SQLite

Check-in [8862ce9cee]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Registerify the comparison opcodes. (CVS 4697)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 8862ce9ceefba4f5d1ffbd51d824c05f42a58c22
User & Date: drh 2008-01-08 23:54:25.000
Context
2008-01-09
02:15
Continued work toward converting to a register-based VM. (CVS 4698) (check-in: 92deff07bb user: drh tags: trunk)
2008-01-08
23:54
Registerify the comparison opcodes. (CVS 4697) (check-in: 8862ce9cee user: drh tags: trunk)
18:57
Finish registerizing the core logic of INSERT and UPDATE. (CVS 4696) (check-in: 5fd1036788 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/analyze.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2005 July 8
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** @(#) $Id: analyze.c,v 1.34 2008/01/05 16:29:28 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2005 July 8
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** @(#) $Id: analyze.c,v 1.35 2008/01/08 23:54:25 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.
155
156
157
158
159
160
161
162

163
164
165
166
167
168
169
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Column, iIdxCur, i);
      sqlite3VdbeAddOp1(v, OP_SCopy, iMem+nCol+i+1);
      sqlite3VdbeAddOp1(v, OP_Ne, 0x100);  /* FIX ME: use collating sequence */

    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      addr = sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }







|
>







155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Column, iIdxCur, i);
      sqlite3VdbeAddOp1(v, OP_SCopy, iMem+nCol+i+1);
      sqlite3VdbeAddOp0(v, OP_Ne );  /* Use Collating sequence */
      sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      addr = sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }
Changes to src/delete.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
** $Id: delete.c,v 1.153 2008/01/08 02:57:56 drh Exp $
*/
#include "sqliteInt.h"

/*
** Look up every table that is named in pSrc.  If any table is not found,
** add an error message to pParse->zErrMsg and return NULL.  If all tables
** are found, return a pointer to the last table.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
** $Id: delete.c,v 1.154 2008/01/08 23:54:25 drh Exp $
*/
#include "sqliteInt.h"

/*
** Look up every table that is named in pSrc.  If any table is not found,
** add an error message to pParse->zErrMsg and return NULL.  If all tables
** are found, return a pointer to the last table.
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
void sqlite3CodeInsert(Parse *p, int iCur, u8 flags){
  int iData = ++p->nMem;
  int iKey = ++p->nMem;
  Vdbe *v = sqlite3GetVdbe(p);
  sqlite3VdbeAddOp2(v, OP_Move, 0, iData);
  sqlite3VdbeAddOp2(v, OP_Move, 0, iKey);
  sqlite3VdbeAddOp3(v, OP_Insert, iCur, iData, iKey);
  sqlite3VdbeChangeP5(v, sqlite3VdbeCurrentAddr(v)-1, flags);
}

/*
** Allocate nVal contiguous memory cells and return the index of the
** first. Also pop nVal elements from the stack and store them in the 
** registers. The element on the top of the stack is stored in the
** register with the largest index.







|







67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
void sqlite3CodeInsert(Parse *p, int iCur, u8 flags){
  int iData = ++p->nMem;
  int iKey = ++p->nMem;
  Vdbe *v = sqlite3GetVdbe(p);
  sqlite3VdbeAddOp2(v, OP_Move, 0, iData);
  sqlite3VdbeAddOp2(v, OP_Move, 0, iKey);
  sqlite3VdbeAddOp3(v, OP_Insert, iCur, iData, iKey);
  sqlite3VdbeChangeP5(v, flags);
}

/*
** Allocate nVal contiguous memory cells and return the index of the
** first. Also pop nVal elements from the stack and store them in the 
** registers. The element on the top of the stack is stored in the
** register with the largest index.
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.337 2008/01/08 02:57:56 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.338 2008/01/08 23:54:25 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
      return idx_affinity==SQLITE_AFF_TEXT;
    default:
      return sqlite3IsNumericAffinity(idx_affinity);
  }
}

/*
** Return the P1 value that should be used for a binary comparison
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
** If jumpIfNull is true, then set the low byte of the returned
** P1 value to tell the opcode to jump if either expression
** evaluates to NULL.
*/
static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
  char aff = sqlite3ExprAffinity(pExpr2);
  return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);

}

/*
** Return a pointer to the collation sequence that should be used by
** a binary comparison operator comparing pLeft and pRight.
**
** If the left hand expression has a collating sequence type, then it is







|

<
<
<

|
|
|
>







154
155
156
157
158
159
160
161
162



163
164
165
166
167
168
169
170
171
172
173
174
      return idx_affinity==SQLITE_AFF_TEXT;
    default:
      return sqlite3IsNumericAffinity(idx_affinity);
  }
}

/*
** Return the P5 value that should be used for a binary comparison
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.



