Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the 3.7.1 pre-release snapshot changes as of 2010-08-18 into the apple-osx branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA1: |
866e9286ae4226b2bec40ef18c672a41 |
User & Date: | drh 2010-08-18 00:24:10.000 |
Context
2010-08-24
| ||
01:08 | Merge changes through release 3.7.2 into the apple-osx branch. (check-in: 415c448dc4 user: drh tags: apple-osx) | |
2010-08-18
| ||
00:24 | Merge the 3.7.1 pre-release snapshot changes as of 2010-08-18 into the apple-osx branch. (check-in: 866e9286ae user: drh tags: apple-osx) | |
00:09 | Updating apple-osx with minor source fixes, database truncate and replace private calls and a bunch of conditionalization for tests running in different environments (check-in: 5e2ee7db0f user: adam tags: apple-osx) | |
2010-08-17
| ||
19:49 | Remove a NEVER() that is actually reachable. (check-in: acb171d4cf user: drh tags: trunk) | |
Changes
Changes to Makefile.arm-wince-mingw32ce-gcc.
︙ | ︙ | |||
99 100 101 102 103 104 105 | SO = dll SHPREFIX = #### Extra compiler options needed for programs that use the TCL library. # #TCL_FLAGS = #TCL_FLAGS = -DSTATIC_BUILD=1 | | | | | | 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | SO = dll SHPREFIX = #### Extra compiler options needed for programs that use the TCL library. # #TCL_FLAGS = #TCL_FLAGS = -DSTATIC_BUILD=1 TCL_FLAGS = -I/home/drh/tcltk/8.5linux #TCL_FLAGS = -I/home/drh/tcltk/8.5win -DSTATIC_BUILD=1 #TCL_FLAGS = -I/home/drh/tcltk/8.3hpux #### Linker options needed to link against the TCL library. # #LIBTCL = -ltcl -lm -ldl LIBTCL = /home/drh/tcltk/8.5linux/libtcl8.5g.a -lm -ldl #LIBTCL = /home/drh/tcltk/8.5win/libtcl85s.a -lmsvcrt #LIBTCL = /home/drh/tcltk/8.3hpux/libtcl8.3.a -ldld -lm -lc #### Additional objects for SQLite library when TCL support is enabled. TCLOBJ = #TCLOBJ = tclsqlite.o #### Compiler options needed for programs that use the readline() library. |
︙ | ︙ |
Changes to Makefile.linux-gcc.
︙ | ︙ | |||
89 90 91 92 93 94 95 | # SO = dll # SHPREFIX = #### Extra compiler options needed for programs that use the TCL library. # #TCL_FLAGS = #TCL_FLAGS = -DSTATIC_BUILD=1 | | | | | | 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | # SO = dll # SHPREFIX = #### Extra compiler options needed for programs that use the TCL library. # #TCL_FLAGS = #TCL_FLAGS = -DSTATIC_BUILD=1 TCL_FLAGS = -I/home/drh/tcltk/8.5linux #TCL_FLAGS = -I/home/drh/tcltk/8.5win -DSTATIC_BUILD=1 #TCL_FLAGS = -I/home/drh/tcltk/8.3hpux #### Linker options needed to link against the TCL library. # #LIBTCL = -ltcl -lm -ldl LIBTCL = /home/drh/tcltk/8.5linux/libtcl8.5g.a -lm -ldl #LIBTCL = /home/drh/tcltk/8.5win/libtcl85s.a -lmsvcrt #LIBTCL = /home/drh/tcltk/8.3hpux/libtcl8.3.a -ldld -lm -lc #### Additional objects for SQLite library when TCL support is enabled. #TCLOBJ = TCLOBJ = tclsqlite.o #### Compiler options needed for programs that use the readline() library. |
︙ | ︙ |
Changes to Makefile.vxworks.
︙ | ︙ | |||
106 107 108 109 110 111 112 | SO = so SHPREFIX = lib #### Extra compiler options needed for programs that use the TCL library. # #TCL_FLAGS = #TCL_FLAGS = -DSTATIC_BUILD=1 | | | | | | 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | SO = so SHPREFIX = lib #### Extra compiler options needed for programs that use the TCL library. # #TCL_FLAGS = #TCL_FLAGS = -DSTATIC_BUILD=1 TCL_FLAGS = -I/home/drh/tcltk/8.5linux #TCL_FLAGS = -I/home/drh/tcltk/8.5win -DSTATIC_BUILD=1 #TCL_FLAGS = -I/home/drh/tcltk/8.3hpux #### Linker options needed to link against the TCL library. # #LIBTCL = -ltcl -lm -ldl LIBTCL = /home/drh/tcltk/8.5linux/libtcl8.5g.a -lm -ldl #LIBTCL = /home/drh/tcltk/8.5win/libtcl85s.a -lmsvcrt #LIBTCL = /home/drh/tcltk/8.3hpux/libtcl8.3.a -ldld -lm -lc #### Additional objects for SQLite library when TCL support is enabled. TCLOBJ = #TCLOBJ = tclsqlite.o #### Compiler options needed for programs that use the readline() library. |
︙ | ︙ |
Changes to VERSION.
|
| | | 1 | 3.7.1 |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.62 for sqlite >>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT. # # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, # 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## --------------------- ## ## M4sh Initialization. ## |
︙ | ︙ | |||
739 740 741 742 743 744 745 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='>>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT' PACKAGE_STRING='sqlite >>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT' PACKAGE_BUGREPORT='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H # include <sys/types.h> |
︙ | ︙ | |||
1483 1484 1485 1486 1487 1488 1489 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite >>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1548 1549 1550 1551 1552 1553 1554 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite >>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1666 1667 1668 1669 1670 1671 1672 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | | 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure >>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT generated by GNU Autoconf 2.62 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me >>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT, which was generated by GNU Autoconf 2.62. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
12255 12256 12257 12258 12259 12260 12261 | USE_AMALGAMATION=1 ######### # See whether we can run specific tclsh versions known to work well; # if not, then we fall back to plain tclsh. # TODO: try other versions before falling back? # | | | 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 | USE_AMALGAMATION=1 ######### # See whether we can run specific tclsh versions known to work well; # if not, then we fall back to plain tclsh. # TODO: try other versions before falling back? # for ac_prog in tclsh8.5 tclsh do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:$LINENO: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if test "${ac_cv_prog_TCLSH_CMD+set}" = set; then $as_echo_n "(cached) " >&6 |
︙ | ︙ | |||
13968 13969 13970 13971 13972 13973 13974 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me >>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT, which was generated by GNU Autoconf 2.62. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
14021 14022 14023 14024 14025 14026 14027 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ | | | 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ sqlite config.status >>>>>>> BEGIN MERGE CONFLICT3.7.1============================3.7.0.1<<<<<<< END MERGE CONFLICT configured by $0, generated by GNU Autoconf 2.62, with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" Copyright (C) 2008 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Changes to configure.ac.
︙ | ︙ | |||
135 136 137 138 139 140 141 | USE_AMALGAMATION=1 ######### # See whether we can run specific tclsh versions known to work well; # if not, then we fall back to plain tclsh. # TODO: try other versions before falling back? # | | | 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | USE_AMALGAMATION=1 ######### # See whether we can run specific tclsh versions known to work well; # if not, then we fall back to plain tclsh. # TODO: try other versions before falling back? # AC_CHECK_PROGS(TCLSH_CMD, [tclsh8.5 tclsh], none) if test "$TCLSH_CMD" = "none"; then # If we can't find a local tclsh, then building the amalgamation will fail. # We act as though --disable-amalgamation has been used. echo "Warning: can't find tclsh - defaulting to non-amalgamation build." USE_AMALGAMATION=0 TCLSH_CMD="tclsh" fi |
︙ | ︙ |
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
2649 2650 2651 2652 2653 2654 2655 | /* ** The fts3 built-in tokenizers - "simple" and "porter" - are implemented ** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following ** two forward declarations are for functions declared in these files ** used to retrieve the respective implementations. ** ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed | | | 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 | /* ** The fts3 built-in tokenizers - "simple" and "porter" - are implemented ** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following ** two forward declarations are for functions declared in these files ** used to retrieve the respective implementations. ** ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed ** to by the argument to point to the "simple" tokenizer implementation. ** Function ...PorterTokenizerModule() sets *pModule to point to the ** porter tokenizer/stemmer implementation. */ void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
︙ | ︙ |
Changes to ext/fts3/fts3_expr.c.
︙ | ︙ | |||
74 75 76 77 78 79 80 | /* ** Default span for NEAR operators. */ #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 #include "fts3Int.h" | < | 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | /* ** Default span for NEAR operators. */ #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 #include "fts3Int.h" #include <string.h> #include <assert.h> typedef struct ParseContext ParseContext; struct ParseContext { sqlite3_tokenizer *pTokenizer; /* Tokenizer module */ const char **azCol; /* Array of column names for fts3 table */ |
︙ | ︙ | |||
100 101 102 103 104 105 106 | ** an integer that falls outside of the range of the unsigned char type ** is undefined (and sometimes, "undefined" means segfault). This wrapper ** is defined to accept an argument of type char, and always returns 0 for ** any values that fall outside of the range of the unsigned char type (i.e. ** negative values). */ static int fts3isspace(char c){ | | | 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | ** an integer that falls outside of the range of the unsigned char type ** is undefined (and sometimes, "undefined" means segfault). This wrapper ** is defined to accept an argument of type char, and always returns 0 for ** any values that fall outside of the range of the unsigned char type (i.e. ** negative values). */ static int fts3isspace(char c){ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; } /* ** Extract the next token from buffer z (length n) using the tokenizer ** and other information (column names etc.) in pParse. Create an Fts3Expr ** structure of type FTSQUERY_PHRASE containing a phrase consisting of this ** single token and set *ppExpr to point to it. If the end of the buffer is |
︙ | ︙ |
Changes to ext/fts3/fts3_porter.c.
︙ | ︙ | |||
26 27 28 29 30 31 32 | #include "fts3Int.h" #include <assert.h> #include <stdlib.h> #include <stdio.h> #include <string.h> | < | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #include "fts3Int.h" #include <assert.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include "fts3_tokenizer.h" /* ** Class derived from sqlite3_tokenizer */ typedef struct porter_tokenizer { |
︙ | ︙ |
Changes to ext/fts3/fts3_snippet.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #include "fts3Int.h" #include <string.h> #include <assert.h> | < | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #include "fts3Int.h" #include <string.h> #include <assert.h> /* ** Used as an fts3ExprIterate() context when loading phrase doclists to ** Fts3Expr.aDoclist[]/nDoclist. */ typedef struct LoadDoclistCtx LoadDoclistCtx; |
︙ | ︙ |
Changes to ext/fts3/fts3_tokenizer.c.
︙ | ︙ | |||
28 29 30 31 32 33 34 | #include "sqlite3ext.h" #ifndef SQLITE_CORE SQLITE_EXTENSION_INIT1 #endif #include "fts3Int.h" #include <assert.h> | < | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | #include "sqlite3ext.h" #ifndef SQLITE_CORE SQLITE_EXTENSION_INIT1 #endif #include "fts3Int.h" #include <assert.h> #include <string.h> /* ** Implementation of the SQL scalar function for accessing the underlying ** hash table. This function may be called as follows: ** ** SELECT <function-name>(<key-name>); |
︙ | ︙ |
Changes to ext/fts3/fts3_tokenizer1.c.
︙ | ︙ | |||
26 27 28 29 30 31 32 | #include "fts3Int.h" #include <assert.h> #include <stdlib.h> #include <stdio.h> #include <string.h> | < | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #include "fts3Int.h" #include <assert.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include "fts3_tokenizer.h" typedef struct simple_tokenizer { sqlite3_tokenizer base; char delim[128]; /* flag ASCII delimiters */ } simple_tokenizer; |
︙ | ︙ | |||
49 50 51 52 53 54 55 56 57 58 59 60 61 62 | int nTokenAllocated; /* space allocated to zToken buffer */ } simple_tokenizer_cursor; static int simpleDelim(simple_tokenizer *t, unsigned char c){ return c<0x80 && t->delim[c]; } /* ** Create a new tokenizer instance. */ static int simpleCreate( int argc, const char * const *argv, sqlite3_tokenizer **ppTokenizer | > > > | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | int nTokenAllocated; /* space allocated to zToken buffer */ } simple_tokenizer_cursor; static int simpleDelim(simple_tokenizer *t, unsigned char c){ return c<0x80 && t->delim[c]; } static int fts3_isalnum(int x){ return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z'); } /* ** Create a new tokenizer instance. */ static int simpleCreate( int argc, const char * const *argv, sqlite3_tokenizer **ppTokenizer |
︙ | ︙ | |||
83 84 85 86 87 88 89 | } t->delim[ch] = 1; } } else { /* Mark non-alphanumeric ASCII characters as delimiters */ int i; for(i=1; i<0x80; i++){ | | | 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | } t->delim[ch] = 1; } } else { /* Mark non-alphanumeric ASCII characters as delimiters */ int i; for(i=1; i<0x80; i++){ t->delim[i] = !fts3_isalnum(i) ? -1 : 0; } } *ppTokenizer = &t->base; return SQLITE_OK; } |
︙ | ︙ | |||
189 190 191 192 193 194 195 | c->pToken = pNew; } for(i=0; i<n; i++){ /* TODO(shess) This needs expansion to handle UTF-8 ** case-insensitivity. */ unsigned char ch = p[iStartOffset+i]; | | | 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | c->pToken = pNew; } for(i=0; i<n; i++){ /* TODO(shess) This needs expansion to handle UTF-8 ** case-insensitivity. */ unsigned char ch = p[iStartOffset+i]; c->pToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch); } *ppToken = c->pToken; *pnBytes = n; *piStartOffset = iStartOffset; *piEndOffset = c->iOffset; *piPosition = c->iToken++; |
︙ | ︙ |
Changes to ext/icu/README.txt.
︙ | ︙ | |||
135 136 137 138 139 140 141 | always uses the built-in LIKE operator. The ICU extension LIKE operator is always case insensitive. 3.2 The SQLITE_MAX_LIKE_PATTERN_LENGTH Macro Passing very long patterns to the built-in SQLite LIKE operator can | | | 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | always uses the built-in LIKE operator. The ICU extension LIKE operator is always case insensitive. 3.2 The SQLITE_MAX_LIKE_PATTERN_LENGTH Macro Passing very long patterns to the built-in SQLite LIKE operator can cause excessive CPU usage. To curb this problem, SQLite defines the SQLITE_MAX_LIKE_PATTERN_LENGTH macro as the maximum length of a pattern in bytes (irrespective of encoding). The default value is defined in internal header file "limits.h". The ICU extension LIKE implementation suffers from the same problem and uses the same solution. However, since the ICU extension code does not include the SQLite file "limits.h", modifying |
︙ | ︙ | |||
163 164 165 166 167 168 169 | or other programming errors that could be exploited by a malicious programmer. If the ICU extension is used in an environment where potentially malicious users may execute arbitrary SQL (i.e. gears), they should be prevented from invoking the icu_load_collation() function, possibly using the authorisation callback. | < | 163 164 165 166 167 168 169 | or other programming errors that could be exploited by a malicious programmer. If the ICU extension is used in an environment where potentially malicious users may execute arbitrary SQL (i.e. gears), they should be prevented from invoking the icu_load_collation() function, possibly using the authorisation callback. |
Changes to ext/rtree/rtree.c.
︙ | ︙ | |||
1069 1070 1071 1072 1073 1074 1075 | ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 Unused Direct lookup by rowid. | | < | | 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 | ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 Unused Direct lookup by rowid. ** 2 See below R-tree query or full-table scan. ** ------------------------------------------------ ** ** If strategy 1 is used, then idxStr is not meaningful. If strategy ** 2 is used, idxStr is formatted to contain 2 bytes for each ** constraint used. The first two bytes of idxStr correspond to ** the constraint in sqlite3_index_info.aConstraintUsage[] with ** (argvIndex==1) etc. ** ** The first of each pair of bytes in idxStr identifies the constraint ** operator as follows: |
︙ | ︙ |
Changes to ext/rtree/rtree6.test.
︙ | ︙ | |||
84 85 86 87 88 89 90 | {TABLE t1 VIRTUAL TABLE INDEX 2:Ca} \ {TABLE t2 USING PRIMARY KEY} \ ] do_test rtree6.2.3 { query_plan {SELECT * FROM t1,t2 WHERE k=ii} } [list \ | < | > < | > | 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | {TABLE t1 VIRTUAL TABLE INDEX 2:Ca} \ {TABLE t2 USING PRIMARY KEY} \ ] do_test rtree6.2.3 { query_plan {SELECT * FROM t1,t2 WHERE k=ii} } [list \ {TABLE t1 VIRTUAL TABLE INDEX 2:} \ {TABLE t2 USING PRIMARY KEY} \ ] do_test rtree6.2.4 { query_plan {SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10} } [list \ {TABLE t1 VIRTUAL TABLE INDEX 2:CaEb} \ {TABLE t2} \ ] do_test rtree6.2.5 { query_plan {SELECT * FROM t1,t2 WHERE k=ii AND x1<v} } [list \ {TABLE t1 VIRTUAL TABLE INDEX 2:} \ {TABLE t2 USING PRIMARY KEY} \ ] finish_test |
Changes to src/alter.c.
︙ | ︙ | |||
765 766 767 768 769 770 771 | ** table because user table are not allowed to have the "sqlite_" ** prefix on their name. */ pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table)); if( !pNew ) goto exit_begin_add_column; pParse->pNewTable = pNew; pNew->nRef = 1; | < | 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | ** table because user table are not allowed to have the "sqlite_" ** prefix on their name. */ pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table)); if( !pNew ) goto exit_begin_add_column; pParse->pNewTable = pNew; pNew->nRef = 1; pNew->nCol = pTab->nCol; assert( pNew->nCol>0 ); nAlloc = (((pNew->nCol-1)/8)*8)+8; assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 ); pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc); pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName); if( !pNew->aCol || !pNew->zName ){ |
︙ | ︙ |
Changes to src/analyze.c.
︙ | ︙ | |||
486 487 488 489 490 491 492 | return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. */ | | < | < | > | 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. */ void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ #ifdef SQLITE_ENABLE_STAT2 if( pIdx->aSample ){ int j; for(j=0; j<SQLITE_INDEX_SAMPLES; j++){ IndexSample *p = &pIdx->aSample[j]; if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){ sqlite3DbFree(db, p->u.z); } } sqlite3DbFree(db, pIdx->aSample); } #else UNUSED_PARAMETER(db); UNUSED_PARAMETER(pIdx); #endif } /* ** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] |
︙ | ︙ | |||
539 540 541 542 543 544 545 | assert( db->aDb[iDb].pBt!=0 ); assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); /* Clear any prior statistics */ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3DefaultRowEst(pIdx); | | > | 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 | assert( db->aDb[iDb].pBt!=0 ); assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); /* Clear any prior statistics */ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3DefaultRowEst(pIdx); sqlite3DeleteIndexSamples(db, pIdx); pIdx->aSample = 0; } /* Check to make sure the sqlite_stat1 table exists */ sInfo.db = db; sInfo.zDatabase = db->aDb[iDb].zName; if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ return SQLITE_ERROR; |
︙ | ︙ | |||
583 584 585 586 587 588 589 | if( rc==SQLITE_OK ){ while( sqlite3_step(pStmt)==SQLITE_ROW ){ char *zIndex = (char *)sqlite3_column_text(pStmt, 0); Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase); if( pIdx ){ int iSample = sqlite3_column_int(pStmt, 1); | < < | > | 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | if( rc==SQLITE_OK ){ while( sqlite3_step(pStmt)==SQLITE_ROW ){ char *zIndex = (char *)sqlite3_column_text(pStmt, 0); Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase); if( pIdx ){ int iSample = sqlite3_column_int(pStmt, 1); if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){ int eType = sqlite3_column_type(pStmt, 2); if( pIdx->aSample==0 ){ static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES; pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz); if( pIdx->aSample==0 ){ db->mallocFailed = 1; break; } memset(pIdx->aSample, 0, sz); } assert( pIdx->aSample ); { IndexSample *pSample = &pIdx->aSample[iSample]; pSample->eType = (u8)eType; if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ |
︙ | ︙ | |||
617 618 619 620 621 622 623 | if( n>24 ){ n = 24; } pSample->nByte = (u8)n; if( n < 1){ pSample->u.z = 0; }else{ | | | < < | 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | if( n>24 ){ n = 24; } pSample->nByte = (u8)n; if( n < 1){ pSample->u.z = 0; }else{ pSample->u.z = sqlite3DbStrNDup(0, z, n); if( pSample->u.z==0 ){ db->mallocFailed = 1; break; } } } } } |
︙ | ︙ |
Changes to src/bitvec.c.
