Strlen30(z); for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 5); } } #endif |
Changes to src/vdbe.c.
︙ | ︙ | |||
760 761 762 763 764 765 766 | } /* Opcode: Gosub P1 P2 * * * ** ** Write the current address onto register P1 ** and then jump to address P2. */ | | > | 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 | } /* Opcode: Gosub P1 P2 * * * ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=p->nMem ); pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Dyn)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; pIn1->u.i = pc; REGISTER_TRACE(pOp->p1, pIn1); pc = pOp->p2 - 1; |
︙ | ︙ | |||
957 958 959 960 961 962 963 | pOut->z = pOp->p4.z; pOut->n = pOp->p1; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } | | | > > > > > > > > > > > > > | 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 | pOut->z = pOp->p4.z; pOut->n = pOp->p1; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Null * P2 P3 * * ** ** Write a NULL into registers P2. If P3 greater than P2, then also write ** NULL into register P3 and ever register in between P2 and P3. If P3 ** is less than P2 (typically P3 is zero) then only register P2 is ** set to NULL */ case OP_Null: { /* out2-prerelease */ int cnt; cnt = pOp->p3-pOp->p2; assert( pOp->p3<=p->nMem ); pOut->flags = MEM_Null; while( cnt>0 ){ pOut++; memAboutToChange(p, pOut); MemReleaseExt(pOut); pOut->flags = MEM_Null; cnt--; } break; } /* Opcode: Blob P1 P2 * P4 ** ** P4 points to a blob of data P1 bytes long. Store this |
︙ | ︙ | |||
1134 1135 1136 1137 1138 1139 1140 | } /* Invalidate all ephemeral cursor row caches */ p->cacheCtr = (p->cacheCtr + 2)|1; /* Make sure the results of the current row are \000 terminated ** and have an assigned type. The results are de-ephemeralized as | | | 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 | } /* Invalidate all ephemeral cursor row caches */ p->cacheCtr = (p->cacheCtr + 2)|1; /* Make sure the results of the current row are \000 terminated ** and have an assigned type. The results are de-ephemeralized as ** a side effect. */ pMem = p->pResultSet = &aMem[pOp->p1]; for(i=0; i<pOp->p2; i++){ assert( memIsValid(&pMem[i]) ); Deephemeralize(&pMem[i]); assert( (pMem[i].flags & MEM_Ephem)==0 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); |
︙ | ︙ | |||
2019 2020 2021 2022 2023 2024 2025 | sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); } break; } /* Opcode: Once P1 P2 * * * ** | | | < < < < > > > > > > > > > > > | | | < < < < < < < | 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 | sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); } break; } /* Opcode: Once P1 P2 * * * ** ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, ** set the flag and fall through to the next instruction. ** ** See also: JumpOnce */ case OP_Once: { /* jump */ assert( pOp->p1<p->nOnceFlag ); if( p->aOnceFlag[pOp->p1] ){ pc = pOp->p2-1; }else{ p->aOnceFlag[pOp->p1] = 1; } break; } /* Opcode: If P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is true. The value ** is considered true if it is numeric and non-zero. If the value ** in P1 is NULL then take the jump if P3 is non-zero. */ /* Opcode: IfNot P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is False. The value ** is considered false if it has a numeric value of zero. If the value ** in P1 is NULL then take the jump if P3 is zero. */ case OP_If: /* jump, in1 */ case OP_IfNot: { /* jump, in1 */ int c; pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Null ){ c = pOp->p3; }else{ #ifdef SQLITE_OMIT_FLOATING_POINT c = sqlite3VdbeIntValue(pIn1)!=0; #else c = sqlite3VdbeRealValue(pIn1)!=0.0; #endif if( pOp->opcode==OP_IfNot ) c = !c; } if( c ){ pc = pOp->p2-1; } break; } /* Opcode: IsNull P1 P2 * * * ** ** Jump to P2 if the value in register P1 is NULL. |
︙ | ︙ | |||
5067 5068 5069 5070 5071 5072 5073 | Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ pProgram = pOp->p4.pProgram; pRt = &aMem[pOp->p3]; | < | 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 | Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ pProgram = pOp->p4.pProgram; pRt = &aMem[pOp->p3]; assert( pProgram->nOp>0 ); /* If the p5 flag is clear, then recursive invocation of triggers is ** disabled for backwards compatibility (p5 is set if this sub-program ** is really a trigger, not a foreign key action, and the flag set ** and cleared by the "PRAGMA recursive_triggers" command is clear). ** |
︙ | ︙ | |||
5106 5107 5108 5109 5110 5111 5112 | ** program stored in SubProgram.aOp. As well as these, one memory ** cell is required for each cursor used by the program. Set local ** variable nMem (and later, VdbeFrame.nChildMem) to this value. */ nMem = pProgram->nMem + pProgram->nCsr; nByte = ROUND8(sizeof(VdbeFrame)) + nMem * sizeof(Mem) | | > > > | | 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 | ** program stored in SubProgram.aOp. As well as these, one memory ** cell is required for each cursor used by the program. Set local ** variable nMem (and later, VdbeFrame.nChildMem) to this value. */ nMem = pProgram->nMem + pProgram->nCsr; nByte = ROUND8(sizeof(VdbeFrame)) + nMem * sizeof(Mem) + pProgram->nCsr * sizeof(VdbeCursor *) + pProgram->nOnce * sizeof(u8); pFrame = sqlite3DbMallocZero(db, nByte); if( !pFrame ){ goto no_mem; } sqlite3VdbeMemRelease(pRt); pRt->flags = MEM_Frame; pRt->u.pFrame = pFrame; pFrame->v = p; pFrame->nChildMem = nMem; pFrame->nChildCsr = pProgram->nCsr; pFrame->pc = pc; pFrame->aMem = p->aMem; pFrame->nMem = p->nMem; pFrame->apCsr = p->apCsr; pFrame->nCursor = p->nCursor; pFrame->aOp = p->aOp; pFrame->nOp = p->nOp; pFrame->token = pProgram->token; pFrame->aOnceFlag = p->aOnceFlag; pFrame->nOnceFlag = p->nOnceFlag; pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ pMem->flags = MEM_Invalid; pMem->db = db; } }else{ pFrame = pRt->u.pFrame; assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); assert( pProgram->nCsr==pFrame->nChildCsr ); assert( pc==pFrame->pc ); |
︙ | ︙ | |||
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 | p->pFrame = pFrame; p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; p->nMem = pFrame->nChildMem; p->nCursor = (u16)pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; p->aOp = aOp = pProgram->aOp; p->nOp = pProgram->nOp; pc = -1; break; } /* Opcode: Param P1 P2 * * * ** ** This opcode is only ever present in sub-programs called via the | > > > > | 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 | p->pFrame = pFrame; p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; p->nMem = pFrame->nChildMem; p->nCursor = (u16)pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; p->aOp = aOp = pProgram->aOp; p->nOp = pProgram->nOp; p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; p->nOnceFlag = pProgram->nOnce; p->nOp = pProgram->nOp; pc = -1; memset(p->aOnceFlag, 0, p->nOnceFlag); break; } /* Opcode: Param P1 P2 * * * ** ** This opcode is only ever present in sub-programs called via the |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
78 79 80 81 82 83 84 85 86 87 88 89 90 91 | ** A sub-routine used to implement a trigger program. */ struct SubProgram { VdbeOp *aOp; /* Array of opcodes for sub-program */ int nOp; /* Elements in aOp[] */ int nMem; /* Number of memory cells required */ int nCsr; /* Number of cursors required */ void *token; /* id that may be used to recursive triggers */ SubProgram *pNext; /* Next sub-program already visited */ }; /* ** A smaller version of VdbeOp used for the VdbeAddOpList() function because ** it takes up less space. | > | 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | ** A sub-routine used to implement a trigger program. */ struct SubProgram { VdbeOp *aOp; /* Array of opcodes for sub-program */ int nOp; /* Elements in aOp[] */ int nMem; /* Number of memory cells required */ int nCsr; /* Number of cursors required */ int nOnce; /* Number of OP_Once instructions */ void *token; /* id that may be used to recursive triggers */ SubProgram *pNext; /* Next sub-program already visited */ }; /* ** A smaller version of VdbeOp used for the VdbeAddOpList() function because ** it takes up less space. |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
29 30 31 32 33 34 35 36 37 38 39 40 41 42 | ** Boolean values */ typedef unsigned char Bool; /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* ** A cursor is a pointer into a single BTree within a database file. ** The cursor can seek to a BTree entry with a particular key, or ** loop over all entries of the Btree. You can also insert new BTree ** entries or retrieve the key or data from the entry that the cursor ** is currently pointing to. ** | > > > | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ** Boolean values */ typedef unsigned char Bool; /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* Opaque type used by the explainer */ typedef struct Explain Explain; /* ** A cursor is a pointer into a single BTree within a database file. ** The cursor can seek to a BTree entry with a particular key, or ** loop over all entries of the Btree. You can also insert new BTree ** entries or retrieve the key or data from the entry that the cursor ** is currently pointing to. ** |
︙ | ︙ | |||
113 114 115 116 117 118 119 120 121 122 123 124 125 126 | struct VdbeFrame { Vdbe *v; /* VM this frame belongs to */ int pc; /* Program Counter in parent (calling) frame */ Op *aOp; /* Program instructions for parent frame */ int nOp; /* Size of aOp array */ Mem *aMem; /* Array of memory cells for parent frame */ int nMem; /* Number of entries in aMem */ VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */ u16 nCursor; /* Number of entries in apCsr */ void *token; /* Copy of SubProgram.token */ int nChildMem; /* Number of memory cells for child frame */ int nChildCsr; /* Number of cursors for child frame */ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ int nChange; /* Statement changes (Vdbe.nChanges) */ | > > | 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | struct VdbeFrame { Vdbe *v; /* VM this frame belongs to */ int pc; /* Program Counter in parent (calling) frame */ Op *aOp; /* Program instructions for parent frame */ int nOp; /* Size of aOp array */ Mem *aMem; /* Array of memory cells for parent frame */ int nMem; /* Number of entries in aMem */ u8 *aOnceFlag; /* Array of OP_Once flags for parent frame */ int nOnceFlag; /* Number of entries in aOnceFlag */ VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */ u16 nCursor; /* Number of entries in apCsr */ void *token; /* Copy of SubProgram.token */ int nChildMem; /* Number of memory cells for child frame */ int nChildCsr; /* Number of cursors for child frame */ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ int nChange; /* Statement changes (Vdbe.nChanges) */ |
︙ | ︙ | |||
251 252 253 254 255 256 257 258 259 260 261 262 263 264 | VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */ Mem s; /* The return value is stored here */ Mem *pMem; /* Memory cell used to store aggregate context */ int isError; /* Error code returned by the function. */ CollSeq *pColl; /* Collating sequence */ }; /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() ** is really a pointer to an instance of this structure. ** | > > > > > > > > > > > > | 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */ Mem s; /* The return value is stored here */ Mem *pMem; /* Memory cell used to store aggregate context */ int isError; /* Error code returned by the function. */ CollSeq *pColl; /* Collating sequence */ }; /* ** An Explain object accumulates indented output which is helpful ** in describing recursive data structures. */ struct Explain { Vdbe *pVdbe; /* Attach the explanation to this Vdbe */ StrAccum str; /* The string being accumulated */ int nIndent; /* Number of elements in aIndent */ u16 aIndent[100]; /* Levels of indentation */ char zBase[100]; /* Initial space */ }; /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() ** is really a pointer to an instance of this structure. ** |
︙ | ︙ | |||
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | i64 nFkConstraint; /* Number of imm. FK constraints this VM */ i64 nStmtDefCons; /* Number of def. constraints when stmt started */ char *zSql; /* Text of the SQL statement that generated this */ void *pFree; /* Free this when deleting the vdbe */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif VdbeFrame *pFrame; /* Parent frame */ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ | > > > > > > | 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | i64 nFkConstraint; /* Number of imm. FK constraints this VM */ i64 nStmtDefCons; /* Number of def. constraints when stmt started */ char *zSql; /* Text of the SQL statement that generated this */ void *pFree; /* Free this when deleting the vdbe */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif #ifdef SQLITE_ENABLE_TREE_EXPLAIN Explain *pExplain; /* The explainer */ char *zExplain; /* Explanation of data structures */ #endif VdbeFrame *pFrame; /* Parent frame */ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ int nOnceFlag; /* Size of array aOnceFlag[] */ u8 *aOnceFlag; /* Flags for OP_Once */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
367 368 369 370 371 372 373 | ** be called automatically instead of throwing the SQLITE_MISUSE error. ** This "automatic-reset" change is not technically an incompatibility, ** since any application that receives an SQLITE_MISUSE is broken by ** definition. ** ** Nevertheless, some published applications that were originally written ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE | | | 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | ** be called automatically instead of throwing the SQLITE_MISUSE error. ** This "automatic-reset" change is not technically an incompatibility, ** since any application that receives an SQLITE_MISUSE is broken by ** definition. ** ** Nevertheless, some published applications that were originally written ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE ** returns, and those were broken by the automatic-reset change. As a ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the ** legacy behavior of returning SQLITE_MISUSE for cases where the ** previous sqlite3_step() returned something other than a SQLITE_LOCKED ** or SQLITE_BUSY error. */ #ifdef SQLITE_OMIT_AUTORESET if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ |
︙ | ︙ | |||
713 714 715 716 717 718 719 | if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ sqlite3_mutex_enter(pVm->db->mutex); pOut = &pVm->pResultSet[i]; }else{ /* If the value passed as the second argument is out of range, return ** a pointer to the following static Mem object which contains the ** value SQL NULL. Even though the Mem structure contains an element | | | | | 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ sqlite3_mutex_enter(pVm->db->mutex); pOut = &pVm->pResultSet[i]; }else{ /* If the value passed as the second argument is out of range, return ** a pointer to the following static Mem object which contains the ** value SQL NULL. Even though the Mem structure contains an element ** of type i64, on certain architectures (x86) with certain compiler ** switches (-Os), gcc may align this Mem object on a 4-byte boundary ** instead of an 8-byte one. This all works fine, except that when ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s ** that a Mem structure is located on an 8-byte boundary. To prevent ** these assert()s from failing, when building with SQLITE_DEBUG defined ** using gcc, we force nullMem to be 8-byte aligned using the magical ** __attribute__((aligned(8))) macro. */ static const Mem nullMem #if defined(SQLITE_DEBUG) && defined(__GNUC__) __attribute__((aligned(8))) #endif = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, #ifdef SQLITE_DEBUG |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
909 910 911 912 913 914 915 | } case P4_REAL: { sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; | < > > | 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 | } case P4_REAL: { sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & MEM_Int ){ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); }else if( pMem->flags & MEM_Null ){ sqlite3_snprintf(nTemp, zTemp, "NULL"); }else{ assert( pMem->flags & MEM_Blob ); zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE |
︙ | ︙ | |||
1090 1091 1092 1093 1094 1095 1096 | if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } | | | 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 | if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } p->flags = MEM_Invalid; } db->mallocFailed = malloc_failed; } } /* ** Delete a VdbeFrame object and its contents. VdbeFrame objects are |
︙ | ︙ | |||
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 | Parse *pParse /* Parsing context */ ){ sqlite3 *db; /* The database connection */ int nVar; /* Number of parameters */ int nMem; /* Number of VM memory registers */ int nCursor; /* Number of cursors required */ int nArg; /* Number of arguments in subprograms */ int n; /* Loop counter */ u8 *zCsr; /* Memory available for allocation */ u8 *zEnd; /* First byte past allocated memory */ int nByte; /* How much extra memory is needed */ assert( p!=0 ); assert( p->nOp>0 ); assert( pParse!=0 ); assert( p->magic==VDBE_MAGIC_INIT ); db = p->db; assert( db->mallocFailed==0 ); nVar = pParse->nVar; nMem = pParse->nMem; nCursor = pParse->nTab; nArg = pParse->nMaxArg; /* For each cursor required, also allocate a memory cell. Memory ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by ** the vdbe program. Instead they are used to allocate space for ** VdbeCursor/BtCursor structures. The blob of memory associated with ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) ** stores the blob of memory associated with cursor 1, etc. | > > > | 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 | Parse *pParse /* Parsing context */ ){ sqlite3 *db; /* The database connection */ int nVar; /* Number of parameters */ int nMem; /* Number of VM memory registers */ int nCursor; /* Number of cursors required */ int nArg; /* Number of arguments in subprograms */ int nOnce; /* Number of OP_Once instructions */ int n; /* Loop counter */ u8 *zCsr; /* Memory available for allocation */ u8 *zEnd; /* First byte past allocated memory */ int nByte; /* How much extra memory is needed */ assert( p!=0 ); assert( p->nOp>0 ); assert( pParse!=0 ); assert( p->magic==VDBE_MAGIC_INIT ); db = p->db; assert( db->mallocFailed==0 ); nVar = pParse->nVar; nMem = pParse->nMem; nCursor = pParse->nTab; nArg = pParse->nMaxArg; nOnce = pParse->nOnce; if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ /* For each cursor required, also allocate a memory cell. Memory ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by ** the vdbe program. Instead they are used to allocate space for ** VdbeCursor/BtCursor structures. The blob of memory associated with ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) ** stores the blob of memory associated with cursor 1, etc. |