*/
static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
  u8 aff = (char)sqlite3ExprAffinity(pExpr2);
  aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
  return aff;
}

/*
** Return a pointer to the collation sequence that should be used by
** a binary comparison operator comparing pLeft and pRight.
**
** If the left hand expression has a collating sequence type, then it is
207
208
209
210
211
212
213

214
215
216



217
218

219
220


221
222
223
224
225
226
227
** Generate code for a comparison operator.
*/
static int codeCompare(
  Parse *pParse,    /* The parsing (and code generating) context */
  Expr *pLeft,      /* The left operand */
  Expr *pRight,     /* The right operand */
  int opcode,       /* The comparison opcode */

  int dest,         /* Jump here if true.  */
  int jumpIfNull    /* If true, jump if either operand is NULL */
){



  int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
  CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);

  return sqlite3VdbeAddOp4(pParse->pVdbe, opcode, p1, dest, 0,
                           (void*)p3, P4_COLLSEQ);


}

/*
** Construct a new expression node and return a pointer to it.  Memory
** for this node is obtained from sqlite3_malloc().  The calling function
** is responsible for making sure the node eventually gets freed.
*/







>



>
>
>
|
|
>
|
|
>
>







205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
** Generate code for a comparison operator.
*/
static int codeCompare(
  Parse *pParse,    /* The parsing (and code generating) context */
  Expr *pLeft,      /* The left operand */
  Expr *pRight,     /* The right operand */
  int opcode,       /* The comparison opcode */
  int in1, int in2, /* Register holding operands */
  int dest,         /* Jump here if true.  */
  int jumpIfNull    /* If true, jump if either operand is NULL */
){
  int p5;
  int addr;
  CollSeq *p4;

  p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
  p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
  addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
                           (void*)p4, P4_COLLSEQ);
  sqlite3VdbeChangeP5(pParse->pVdbe, p5);
  return addr;
}

/*
** Construct a new expression node and return a pointer to it.  Memory
** for this node is obtained from sqlite3_malloc().  The calling function
** is responsible for making sure the node eventually gets freed.
*/
2054
2055
2056
2057
2058
2059
2060

2061
2062
2063
2064
2065
2066





2067
2068
2069

2070
2071
2072
2073
2074
2075
2076
#endif /* SQLITE_OMIT_CAST */
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {

      assert( TK_LT==OP_Lt );
      assert( TK_LE==OP_Le );
      assert( TK_GT==OP_Gt );
      assert( TK_GE==OP_Ge );
      assert( TK_EQ==OP_Eq );
      assert( TK_NE==OP_Ne );





      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3ExprCode(pParse, pExpr->pRight, 0);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);

      break;
    }
    case TK_AND:
    case TK_OR:
    case TK_PLUS:
    case TK_STAR:
    case TK_MINUS:







>






>
>
>
>
>
|
|
|
>







2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
#endif /* SQLITE_OMIT_CAST */
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      int r1, r2;
      assert( TK_LT==OP_Lt );
      assert( TK_LE==OP_Le );
      assert( TK_GT==OP_Gt );
      assert( TK_GE==OP_Ge );
      assert( TK_EQ==OP_Eq );
      assert( TK_NE==OP_Ne );
      if( target>0 ){
        inReg = target;
      }else{
        inReg = ++pParse->nMem;
      }
      r1 = sqlite3ExprCode(pParse, pExpr->pLeft, -1);
      r2 = sqlite3ExprCode(pParse, pExpr->pRight, -1);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  r1, r2, inReg, SQLITE_STOREP2);
      break;
    }
    case TK_AND:
    case TK_OR:
    case TK_PLUS:
    case TK_STAR:
    case TK_MINUS:
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS:
    case TK_SELECT: {
      if( pExpr->iColumn==0 ){
        sqlite3CodeSubselect(pParse, pExpr);
      }
      inReg = pExpr->iColumn;
      /* sqlite3VdbeAddOp1(v, OP_SCopy, pExpr->iColumn);
      VdbeComment((v, "load subquery result")); */
      break;
    }
    case TK_IN: {
      int j1, j2, j3, j4, j5;
      char affinity;
      int eType;








<
<







2213
2214
2215
2216
2217
2218
2219


2220
2221
2222
2223
2224
2225
2226
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS:
    case TK_SELECT: {
      if( pExpr->iColumn==0 ){
        sqlite3CodeSubselect(pParse, pExpr);
      }
      inReg = pExpr->iColumn;


      break;
    }
    case TK_IN: {
      int j1, j2, j3, j4, j5;
      char affinity;
      int eType;

2250
2251
2252
2253
2254
2255
2256







2257
2258
2259

2260
2261

2262
2263
2264

2265
2266
2267
2268
2269
2270
2271
2272
2273
      break;
    }
#endif
    case TK_BETWEEN: {
      Expr *pLeft = pExpr->pLeft;
      struct ExprList_item *pLItem = pExpr->pList->a;
      Expr *pRight = pLItem->pExpr;







      sqlite3ExprCode(pParse, pLeft, 0);
      sqlite3VdbeAddOp0(v, OP_Copy);
      sqlite3ExprCode(pParse, pRight, 0);

      codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
      sqlite3VdbeAddOp1(v, OP_Pull, 1);

      pLItem++;
      pRight = pLItem->pExpr;
      sqlite3ExprCode(pParse, pRight, 0);

      codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
      sqlite3VdbeAddOp0(v, OP_And);
      break;
    }
    case TK_UPLUS: {
      inReg = sqlite3ExprCode(pParse, pExpr->pLeft, origTarget);
      break;
    }
    case TK_CASE: {