︙ | ︙ | |||
33 34 35 36 37 38 39 | ** Bitvec object is the number of pages in the database file at the ** start of a transaction, and is thus usually less than a few thousand, ** but can be as large as 2 billion for a really big database. */ #include "sqliteInt.h" /* Size of the Bitvec structure in bytes. */ | | | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | ** Bitvec object is the number of pages in the database file at the ** start of a transaction, and is thus usually less than a few thousand, ** but can be as large as 2 billion for a really big database. */ #include "sqliteInt.h" /* Size of the Bitvec structure in bytes. */ #define BITVEC_SZ 512 /* Round the union size down to the nearest pointer boundary, since that's how ** it will be aligned within the Bitvec struct. */ #define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) /* Type of the array "element" for the bitmap representation. ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
28 29 30 31 32 33 34 | #if 0 int sqlite3BtreeTrace=1; /* True to enable tracing */ # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} #else # define TRACE(X) #endif | | > > > > > > > > > | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #if 0 int sqlite3BtreeTrace=1; /* True to enable tracing */ # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} #else # define TRACE(X) #endif /* ** Extract a 2-byte big-endian integer from an array of unsigned bytes. ** But if the value is zero, make it 65536. ** ** This routine is used to extract the "offset to cell content area" value ** from the header of a btree page. If the page size is 65536 and the page ** is empty, the offset should be 65536, but the 2-byte value stores zero. ** This routine makes the necessary adjustment to 65536. */ #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) #ifndef SQLITE_OMIT_SHARED_CACHE /* ** A list of BtShared objects that are eligible for participation ** in shared cache. This variable has file scope during normal builds, ** but the test harness needs to access it so we make it global for ** test builds. |
︙ | ︙ | |||
1150 1151 1152 1153 1154 1155 1156 | assert( pPage->nOverflow==0 ); usableSize = pPage->pBt->usableSize; assert( nByte < usableSize-8 ); nFrag = data[hdr+7]; assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); gap = pPage->cellOffset + 2*pPage->nCell; | | | | 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 | assert( pPage->nOverflow==0 ); usableSize = pPage->pBt->usableSize; assert( nByte < usableSize-8 ); nFrag = data[hdr+7]; assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); gap = pPage->cellOffset + 2*pPage->nCell; top = get2byteNotZero(&data[hdr+5]); if( gap>top ) return SQLITE_CORRUPT_BKPT; testcase( gap+2==top ); testcase( gap+1==top ); testcase( gap==top ); if( nFrag>=60 ){ /* Always defragment highly fragmented pages */ rc = defragmentPage(pPage); if( rc ) return rc; top = get2byteNotZero(&data[hdr+5]); }else if( gap+2<=top ){ /* Search the freelist looking for a free slot big enough to satisfy ** the request. The allocation is made from the first free slot in ** the list that is large enough to accomadate it. */ int pc, addr; for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){ |
︙ | ︙ | |||
1202 1203 1204 1205 1206 1207 1208 | /* Check to make sure there is enough space in the gap to satisfy ** the allocation. If not, defragment. */ testcase( gap+2+nByte==top ); if( gap+2+nByte>top ){ rc = defragmentPage(pPage); if( rc ) return rc; | | | 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 | /* Check to make sure there is enough space in the gap to satisfy ** the allocation. If not, defragment. */ testcase( gap+2+nByte==top ); if( gap+2+nByte>top ){ rc = defragmentPage(pPage); if( rc ) return rc; top = get2byteNotZero(&data[hdr+5]); assert( gap+nByte<=top ); } /* Allocate memory from the gap in between the cell pointer array ** and the cell content area. The btreeInitPage() call has already ** validated the freelist. Given that the freelist is valid, there |
︙ | ︙ | |||
1368 1369 1370 1371 1372 1373 1374 | assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); if( !pPage->isInit ){ u16 pc; /* Address of a freeblock within pPage->aData[] */ u8 hdr; /* Offset to beginning of page header */ u8 *data; /* Equal to pPage->aData */ BtShared *pBt; /* The main btree structure */ | | | | | | | | | 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 | assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); if( !pPage->isInit ){ u16 pc; /* Address of a freeblock within pPage->aData[] */ u8 hdr; /* Offset to beginning of page header */ u8 *data; /* Equal to pPage->aData */ BtShared *pBt; /* The main btree structure */ int usableSize; /* Amount of usable space on each page */ int cellOffset; /* Offset from start of page to first cell pointer */ int nFree; /* Number of unused bytes on the page */ int top; /* First byte of the cell content area */ int iCellFirst; /* First allowable cell or freeblock offset */ int iCellLast; /* Last possible cell or freeblock offset */ pBt = pPage->pBt; hdr = pPage->hdrOffset; data = pPage->aData; if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; usableSize = pBt->usableSize; pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; top = get2byteNotZero(&data[hdr+5]); pPage->nCell = get2byte(&data[hdr+3]); if( pPage->nCell>MX_CELL(pBt) ){ /* To many cells for a single page. The page must be corrupt */ return SQLITE_CORRUPT_BKPT; } testcase( pPage->nCell==MX_CELL(pBt) ); |
︙ | ︙ | |||
1489 1490 1491 1492 1493 1494 1495 | data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = pBt->usableSize - first; decodeFlags(pPage, flags); pPage->hdrOffset = hdr; pPage->cellOffset = first; pPage->nOverflow = 0; | | | | 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 | data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = pBt->usableSize - first; decodeFlags(pPage, flags); pPage->hdrOffset = hdr; pPage->cellOffset = first; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; pPage->isInit = 1; } /* ** Convert a DbPage obtained from the pager into a MemPage used by |
︙ | ︙ | |||
1798 1799 1800 1801 1802 1803 1804 | pBt->pCursor = 0; pBt->pPage1 = 0; pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager); #ifdef SQLITE_SECURE_DELETE pBt->secureDelete = 1; #endif | | | 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 | pBt->pCursor = 0; pBt->pPage1 = 0; pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager); #ifdef SQLITE_SECURE_DELETE pBt->secureDelete = 1; #endif pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ pBt->pageSize = 0; #ifndef SQLITE_OMIT_AUTOVACUUM /* If the magic name ":memory:" will create an in-memory database, then ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if |
︙ | ︙ | |||
2000 2001 2002 2003 2004 2005 2006 | ** Clean out and delete the BtShared object. */ assert( !pBt->pCursor ); sqlite3PagerClose(pBt->pPager); if( pBt->xFreeSchema && pBt->pSchema ){ pBt->xFreeSchema(pBt->pSchema); } | | | 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 | ** Clean out and delete the BtShared object. */ assert( !pBt->pCursor ); sqlite3PagerClose(pBt->pPager); if( pBt->xFreeSchema && pBt->pSchema ){ pBt->xFreeSchema(pBt->pSchema); } sqlite3DbFree(0, pBt->pSchema); freeTempSpace(pBt); sqlite3_free(pBt); } #ifndef SQLITE_OMIT_SHARED_CACHE assert( p->wantToLock==0 ); assert( p->locked==0 ); |
︙ | ︙ | |||
2112 2113 2114 2115 2116 2117 2118 | nReserve = pBt->pageSize - pBt->usableSize; } assert( nReserve>=0 && nReserve<=255 ); if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && ((pageSize-1)&pageSize)==0 ){ assert( (pageSize & 7)==0 ); assert( !pBt->pPage1 && !pBt->pCursor ); | | | 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 | nReserve = pBt->pageSize - pBt->usableSize; } assert( nReserve>=0 && nReserve<=255 ); if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && ((pageSize-1)&pageSize)==0 ){ assert( (pageSize & 7)==0 ); assert( !pBt->pPage1 && !pBt->pCursor ); pBt->pageSize = (u32)pageSize; freeTempSpace(pBt); } rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); pBt->usableSize = pBt->pageSize - (u16)nReserve; if( iFix ) pBt->pageSizeFixed = 1; sqlite3BtreeLeave(p); return rc; |
︙ | ︙ | |||
2247 2248 2249 2250 2251 2252 2253 | rc = btreeGetPage(pBt, 1, &pPage1, 0); if( rc!=SQLITE_OK ) return rc; /* Do some checking to help insure the file we opened really is ** a valid database file. */ nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); | | < < | | | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 | rc = btreeGetPage(pBt, 1, &pPage1, 0); if( rc!=SQLITE_OK ) return rc; /* Do some checking to help insure the file we opened really is ** a valid database file. */ nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); sqlite3PagerPagecount(pBt->pPager, &nPageFile); if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ nPage = nPageFile; } if( nPage>0 ){ u32 pageSize; u32 usableSize; u8 *page1 = pPage1->aData; rc = SQLITE_NOTADB; if( memcmp(page1, zMagicHeader, 16)!=0 ){ goto page1_init_failed; } #ifdef SQLITE_OMIT_WAL |
︙ | ︙ | |||
2306 2307 2308 2309 2310 2311 2312 | ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data. ** The original design allowed these amounts to vary, but as of ** version 3.6.0, we require them to be fixed. */ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ goto page1_init_failed; } | | | | > | | | | | 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 | ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data. ** The original design allowed these amounts to vary, but as of ** version 3.6.0, we require them to be fixed. */ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ goto page1_init_failed; } pageSize = (page1[16]<<8) | (page1[17]<<16); if( ((pageSize-1)&pageSize)!=0 || pageSize>SQLITE_MAX_PAGE_SIZE || pageSize<=256 ){ goto page1_init_failed; } assert( (pageSize & 7)==0 ); usableSize = pageSize - page1[20]; if( pageSize!=pBt->pageSize ){ /* After reading the first page of the database assuming a page size ** of BtShared.pageSize, we have discovered that the page-size is ** actually pageSize. Unlock the database, leave pBt->pPage1 at ** zero and return SQLITE_OK. The caller will call this function ** again with the correct page-size. */ releasePage(pPage1); pBt->usableSize = usableSize; pBt->pageSize = pageSize; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } if( nPageHeader>nPageFile ){ rc = SQLITE_CORRUPT_BKPT; goto page1_init_failed; } if( usableSize<480 ){ goto page1_init_failed; } pBt->pageSize = pageSize; pBt->usableSize = usableSize; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); #endif } /* maxLocal is the maximum amount of payload to store locally for |
︙ | ︙ | |||
2413 2414 2415 2416 2417 2418 2419 | pP1 = pBt->pPage1; assert( pP1!=0 ); data = pP1->aData; rc = sqlite3PagerWrite(pP1->pDbPage); if( rc ) return rc; memcpy(data, zMagicHeader, sizeof(zMagicHeader)); assert( sizeof(zMagicHeader)==16 ); | | > | 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 | pP1 = pBt->pPage1; assert( pP1!=0 ); data = pP1->aData; rc = sqlite3PagerWrite(pP1->pDbPage); if( rc ) return rc; memcpy(data, zMagicHeader, sizeof(zMagicHeader)); assert( sizeof(zMagicHeader)==16 ); data[16] = (pBt->pageSize>>8)&0xff; data[17] = (pBt->pageSize>>16)&0xff; data[18] = 1; data[19] = 1; assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); data[20] = (u8)(pBt->pageSize - pBt->usableSize); data[21] = 64; data[22] = 32; data[23] = 32; |
︙ | ︙ | |||
3324 3325 3326 3327 3328 3329 3330 | assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); sqlite3BtreeEnter(p); rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); if( rc==SQLITE_OK ){ if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0; rc = newDatabase(pBt); pBt->nPage = get4byte(28 + pBt->pPage1->aData); | < < | > > > > | 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 | assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); sqlite3BtreeEnter(p); rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); if( rc==SQLITE_OK ){ if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0; rc = newDatabase(pBt); pBt->nPage = get4byte(28 + pBt->pPage1->aData); /* The database size was written into the offset 28 of the header ** when the transaction started, so we know that the value at offset ** 28 is nonzero. */ assert( pBt->nPage>0 ); } sqlite3BtreeLeave(p); } return rc; } /* |
︙ | ︙ | |||
4422 4423 4424 4425 4426 4427 4428 | }else{ assert( nCellKey>intKey ); c = +1; } pCur->validNKey = 1; pCur->info.nKey = nCellKey; }else{ | | | | 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 | }else{ assert( nCellKey>intKey ); c = +1; } pCur->validNKey = 1; pCur->info.nKey = nCellKey; }else{ /* The maximum supported page-size is 65536 bytes. This means that ** the maximum number of record bytes stored on an index B-Tree ** page is less than 16384 bytes and may be stored as a 2-byte ** varint. This information is used to attempt to avoid parsing ** the entire cell by checking for the cases where the record is ** stored entirely within the b-tree page by inspecting the first ** 2 bytes of the cell. */ int nCell = pCell[0]; if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){ |
︙ | ︙ | |||
5318 5319 5320 5321 5322 5323 5324 | ** the cell content has been copied someplace else. This routine just ** removes the reference to the cell from pPage. ** ** "sz" must be the number of bytes in the cell. */ static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ int i; /* Loop counter */ | | | | 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 | ** the cell content has been copied someplace else. This routine just ** removes the reference to the cell from pPage. ** ** "sz" must be the number of bytes in the cell. */ static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ int i; /* Loop counter */ u32 pc; /* Offset to cell content of cell being deleted */ u8 *data; /* pPage->aData */ u8 *ptr; /* Used to move bytes around within data[] */ int rc; /* The return code */ int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ if( *pRC ) return; assert( idx>=0 && idx<pPage->nCell ); assert( sz==cellSize(pPage, idx) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); data = pPage->aData; ptr = &data[pPage->cellOffset + 2*idx]; pc = get2byte(ptr); hdr = pPage->hdrOffset; testcase( pc==get2byte(&data[hdr+5]) ); testcase( pc+sz==pPage->pBt->usableSize ); if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ *pRC = SQLITE_CORRUPT_BKPT; return; } rc = freeSpace(pPage, pc, sz); if( rc ){ *pRC = rc; return; |
︙ | ︙ | |||
5393 5394 5395 5396 5397 5398 5399 | u8 *ptr; /* Used for moving information around in data[] */ int nSkip = (iChild ? 4 : 0); if( *pRC ) return; assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); | | | 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 | u8 *ptr; /* Used for moving information around in data[] */ int nSkip = (iChild ? 4 : 0); if( *pRC ) return; assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 ); assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); /* The cell should normally be sized correctly. However, when moving a ** malformed cell from a leaf page to an interior page, if the cell size ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size ** might be less than 8 (leaf-size + pointer) on the interior node. Hence ** the term after the || in the following assert(). */ |
︙ | ︙ | |||
5473 5474 5475 5476 5477 5478 5479 | int cellbody; /* Address of next cell body */ u8 * const data = pPage->aData; /* Pointer to data for pPage */ const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ assert( pPage->nOverflow==0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | | | | 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 | int cellbody; /* Address of next cell body */ u8 * const data = pPage->aData; /* Pointer to data for pPage */ const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ assert( pPage->nOverflow==0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); /* Check that the page has just been zeroed by zeroPage() */ assert( pPage->nCell==0 ); assert( get2byteNotZero(&data[hdr+5])==nUsable ); pCellptr = &data[pPage->cellOffset + nCell*2]; cellbody = nUsable; for(i=nCell-1; i>=0; i--){ pCellptr -= 2; cellbody -= aSize[i]; put2byte(pCellptr, cellbody); |
︙ | ︙ | |||
5544 5545 5546 5547 5548 5549 5550 | int rc; /* Return Code */ Pgno pgnoNew; /* Page number of pNew */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); assert( pPage->nOverflow==1 ); | > | | 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 | int rc; /* Return Code */ Pgno pgnoNew; /* Page number of pNew */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); assert( pPage->nOverflow==1 ); /* This error condition is now caught prior to reaching this function */ if( NEVER(pPage->nCell<=0) ) return SQLITE_CORRUPT_BKPT; /* Allocate a new page. This page will become the right-sibling of ** pPage. Make the parent page writable, so that the new divider cell ** may be inserted. If both these operations are successful, proceed. */ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
︙ | ︙ | |||
5873 5874 5875 5876 5877 5878 5879 | ** Unless SQLite is compiled in secure-delete mode. In this case, ** the dropCell() routine will overwrite the entire cell with zeroes. ** In this case, temporarily copy the cell into the aOvflSpace[] ** buffer. It will be copied out again as soon as the aSpace[] buffer ** is allocated. */ if( pBt->secureDelete ){ int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); | | | 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 | ** Unless SQLite is compiled in secure-delete mode. In this case, ** the dropCell() routine will overwrite the entire cell with zeroes. ** In this case, temporarily copy the cell into the aOvflSpace[] ** buffer. It will be copied out again as soon as the aSpace[] buffer ** is allocated. */ if( pBt->secureDelete ){ int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); if( (iOff+szNew[i])>(int)pBt->usableSize ){ rc = SQLITE_CORRUPT_BKPT; memset(apOld, 0, (i+1)*sizeof(MemPage*)); goto balance_cleanup; }else{ memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; } |
︙ | ︙ | |||
7442 7443 7444 7445 7446 7447 7448 | if( isFreeList ){ int n = get4byte(&pOvflData[4]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pCheck->pBt->autoVacuum ){ checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); } #endif | | | 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 | if( isFreeList ){ int n = get4byte(&pOvflData[4]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pCheck->pBt->autoVacuum ){ checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); } #endif if( n>(int)pCheck->pBt->usableSize/4-2 ){ checkAppendMsg(pCheck, zContext, "freelist leaf count too big on page %d", iPage); N--; }else{ for(i=0; i<n; i++){ Pgno iFreePage = get4byte(&pOvflData[8+i*4]); #ifndef SQLITE_OMIT_AUTOVACUUM |
︙ | ︙ | |||
7653 7654 7655 7656 7657 7658 7659 | */ data = pPage->aData; hdr = pPage->hdrOffset; hit = sqlite3PageMalloc( pBt->pageSize ); if( hit==0 ){ pCheck->mallocFailed = 1; }else{ | | | | | 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 | */ data = pPage->aData; hdr = pPage->hdrOffset; hit = sqlite3PageMalloc( pBt->pageSize ); if( hit==0 ){ pCheck->mallocFailed = 1; }else{ int contentOffset = get2byteNotZero(&data[hdr+5]); assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ memset(hit+contentOffset, 0, usableSize-contentOffset); memset(hit, 1, contentOffset); nCell = get2byte(&data[hdr+3]); cellStart = hdr + 12 - 4*pPage->leaf; for(i=0; i<nCell; i++){ int pc = get2byte(&data[cellStart+i*2]); u32 size = 65536; int j; if( pc<=usableSize-4 ){ size = cellSizePtr(pPage, &data[pc]); } if( (int)(pc+size-1)>=usableSize ){ checkAppendMsg(pCheck, 0, "Corruption detected in cell %d on page %d",i,iPage); }else{ for(j=pc+size-1; j>=pc; j--) hit[j]++; } } i = get2byte(&data[hdr+1]); |
︙ | ︙ | |||
7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 | } for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } i = PENDING_BYTE_PAGE(pBt); if( i<=sCheck.nPage ){ sCheck.anRef[i] = 1; } sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000); /* Check the integrity of the freelist */ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); /* Check all the tables. | > | 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 | } for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } i = PENDING_BYTE_PAGE(pBt); if( i<=sCheck.nPage ){ sCheck.anRef[i] = 1; } sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000); sCheck.errMsg.useMalloc = 2; /* Check the integrity of the freelist */ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); /* Check all the tables. |
︙ | ︙ | |||
7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 | ** Return non-zero if a transaction is active. */ int sqlite3BtreeIsInTrans(Btree *p){ assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); return (p && (p->inTrans==TRANS_WRITE)); } /* ** Return non-zero if a read (or write) transaction is active. */ int sqlite3BtreeIsInReadTrans(Btree *p){ assert( p ); assert( sqlite3_mutex_held(p->db->mutex) ); return p->inTrans!=TRANS_NONE; | > > > > > > > > > > > > > > > > > > > > > > > | 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 | ** Return non-zero if a transaction is active. */ int sqlite3BtreeIsInTrans(Btree *p){ assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); return (p && (p->inTrans==TRANS_WRITE)); } #ifndef SQLITE_OMIT_WAL /* ** Run a checkpoint on the Btree passed as the first argument. ** ** Return SQLITE_LOCKED if this or any other connection has an open ** transaction on the shared-cache the argument Btree is connected to. */ int sqlite3BtreeCheckpoint(Btree *p){ int rc = SQLITE_OK; if( p ){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( pBt->inTransaction!=TRANS_NONE ){ rc = SQLITE_LOCKED; }else{ rc = sqlite3PagerCheckpoint(pBt->pPager); } sqlite3BtreeLeave(p); } return rc; } #endif /* ** Return non-zero if a read (or write) transaction is active. */ int sqlite3BtreeIsInReadTrans(Btree *p){ assert( p ); assert( sqlite3_mutex_held(p->db->mutex) ); return p->inTrans!=TRANS_NONE; |
︙ | ︙ | |||
7896 7897 7898 7899 7900 7901 7902 | ** blob of allocated memory. This function should not call sqlite3_free() ** on the memory, the btree layer does that. */ void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( !pBt->pSchema && nBytes ){ | | | 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 | ** blob of allocated memory. This function should not call sqlite3_free() ** on the memory, the btree layer does that. */ void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( !pBt->pSchema && nBytes ){ pBt->pSchema = sqlite3DbMallocZero(0, nBytes); pBt->xFreeSchema = xFree; } sqlite3BtreeLeave(p); return pBt->pSchema; } /* |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
196 197 198 199 200 201 202 203 204 205 206 207 208 209 | int sqlite3BtreeCount(BtCursor *, i64 *); #endif #ifdef SQLITE_TEST int sqlite3BtreeCursorInfo(BtCursor*, int*, int); void sqlite3BtreeCursorList(Btree*); #endif /* ** If we are not using shared cache, then there is no need to ** use mutexes to access the BtShared structures. So make the ** Enter and Leave procedures no-ops. */ #ifndef SQLITE_OMIT_SHARED_CACHE | > > > > | 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | int sqlite3BtreeCount(BtCursor *, i64 *); #endif #ifdef SQLITE_TEST int sqlite3BtreeCursorInfo(BtCursor*, int*, int); void sqlite3BtreeCursorList(Btree*); #endif #ifndef SQLITE_OMIT_WAL int sqlite3BtreeCheckpoint(Btree*); #endif /* ** If we are not using shared cache, then there is no need to ** use mutexes to access the BtShared structures. So make the ** Enter and Leave procedures no-ops. */ #ifndef SQLITE_OMIT_SHARED_CACHE |
︙ | ︙ |
Changes to src/btreeInt.h.