︙ | ︙ | |||
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 | nByte = 0; p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte); if( nByte ){ p->pFree = sqlite3DbMallocZero(db, nByte); } zCsr = p->pFree; zEnd = &zCsr[nByte]; }while( nByte && !db->mallocFailed ); p->nCursor = (u16)nCursor; if( p->aVar ){ p->nVar = (ynVar)nVar; for(n=0; n<nVar; n++){ p->aVar[n].flags = MEM_Null; p->aVar[n].db = db; } } if( p->azVar ){ p->nzVar = pParse->nzVar; memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); } if( p->aMem ){ p->aMem--; /* aMem[] goes from 1..nMem */ p->nMem = nMem; /* not from 0..nMem-1 */ for(n=1; n<=nMem; n++){ | > > | | 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 | nByte = 0; p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte); p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); if( nByte ){ p->pFree = sqlite3DbMallocZero(db, nByte); } zCsr = p->pFree; zEnd = &zCsr[nByte]; }while( nByte && !db->mallocFailed ); p->nCursor = (u16)nCursor; p->nOnceFlag = nOnce; if( p->aVar ){ p->nVar = (ynVar)nVar; for(n=0; n<nVar; n++){ p->aVar[n].flags = MEM_Null; p->aVar[n].db = db; } } if( p->azVar ){ p->nzVar = pParse->nzVar; memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); } if( p->aMem ){ p->aMem--; /* aMem[] goes from 1..nMem */ p->nMem = nMem; /* not from 0..nMem-1 */ for(n=1; n<=nMem; n++){ p->aMem[n].flags = MEM_Invalid; p->aMem[n].db = db; } } p->explain = pParse->explain; sqlite3VdbeRewind(p); } |
︙ | ︙ | |||
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 | /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; | > > | 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 | /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; v->aOnceFlag = pFrame->aOnceFlag; v->nOnceFlag = pFrame->nOnceFlag; v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; |
︙ | ︙ | |||
1656 1657 1658 1659 1660 1661 1662 | static void Cleanup(Vdbe *p){ sqlite3 *db = p->db; #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ int i; | | > | > | 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 | static void Cleanup(Vdbe *p){ sqlite3 *db = p->db; #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ int i; if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); if( p->aMem ){ for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid ); } #endif sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; p->pResultSet = 0; } |
︙ | ︙ | |||
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 | sqlite3_vfs *pVfs = db->pVfs; int needSync = 0; char *zMaster = 0; /* File-name for the master journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); sqlite3_file *pMaster = 0; i64 offset = 0; int res; /* Select a master journal file name */ do { u32 iRandom; | > > > > > > > | | < > | | | > > > > > > > > | 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 | sqlite3_vfs *pVfs = db->pVfs; int needSync = 0; char *zMaster = 0; /* File-name for the master journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); sqlite3_file *pMaster = 0; i64 offset = 0; int res; int retryCount = 0; int nMainFile; /* Select a master journal file name */ nMainFile = sqlite3Strlen30(zMainFile); zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); if( zMaster==0 ) return SQLITE_NOMEM; do { u32 iRandom; if( retryCount ){ if( retryCount>100 ){ sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); sqlite3OsDelete(pVfs, zMaster, 0); break; }else if( retryCount==1 ){ sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); } } retryCount++; sqlite3_randomness(sizeof(iRandom), &iRandom); sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", (iRandom>>8)&0xffffff, iRandom&0xff); /* The antipenultimate character of the master journal name must ** be "9" to avoid name collisions when using 8+3 filenames. */ assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); sqlite3FileSuffix3(zMainFile, zMaster); rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); }while( rc==SQLITE_OK && res ); if( rc==SQLITE_OK ){ /* Open the master journal. */ rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
︙ | ︙ | |||
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 | ** state. We need to rollback the statement transaction, if there is ** one, or the complete transaction if there is no statement transaction. */ if( p->db->mallocFailed ){ p->rc = SQLITE_NOMEM; } closeAllCursors(p); if( p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_OK; } checkActiveVdbeCnt(db); /* No commit or rollback needed if the program never started */ | > | 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 | ** state. We need to rollback the statement transaction, if there is ** one, or the complete transaction if there is no statement transaction. */ if( p->db->mallocFailed ){ p->rc = SQLITE_NOMEM; } if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); closeAllCursors(p); if( p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_OK; } checkActiveVdbeCnt(db); /* No commit or rollback needed if the program never started */ |
︙ | ︙ | |||
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 | } for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); sqlite3DbFree(db, p); } /* ** Delete an entire VDBE. */ void sqlite3VdbeDelete(Vdbe *p){ | > > > > | 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 | } for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); #if defined(SQLITE_ENABLE_TREE_EXPLAIN) sqlite3DbFree(db, p->zExplain); sqlite3DbFree(db, p->pExplain); #endif sqlite3DbFree(db, p); } /* ** Delete an entire VDBE. */ void sqlite3VdbeDelete(Vdbe *p){ |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
965 966 967 968 969 970 971 | sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } | | | 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 | sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ }else{ assert( (pVal->flags&MEM_Blob)==0 ); sqlite3VdbeMemStringify(pVal, enc); assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); |
︙ | ︙ |
Changes to src/vdbetrace.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to insert the values of host parameters ** (aka "wildcards") into the SQL text output by sqlite3_trace(). */ #include "sqliteInt.h" #include "vdbeInt.h" #ifndef SQLITE_OMIT_TRACE /* | > > | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to insert the values of host parameters ** (aka "wildcards") into the SQL text output by sqlite3_trace(). ** ** The Vdbe parse-tree explainer is also found here. */ #include "sqliteInt.h" #include "vdbeInt.h" #ifndef SQLITE_OMIT_TRACE /* |
︙ | ︙ | |||
151 152 153 154 155 156 157 | } } } return sqlite3StrAccumFinish(&out); } #endif /* #ifndef SQLITE_OMIT_TRACE */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | } } } return sqlite3StrAccumFinish(&out); } #endif /* #ifndef SQLITE_OMIT_TRACE */ /***************************************************************************** ** The following code implements the data-structure explaining logic ** for the Vdbe. */ #if defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Allocate a new Explain object */ void sqlite3ExplainBegin(Vdbe *pVdbe){ if( pVdbe ){ sqlite3BeginBenignMalloc(); Explain *p = sqlite3_malloc( sizeof(Explain) ); if( p ){ memset(p, 0, sizeof(*p)); p->pVdbe = pVdbe; sqlite3_free(pVdbe->pExplain); pVdbe->pExplain = p; sqlite3StrAccumInit(&p->str, p->zBase, sizeof(p->zBase), SQLITE_MAX_LENGTH); p->str.useMalloc = 2; }else{ sqlite3EndBenignMalloc(); } } } /* ** Return true if the Explain ends with a new-line. */ static int endsWithNL(Explain *p){ return p && p->str.zText && p->str.nChar && p->str.zText[p->str.nChar-1]=='\n'; } /* ** Append text to the indentation */ void sqlite3ExplainPrintf(Vdbe *pVdbe, const char *zFormat, ...){ Explain *p; if( pVdbe && (p = pVdbe->pExplain)!=0 ){ va_list ap; if( p->nIndent && endsWithNL(p) ){ int n = p->nIndent; if( n>ArraySize(p->aIndent) ) n = ArraySize(p->aIndent); sqlite3AppendSpace(&p->str, p->aIndent[n-1]); } va_start(ap, zFormat); sqlite3VXPrintf(&p->str, 1, zFormat, ap); va_end(ap); } } /* ** Append a '\n' if there is not already one. */ void sqlite3ExplainNL(Vdbe *pVdbe){ Explain *p; if( pVdbe && (p = pVdbe->pExplain)!=0 && !endsWithNL(p) ){ sqlite3StrAccumAppend(&p->str, "\n", 1); } } /* ** Push a new indentation level. Subsequent lines will be indented ** so that they begin at the current cursor position. */ void sqlite3ExplainPush(Vdbe *pVdbe){ Explain *p; if( pVdbe && (p = pVdbe->pExplain)!=0 ){ if( p->str.zText && p->nIndent<ArraySize(p->aIndent) ){ const char *z = p->str.zText; int i = p->str.nChar-1; int x; while( i>=0 && z[i]!='\n' ){ i--; } x = (p->str.nChar - 1) - i; if( p->nIndent && x<p->aIndent[p->nIndent-1] ){ x = p->aIndent[p->nIndent-1]; } p->aIndent[p->nIndent] = x; } p->nIndent++; } } /* ** Pop the indentation stack by one level. */ void sqlite3ExplainPop(Vdbe *p){ if( p && p->pExplain ) p->pExplain->nIndent--; } /* ** Free the indentation structure */ void sqlite3ExplainFinish(Vdbe *pVdbe){ if( pVdbe && pVdbe->pExplain ){ sqlite3_free(pVdbe->zExplain); sqlite3ExplainNL(pVdbe); pVdbe->zExplain = sqlite3StrAccumFinish(&pVdbe->pExplain->str); sqlite3_free(pVdbe->pExplain); pVdbe->pExplain = 0; sqlite3EndBenignMalloc(); } } /* ** Return the explanation of a virtual machine. */ const char *sqlite3VdbeExplanation(Vdbe *pVdbe){ return (pVdbe && pVdbe->zExplain) ? pVdbe->zExplain : 0; } #endif /* defined(SQLITE_DEBUG) */ |
Changes to src/wal.c.
︙ | ︙ | |||
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ i64 mxWalSize; /* Truncate WAL to this size upon reset */ int nWiData; /* Size of array apWiData */ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ u32 szPage; /* Database page size */ i16 readLock; /* Which read lock is being held. -1 for none */ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ WalIndexHdr hdr; /* Wal-index header for current transaction */ const char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_DEBUG u8 lockError; /* True if a locking error has occurred */ #endif }; | > > > > > | 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ i64 mxWalSize; /* Truncate WAL to this size upon reset */ int nWiData; /* Size of array apWiData */ int szFirstBlock; /* Size of first block written to WAL file */ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ u32 szPage; /* Database page size */ i16 readLock; /* Which read lock is being held. -1 for none */ u8 syncFlags; /* Flags to use to sync header writes */ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ u8 truncateOnCommit; /* True to truncate WAL file on commit */ u8 syncHeader; /* Fsync the WAL header if true */ u8 padToSectorBoundary; /* Pad transactions out to the next sector */ WalIndexHdr hdr; /* Wal-index header for current transaction */ const char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_DEBUG u8 lockError; /* True if a locking error has occurred */ #endif }; |
︙ | ︙ | |||
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 | int szFrame; /* Number of bytes in buffer aFrame[] */ u8 *aData; /* Pointer to data part of aFrame buffer */ int iFrame; /* Index of last frame read */ i64 iOffset; /* Next offset to read from log file */ int szPage; /* Page size according to the log */ u32 magic; /* Magic value read from WAL header */ u32 version; /* Magic value read from WAL header */ /* Read in the WAL header. */ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ goto recovery_error; } | > | 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 | int szFrame; /* Number of bytes in buffer aFrame[] */ u8 *aData; /* Pointer to data part of aFrame buffer */ int iFrame; /* Index of last frame read */ i64 iOffset; /* Next offset to read from log file */ int szPage; /* Page size according to the log */ u32 magic; /* Magic value read from WAL header */ u32 version; /* Magic value read from WAL header */ int isValid; /* True if this frame is valid */ /* Read in the WAL header. */ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ goto recovery_error; } |
︙ | ︙ | |||
1147 1148 1149 1150 1151 1152 1153 | aData = &aFrame[WAL_FRAME_HDRSIZE]; /* Read all frames from the log file. */ iFrame = 0; for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ | < > | | 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 | aData = &aFrame[WAL_FRAME_HDRSIZE]; /* Read all frames from the log file. */ iFrame = 0; for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ iFrame++; rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); if( rc!=SQLITE_OK ) break; isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); if( !isValid ) break; rc = walIndexAppend(pWal, iFrame, pgno); if( rc!=SQLITE_OK ) break; /* If nTruncate is non-zero, this is a commit record. */ if( nTruncate ){ pWal->hdr.mxFrame = iFrame; pWal->hdr.nPage = nTruncate; pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); |
︙ | ︙ | |||
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 | pRet->pVfs = pVfs; pRet->pWalFd = (sqlite3_file *)&pRet[1]; pRet->pDbFd = pDbFd; pRet->readLock = -1; pRet->mxWalSize = mxWalSize; pRet->zWalName = zWalName; pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); /* Open file handle on the write-ahead log file. */ if( flags&SQLITE_OPEN_READONLY ){ vfsFlags = flags | SQLITE_OPEN_WAL; } else { vfsFlags = flags | (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); } rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, vfsFlags, &vfsFlags); if( rc==SQLITE_OK && vfsFlags&SQLITE_OPEN_READONLY ){ pRet->readOnly = WAL_RDONLY; } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ *ppWal = pRet; WALTRACE(("WAL%d: opened\n", pRet)); } return rc; } /* | > > > > > > > | 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 | pRet->pVfs = pVfs; pRet->pWalFd = (sqlite3_file *)&pRet[1]; pRet->pDbFd = pDbFd; pRet->readLock = -1; pRet->mxWalSize = mxWalSize; pRet->zWalName = zWalName; pRet->syncHeader = 1; pRet->padToSectorBoundary = 1; pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); /* Open file handle on the write-ahead log file. */ if( flags&SQLITE_OPEN_READONLY ){ vfsFlags = flags | SQLITE_OPEN_WAL; } else { vfsFlags = flags | (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); } rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, vfsFlags, &vfsFlags); if( rc==SQLITE_OK && vfsFlags&SQLITE_OPEN_READONLY ){ pRet->readOnly = WAL_RDONLY; } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd); if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ pRet->padToSectorBoundary = 0; } *ppWal = pRet; WALTRACE(("WAL%d: opened\n", pRet)); } return rc; } /* |
︙ | ︙ | |||
1783 1784 1785 1786 1787 1788 1789 | walcheckpoint_out: walIteratorFree(pIter); return rc; } /* | | | | < | | | | | | | | | | < | 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 | walcheckpoint_out: walIteratorFree(pIter); return rc; } /* ** If the WAL file is currently larger than nMax bytes in size, truncate ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. */ static void walLimitSize(Wal *pWal, i64 nMax){ i64 sz; int rx; sqlite3BeginBenignMalloc(); rx = sqlite3OsFileSize(pWal->pWalFd, &sz); if( rx==SQLITE_OK && (sz > nMax ) ){ rx = sqlite3OsTruncate(pWal->pWalFd, nMax); } sqlite3EndBenignMalloc(); if( rx ){ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); } } /* ** Close a connection to a log file. */ int sqlite3WalClose( |
︙ | ︙ | |||
1825 1826 1827 1828 1829 1830 1831 | ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ | < > > | | > > > | | > > > > > > | > | 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 | ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = sqlite3WalCheckpoint( pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 ); if( rc==SQLITE_OK ){ int bPersist = -1; sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist); if( bPersist!=1 ){ /* Try to delete the WAL file if the checkpoint completed and ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal ** mode (!bPersist) */ isDelete = 1; }else if( pWal->mxWalSize>=0 ){ /* Try to truncate the WAL file to zero bytes if the checkpoint ** completed and fsynced (rc==SQLITE_OK) and we are in persistent ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a ** non-negative value (pWal->mxWalSize>=0). Note that we truncate ** to zero bytes as truncating to the journal_size_limit might ** leave a corrupt WAL file on disk. */ walLimitSize(pWal, 0); } } } walIndexClose(pWal, isDelete); sqlite3OsClose(pWal->pWalFd); if( isDelete ){ sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); |
︙ | ︙ | |||
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 | ** End a write transaction. The commit has already been done. This ** routine merely releases the lock. */ int sqlite3WalEndWriteTransaction(Wal *pWal){ if( pWal->writeLock ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; } return SQLITE_OK; } /* ** If any data has been written (but not committed) to the log file, this ** function moves the write-pointer back to the start of the transaction. | > | 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 | ** End a write transaction. The commit has already been done. This ** routine merely releases the lock. */ int sqlite3WalEndWriteTransaction(Wal *pWal){ if( pWal->writeLock ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; pWal->truncateOnCommit = 0; } return SQLITE_OK; } /* ** If any data has been written (but not committed) to the log file, this ** function moves the write-pointer back to the start of the transaction. |
︙ | ︙ | |||