>
>
>
>
>
>
>
|
<
|
>
|
<
>


|
>
|
|







2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274

2275
2276
2277

2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
      break;
    }
#endif
    case TK_BETWEEN: {
      Expr *pLeft = pExpr->pLeft;
      struct ExprList_item *pLItem = pExpr->pList->a;
      Expr *pRight = pLItem->pExpr;
      int r1, r2, r3, r4, r5;

      if( target>0 ){
        inReg = target;
      }else{
        inReg = ++pParse->nMem;
      }
      r1 = sqlite3ExprCode(pParse, pLeft, -1);

      r2 = sqlite3ExprCode(pParse, pRight, -1);
      r3 = ++pParse->nMem;
      codeCompare(pParse, pLeft, pRight, OP_Ge,

                  r1, r2, r3, SQLITE_STOREP2);
      pLItem++;
      pRight = pLItem->pExpr;
      r4 = sqlite3ExprCode(pParse, pRight, -1);
      r5 = ++pParse->nMem;
      codeCompare(pParse, pLeft, pRight, OP_Le, r1, r4, r5, SQLITE_STOREP2);
      sqlite3VdbeAddOp3(v, OP_And, r3, r5, inReg);
      break;
    }
    case TK_UPLUS: {
      inReg = sqlite3ExprCode(pParse, pExpr->pLeft, origTarget);
      break;
    }
    case TK_CASE: {
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
        sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      }
      for(i=0; i<nExpr; i=i+2){
        sqlite3ExprCode(pParse, aListelem[i].pExpr, 0);
        if( pExpr->pLeft ){
          sqlite3VdbeAddOp1(v, OP_SCopy, -1);
          jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
                                 OP_Ne, 0, 1);
          sqlite3VdbeAddOp1(v, OP_Pop, 1);
        }else{
          jumpInst = sqlite3VdbeAddOp2(v, OP_IfNot, 1, 0);
        }
        sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
        sqlite3VdbeAddOp2(v, OP_Goto, 0, expr_end_label);
        sqlite3VdbeJumpHere(v, jumpInst);







|







2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
        sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      }
      for(i=0; i<nExpr; i=i+2){
        sqlite3ExprCode(pParse, aListelem[i].pExpr, 0);
        if( pExpr->pLeft ){
          sqlite3VdbeAddOp1(v, OP_SCopy, -1);
          jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
                                 OP_Ne, 0, 0, 0, SQLITE_JUMPIFNULL);
          sqlite3VdbeAddOp1(v, OP_Pop, 1);
        }else{
          jumpInst = sqlite3VdbeAddOp2(v, OP_IfNot, 1, 0);
        }
        sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
        sqlite3VdbeAddOp2(v, OP_Goto, 0, expr_end_label);
        sqlite3VdbeJumpHere(v, jumpInst);
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424

2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437

/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is true but execution
** continues straight thru if the expression is false.
**
** If the expression evaluates to NULL (neither true nor false), then
** take the jump if the jumpIfNull flag is true.
**
** This code depends on the fact that certain token values (ex: TK_EQ)
** are the same as opcode values (ex: OP_Eq) that implement the corresponding
** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
** the make process cause these values to align.  Assert()s in the code
** below verify that the numbers are aligned correctly.
*/
void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  Vdbe *v = pParse->pVdbe;
  int op = 0;

  if( v==0 || pExpr==0 ) return;
  op = pExpr->op;
  switch( op ){
    case TK_AND: {
      int d2 = sqlite3VdbeMakeLabel(v);
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
      sqlite3VdbeResolveLabel(v, d2);
      break;
    }
    case TK_OR: {
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);







|










>





|







2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456

/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is true but execution
** continues straight thru if the expression is false.
**
** If the expression evaluates to NULL (neither true nor false), then
** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
**
** This code depends on the fact that certain token values (ex: TK_EQ)
** are the same as opcode values (ex: OP_Eq) that implement the corresponding
** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
** the make process cause these values to align.  Assert()s in the code
** below verify that the numbers are aligned correctly.
*/
void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  Vdbe *v = pParse->pVdbe;
  int op = 0;
  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
  if( v==0 || pExpr==0 ) return;
  op = pExpr->op;
  switch( op ){
    case TK_AND: {
      int d2 = sqlite3VdbeMakeLabel(v);
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
      sqlite3VdbeResolveLabel(v, d2);
      break;
    }
    case TK_OR: {
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2451
2452
2453
2454
2455
2456
2457
2458

2459
2460
2461
2462
2463
2464
2465
      assert( TK_LE==OP_Le );
      assert( TK_GT==OP_Gt );
      assert( TK_GE==OP_Ge );
      assert( TK_EQ==OP_Eq );
      assert( TK_NE==OP_Ne );
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3ExprCode(pParse, pExpr->pRight, 0);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);

      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);







|
>







2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
      assert( TK_LE==OP_Le );
      assert( TK_GT==OP_Gt );
      assert( TK_GE==OP_Ge );
      assert( TK_EQ==OP_Eq );
      assert( TK_NE==OP_Ne );
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3ExprCode(pParse, pExpr->pRight, 0);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  0, 0, dest, jumpIfNull);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
2475
2476
2477
2478
2479
2480
2481
2482

2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507

2508
2509
2510
2511

2512
2513
2514
2515
2516
2517
2518
      */
      int addr;
      Expr *pLeft = pExpr->pLeft;
      Expr *pRight = pExpr->pList->a[0].pExpr;
      sqlite3ExprCode(pParse, pLeft, 0);
      sqlite3VdbeAddOp0(v, OP_Copy);
      sqlite3ExprCode(pParse, pRight, 0);
      addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);


      pRight = pExpr->pList->a[1].pExpr;
      sqlite3ExprCode(pParse, pRight, 0);
      codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);

      sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
      sqlite3VdbeJumpHere(v, addr);
      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      break;
    }
    default: {
      sqlite3ExprCode(pParse, pExpr, 0);
      sqlite3VdbeAddOp2(v, OP_If, jumpIfNull, dest);
      break;
    }
  }
}

/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is false but execution
** continues straight thru if the expression is true.
**
** If the expression evaluates to NULL (neither true nor false) then
** jump if jumpIfNull is true or fall through if jumpIfNull is false.