︙ | ︙ | |||
42 43 44 45 46 47 48 | ** page has a small header which contains the Ptr(N) pointer and other ** information such as the size of key and data. ** ** FORMAT DETAILS ** ** The file is divided into pages. The first page is called page 1, ** the second is page 2, and so forth. A page number of zero indicates | | | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | ** page has a small header which contains the Ptr(N) pointer and other ** information such as the size of key and data. ** ** FORMAT DETAILS ** ** The file is divided into pages. The first page is called page 1, ** the second is page 2, and so forth. A page number of zero indicates ** "no such page". The page size can be any power of 2 between 512 and 65536. ** Each page can be either a btree page, a freelist page, an overflow ** page, or a pointer-map page. ** ** The first page is always a btree page. The first 100 bytes of the first ** page contain a special header (the "file header") that describes the file. ** The format of the file header is as follows: ** |
︙ | ︙ | |||
409 410 411 412 413 414 415 | u8 pageSizeFixed; /* True if the page size can no longer be changed */ u8 secureDelete; /* True if secure_delete is enabled */ u8 initiallyEmpty; /* Database is empty at start of transaction */ #ifndef SQLITE_OMIT_AUTOVACUUM u8 autoVacuum; /* True if auto-vacuum is enabled */ u8 incrVacuum; /* True if incr-vacuum is enabled */ #endif | < < > > | 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | u8 pageSizeFixed; /* True if the page size can no longer be changed */ u8 secureDelete; /* True if secure_delete is enabled */ u8 initiallyEmpty; /* Database is empty at start of transaction */ #ifndef SQLITE_OMIT_AUTOVACUUM u8 autoVacuum; /* True if auto-vacuum is enabled */ u8 incrVacuum; /* True if incr-vacuum is enabled */ #endif u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */ u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */ u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */ u16 minLeaf; /* Minimum local payload in a LEAFDATA table */ u8 inTransaction; /* Transaction state */ u8 doNotUseWAL; /* If true, do not open write-ahead-log file */ u32 pageSize; /* Total number of bytes on a page */ u32 usableSize; /* Number of usable bytes on each page */ int nTransaction; /* Number of open transactions (read + write) */ u32 nPage; /* Number of pages in the database */ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */ #ifndef SQLITE_OMIT_SHARED_CACHE |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
341 342 343 344 345 346 347 | } return p; } /* ** Reclaim the memory used by an index */ | | < | < < < < < < < < < < < < < < < < < < | 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | } return p; } /* ** Reclaim the memory used by an index */ static void freeIndex(sqlite3 *db, Index *p){ #ifndef SQLITE_OMIT_ANALYZE sqlite3DeleteIndexSamples(db, p); #endif sqlite3DbFree(db, p->zColAff); sqlite3DbFree(db, p); } /* ** For the index called zIdxName which is found in the database iDb, ** unlike that index from its Table then remove the index from ** the index hash table and free all memory structures associated ** with the index. */ void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ |
︙ | ︙ | |||
394 395 396 397 398 399 400 | ** indices. */ p = pIndex->pTable->pIndex; while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } if( ALWAYS(p && p->pNext==pIndex) ){ p->pNext = pIndex->pNext; } } | | | 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 | ** indices. */ p = pIndex->pTable->pIndex; while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } if( ALWAYS(p && p->pNext==pIndex) ){ p->pNext = pIndex->pNext; } } freeIndex(db, pIndex); } db->flags |= SQLITE_InternChanges; } /* ** Erase all schema information from the in-memory hash tables of ** a single database. This routine is called to reclaim memory |
︙ | ︙ | |||
465 466 467 468 469 470 471 | ** This routine is called when a commit occurs. */ void sqlite3CommitInternalChanges(sqlite3 *db){ db->flags &= ~SQLITE_InternChanges; } /* | | > | < < < < | < < | < < < | < | | < > > > > > > > | | | > | > | | 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 | ** This routine is called when a commit occurs. */ void sqlite3CommitInternalChanges(sqlite3 *db){ db->flags &= ~SQLITE_InternChanges; } /* ** Delete memory allocated for the column names of a table or view (the ** Table.aCol[] array). */ static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ int i; Column *pCol; assert( pTable!=0 ); if( (pCol = pTable->aCol)!=0 ){ for(i=0; i<pTable->nCol; i++, pCol++){ sqlite3DbFree(db, pCol->zName); sqlite3ExprDelete(db, pCol->pDflt); sqlite3DbFree(db, pCol->zDflt); sqlite3DbFree(db, pCol->zType); sqlite3DbFree(db, pCol->zColl); } sqlite3DbFree(db, pTable->aCol); } } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But it does destroy ** memory structures of the indices and foreign keys associated with ** the table. */ void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ Index *pIndex, *pNext; assert( !pTable || pTable->nRef>0 ); /* Do not delete the table until the reference count reaches zero. */ if( !pTable ) return; if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; /* Delete all indices associated with this table. */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema ); if( !db || db->pnBytesFreed==0 ){ char *zName = pIndex->zName; TESTONLY ( Index *pOld = ) sqlite3HashInsert( &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 ); assert( pOld==pIndex || pOld==0 ); } freeIndex(db, pIndex); } /* Delete any foreign keys attached to this table. */ sqlite3FkDelete(db, pTable); /* Delete the Table structure itself. */ sqliteDeleteColumnNames(db, pTable); sqlite3DbFree(db, pTable->zName); sqlite3DbFree(db, pTable->zColAff); sqlite3SelectDelete(db, pTable->pSelect); #ifndef SQLITE_OMIT_CHECK sqlite3ExprDelete(db, pTable->pCheck); #endif #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3VtabClear(db, pTable); #endif sqlite3DbFree(db, pTable); } /* ** Unlink the given table from the hash tables and the delete the ** table structure with all its indices and foreign keys. */ void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ Table *p; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDb<db->nDb ); assert( zTabName ); testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ pDb = &db->aDb[iDb]; p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, sqlite3Strlen30(zTabName),0); sqlite3DeleteTable(db, p); db->flags |= SQLITE_InternChanges; } /* ** Given a token, return a string that consists of the text of that ** token. Space to hold the returned string ** is obtained from sqliteMalloc() and must be freed by the calling |
︙ | ︙ | |||
818 819 820 821 822 823 824 | pParse->nErr++; goto begin_table_error; } pTable->zName = zName; pTable->iPKey = -1; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nRef = 1; | < | 798 799 800 801 802 803 804 805 806 807 808 809 810 811 | pParse->nErr++; goto begin_table_error; } pTable->zName = zName; pTable->iPKey = -1; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nRef = 1; assert( pParse->pNewTable==0 ); pParse->pNewTable = pTable; /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ |
︙ | ︙ | |||
1370 1371 1372 1373 1374 1375 1376 | zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; | | | 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 | zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqlite3DbMallocRaw(0, n); if( zStmt==0 ){ db->mallocFailed = 1; return 0; } sqlite3_snprintf(n, zStmt, "CREATE TABLE "); k = sqlite3Strlen30(zStmt); identPut(zStmt, &k, p->zName); |
︙ | ︙ | |||
1551 1552 1553 1554 1555 1556 1557 | pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); if( pSelTab==0 ) return; assert( p->aCol==0 ); p->nCol = pSelTab->nCol; p->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; | | | 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 | pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); if( pSelTab==0 ) return; assert( p->aCol==0 ); p->nCol = pSelTab->nCol; p->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); } } /* Compute the complete text of the CREATE statement */ if( pSelect ){ zStmt = createTableStmt(db, p); }else{ |
︙ | ︙ | |||
1795 1796 1797 1798 1799 1800 1801 | pParse->nTab = n; if( pSelTab ){ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; | | | 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 | pParse->nTab = n; if( pSelTab ){ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); pTable->pSchema->flags |= DB_UnresetViews; }else{ pTable->nCol = 0; nErr++; } sqlite3SelectDelete(db, pSel); } else { |
︙ | ︙ | |||
1820 1821 1822 1823 1824 1825 1826 | */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( pTab->pSelect ){ | | > > | 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 | */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( pTab->pSelect ){ sqliteDeleteColumnNames(db, pTab); pTab->aCol = 0; pTab->nCol = 0; } } DbClearProperty(db, idx, DB_UnresetViews); } #else # define sqliteViewResetAll(A,B) #endif /* SQLITE_OMIT_VIEW */ |
︙ | ︙ | |||
2817 2818 2819 2820 2821 2822 2823 | pRet = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ){ | | | 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 | pRet = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ){ sqlite3DbFree(db, pIndex->zColAff); sqlite3DbFree(db, pIndex); } sqlite3ExprListDelete(db, pList); sqlite3SrcListDelete(db, pTblName); sqlite3DbFree(db, zName); return pRet; } |
︙ | ︙ | |||
3196 3197 3198 3199 3200 3201 3202 | struct SrcList_item *pItem; if( pList==0 ) return; for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ sqlite3DbFree(db, pItem->zDatabase); sqlite3DbFree(db, pItem->zName); sqlite3DbFree(db, pItem->zAlias); sqlite3DbFree(db, pItem->zIndex); | | | 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 | struct SrcList_item *pItem; if( pList==0 ) return; for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ sqlite3DbFree(db, pItem->zDatabase); sqlite3DbFree(db, pItem->zName); sqlite3DbFree(db, pItem->zAlias); sqlite3DbFree(db, pItem->zIndex); sqlite3DeleteTable(db, pItem->pTab); sqlite3SelectDelete(db, pItem->pSelect); sqlite3ExprDelete(db, pItem->pOn); sqlite3IdListDelete(db, pItem->pUsing); } sqlite3DbFree(db, pList); } |
︙ | ︙ |
Changes to src/callback.c.
︙ | ︙ | |||
418 419 420 421 422 423 424 | for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem)); } sqlite3HashClear(&temp2); sqlite3HashInit(&pSchema->tblHash); for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); | < | | | 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem)); } sqlite3HashClear(&temp2); sqlite3HashInit(&pSchema->tblHash); for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(0, pTab); } sqlite3HashClear(&temp1); sqlite3HashClear(&pSchema->fkeyHash); pSchema->pSeqTab = 0; pSchema->flags &= ~DB_SchemaLoaded; } /* ** Find and return the schema associated with a BTree. Create ** a new one if necessary. */ Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ Schema * p; if( pBt ){ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree); }else{ p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); } if( !p ){ db->mallocFailed = 1; }else if ( 0==p->file_format ){ sqlite3HashInit(&p->tblHash); sqlite3HashInit(&p->idxHash); sqlite3HashInit(&p->trigHash); sqlite3HashInit(&p->fkeyHash); p->enc = SQLITE_UTF8; } return p; } |
Changes to src/delete.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** are found, return a pointer to the last table. */ Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ struct SrcList_item *pItem = pSrc->a; Table *pTab; assert( pItem && pSrc->nSrc==1 ); pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** are found, return a pointer to the last table. */ Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ struct SrcList_item *pItem = pSrc->a; Table *pTab; assert( pItem && pSrc->nSrc==1 ); pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); sqlite3DeleteTable(pParse->db, pItem->pTab); pItem->pTab = pTab; if( pTab ){ pTab->nRef++; } if( sqlite3IndexedByLookup(pParse, pItem) ){ pTab = 0; } |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | int j = pExpr->iColumn; if( j<0 ) return SQLITE_AFF_INTEGER; assert( pExpr->pTab && j<pExpr->pTab->nCol ); return pExpr->pTab->aCol[j].affinity; } return pExpr->affinity; } /* ** Set the collating sequence for expression pExpr to be the collating ** sequence named by pToken. Return a pointer to the revised expression. ** The collating sequence is marked as "explicit" using the EP_ExpCollate ** flag. An explicit collating sequence will override implicit ** collating sequences. */ | > > > > > > > > > > > > | < | | < < < < | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | int j = pExpr->iColumn; if( j<0 ) return SQLITE_AFF_INTEGER; assert( pExpr->pTab && j<pExpr->pTab->nCol ); return pExpr->pTab->aCol[j].affinity; } return pExpr->affinity; } /* ** Set the explicit collating sequence for an expression to the ** collating sequence supplied in the second argument. */ Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ if( pExpr && pColl ){ pExpr->pColl = pColl; pExpr->flags |= EP_ExpCollate; } return pExpr; } /* ** Set the collating sequence for expression pExpr to be the collating ** sequence named by pToken. Return a pointer to the revised expression. ** The collating sequence is marked as "explicit" using the EP_ExpCollate ** flag. An explicit collating sequence will override implicit ** collating sequences. */ Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ char *zColl = 0; /* Dequoted name of collation sequence */ CollSeq *pColl; sqlite3 *db = pParse->db; zColl = sqlite3NameFromToken(db, pCollName); pColl = sqlite3LocateCollSeq(pParse, zColl); sqlite3ExprSetColl(pExpr, pColl); sqlite3DbFree(db, zColl); return pExpr; } /* ** Return the default collation sequence for the expression pExpr. If ** there is no default collation type, return 0. |
︙ | ︙ | |||
543 544 545 546 547 548 549 | if( z[1]==0 ){ /* Wildcard of the form "?". Assign the next variable number */ assert( z[0]=='?' ); pExpr->iColumn = (ynVar)(++pParse->nVar); }else if( z[0]=='?' ){ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and ** use it as the variable number */ | > | | | 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | if( z[1]==0 ){ /* Wildcard of the form "?". Assign the next variable number */ assert( z[0]=='?' ); pExpr->iColumn = (ynVar)(++pParse->nVar); }else if( z[0]=='?' ){ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and ** use it as the variable number */ i64 i; int bOk = sqlite3Atoi64(&z[1], &i); pExpr->iColumn = (ynVar)i; testcase( i==0 ); testcase( i==1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); } if( i>pParse->nVar ){ pParse->nVar = i; } }else{ |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
496 497 498 499 500 501 502 | pLeft = sqlite3Expr(db, TK_REGISTER, 0); if( pLeft ){ /* Set the collation sequence and affinity of the LHS of each TK_EQ ** expression to the parent key column defaults. */ if( pIdx ){ Column *pCol; iCol = pIdx->aiColumn[i]; | | > | 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | pLeft = sqlite3Expr(db, TK_REGISTER, 0); if( pLeft ){ /* Set the collation sequence and affinity of the LHS of each TK_EQ ** expression to the parent key column defaults. */ if( pIdx ){ Column *pCol; iCol = pIdx->aiColumn[i]; pCol = &pTab->aCol[iCol]; if( pTab->iPKey==iCol ) iCol = -1; pLeft->iTable = regData+iCol+1; pLeft->affinity = pCol->affinity; pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl); }else{ pLeft->iTable = regData; pLeft->affinity = SQLITE_AFF_INTEGER; } |
︙ | ︙ | |||
1057 1058 1059 1060 1061 1062 1063 | sqlite3SrcListAppend(db, 0, &tFrom, 0), pWhere, 0, 0, 0, 0, 0, 0 ); pWhere = 0; } | | < < < < | 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 | sqlite3SrcListAppend(db, 0, &tFrom, 0), pWhere, 0, 0, 0, 0, 0, 0 ); pWhere = 0; } /* Disable lookaside memory allocation */ enableLookaside = db->lookaside.bEnabled; db->lookaside.bEnabled = 0; pTrigger = (Trigger *)sqlite3DbMallocZero(db, sizeof(Trigger) + /* struct Trigger */ sizeof(TriggerStep) + /* Single step in trigger program */ nFrom + 1 /* Space for pStep->target.z */ |
︙ | ︙ | |||
1151 1152 1153 1154 1155 1156 1157 | #endif /* ifndef SQLITE_OMIT_TRIGGER */ /* ** Free all memory associated with foreign key definitions attached to ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash ** hash table. */ | | > | | | | | | | | | | | < < < < < > > > > > > | | 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 | #endif /* ifndef SQLITE_OMIT_TRIGGER */ /* ** Free all memory associated with foreign key definitions attached to ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash ** hash table. */ void sqlite3FkDelete(sqlite3 *db, Table *pTab){ FKey *pFKey; /* Iterator variable */ FKey *pNext; /* Copy of pFKey->pNextFrom */ for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ /* Remove the FK from the fkeyHash hash table. */ if( !db || db->pnBytesFreed==0 ){ if( pFKey->pPrevTo ){ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; }else{ void *p = (void *)pFKey->pNextTo; const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p); } if( pFKey->pNextTo ){ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; } } /* EV: R-30323-21917 Each foreign key constraint in SQLite is ** classified as either immediate or deferred. */ assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); /* Delete any triggers created to implement actions for this FK. */ #ifndef SQLITE_OMIT_TRIGGER fkTriggerDelete(db, pFKey->apTrigger[0]); fkTriggerDelete(db, pFKey->apTrigger[1]); #endif pNext = pFKey->pNextFrom; sqlite3DbFree(db, pFKey); } } #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ |
Changes to src/func.c.
︙ | ︙ | |||
787 788 789 790 791 792 793 | sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zOptName; assert( argc==1 ); UNUSED_PARAMETER(argc); | | | > > | | > | 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zOptName; assert( argc==1 ); UNUSED_PARAMETER(argc); /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL ** function is a wrapper around the sqlite3_compileoption_used() C/C++ ** function. */ if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); } } #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ /* ** Implementation of the sqlite_compileoption_get() function. ** The result is a string that identifies the compiler options ** used to build SQLite. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS static void compileoptiongetFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int n; assert( argc==1 ); UNUSED_PARAMETER(argc); /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. */ n = sqlite3_value_int(argv[0]); sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); } #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ /* Array for converting from half-bytes (nybbles) into ASCII hex ** digits. */ |
︙ | ︙ | |||
1009 1010 1011 1012 1013 1014 1015 | u8 *zOld; sqlite3 *db = sqlite3_context_db_handle(context); nOut += nRep - nPattern; testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); | | | | 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 | u8 *zOld; sqlite3 *db = sqlite3_context_db_handle(context); nOut += nRep - nPattern; testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); sqlite3_free(zOut); return; } zOld = zOut; zOut = sqlite3_realloc(zOut, (int)nOut); if( zOut==0 ){ sqlite3_result_error_nomem(context); sqlite3_free(zOld); return; } memcpy(&zOut[j], zRep, nRep); j += nRep; i += nPattern-1; } } |
︙ | ︙ | |||
1377 1378 1379 1380 1381 1382 1383 | assert( argc==1 || argc==2 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); if( pAccum ){ sqlite3 *db = sqlite3_context_db_handle(context); int firstTerm = pAccum->useMalloc==0; | | | 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 | assert( argc==1 || argc==2 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); if( pAccum ){ sqlite3 *db = sqlite3_context_db_handle(context); int firstTerm = pAccum->useMalloc==0; pAccum->useMalloc = 2; pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; if( !firstTerm ){ if( argc==2 ){ zSep = (char*)sqlite3_value_text(argv[1]); nSep = sqlite3_value_bytes(argv[1]); }else{ zSep = ","; |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
63 64 65 66 67 68 69 | ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; sqlite3 *db = sqlite3VdbeDb(v); | | | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; sqlite3 *db = sqlite3VdbeDb(v); pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); if( !pIdx->zColAff ){ db->mallocFailed = 1; return 0; } for(n=0; n<pIdx->nColumn; n++){ pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; } |
︙ | ︙ | |||
105 106 107 108 109 110 111 | ** sqlite3DeleteTable() when the Table structure itself is cleaned up. */ if( !pTab->zColAff ){ char *zColAff; int i; sqlite3 *db = sqlite3VdbeDb(v); | | | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | ** sqlite3DeleteTable() when the Table structure itself is cleaned up. */ if( !pTab->zColAff ){ char *zColAff; int i; sqlite3 *db = sqlite3VdbeDb(v); zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); if( !zColAff ){ db->mallocFailed = 1; return; } for(i=0; i<pTab->nCol; i++){ zColAff[i] = pTab->aCol[i].affinity; |
︙ | ︙ | |||
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 | int allOk = sqlite3VdbeMakeLabel(v); pParse->ckBase = regData; sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); onError = overrideError!=OE_Default ? overrideError : OE_Abort; if( onError==OE_Ignore ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); }else{ sqlite3HaltConstraint(pParse, onError, 0, 0); } sqlite3VdbeResolveLabel(v, allOk); } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* If we have an INTEGER PRIMARY KEY, make sure the primary key | > | 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 | int allOk = sqlite3VdbeMakeLabel(v); pParse->ckBase = regData; sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); onError = overrideError!=OE_Default ? overrideError : OE_Abort; if( onError==OE_Ignore ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); }else{ if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ sqlite3HaltConstraint(pParse, onError, 0, 0); } sqlite3VdbeResolveLabel(v, allOk); } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* If we have an INTEGER PRIMARY KEY, make sure the primary key |
︙ | ︙ |
Changes to src/loadext.c.
︙ | ︙ | |||
372 373 374 375 376 377 378 | if( zProc==0 ){ zProc = "sqlite3_extension_init"; } handle = sqlite3OsDlOpen(pVfs, zFile); if( handle==0 ){ if( pzErrMsg ){ | | < < | < < | 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | if( zProc==0 ){ zProc = "sqlite3_extension_init"; } handle = sqlite3OsDlOpen(pVfs, zFile); if( handle==0 ){ if( pzErrMsg ){ *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg); if( zErrmsg ){ sqlite3_snprintf(nMsg, zErrmsg, "unable to open shared library [%s]", zFile); sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); } } return SQLITE_ERROR; } xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) sqlite3OsDlSym(pVfs, handle, zProc); if( xInit==0 ){ if( pzErrMsg ){ *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg); if( zErrmsg ){ sqlite3_snprintf(nMsg, zErrmsg, "no entry point [%s] in shared library [%s]", zProc,zFile); sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); } sqlite3OsDlClose(pVfs, handle); } return SQLITE_ERROR; }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){ if( pzErrMsg ){ *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg); |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
1311 1312 1313 1314 1315 1316 1317 | int rc = SQLITE_OK; /* Return code */ int i; /* Used to iterate through attached dbs */ assert( sqlite3_mutex_held(db->mutex) ); for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ | | < < < < < < < < < | 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 | int rc = SQLITE_OK; /* Return code */ int i; /* Used to iterate through attached dbs */ assert( sqlite3_mutex_held(db->mutex) ); for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt); } } return rc; } #endif /* SQLITE_OMIT_WAL */ |
︙ | ︙ |
Changes to src/malloc.c.