2582 2583 2584 2585 2586 2587 2588 | ** at this point. But updating the actual wal-index header is also ** safe and means there is no special case for sqlite3WalUndo() ** to handle if this transaction is rolled back. */ int i; /* Loop counter */ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ | < | 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 | ** at this point. But updating the actual wal-index header is also ** safe and means there is no special case for sqlite3WalUndo() ** to handle if this transaction is rolled back. */ int i; /* Loop counter */ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ pWal->nCkpt++; pWal->hdr.mxFrame = 0; sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); aSalt[1] = salt1; walIndexWriteHdr(pWal); pInfo->nBackfill = 0; for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; |
︙ | ︙ | |||
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 | assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); } return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). */ int sqlite3WalFrames( Wal *pWal, /* Wal handle to write to */ int szPage, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ int rc; /* Used to catch return codes */ u32 iFrame; /* Next frame address */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < | > > > > > > > | 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 | assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); } return rc; } /* ** Information about the current state of the WAL file and where ** the next fsync should occur - passed from sqlite3WalFrames() into ** walWriteToLog(). */ typedef struct WalWriter { Wal *pWal; /* The complete WAL information */ sqlite3_file *pFd; /* The WAL file to which we write */ sqlite3_int64 iSyncPoint; /* Fsync at this offset */ int syncFlags; /* Flags for the fsync */ int szPage; /* Size of one page */ } WalWriter; /* ** Write iAmt bytes of content into the WAL file beginning at iOffset. ** Do a sync when crossing the p->iSyncPoint boundary. ** ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, ** first write the part before iSyncPoint, then sync, then write the ** rest. */ static int walWriteToLog( WalWriter *p, /* WAL to write to */ void *pContent, /* Content to be written */ int iAmt, /* Number of bytes to write */ sqlite3_int64 iOffset /* Start writing at this offset */ ){ int rc; if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ int iFirstAmt = (int)(p->iSyncPoint - iOffset); rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); if( rc ) return rc; iOffset += iFirstAmt; iAmt -= iFirstAmt; pContent = (void*)(iFirstAmt + (char*)pContent); assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); rc = sqlite3OsSync(p->pFd, p->syncFlags); if( iAmt==0 || rc ) return rc; } rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); return rc; } /* ** Write out a single frame of the WAL */ static int walWriteOneFrame( WalWriter *p, /* Where to write the frame */ PgHdr *pPage, /* The page of the frame to be written */ int nTruncate, /* The commit flag. Usually 0. >0 for commit */ sqlite3_int64 iOffset /* Byte offset at which to write */ ){ int rc; /* Result code from subfunctions */ void *pData; /* Data actually written */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ #if defined(SQLITE_HAS_CODEC) if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; #else pData = pPage->pData; #endif walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); if( rc ) return rc; /* Write the page data */ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). */ int sqlite3WalFrames( Wal *pWal, /* Wal handle to write to */ int szPage, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ int rc; /* Used to catch return codes */ u32 iFrame; /* Next frame address */ PgHdr *p; /* Iterator to run through pList with. */ PgHdr *pLast = 0; /* Last frame in list */ int nExtra = 0; /* Number of extra copies of last page */ int szFrame; /* The size of a single frame */ i64 iOffset; /* Next byte to write in WAL file */ WalWriter w; /* The writer */ assert( pList ); assert( pWal->writeLock ); /* If this frame set completes a transaction, then nTruncate>0. If ** nTruncate==0 then this frame set does not complete the transaction. */ assert( (isCommit!=0)==(nTruncate!=0) ); #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); } #endif |
︙ | ︙ | |||
2660 2661 2662 2663 2664 2665 2666 | u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ u32 aCksum[2]; /* Checksum for wal-header */ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); sqlite3Put4byte(&aWalHdr[8], szPage); sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); | | > > > > > > > > > > > > > | | | < | | > | | | > > > | > | < < < < < < < < < < | < < < | < > > | > > > > > > > > > > > > | > | < | < < < < | | < | > > > | < < < < | < < | < < < < | < < | > > > > > > > > | > | | | | 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 | u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ u32 aCksum[2]; /* Checksum for wal-header */ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); sqlite3Put4byte(&aWalHdr[8], szPage); sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); sqlite3Put4byte(&aWalHdr[24], aCksum[0]); sqlite3Put4byte(&aWalHdr[28], aCksum[1]); pWal->szPage = szPage; pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; pWal->hdr.aFrameCksum[0] = aCksum[0]; pWal->hdr.aFrameCksum[1] = aCksum[1]; pWal->truncateOnCommit = 1; rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); if( rc!=SQLITE_OK ){ return rc; } /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise ** an out-of-order write following a WAL restart could result in ** database corruption. See the ticket: ** ** http://localhost:591/sqlite/info/ff5be73dee */ if( pWal->syncHeader && sync_flags ){ rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); if( rc ) return rc; } } assert( (int)pWal->szPage==szPage ); /* Setup information needed to write frames into the WAL */ w.pWal = pWal; w.pFd = pWal->pWalFd; w.iSyncPoint = 0; w.syncFlags = sync_flags; w.szPage = szPage; iOffset = walFrameOffset(iFrame+1, szPage); szFrame = szPage + WAL_FRAME_HDRSIZE; /* Write all frames into the log file exactly once */ for(p=pList; p; p=p->pDirty){ int nDbSize; /* 0 normally. Positive == commit flag */ iFrame++; assert( iOffset==walFrameOffset(iFrame, szPage) ); nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; rc = walWriteOneFrame(&w, p, nDbSize, iOffset); if( rc ) return rc; pLast = p; iOffset += szFrame; } /* If this is the end of a transaction, then we might need to pad ** the transaction and/or sync the WAL file. ** ** Padding and syncing only occur if this set of frames complete a ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL ** or synchonous==OFF, then no padding or syncing are needed. ** ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not ** needed and only the sync is done. If padding is needed, then the ** final frame is repeated (with its commit mark) until the next sector ** boundary is crossed. Only the part of the WAL prior to the last ** sector boundary is synced; the part of the last frame that extends ** past the sector boundary is written after the sync. */ if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ if( pWal->padToSectorBoundary ){ int sectorSize = sqlite3OsSectorSize(pWal->pWalFd); w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; while( iOffset<w.iSyncPoint ){ rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); if( rc ) return rc; iOffset += szFrame; nExtra++; } }else{ rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); } } /* If this frame set completes the first transaction in the WAL and ** if PRAGMA journal_size_limit is set, then truncate the WAL to the ** journal size limit, if possible. */ if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ i64 sz = pWal->mxWalSize; if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ sz = walFrameOffset(iFrame+nExtra+1, szPage); } walLimitSize(pWal, sz); pWal->truncateOnCommit = 0; } /* Append data to the wal-index. It is not necessary to lock the ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index ** guarantees that there are no other writers, and no data that may ** be in use by existing readers is being overwritten. */ iFrame = pWal->hdr.mxFrame; for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ iFrame++; rc = walIndexAppend(pWal, iFrame, p->pgno); } while( rc==SQLITE_OK && nExtra>0 ){ iFrame++; nExtra--; rc = walIndexAppend(pWal, iFrame, pLast->pgno); } if( rc==SQLITE_OK ){ /* Update the private copy of the header. */ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); testcase( szPage<=32768 ); |
︙ | ︙ |
Changes to src/wal.h.
︙ | ︙ | |||
15 16 17 18 19 20 21 22 23 24 25 26 27 28 | */ #ifndef _WAL_H_ #define _WAL_H_ #include "sqliteInt.h" #ifdef SQLITE_OMIT_WAL # define sqlite3WalOpen(x,y,z) 0 # define sqlite3WalLimit(x,y) # define sqlite3WalClose(w,x,y,z) 0 # define sqlite3WalBeginReadTransaction(y,z) 0 # define sqlite3WalEndReadTransaction(z) # define sqlite3WalRead(v,w,x,y,z) 0 | > > > > > > | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | */ #ifndef _WAL_H_ #define _WAL_H_ #include "sqliteInt.h" /* Additional values that can be added to the sync_flags argument of ** sqlite3WalFrames(): */ #define WAL_SYNC_TRANSACTIONS 0x20 /* Sync at the end of each transaction */ #define SQLITE_SYNC_MASK 0x13 /* Mask off the SQLITE_SYNC_* values */ #ifdef SQLITE_OMIT_WAL # define sqlite3WalOpen(x,y,z) 0 # define sqlite3WalLimit(x,y) # define sqlite3WalClose(w,x,y,z) 0 # define sqlite3WalBeginReadTransaction(y,z) 0 # define sqlite3WalEndReadTransaction(z) # define sqlite3WalRead(v,w,x,y,z) 0 |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
2001 2002 2003 2004 2005 2006 2007 | ){ int nColumn; /* Number of columns in the constructed index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ int nByte; /* Byte of memory needed for pIdx */ Index *pIdx; /* Object describing the transient index */ Vdbe *v; /* Prepared statement under construction */ | < < | | 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 | ){ int nColumn; /* Number of columns in the constructed index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ int nByte; /* Byte of memory needed for pIdx */ Index *pIdx; /* Object describing the transient index */ Vdbe *v; /* Prepared statement under construction */ int addrInit; /* Address of the initialization bypass jump */ Table *pTable; /* The table being indexed */ KeyInfo *pKeyinfo; /* Key information for the index */ int addrTop; /* Top of the index fill loop */ int regRecord; /* Register holding an index record */ int n; /* Column counter */ int i; /* Loop counter */ int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3CodeOnce(pParse); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nColumn = 0; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; idxCols = 0; |
︙ | ︙ |
Added test/bigfile2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | # 2011 December 20 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script testing the ability of SQLite to handle database # files larger than 4GB. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix bigfile2 # Create a small database. # do_execsql_test 1.1 { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); } # Pad the file out to 4GB in size. Then clear the file-size field in the # db header. This will cause SQLite to assume that the first 4GB of pages # are actually in use and new pages will be appended to the file. # db close if {[catch {fake_big_file 4096 [pwd]/test.db} msg]} { puts "**** Unable to create a file larger than 4096 MB. *****" finish_test return } hexio_write test.db 28 00000000 do_test 1.2 { file size test.db } [expr 14 + 4096 * (1<<20)] # Now insert a large row. The overflow pages will be located past the 4GB # boundary. Then, after opening and closing the database, test that the row # can be read back in. # set str [string repeat k 30000] do_test 1.3 { sqlite3 db test.db execsql { INSERT INTO t1 VALUES(3, $str) } db close sqlite3 db test.db db one { SELECT b FROM t1 WHERE a = 3 } } $str db close file delete test.db finish_test |
Changes to test/dbstatus.test.
︙ | ︙ | |||
207 208 209 210 211 212 213 214 215 | # Additionally, in auto-vacuum mode, dropping tables and indexes causes # the page-cache to shrink. So the amount of memory freed is always # much greater than just that reported by DBSTATUS_SCHEMA_USED in this # case. # # Some of the memory used for sqlite_stat3 is unaccounted for by # dbstatus. # if {[string match *x $tn] || $AUTOVACUUM | > > > | > > | 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | # Additionally, in auto-vacuum mode, dropping tables and indexes causes # the page-cache to shrink. So the amount of memory freed is always # much greater than just that reported by DBSTATUS_SCHEMA_USED in this # case. # # Some of the memory used for sqlite_stat3 is unaccounted for by # dbstatus. # # Finally, on osx the estimate of memory used by the schema may be # slightly low. # if {[string match *x $tn] || $AUTOVACUUM || ([string match *y $tn] && $STAT3) || ($::tcl_platform(os) == "Darwin") } { do_test dbstatus-2.$tn.ax { expr {($nSchema1-$nSchema2)<=$nFree} } 1 } else { do_test dbstatus-2.$tn.a { expr {$nSchema1-$nSchema2} } $nFree } do_test dbstatus-2.$tn.b { list $nAlloc1 $nSchema1 } "$nAlloc3 $nSchema3" do_test dbstatus-2.$tn.c { list $nAlloc2 $nSchema2 } "$nAlloc4 $nSchema4" |
︙ | ︙ |
Changes to test/e_createtable.test.
︙ | ︙ | |||
54 55 56 57 58 59 60 | db eval "SELECT DISTINCT tbl_name FROM $master ORDER BY tbl_name" ] } set res } | | | < < < < < | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | db eval "SELECT DISTINCT tbl_name FROM $master ORDER BY tbl_name" ] } set res } # EVIDENCE-OF: R-47266-09114 -- syntax diagram type-name # do_createtable_tests 0.1.1 -repair { drop_all_tables } { 1 "CREATE TABLE t1(c1 one)" {} 2 "CREATE TABLE t1(c1 one two)" {} 3 "CREATE TABLE t1(c1 one two three)" {} 4 "CREATE TABLE t1(c1 one two three four)" {} 5 "CREATE TABLE t1(c1 one two three four(14))" {} 6 "CREATE TABLE t1(c1 one two three four(14, 22))" {} 7 "CREATE TABLE t1(c1 var(+14, -22.3))" {} 8 "CREATE TABLE t1(c1 var(1.0e10))" {} } do_createtable_tests 0.1.2 -error { near "%s": syntax error } { 1 "CREATE TABLE t1(c1 one(number))" {number} } # EVIDENCE-OF: R-60689-48779 -- syntax diagram column-constraint # do_createtable_tests 0.2.1 -repair { drop_all_tables execsql { CREATE TABLE t2(x PRIMARY KEY) } } { 1.1 "CREATE TABLE t1(c1 text PRIMARY KEY)" {} 1.2 "CREATE TABLE t1(c1 text PRIMARY KEY ASC)" {} |
︙ | ︙ | |||
127 128 129 130 131 132 133 | 8.2 { CREATE TABLE t1(c1 REFERENCES t1 DEFAULT 123 CHECK(c1 IS 'ten') UNIQUE NOT NULL PRIMARY KEY ); } {} } | | | | | 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | 8.2 { CREATE TABLE t1(c1 REFERENCES t1 DEFAULT 123 CHECK(c1 IS 'ten') UNIQUE NOT NULL PRIMARY KEY ); } {} } # EVIDENCE-OF: R-58169-51804 -- syntax diagram table-constraint # do_createtable_tests 0.3.1 -repair { drop_all_tables execsql { CREATE TABLE t2(x PRIMARY KEY) } } { 1.1 "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1))" {} 1.2 "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2))" {} 1.3 "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2) ON CONFLICT IGNORE)" {} 2.1 "CREATE TABLE t1(c1, c2, UNIQUE(c1))" {} 2.2 "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2))" {} 2.3 "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2) ON CONFLICT IGNORE)" {} 3.1 "CREATE TABLE t1(c1, c2, CHECK(c1 IS NOT c2))" {} 4.1 "CREATE TABLE t1(c1, c2, FOREIGN KEY(c1) REFERENCES t2)" {} } # EVIDENCE-OF: R-44826-22243 -- syntax diagram column-def # do_createtable_tests 0.4.1 -repair { drop_all_tables } { 1 {CREATE TABLE t1( col1, col2 TEXT, col3 INTEGER UNIQUE, col4 VARCHAR(10, 10) PRIMARY KEY, "name with spaces" REFERENCES t1 ); } {} } # EVIDENCE-OF: R-45698-45677 -- syntax diagram create-table-stmt # do_createtable_tests 0.5.1 -repair { drop_all_tables execsql { CREATE TABLE t2(a, b, c) } } { 1 "CREATE TABLE t1(a, b, c)" {} 2 "CREATE TEMP TABLE t1(a, b, c)" {} |
︙ | ︙ | |||
186 187 188 189 190 191 192 | 12 "CREATE TEMPORARY TABLE IF NOT EXISTS temp.t1(a, b, c)" {} 13 "CREATE TABLE t1 AS SELECT * FROM t2" {} 14 "CREATE TEMP TABLE t1 AS SELECT c, b, a FROM t2" {} 15 "CREATE TABLE t1 AS SELECT count(*), max(b), min(a) FROM t2" {} } | | | 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | 12 "CREATE TEMPORARY TABLE IF NOT EXISTS temp.t1(a, b, c)" {} 13 "CREATE TABLE t1 AS SELECT * FROM t2" {} 14 "CREATE TEMP TABLE t1 AS SELECT c, b, a FROM t2" {} 15 "CREATE TABLE t1 AS SELECT count(*), max(b), min(a) FROM t2" {} } # EVIDENCE-OF: R-24369-11919 -- syntax diagram foreign-key-clause # # 1: Explicit parent-key columns. # 2: Implicit child-key columns. # # 1: MATCH FULL # 2: MATCH PARTIAL # 3: MATCH SIMPLE |
︙ | ︙ |
Changes to test/e_delete.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 | } do_execsql_test e_delete-0.0 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); } {} | | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | } do_execsql_test e_delete-0.0 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); } {} # EVIDENCE-OF: R-62077-19799 -- syntax diagram delete-stmt # # EVIDENCE-OF: R-60796-31013 -- syntax diagram qualified-table-name # do_delete_tests e_delete-0.1 { 1 "DELETE FROM t1" {} 2 "DELETE FROM t1 INDEXED BY i1" {} 3 "DELETE FROM t1 NOT INDEXED" {} 4 "DELETE FROM main.t1" {} 5 "DELETE FROM main.t1 INDEXED BY i1" {} |
︙ | ︙ | |||
283 284 285 286 287 288 289 | } # EVIDENCE-OF: R-40026-10531 If SQLite is compiled with the # SQLITE_ENABLE_UPDATE_DELETE_LIMIT compile-time option, then the syntax # of the DELETE statement is extended by the addition of optional ORDER # BY and LIMIT clauses: # | | | 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | } # EVIDENCE-OF: R-40026-10531 If SQLite is compiled with the # SQLITE_ENABLE_UPDATE_DELETE_LIMIT compile-time option, then the syntax # of the DELETE statement is extended by the addition of optional ORDER # BY and LIMIT clauses: # # EVIDENCE-OF: R-52694-53361 -- syntax diagram delete-stmt-limited # do_delete_tests e_delete-3.1 { 1 "DELETE FROM t1 LIMIT 5" {} 2 "DELETE FROM t1 LIMIT 5-1 OFFSET 2+2" {} 3 "DELETE FROM t1 LIMIT 2+2, 16/4" {} 4 "DELETE FROM t1 ORDER BY x LIMIT 5" {} 5 "DELETE FROM t1 ORDER BY x LIMIT 5-1 OFFSET 2+2" {} |
︙ | ︙ |
Changes to test/e_droptrigger.test.