*/
void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  Vdbe *v = pParse->pVdbe;
  int op = 0;

  if( v==0 || pExpr==0 ) return;

  /* The value of pExpr->op and op are related as follows:
  **
  **       pExpr->op            op
  **       ---------          ----------
  **       TK_ISNULL          OP_NotNull







|
>



|




















|
>




>







2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
      */
      int addr;
      Expr *pLeft = pExpr->pLeft;
      Expr *pRight = pExpr->pList->a[0].pExpr;
      sqlite3ExprCode(pParse, pLeft, 0);
      sqlite3VdbeAddOp0(v, OP_Copy);
      sqlite3ExprCode(pParse, pRight, 0);
      addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, 0, 0,
                         jumpIfNull ^ SQLITE_JUMPIFNULL);

      pRight = pExpr->pList->a[1].pExpr;
      sqlite3ExprCode(pParse, pRight, 0);
      codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0, dest, jumpIfNull);

      sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
      sqlite3VdbeJumpHere(v, addr);
      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      break;
    }
    default: {
      sqlite3ExprCode(pParse, pExpr, 0);
      sqlite3VdbeAddOp2(v, OP_If, jumpIfNull, dest);
      break;
    }
  }
}

/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is false but execution
** continues straight thru if the expression is true.
**
** If the expression evaluates to NULL (neither true nor false) then
** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
** is 0.
*/
void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  Vdbe *v = pParse->pVdbe;
  int op = 0;
  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
  if( v==0 || pExpr==0 ) return;

  /* The value of pExpr->op and op are related as follows:
  **
  **       pExpr->op            op
  **       ---------          ----------
  **       TK_ISNULL          OP_NotNull
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570

2571
2572
2573
2574
2575
2576
2577
    case TK_AND: {
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
      break;
    }
    case TK_OR: {
      int d2 = sqlite3VdbeMakeLabel(v);
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
      sqlite3VdbeResolveLabel(v, d2);
      break;
    }
    case TK_NOT: {
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
      break;
    }
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3ExprCode(pParse, pExpr->pRight, 0);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);

      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp2(v, op, 0, dest);
      break;







|
















|
>







2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
    case TK_AND: {
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
      break;
    }
    case TK_OR: {
      int d2 = sqlite3VdbeMakeLabel(v);
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
      sqlite3VdbeResolveLabel(v, d2);
      break;
    }
    case TK_NOT: {
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
      break;
    }
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3ExprCode(pParse, pExpr->pRight, 0);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
                  0, 0, dest, jumpIfNull);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      sqlite3ExprCode(pParse, pExpr->pLeft, 0);
      sqlite3VdbeAddOp2(v, op, 0, dest);
      break;
2586
2587
2588
2589
2590
2591
2592
2593

2594
2595
2596
2597
2598
2599

2600
2601
2602
2603
2604
2605
2606
      int addr;
      Expr *pLeft = pExpr->pLeft;
      Expr *pRight = pExpr->pList->a[0].pExpr;
      sqlite3ExprCode(pParse, pLeft, 0);
      sqlite3VdbeAddOp0(v, OP_Copy);
      sqlite3ExprCode(pParse, pRight, 0);
      addr = sqlite3VdbeCurrentAddr(v);
      codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);


      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
      pRight = pExpr->pList->a[1].pExpr;
      sqlite3ExprCode(pParse, pRight, 0);
      codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);

      break;
    }
    default: {
      sqlite3ExprCode(pParse, pExpr, 0);
      sqlite3VdbeAddOp2(v, OP_IfNot, jumpIfNull, dest);
      break;
    }







|
>





|
>







2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
      int addr;
      Expr *pLeft = pExpr->pLeft;
      Expr *pRight = pExpr->pList->a[0].pExpr;
      sqlite3ExprCode(pParse, pLeft, 0);
      sqlite3VdbeAddOp0(v, OP_Copy);
      sqlite3ExprCode(pParse, pRight, 0);
      addr = sqlite3VdbeCurrentAddr(v);
      codeCompare(pParse, pLeft, pRight, OP_Ge,
                  0, 0, addr+3, jumpIfNull ^ SQLITE_JUMPIFNULL);

      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
      pRight = pExpr->pList->a[1].pExpr;
      sqlite3ExprCode(pParse, pRight, 0);
      codeCompare(pParse, pLeft, pRight, OP_Gt,
                  0, 0, dest, jumpIfNull);
      break;
    }
    default: {
      sqlite3ExprCode(pParse, pExpr, 0);
      sqlite3VdbeAddOp2(v, OP_IfNot, jumpIfNull, dest);
      break;
    }
Changes to src/insert.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.217 2008/01/08 18:57:50 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.218 2008/01/08 23:54:25 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
169
170
171
172
173
174
175
176