︙ | ︙ | |||
247 248 249 250 251 252 253 254 255 256 257 258 259 260 | if( p==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nFull); p = sqlite3GlobalConfig.m.xMalloc(nFull); } if( p ){ nFull = sqlite3MallocSize(p); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); } *pp = p; return nFull; } /* ** Allocate memory. This routine is like sqlite3_malloc() except that it | > | 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | if( p==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nFull); p = sqlite3GlobalConfig.m.xMalloc(nFull); } if( p ){ nFull = sqlite3MallocSize(p); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); } *pp = p; return nFull; } /* ** Allocate memory. This routine is like sqlite3_malloc() except that it |
︙ | ︙ | |||
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | } void sqlite3ScratchFree(void *p){ if( p ){ if( sqlite3GlobalConfig.pScratch==0 || p<sqlite3GlobalConfig.pScratch || p>=(void*)mem0.aScratchFree ){ assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); if( sqlite3GlobalConfig.bMemstat ){ int iSize = sqlite3MallocSize(p); sqlite3_mutex_enter(mem0.mutex); sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3GlobalConfig.m.xFree(p); } }else{ int i; | > > | 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 | } void sqlite3ScratchFree(void *p){ if( p ){ if( sqlite3GlobalConfig.pScratch==0 || p<sqlite3GlobalConfig.pScratch || p>=(void*)mem0.aScratchFree ){ assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); if( sqlite3GlobalConfig.bMemstat ){ int iSize = sqlite3MallocSize(p); sqlite3_mutex_enter(mem0.mutex); sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3GlobalConfig.m.xFree(p); } }else{ int i; |
︙ | ︙ | |||
404 405 406 407 408 409 410 | } /* ** TRUE if p is a lookaside memory allocation from db */ #ifndef SQLITE_OMIT_LOOKASIDE static int isLookaside(sqlite3 *db, void *p){ | | > | | | > > > > > > > > | | | | | | > > > | > | | < | 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | } /* ** TRUE if p is a lookaside memory allocation from db */ #ifndef SQLITE_OMIT_LOOKASIDE static int isLookaside(sqlite3 *db, void *p){ return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; } #else #define isLookaside(A,B) 0 #endif /* ** Return the size of a memory allocation previously obtained from ** sqlite3Malloc() or sqlite3_malloc(). */ int sqlite3MallocSize(void *p){ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); return sqlite3GlobalConfig.m.xSize(p); } int sqlite3DbMallocSize(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( db && isLookaside(db, p) ){ return db->lookaside.sz; }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); return sqlite3GlobalConfig.m.xSize(p); } } /* ** Free memory previously obtained from sqlite3Malloc(). */ void sqlite3_free(void *p){ if( p==0 ) return; assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3GlobalConfig.m.xFree(p); } } /* ** Free memory that might be associated with a particular database ** connection. */ void sqlite3DbFree(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( db ){ if( db->pnBytesFreed ){ *db->pnBytesFreed += sqlite3DbMallocSize(db, p); return; } if( isLookaside(db, p) ){ LookasideSlot *pBuf = (LookasideSlot*)p; pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; db->lookaside.nOut--; return; } } assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } /* ** Change the size of an existing memory allocation */ void *sqlite3Realloc(void *pOld, int nBytes){ int nOld, nNew; |
︙ | ︙ | |||
492 493 494 495 496 497 498 499 500 501 502 503 504 505 | sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= mem0.alarmThreshold ){ sqlite3MallocAlarm(nNew-nOld); } assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); if( pNew==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } if( pNew ){ nNew = sqlite3MallocSize(pNew); | > | 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 | sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= mem0.alarmThreshold ){ sqlite3MallocAlarm(nNew-nOld); } assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); if( pNew==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } if( pNew ){ nNew = sqlite3MallocSize(pNew); |
︙ | ︙ | |||
564 565 566 567 568 569 570 571 572 573 574 575 576 577 | ** ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed ** that all prior mallocs (ex: "a") worked too. */ void *sqlite3DbMallocRaw(sqlite3 *db, int n){ void *p; assert( db==0 || sqlite3_mutex_held(db->mutex) ); #ifndef SQLITE_OMIT_LOOKASIDE if( db ){ LookasideSlot *pBuf; if( db->mallocFailed ){ return 0; } if( db->lookaside.bEnabled && n<=db->lookaside.sz | > | 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 | ** ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed ** that all prior mallocs (ex: "a") worked too. */ void *sqlite3DbMallocRaw(sqlite3 *db, int n){ void *p; assert( db==0 || sqlite3_mutex_held(db->mutex) ); assert( db==0 || db->pnBytesFreed==0 ); #ifndef SQLITE_OMIT_LOOKASIDE if( db ){ LookasideSlot *pBuf; if( db->mallocFailed ){ return 0; } if( db->lookaside.bEnabled && n<=db->lookaside.sz |
︙ | ︙ | |||
589 590 591 592 593 594 595 | return 0; } #endif p = sqlite3Malloc(n); if( !p && db ){ db->mallocFailed = 1; } | | | | 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 | return 0; } #endif p = sqlite3Malloc(n); if( !p && db ){ db->mallocFailed = 1; } sqlite3MemdebugSetType(p, MEMTYPE_DB | ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); return p; } /* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ |
︙ | ︙ | |||
616 617 618 619 620 621 622 | } pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ | > | > | | | 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 | } pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3_realloc(p, n); if( !pNew ){ sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP); db->mallocFailed = 1; } sqlite3MemdebugSetType(pNew, MEMTYPE_DB | (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); } } return pNew; } /* ** Attempt to reallocate p. If the reallocation fails, then free p |
︙ | ︙ |
Changes to src/mem2.c.
︙ | ︙ | |||
397 398 399 400 401 402 403 | */ int sqlite3MemdebugHasType(void *p, u8 eType){ int rc = 1; if( p ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ | < > > > > > | > > > | > > > > > > > | | | > > < | 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | */ int sqlite3MemdebugHasType(void *p, u8 eType){ int rc = 1; if( p ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ if( (pHdr->eType&eType)==0 ){ rc = 0; } } return rc; } /* ** Return TRUE if the mask of type in eType matches no bits of the type of the ** allocation p. Also return true if p==NULL. ** ** This routine is designed for use within an assert() statement, to ** verify the type of an allocation. For example: ** ** assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); */ int sqlite3MemdebugNoType(void *p, u8 eType){ int rc = 1; if( p ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ if( (pHdr->eType&eType)!=0 ){ rc = 0; } } return rc; } /* ** Set the number of backtrace levels kept for each allocation. ** A value of zero turns off backtracing. The number is always rounded ** up to a multiple of 2. */ void sqlite3MemdebugBacktrace(int depth){ |
︙ | ︙ |
Changes to src/mutex_unix.c.
︙ | ︙ | |||
231 232 233 234 235 236 237 238 239 240 241 242 243 244 | } } #else /* Use the built-in recursive mutexes if they are available. */ pthread_mutex_lock(&p->mutex); #if SQLITE_MUTEX_NREF p->owner = pthread_self(); p->nRef++; #endif #endif #ifdef SQLITE_DEBUG if( p->trace ){ | > | 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | } } #else /* Use the built-in recursive mutexes if they are available. */ pthread_mutex_lock(&p->mutex); #if SQLITE_MUTEX_NREF assert( p->nRef>0 || p->owner==0 ); p->owner = pthread_self(); p->nRef++; #endif #endif #ifdef SQLITE_DEBUG if( p->trace ){ |
︙ | ︙ | |||
303 304 305 306 307 308 309 310 311 312 313 314 315 316 | ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void pthreadMutexLeave(sqlite3_mutex *p){ assert( pthreadMutexHeld(p) ); #if SQLITE_MUTEX_NREF p->nRef--; #endif assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX if( p->nRef==0 ){ pthread_mutex_unlock(&p->mutex); } | > | 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void pthreadMutexLeave(sqlite3_mutex *p){ assert( pthreadMutexHeld(p) ); #if SQLITE_MUTEX_NREF p->nRef--; if( p->nRef==0 ) p->owner = 0; #endif assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX if( p->nRef==0 ){ pthread_mutex_unlock(&p->mutex); } |
︙ | ︙ |
Changes to src/mutex_w32.c.
︙ | ︙ | |||
216 217 218 219 220 221 222 | /* ** This routine deallocates a previously ** allocated mutex. SQLite is careful to deallocate every ** mutex that it allocates. */ static void winMutexFree(sqlite3_mutex *p){ assert( p ); | | | 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | /* ** This routine deallocates a previously ** allocated mutex. SQLite is careful to deallocate every ** mutex that it allocates. */ static void winMutexFree(sqlite3_mutex *p){ assert( p ); assert( p->nRef==0 && p->owner==0 ); assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); DeleteCriticalSection(&p->mutex); sqlite3_free(p); } /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt |
︙ | ︙ | |||
240 241 242 243 244 245 246 247 248 249 250 251 252 253 | static void winMutexEnter(sqlite3_mutex *p){ #ifdef SQLITE_DEBUG DWORD tid = GetCurrentThreadId(); assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); #endif EnterCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG p->owner = tid; p->nRef++; if( p->trace ){ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif } | > | 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | static void winMutexEnter(sqlite3_mutex *p){ #ifdef SQLITE_DEBUG DWORD tid = GetCurrentThreadId(); assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); #endif EnterCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG assert( p->nRef>0 || p->owner==0 ); p->owner = tid; p->nRef++; if( p->trace ){ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif } |
︙ | ︙ | |||
293 294 295 296 297 298 299 300 301 302 303 304 305 306 | */ static void winMutexLeave(sqlite3_mutex *p){ #ifndef NDEBUG DWORD tid = GetCurrentThreadId(); assert( p->nRef>0 ); assert( p->owner==tid ); p->nRef--; assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #endif LeaveCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG if( p->trace ){ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } | > | 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | */ static void winMutexLeave(sqlite3_mutex *p){ #ifndef NDEBUG DWORD tid = GetCurrentThreadId(); assert( p->nRef>0 ); assert( p->owner==tid ); p->nRef--; if( p->nRef==0 ) p->owner = 0; assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #endif LeaveCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG if( p->trace ){ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } |
︙ | ︙ |
Changes to src/notify.c.
︙ | ︙ | |||
251 252 253 254 255 256 257 | nArg = 0; } sqlite3BeginBenignMalloc(); assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) ); assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn ); if( (!aDyn && nArg==(int)ArraySize(aStatic)) | | | 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | nArg = 0; } sqlite3BeginBenignMalloc(); assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) ); assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn ); if( (!aDyn && nArg==(int)ArraySize(aStatic)) || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*))) ){ /* The aArg[] array needs to grow. */ void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2); if( pNew ){ memcpy(pNew, aArg, nArg*sizeof(void *)); sqlite3_free(aDyn); aDyn = aArg = pNew; |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
206 207 208 209 210 211 212 213 214 215 216 217 218 219 | unsigned char eFileLock; /* The type of lock held on this fd */ int lastErrno; /* The unix errno from last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ int fileFlags; /* Miscellanous flags */ const char *zPath; /* Name of the file */ unixShm *pShm; /* Shared memory segment information */ #if SQLITE_ENABLE_LOCKING_STYLE int openFlags; /* The flags specified at open() */ #endif #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) unsigned fsFlags; /* cached details from statfs() */ #endif #if OS_VXWORKS | > | 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | unsigned char eFileLock; /* The type of lock held on this fd */ int lastErrno; /* The unix errno from last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ int fileFlags; /* Miscellanous flags */ const char *zPath; /* Name of the file */ unixShm *pShm; /* Shared memory segment information */ int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ #if SQLITE_ENABLE_LOCKING_STYLE int openFlags; /* The flags specified at open() */ #endif #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) unsigned fsFlags; /* cached details from statfs() */ #endif #if OS_VXWORKS |
︙ | ︙ | |||
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 | while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ amt -= wrote; offset += wrote; pBuf = &((char*)pBuf)[wrote]; } SimulateIOError(( wrote=(-1), amt=1 )); SimulateDiskfullError(( wrote=0, amt=1 )); if( amt>0 ){ if( wrote<0 ){ /* lastErrno set by seekAndWrite */ return SQLITE_IOERR_WRITE; }else{ pFile->lastErrno = 0; /* not a system error */ return SQLITE_FULL; } } return SQLITE_OK; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occurring at the right times. | > > | 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 | while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ amt -= wrote; offset += wrote; pBuf = &((char*)pBuf)[wrote]; } SimulateIOError(( wrote=(-1), amt=1 )); SimulateDiskfullError(( wrote=0, amt=1 )); if( amt>0 ){ if( wrote<0 ){ /* lastErrno set by seekAndWrite */ return SQLITE_IOERR_WRITE; }else{ pFile->lastErrno = 0; /* not a system error */ return SQLITE_FULL; } } return SQLITE_OK; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occurring at the right times. |
︙ | ︙ | |||
2969 2970 2971 2972 2973 2974 2975 2976 | return rc; } /* ** Truncate an open file to a specified size */ static int unixTruncate(sqlite3_file *id, i64 nByte){ int rc; | > | > > > > > > > > > > | | | | | 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 | return rc; } /* ** Truncate an open file to a specified size */ static int unixTruncate(sqlite3_file *id, i64 nByte){ unixFile *pFile = (unixFile *)id; int rc; assert( pFile ); SimulateIOError( return SQLITE_IOERR_TRUNCATE ); /* If the user has configured a chunk-size for this file, truncate the ** file so that it consists of an integer number of chunks (i.e. the ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } rc = ftruncate(pFile->h, (off_t)nByte); if( rc ){ pFile->lastErrno = errno; return SQLITE_IOERR_TRUNCATE; }else{ #ifndef NDEBUG /* If we are doing a normal write to a database file (as opposed to ** doing a hot-journal rollback or a write to some file other than a ** normal database file) and we truncate the file to zero length, ** that effectively updates the change counter. This might happen ** when restoring a database using the backup API from a zero-length ** source. */ if( pFile->inNormalWrite && nByte==0 ){ pFile->transCntrChng = 1; } #endif return SQLITE_OK; } } |
︙ | ︙ | |||
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 | #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) /* ** Handler for proxy-locking file-control verbs. Defined below in the ** proxying locking division. */ static int proxyFileControl(sqlite3_file*,int,void*); #endif #if (SQLITE_ENABLE_APPLE_SPI>0) && defined(__APPLE__) #include "sqlite3_private.h" #include <copyfile.h> static int getDbPathForUnixFile(unixFile *pFile, char *dbPath); #endif /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = ((unixFile*)id)->eFileLock; return SQLITE_OK; } case SQLITE_LAST_ERRNO: { *(int*)pArg = ((unixFile*)id)->lastErrno; return SQLITE_OK; } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | < < > > > | 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 | #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) /* ** Handler for proxy-locking file-control verbs. Defined below in the ** proxying locking division. */ static int proxyFileControl(sqlite3_file*,int,void*); #endif /* ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT ** file-control operation. ** ** If the user has configured a chunk-size for this file, it could be ** that the file needs to be extended at this point. Otherwise, the ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix. */ static int fcntlSizeHint(unixFile *pFile, i64 nByte){ if( pFile->szChunk ){ i64 nSize; /* Required file size */ struct stat buf; /* Used to hold return values of fstat() */ if( fstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; if( nSize>(i64)buf.st_size ){ #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE if( posix_fallocate(pFile->h, buf.st_size, nSize-buf.st_size) ){ return SQLITE_IOERR_WRITE; } #else /* If the OS does not have posix_fallocate(), fake it. First use ** ftruncate() to set the file size, then write a single byte to ** the last byte in each block within the extended region. This ** is the same technique used by glibc to implement posix_fallocate() ** on systems that do not have a real fallocate() system call. */ int nBlk = buf.st_blksize; /* File-system block size */ i64 iWrite; /* Next offset to write to */ int nWrite; /* Return value from seekAndWrite() */ if( ftruncate(pFile->h, nSize) ){ pFile->lastErrno = errno; return SQLITE_IOERR_TRUNCATE; } iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; do { nWrite = seekAndWrite(pFile, iWrite, "", 1); iWrite += nBlk; } while( nWrite==1 && iWrite<nSize ); if( nWrite!=1 ) return SQLITE_IOERR_WRITE; #endif } } return SQLITE_OK; } #if (SQLITE_ENABLE_APPLE_SPI>0) && defined(__APPLE__) #include "sqlite3_private.h" #include <copyfile.h> static int getDbPathForUnixFile(unixFile *pFile, char *dbPath); #endif /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = ((unixFile*)id)->eFileLock; return SQLITE_OK; } case SQLITE_LAST_ERRNO: { *(int*)pArg = ((unixFile*)id)->lastErrno; return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { ((unixFile*)id)->szChunk = *(int *)pArg; return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { return fcntlSizeHint((unixFile *)id, *(i64 *)pArg); } #ifndef NDEBUG /* The pager calls this method to signal that it has done ** a rollback and that the database is therefore unchanged and ** it hence it is OK for the transaction change counter to be ** unchanged. */ |
︙ | ︙ | |||
6144 6145 6146 6147 6148 6149 6150 | pCtx->pOldMethod = pFile->pMethod; pFile->pMethod = &proxyIoMethods; }else{ if( pCtx->conchFile ){ pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); sqlite3_free(pCtx->conchFile); } | | | 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 | pCtx->pOldMethod = pFile->pMethod; pFile->pMethod = &proxyIoMethods; }else{ if( pCtx->conchFile ){ pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); sqlite3_free(pCtx->conchFile); } sqlite3DbFree(0, pCtx->lockProxyPath); sqlite3_free(pCtx->conchFilePath); sqlite3_free(pCtx); } OSTRACE(("TRANSPROXY %d %s\n", pFile->h, (rc==SQLITE_OK ? "ok" : "failed"))); return rc; } |
︙ | ︙ | |||
6335 6336 6337 6338 6339 6340 6341 | rc = proxyReleaseConch(pFile); if( rc ) return rc; } rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); if( rc ) return rc; sqlite3_free(conchFile); } | | | | 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 | rc = proxyReleaseConch(pFile); if( rc ) return rc; } rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); if( rc ) return rc; sqlite3_free(conchFile); } sqlite3DbFree(0, pCtx->lockProxyPath); sqlite3_free(pCtx->conchFilePath); sqlite3DbFree(0, pCtx->dbPath); /* restore the original locking context and pMethod then close it */ pFile->lockingContext = pCtx->oldLockingContext; pFile->pMethod = pCtx->pOldMethod; sqlite3_free(pCtx); return pFile->pMethod->xClose(id); } return SQLITE_OK; |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
104 105 106 107 108 109 110 111 112 113 114 115 116 117 | HANDLE h; /* Handle for accessing the file */ unsigned char locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ DWORD lastErrno; /* The Windows errno from the last I/O error */ DWORD sectorSize; /* Sector size of the device file is on */ winShm *pShm; /* Instance of shared memory on this file */ const char *zPath; /* Full pathname of this file */ #if SQLITE_OS_WINCE WCHAR *zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif | > | 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | HANDLE h; /* Handle for accessing the file */ unsigned char locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ DWORD lastErrno; /* The Windows errno from the last I/O error */ DWORD sectorSize; /* Sector size of the device file is on */ winShm *pShm; /* Instance of shared memory on this file */ const char *zPath; /* Full pathname of this file */ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ #if SQLITE_OS_WINCE WCHAR *zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif |
︙ | ︙ | |||
615 616 617 618 619 620 621 622 623 624 625 626 627 628 | *****************************************************************************/ #endif /* SQLITE_OS_WINCE */ /***************************************************************************** ** The next group of routines implement the I/O methods specified ** by the sqlite3_io_methods object. ******************************************************************************/ /* ** Close a file. ** ** It is reported that an attempt to close a handle might sometimes ** fail. This is a very unreasonable result, but windows is notorious ** for being unreasonable so I do not doubt that it might happen. If | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | *****************************************************************************/ #endif /* SQLITE_OS_WINCE */ /***************************************************************************** ** The next group of routines implement the I/O methods specified ** by the sqlite3_io_methods object. ******************************************************************************/ /* ** Some microsoft compilers lack this definition. */ #ifndef INVALID_SET_FILE_POINTER # define INVALID_SET_FILE_POINTER ((DWORD)-1) #endif /* ** Move the current position of the file handle passed as the first ** argument to offset iOffset within the file. If successful, return 0. ** Otherwise, set pFile->lastErrno and return non-zero. */ static int seekWinFile(winFile *pFile, sqlite3_int64 iOffset){ LONG upperBits; /* Most sig. 32 bits of new offset */ LONG lowerBits; /* Least sig. 32 bits of new offset */ DWORD dwRet; /* Value returned by SetFilePointer() */ upperBits = (LONG)((iOffset>>32) & 0x7fffffff); lowerBits = (LONG)(iOffset & 0xffffffff); /* API oddity: If successful, SetFilePointer() returns a dword ** containing the lower 32-bits of the new file-offset. Or, if it fails, ** it returns INVALID_SET_FILE_POINTER. However according to MSDN, ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine ** whether an error has actually occured, it is also necessary to call ** GetLastError(). */ dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); if( (dwRet==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR) ){ pFile->lastErrno = GetLastError(); return 1; } return 0; } /* ** Close a file. ** ** It is reported that an attempt to close a handle might sometimes ** fail. This is a very unreasonable result, but windows is notorious ** for being unreasonable so I do not doubt that it might happen. If |
︙ | ︙ | |||
658 659 660 661 662 663 664 | } #endif OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed")); OpenCounter(-1); return rc ? SQLITE_OK : SQLITE_IOERR; } | < < < < < < < < < < | < | | < | | | < < | > > | | | | < < | | < < | > > < < < < < < < | > > > > > | < < < | | < | < | | | > > > > > < < > < < < | < | | > | > > > > > > > > | > | < | > | | 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 | } #endif OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed")); OpenCounter(-1); return rc ? SQLITE_OK : SQLITE_IOERR; } /* ** Read data from a file into a buffer. Return SQLITE_OK if all ** bytes were read successfully and SQLITE_IOERR if anything goes ** wrong. */ static int winRead( sqlite3_file *id, /* File to read from */ void *pBuf, /* Write content into this buffer */ int amt, /* Number of bytes to read */ sqlite3_int64 offset /* Begin reading at this offset */ ){ winFile *pFile = (winFile*)id; /* file handle */ DWORD nRead; /* Number of bytes actually read from file */ assert( id!=0 ); SimulateIOError(return SQLITE_IOERR_READ); OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype)); if( seekWinFile(pFile, offset) ){ return SQLITE_FULL; } if( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ pFile->lastErrno = GetLastError(); return SQLITE_IOERR_READ; } if( nRead<(DWORD)amt ){ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[nRead], 0, amt-nRead); return SQLITE_IOERR_SHORT_READ; } return SQLITE_OK; } /* ** Write data from a buffer into a file. Return SQLITE_OK on success ** or some other error code on failure. */ static int winWrite( sqlite3_file *id, /* File to write into */ const void *pBuf, /* The bytes to be written */ int amt, /* Number of bytes to write */ sqlite3_int64 offset /* Offset into the file to begin writing at */ ){ int rc; /* True if error has occured, else false */ winFile *pFile = (winFile*)id; /* File handle */ assert( amt>0 ); assert( pFile ); SimulateIOError(return SQLITE_IOERR_WRITE); SimulateDiskfullError(return SQLITE_FULL); OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype)); rc = seekWinFile(pFile, offset); if( rc==0 ){ u8 *aRem = (u8 *)pBuf; /* Data yet to be written */ int nRem = amt; /* Number of bytes yet to be written */ DWORD nWrite; /* Bytes written by each WriteFile() call */ while( nRem>0 && WriteFile(pFile->h, aRem, nRem, &nWrite, 0) && nWrite>0 ){ aRem += nWrite; nRem -= nWrite; } if( nRem>0 ){ pFile->lastErrno = GetLastError(); rc = 1; } } if( rc ){ if( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ){ return SQLITE_FULL; } return SQLITE_IOERR_WRITE; } return SQLITE_OK; } /* ** Truncate an open file to a specified size */ static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ winFile *pFile = (winFile*)id; /* File handle object */ int rc = SQLITE_OK; /* Return code for this function */ assert( pFile ); OSTRACE(("TRUNCATE %d %lld\n", pFile->h, nByte)); SimulateIOError(return SQLITE_IOERR_TRUNCATE); /* If the user has configured a chunk-size for this file, truncate the ** file so that it consists of an integer number of chunks (i.e. the ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */ if( seekWinFile(pFile, nByte) ){ rc = SQLITE_IOERR_TRUNCATE; }else if( 0==SetEndOfFile(pFile->h) ){ pFile->lastErrno = GetLastError(); rc = SQLITE_IOERR_TRUNCATE; } OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc ? "failed" : "ok")); return rc; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occuring at the right times. |