︙ | ︙ | |||
65 66 67 68 69 70 71 | CREATE TRIGGER aux.tr1 BEFORE $event ON t3 BEGIN SELECT r('aux.tr1') ; END; CREATE TRIGGER aux.tr2 AFTER $event ON t3 BEGIN SELECT r('aux.tr2') ; END; CREATE TRIGGER aux.tr3 AFTER $event ON t3 BEGIN SELECT r('aux.tr3') ; END; " } | | | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | CREATE TRIGGER aux.tr1 BEFORE $event ON t3 BEGIN SELECT r('aux.tr1') ; END; CREATE TRIGGER aux.tr2 AFTER $event ON t3 BEGIN SELECT r('aux.tr2') ; END; CREATE TRIGGER aux.tr3 AFTER $event ON t3 BEGIN SELECT r('aux.tr3') ; END; " } # EVIDENCE-OF: R-27975-10951 -- syntax diagram drop-trigger-stmt # do_droptrigger_tests 1.1 -repair { droptrigger_reopen_db } -tclquery { list_all_triggers } { 1 "DROP TRIGGER main.tr1" |
︙ | ︙ |
Changes to test/e_dropview.test.
︙ | ︙ | |||
66 67 68 69 70 71 72 | set res } proc do_dropview_tests {nm args} { uplevel do_select_tests $nm $args } | | | 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | set res } proc do_dropview_tests {nm args} { uplevel do_select_tests $nm $args } # EVIDENCE-OF: R-53136-36436 -- syntax diagram drop-view-stmt # # All paths in the syntax diagram for DROP VIEW are tested by tests 1.*. # do_dropview_tests 1 -repair { dropview_reopen_db } -tclquery { list_all_views |
︙ | ︙ |
Changes to test/e_expr.test.
︙ | ︙ | |||
623 624 625 626 627 628 629 | [sqlite3_column_type $stmt 3] } {NULL NULL NULL NULL} do_test e_expr-11.7.1 { sqlite3_finalize $stmt } SQLITE_OK #------------------------------------------------------------------------- # "Test" the syntax diagrams in lang_expr.html. # | | | | | 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | [sqlite3_column_type $stmt 3] } {NULL NULL NULL NULL} do_test e_expr-11.7.1 { sqlite3_finalize $stmt } SQLITE_OK #------------------------------------------------------------------------- # "Test" the syntax diagrams in lang_expr.html. # # EVIDENCE-OF: R-02989-21050 -- syntax diagram signed-number # do_execsql_test e_expr-12.1.1 { SELECT 0, +0, -0 } {0 0 0} do_execsql_test e_expr-12.1.2 { SELECT 1, +1, -1 } {1 1 -1} do_execsql_test e_expr-12.1.3 { SELECT 2, +2, -2 } {2 2 -2} do_execsql_test e_expr-12.1.4 { SELECT 1.4, +1.4, -1.4 } {1.4 1.4 -1.4} do_execsql_test e_expr-12.1.5 { SELECT 1.5e+5, +1.5e+5, -1.5e+5 } {150000.0 150000.0 -150000.0} do_execsql_test e_expr-12.1.6 { SELECT 0.0001, +0.0001, -0.0001 } {0.0001 0.0001 -0.0001} # EVIDENCE-OF: R-43188-60852 -- syntax diagram literal-value # set sqlite_current_time 1 do_execsql_test e_expr-12.2.1 {SELECT 123} {123} do_execsql_test e_expr-12.2.2 {SELECT 123.4e05} {12340000.0} do_execsql_test e_expr-12.2.3 {SELECT 'abcde'} {abcde} do_execsql_test e_expr-12.2.4 {SELECT X'414243'} {ABC} do_execsql_test e_expr-12.2.5 {SELECT NULL} {{}} do_execsql_test e_expr-12.2.6 {SELECT CURRENT_TIME} {00:00:01} do_execsql_test e_expr-12.2.7 {SELECT CURRENT_DATE} {1970-01-01} do_execsql_test e_expr-12.2.8 {SELECT CURRENT_TIMESTAMP} {{1970-01-01 00:00:01}} set sqlite_current_time 0 # EVIDENCE-OF: R-50544-32159 -- syntax diagram expr # forcedelete test.db2 execsql { ATTACH 'test.db2' AS dbname; CREATE TABLE dbname.tblname(cname); } |
︙ | ︙ | |||
808 809 810 811 812 813 814 | incr x do_test e_expr-12.3.$tn.$x { set rc [catch { execsql "SELECT $e FROM tblname" } msg] } {0} } } | | | 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 | incr x do_test e_expr-12.3.$tn.$x { set rc [catch { execsql "SELECT $e FROM tblname" } msg] } {0} } } # EVIDENCE-OF: R-39820-63916 -- syntax diagram raise-function # foreach {tn raiseexpr} { 1 "RAISE(IGNORE)" 2 "RAISE(ROLLBACK, 'error message')" 3 "RAISE(ABORT, 'error message')" 4 "RAISE(FAIL, 'error message')" } { |
︙ | ︙ |
Changes to test/e_insert.test.
︙ | ︙ | |||
41 42 43 44 45 46 47 | CREATE TABLE a4(c UNIQUE, d); } {} proc do_insert_tests {args} { uplevel do_select_tests $args } | | | 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | CREATE TABLE a4(c UNIQUE, d); } {} proc do_insert_tests {args} { uplevel do_select_tests $args } # EVIDENCE-OF: R-55375-41353 -- syntax diagram insert-stmt # do_insert_tests e_insert-0 { 1 "INSERT INTO a1 DEFAULT VALUES" {} 2 "INSERT INTO main.a1 DEFAULT VALUES" {} 3 "INSERT OR ROLLBACK INTO main.a1 DEFAULT VALUES" {} 4 "INSERT OR ROLLBACK INTO a1 DEFAULT VALUES" {} 5 "INSERT OR ABORT INTO main.a1 DEFAULT VALUES" {} |
︙ | ︙ |
Changes to test/e_reindex.test.
︙ | ︙ | |||
22 23 24 25 26 27 28 | do_execsql_test e_reindex-0.0 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); CREATE INDEX i2 ON t1(b, a); } {} | | | | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | do_execsql_test e_reindex-0.0 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); CREATE INDEX i2 ON t1(b, a); } {} # EVIDENCE-OF: R-51477-38549 -- syntax diagram reindex-stmt # do_reindex_tests e_reindex-0.1 { 1 "REINDEX" {} 2 "REINDEX nocase" {} 3 "REINDEX binary" {} 4 "REINDEX t1" {} 5 "REINDEX main.t1" {} 6 "REINDEX i1" {} 7 "REINDEX main.i1" {} } # EVIDENCE-OF: R-52173-44778 The REINDEX command is used to delete and # recreate indices from scratch. # # Test this by corrupting some database indexes, running REINDEX, and # observing that the corruption is gone. |
︙ | ︙ |
Changes to test/e_select.test.
︙ | ︙ | |||
74 75 76 77 78 79 80 | } } #------------------------------------------------------------------------- # The following tests check that all paths on the syntax diagrams on # the lang_select.html page may be taken. # | | | | 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | } } #------------------------------------------------------------------------- # The following tests check that all paths on the syntax diagrams on # the lang_select.html page may be taken. # # EVIDENCE-OF: R-11353-33501 -- syntax diagram join-constraint # do_join_test e_select-0.1.1 { SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a) } {3} do_join_test e_select-0.1.2 { SELECT count(*) FROM t1 %JOIN% t2 USING (a) } {3} do_join_test e_select-0.1.3 { SELECT count(*) FROM t1 %JOIN% t2 } {9} do_catchsql_test e_select-0.1.4 { SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a) } {1 {cannot have both ON and USING clauses in the same join}} do_catchsql_test e_select-0.1.5 { SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a) } {1 {near "ON": syntax error}} # EVIDENCE-OF: R-40919-40941 -- syntax diagram select-core # # 0: SELECT ... # 1: SELECT DISTINCT ... # 2: SELECT ALL ... # # 0: No FROM clause # 1: Has FROM clause |
︙ | ︙ | |||
217 218 219 220 221 222 223 | 1 a 1 c } 2112.2 "SELECT ALL count(*), max(a) FROM t1 WHERE 0 GROUP BY b HAVING count(*)=2" { } } | | | | | 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | 1 a 1 c } 2112.2 "SELECT ALL count(*), max(a) FROM t1 WHERE 0 GROUP BY b HAVING count(*)=2" { } } # EVIDENCE-OF: R-41378-26734 -- syntax diagram result-column # do_select_tests e_select-0.3 { 1 "SELECT * FROM t1" {a one b two c three} 2 "SELECT t1.* FROM t1" {a one b two c three} 3 "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx} 4 "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx} 5 "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx} } # EVIDENCE-OF: R-43129-35648 -- syntax diagram join-source # # EVIDENCE-OF: R-36683-37460 -- syntax diagram join-op # do_select_tests e_select-0.4 { 1 "SELECT t1.rowid FROM t1" {1 2 3} 2 "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3} 3 "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 4 "SELECT t1.rowid FROM t1" {1 2 3} |
︙ | ︙ | |||
254 255 256 257 258 259 260 | 12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3} 13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3} 14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3} 15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3} 16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3} } | | | | | 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | 12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3} 13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3} 14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3} 15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3} 16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3} } # EVIDENCE-OF: R-28308-37813 -- syntax diagram compound-operator # do_select_tests e_select-0.5 { 1 "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4} 2 "SELECT rowid FROM t1 UNION SELECT rowid+2 FROM t4" {1 2 3 4} 3 "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3} 4 "SELECT rowid FROM t1 EXCEPT SELECT rowid+2 FROM t4" {1 2} } # EVIDENCE-OF: R-06480-34950 -- syntax diagram ordering-term # do_select_tests e_select-0.6 { 1 "SELECT b||a FROM t1 ORDER BY b||a" {onea threec twob} 2 "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob} 3 "SELECT b||a FROM t1 ORDER BY (b||a) ASC" {onea threec twob} 4 "SELECT b||a FROM t1 ORDER BY (b||a) DESC" {twob threec onea} } # EVIDENCE-OF: R-23926-36668 -- syntax diagram select-stmt # do_select_tests e_select-0.7 { 1 "SELECT * FROM t1" {a one b two c three} 2 "SELECT * FROM t1 ORDER BY b" {a one c three b two} 3 "SELECT * FROM t1 ORDER BY b, a" {a one c three b two} 4 "SELECT * FROM t1 LIMIT 10" {a one b two c three} |
︙ | ︙ |
Changes to test/e_update.test.
︙ | ︙ | |||
45 46 47 48 49 50 51 | CREATE TABLE aux.t5(a, b); } {} proc do_update_tests {args} { uplevel do_select_tests $args } | | | 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | CREATE TABLE aux.t5(a, b); } {} proc do_update_tests {args} { uplevel do_select_tests $args } # EVIDENCE-OF: R-62337-45828 -- syntax diagram update-stmt # do_update_tests e_update-0 { 1 "UPDATE t1 SET a=10" {} 2 "UPDATE t1 SET a=10, b=5" {} 3 "UPDATE t1 SET a=10 WHERE b=5" {} 4 "UPDATE t1 SET b=5,a=10 WHERE 1" {} 5 "UPDATE main.t1 SET a=10" {} |
︙ | ︙ | |||
491 492 493 494 495 496 497 | } # EVIDENCE-OF: R-59581-44104 If SQLite is built with the # SQLITE_ENABLE_UPDATE_DELETE_LIMIT compile-time option then the syntax # of the UPDATE statement is extended with optional ORDER BY and LIMIT # clauses # | | | 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | } # EVIDENCE-OF: R-59581-44104 If SQLite is built with the # SQLITE_ENABLE_UPDATE_DELETE_LIMIT compile-time option then the syntax # of the UPDATE statement is extended with optional ORDER BY and LIMIT # clauses # # EVIDENCE-OF: R-45169-39597 -- syntax diagram update-stmt-limited # do_update_tests e_update-3.0 { 1 "UPDATE t1 SET a=b LIMIT 5" {} 2 "UPDATE t1 SET a=b LIMIT 5-1 OFFSET 2+2" {} 3 "UPDATE t1 SET a=b LIMIT 2+2, 16/4" {} 4 "UPDATE t1 SET a=b ORDER BY a LIMIT 5" {} 5 "UPDATE t1 SET a=b ORDER BY a LIMIT 5-1 OFFSET 2+2" {} |
︙ | ︙ |
Changes to test/e_vacuum.test.
︙ | ︙ | |||
61 62 63 64 65 66 67 | set prevpageno $pageno } execsql { DROP TABLE temp.stat } set nFrag } | | | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | set prevpageno $pageno } execsql { DROP TABLE temp.stat } set nFrag } # EVIDENCE-OF: R-45173-45977 -- syntax diagram vacuum-stmt # do_execsql_test e_vacuum-0.1 { VACUUM } {} # EVIDENCE-OF: R-51469-36013 Unless SQLite is running in # "auto_vacuum=FULL" mode, when a large amount of data is deleted from # the database file it leaves behind empty space, or "free" database # pages. |
︙ | ︙ |
Changes to test/incrvacuum2.test.
︙ | ︙ | |||
190 191 192 193 194 195 196 | PRAGMA journal_mode = WAL; PRAGMA incremental_vacuum(1); } } {wal} do_test 4.2.1 { execsql { PRAGMA wal_checkpoint } file size test.db-wal | | | | 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | PRAGMA journal_mode = WAL; PRAGMA incremental_vacuum(1); } } {wal} do_test 4.2.1 { execsql { PRAGMA wal_checkpoint } file size test.db-wal } [expr {32+2*(512+24)}] do_test 4.3 { db close sqlite3 db test.db set maxsz 0 while {[file size test.db] > [expr 512*3]} { execsql { PRAGMA journal_mode = WAL } execsql { PRAGMA wal_checkpoint } execsql { PRAGMA incremental_vacuum(1) } set newsz [file size test.db-wal] if {$newsz>$maxsz} {set maxsz $newsz} } set maxsz } [expr {32+3*(512+24)}] } finish_test |
Changes to test/journal2.test.
︙ | ︙ | |||
30 31 32 33 34 35 36 | string range [string repeat "${a_string_counter}." $n] 1 $n } # Create a [testvfs] and install it as the default VFS. Set the device # characteristics flags to "SAFE_DELETE". # testvfs tvfs -default 1 | | | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | string range [string repeat "${a_string_counter}." $n] 1 $n } # Create a [testvfs] and install it as the default VFS. Set the device # characteristics flags to "SAFE_DELETE". # testvfs tvfs -default 1 tvfs devchar {undeletable_when_open powersafe_overwrite} # Set up a hook so that each time a journal file is opened, closed or # deleted, the method name ("xOpen", "xClose" or "xDelete") and the final # segment of the journal file-name (i.e. "test.db-journal") are appended to # global list variable $::oplog. # tvfs filter {xOpen xClose xDelete} |
︙ | ︙ | |||
227 228 229 230 231 232 233 | set ::oplog } {xClose test.db-journal xDelete test.db-journal} db close } tvfs delete finish_test | < | 227 228 229 230 231 232 233 | set ::oplog } {xClose test.db-journal xDelete test.db-journal} db close } tvfs delete finish_test |
Changes to test/multiplex.test.