177
178
179
180
181
182
183
    memId = ++pParse->nMem;
    pParse->nMem++;
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    addr = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
    sqlite3VdbeAddOp2(v, OP_Column, iCur, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp2(v, OP_Ne, 0x100, addr+7);

    sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
    sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
    sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+1);
    sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  }
  return memId;







|
>







169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    memId = ++pParse->nMem;
    pParse->nMem++;
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    addr = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
    sqlite3VdbeAddOp2(v, OP_Column, iCur, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp2(v, OP_Ne, 0, addr+7);
    sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
    sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
    sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
    sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+1);
    sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  }
  return memId;
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
    sqlite3VdbeJumpHere(v, j1);
    sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
    sqlite3VdbeAddOp3(v, OP_RegMakeRec, memId-1, 2, memId-1);
    sqlite3VdbeAddOp3(v, OP_Insert, iCur, memId-1, memId+1);
    sqlite3VdbeChangeP5(v, -1, OPFLAG_APPEND);
    sqlite3VdbeAddOp1(v, OP_Close, iCur);
  }
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops







|







219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
    sqlite3VdbeJumpHere(v, j1);
    sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
    sqlite3VdbeAddOp3(v, OP_RegMakeRec, memId-1, 2, memId-1);
    sqlite3VdbeAddOp3(v, OP_Insert, iCur, memId-1, memId+1);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeAddOp1(v, OP_Close, iCur);
  }
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

  /* Test all CHECK constraints
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
    int allOk = sqlite3VdbeMakeLabel(v);
    pParse->ckBase = regData;
    sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    if( onError==OE_Ignore ){
      sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
    }else{
      sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
    }
    sqlite3VdbeResolveLabel(v, allOk);







|







1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

  /* Test all CHECK constraints
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
    int allOk = sqlite3VdbeMakeLabel(v);
    pParse->ckBase = regData;
    sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    if( onError==OE_Ignore ){
      sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
    }else{
      sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
    }
    sqlite3VdbeResolveLabel(v, allOk);
Changes to src/select.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.392 2008/01/07 19:20:25 drh Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.393 2008/01/08 23:54:25 drh Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
      VdbeComment((v, "Groupby result generator entry point"));
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
      finalizeAggFunctions(pParse, &sAggInfo);
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
      }
      rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
                           distinct, pDest,
                           addrOutputRow+1, addrSetAbort, aff);
      if( rc ){
        goto select_end;
      }







|







3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
      VdbeComment((v, "Groupby result generator entry point"));
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
      finalizeAggFunctions(pParse, &sAggInfo);
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
      }
      rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
                           distinct, pDest,
                           addrOutputRow+1, addrSetAbort, aff);
      if( rc ){
        goto select_end;
      }
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610

3611
3612
3613
3614
3615
3616
3617
      }
      for(j=pGroupBy->nExpr-1; j>=0; j--){
        if( j<pGroupBy->nExpr-1 ){
          sqlite3VdbeAddOp2(v, OP_SCopy, iBMem+j, 0);
        }
        sqlite3VdbeAddOp2(v, OP_SCopy, iAMem+j, 0);
        if( j==0 ){
          sqlite3VdbeAddOp2(v, OP_Eq, 0x200, addrProcessRow);
        }else{
          sqlite3VdbeAddOp2(v, OP_Ne, 0x200, addrGroupByChange);
        }
        sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ);

      }

      /* Generate code that runs whenever the GROUP BY changes.
      ** Change in the GROUP BY are detected by the previous code
      ** block.  If there were no changes, this block is skipped.
      **
      ** This code copies current group by terms in b0,b1,b2,...







|

|


>







3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
      }
      for(j=pGroupBy->nExpr-1; j>=0; j--){
        if( j<pGroupBy->nExpr-1 ){
          sqlite3VdbeAddOp2(v, OP_SCopy, iBMem+j, 0);
        }
        sqlite3VdbeAddOp2(v, OP_SCopy, iAMem+j, 0);
        if( j==0 ){
          sqlite3VdbeAddOp2(v, OP_Eq, 0, addrProcessRow);
        }else{
          sqlite3VdbeAddOp2(v, OP_Ne, 0, addrGroupByChange);
        }
        sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ);
        sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL);
      }

      /* Generate code that runs whenever the GROUP BY changes.
      ** Change in the GROUP BY are detected by the previous code
      ** block.  If there were no changes, this block is skipped.
      **
      ** This code copies current group by terms in b0,b1,b2,...
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
        sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
        VdbeComment((v, "%s() by index", (flag==ORDERBY_MIN?"min":"max")));
      }
      sqlite3WhereEnd(pWInfo);
      finalizeAggFunctions(pParse, &sAggInfo);
      pOrderBy = 0;
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
      }
      selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
                      pDest, addrEnd, addrEnd, aff);

      sqlite3ExprListDelete(pDel);
    }
    sqlite3VdbeResolveLabel(v, addrEnd);







|







3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
        sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
        VdbeComment((v, "%s() by index", (flag==ORDERBY_MIN?"min":"max")));
      }
      sqlite3WhereEnd(pWInfo);
      finalizeAggFunctions(pParse, &sAggInfo);
      pOrderBy = 0;
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
      }
      selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
                      pDest, addrEnd, addrEnd, aff);

      sqlite3ExprListDelete(pDel);
    }
    sqlite3VdbeResolveLabel(v, addrEnd);
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.643 2008/01/08 18:57:50 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** The macro unlikely() is a hint that surrounds a boolean
** expression that is usually false.  Macro likely() surrounds













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.644 2008/01/08 23:54:25 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** The macro unlikely() is a hint that surrounds a boolean
** expression that is usually false.  Macro likely() surrounds
710
711
712
713
714
715
716














717
718
719
720
721
722
723
#define SQLITE_AFF_NONE     'b'
#define SQLITE_AFF_NUMERIC  'c'
#define SQLITE_AFF_INTEGER  'd'
#define SQLITE_AFF_REAL     'e'

#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)















/*
** Each SQL table is represented in memory by an instance of the
** following structure.
**
** Table.zName is the name of the table.  The case of the original
** CREATE TABLE statement is stored, but case is not significant for
** comparisons.