︙ | ︙ | |||
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 | case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = ((winFile*)id)->locktype; return SQLITE_OK; } case SQLITE_LAST_ERRNO: { *(int*)pArg = (int)((winFile*)id)->lastErrno; return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { sqlite3_int64 sz = *(sqlite3_int64*)pArg; SimulateIOErrorBenign(1); winTruncate(id, sz); SimulateIOErrorBenign(0); return SQLITE_OK; | > > > > | 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = ((winFile*)id)->locktype; return SQLITE_OK; } case SQLITE_LAST_ERRNO: { *(int*)pArg = (int)((winFile*)id)->lastErrno; return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { ((winFile*)id)->szChunk = *(int *)pArg; return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { sqlite3_int64 sz = *(sqlite3_int64*)pArg; SimulateIOErrorBenign(1); winTruncate(id, sz); SimulateIOErrorBenign(0); return SQLITE_OK; |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
18 19 20 21 22 23 24 | ** file simultaneously, or one process from reading the database while ** another is writing. */ #ifndef SQLITE_OMIT_DISKIO #include "sqliteInt.h" #include "wal.h" | | | > > > > | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ** file simultaneously, or one process from reading the database while ** another is writing. */ #ifndef SQLITE_OMIT_DISKIO #include "sqliteInt.h" #include "wal.h" /******************* NOTES ON THE DESIGN OF THE PAGER ************************ ** ** This comment block describes invariants that hold when using a rollback ** journal. These invariants do not apply for journal_mode=WAL, ** journal_mode=MEMORY, or journal_mode=OFF. ** ** Within this comment block, a page is deemed to have been synced ** automatically as soon as it is written when PRAGMA synchronous=OFF. ** Otherwise, the page is not synced until the xSync method of the VFS ** is called successfully on the file containing the page. ** ** Definition: A page of the database file is said to be "overwriteable" if |
︙ | ︙ | |||
53 54 55 56 57 58 59 | ** ** (2) The content of a page written into the rollback journal exactly matches ** both the content in the database when the rollback journal was written ** and the content in the database at the beginning of the current ** transaction. ** ** (3) Writes to the database file are an integer multiple of the page size | | | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | ** ** (2) The content of a page written into the rollback journal exactly matches ** both the content in the database when the rollback journal was written ** and the content in the database at the beginning of the current ** transaction. ** ** (3) Writes to the database file are an integer multiple of the page size ** in length and are aligned on a page boundary. ** ** (4) Reads from the database file are either aligned on a page boundary and ** an integer multiple of the page size in length or are taken from the ** first 100 bytes of the database file. ** ** (5) All writes to the database file are synced prior to the rollback journal ** being deleted, truncated, or zeroed. |
︙ | ︙ | |||
84 85 86 87 88 89 90 | ** is called to restore the database file to the same size it was at ** the beginning of the transaction. (In some VFSes, the xTruncate ** method is a no-op, but that does not change the fact the SQLite will ** invoke it.) ** ** (9) Whenever the database file is modified, at least one bit in the range ** of bytes from 24 through 39 inclusive will be changed prior to releasing | | > | > | 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | ** is called to restore the database file to the same size it was at ** the beginning of the transaction. (In some VFSes, the xTruncate ** method is a no-op, but that does not change the fact the SQLite will ** invoke it.) ** ** (9) Whenever the database file is modified, at least one bit in the range ** of bytes from 24 through 39 inclusive will be changed prior to releasing ** the EXCLUSIVE lock, thus signaling other connections on the same ** database to flush their caches. ** ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less ** than one billion transactions. ** ** (11) A database file is well-formed at the beginning and at the conclusion ** of every transaction. ** ** (12) An EXCLUSIVE lock is held on the database file when writing to ** the database file. ** ** (13) A SHARED lock is held on the database file while reading any ** content out of the database file. ** ******************************************************************************/ /* ** Macros for troubleshooting. Normally turned off */ #if 0 int sqlite3PagerTrace=1; /* True to enable tracing */ #define sqlite3DebugPrintf printf |
︙ | ︙ | |||
122 123 124 125 126 127 128 | ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file ** struct as its argument. */ #define PAGERID(p) ((int)(p->fd)) #define FILEHANDLEID(fd) ((int)fd) /* | > | | < | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | > > > > | > > | | > > > > > > > > > > > > > > > > > | > > > | > > > | > > > | > > | > > > > > > > > > > | > > > > | > > > > > > | > > > > | > | > > | > > > > > > > > | | > | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > | < > > > > > > | > | < | < | > > > > | > > > > > > > > > > > > > > | > > > > > | > > > > > | > > > > > > > > > > > | > > > > > > > | | < < < < | 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file ** struct as its argument. */ #define PAGERID(p) ((int)(p->fd)) #define FILEHANDLEID(fd) ((int)fd) /* ** The Pager.eState variable stores the current 'state' of a pager. A ** pager may be in any one of the seven states shown in the following ** state diagram. ** ** OPEN <------+------+ ** | | | ** V | | ** +---------> READER-------+ | ** | | | ** | V | ** |<-------WRITER_LOCKED------> ERROR ** | | ^ ** | V | ** |<------WRITER_CACHEMOD-------->| ** | | | ** | V | ** |<-------WRITER_DBMOD---------->| ** | | | ** | V | ** +<------WRITER_FINISHED-------->+ ** ** ** List of state transitions and the C [function] that performs each: ** ** OPEN -> READER [sqlite3PagerSharedLock] ** READER -> OPEN [pager_unlock] ** ** READER -> WRITER_LOCKED [sqlite3PagerBegin] ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] ** WRITER_*** -> READER [pager_end_transaction] ** ** WRITER_*** -> ERROR [pager_error] ** ERROR -> OPEN [pager_unlock] ** ** ** OPEN: ** ** The pager starts up in this state. Nothing is guaranteed in this ** state - the file may or may not be locked and the database size is ** unknown. The database may not be read or written. ** ** * No read or write transaction is active. ** * Any lock, or no lock at all, may be held on the database file. ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. ** ** READER: ** ** In this state all the requirements for reading the database in ** rollback (non-WAL) mode are met. Unless the pager is (or recently ** was) in exclusive-locking mode, a user-level read transaction is ** open. The database size is known in this state. ** ** A connection running with locking_mode=normal enters this state when ** it opens a read-transaction on the database and returns to state ** OPEN after the read-transaction is completed. However a connection ** running in locking_mode=exclusive (including temp databases) remains in ** this state even after the read-transaction is closed. The only way ** a locking_mode=exclusive connection can transition from READER to OPEN ** is via the ERROR state (see below). ** ** * A read transaction may be active (but a write-transaction cannot). ** * A SHARED or greater lock is held on the database file. ** * The dbSize variable may be trusted (even if a user-level read ** transaction is not active). The dbOrigSize and dbFileSize variables ** may not be trusted at this point. ** * If the database is a WAL database, then the WAL connection is open. ** * Even if a read-transaction is not open, it is guaranteed that ** there is no hot-journal in the file-system. ** ** WRITER_LOCKED: ** ** The pager moves to this state from READER when a write-transaction ** is first opened on the database. In WRITER_LOCKED state, all locks ** required to start a write-transaction are held, but no actual ** modifications to the cache or database have taken place. ** ** In rollback mode, a RESERVED or (if the transaction was opened with ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when ** moving to this state, but the journal file is not written to or opened ** to in this state. If the transaction is committed or rolled back while ** in WRITER_LOCKED state, all that is required is to unlock the database ** file. ** ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. ** If the connection is running with locking_mode=exclusive, an attempt ** is made to obtain an EXCLUSIVE lock on the database file. ** ** * A write transaction is active. ** * If the connection is open in rollback-mode, a RESERVED or greater ** lock is held on the database file. ** * If the connection is open in WAL-mode, a WAL write transaction ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully ** called). ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. ** * The contents of the pager cache have not been modified. ** * The journal file may or may not be open. ** * Nothing (not even the first header) has been written to the journal. ** ** WRITER_CACHEMOD: ** ** A pager moves from WRITER_LOCKED state to this state when a page is ** first modified by the upper layer. In rollback mode the journal file ** is opened (if it is not already open) and a header written to the ** start of it. The database file on disk has not been modified. ** ** * A write transaction is active. ** * A RESERVED or greater lock is held on the database file. ** * The journal file is open and the first header has been written ** to it, but the header has not been synced to disk. ** * The contents of the page cache have been modified. ** ** WRITER_DBMOD: ** ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state ** when it modifies the contents of the database file. WAL connections ** never enter this state (since they do not modify the database file, ** just the log file). ** ** * A write transaction is active. ** * An EXCLUSIVE or greater lock is held on the database file. ** * The journal file is open and the first header has been written ** and synced to disk. ** * The contents of the page cache have been modified (and possibly ** written to disk). ** ** WRITER_FINISHED: ** ** It is not possible for a WAL connection to enter this state. ** ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD ** state after the entire transaction has been successfully written into the ** database file. In this state the transaction may be committed simply ** by finalizing the journal file. Once in WRITER_FINISHED state, it is ** not possible to modify the database further. At this point, the upper ** layer must either commit or rollback the transaction. ** ** * A write transaction is active. ** * An EXCLUSIVE or greater lock is held on the database file. ** * All writing and syncing of journal and database data has finished. ** If no error occured, all that remains is to finalize the journal to ** commit the transaction. If an error did occur, the caller will need ** to rollback the transaction. ** ** ERROR: ** ** The ERROR state is entered when an IO or disk-full error (including ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it ** difficult to be sure that the in-memory pager state (cache contents, ** db size etc.) are consistent with the contents of the file-system. ** ** Temporary pager files may enter the ERROR state, but in-memory pagers ** cannot. ** ** For example, if an IO error occurs while performing a rollback, ** the contents of the page-cache may be left in an inconsistent state. ** At this point it would be dangerous to change back to READER state ** (as usually happens after a rollback). Any subsequent readers might ** report database corruption (due to the inconsistent cache), and if ** they upgrade to writers, they may inadvertently corrupt the database ** file. To avoid this hazard, the pager switches into the ERROR state ** instead of READER following such an error. ** ** Once it has entered the ERROR state, any attempt to use the pager ** to read or write data returns an error. Eventually, once all ** outstanding transactions have been abandoned, the pager is able to ** transition back to OPEN state, discarding the contents of the ** page-cache and any other in-memory state at the same time. Everything ** is reloaded from disk (and, if necessary, hot-journal rollback peformed) ** when a read-transaction is next opened on the pager (transitioning ** the pager into READER state). At that point the system has recovered ** from the error. ** ** Specifically, the pager jumps into the ERROR state if: ** ** 1. An error occurs while attempting a rollback. This happens in ** function sqlite3PagerRollback(). ** ** 2. An error occurs while attempting to finalize a journal file ** following a commit in function sqlite3PagerCommitPhaseTwo(). ** ** 3. An error occurs while attempting to write to the journal or ** database file in function pagerStress() in order to free up ** memory. ** ** In other cases, the error is returned to the b-tree layer. The b-tree ** layer then attempts a rollback operation. If the error condition ** persists, the pager enters the ERROR state via condition (1) above. ** ** Condition (3) is necessary because it can be triggered by a read-only ** statement executed within a transaction. In this case, if the error ** code were simply returned to the user, the b-tree layer would not ** automatically attempt a rollback, as it assumes that an error in a ** read-only statement cannot leave the pager in an internally inconsistent ** state. ** ** * The Pager.errCode variable is set to something other than SQLITE_OK. ** * There are one or more outstanding references to pages (after the ** last reference is dropped the pager should move back to OPEN state). ** * The pager is not an in-memory pager. ** ** ** Notes: ** ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the ** connection is open in WAL mode. A WAL connection is always in one ** of the first four states. ** ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN ** state. There are two exceptions: immediately after exclusive-mode has ** been turned on (and before any read or write transactions are ** executed), and when the pager is leaving the "error state". ** ** * See also: assert_pager_state(). */ #define PAGER_OPEN 0 #define PAGER_READER 1 #define PAGER_WRITER_LOCKED 2 #define PAGER_WRITER_CACHEMOD 3 #define PAGER_WRITER_DBMOD 4 #define PAGER_WRITER_FINISHED 5 #define PAGER_ERROR 6 /* ** The Pager.eLock variable is almost always set to one of the ** following locking-states, according to the lock currently held on ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. ** This variable is kept up to date as locks are taken and released by ** the pagerLockDb() and pagerUnlockDb() wrappers. ** ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not ** the operation was successful. In these circumstances pagerLockDb() and ** pagerUnlockDb() take a conservative approach - eLock is always updated ** when unlocking the file, and only updated when locking the file if the ** VFS call is successful. This way, the Pager.eLock variable may be set ** to a less exclusive (lower) value than the lock that is actually held ** at the system level, but it is never set to a more exclusive value. ** ** This is usually safe. If an xUnlock fails or appears to fail, there may ** be a few redundant xLock() calls or a lock may be held for longer than ** required, but nothing really goes wrong. ** ** The exception is when the database file is unlocked as the pager moves ** from ERROR to OPEN state. At this point there may be a hot-journal file ** in the file-system that needs to be rolled back (as part of a OPEN->SHARED ** transition, by the same pager or any other). If the call to xUnlock() ** fails at this point and the pager is left holding an EXCLUSIVE lock, this ** can confuse the call to xCheckReservedLock() call made later as part ** of hot-journal detection. ** ** xCheckReservedLock() is defined as returning true "if there is a RESERVED ** lock held by this process or any others". So xCheckReservedLock may ** return true because the caller itself is holding an EXCLUSIVE lock (but ** doesn't know it because of a previous error in xUnlock). If this happens ** a hot-journal may be mistaken for a journal being created by an active ** transaction in another process, causing SQLite to read from the database ** without rolling it back. ** ** To work around this, if a call to xUnlock() fails when unlocking the ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It ** is only changed back to a real locking state after a successful call ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE ** lock on the database file before attempting to roll it back. See function ** PagerSharedLock() for more detail. ** ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in ** PAGER_OPEN state. */ #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) /* ** A macro used for invoking the codec if there is one */ #ifdef SQLITE_HAS_CODEC # define CODEC1(P,D,N,X,E) \ if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; } |
︙ | ︙ | |||
223 224 225 226 227 228 229 | Pgno iSubRec; /* Index of first record in sub-journal */ #ifndef SQLITE_OMIT_WAL u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* | | > | < | < < | < < | > > > | | | > | < < < < < < < > > | | | | | < < | < | > | < < | < < | < < > | | > > | < | | < < < < | | | < < < < | | > > > > | | | | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | < | | | | | < < | | < | < < > | | > > > > < | 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 | Pgno iSubRec; /* Index of first record in sub-journal */ #ifndef SQLITE_OMIT_WAL u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* ** A open page cache is an instance of struct Pager. A description of ** some of the more important member variables follows: ** ** eState ** ** The current 'state' of the pager object. See the comment and state ** diagram above for a description of the pager state. ** ** eLock ** ** For a real on-disk database, the current lock held on the database file - ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. ** ** For a temporary or in-memory database (neither of which require any ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such ** databases always have Pager.exclusiveMode==1, this tricks the pager ** logic into thinking that it already has all the locks it will ever ** need (and no reason to release them). ** ** In some (obscure) circumstances, this variable may also be set to ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for ** details. ** ** changeCountDone ** ** This boolean variable is used to make sure that the change-counter ** (the 4-byte header field at byte offset 24 of the database file) is ** not updated more often than necessary. ** ** It is set to true when the change-counter field is updated, which ** can only happen if an exclusive lock is held on the database file. ** It is cleared (set to false) whenever an exclusive lock is ** relinquished on the database file. Each time a transaction is committed, ** The changeCountDone flag is inspected. If it is true, the work of ** updating the change-counter is omitted for the current transaction. ** ** This mechanism means that when running in exclusive mode, a connection ** need only update the change-counter once, for the first transaction ** committed. ** ** setMaster ** ** When PagerCommitPhaseOne() is called to commit a transaction, it may ** (or may not) specify a master-journal name to be written into the ** journal file before it is synced to disk. ** ** Whether or not a journal file contains a master-journal pointer affects ** the way in which the journal file is finalized after the transaction is ** committed or rolled back when running in "journal_mode=PERSIST" mode. ** If a journal file does not contain a master-journal pointer, it is ** finalized by overwriting the first journal header with zeroes. If ** it does contain a master-journal pointer the journal file is finalized ** by truncating it to zero bytes, just as if the connection were ** running in "journal_mode=truncate" mode. ** ** Journal files that contain master journal pointers cannot be finalized ** simply by overwriting the first journal-header with zeroes, as the ** master journal pointer could interfere with hot-journal rollback of any ** subsequently interrupted transaction that reuses the journal file. ** ** The flag is cleared as soon as the journal file is finalized (either ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the ** journal file from being successfully finalized, the setMaster flag ** is cleared anyway (and the pager will move to ERROR state). ** ** doNotSpill, doNotSyncSpill ** ** These two boolean variables control the behaviour of cache-spills ** (calls made by the pcache module to the pagerStress() routine to ** write cached data to the file-system in order to free up memory). ** ** When doNotSpill is non-zero, writing to the database from pagerStress() ** is disabled altogether. This is done in a very obscure case that ** comes up during savepoint rollback that requires the pcache module ** to allocate a new page to prevent the journal file from being written ** while it is being traversed by code in pager_playback(). ** ** If doNotSyncSpill is non-zero, writing to the database from pagerStress() ** is permitted, but syncing the journal file is not. This flag is set ** by sqlite3PagerWrite() when the file-system sector-size is larger than ** the database page-size in order to prevent a journal sync from happening ** in between the journalling of two pages on the same sector. ** ** subjInMemory ** ** This is a boolean variable. If true, then any required sub-journal ** is opened as an in-memory journal file. If false, then in-memory ** sub-journals are only used for in-memory pager files. ** ** This variable is updated by the upper layer each time a new ** write-transaction is opened. ** ** dbSize, dbOrigSize, dbFileSize ** ** Variable dbSize is set to the number of pages in the database file. ** It is valid in PAGER_READER and higher states (all states except for ** OPEN and ERROR). ** ** dbSize is set based on the size of the database file, which may be ** larger than the size of the database (the value stored at offset ** 28 of the database header by the btree). If the size of the file ** is not an integer multiple of the page-size, the value stored in ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). ** Except, any file that is greater than 0 bytes in size is considered ** to have at least one page. (i.e. a 1KB file with 2K page-size leads ** to dbSize==1). ** ** During a write-transaction, if pages with page-numbers greater than ** dbSize are modified in the cache, dbSize is updated accordingly. ** Similarly, if the database is truncated using PagerTruncateImage(), ** dbSize is updated. ** ** Variables dbOrigSize and dbFileSize are valid in states ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize ** variable at the start of the transaction. It is used during rollback, ** and to determine whether or not pages need to be journalled before ** being modified. ** ** Throughout a write-transaction, dbFileSize contains the size of ** the file on disk in pages. It is set to a copy of dbSize when the ** write-transaction is first opened, and updated when VFS calls are made ** to write or truncate the database file on disk. ** ** The only reason the dbFileSize variable is required is to suppress ** unnecessary calls to xTruncate() after committing a transaction. If, ** when a transaction is committed, the dbFileSize variable indicates ** that the database file is larger than the database image (Pager.dbSize), ** pager_truncate() is called. The pager_truncate() call uses xFilesize() ** to measure the database file on disk, and then truncates it if required. ** dbFileSize is not used when rolling back a transaction. In this case ** pager_truncate() is called unconditionally (which means there may be ** a call to xFilesize() that is not strictly required). In either case, ** pager_truncate() may cause the file to become smaller or larger. ** ** dbHintSize ** ** The dbHintSize variable is used to limit the number of calls made to ** the VFS xFileControl(FCNTL_SIZE_HINT) method. ** ** dbHintSize is set to a copy of the dbSize variable when a ** write-transaction is opened (at the same time as dbFileSize and ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, ** dbHintSize is increased to the number of pages that correspond to the ** size-hint passed to the method call. See pager_write_pagelist() for ** details. ** ** errCode ** ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX ** sub-codes. */ struct Pager { sqlite3_vfs *pVfs; /* OS functions to use for IO */ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ u8 useJournal; /* Use a rollback journal on this file */ u8 noReadlock; /* Do not bother to obtain readlocks */ u8 noSync; /* Do not sync the journal if true */ u8 fullSync; /* Do extra syncs of the journal for robustness */ u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */ u8 tempFile; /* zFilename is a temporary file */ u8 readOnly; /* True for a read-only database */ u8 memDb; /* True to inhibit all file I/O */ /************************************************************************** ** The following block contains those class members that change during ** routine opertion. Class members not in this block are either fixed ** when the pager is first created or else only change when there is a ** significant mode change (such as changing the page_size, locking_mode, ** or the journal_mode). From another view, these class members describe ** the "state" of the pager, while other class members describe the ** "configuration" of the pager. */ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setMaster; /* True if a m-j name has been written to jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 doNotSyncSpill; /* Do not do a spill that requires jrnl sync */ u8 subjInMemory; /* True to use in-memory sub-journals */ Pgno dbSize; /* Number of pages in the database */ Pgno dbOrigSize; /* dbSize before the current transaction */ Pgno dbFileSize; /* Number of pages in the database file */ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ int errCode; /* One of several kinds of errors */ int nRec; /* Pages journalled since last j-header written */ u32 cksumInit; /* Quasi-random value added to every checksum */ u32 nSubRec; /* Number of records written to sub-journal */ Bitvec *pInJournal; /* One bit for each page in the database file */ sqlite3_file *fd; /* File descriptor for database */ sqlite3_file *jfd; /* File descriptor for main journal */ sqlite3_file *sjfd; /* File descriptor for sub-journal */ i64 journalOff; /* Current write offset in the journal file */ i64 journalHdr; /* Byte offset to previous journal header */ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ PagerSavepoint *aSavepoint; /* Array of active savepoints */ int nSavepoint; /* Number of elements in aSavepoint[] */ char dbFileVers[16]; /* Changes whenever database file changes */ /* ** End of the routinely-changing class members ***************************************************************************/ u16 nExtra; /* Add this many bytes to each in-memory page */ i16 nReserve; /* Number of unused bytes at end of each page */ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ u32 sectorSize; /* Assumed sector size during rollback */ int pageSize; /* Number of bytes in a page */ Pgno mxPgno; /* Maximum allowed size of the database */ i64 journalSizeLimit; /* Size limit for persistent journal files */ char *zFilename; /* Name of the database file */ char *zJournal; /* Name of the journal file */ int (*xBusyHandler)(void*); /* Function to call when busy */ void *pBusyHandlerArg; /* Context argument for xBusyHandler */ #ifdef SQLITE_TEST int nHit, nMiss; /* Cache hits and missing */ int nRead, nWrite; /* Database pages read/written */ #endif void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ #ifdef SQLITE_HAS_CODEC void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */ void (*xCodecFree)(void*); /* Destructor for the codec */ void *pCodec; /* First argument to xCodec... methods */ #endif char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ PCache *pPCache; /* Pointer to page cache object */ #ifndef SQLITE_OMIT_WAL Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ char *zWal; /* File name for write-ahead log */ #endif }; /* |