︙ | ︙ | |||
15 16 17 18 19 20 21 22 23 24 25 26 27 28 | source $testdir/malloc_common.tcl # AFP doesn't like multiplex db tests if { ![path_is_local "."] } { finish_test return } set g_chunk_size [ expr ($::SQLITE_MAX_PAGE_SIZE*16384) ] set g_max_chunks 32 # This handles appending the chunk number # to the end of the filename. if # SQLITE_MULTIPLEX_EXT_OVWR is defined, then | > > > > > > > > > > | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | source $testdir/malloc_common.tcl # AFP doesn't like multiplex db tests if { ![path_is_local "."] } { finish_test return } # The tests in this file assume that SQLite is compiled without # ENABLE_8_3_NAMES. # ifcapable 8_3_names { puts -nonewline "SQLite compiled with SQLITE_ENABLE_8_3_NAMES. " puts "Skipping tests multiplex-*." finish_test return } set g_chunk_size [ expr ($::SQLITE_MAX_PAGE_SIZE*16384) ] set g_max_chunks 32 # This handles appending the chunk number # to the end of the filename. if # SQLITE_MULTIPLEX_EXT_OVWR is defined, then |
︙ | ︙ |
Added test/multiplex2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | # 2010 October 29 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl source $testdir/lock_common.tcl do_multiclient_test tn { code1 { catch { sqlite3_multiplex_initialize "" 0 } } code2 { catch { sqlite3_multiplex_initialize "" 0 } } code1 { db close } code2 { db2 close } code1 { sqlite3 db test.db -vfs multiplex } code2 { sqlite3 db2 test.db -vfs multiplex } code1 { sqlite3_multiplex_control db main chunk_size [expr 1024*1024] } code2 { sqlite3_multiplex_control db2 main chunk_size [expr 1024*1024] } sql1 { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(randomblob(10), randomblob(4000)); -- 1 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 2 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 4 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 8 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 16 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 32 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 64 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 128 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 256 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 512 SELECT count(*) FROM t1; } do_test multiplex-1.$tn.1 { sql1 { SELECT count(*) FROM t1 } } 512 do_test multiplex-1.$tn.2 { sql2 { SELECT count(*) FROM t1 } } 512 sql2 { DELETE FROM t1 ; VACUUM } do_test multiplex-1.$tn.3 { sql1 { SELECT count(*) FROM t1 } } 0 sql1 { INSERT INTO t1 VALUES(randomblob(10), randomblob(4000)); -- 1 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 2 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 4 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 8 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 16 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 32 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 64 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 128 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 256 INSERT INTO t1 SELECT randomblob(10), randomblob(4000) FROM t1; -- 512 SELECT count(*) FROM t1; } do_test multiplex-1.$tn.4 { sql2 { SELECT count(*) FROM t1 } } 512 } catch { sqlite3_multiplex_shutdown } finish_test |
Added test/multiplex3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | # 2011 December 13 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file contains tests for error (IO, OOM etc.) handling when using # the multiplexor extension with 8.3 filenames. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl set ::testprefix multiplex3 ifcapable !8_3_names { puts -nonewline "SQLite compiled without SQLITE_ENABLE_8_3_NAMES. " puts "Skipping tests multiplex3-*." finish_test return } db close sqlite3_shutdown sqlite3_config_uri 1 autoinstall_test_functions sqlite3_multiplex_initialize "" 1 proc destroy_vfs_stack {} { generic_unregister stack sqlite3_multiplex_shutdown } proc multiplex_delete_db {} { forcedelete test.db for {set i 1} {$i <= 1000} {incr i} { forcedelete test.[format %03d $i] } } # Procs to save and restore the current muliplexed database. # proc multiplex_save_db {} { foreach f [glob -nocomplain sv_test.*] { forcedelete $f } foreach f [glob -nocomplain test.*] { forcecopy $f "sv_$f" } } proc multiplex_restore_db {} { foreach f [glob -nocomplain test.*] {forcedelete $f} foreach f [glob -nocomplain sv_test.*] {forcecopy $f [string range $f 3 end]} } proc setup_and_save_db {} { multiplex_delete_db sqlite3 db file:test.db?8_3_names=1 sqlite3_multiplex_control db main chunk_size [expr 256*1024] execsql { CREATE TABLE t1(a PRIMARY KEY, b); INSERT INTO t1 VALUES(randomblob(15), randomblob(2000)); INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 2 INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 4 INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 8 INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 16 INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 32 INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 64 INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 128 INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 256 INSERT INTO t1 SELECT randomblob(15), randomblob(2000) FROM t1; -- 512 } set ::cksum1 [execsql {SELECT md5sum(a, b) FROM t1 ORDER BY a}] db close multiplex_save_db } do_test 1.0 { setup_and_save_db } {} do_faultsim_test 1 -prep { multiplex_restore_db sqlite3 db file:test.db?8_3_names=1 sqlite3_multiplex_control db main chunk_size [expr 256*1024] } -body { execsql { UPDATE t1 SET a=randomblob(12), b=randomblob(1500) WHERE (rowid%32)=0 } } -test { faultsim_test_result {0 {}} if {$testrc!=0} { set cksum2 [execsql {SELECT md5sum(a, b) FROM t1 ORDER BY a}] if {$cksum2 != $::cksum1} { error "data mismatch" } } } #------------------------------------------------------------------------- # The following tests verify that hot-journal rollback works. As follows: # # 1. Create a large database. # 2. Set the pager cache to be very small. # 3. Open a transaction. # 4. Run the following 100 times: # a. Update a row. # b. Copy all files on disk to a new db location, including the journal. # c. Verify that the new db can be opened and that the content matches # the database created in step 1 (proving the journal was rolled # back). do_test 2.0 { setup_and_save_db multiplex_restore_db sqlite3 db file:test.db?8_3_names=1 execsql { PRAGMA cache_size = 10 } execsql { BEGIN } } {} for {set iTest 1} {$iTest<=100} {incr iTest} { do_test 2.$iTest { execsql { UPDATE t1 SET a=randomblob(12), b=randomblob(1400) WHERE rowid=5*$iTest } foreach f [glob -nocomplain test.*] {forcecopy $f "xx_$f"} sqlite3 db2 file:xx_test.db?8_3_names=1 execsql {SELECT md5sum(a, b) FROM t1 ORDER BY a} db2 } $::cksum1 db2 close } catch { db close } sqlite3_multiplex_shutdown finish_test |
Changes to test/pager1.test.
︙ | ︙ | |||
989 990 991 992 993 994 995 | PRAGMA journal_mode = DELETE; PRAGMA synchronous = NORMAL; BEGIN; INSERT INTO t1 VALUES(85, 'Gorbachev'); INSERT INTO t2 VALUES(85, 'Gorbachev'); COMMIT; } | | > > > > > > > > | > > > | > > > > > | > > > | 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 | PRAGMA journal_mode = DELETE; PRAGMA synchronous = NORMAL; BEGIN; INSERT INTO t1 VALUES(85, 'Gorbachev'); INSERT INTO t2 VALUES(85, 'Gorbachev'); COMMIT; } # The size of the journal file is now: # # 1) 512 byte header + # 2) 2 * (1024+8) byte records + # 3) 20+N bytes of master-journal pointer, where N is the size of # the master-journal name encoded as utf-8 with no nul term. # set mj_pointer [expr { 20 + [string length [pwd]] + [string length "/test.db-mjXXXXXX9XX"] }] expr {$::max_journal==(512+2*(1024+8)+$mj_pointer)} } 1 do_test pager1-5.4.2 { set ::max_journal 0 execsql { PRAGMA synchronous = full; BEGIN; DELETE FROM t1 WHERE b = 'Lenin'; DELETE FROM t2 WHERE b = 'Lenin'; COMMIT; } # In synchronous=full mode, the master-journal pointer is not written # directly after the last record in the journal file. Instead, it is # written starting at the next (in this case 512 byte) sector boundary. # set mj_pointer [expr { 20 + [string length [pwd]] + [string length "/test.db-mjXXXXXX9XX"] }] expr {$::max_journal==(((512+2*(1024+8)+511)/512)*512 + $mj_pointer)} } 1 db close tv delete do_test pager1-5.5.1 { sqlite3 db test.db execsql { ATTACH 'test.db2' AS aux; |
︙ | ︙ | |||
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 | # testvfs tv -default 1 foreach sectorsize { 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 } { tv sectorsize $sectorsize set eff $sectorsize if {$sectorsize < 512} { set eff 512 } if {$sectorsize > 65536} { set eff 65536 } do_test pager1-10.$sectorsize.1 { faultsim_delete_and_reopen db func a_string a_string | > | 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 | # testvfs tv -default 1 foreach sectorsize { 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 } { tv sectorsize $sectorsize tv devchar {} set eff $sectorsize if {$sectorsize < 512} { set eff 512 } if {$sectorsize > 65536} { set eff 65536 } do_test pager1-10.$sectorsize.1 { faultsim_delete_and_reopen db func a_string a_string |
︙ | ︙ |
Changes to test/permutations.test.
︙ | ︙ | |||
106 107 108 109 110 111 112 | fkey_malloc.test fuzz.test fuzz3.test fuzz_malloc.test in2.test loadext.test misc7.test mutex2.test notify2.test onefile.test pagerfault2.test savepoint4.test savepoint6.test select9.test speed1.test speed1p.test speed2.test speed3.test speed4.test speed4p.test sqllimits1.test tkt2686.test thread001.test thread002.test thread003.test thread004.test thread005.test trans2.test vacuum3.test incrvacuum_ioerr.test autovacuum_crash.test btree8.test shared_err.test | | | | 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | fkey_malloc.test fuzz.test fuzz3.test fuzz_malloc.test in2.test loadext.test misc7.test mutex2.test notify2.test onefile.test pagerfault2.test savepoint4.test savepoint6.test select9.test speed1.test speed1p.test speed2.test speed3.test speed4.test speed4p.test sqllimits1.test tkt2686.test thread001.test thread002.test thread003.test thread004.test thread005.test trans2.test vacuum3.test incrvacuum_ioerr.test autovacuum_crash.test btree8.test shared_err.test vtab_err.test walslow.test walcrash.test walcrash3.test walthread.test rtree3.test indexfault.test }] if {[info exists ::env(QUICKTEST_INCLUDE)]} { set allquicktests [concat $allquicktests $::env(QUICKTEST_INCLUDE)] } ############################################################################# # Start of tests |
︙ | ︙ |
Added test/quota-glob.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | # 2011 December 1 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Tests for the glob-style string compare operator embedded in the # quota shim. # set testdir [file dirname $argv0] source $testdir/tester.tcl catch { unset testnum } catch { unset pattern } catch { unset text } catch { unset ans } foreach {testnum pattern text ans} { 1 abcdefg abcdefg 1 2 abcdefG abcdefg 0 3 abcdef abcdefg 0 4 abcdefgh abcdefg 0 5 abcdef? abcdefg 1 6 abcdef? abcdef 0 7 abcdef? abcdefgh 0 8 abcdefg abcdef? 0 9 abcdef? abcdef? 1 10 abc/def abc/def 1 11 abc//def abc/def 0 12 */abc/* x/abc/y 1 13 */abc/* /abc/ 1 16 */abc/* x///a/ab/abc 0 17 */abc/* x//a/ab/abc/ 1 16 */abc/* x///a/ab/abc 0 17 */abc/* x//a/ab/abc/ 1 18 **/abc/** x//a/ab/abc/ 1 19 *?/abc/*? x//a/ab/abc/y 1 20 ?*/abc/?* x//a/ab/abc/y 1 21 {abc[cde]efg} abcbefg 0 22 {abc[cde]efg} abccefg 1 23 {abc[cde]efg} abcdefg 1 24 {abc[cde]efg} abceefg 1 25 {abc[cde]efg} abcfefg 0 26 {abc[^cde]efg} abcbefg 1 27 {abc[^cde]efg} abccefg 0 28 {abc[^cde]efg} abcdefg 0 29 {abc[^cde]efg} abceefg 0 30 {abc[^cde]efg} abcfefg 1 31 {abc[c-e]efg} abcbefg 0 32 {abc[c-e]efg} abccefg 1 33 {abc[c-e]efg} abcdefg 1 34 {abc[c-e]efg} abceefg 1 35 {abc[c-e]efg} abcfefg 0 36 {abc[^c-e]efg} abcbefg 1 37 {abc[^c-e]efg} abccefg 0 38 {abc[^c-e]efg} abcdefg 0 39 {abc[^c-e]efg} abceefg 0 40 {abc[^c-e]efg} abcfefg 1 41 {abc[c-e]efg} abc-efg 0 42 {abc[-ce]efg} abc-efg 1 43 {abc[ce-]efg} abc-efg 1 44 {abc[][*?]efg} {abc]efg} 1 45 {abc[][*?]efg} {abc*efg} 1 46 {abc[][*?]efg} {abc?efg} 1 47 {abc[][*?]efg} {abc[efg} 1 48 {abc[^][*?]efg} {abc]efg} 0 49 {abc[^][*?]efg} {abc*efg} 0 50 {abc[^][*?]efg} {abc?efg} 0 51 {abc[^][*?]efg} {abc[efg} 0 52 {abc[^][*?]efg} {abcdefg} 1 53 {*[xyz]efg} {abcxefg} 1 54 {*[xyz]efg} {abcwefg} 0 } { do_test quota-glob-$testnum.1 { sqlite3_quota_glob $::pattern $::text } $::ans do_test quota-glob-$testnum.2 { sqlite3_quota_glob $::pattern [string map {/ \\} $::text] } $::ans } finish_test |
Changes to test/quota.test.