>
>
>
>
>
>
>
>
>
>
>
>
>
>







710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
#define SQLITE_AFF_NONE     'b'
#define SQLITE_AFF_NUMERIC  'c'
#define SQLITE_AFF_INTEGER  'd'
#define SQLITE_AFF_REAL     'e'

#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)

/*
** The SQLITE_AFF_MASK values masks off the significant bits of an
** affinity value. 
*/
#define SQLITE_AFF_MASK     0x67

/*
** Additional bit values that can be ORed with an affinity without
** changing the affinity.
*/
#define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
#define SQLITE_NULLEQUAL    0x10  /* compare NULLs equal */
#define SQLITE_STOREP2      0x80  /* Store result in reg[P2] rather than jump */

/*
** Each SQL table is represented in memory by an instance of the
** following structure.
**
** Table.zName is the name of the table.  The case of the original
** CREATE TABLE statement is stored, but case is not significant for
** comparisons.
Changes to src/trigger.c.
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
      endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
      whenExpr = sqlite3ExprDup(db, p->pWhen);
      if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){
        pParse->trigStack = trigStackEntry.pNext;
        sqlite3ExprDelete(whenExpr);
        return 1;
      }
      sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, 1);
      sqlite3ExprDelete(whenExpr);

      codeTriggerProgram(pParse, p->step_list, orconf); 

      /* Pop the entry off the trigger stack */
      pParse->trigStack = trigStackEntry.pNext;
      sqlite3AuthContextPop(&sContext);







|







846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
      endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
      whenExpr = sqlite3ExprDup(db, p->pWhen);
      if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){
        pParse->trigStack = trigStackEntry.pNext;
        sqlite3ExprDelete(whenExpr);
        return 1;
      }
      sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
      sqlite3ExprDelete(whenExpr);

      codeTriggerProgram(pParse, p->step_list, orconf); 

      /* Pop the entry off the trigger stack */
      pParse->trigStack = trigStackEntry.pNext;
      sqlite3AuthContextPop(&sContext);
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.688 2008/01/08 02:57:56 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.689 2008/01/08 23:54:25 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    assert( pTos->flags & (MEM_Str|MEM_Blob) );
    assert( pTos->z==pTos[-pOp->p1].zShort );
    pTos->z = pTos->zShort;
  }
  break;
}

/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack.  Then pop the top of the stack.
*/
case OP_Push: {            /* no-push */
  Mem *pTo = &pTos[-pOp->p1];

  assert( pTo>=p->aStack );
  sqlite3VdbeMemMove(pTo, pTos);
  pTos--;
  break;
}

/* Opcode: Callback P1 * *
**
** The top P1 values on the stack represent a single result row from
** a query.  This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the top P1 values as the result
** row.  When the sqlite3_step() function is run again, the top P1







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1164
1165
1166
1167
1168
1169
1170















1171
1172
1173
1174
1175
1176
1177
    assert( pTos->flags & (MEM_Str|MEM_Blob) );
    assert( pTos->z==pTos[-pOp->p1].zShort );
    pTos->z = pTos->zShort;
  }
  break;
}
















/* Opcode: Callback P1 * *
**
** The top P1 values on the stack represent a single result row from
** a query.  This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the top P1 values as the result
** row.  When the sqlite3_step() function is run again, the top P1
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818

1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838



1839
1840

1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904

1905
1906
1907
1908
1909

1910


1911

1912
1913
1914
1915
1916
1917
1918




1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957



1958
1959
1960
1961
1962
1963
1964
  if( (pIn1->flags & MEM_Null)==0 ){
    sqlite3VdbeMemRealify(pIn1);
  }
  break;
}
#endif /* SQLITE_OMIT_CAST */

/* Opcode: Eq P1 P2 P4
**
** Pop the top two elements from the stack.  If they are equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**

** If the 0x100 bit of P1 is true and either operand is NULL then take the
** jump.  If the 0x100 bit of P1 is clear then fall thru if either operand
** is NULL.
**
** If the 0x200 bit of P1 is set and either operand is NULL then
** both operands are converted to integers prior to comparison.
** NULL operands are converted to zero and non-NULL operands are
** converted to 1.  Thus, for example, with 0x200 set,  NULL==NULL is true
** whereas it would normally be NULL.  Similarly,  NULL==123 is false when
** 0x200 is set but is NULL when the 0x200 bit of P1 is clear.
**
** The least significant byte of P1 (mask 0xff) must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
** to coerce both values
** according to the affinity before the comparison is made. If the byte is
** 0x00, then numeric affinity is used.
**
** Once any conversions have taken place, and neither value is NULL, 
** the values are compared. If both values are blobs, or both are text,
** then memcmp() is used to determine the results of the comparison. If



** both values are numeric, then a numeric comparison is used. If the
** two values are of different types, then they are inequal.