︙ | ︙ | |||
479 480 481 482 483 484 485 486 487 488 489 490 491 | #endif /* ** The maximum legal page number is (2^31 - 1). */ #define PAGER_MAX_PGNO 2147483647 #ifndef NDEBUG /* ** Usage: ** ** assert( assert_pager_state(pPager) ); */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > | > > > > > | > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 | #endif /* ** The maximum legal page number is (2^31 - 1). */ #define PAGER_MAX_PGNO 2147483647 /* ** The argument to this macro is a file descriptor (type sqlite3_file*). ** Return 0 if it is not open, or non-zero (but not 1) if it is. ** ** This is so that expressions can be written as: ** ** if( isOpen(pPager->jfd) ){ ... ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ #define isOpen(pFd) ((pFd)->pMethods) /* ** Return true if this pager uses a write-ahead log instead of the usual ** rollback journal. Otherwise false. */ #ifndef SQLITE_OMIT_WAL static int pagerUseWal(Pager *pPager){ return (pPager->pWal!=0); } #else # define pagerUseWal(x) 0 # define pagerRollbackWal(x) 0 # define pagerWalFrames(v,w,x,y,z) 0 # define pagerOpenWalIfPresent(z) SQLITE_OK # define pagerBeginReadTransaction(z) SQLITE_OK #endif #ifndef NDEBUG /* ** Usage: ** ** assert( assert_pager_state(pPager) ); ** ** This function runs many asserts to try to find inconsistencies in ** the internal state of the Pager object. */ static int assert_pager_state(Pager *p){ Pager *pPager = p; /* State must be valid. */ assert( p->eState==PAGER_OPEN || p->eState==PAGER_READER || p->eState==PAGER_WRITER_LOCKED || p->eState==PAGER_WRITER_CACHEMOD || p->eState==PAGER_WRITER_DBMOD || p->eState==PAGER_WRITER_FINISHED || p->eState==PAGER_ERROR ); /* Regardless of the current state, a temp-file connection always behaves ** as if it has an exclusive lock on the database file. It never updates ** the change-counter field, so the changeCountDone flag is always set. */ assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); assert( p->tempFile==0 || pPager->changeCountDone ); /* If the useJournal flag is clear, the journal-mode must be "OFF". ** And if the journal-mode is "OFF", the journal file must not be open. */ assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); /* Check that MEMDB implies noSync. And an in-memory journal. Since ** this means an in-memory pager performs no IO at all, it cannot encounter ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing ** a journal file. (although the in-memory journal implementation may ** return SQLITE_IOERR_NOMEM while the journal file is being written). It ** is therefore not possible for an in-memory pager to enter the ERROR ** state. */ if( MEMDB ){ assert( p->noSync ); assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_MEMORY ); assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); assert( pagerUseWal(p)==0 ); } /* If changeCountDone is set, a RESERVED lock or greater must be held ** on the file. */ assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); assert( p->eLock!=PENDING_LOCK ); switch( p->eState ){ case PAGER_OPEN: assert( !MEMDB ); assert( pPager->errCode==SQLITE_OK ); assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); break; case PAGER_READER: assert( pPager->errCode==SQLITE_OK ); assert( p->eLock!=UNKNOWN_LOCK ); assert( p->eLock>=SHARED_LOCK || p->noReadlock ); break; case PAGER_WRITER_LOCKED: assert( p->eLock!=UNKNOWN_LOCK ); assert( pPager->errCode==SQLITE_OK ); if( !pagerUseWal(pPager) ){ assert( p->eLock>=RESERVED_LOCK ); } assert( pPager->dbSize==pPager->dbOrigSize ); assert( pPager->dbOrigSize==pPager->dbFileSize ); assert( pPager->dbOrigSize==pPager->dbHintSize ); assert( pPager->setMaster==0 ); break; case PAGER_WRITER_CACHEMOD: assert( p->eLock!=UNKNOWN_LOCK ); assert( pPager->errCode==SQLITE_OK ); if( !pagerUseWal(pPager) ){ /* It is possible that if journal_mode=wal here that neither the ** journal file nor the WAL file are open. This happens during ** a rollback transaction that switches from journal_mode=off ** to journal_mode=wal. */ assert( p->eLock>=RESERVED_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL ); } assert( pPager->dbOrigSize==pPager->dbFileSize ); assert( pPager->dbOrigSize==pPager->dbHintSize ); break; case PAGER_WRITER_DBMOD: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( p->eLock>=EXCLUSIVE_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL ); assert( pPager->dbOrigSize<=pPager->dbHintSize ); break; case PAGER_WRITER_FINISHED: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL ); break; case PAGER_ERROR: /* There must be at least one outstanding reference to the pager if ** in ERROR state. Otherwise the pager should have already dropped ** back to OPEN state. */ assert( pPager->errCode!=SQLITE_OK ); assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); break; } return 1; } /* ** Return a pointer to a human readable string in a static buffer ** containing the state of the Pager object passed as an argument. This ** is intended to be used within debuggers. For example, as an alternative ** to "print *pPager" in gdb: ** ** (gdb) printf "%s", print_pager_state(pPager) */ static char *print_pager_state(Pager *p){ static char zRet[1024]; sqlite3_snprintf(1024, zRet, "Filename: %s\n" "State: %s errCode=%d\n" "Lock: %s\n" "Locking mode: locking_mode=%s\n" "Journal mode: journal_mode=%s\n" "Backing store: tempFile=%d memDb=%d useJournal=%d\n" "Journal: journalOff=%lld journalHdr=%lld\n" "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" , p->zFilename , p->eState==PAGER_OPEN ? "OPEN" : p->eState==PAGER_READER ? "READER" : p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : p->eState==PAGER_ERROR ? "ERROR" : "?error?" , (int)p->errCode , p->eLock==NO_LOCK ? "NO_LOCK" : p->eLock==RESERVED_LOCK ? "RESERVED" : p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : p->eLock==SHARED_LOCK ? "SHARED" : p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" , p->exclusiveMode ? "exclusive" : "normal" , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" , (int)p->tempFile, (int)p->memDb, (int)p->useJournal , p->journalOff, p->journalHdr , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize ); return zRet; } #endif /* ** Return true if it is necessary to write page *pPg into the sub-journal. ** A page needs to be written into the sub-journal if there exists one ** or more open savepoints for which: ** |
︙ | ︙ | |||
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 | return rc; } /* ** Write a 32-bit integer into a string buffer in big-endian byte order. */ #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) /* ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK ** on success or an error code is something goes wrong. */ static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ char ac[4]; put32bits(ac, val); return sqlite3OsWrite(fd, ac, 4, offset); } /* | > | | | < | < > | < < > > | > > > > > > > > | > > > > > < > > > > > > > > | < | | > > > > > > > > | | 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 | return rc; } /* ** Write a 32-bit integer into a string buffer in big-endian byte order. */ #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) /* ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK ** on success or an error code is something goes wrong. */ static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ char ac[4]; put32bits(ac, val); return sqlite3OsWrite(fd, ac, 4, offset); } /* ** Unlock the database file to level eLock, which must be either NO_LOCK ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. ** ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is ** called, do not modify it. See the comment above the #define of ** UNKNOWN_LOCK for an explanation of this. */ static int pagerUnlockDb(Pager *pPager, int eLock){ int rc = SQLITE_OK; assert( !pPager->exclusiveMode ); assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); if( isOpen(pPager->fd) ){ assert( pPager->eLock>=eLock ); rc = sqlite3OsUnlock(pPager->fd, eLock); if( pPager->eLock!=UNKNOWN_LOCK ){ pPager->eLock = eLock; } IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) } return rc; } /* ** Lock the database file to level eLock, which must be either SHARED_LOCK, ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the ** Pager.eLock variable to the new locking state. ** ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. ** See the comment above the #define of UNKNOWN_LOCK for an explanation ** of this. */ static int pagerLockDb(Pager *pPager, int eLock){ int rc = SQLITE_OK; assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ rc = sqlite3OsLock(pPager->fd, eLock); if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ pPager->eLock = eLock; IOTRACE(("LOCK %p %d\n", pPager, eLock)) } } return rc; } /* ** This function determines whether or not the atomic-write optimization ** can be used with this pager. The optimization can be used if: ** ** (a) the value returned by OsDeviceCharacteristics() indicates that |
︙ | ︙ | |||
827 828 829 830 831 832 833 | ** - 4 bytes: Database page size. ** ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. */ static int writeJournalHdr(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ | | | 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 | ** - 4 bytes: Database page size. ** ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. */ static int writeJournalHdr(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ u32 nWrite; /* Bytes of header sector written */ int ii; /* Loop counter */ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ if( nHeader>JOURNAL_HDR_SZ(pPager) ){ nHeader = JOURNAL_HDR_SZ(pPager); |
︙ | ︙ | |||
870 871 872 873 874 875 876 | ** * When the pager is in no-sync mode. Corruption can follow a ** power failure in this case anyway. ** ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees ** that garbage data is never appended to the journal file. */ assert( isOpen(pPager->fd) || pPager->noSync ); | | | 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 | ** * When the pager is in no-sync mode. Corruption can follow a ** power failure in this case anyway. ** ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees ** that garbage data is never appended to the journal file. */ assert( isOpen(pPager->fd) || pPager->noSync ); if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) ){ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); }else{ memset(zHeader, 0, sizeof(aJournalMagic)+4); } |
︙ | ︙ | |||
994 995 996 997 998 999 1000 | ){ return rc; } if( pPager->journalOff==0 ){ u32 iPageSize; /* Page-size field of journal header */ u32 iSectorSize; /* Sector-size field of journal header */ | < | 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 | ){ return rc; } if( pPager->journalOff==0 ){ u32 iPageSize; /* Page-size field of journal header */ u32 iSectorSize; /* Sector-size field of journal header */ /* Read the page-size and sector-size journal header fields. */ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) ){ return rc; } |
︙ | ︙ | |||
1024 1025 1026 1027 1028 1029 1030 | return SQLITE_DONE; } /* Update the page-size to match the value read from the journal. ** Use a testcase() macro to make sure that malloc failure within ** PagerSetPagesize() is tested. */ | < | < | 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 | return SQLITE_DONE; } /* Update the page-size to match the value read from the journal. ** Use a testcase() macro to make sure that malloc failure within ** PagerSetPagesize() is tested. */ rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); testcase( rc!=SQLITE_OK ); /* Update the assumed sector-size to match the value used by ** the process that created this journal. If this journal was ** created by a process other than this one, then this routine ** is being called from within pager_playback(). The local value ** of Pager.sectorSize is restored at the end of that routine. */ |
︙ | ︙ | |||
1069 1070 1071 1072 1073 1074 1075 | static int writeMasterJournal(Pager *pPager, const char *zMaster){ int rc; /* Return code */ int nMaster; /* Length of string zMaster */ i64 iHdrOff; /* Offset of header in journal file */ i64 jrnlSize; /* Size of journal file on disk */ u32 cksum = 0; /* Checksum of string zMaster */ | > > > | | 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 | static int writeMasterJournal(Pager *pPager, const char *zMaster){ int rc; /* Return code */ int nMaster; /* Length of string zMaster */ i64 iHdrOff; /* Offset of header in journal file */ i64 jrnlSize; /* Size of journal file on disk */ u32 cksum = 0; /* Checksum of string zMaster */ assert( pPager->setMaster==0 ); assert( !pagerUseWal(pPager) ); if( !zMaster || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->journalMode==PAGER_JOURNALMODE_OFF ){ return SQLITE_OK; } pPager->setMaster = 1; assert( isOpen(pPager->jfd) ); |
︙ | ︙ | |||
1105 1106 1107 1108 1109 1110 1111 | || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8))) ){ return rc; } pPager->journalOff += (nMaster+20); | < | 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 | || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8))) ){ return rc; } pPager->journalOff += (nMaster+20); /* If the pager is in peristent-journal mode, then the physical ** journal-file may extend past the end of the master-journal name ** and 8 bytes of magic data just written to the file. This is ** dangerous because the code to rollback a hot-journal file ** will not be able to find the master-journal name to determine ** whether or not the journal is hot. |
︙ | ︙ | |||
1141 1142 1143 1144 1145 1146 1147 | ** fail, since no attempt to allocate dynamic memory will be made. */ (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p); return p; } /* | | < < < < | | < < | 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 | ** fail, since no attempt to allocate dynamic memory will be made. */ (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p); return p; } /* ** Discard the entire contents of the in-memory page-cache. */ static void pager_reset(Pager *pPager){ sqlite3BackupRestart(pPager->pBackup); sqlite3PcacheClear(pPager->pPCache); } /* ** Free all structures in the Pager.aSavepoint[] array and set both ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal ** if it is open and the pager is not in exclusive mode. */ |
︙ | ︙ | |||
1194 1195 1196 1197 1198 1199 1200 | assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); } } return rc; } /* | | | < < < < < < < < < < < < | | | > > | | > | < | | > > > > > > > > > > > > > > > | | | | < | < < < < | < | < < < < < | | < | < > | | < < < < < < | < | > > > > > > > > > > > | > > > > > > | > | | | < | < > > | < | > < < < < < < < < < < < < < < < < < < < < < < < < < < > | | | 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 | assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); } } return rc; } /* ** This function is a no-op if the pager is in exclusive mode and not ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN ** state. ** ** If the pager is not in exclusive-access mode, the database file is ** completely unlocked. If the file is unlocked and the file-system does ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is ** closed (if it is open). ** ** If the pager is in ERROR state when this function is called, the ** contents of the pager cache are discarded before switching back to ** the OPEN state. Regardless of whether the pager is in exclusive-mode ** or not, any journal file left in the file-system will be treated ** as a hot-journal and rolled back the next time a read-transaction ** is opened (by this or by any other connection). */ static void pager_unlock(Pager *pPager){ assert( pPager->eState==PAGER_READER || pPager->eState==PAGER_OPEN || pPager->eState==PAGER_ERROR ); sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; releaseAllSavepoints(pPager); if( pagerUseWal(pPager) ){ assert( !isOpen(pPager->jfd) ); sqlite3WalEndReadTransaction(pPager->pWal); pPager->eState = PAGER_OPEN; }else if( !pPager->exclusiveMode ){ int rc; /* Error code returned by pagerUnlockDb() */ int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; /* If the operating system support deletion of open files, then ** close the journal file when dropping the database lock. Otherwise ** another connection with journal_mode=delete might delete the file ** out from under us. */ assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) || 1!=(pPager->journalMode & 5) ){ sqlite3OsClose(pPager->jfd); } /* If the pager is in the ERROR state and the call to unlock the database ** file fails, set the current lock to UNKNOWN_LOCK. See the comment ** above the #define for UNKNOWN_LOCK for an explanation of why this ** is necessary. */ rc = pagerUnlockDb(pPager, NO_LOCK); if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ pPager->eLock = UNKNOWN_LOCK; } /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here ** without clearing the error code. This is intentional - the error ** code is cleared and the cache reset in the block below. */ assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); pPager->changeCountDone = 0; pPager->eState = PAGER_OPEN; } /* If Pager.errCode is set, the contents of the pager cache cannot be ** trusted. Now that there are no outstanding references to the pager, ** it can safely move back to PAGER_OPEN state. This happens in both ** normal and exclusive-locking mode. */ if( pPager->errCode ){ assert( !MEMDB ); pager_reset(pPager); pPager->changeCountDone = pPager->tempFile; pPager->eState = PAGER_OPEN; pPager->errCode = SQLITE_OK; } pPager->journalOff = 0; pPager->journalHdr = 0; pPager->setMaster = 0; } /* ** This function is called whenever an IOERR or FULL error that requires ** the pager to transition into the ERROR state may ahve occurred. ** The first argument is a pointer to the pager structure, the second ** the error-code about to be returned by a pager API function. The ** value returned is a copy of the second argument to this function. ** ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the ** IOERR sub-codes, the pager enters the ERROR state and the error code ** is stored in Pager.errCode. While the pager remains in the ERROR state, ** all major API calls on the Pager will immediately return Pager.errCode. ** ** The ERROR state indicates that the contents of the pager-cache ** cannot be trusted. This state can be cleared by completely discarding ** the contents of the pager-cache. If a transaction was active when ** the persistent error occurred, then the rollback journal may need ** to be replayed to restore the contents of the database file (as if ** it were a hot-journal). */ static int pager_error(Pager *pPager, int rc){ int rc2 = rc & 0xff; assert( rc==SQLITE_OK || !MEMDB ); assert( pPager->errCode==SQLITE_FULL || pPager->errCode==SQLITE_OK || (pPager->errCode & 0xff)==SQLITE_IOERR ); if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ pPager->errCode = rc; pPager->eState = PAGER_ERROR; } return rc; } /* ** This routine ends a transaction. A transaction is usually ended by ** either a COMMIT or a ROLLBACK operation. This routine may be called ** after rollback of a hot-journal, or if an error occurs while opening ** the journal file or writing the very first journal-header of a ** database transaction. ** ** This routine is never called in PAGER_ERROR state. If it is called ** in PAGER_NONE or PAGER_SHARED state and the lock held is less ** exclusive than a RESERVED lock, it is a no-op. ** ** Otherwise, any active savepoints are released. ** ** If the journal file is open, then it is "finalized". Once a journal ** file has been finalized it is not possible to use it to roll back a ** transaction. Nor will it be considered to be a hot-journal by this ** or any other database connection. Exactly how a journal is finalized |
︙ | ︙ | |||
1378 1379 1380 1381 1382 1383 1384 | ** The journal file is closed and deleted using sqlite3OsDelete(). ** ** If the pager is running in exclusive mode, this method of finalizing ** the journal file is never used. Instead, if the journalMode is ** DELETE and the pager is in exclusive mode, the method described under ** journalMode==PERSIST is used instead. ** | | | < < < | < > > > > > > > > > > > > > > | > < > < < < | 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 | ** The journal file is closed and deleted using sqlite3OsDelete(). ** ** If the pager is running in exclusive mode, this method of finalizing ** the journal file is never used. Instead, if the journalMode is ** DELETE and the pager is in exclusive mode, the method described under ** journalMode==PERSIST is used instead. ** ** After the journal is finalized, the pager moves to PAGER_READER state. ** If running in non-exclusive rollback mode, the lock on the file is ** downgraded to a SHARED_LOCK. ** ** SQLITE_OK is returned if no error occurs. If an error occurs during ** any of the IO operations to finalize the journal file or unlock the ** database then the IO error code is returned to the user. If the ** operation to finalize the journal file fails, then the code still ** tries to unlock the database file if not in exclusive mode. If the ** unlock operation fails as well, then the first error code related ** to the first error encountered (the journal finalization one) is ** returned. */ static int pager_end_transaction(Pager *pPager, int hasMaster){ int rc = SQLITE_OK; /* Error code from journal finalization operation */ int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ /* Do nothing if the pager does not have an open write transaction ** or at least a RESERVED lock. This function may be called when there ** is no write-transaction active but a RESERVED or greater lock is ** held under two circumstances: ** ** 1. After a successful hot-journal rollback, it is called with ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. ** ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE ** lock switches back to locking_mode=normal and then executes a ** read-transaction, this function is called with eState==PAGER_READER ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. */ assert( assert_pager_state(pPager) ); assert( pPager->eState!=PAGER_ERROR ); if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ return SQLITE_OK; } releaseAllSavepoints(pPager); assert( isOpen(pPager->jfd) || pPager->pInJournal==0 ); if( isOpen(pPager->jfd) ){ assert( !pagerUseWal(pPager) ); /* Finalize the journal file. */ if( sqlite3IsMemJournal(pPager->jfd) ){ assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); sqlite3OsClose(pPager->jfd); }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ if( pPager->journalOff==0 ){ rc = SQLITE_OK; }else{ rc = sqlite3OsTruncate(pPager->jfd, 0); } pPager->journalOff = 0; }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) ){ rc = zeroJournalHdr(pPager, hasMaster); pPager->journalOff = 0; }else{ /* This branch may be executed with Pager.journalMode==MEMORY if ** a hot-journal was just rolled back. In this case the journal ** file should be closed and deleted. If this connection writes to ** the database file, it will do so using an in-memory journal. */ assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE |
︙ | ︙ | |||
1451 1452 1453 1454 1455 1456 1457 1458 1459 | sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); #endif } sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; pPager->nRec = 0; sqlite3PcacheCleanAll(pPager->pPCache); if( pagerUseWal(pPager) ){ | > < < < | | | | < > | | > > | < < < > < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 | sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); #endif } sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; pPager->nRec = 0; sqlite3PcacheCleanAll(pPager->pPCache); sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); if( pagerUseWal(pPager) ){ /* Drop the WAL write-lock, if any. Also, if the connection was in ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE ** lock held on the database file. */ rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); assert( rc2==SQLITE_OK ); } if( !pPager->exclusiveMode && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) ){ rc2 = pagerUnlockDb(pPager, SHARED_LOCK); pPager->changeCountDone = 0; } pPager->eState = PAGER_READER; pPager->setMaster = 0; return (rc==SQLITE_OK?rc2:rc); } /* ** Execute a rollback if a transaction is active and unlock the ** database file. ** ** If the pager has already entered the ERROR state, do not attempt ** the rollback at this time. Instead, pager_unlock() is called. The ** call to pager_unlock() will discard all in-memory pages, unlock ** the database file and move the pager back to OPEN state. If this ** means that there is a hot-journal left in the file-system, the next ** connection to obtain a shared lock on the pager (which may be this one) ** will roll it back. ** ** If the pager has not already entered the ERROR state, but an IO or ** malloc error occurs during a rollback, then this will itself cause ** the pager to enter the ERROR state. Which will be cleared by the ** call to pager_unlock(), as described above. */ static void pagerUnlockAndRollback(Pager *pPager){ if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ assert( assert_pager_state(pPager) ); if( pPager->eState>=PAGER_WRITER_LOCKED ){ sqlite3BeginBenignMalloc(); sqlite3PagerRollback(pPager); sqlite3EndBenignMalloc(); }else if( !pPager->exclusiveMode ){ assert( pPager->eState==PAGER_READER ); pager_end_transaction(pPager, 0); } } pager_unlock(pPager); } /* ** Parameter aData must point to a buffer of pPager->pageSize bytes ** of data. Compute and return a checksum based ont the contents of the ** page of data and the current value of pPager->cksumInit. ** ** This is not a real checksum. It is really just the sum of the |
︙ | ︙ | |||
1535 1536 1537 1538 1539 1540 1541 | /* ** Read a single page from either the journal file (if isMainJrnl==1) or ** from the sub-journal (if isMainJrnl==0) and playback that page. ** The page begins at offset *pOffset into the file. The *pOffset ** value is increased to the start of the next page in the journal. ** | < | | | 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 | /* ** Read a single page from either the journal file (if isMainJrnl==1) or ** from the sub-journal (if isMainJrnl==0) and playback that page. ** The page begins at offset *pOffset into the file. The *pOffset ** value is increased to the start of the next page in the journal. ** ** The main rollback journal uses checksums - the statement journal does ** not. ** ** If the page number of the page record read from the (sub-)journal file ** is greater than the current value of Pager.dbSize, then playback is ** skipped and SQLITE_OK is returned. ** ** If pDone is not NULL, then it is a record of pages that have already ** been played back. If the page at *pOffset has already been played back |
︙ | ︙ | |||
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 | assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ aData = pPager->pTmpSpace; assert( aData ); /* Temp storage must have already been allocated */ assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); /* Read the page number and page data from the journal or sub-journal ** file. Return an error code to the caller if an IO error occurs. */ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; rc = read32bits(jfd, *pOffset, &pgno); if( rc!=SQLITE_OK ) return rc; | > > > > > > > > > > > | 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 | assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ aData = pPager->pTmpSpace; assert( aData ); /* Temp storage must have already been allocated */ assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction ** or savepoint rollback done at the request of the caller) or this is ** a hot-journal rollback. If it is a hot-journal rollback, the pager ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback ** only reads from the main journal, not the sub-journal. */ assert( pPager->eState>=PAGER_WRITER_CACHEMOD || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) ); assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); /* Read the page number and page data from the journal or sub-journal ** file. Return an error code to the caller if an IO error occurs. */ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; rc = read32bits(jfd, *pOffset, &pgno); if( rc!=SQLITE_OK ) return rc; |
︙ | ︙ | |||
1627 1628 1629 1630 1631 1632 1633 | /* If this page has already been played by before during the current ** rollback, then don't bother to play it back again. */ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ return rc; } | < | | | > > > | 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 | /* If this page has already been played by before during the current ** rollback, then don't bother to play it back again. */ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ return rc; } /* When playing back page 1, restore the nReserve setting */ if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ pPager->nReserve = ((u8*)aData)[20]; pagerReportSize(pPager); } /* If the pager is in CACHEMOD state, then there must be a copy of this ** page in the pager cache. In this case just update the pager cache, ** not the database file. The page is left marked dirty in this case. ** ** An exception to the above rule: If the database is in no-sync mode ** and a page is moved during an incremental vacuum then the page may ** not be in the pager cache. Later: if a malloc() or IO error occurs ** during a Movepage() call, then the page may not be in the cache ** either. So the condition described in the above paragraph is not ** assert()able. ** ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the ** pager cache if it exists and the main file. The page is then marked ** not dirty. Since this code is only executed in PAGER_OPEN state for ** a hot-journal rollback, it is guaranteed that the page-cache is empty ** if the pager is in OPEN state. ** ** Ticket #1171: The statement journal might contain page content that is ** different from the page content at the start of the transaction. ** This occurs when a page is changed prior to the start of a statement ** then changed again within the statement. When rolling back such a ** statement we must not write to the original database unless we know ** for certain that original page contents are synced into the main rollback |
︙ | ︙ | |||
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 | */ if( pagerUseWal(pPager) ){ pPg = 0; }else{ pPg = pager_lookup(pPager, pgno); } assert( pPg || !MEMDB ); PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), (isMainJrnl?"main-journal":"sub-journal") )); if( isMainJrnl ){ isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); }else{ isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); } | > < | > | 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 | */ if( pagerUseWal(pPager) ){ pPg = 0; }else{ pPg = pager_lookup(pPager, pgno); } assert( pPg || !MEMDB ); assert( pPager->eState!=PAGER_OPEN || pPg==0 ); PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), (isMainJrnl?"main-journal":"sub-journal") )); if( isMainJrnl ){ isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); }else{ isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); } if( isOpen(pPager->fd) && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) && isSynced ){ i64 ofst = (pgno-1)*(i64)pPager->pageSize; testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); assert( !pagerUseWal(pPager) ); rc = sqlite3OsWrite(pPager->fd, (u8*)aData, pPager->pageSize, ofst); if( pgno>pPager->dbFileSize ){ |
︙ | ︙ | |||
1914 1915 1916 1917 1918 1919 1920 | /* ** This function is used to change the actual size of the database ** file in the file-system. This only happens when committing a transaction, ** or rolling back a transaction (including rolling back a hot-journal). ** | | | | | > > > | > > > | 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 | /* ** This function is used to change the actual size of the database ** file in the file-system. This only happens when committing a transaction, ** or rolling back a transaction (including rolling back a hot-journal). ** ** If the main database file is not open, or the pager is not in either ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). ** If the file on disk is currently larger than nPage pages, then use the VFS ** xTruncate() method to truncate it. ** ** Or, it might might be the case that the file on disk is smaller than ** nPage pages. Some operating system implementations can get confused if ** you try to truncate a file to some size that is larger than it ** currently is, so detect this case and write a single zero byte to ** the end of the new file instead. ** ** If successful, return SQLITE_OK. If an IO error occurs while modifying ** the database file, return the error code to the caller. */ static int pager_truncate(Pager *pPager, Pgno nPage){ int rc = SQLITE_OK; assert( pPager->eState!=PAGER_ERROR ); assert( pPager->eState!=PAGER_READER ); if( isOpen(pPager->fd) && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) ){ i64 currentSize, newSize; assert( pPager->eLock==EXCLUSIVE_LOCK ); /* TODO: Is it safe to use Pager.dbFileSize here? */ rc = sqlite3OsFileSize(pPager->fd, ¤tSize); newSize = pPager->pageSize*(i64)nPage; if( rc==SQLITE_OK && currentSize!=newSize ){ if( currentSize>newSize ){ rc = sqlite3OsTruncate(pPager->fd, newSize); }else{ |
︙ | ︙ | |||
2056 2057 2058 2059 2060 2061 2062 | int needPagerReset; /* True to reset page prior to first page rollback */ /* Figure out how many records are in the journal. Abort early if ** the journal is empty. */ assert( isOpen(pPager->jfd) ); rc = sqlite3OsFileSize(pPager->jfd, &szJ); | | | 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 | int needPagerReset; /* True to reset page prior to first page rollback */ /* Figure out how many records are in the journal. Abort early if ** the journal is empty. */ assert( isOpen(pPager->jfd) ); rc = sqlite3OsFileSize(pPager->jfd, &szJ); if( rc!=SQLITE_OK ){ goto end_playback; } /* Read the master journal name from the journal, if it is present. ** If a master journal file name is specified, but the file is not ** present on disk, then the journal is not hot and does not need to be ** played back. |
︙ | ︙ | |||
2090 2091 2092 2093 2094 2095 2096 | /* This loop terminates either when a readJournalHdr() or ** pager_playback_one_page() call returns SQLITE_DONE or an IO error ** occurs. */ while( 1 ){ /* Read the next journal header from the journal file. If there are ** not enough bytes left in the journal file for a complete header, or | | | 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 | /* This loop terminates either when a readJournalHdr() or ** pager_playback_one_page() call returns SQLITE_DONE or an IO error ** occurs. */ while( 1 ){ /* Read the next journal header from the journal file. If there are ** not enough bytes left in the journal file for a complete header, or ** it is corrupted, then a process must have failed while writing it. ** This indicates nothing more needs to be rolled back. */ rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; } |
︙ | ︙ | |||
2204 2205 2206 2207 2208 2209 2210 | pPager->changeCountDone = pPager->tempFile; if( rc==SQLITE_OK ){ zMaster = pPager->pTmpSpace; rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); testcase( rc!=SQLITE_OK ); } | | > > | 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 | pPager->changeCountDone = pPager->tempFile; if( rc==SQLITE_OK ){ zMaster = pPager->pTmpSpace; rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); testcase( rc!=SQLITE_OK ); } if( rc==SQLITE_OK && !pPager->noSync && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) ){ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); } if( rc==SQLITE_OK ){ rc = pager_end_transaction(pPager, zMaster[0]!='\0'); testcase( rc!=SQLITE_OK ); } if( rc==SQLITE_OK && zMaster[0] && res ){ |
︙ | ︙ | |||
2246 2247 2248 2249 2250 2251 2252 | static int readDbPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ Pgno pgno = pPg->pgno; /* Page number to read */ int rc = SQLITE_OK; /* Return code */ int isInWal = 0; /* True if page is in log file */ int pgsz = pPager->pageSize; /* Number of bytes to read */ | | | 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 | static int readDbPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ Pgno pgno = pPg->pgno; /* Page number to read */ int rc = SQLITE_OK; /* Return code */ int isInWal = 0; /* True if page is in log file */ int pgsz = pPager->pageSize; /* Number of bytes to read */ assert( pPager->eState>=PAGER_READER && !MEMDB ); assert( isOpen(pPager->fd) ); if( NEVER(!isOpen(pPager->fd)) ){ assert( pPager->tempFile ); memset(pPg->pData, 0, pPager->pageSize); return SQLITE_OK; } |
︙ | ︙ | |||
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 | ** other writers or checkpointers. */ static int pagerBeginReadTransaction(Pager *pPager){ int rc; /* Return code */ int changed = 0; /* True if cache must be reset */ assert( pagerUseWal(pPager) ); /* sqlite3WalEndReadTransaction() was not called for the previous ** transaction in locking_mode=EXCLUSIVE. So call it now. If we ** are in locking_mode=NORMAL and EndRead() was previously called, ** the duplicate call is harmless. */ sqlite3WalEndReadTransaction(pPager->pWal); rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); | > | < < | > | > | | > > > > > > > > > > > | > > > > > > | > > > > > > > > > > > > > > | | > > > > > > > > > > > > > > > > > > > < < > > > | | | | < < < | 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 | ** other writers or checkpointers. */ static int pagerBeginReadTransaction(Pager *pPager){ int rc; /* Return code */ int changed = 0; /* True if cache must be reset */ assert( pagerUseWal(pPager) ); assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); /* sqlite3WalEndReadTransaction() was not called for the previous ** transaction in locking_mode=EXCLUSIVE. So call it now. If we ** are in locking_mode=NORMAL and EndRead() was previously called, ** the duplicate call is harmless. */ sqlite3WalEndReadTransaction(pPager->pWal); rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); if( rc==SQLITE_OK && changed ){ pager_reset(pPager); } return rc; } /* ** This function is called as part of the transition from PAGER_OPEN ** to PAGER_READER state to determine the size of the database file ** in pages (assuming the page size currently stored in Pager.pageSize). ** ** If no error occurs, SQLITE_OK is returned and the size of the database ** in pages is stored in *pnPage. Otherwise, an error code (perhaps ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. */ static int pagerPagecount(Pager *pPager, Pgno *pnPage){ Pgno nPage; /* Value to return via *pnPage */ /* Query the WAL sub-system for the database size. The WalDbsize() ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or ** if the database size is not available. The database size is not ** available from the WAL sub-system if the log file is empty or ** contains no valid committed transactions. */ assert( pPager->eState==PAGER_OPEN ); assert( pPager->eLock>=SHARED_LOCK || pPager->noReadlock ); nPage = sqlite3WalDbsize(pPager->pWal); /* If the database size was not available from the WAL sub-system, ** determine it based on the size of the database file. If the size ** of the database file is not an integer multiple of the page-size, ** round down to the nearest page. Except, any file larger than 0 ** bytes in size is considered to contain at least one page. */ if( nPage==0 ){ i64 n = 0; /* Size of db file in bytes */ assert( isOpen(pPager->fd) || pPager->tempFile ); if( isOpen(pPager->fd) ){ int rc = sqlite3OsFileSize(pPager->fd, &n); if( rc!=SQLITE_OK ){ return rc; } } nPage = (Pgno)(n / pPager->pageSize); if( nPage==0 && n>0 ){ nPage = 1; } } /* If the current number of pages in the file is greater than the ** configured maximum pager number, increase the allowed limit so ** that the file can be read. */ if( nPage>pPager->mxPgno ){ pPager->mxPgno = (Pgno)nPage; } *pnPage = nPage; return SQLITE_OK; } /* ** Check if the *-wal file that corresponds to the database opened by pPager ** exists if the database is not empy, or verify that the *-wal file does ** not exist (by deleting it) if the database file is empty. ** ** If the database is not empty and the *-wal file exists, open the pager ** in WAL mode. If the database is empty or if no *-wal file exists and ** if no error occurs, make sure Pager.journalMode is not set to ** PAGER_JOURNALMODE_WAL. ** ** Return SQLITE_OK or an error code. ** ** The caller must hold a SHARED lock on the database file to call this ** function. Because an EXCLUSIVE lock on the db file is required to delete ** a WAL on a none-empty database, this ensures there is no race condition ** between the xAccess() below and an xDelete() being executed by some ** other connection. */ static int pagerOpenWalIfPresent(Pager *pPager){ int rc = SQLITE_OK; assert( pPager->eState==PAGER_OPEN ); assert( pPager->eLock>=SHARED_LOCK || pPager->noReadlock ); if( !pPager->tempFile ){ int isWal; /* True if WAL file exists */ Pgno nPage; /* Size of the database file */ rc = pagerPagecount(pPager, &nPage); if( rc ) return rc; if( nPage==0 ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); isWal = 0; }else{ rc = sqlite3OsAccess( pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal ); } if( rc==SQLITE_OK ){ if( isWal ){ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); rc = sqlite3PagerOpenWal(pPager, 0); }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ pPager->journalMode = PAGER_JOURNALMODE_DELETE; } } } return rc; } |
︙ | ︙ | |||
2525 2526 2527 2528 2529 2530 2531 | */ static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ i64 szJ; /* Effective size of the main journal */ i64 iHdrOff; /* End of first segment of main-journal records */ int rc = SQLITE_OK; /* Return code */ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ | | > | 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 | */ static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ i64 szJ; /* Effective size of the main journal */ i64 iHdrOff; /* End of first segment of main-journal records */ int rc = SQLITE_OK; /* Return code */ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ assert( pPager->eState!=PAGER_ERROR ); assert( pPager->eState>=PAGER_WRITER_LOCKED ); /* Allocate a bitvec to use to store the set of pages rolled back */ if( pSavepoint ){ pDone = sqlite3BitvecCreate(pSavepoint->nOrig); if( !pDone ){ return SQLITE_NOMEM; } |
︙ | ︙ | |||
2664 2665 2666 2667 2668 2669 2670 | ** and FULL=3. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int bFullFsync){ pPager->noSync = (level==1 || pPager->tempFile) ?1:0; pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0; pPager->sync_flags = (bFullFsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); | < | 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 | ** and FULL=3. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int bFullFsync){ pPager->noSync = (level==1 || pPager->tempFile) ?1:0; pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0; pPager->sync_flags = (bFullFsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); } #endif /* ** The following global variable is incremented whenever the library ** attempts to open a temporary file. This information is used for ** testing and analysis only. |
︙ | ︙ | |||
2746 2747 2748 2749 2750 2751 2752 | /* ** Change the page size used by the Pager object. The new page size ** is passed in *pPageSize. ** ** If the pager is in the error state when this function is called, it ** is a no-op. The value returned is the error state error code (i.e. | | | 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 | /* ** Change the page size used by the Pager object. The new page size ** is passed in *pPageSize. ** ** If the pager is in the error state when this function is called, it ** is a no-op. The value returned is the error state error code (i.e. ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). ** ** Otherwise, if all of the following are true: ** ** * the new page size (value of *pPageSize) is valid (a power ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and ** ** * there are no outstanding page references, and |
︙ | ︙ | |||
2770 2771 2772 2773 2774 2775 2776 | ** In all other cases, SQLITE_OK is returned. ** ** If the page size is not changed, either because one of the enumerated ** conditions above is not true, the pager was in error state when this ** function was called, or because the memory allocation attempt failed, ** then *pPageSize is set to the old, retained page size before returning. */ | | | > > > > > > > > > | | | | | | | > > > > > > > | | > > | < | > | | | | | | > | > | 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 | ** In all other cases, SQLITE_OK is returned. ** ** If the page size is not changed, either because one of the enumerated ** conditions above is not true, the pager was in error state when this ** function was called, or because the memory allocation attempt failed, ** then *pPageSize is set to the old, retained page size before returning. */ int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ int rc = SQLITE_OK; /* It is not possible to do a full assert_pager_state() here, as this ** function may be called from within PagerOpen(), before the state ** of the Pager object is internally consistent. ** ** At one point this function returned an error if the pager was in ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that ** there is at least one outstanding page reference, this function ** is a no-op for that case anyhow. */ u32 pageSize = *pPageSize; assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); if( (pPager->memDb==0 || pPager->dbSize==0) && sqlite3PcacheRefCount(pPager->pPCache)==0 && pageSize && pageSize!=(u32)pPager->pageSize ){ char *pNew; /* New temp space */ i64 nByte = 0; if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ rc = sqlite3OsFileSize(pPager->fd, &nByte); } if( rc==SQLITE_OK ){ pNew = (char *)sqlite3PageMalloc(pageSize); if( !pNew ) rc = SQLITE_NOMEM; } if( rc==SQLITE_OK ){ pager_reset(pPager); pPager->dbSize = nByte/pageSize; pPager->pageSize = pageSize; sqlite3PageFree(pPager->pTmpSpace); pPager->pTmpSpace = pNew; sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); } } *pPageSize = pPager->pageSize; if( rc==SQLITE_OK ){ if( nReserve<0 ) nReserve = pPager->nReserve; assert( nReserve>=0 && nReserve<1000 ); pPager->nReserve = (i16)nReserve; pagerReportSize(pPager); } return rc; } |
︙ | ︙ | |||
2820 2821 2822 2823 2824 2825 2826 | ** Attempt to set the maximum database page count if mxPage is positive. ** Make no changes if mxPage is zero or negative. And never reduce the ** maximum page count below the current size of the database. ** ** Regardless of mxPage, return the current maximum page count. */ int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ | < | < | | 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 | ** Attempt to set the maximum database page count if mxPage is positive. ** Make no changes if mxPage is zero or negative. And never reduce the ** maximum page count below the current size of the database. ** ** Regardless of mxPage, return the current maximum page count. */ int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ if( mxPage>0 ){ pPager->mxPgno = mxPage; } if( pPager->eState!=PAGER_OPEN && pPager->mxPgno<pPager->dbSize ){ pPager->mxPgno = pPager->dbSize; } return pPager->mxPgno; } /* ** The following set of routines are used to disable the simulated ** I/O error mechanism. These routines are used to avoid simulated |
︙ | ︙ | |||
2891 2892 2893 2894 2895 2896 2897 | rc = SQLITE_OK; } } return rc; } /* | > | < > < < < < < < < < < | < | < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < < < < | | | < < < | | | < < < < < | 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 | rc = SQLITE_OK; } } return rc; } /* ** This function may only be called when a read-transaction is open on ** the pager. It returns the total number of pages in the database. ** ** However, if the file is between 1 and <page-size> bytes in size, then ** this is considered a 1 page file. */ void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ assert( pPager->eState>=PAGER_READER ); assert( pPager->eState!=PAGER_WRITER_FINISHED ); *pnPage = (int)pPager->dbSize; } /* ** Try to obtain a lock of type locktype on the database file. If ** a similar or greater lock is already held, this function is a no-op ** (returning SQLITE_OK immediately). ** ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke ** the busy callback if the lock is currently not available. Repeat ** until the busy callback returns false or until the attempt to ** obtain the lock succeeds. ** ** Return SQLITE_OK on success and an error code if we cannot obtain ** the lock. If the lock is obtained successfully, set the Pager.state ** variable to locktype before returning. */ static int pager_wait_on_lock(Pager *pPager, int locktype){ int rc; /* Return code */ /* Check that this is either a no-op (because the requested lock is ** already held, or one of the transistions that the busy-handler ** may be invoked during, according to the comment above ** sqlite3PagerSetBusyhandler(). */ assert( (pPager->eLock>=locktype) || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) ); do { rc = pagerLockDb(pPager, locktype); }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); return rc; } /* ** Function assertTruncateConstraint(pPager) checks that one of the ** following is true for all dirty pages currently in the page-cache: ** |