︙ | ︙ | |||
10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl db close do_test quota-1.1 { sqlite3_quota_initialize nosuchvfs 1 } {SQLITE_ERROR} do_test quota-1.2 { sqlite3_quota_initialize "" 1 } {SQLITE_OK} do_test quota-1.3 { sqlite3_quota_initialize "" 1 } {SQLITE_MISUSE} do_test quota-1.4 { sqlite3_quota_shutdown } {SQLITE_OK} | > > | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl unset -nocomplain defaultVfs set defaultVfs [file_control_vfsname db] db close do_test quota-1.1 { sqlite3_quota_initialize nosuchvfs 1 } {SQLITE_ERROR} do_test quota-1.2 { sqlite3_quota_initialize "" 1 } {SQLITE_OK} do_test quota-1.3 { sqlite3_quota_initialize "" 1 } {SQLITE_MISUSE} do_test quota-1.4 { sqlite3_quota_shutdown } {SQLITE_OK} |
︙ | ︙ | |||
44 45 46 47 48 49 50 51 52 53 54 55 56 57 | # quota-2.4.*: Try to shutdown the quota system before closing the db # file. Check that this fails and the quota system still works # afterwards. Then close the database and successfully shut # down the quota system. # sqlite3_quota_initialize "" 1 proc quota_check {filename limitvar size} { upvar $limitvar limit lappend ::quota [set limit] $size if {[info exists ::quota_request_ok]} { set limit $size } } | > | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | # quota-2.4.*: Try to shutdown the quota system before closing the db # file. Check that this fails and the quota system still works # afterwards. Then close the database and successfully shut # down the quota system. # sqlite3_quota_initialize "" 1 unset -nocomplain quota_request_ok proc quota_check {filename limitvar size} { upvar $limitvar limit lappend ::quota [set limit] $size if {[info exists ::quota_request_ok]} { set limit $size } } |
︙ | ︙ | |||
69 70 71 72 73 74 75 76 77 78 79 80 81 82 | execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, randomblob(1100)); INSERT INTO t1 VALUES(2, randomblob(1100)); } set ::quota } {} do_test quota-2.1.3 { file size test.db } {4096} do_test quota-2.1.4 { catchsql { INSERT INTO t1 VALUES(3, randomblob(1100)) } } {1 {database or disk is full}} do_test quota-2.1.5 { set ::quota } {4096 5120} set ::quota_request_ok 1 | > > > | 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, randomblob(1100)); INSERT INTO t1 VALUES(2, randomblob(1100)); } set ::quota } {} do_test quota-2.1.2.1 { file_control_vfsname db } quota/$defaultVfs do_test quota-2.1.3 { file size test.db } {4096} do_test quota-2.1.4 { catchsql { INSERT INTO t1 VALUES(3, randomblob(1100)) } } {1 {database or disk is full}} do_test quota-2.1.5 { set ::quota } {4096 5120} set ::quota_request_ok 1 |
︙ | ︙ |
Added test/quota2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | # 2011 December 1 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl db close sqlite3_quota_initialize "" 1 foreach dir {quota2a/x1 quota2a/x2 quota2a quota2b quota2c} { file delete -force $dir } foreach dir {quota2a quota2a/x1 quota2a/x2 quota2b quota2c} { file mkdir $dir } # The standard_path procedure converts a pathname into a standard format # that is the same across platforms. # unset -nocomplain ::quota_pwd ::quota_mapping set ::quota_pwd [string map {\\ /} [pwd]] set ::quota_mapping [list $::quota_pwd PWD] proc standard_path {x} { set x [string map {\\ /} $x] return [string map $::quota_mapping $x] } # The quota_check procedure is a callback from the quota handler. # It has three arguments which are (1) the full pathname of the file # that has gone over quota, (2) the quota limit, (3) the requested # new quota size to cover the last write. These three values are # appended to the global variable $::quota. The filename is processed # to convert every \ character into / and to change the name of the # working directory to PWD. # # The quota is increased to the request if the ::quota_request_ok # global variable is true. # set ::quota {} set ::quota_request_ok 0 proc quota_check {filename limitvar size} { upvar $limitvar limit lappend ::quota [standard_path $filename] [set limit] $size if {$::quota_request_ok} {set limit $size} } sqlite3_quota_set */quota2a/* 4000 quota_check sqlite3_quota_set */quota2b/* 5000 quota_check unset -nocomplain bigtext for {set i 1} {$i<=1000} {incr i} { if {$i%10==0} { append bigtext [format "%06d\n" $i] } else { append bigtext [format "%06d " $i] } } catch { unset h1 } catch { unset x } do_test quota2-1.1 { set ::h1 [sqlite3_quota_fopen quota2a/xyz.txt w+b] sqlite3_quota_fwrite $::h1 1 7000 $bigtext } {4000} do_test quota2-1.2 { set ::quota } {PWD/quota2a/xyz.txt 4000 7000} do_test quota2-1.3 { sqlite3_quota_rewind $::h1 set ::x [sqlite3_quota_fread $::h1 1001 7] string length $::x } {3003} do_test quota2-1.4 { string match $::x [string range $::bigtext 0 3002] } {1} do_test quota2-1.5 { sqlite3_quota_fseek $::h1 0 SEEK_END sqlite3_quota_ftell $::h1 } {4000} do_test quota2-1.6 { sqlite3_quota_fseek $::h1 -100 SEEK_END sqlite3_quota_ftell $::h1 } {3900} do_test quota2-1.7 { sqlite3_quota_fseek $::h1 -100 SEEK_CUR sqlite3_quota_ftell $::h1 } {3800} do_test quota2-1.8 { sqlite3_quota_fseek $::h1 50 SEEK_CUR sqlite3_quota_ftell $::h1 } {3850} do_test quota2-1.9 { sqlite3_quota_fseek $::h1 50 SEEK_SET sqlite3_quota_ftell $::h1 } {50} do_test quota2-1.10 { sqlite3_quota_rewind $::h1 sqlite3_quota_ftell $::h1 } {0} do_test quota2-1.11 { standard_path [sqlite3_quota_dump] } {{*/quota2b/* 5000 0} {*/quota2a/* 4000 4000 {PWD/quota2a/xyz.txt 4000 1 0}}} do_test quota2-1.12 { sqlite3_quota_fclose $::h1 standard_path [sqlite3_quota_dump] } {{*/quota2b/* 5000 0} {*/quota2a/* 4000 4000 {PWD/quota2a/xyz.txt 4000 0 0}}} do_test quota2-1.13 { sqlite3_quota_remove quota2a/xyz.txt standard_path [sqlite3_quota_dump] } {{*/quota2b/* 5000 0} {*/quota2a/* 4000 0}} set quota {} do_test quota2-2.1 { set ::h1 [sqlite3_quota_fopen quota2c/xyz.txt w+b] sqlite3_quota_fwrite $::h1 1 7000 $bigtext } {7000} do_test quota2-2.2 { set ::quota } {} do_test quota2-2.3 { sqlite3_quota_rewind $::h1 set ::x [sqlite3_quota_fread $::h1 1001 7] string length $::x } {6006} do_test quota2-2.4 { string match $::x [string range $::bigtext 0 6005] } {1} do_test quota2-2.5 { sqlite3_quota_fseek $::h1 0 SEEK_END sqlite3_quota_ftell $::h1 } {7000} do_test quota2-2.6 { sqlite3_quota_fseek $::h1 -100 SEEK_END sqlite3_quota_ftell $::h1 } {6900} do_test quota2-2.7 { sqlite3_quota_fseek $::h1 -100 SEEK_CUR sqlite3_quota_ftell $::h1 } {6800} do_test quota2-2.8 { sqlite3_quota_fseek $::h1 50 SEEK_CUR sqlite3_quota_ftell $::h1 } {6850} do_test quota2-2.9 { sqlite3_quota_fseek $::h1 50 SEEK_SET sqlite3_quota_ftell $::h1 } {50} do_test quota2-2.10 { sqlite3_quota_rewind $::h1 sqlite3_quota_ftell $::h1 } {0} do_test quota2-2.11 { standard_path [sqlite3_quota_dump] } {{*/quota2b/* 5000 0} {*/quota2a/* 4000 0}} do_test quota2-2.12 { sqlite3_quota_fclose $::h1 standard_path [sqlite3_quota_dump] } {{*/quota2b/* 5000 0} {*/quota2a/* 4000 0}} do_test quota2-3.1 { sqlite3_quota_set */quota2b/* 0 quota_check set ::h1 [sqlite3_quota_fopen quota2a/x1/a.txt a] sqlite3_quota_fwrite $::h1 10 10 $bigtext } {10} do_test quota2-3.2 { standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 100 {PWD/quota2a/x1/a.txt 100 1 0}}} do_test quota2-3.3a { sqlite3_quota_fflush $::h1 0 standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 100 {PWD/quota2a/x1/a.txt 100 1 0}}} do_test quota2-3.3b { sqlite3_quota_fflush $::h1 1 standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 100 {PWD/quota2a/x1/a.txt 100 1 0}}} do_test quota2-3.3c { sqlite3_quota_fflush $::h1 standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 100 {PWD/quota2a/x1/a.txt 100 1 0}}} do_test quota2-3.4 { sqlite3_quota_fclose $::h1 standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 100 {PWD/quota2a/x1/a.txt 100 0 0}}} do_test quota2-3.5 { set ::h2 [sqlite3_quota_fopen quota2a/x2/b.txt a] sqlite3_quota_fwrite $::h2 10 20 $bigtext standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 300 {PWD/quota2a/x2/b.txt 200 1 0} {PWD/quota2a/x1/a.txt 100 0 0}}} do_test quota2-3.6 { set ::h3 [sqlite3_quota_fopen quota2a/x1/c.txt a] sqlite3_quota_fwrite $::h3 10 50 $bigtext standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 800 {PWD/quota2a/x1/c.txt 500 1 0} {PWD/quota2a/x2/b.txt 200 1 0} {PWD/quota2a/x1/a.txt 100 0 0}}} do_test quota2-3.7 { file exists quota2a/x1/a.txt } {1} do_test quota2-3.8 { file exists quota2a/x2/b.txt } {1} do_test quota2-3.9 { file exists quota2a/x1/c.txt } {1} do_test quota2-3.10 { sqlite3_quota_remove quota2a/x1 standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 700 {PWD/quota2a/x1/c.txt 500 1 1} {PWD/quota2a/x2/b.txt 200 1 0}}} do_test quota2-3.11 { sqlite3_quota_fclose $::h2 sqlite3_quota_fclose $::h3 standard_path [sqlite3_quota_dump] } {{*/quota2a/* 4000 200 {PWD/quota2a/x2/b.txt 200 0 0}}} do_test quota2-3.12 { file exists quota2a/x1/a.txt } {0} do_test quota2-3.13 { file exists quota2a/x2/b.txt } {1} do_test quota2-3.14 { file exists quota2a/x1/c.txt } {0} catch { sqlite3_quota_shutdown } catch { unset quota_request_ok } finish_test |
Changes to test/selectB.test.
︙ | ︙ | |||
190 191 192 193 194 195 196 | do_test selectB-3.0 { execsql { DROP INDEX i1; DROP INDEX i2; } } {} | | | > > > > > | | | | | | | | | | > > > > | 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | do_test selectB-3.0 { execsql { DROP INDEX i1; DROP INDEX i2; } } {} for {set ii 3} {$ii <= 6} {incr ii} { switch $ii { 4 { optimization_control db query-flattener off } 5 { optimization_control db query-flattener on do_test selectB-5.0 { execsql { CREATE INDEX i1 ON t1(a); CREATE INDEX i2 ON t1(b); CREATE INDEX i3 ON t1(c); CREATE INDEX i4 ON t2(d); CREATE INDEX i5 ON t2(e); CREATE INDEX i6 ON t2(f); } } {} } 6 { optimization_control db query-flattener off } } do_test selectB-$ii.1 { execsql { SELECT DISTINCT * FROM (SELECT c FROM t1 UNION ALL SELECT e FROM t2) ORDER BY 1; |
︙ | ︙ | |||
367 368 369 370 371 372 373 | do_test selectB-$ii.21 { execsql { SELECT * FROM (SELECT * FROM t1 UNION ALL SELECT * FROM t2) ORDER BY a+b } } {2 4 6 3 6 9 8 10 12 12 15 18 14 16 18 21 24 27} | | | > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > | 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | do_test selectB-$ii.21 { execsql { SELECT * FROM (SELECT * FROM t1 UNION ALL SELECT * FROM t2) ORDER BY a+b } } {2 4 6 3 6 9 8 10 12 12 15 18 14 16 18 21 24 27} do_test selectB-$ii.22 { execsql { SELECT * FROM (SELECT 345 UNION ALL SELECT d FROM t2) ORDER BY 1; } } {3 12 21 345} do_test selectB-$ii.23 { execsql { SELECT x, y FROM ( SELECT a AS x, b AS y FROM t1 UNION ALL SELECT a*10 + 0.1, f*10 + 0.1 FROM t1 JOIN t2 ON (c=d) UNION ALL SELECT a*100, b*100 FROM t1 ) ORDER BY 1; } } {2 4 8 10 14 16 80.1 180.1 200 400 800 1000 1400 1600} do_test selectB-$ii.24 { execsql { SELECT x, y FROM ( SELECT a AS x, b AS y FROM t1 UNION ALL SELECT a*10 + 0.1, f*10 + 0.1 FROM t1 LEFT JOIN t2 ON (c=d) UNION ALL SELECT a*100, b*100 FROM t1 ) ORDER BY 1; } } {2 4 8 10 14 16 20.1 {} 80.1 180.1 140.1 {} 200 400 800 1000 1400 1600} do_test selectB-$ii.25 { execsql { SELECT x+y FROM ( SELECT a AS x, b AS y FROM t1 UNION ALL SELECT a*10 + 0.1, f*10 + 0.1 FROM t1 LEFT JOIN t2 ON (c=d) UNION ALL SELECT a*100, b*100 FROM t1 ) WHERE y+x NOT NULL ORDER BY 1; } } {6 18 30 260.2 600 1800 3000} } finish_test |
Changes to test/superlock.test.
︙ | ︙ | |||
79 80 81 82 83 84 85 | do_test 3.2 { sqlite3demo_superlock unlock test.db } {unlock} do_catchsql_test 3.3 { SELECT * FROM t1 } {1 {database is locked}} do_catchsql_test 3.4 { INSERT INTO t1 VALUES(5, 6)} {1 {database is locked}} do_catchsql_test 3.5 { PRAGMA wal_checkpoint } {0 {1 -1 -1}} do_test 3.6 { unlock } {} | > > > | < < | 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | do_test 3.2 { sqlite3demo_superlock unlock test.db } {unlock} do_catchsql_test 3.3 { SELECT * FROM t1 } {1 {database is locked}} do_catchsql_test 3.4 { INSERT INTO t1 VALUES(5, 6)} {1 {database is locked}} do_catchsql_test 3.5 { PRAGMA wal_checkpoint } {0 {1 -1 -1}} do_test 3.6 { unlock } {} # At this point the WAL file consists of a single frame only - written # by test case 3.1. If the ZERO_DAMAGE flag were not set, it would consist # of two frames - the frame written by 3.1 and a padding frame. do_execsql_test 4.1 { PRAGMA wal_checkpoint } {0 1 1} do_test 4.2 { sqlite3demo_superlock unlock test.db } {unlock} do_catchsql_test 4.3 { SELECT * FROM t1 } {1 {database is locked}} do_catchsql_test 4.4 { INSERT INTO t1 VALUES(5, 6)} {1 {database is locked}} do_catchsql_test 4.5 { PRAGMA wal_checkpoint } {0 {1 -1 -1}} do_test 4.6 { unlock } {} |
︙ | ︙ |
Changes to test/syscall.test.
︙ | ︙ | |||
55 56 57 58 59 60 61 | #------------------------------------------------------------------------- # Tests for the xNextSystemCall method. # foreach s { open close access getcwd stat fstat ftruncate fcntl read pread write pwrite fchmod fallocate | | > | 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | #------------------------------------------------------------------------- # Tests for the xNextSystemCall method. # foreach s { open close access getcwd stat fstat ftruncate fcntl read pread write pwrite fchmod fallocate pread64 pwrite64 unlink openDirectory mkdir rmdir statvfs } { if {[test_syscall exists $s]} {lappend syscall_list $s} } do_test 3.1 { lsort [test_syscall list] } [lsort $syscall_list] #------------------------------------------------------------------------- # This test verifies that if a call to open() fails and errno is set to |
︙ | ︙ |
Added test/tkt-7bbfb7d442.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | # 2011 December 9 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # # This file implements tests to verify that ticket [7bbfb7d442] has been # fixed. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix tkt-7bbfb7d442 do_execsql_test 1.1 { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 'one'); INSERT INTO t1 VALUES(2, 'two'); INSERT INTO t1 VALUES(3, 'three'); CREATE TABLE t2(c, d); INSERT INTO t2 VALUES('one', 'I'); INSERT INTO t2 VALUES('two', 'II'); INSERT INTO t2 VALUES('three', 'III'); CREATE TABLE t3(t3_a PRIMARY KEY, t3_d); CREATE TRIGGER t3t AFTER INSERT ON t3 WHEN new.t3_d IS NULL BEGIN UPDATE t3 SET t3_d = ( SELECT d FROM (SELECT * FROM t2 WHERE (new.t3_a%2)=(rowid%2) LIMIT 10), (SELECT * FROM t1 WHERE (new.t3_a%2)=(rowid%2) LIMIT 10) WHERE a = new.t3_a AND b = c ) WHERE t3_a = new.t3_a; END; } do_execsql_test 1.2 { INSERT INTO t3(t3_a) VALUES(1); INSERT INTO t3(t3_a) VALUES(2); INSERT INTO t3(t3_a) VALUES(3); SELECT * FROM t3; } {1 I 2 II 3 III} do_execsql_test 1.3 { DELETE FROM t3 } do_execsql_test 1.4 { INSERT INTO t3(t3_a) SELECT 1 UNION SELECT 2 UNION SELECT 3; SELECT * FROM t3; } {1 I 2 II 3 III} #------------------------------------------------------------------------- # The following test case - 2.* - is from the original bug report as # posted to the mailing list. # do_execsql_test 2.1 { CREATE TABLE InventoryControl ( InventoryControlId INTEGER PRIMARY KEY AUTOINCREMENT, SKU INTEGER NOT NULL, Variant INTEGER NOT NULL DEFAULT 0, ControlDate DATE NOT NULL, ControlState INTEGER NOT NULL DEFAULT -1, DeliveredQty VARCHAR(30) ); CREATE TRIGGER TGR_InventoryControl_AfterInsert AFTER INSERT ON InventoryControl FOR EACH ROW WHEN NEW.ControlState=-1 BEGIN INSERT OR REPLACE INTO InventoryControl( InventoryControlId,SKU,Variant,ControlDate,ControlState,DeliveredQty ) SELECT T1.InventoryControlId AS InventoryControlId, T1.SKU AS SKU, T1.Variant AS Variant, T1.ControlDate AS ControlDate, 1 AS ControlState, COALESCE(T2.DeliveredQty,0) AS DeliveredQty FROM ( SELECT NEW.InventoryControlId AS InventoryControlId, II.SKU AS SKU, II.Variant AS Variant, COALESCE(LastClosedIC.ControlDate,NEW.ControlDate) AS ControlDate FROM InventoryItem II LEFT JOIN InventoryControl LastClosedIC ON LastClosedIC.InventoryControlId IN ( SELECT 99999 ) WHERE II.SKU=NEW.SKU AND II.Variant=NEW.Variant ) T1 LEFT JOIN ( SELECT TD.SKU AS SKU, TD.Variant AS Variant, 10 AS DeliveredQty FROM TransactionDetail TD WHERE TD.SKU=NEW.SKU AND TD.Variant=NEW.Variant ) T2 ON T2.SKU=T1.SKU AND T2.Variant=T1.Variant; END; CREATE TABLE InventoryItem ( SKU INTEGER NOT NULL, Variant INTEGER NOT NULL DEFAULT 0, DeptCode INTEGER NOT NULL, GroupCode INTEGER NOT NULL, ItemDescription VARCHAR(120) NOT NULL, PRIMARY KEY(SKU, Variant) ); INSERT INTO InventoryItem VALUES(220,0,1,170,'Scoth Tampon Recurer'); INSERT INTO InventoryItem VALUES(31,0,1,110,'Fromage'); CREATE TABLE TransactionDetail ( TransactionId INTEGER NOT NULL, SKU INTEGER NOT NULL, Variant INTEGER NOT NULL DEFAULT 0, PRIMARY KEY(TransactionId, SKU, Variant) ); INSERT INTO TransactionDetail(TransactionId, SKU, Variant) VALUES(44, 31, 0); INSERT INTO InventoryControl(SKU, Variant, ControlDate) SELECT II.SKU AS SKU, II.Variant AS Variant, '2011-08-30' AS ControlDate FROM InventoryItem II; } do_execsql_test 2.2 { SELECT SKU, DeliveredQty FROM InventoryControl WHERE SKU=31 } {31 10} do_execsql_test 2.3 { SELECT CASE WHEN DeliveredQty=10 THEN "TEST PASSED!" ELSE "TEST FAILED!" END FROM InventoryControl WHERE SKU=31; } {{TEST PASSED!}} finish_test |
Changes to test/unixexcl.test.