**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
**
** If P4 is not NULL it is a pointer to a collating sequence (a CollSeq
** structure) that defines how to compare text.
*/
/* Opcode: Ne P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the operands from the stack are not equal.  See the Eq opcode for
** additional information.
*/
/* Opcode: Lt P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is less than the top of the stack.
** See the Eq opcode for additional information.
*/
/* Opcode: Le P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is less than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
/* Opcode: Gt P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than the top of the stack.
** See the Eq opcode for additional information.
*/
/* Opcode: Ge P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, no-push, jump */
case OP_Ne:               /* same as TK_NE, no-push, jump */
case OP_Lt:               /* same as TK_LT, no-push, jump */
case OP_Le:               /* same as TK_LE, no-push, jump */
case OP_Gt:               /* same as TK_GT, no-push, jump */
case OP_Ge: {             /* same as TK_GE, no-push, jump */
  Mem *pNos;
  int flags;
  int res;
  char affinity;


  pNos = &pTos[-1];
  flags = pTos->flags|pNos->flags;

  /* If either value is a NULL P2 is not zero, take the jump if the least
  ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
  ** the stack.
  */
  if( flags&MEM_Null ){
    if( (pOp->p1 & 0x200)!=0 ){
      /* The 0x200 bit of P1 means, roughly "do not treat NULL as the
      ** magic SQL value it normally is - treat it as if it were another
      ** integer".
      **
      ** With 0x200 set, if either operand is NULL then both operands
      ** are converted to integers prior to being passed down into the

      ** normal comparison logic below.  NULL operands are converted to
      ** zero and non-NULL operands are converted to 1.  Thus, for example,
      ** with 0x200 set,  NULL==NULL is true whereas it would normally
      ** be NULL.  Similarly,  NULL!=123 is true.
      */

      sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0);


      sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0);

    }else{
      /* If the 0x200 bit of P1 is clear and either operand is NULL then
      ** the result is always NULL.  The jump is taken if the 0x100 bit
      ** of P1 is set.
      */
      popStack(&pTos, 2);
      if( pOp->p2 ){




        if( pOp->p1 & 0x100 ){
          pc = pOp->p2-1;
        }
      }else{
        pTos++;
        pTos->flags = MEM_Null;
      }
      break;
    }
  }

  affinity = pOp->p1 & 0xFF;
  if( affinity ){
    applyAffinity(pNos, affinity, encoding);
    applyAffinity(pTos, affinity, encoding);
  }

  assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
  ExpandBlob(pNos);
  ExpandBlob(pTos);
  res = sqlite3MemCompare(pNos, pTos, pOp->p4.pColl);
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;
    default:       res = res>=0;     break;
  }

  popStack(&pTos, 2);
  if( pOp->p2 ){
    if( res ){
      pc = pOp->p2-1;
    }
  }else{
    pTos++;
    pTos->flags = MEM_Int;
    pTos->u.i = res;



  }
  break;
}

/* Opcode: And P1 P2 P3 * *
**
** Take the logical AND of the values in registers P1 and P2 and







|

|
|

>
|
|
<

|
|
|
<
<
<

|

|
|
|


|
|
>
>
>
|
|
>

|
<
|
<
<
<



|
|


|

|
|
|



|
|
|



|
|
|



|
|
|

|
|
|
|
|
|
<



>

<
|






|
|
<
<
<
|
|
>
|
|
|
|

>
|
>
>
|
>

|
|
|

<
|
>
>
>
>
|
|
<
<
<
<





|

|
|



|
|
|









<
|
<
|
<
|
<
|
|
>
>
>







1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806

1807
1808
1809
1810



1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

1829



1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866

1867
1868
1869
1870
1871

1872
1873
1874
1875
1876
1877
1878
1879
1880



1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

1900
1901
1902
1903
1904
1905
1906




1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930

1931

1932

1933

1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
  if( (pIn1->flags & MEM_Null)==0 ){
    sqlite3VdbeMemRealify(pIn1);
  }
  break;
}
#endif /* SQLITE_OMIT_CAST */

/* Opcode: Lt P1 P2 P3 P4 P5
**
** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
** jump to address P2.  
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
** bit is clear then fall thru if either operand is NULL.

**
** If the SQLITE_NULLEQUAL bit of P5 is set then treat NULL operands
** as being equal to one another.  Normally NULLs are not equal to 
** anything including other NULLs.



**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
** to coerce both operands according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used.
**
** Once any conversions have taken place, and neither value is NULL, 
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison.  If both values
** are text, then the appropriate collating function specified in
** P4 is  used to do the comparison.  If P4 is not specified then
** memcmp() is used to compare text string.  If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,

** store a boolean result (either 0, or 1, or NULL) in register P2.



*/
/* Opcode: Ne P1 P2 P4
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
** additional information.
*/
/* Opcode: Eq P1 P2 P4
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are equal.
** See the Lt opcode for additional information.
*/
/* Opcode: Le P1 P2 P4
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1.  See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P4
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1.  See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P4
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
** register P1.  See the Lt opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, no-push, jump, in1, in3 */
case OP_Ne:               /* same as TK_NE, no-push, jump, in1, in3 */
case OP_Lt:               /* same as TK_LT, no-push, jump, in1, in3 */
case OP_Le:               /* same as TK_LE, no-push, jump, in1, in3 */
case OP_Gt:               /* same as TK_GT, no-push, jump, in1, in3 */
case OP_Ge: {             /* same as TK_GE, no-push, jump, in1, in3 */

  int flags;
  int res;
  char affinity;
  Mem x1, x3;


  flags = pIn1->flags|pIn3->flags;

  /* If either value is a NULL P2 is not zero, take the jump if the least
  ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
  ** the stack.
  */
  if( flags&MEM_Null ){
    if( (pOp->p5 & SQLITE_NULLEQUAL)!=0 ){
      /*