︙ | ︙ | |||
75 76 77 78 79 80 81 82 83 | db eval { SELECT * FROM t1 } } } {hello world} do_test unixexcl-2.$tn.4 { csql2 { SELECT * FROM t1 } } {0 {hello world}} } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | db eval { SELECT * FROM t1 } } } {hello world} do_test unixexcl-2.$tn.4 { csql2 { SELECT * FROM t1 } } {0 {hello world}} } do_multiclient_test tn { do_test unixexcl-3.$tn.1 { code1 { db close; sqlite3 db file:test.db?psow=0 -vfs unix-excl -uri 1 } code2 { db2 close; sqlite3 db2 file:test.db?psow=0 -vfs unix-excl -uri 1 } sql1 { PRAGMA journal_mode = WAL; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); } } {wal} if {$tn==1} { do_test unixexcl-3.$tn.1.multiproc { csql2 { SELECT * FROM t1; } } {1 {database is locked}} } else { do_test unixexcl-3.$tn.1.singleproc { sql2 { SELECT * FROM t1; } } {1 2} do_test unixexcl-3.$tn.2 { sql2 { BEGIN; SELECT * FROM t1; } } {1 2} do_test unixexcl-3.$tn.3 { sql1 { PRAGMA wal_checkpoint; INSERT INTO t1 VALUES(3, 4); } } {0 3 3} do_test unixexcl-3.$tn.4 { sql2 { SELECT * FROM t1; } } {1 2} do_test unixexcl-3.$tn.5 { sql1 { SELECT * FROM t1; } } {1 2 3 4} do_test unixexcl-3.$tn.6 { sql2 { COMMIT; SELECT * FROM t1; } } {1 2 3 4} do_test unixexcl-3.$tn.7 { sql1 { PRAGMA wal_checkpoint; } } {0 4 4} } } finish_test |
Changes to test/wal.test.
︙ | ︙ | |||
545 546 547 548 549 550 551 | # Open a read transaction with [db2]. Check that this prevents [db] from # checkpointing the database. But not from writing to it. # do_test wal-10.$tn.11 { sql2 { BEGIN; SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10} do_test wal-10.$tn.12 { | < | < > | | | | | | 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | # Open a read transaction with [db2]. Check that this prevents [db] from # checkpointing the database. But not from writing to it. # do_test wal-10.$tn.11 { sql2 { BEGIN; SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10} do_test wal-10.$tn.12 { catchsql { PRAGMA wal_checkpoint } } {0 {0 7 7}} ;# Reader no longer block checkpoints do_test wal-10.$tn.13 { execsql { INSERT INTO t1 VALUES(11, 12) } sql2 {SELECT * FROM t1} } {1 2 3 4 5 6 7 8 9 10} # Writers do not block checkpoints any more either. # do_test wal-10.$tn.14 { catchsql { PRAGMA wal_checkpoint } } {0 {0 8 7}} # The following series of test cases used to verify another blocking # case in WAL - a case which no longer blocks. # do_test wal-10.$tn.15 { sql2 { COMMIT; BEGIN; SELECT * FROM t1; } } {1 2 3 4 5 6 7 8 9 10 11 12} do_test wal-10.$tn.16 { catchsql { PRAGMA wal_checkpoint } } {0 {0 8 8}} do_test wal-10.$tn.17 { execsql { PRAGMA wal_checkpoint } } {0 8 8} do_test wal-10.$tn.18 { sql3 { BEGIN; SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12} do_test wal-10.$tn.19 { catchsql { INSERT INTO t1 VALUES(13, 14) } } {0 {}} do_test wal-10.$tn.20 { |
︙ | ︙ | |||
593 594 595 596 597 598 599 | } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} # Another series of tests that used to demonstrate blocking behavior # but which now work. # do_test wal-10.$tn.23 { execsql { PRAGMA wal_checkpoint } | | | | | | | 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} # Another series of tests that used to demonstrate blocking behavior # but which now work. # do_test wal-10.$tn.23 { execsql { PRAGMA wal_checkpoint } } {0 9 9} do_test wal-10.$tn.24 { sql2 { BEGIN; SELECT * FROM t1; } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} do_test wal-10.$tn.25 { execsql { PRAGMA wal_checkpoint } } {0 9 9} do_test wal-10.$tn.26 { catchsql { INSERT INTO t1 VALUES(15, 16) } } {0 {}} do_test wal-10.$tn.27 { sql3 { INSERT INTO t1 VALUES(17, 18) } } {} do_test wal-10.$tn.28 { code3 { set ::STMT [sqlite3_prepare db3 "SELECT * FROM t1" -1 TAIL] sqlite3_step $::STMT } execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18} do_test wal-10.$tn.29 { execsql { INSERT INTO t1 VALUES(19, 20) } catchsql { PRAGMA wal_checkpoint } } {0 {0 3 0}} do_test wal-10.$tn.30 { code3 { sqlite3_finalize $::STMT } execsql { PRAGMA wal_checkpoint } } {0 3 0} # At one point, if a reader failed to upgrade to a writer because it # was reading an old snapshot, the write-locks were not being released. # Test that this bug has been fixed. # do_test wal-10.$tn.31 { sql2 COMMIT |
︙ | ︙ | |||
658 659 660 661 662 663 664 | } sql2 { BEGIN; SELECT * FROM t1; } } {a b c d} do_test wal-10.$tn.36 { | | | | | 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 | } sql2 { BEGIN; SELECT * FROM t1; } } {a b c d} do_test wal-10.$tn.36 { catchsql { PRAGMA wal_checkpoint } } {0 {0 8 8}} do_test wal-10.$tn.36 { sql3 { INSERT INTO t1 VALUES('e', 'f') } sql2 { SELECT * FROM t1 } } {a b c d} do_test wal-10.$tn.37 { sql2 COMMIT execsql { PRAGMA wal_checkpoint } } {0 9 9} } #------------------------------------------------------------------------- # This block of tests, wal-11.*, test that nothing goes terribly wrong # if frames must be written to the log file before a transaction is # committed (in order to free up memory). # |
︙ | ︙ | |||
1041 1042 1043 1044 1045 1046 1047 | 2 {sqlite3_wal_checkpoint db ""} SQLITE_OK 1 1 3 {db eval "PRAGMA wal_checkpoint"} {0 10 10} 1 1 4 {sqlite3_wal_checkpoint db main} SQLITE_OK 1 0 5 {sqlite3_wal_checkpoint db aux} SQLITE_OK 0 1 6 {sqlite3_wal_checkpoint db temp} SQLITE_OK 0 0 7 {db eval "PRAGMA main.wal_checkpoint"} {0 10 10} 1 0 | | | > | | | 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 | 2 {sqlite3_wal_checkpoint db ""} SQLITE_OK 1 1 3 {db eval "PRAGMA wal_checkpoint"} {0 10 10} 1 1 4 {sqlite3_wal_checkpoint db main} SQLITE_OK 1 0 5 {sqlite3_wal_checkpoint db aux} SQLITE_OK 0 1 6 {sqlite3_wal_checkpoint db temp} SQLITE_OK 0 0 7 {db eval "PRAGMA main.wal_checkpoint"} {0 10 10} 1 0 8 {db eval "PRAGMA aux.wal_checkpoint"} {0 13 13} 0 1 9 {db eval "PRAGMA temp.wal_checkpoint"} {0 -1 -1} 0 0 } { do_test wal-16.$tn.1 { forcedelete test2.db test2.db-wal test2.db-journal forcedelete test.db test.db-wal test.db-journal sqlite3 db test.db execsql { ATTACH 'test2.db' AS aux; PRAGMA main.auto_vacuum = 0; PRAGMA aux.auto_vacuum = 0; PRAGMA main.journal_mode = WAL; PRAGMA aux.journal_mode = WAL; SELECT count(*) FROM main.sqlite_master, aux.sqlite_master; PRAGMA main.synchronous = NORMAL; PRAGMA aux.synchronous = NORMAL; PRAGMA aux.synchronous = FULL; } } {wal wal 0} do_test wal-16.$tn.2 { execsql { CREATE TABLE main.t1(a, b, PRIMARY KEY(a, b)); CREATE TABLE aux.t2(a, b, PRIMARY KEY(a, b)); INSERT INTO t2 VALUES(1, randomblob(1000)); INSERT INTO t2 VALUES(2, randomblob(1000)); INSERT INTO t1 SELECT * FROM t2; } list [file size test.db] [file size test.db-wal] } [list [expr 1*1024] [wal_file_size 10 1024]] do_test wal-16.$tn.3 { list [file size test2.db] [file size test2.db-wal] } [list [expr 1*1024] [wal_file_size 13 1024]] do_test wal-16.$tn.4 [list eval $ckpt_cmd] $ckpt_res do_test wal-16.$tn.5 { list [file size test.db] [file size test.db-wal] } [list [expr ($ckpt_main ? 7 : 1)*1024] [wal_file_size 10 1024]] do_test wal-16.$tn.6 { list [file size test2.db] [file size test2.db-wal] } [list [expr ($ckpt_aux ? 7 : 1)*1024] [wal_file_size 13 1024]] catch { db close } } #------------------------------------------------------------------------- # The following tests - wal-17.* - attempt to verify that the correct # number of "padding" frames are appended to the log file when a transaction |
︙ | ︙ | |||
1556 1557 1558 1559 1560 1561 1562 1563 1564 | execsql { PRAGMA cache_size = 200; PRAGMA incremental_vacuum; PRAGMA wal_checkpoint; } file size test.db } [expr 3 * 1024] do_test 24.5 { file size test.db-wal | > > > > | | 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 | execsql { PRAGMA cache_size = 200; PRAGMA incremental_vacuum; PRAGMA wal_checkpoint; } file size test.db } [expr 3 * 1024] # WAL file now contains a single frame - the new root page for table t1. # It would be two frames (the new root page and a padding frame) if the # ZERO_DAMAGE flag were not set. do_test 24.5 { file size test.db-wal } [wal_file_size 1 1024] } db close sqlite3_shutdown test_sqlite3_log sqlite3_initialize finish_test |
Changes to test/wal2.test.
︙ | ︙ | |||
18 19 20 21 22 23 24 | source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2 ifcapable !wal {finish_test ; return } | < < < < | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2 ifcapable !wal {finish_test ; return } set sqlite_sync_count 0 proc cond_incr_sync_count {adj} { global sqlite_sync_count if {$::tcl_platform(platform) == "windows"} { incr sqlite_sync_count $adj } { |
︙ | ︙ | |||
352 353 354 355 356 357 358 | } #------------------------------------------------------------------------- # Test that a database connection using a VFS that does not support the # xShmXXX interfaces cannot open a WAL database. # | | < < < < > > | | 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | } #------------------------------------------------------------------------- # Test that a database connection using a VFS that does not support the # xShmXXX interfaces cannot open a WAL database. # do_test wal2-4.1 { sqlite3 db test.db execsql { PRAGMA auto_vacuum = 0; PRAGMA journal_mode = WAL; CREATE TABLE data(x); INSERT INTO data VALUES('need xShmOpen to see this'); PRAGMA wal_checkpoint; } # Three pages in the WAL file at this point: One copy of page 1 and two # of the root page for table "data". } {wal 0 3 3} do_test wal2-4.2 { db close testvfs tvfs -noshm 1 sqlite3 db test.db -vfs tvfs catchsql { SELECT * FROM data } } {1 {unable to open database file}} do_test wal2-4.3 { |
︙ | ︙ | |||
723 724 725 726 727 728 729 | do_test wal2-6.4.$tn.1 { execsql $S } $res do_test wal2-6.4.$tn.2 { set ::locks } $L } db close tvfs delete | | < < < < | | | 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 | do_test wal2-6.4.$tn.1 { execsql $S } $res do_test wal2-6.4.$tn.2 { set ::locks } $L } db close tvfs delete do_test wal2-6.5.1 { sqlite3 db test.db execsql { PRAGMA auto_vacuum = 0; PRAGMA journal_mode = wal; PRAGMA locking_mode = exclusive; CREATE TABLE t2(a, b); PRAGMA wal_checkpoint; INSERT INTO t2 VALUES('I', 'II'); PRAGMA journal_mode; } } {wal exclusive 0 2 2 wal} do_test wal2-6.5.2 { execsql { PRAGMA locking_mode = normal; INSERT INTO t2 VALUES('III', 'IV'); PRAGMA locking_mode = exclusive; SELECT * FROM t2; } } {normal exclusive I II III IV} do_test wal2-6.5.3 { execsql { PRAGMA wal_checkpoint } } {0 2 2} db close proc lock_control {method filename handle spec} { foreach {start n op type} $spec break if {$op == "lock"} { return SQLITE_IOERR } return SQLITE_OK } |
︙ | ︙ | |||
1183 1184 1185 1186 1187 1188 1189 | catch { db close } } } #------------------------------------------------------------------------- # Test that "PRAGMA checkpoint_fullsync" appears to be working. # | | | | | | | < < < < < < < < < < < < > | | | < < | 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 | catch { db close } } } #------------------------------------------------------------------------- # Test that "PRAGMA checkpoint_fullsync" appears to be working. # foreach {tn sql reslist} { 1 { } {10 0 4 0 6 0} 2 { PRAGMA checkpoint_fullfsync = 1 } {10 4 4 2 6 2} 3 { PRAGMA checkpoint_fullfsync = 0 } {10 0 4 0 6 0} } { faultsim_delete_and_reopen execsql {PRAGMA auto_vacuum = 0} execsql $sql do_execsql_test wal2-14.$tn.0 { PRAGMA page_size = 4096 } {} do_execsql_test wal2-14.$tn.1 { PRAGMA journal_mode = WAL } {wal} set sqlite_sync_count 0 set sqlite_fullsync_count 0 do_execsql_test wal2-14.$tn.2 { PRAGMA wal_autocheckpoint = 10; CREATE TABLE t1(a, b); -- 2 wal syncs INSERT INTO t1 VALUES(1, 2); -- 2 wal sync PRAGMA wal_checkpoint; -- 1 wal sync, 1 db sync BEGIN; INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); COMMIT; -- 2 wal sync PRAGMA wal_checkpoint; -- 1 wal sync, 1 db sync } {10 0 3 3 0 1 1} do_test wal2-14.$tn.3 { cond_incr_sync_count 1 list $sqlite_sync_count $sqlite_fullsync_count } [lrange $reslist 0 1] set sqlite_sync_count 0 |
︙ | ︙ | |||
1255 1256 1257 1258 1259 1260 1261 | catch { db close } # PRAGMA checkpoint_fullsync # PRAGMA fullfsync # PRAGMA synchronous # | | | | | | | | | | | | | | > > < | < | | | | < < < < < < < < | < < < | | < | | | | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 | catch { db close } # PRAGMA checkpoint_fullsync # PRAGMA fullfsync # PRAGMA synchronous # foreach {tn settings restart_sync commit_sync ckpt_sync} { 1 {0 0 off} {0 0} {0 0} {0 0} 2 {0 0 normal} {1 0} {0 0} {2 0} 3 {0 0 full} {2 0} {1 0} {2 0} 4 {0 1 off} {0 0} {0 0} {0 0} 5 {0 1 normal} {0 1} {0 0} {0 2} 6 {0 1 full} {0 2} {0 1} {0 2} 7 {1 0 off} {0 0} {0 0} {0 0} 8 {1 0 normal} {1 0} {0 0} {0 2} 9 {1 0 full} {2 0} {1 0} {0 2} 10 {1 1 off} {0 0} {0 0} {0 0} 11 {1 1 normal} {0 1} {0 0} {0 2} 12 {1 1 full} {0 2} {0 1} {0 2} } { forcedelete test.db testvfs tvfs -default 1 tvfs filter xSync tvfs script xSyncCb proc xSyncCb {method file fileid flags} { incr ::sync($flags) } sqlite3 db test.db do_execsql_test 15.$tn.1 " PRAGMA page_size = 4096; CREATE TABLE t1(x); PRAGMA wal_autocheckpoint = OFF; PRAGMA journal_mode = WAL; PRAGMA checkpoint_fullfsync = [lindex $settings 0]; PRAGMA fullfsync = [lindex $settings 1]; PRAGMA synchronous = [lindex $settings 2]; " {0 wal} if { $tn==2} breakpoint do_test 15.$tn.2 { set sync(normal) 0 set sync(full) 0 execsql { INSERT INTO t1 VALUES('abc') } list $::sync(normal) $::sync(full) } $restart_sync do_test 15.$tn.3 { set sync(normal) 0 set sync(full) 0 execsql { INSERT INTO t1 VALUES('abc') } list $::sync(normal) $::sync(full) } $commit_sync do_test 15.$tn.4 { set sync(normal) 0 set sync(full) 0 execsql { INSERT INTO t1 VALUES('def') } list $::sync(normal) $::sync(full) } $commit_sync do_test 15.$tn.5 { set sync(normal) 0 set sync(full) 0 execsql { PRAGMA wal_checkpoint } list $::sync(normal) $::sync(full) } $ckpt_sync db close tvfs delete } finish_test |
Changes to test/wal3.test.
︙ | ︙ | |||
15 16 17 18 19 20 21 | set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/wal_common.tcl source $testdir/malloc_common.tcl ifcapable !wal {finish_test ; return } | < < < < | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/wal_common.tcl source $testdir/malloc_common.tcl ifcapable !wal {finish_test ; return } set a_string_counter 1 proc a_string {n} { global a_string_counter incr a_string_counter string range [string repeat "${a_string_counter}." $n] 1 $n } |
︙ | ︙ | |||
203 204 205 206 207 208 209 | {} 2 normal {test.db-wal normal test.db normal} 3 full {test.db-wal normal test.db-wal normal test.db-wal normal test.db normal} } { | < < < < < < < < < < > | < | 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | {} 2 normal {test.db-wal normal test.db normal} 3 full {test.db-wal normal test.db-wal normal test.db-wal normal test.db normal} } { proc sync_counter {args} { foreach {method filename id flags} $args break lappend ::syncs [file tail $filename] $flags } do_test wal3-3.$tn { forcedelete test.db test.db-wal test.db-journal testvfs T T filter {} T script sync_counter sqlite3 db test.db -vfs T execsql "PRAGMA synchronous = $syncmode" execsql { PRAGMA journal_mode = WAL } execsql { CREATE TABLE filler(a,b,c); } set ::syncs [list] T filter xSync execsql { CREATE TABLE x(y); INSERT INTO x VALUES('z'); PRAGMA wal_checkpoint; |
︙ | ︙ | |||
439 440 441 442 443 444 445 | do_test wal3-6.1.2 { sqlite3 db2 test.db sqlite3 db3 test.db execsql { BEGIN ; SELECT * FROM t1 } db3 } {o t t f} do_test wal3-6.1.3 { execsql { PRAGMA wal_checkpoint } db2 | | | 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | do_test wal3-6.1.2 { sqlite3 db2 test.db sqlite3 db3 test.db execsql { BEGIN ; SELECT * FROM t1 } db3 } {o t t f} do_test wal3-6.1.3 { execsql { PRAGMA wal_checkpoint } db2 } {0 4 4} # At this point the log file has been fully checkpointed. However, # connection [db3] holds a lock that prevents the log from being wrapped. # Test case 3.6.1.4 has [db] attempt a read-lock on aReadMark[0]. But # as it is obtaining the lock, [db2] appends to the log file. # T filter xShmLock |
︙ | ︙ | |||
528 529 530 531 532 533 534 | BEGIN; SELECT * FROM t1; }] } } do_test wal3-6.2.2 { execsql { PRAGMA wal_checkpoint } | | | 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | BEGIN; SELECT * FROM t1; }] } } do_test wal3-6.2.2 { execsql { PRAGMA wal_checkpoint } } {0 4 4} do_test wal3-6.2.3 { set ::R } {h h l b} do_test wal3-6.2.4 { set sz1 [file size test.db-wal] execsql { INSERT INTO t1 VALUES('b', 'c'); } set sz2 [file size test.db-wal] |
︙ | ︙ | |||
625 626 627 628 629 630 631 | db close db2 close T delete #------------------------------------------------------------------------- # | | | > | < < < < | 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 | db close db2 close T delete #------------------------------------------------------------------------- # do_test wal3-8.1 { forcedelete test.db test.db-journal test.db wal sqlite3 db test.db sqlite3 db2 test.db execsql { PRAGMA auto_vacuum = off; PRAGMA journal_mode = WAL; CREATE TABLE b(c); INSERT INTO b VALUES('Tehran'); INSERT INTO b VALUES('Qom'); INSERT INTO b VALUES('Markazi'); PRAGMA wal_checkpoint; } } {wal 0 5 5} do_test wal3-8.2 { execsql { SELECT * FROM b } } {Tehran Qom Markazi} do_test wal3-8.3 { db eval { SELECT * FROM b } { db eval { INSERT INTO b VALUES('Qazvin') } set r [db2 eval { SELECT * FROM b }] |
︙ | ︙ |
Changes to test/wal5.test.
︙ | ︙ | |||
193 194 195 196 197 198 199 | sql1 { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); CREATE TABLE aux.t2(a, b); INSERT INTO t2 VALUES(1, 2); } } {} | | < < | < < | < < | < < | < < | < < | < < | < < | < < | | | | | | | | | | | | 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | sql1 { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); CREATE TABLE aux.t2(a, b); INSERT INTO t2 VALUES(1, 2); } } {} do_test 2.2.$tn.2 { file_page_counts } {1 3 1 3} do_test 2.1.$tn.3 { code1 { do_wal_checkpoint db } } {0 3 3} do_test 2.1.$tn.4 { file_page_counts } {2 3 2 3} } do_multiclient_test tn { setup_and_attach_aux do_test 2.2.$tn.1 { execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); CREATE TABLE aux.t2(a, b); INSERT INTO t2 VALUES(1, 2); INSERT INTO t2 VALUES(3, 4); } } {} do_test 2.2.$tn.2 { file_page_counts } {1 3 1 4} do_test 2.2.$tn.3 { sql2 { BEGIN; SELECT * FROM t1 } } {1 2} do_test 2.2.$tn.4 { code1 { do_wal_checkpoint db -mode restart } } {1 3 3} do_test 2.2.$tn.5 { file_page_counts } {2 3 2 4} } do_multiclient_test tn { setup_and_attach_aux do_test 2.3.$tn.1 { execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); CREATE TABLE aux.t2(a, b); INSERT INTO t2 VALUES(1, 2); } } {} do_test 2.3.$tn.2 { file_page_counts } {1 3 1 3} do_test 2.3.$tn.3 { sql2 { BEGIN; SELECT * FROM t1 } } {1 2} do_test 2.3.$tn.4 { sql1 { INSERT INTO t1 VALUES(3, 4) } } {} do_test 2.3.$tn.5 { sql1 { INSERT INTO t2 VALUES(3, 4) } } {} do_test 2.3.$tn.6 { file_page_counts } {1 4 1 4} do_test 2.3.$tn.7 { code1 { do_wal_checkpoint db -mode full } } {1 4 3} do_test 2.3.$tn.8 { file_page_counts } {1 4 2 4} } # Check that checkpoints block on the correct locks. And respond correctly # if they cannot obtain those locks. There are three locks that a checkpoint # may block on (in the following order): # # 1. The writer lock: FULL and RESTART checkpoints block until any writer # process releases its lock. # # 2. Readers using part of the log file. FULL and RESTART checkpoints block # until readers using part (but not all) of the log file have finished. # # 3. Readers using any of the log file. After copying data into the # database file, RESTART checkpoints block until readers using any part # of the log file have finished. # # This test case involves running a checkpoint while there exist other # processes holding all three types of locks. # foreach {tn1 checkpoint busy_on ckpt_expected expected} { 1 PASSIVE - {0 3 3} - 2 TYPO - {0 3 3} - 3 FULL - {0 4 4} 2 4 FULL 1 {1 3 3} 1 5 FULL 2 {1 4 3} 2 6 FULL 3 {0 4 4} 2 7 RESTART - {0 4 4} 3 8 RESTART 1 {1 3 3} 1 9 RESTART 2 {1 4 3} 2 10 RESTART 3 {1 4 4} 3 } { do_multiclient_test tn { setup_and_attach_aux proc busyhandler {x} { set ::max_busyhandler $x |
︙ | ︙ | |||
308 309 310 311 312 313 314 | CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); } sql2 { BEGIN; INSERT INTO t1 VALUES(3, 4) } sql3 { BEGIN; SELECT * FROM t1 } } {1 2} | < < < < < < < | 290 291 292 293 294 295 296 297 298 299 300 301 302 303 | CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); } sql2 { BEGIN; INSERT INTO t1 VALUES(3, 4) } sql3 { BEGIN; SELECT * FROM t1 } } {1 2} do_test 2.4.$tn1.$tn.2 { code1 { db busy busyhandler } code1 { do_wal_checkpoint db -mode [string tolower $checkpoint] } } $ckpt_expected do_test 2.4.$tn1.$tn.3 { set ::max_busyhandler } $expected } } |
︙ | ︙ |
Added test/walcrash3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | # 2011 December 16 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This test simulates an application crash immediately following a # system call to truncate a file. Specifically, the system call that # truncates the WAL file if "PRAGMA journal_size_limit" is configured. # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !wal {finish_test ; return } set testprefix walcrash3 db close testvfs tvfs tvfs filter {xTruncate xWrite} tvfs script tvfs_callback proc tvfs_callback {args} {} sqlite3 db test.db -vfs tvfs do_execsql_test 1.1 { PRAGMA page_size = 1024; PRAGMA journal_mode = WAL; PRAGMA wal_autocheckpoint = 128; PRAGMA journal_size_limit = 16384; CREATE TABLE t1(a BLOB, b BLOB, UNIQUE(a, b)); INSERT INTO t1 VALUES(randomblob(10), randomblob(1000)); } {wal 128 16384} proc tvfs_callback {method file arglist} { if {$::state==1} { foreach f [glob -nocomplain xx_test.*] { forcedelete $f } foreach f [glob -nocomplain test.*] { forcecopy $f "xx_$f" } set ::state 2 } if {$::state==0 && $method=="xTruncate" && [file tail $file]=="test.db-wal"} { set ::state 1 } } for {set i 2} {$i<1000} {incr i} { # If the WAL file is truncated within the following, within the following # xWrite call the [tvfs_callback] makes a copy of the database and WAL # files set sets $::state to 2. So that the copied files are in the same # state as the real database and WAL files would be if an application crash # occurred immediately following the xTruncate(). # set ::state 0 do_execsql_test 1.$i.1 { INSERT INTO t1 VALUES(randomblob(10), randomblob(1000)); } # If a copy was made, open it and run the integrity-check. # if {$::state==2} { sqlite3 db2 xx_test.db do_test 1.$i.2 { execsql { PRAGMA integrity_check } db2 } "ok" do_test 1.$i.3 { execsql { SELECT count(*) FROM t1 } db2 } [expr $i-1] db2 close } } catch { db close } tvfs delete #-------------------------------------------------------------------------- # catch { db close } forcedelete test.db do_test 2.1 { sqlite3 db test.db execsql { PRAGMA page_size = 512; PRAGMA journal_mode = WAL; PRAGMA wal_autocheckpoint = 128; CREATE TABLE t1(a PRIMARY KEY, b); INSERT INTO t1 VALUES(randomblob(25), randomblob(200)); } for {set i 0} {$i < 1500} {incr i} { execsql { INSERT INTO t1 VALUES(randomblob(25), randomblob(200)) } } db_save db close } {} set nInitialErr [set_test_counter errors] for {set i 2} {$i<10000 && [set_test_counter errors]==$nInitialErr} {incr i} { do_test 2.$i.1 { catch { db close } db_restore crashsql -delay 2 -file test.db-wal -seed $i { SELECT * FROM sqlite_master; PRAGMA synchronous = full; PRAGMA wal_checkpoint; BEGIN; INSERT INTO t1 VALUES(randomblob(26), randomblob(200)); INSERT INTO t1 VALUES(randomblob(26), randomblob(200)); INSERT INTO t1 VALUES(randomblob(26), randomblob(200)); INSERT INTO t1 VALUES(randomblob(26), randomblob(200)); INSERT INTO t1 VALUES(randomblob(26), randomblob(200)); INSERT INTO t1 VALUES(randomblob(26), randomblob(200)); INSERT INTO t1 VALUES(randomblob(26), randomblob(200)); INSERT INTO t1 VALUES(randomblob(26), randomblob(200)); COMMIT; } } {1 {child process exited abnormally}} do_test 2.$i.2 { sqlite3 db test.db execsql { PRAGMA integrity_check } } {ok} } finish_test |
Changes to test/walpersist.test.
︙ | ︙ | |||
64 65 66 67 68 69 70 | } {0 1} do_test walpersist-1.11 { db close list [file exists test.db] [file exists test.db-wal] [file exists test.db-shm] } {1 1 1} # Make sure the journal_size_limit works to limit the size of the | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > | > | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | } {0 1} do_test walpersist-1.11 { db close list [file exists test.db] [file exists test.db-wal] [file exists test.db-shm] } {1 1 1} # Make sure the journal_size_limit works to limit the size of the # persisted wal file. In persistent-wal mode, any non-negative # journal_size_limit causes the WAL file to be truncated to zero bytes # when closing. # forcedelete test.db test.db-shm test.db-wal do_test walpersist-2.1 { sqlite3 db test.db db eval { PRAGMA journal_mode=WAL; PRAGMA wal_autocheckpoint=OFF; PRAGMA journal_size_limit=12000; CREATE TABLE t1(x); INSERT INTO t1 VALUES(randomblob(50000)); UPDATE t1 SET x=randomblob(50000); } expr {[file size test.db-wal]>100000} } {1} do_test walpersist-2.2 { file_control_persist_wal db 1 db close concat [file exists test.db-wal] [file size test.db-wal] } {1 0} do_test walpersist-2.3 { sqlite3 db test.db execsql { PRAGMA integrity_check } } {ok} do_test 3.1 { catch {db close} forcedelete test.db test.db-shm test.db-wal sqlite3 db test.db execsql { PRAGMA page_size = 1024; PRAGMA journal_mode = WAL; PRAGMA wal_autocheckpoint=128; PRAGMA journal_size_limit=16384; CREATE TABLE t1(a, b, PRIMARY KEY(a, b)); } } {wal 128 16384} do_test 3.2 { for {set i 0} {$i<200} {incr i} { execsql { INSERT INTO t1 VALUES(randomblob(500), randomblob(500)) } } file_control_persist_wal db 1 db close } {} do_test walpersist-3.3 { file size test.db-wal } {0} do_test walpersist-3.4 { sqlite3 db test.db execsql { PRAGMA integrity_check } } {ok} finish_test |
Added test/zerodamage.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | # 2011 December 21 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file implements tests of the SQLITE_IOCAP_POWERSAFE_OVERWRITE property # and the SQLITE_FCNTL_POWERSAFE_OVERWRITE file-control for manipulating it. # # The name of this file comes from the fact that we used to call the # POWERSAFE_OVERWRITE property ZERO_DAMAGE. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix wal5 # POWERSAFE_OVERWRITE defaults to true # do_test zerodamage-1.0 { file_control_powersafe_overwrite db -1 } {0 1} # Check the ability to turn zero-damage on and off. # do_test zerodamage-1.1 { file_control_powersafe_overwrite db 0 file_control_powersafe_overwrite db -1 } {0 0} do_test zerodamage-1.2 { file_control_powersafe_overwrite db 1 file_control_powersafe_overwrite db -1 } {0 1} # Run a transaction with zero-damage on, a small page size and a much larger # sectorsize. Verify that the maximum journal size is small - that the # rollback journal is not being padded. # do_test zerodamage-2.0 { db close testvfs tv -default 1 tv sectorsize 8192 sqlite3 db file:test.db?psow=TRUE -uri 1 unset -nocomplain ::max_journal_size set ::max_journal_size 0 proc xDeleteCallback {method file args} { set sz [file size $file] if {$sz>$::max_journal_size} {set ::max_journal_size $sz} } tv filter xDelete tv script xDeleteCallback register_wholenumber_module db db eval { PRAGMA page_size=1024; PRAGMA journal_mode=DELETE; PRAGMA cache_size=5; CREATE VIRTUAL TABLE nums USING wholenumber; CREATE TABLE t1(x, y); INSERT INTO t1 SELECT value, randomblob(100) FROM nums WHERE value BETWEEN 1 AND 400; } set ::max_journal_size 0 db eval { UPDATE t1 SET y=randomblob(50) WHERE x=123; } concat [file_control_powersafe_overwrite db -1] [set ::max_journal_size] } {0 1 2576} # Repeat the previous step with zero-damage turned off. This time the # maximum rollback journal size should be much larger. # do_test zerodamage-2.1 { set ::max_journal_size 0 db close sqlite3 db file:test.db?psow=FALSE -uri 1 db eval { UPDATE t1 SET y=randomblob(50) WHERE x=124; } concat [file_control_powersafe_overwrite db -1] [set ::max_journal_size] } {0 0 24704} # Run a WAL-mode transaction with POWERSAFE_OVERWRITE on to verify that the # WAL file does not get too big. # do_test zerodamage-3.0 { db eval { PRAGMA journal_mode=WAL; } db close sqlite3 db file:test.db?psow=TRUE -uri 1 db eval { UPDATE t1 SET y=randomblob(50) WHERE x=124; } file size test.db-wal } {1080} # Repeat the previous with POWERSAFE_OVERWRITE off. Verify that the WAL file # is padded. # do_test zerodamage-3.1 { db close sqlite3 db file:test.db?psow=FALSE -uri 1 db eval { UPDATE t1 SET y=randomblob(50) WHERE x=124; } file size test.db-wal } {8416} |