      ** When SQLITE_NULLEQUAL set and either operand is NULL
      ** then both operands are converted to integers prior to being 
      ** passed down into the normal comparison logic below.  
      ** NULL operands are converted to zero and non-NULL operands
      ** are converted to 1.  Thus, for example, with SQLITE_NULLEQUAL
      ** set,  NULL==NULL is true whereas it would normally NULL.
      ** Similarly,  NULL!=123 is true.
      */
      x1.flags = MEM_Int;
      x1.u.i = (pIn1->flags & MEM_Null)==0;
      pIn1 = &x1;
      x3.flags = MEM_Int;
      x3.u.i = (pIn3->flags & MEM_Null)==0;
      pIn3 = &x3;
    }else{
      /* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then
      ** the result is always NULL.  The jump is taken if the 
      ** SQLITE_JUMPIFNULL bit is set.
      */

      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &p->aMem[pOp->p2];
        Release(pOut);
        pOut->flags = MEM_Null;
        REGISTER_TRACE(pOp->p2, pOut);
      }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
        pc = pOp->p2-1;




      }
      break;
    }
  }

  affinity = pOp->p5 & SQLITE_AFF_MASK;
  if( affinity ){
    applyAffinity(pIn1, affinity, encoding);
    applyAffinity(pIn3, affinity, encoding);
  }

  assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
  ExpandBlob(pIn1);
  ExpandBlob(pIn3);
  res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;
    default:       res = res>=0;     break;
  }


  if( pOp->p5 & SQLITE_STOREP2 ){

    pOut = &p->aMem[pOp->p2];

    Release(pOut);

    pOut->flags = MEM_Int;
    pOut->u.i = res;
    REGISTER_TRACE(pOp->p2, pOut);
  }else if( res ){
    pc = pOp->p2-1;
  }
  break;
}

/* Opcode: And P1 P2 P3 * *
**
** Take the logical AND of the values in registers P1 and P2 and
Changes to src/vdbe.h.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.122 2008/01/03 11:50:30 danielk1977 Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.123 2008/01/08 23:54:25 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, int addr, u8 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);







|







146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
Changes to src/vdbeaux.c.
407
408
409
410
411
412
413
414

415
416
417
418

419
420
421
422
423
424
425
426
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
    p->aOp[addr].p3 = val;
  }
}

/*
** Change the value of the P5 operand for a specific instruction.

*/
void sqlite3VdbeChangeP5(Vdbe *p, int addr, u8 val){
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
  if( p && addr>=0 && p->nOp>addr && p->aOp ){

    p->aOp[addr].p5 = val;
  }
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/







|
>

|

|
>
|







407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
    p->aOp[addr].p3 = val;
  }
}

/*
** Change the value of the P5 operand for the most recently
** added operation.
*/
void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
  if( p && p->aOp ){
    assert( p->nOp>0 );
    p->aOp[p->nOp-1].p5 = val;
  }
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
Changes to src/where.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.277 2008/01/07 19:20:25 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.278 2008/01/08 23:54:26 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);

  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
    pWhere = 0;
  }

  /* Analyze all of the subexpressions.  Note that exprAnalyze() might
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.







|







2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);

  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
    pWhere = 0;
  }

  /* Analyze all of the subexpressions.  Note that exprAnalyze() might
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
2380
2381
2382
2383
2384
2385
2386
2387

2388
2389
2390
2391
2392
2393
2394
      start = sqlite3VdbeCurrentAddr(v);
      pLevel->op = bRev ? OP_Prev : OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0);
        sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0);
        sqlite3VdbeAddOp2(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);

      }
    }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
      /* Case 3: The WHERE clause term that refers to the right-most
      **         column of the index is an inequality.  For example, if
      **         the index is on (x,y,z) and the WHERE clause is of the
      **         form "x=5 AND y<10" then this case is used.  Only the
      **         right-most column can be an inequality - the rest must







|
>







2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
      start = sqlite3VdbeCurrentAddr(v);
      pLevel->op = bRev ? OP_Prev : OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0);
        sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0);
        sqlite3VdbeAddOp2(v, testOp, 0, brk);
        sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
      }
    }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
      /* Case 3: The WHERE clause term that refers to the right-most
      **         column of the index is an inequality.  For example, if
      **         the index is on (x,y,z) and the WHERE clause is of the
      **         form "x=5 AND y<10" then this case is used.  Only the
      **         right-most column can be an inequality - the rest must
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
      if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
      if( (pTerm->prereqAll & notReady)!=0 ) continue;
      pE = pTerm->pExpr;
      assert( pE!=0 );
      if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
        continue;
      }
      sqlite3ExprIfFalse(pParse, pE, cont, 1);
      pTerm->flags |= TERM_CODED;
    }

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
      VdbeComment((v, "record LEFT JOIN hit"));
      for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
        if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
        if( (pTerm->prereqAll & notReady)!=0 ) continue;
        assert( pTerm->pExpr );
        sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
        pTerm->flags |= TERM_CODED;
      }
    }
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table







|














|







2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
      if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
      if( (pTerm->prereqAll & notReady)!=0 ) continue;
      pE = pTerm->pExpr;
      assert( pE!=0 );
      if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
        continue;
      }
      sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
      pTerm->flags |= TERM_CODED;
    }

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
      VdbeComment((v, "record LEFT JOIN hit"));
      for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
        if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
        if( (pTerm->prereqAll & notReady)!=0 ) continue;
        assert( pTerm->pExpr );
        sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
        pTerm->flags |= TERM_CODED;
      }
    }
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table