︙ | ︙ | |||
3047 3048 3049 3050 3051 3052 3053 | /* ** Truncate the in-memory database file image to nPage pages. This ** function does not actually modify the database file on disk. It ** just sets the internal state of the pager object so that the ** truncation will be done when the current transaction is committed. */ void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ | < | | 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 | /* ** Truncate the in-memory database file image to nPage pages. This ** function does not actually modify the database file on disk. It ** just sets the internal state of the pager object so that the ** truncation will be done when the current transaction is committed. */ void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ assert( pPager->dbSize>=nPage ); assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); pPager->dbSize = nPage; assertTruncateConstraint(pPager); } /* ** This function is called before attempting a hot-journal rollback. It |
︙ | ︙ | |||
3099 3100 3101 3102 3103 3104 3105 | ** to the caller. */ int sqlite3PagerClose(Pager *pPager){ u8 *pTmp = (u8 *)pPager->pTmpSpace; disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); | | < | | | | > > > > > > | | 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 | ** to the caller. */ int sqlite3PagerClose(Pager *pPager){ u8 *pTmp = (u8 *)pPager->pTmpSpace; disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); /* pPager->errCode = 0; */ pPager->exclusiveMode = 0; #ifndef SQLITE_OMIT_WAL sqlite3WalClose(pPager->pWal, (pPager->noSync ? 0 : pPager->sync_flags), pPager->pageSize, pTmp ); pPager->pWal = 0; #endif pager_reset(pPager); if( MEMDB ){ pager_unlock(pPager); }else{ /* If it is open, sync the journal file before calling UnlockAndRollback. ** If this is not done, then an unsynced portion of the open journal ** file may be played back into the database. If a power failure occurs ** while this is happening, the database could become corrupt. ** ** If an error occurs while trying to sync the journal, shift the pager ** into the ERROR state. This causes UnlockAndRollback to unlock the ** database and close the journal file without attempting to roll it ** back or finalize it. The next database user will have to do hot-journal ** rollback before accessing the database file. */ if( isOpen(pPager->jfd) ){ pager_error(pPager, pagerSyncHotJournal(pPager)); } pagerUnlockAndRollback(pPager); } sqlite3EndBenignMalloc(); enable_simulated_io_errors(); PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); IOTRACE(("CLOSE %p\n", pPager)) |
︙ | ︙ | |||
3164 3165 3166 3167 3168 3169 3170 | } /* ** Sync the journal. In other words, make sure all the pages that have ** been written to the journal have actually reached the surface of the ** disk and can be restored in the event of a hot-journal rollback. ** | | | | | 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 | } /* ** Sync the journal. In other words, make sure all the pages that have ** been written to the journal have actually reached the surface of the ** disk and can be restored in the event of a hot-journal rollback. ** ** If the Pager.noSync flag is set, then this function is a no-op. ** Otherwise, the actions required depend on the journal-mode and the ** device characteristics of the the file-system, as follows: ** ** * If the journal file is an in-memory journal file, no action need ** be taken. ** ** * Otherwise, if the device does not support the SAFE_APPEND property, ** then the nRec field of the most recently written journal header ** is updated to contain the number of journal records that have |
︙ | ︙ | |||
3190 3191 3192 3193 3194 3195 3196 | ** if( NOT SAFE_APPEND ){ ** if( <full-sync mode> ) xSync(<journal file>); ** <update nRec field> ** } ** if( NOT SEQUENTIAL ) xSync(<journal file>); ** } ** | < < < | > > > > > > > > > > > | | < | 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 | ** if( NOT SAFE_APPEND ){ ** if( <full-sync mode> ) xSync(<journal file>); ** <update nRec field> ** } ** if( NOT SEQUENTIAL ) xSync(<journal file>); ** } ** ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every ** page currently held in memory before returning SQLITE_OK. If an IO ** error is encountered, then the IO error code is returned to the caller. */ static int syncJournal(Pager *pPager, int newHdr){ int rc; /* Return code */ assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); assert( !pagerUseWal(pPager) ); rc = sqlite3PagerExclusiveLock(pPager); if( rc!=SQLITE_OK ) return rc; if( !pPager->noSync ){ assert( !pPager->tempFile ); if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); assert( isOpen(pPager->jfd) ); if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ /* This block deals with an obscure problem. If the last connection ** that wrote to this database was operating in persistent-journal ** mode, then the journal file may at this point actually be larger |
︙ | ︙ | |||
3276 3277 3278 3279 3280 3281 3282 | PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); IOTRACE(("JSYNC %p\n", pPager)) rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) ); if( rc!=SQLITE_OK ) return rc; } | | | | < < | | > > > | < | | > > > > > > > > | 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 | PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); IOTRACE(("JSYNC %p\n", pPager)) rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) ); if( rc!=SQLITE_OK ) return rc; } pPager->journalHdr = pPager->journalOff; if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ pPager->nRec = 0; rc = writeJournalHdr(pPager); if( rc!=SQLITE_OK ) return rc; } }else{ pPager->journalHdr = pPager->journalOff; } } /* Unless the pager is in noSync mode, the journal file was just ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on ** all pages. */ sqlite3PcacheClearSyncFlags(pPager->pPCache); pPager->eState = PAGER_WRITER_DBMOD; assert( assert_pager_state(pPager) ); return SQLITE_OK; } /* ** The argument is the first in a linked list of dirty pages connected ** by the PgHdr.pDirty pointer. This function writes each one of the ** in-memory pages in the list to the database file. The argument may |
︙ | ︙ | |||
3323 3324 3325 3326 3327 3328 3329 | ** the database file. ** ** If everything is successful, SQLITE_OK is returned. If an IO error ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot ** be obtained, SQLITE_BUSY is returned. */ static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ | | | < < < < < < < < < < < < < < < | | | > > > | 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 | ** the database file. ** ** If everything is successful, SQLITE_OK is returned. If an IO error ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot ** be obtained, SQLITE_BUSY is returned. */ static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ int rc = SQLITE_OK; /* Return code */ /* This function is only called for rollback pagers in WRITER_DBMOD state. */ assert( !pagerUseWal(pPager) ); assert( pPager->eState==PAGER_WRITER_DBMOD ); assert( pPager->eLock==EXCLUSIVE_LOCK ); /* If the file is a temp-file has not yet been opened, open it now. It ** is not possible for rc to be other than SQLITE_OK if this branch ** is taken, as pager_wait_on_lock() is a no-op for temp-files. */ if( !isOpen(pPager->fd) ){ assert( pPager->tempFile && rc==SQLITE_OK ); rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); } #if 0 /* Before the first write, give the VFS a hint of what the final ** file size will be. */ assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); if( rc==SQLITE_OK && pPager->dbSize>pPager->dbHintSize ){ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); } #endif /* Before the first write, give the VFS a hint of what the final ** file size will be. */ if( rc==SQLITE_OK && pPager->dbSize>(pPager->dbFileSize+1) && isOpen(pPager->fd) ){ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); pPager->dbHintSize = pPager->dbSize; } while( rc==SQLITE_OK && pList ){ Pgno pgno = pList->pgno; /* If there are dirty pages in the page cache with page numbers greater ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to ** make the file smaller (presumably by auto-vacuum code). Do not write ** any such pages to the file. ** ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag ** set (set by sqlite3PagerDontWrite()). */ if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ char *pData; /* Data to write */ assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); /* Encode the database */ CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData); /* Write out the page data. */ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); |
︙ | ︙ | |||
3533 3534 3535 3536 3537 3538 3539 | ** journal (and adding a new header) is not allowed. This occurs ** during calls to sqlite3PagerWrite() while trying to journal multiple ** pages belonging to the same sector. ** ** The doNotSpill flag inhibits all cache spilling regardless of whether ** or not a sync is required. This is set during a rollback. ** | | > > > > > | | | < < < < | | < < | 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 | ** journal (and adding a new header) is not allowed. This occurs ** during calls to sqlite3PagerWrite() while trying to journal multiple ** pages belonging to the same sector. ** ** The doNotSpill flag inhibits all cache spilling regardless of whether ** or not a sync is required. This is set during a rollback. ** ** Spilling is also prohibited when in an error state since that could ** lead to database corruption. In the current implementaton it ** is impossible for sqlite3PCacheFetch() to be called with createFlag==1 ** while in the error state, hence it is impossible for this routine to ** be called in the error state. Nevertheless, we include a NEVER() ** test for the error state as a safeguard against future changes. */ if( NEVER(pPager->errCode) ) return SQLITE_OK; if( pPager->doNotSpill ) return SQLITE_OK; if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){ return SQLITE_OK; } pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ if( subjRequiresPage(pPg) ){ rc = subjournalPage(pPg); } if( rc==SQLITE_OK ){ rc = pagerWalFrames(pPager, pPg, 0, 0, 0); } }else{ /* Sync the journal file if required. */ if( pPg->flags&PGHDR_NEED_SYNC || pPager->eState==PAGER_WRITER_CACHEMOD ){ rc = syncJournal(pPager, 1); } /* If the page number of this page is larger than the current size of ** the database image, it may need to be written to the sub-journal. ** This is because the call to pager_write_pagelist() below will not ** actually write data to the file in this case. ** |
︙ | ︙ | |||
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 | rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg) ) ){ rc = subjournalPage(pPg); } /* Write the contents of the page out to the database file. */ if( rc==SQLITE_OK ){ rc = pager_write_pagelist(pPager, pPg); } } /* Mark the page as clean. */ if( rc==SQLITE_OK ){ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); | > | 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 | rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg) ) ){ rc = subjournalPage(pPg); } /* Write the contents of the page out to the database file. */ if( rc==SQLITE_OK ){ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); rc = pager_write_pagelist(pPager, pPg); } } /* Mark the page as clean. */ if( rc==SQLITE_OK ){ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); |
︙ | ︙ | |||
3665 3666 3667 3668 3669 3670 3671 | int readOnly = 0; /* True if this is a read-only file */ int journalFileSize; /* Bytes to allocate for each journal fd */ char *zPathname = 0; /* Full path to database file */ int nPathname = 0; /* Number of bytes in zPathname */ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ int noReadlock = (flags & PAGER_NO_READLOCK)!=0; /* True to omit read-lock */ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ | | | 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 | int readOnly = 0; /* True if this is a read-only file */ int journalFileSize; /* Bytes to allocate for each journal fd */ char *zPathname = 0; /* Full path to database file */ int nPathname = 0; /* Number of bytes in zPathname */ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ int noReadlock = (flags & PAGER_NO_READLOCK)!=0; /* True to omit read-lock */ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ /* Figure out how much space is required for each journal file-handle ** (there are two of them, the main journal and the sub-journal). This ** is the maximum space required for an in-memory journal file handle ** and a regular journal file-handle. Note that a "regular journal-handle" ** may be a wrapper capable of caching the first portion of the journal ** file in memory to implement the atomic-write optimization (see |
︙ | ︙ | |||
3800 3801 3802 3803 3804 3805 3806 | if( rc==SQLITE_OK && !readOnly ){ setSectorSize(pPager); assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); if( szPageDflt<pPager->sectorSize ){ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; }else{ | | | 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 | if( rc==SQLITE_OK && !readOnly ){ setSectorSize(pPager); assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); if( szPageDflt<pPager->sectorSize ){ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; }else{ szPageDflt = (u32)pPager->sectorSize; } } #ifdef SQLITE_ENABLE_ATOMIC_WRITE { int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); int ii; assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); |
︙ | ︙ | |||
3828 3829 3830 3831 3832 3833 3834 | ** opening the file until the first call to OsWrite(). ** ** This branch is also run for an in-memory database. An in-memory ** database is the same as a temp-file that is never written out to ** disk and uses an in-memory rollback journal. */ tempFile = 1; | | > | 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 | ** opening the file until the first call to OsWrite(). ** ** This branch is also run for an in-memory database. An in-memory ** database is the same as a temp-file that is never written out to ** disk and uses an in-memory rollback journal. */ tempFile = 1; pPager->eState = PAGER_READER; pPager->eLock = EXCLUSIVE_LOCK; readOnly = (vfsFlags&SQLITE_OPEN_READONLY); } /* The following call to PagerSetPagesize() serves to set the value of ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. */ if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
3865 3866 3867 3868 3869 3870 3871 | IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) pPager->useJournal = (u8)useJournal; pPager->noReadlock = (noReadlock && readOnly) ?1:0; /* pPager->stmtOpen = 0; */ /* pPager->stmtInUse = 0; */ /* pPager->nRef = 0; */ | < > > < | 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 | IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) pPager->useJournal = (u8)useJournal; pPager->noReadlock = (noReadlock && readOnly) ?1:0; /* pPager->stmtOpen = 0; */ /* pPager->stmtInUse = 0; */ /* pPager->nRef = 0; */ /* pPager->stmtSize = 0; */ /* pPager->stmtJSize = 0; */ /* pPager->nPage = 0; */ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; /* pPager->state = PAGER_UNLOCK; */ #if 0 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); #endif /* pPager->errMask = 0; */ pPager->tempFile = (u8)tempFile; assert( tempFile==PAGER_LOCKINGMODE_NORMAL || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); pPager->exclusiveMode = (u8)tempFile; pPager->changeCountDone = pPager->tempFile; pPager->memDb = (u8)memDb; pPager->readOnly = (u8)readOnly; assert( useJournal || pPager->tempFile ); pPager->noSync = pPager->tempFile; pPager->fullSync = pPager->noSync ?0:1; pPager->sync_flags = SQLITE_SYNC_NORMAL; /* pPager->pFirst = 0; */ /* pPager->pFirstSynced = 0; */ /* pPager->pLast = 0; */ |
︙ | ︙ | |||
3946 3947 3948 3949 3950 3951 3952 | */ static int hasHotJournal(Pager *pPager, int *pExists){ sqlite3_vfs * const pVfs = pPager->pVfs; int rc = SQLITE_OK; /* Return code */ int exists = 1; /* True if a journal file is present */ int jrnlOpen = !!isOpen(pPager->jfd); | < | > | | | | | | 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 | */ static int hasHotJournal(Pager *pPager, int *pExists){ sqlite3_vfs * const pVfs = pPager->pVfs; int rc = SQLITE_OK; /* Return code */ int exists = 1; /* True if a journal file is present */ int jrnlOpen = !!isOpen(pPager->jfd); assert( pPager->useJournal ); assert( isOpen(pPager->fd) ); assert( pPager->eState==PAGER_OPEN ); assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN )); *pExists = 0; if( !jrnlOpen ){ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); } if( rc==SQLITE_OK && exists ){ int locked = 0; /* True if some process holds a RESERVED lock */ /* Race condition here: Another process might have been holding the ** the RESERVED lock and have a journal open at the sqlite3OsAccess() ** call above, but then delete the journal and drop the lock before ** we get to the following sqlite3OsCheckReservedLock() call. If that ** is the case, this routine might think there is a hot journal when ** in fact there is none. This results in a false-positive which will ** be dealt with by the playback routine. Ticket #3883. */ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); if( rc==SQLITE_OK && !locked ){ Pgno nPage; /* Number of pages in database file */ /* Check the size of the database file. If it consists of 0 pages, ** then delete the journal file. See the header comment above for ** the reasoning here. Delete the obsolete journal file under ** a RESERVED lock to avoid race conditions and to avoid violating ** [H33020]. */ rc = pagerPagecount(pPager, &nPage); if( rc==SQLITE_OK ){ if( nPage==0 ){ sqlite3BeginBenignMalloc(); if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ sqlite3OsDelete(pVfs, pPager->zJournal, 0); pagerUnlockDb(pPager, SHARED_LOCK); } sqlite3EndBenignMalloc(); }else{ /* The journal file exists and no other connection has a reserved ** or greater lock on the database file. Now check that there is ** at least one non-zero bytes at the start of the journal file. ** If there is, then we consider this journal to be hot. If not, |
︙ | ︙ | |||
4038 4039 4040 4041 4042 4043 4044 | ** This function is called to obtain a shared lock on the database file. ** It is illegal to call sqlite3PagerAcquire() until after this function ** has been successfully called. If a shared-lock is already held when ** this function is called, it is a no-op. ** ** The following operations are also performed by this function. ** | | < < < < < | | | < | > > > > > < < < < | | < | < < < < < < < < < > | | < < < | < > < < | | > | | | < | > > > < | | < | | < | | | | | | > | > > > > > > | | > | < | | | | | | | | | < < < < < < < | | < < < < < < < < < < < < < > > > > > > | > > > > > > > > > > > > > > > > | | | | > | | > | > | < < | | < < > > > > > > > > > > | > > > | < < | 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 | ** This function is called to obtain a shared lock on the database file. ** It is illegal to call sqlite3PagerAcquire() until after this function ** has been successfully called. If a shared-lock is already held when ** this function is called, it is a no-op. ** ** The following operations are also performed by this function. ** ** 1) If the pager is currently in PAGER_OPEN state (no lock held ** on the database file), then an attempt is made to obtain a ** SHARED lock on the database file. Immediately after obtaining ** the SHARED lock, the file-system is checked for a hot-journal, ** which is played back if present. Following any hot-journal ** rollback, the contents of the cache are validated by checking ** the 'change-counter' field of the database file header and ** discarded if they are found to be invalid. ** ** 2) If the pager is running in exclusive-mode, and there are currently ** no outstanding references to any pages, and is in the error state, ** then an attempt is made to clear the error state by discarding ** the contents of the page cache and rolling back any open journal ** file. ** ** If everything is successful, SQLITE_OK is returned. If an IO error ** occurs while locking the database, checking for a hot-journal file or ** rolling back a journal file, the IO error code is returned. */ int sqlite3PagerSharedLock(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ /* This routine is only called from b-tree and only when there are no ** outstanding pages. This implies that the pager state should either ** be OPEN or READER. READER is only possible if the pager is or was in ** exclusive access mode. */ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); assert( assert_pager_state(pPager) ); assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; } if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ int bHotJournal = 1; /* True if there exists a hot journal-file */ assert( !MEMDB ); assert( pPager->noReadlock==0 || pPager->readOnly ); if( pPager->noReadlock==0 ){ rc = pager_wait_on_lock(pPager, SHARED_LOCK); if( rc!=SQLITE_OK ){ assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); goto failed; } } /* If a journal file exists, and there is no RESERVED lock on the ** database file, then it either needs to be played back or deleted. */ if( pPager->eLock<=SHARED_LOCK ){ rc = hasHotJournal(pPager, &bHotJournal); } if( rc!=SQLITE_OK ){ goto failed; } if( bHotJournal ){ /* Get an EXCLUSIVE lock on the database file. At this point it is ** important that a RESERVED lock is not obtained on the way to the ** EXCLUSIVE lock. If it were, another process might open the ** database file, detect the RESERVED lock, and conclude that the ** database is safe to read while this process is still rolling the ** hot-journal back. ** ** Because the intermediate RESERVED lock is not requested, any ** other process attempting to access the database file will get to ** this point in the code and fail to obtain its own EXCLUSIVE lock ** on the database file. ** ** Unless the pager is in locking_mode=exclusive mode, the lock is ** downgraded to SHARED_LOCK before this function returns. */ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ goto failed; } /* If it is not already open and the file exists on disk, open the ** journal for read/write access. Write access is required because ** in exclusive-access mode the file descriptor will be kept open ** and possibly used for a transaction later on. Also, write-access ** is usually required to finalize the journal in journal_mode=persist ** mode (and also for journal_mode=truncate on some systems). ** ** If the journal does not exist, it usually means that some ** other connection managed to get in and roll it back before ** this connection obtained the exclusive lock above. Or, it ** may mean that the pager was in the error-state when this ** function was called and the journal file does not exist. */ if( !isOpen(pPager->jfd) ){ sqlite3_vfs * const pVfs = pPager->pVfs; int bExists; /* True if journal file exists */ rc = sqlite3OsAccess( pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); if( rc==SQLITE_OK && bExists ){ int fout = 0; int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; assert( !pPager->tempFile ); rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ rc = SQLITE_CANTOPEN_BKPT; sqlite3OsClose(pPager->jfd); } } } /* Playback and delete the journal. Drop the database write ** lock and reacquire the read lock. Purge the cache before ** playing back the hot-journal so that we don't end up with ** an inconsistent cache. Sync the hot journal before playing ** it back since the process that crashed and left the hot journal ** probably did not sync it and we are required to always sync ** the journal before playing it back. */ if( isOpen(pPager->jfd) ){ assert( rc==SQLITE_OK ); rc = pagerSyncHotJournal(pPager); if( rc==SQLITE_OK ){ rc = pager_playback(pPager, 1); pPager->eState = PAGER_OPEN; } }else if( !pPager->exclusiveMode ){ pagerUnlockDb(pPager, SHARED_LOCK); } if( rc!=SQLITE_OK ){ /* This branch is taken if an error occurs while trying to open ** or roll back a hot-journal while holding an EXCLUSIVE lock. The ** pager_unlock() routine will be called before returning to unlock ** the file. If the unlock attempt fails, then Pager.eLock must be ** set to UNKNOWN_LOCK (see the comment above the #define for ** UNKNOWN_LOCK above for an explanation). ** ** In order to get pager_unlock() to do this, set Pager.eState to ** PAGER_ERROR now. This is not actually counted as a transition ** to ERROR state in the state diagram at the top of this file, ** since we know that the same call to pager_unlock() will very ** shortly transition the pager object to the OPEN state. Calling ** assert_pager_state() would fail now, as it should not be possible ** to be in ERROR state when there are zero outstanding page ** references. */ pager_error(pPager, rc); goto failed; } assert( pPager->eState==PAGER_OPEN ); assert( (pPager->eLock==SHARED_LOCK) || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) ); } if( !pPager->tempFile && (pPager->pBackup || sqlite3PcachePagecount(pPager->pPCache)>0) ){ /* The shared-lock has just been acquired on the database file ** and there are already pages in the cache (from a previous ** read or write transaction). Check to see if the database ** has been modified. If the database has changed, flush the ** cache. ** ** Database changes is detected by looking at 15 bytes beginning ** at offset 24 into the file. The first 4 of these 16 bytes are ** a 32-bit counter that is incremented with each change. The ** other bytes change randomly with each file change when ** a codec is in use. ** ** There is a vanishingly small chance that a change will not be ** detected. The chance of an undetected change is so small that ** it can be neglected. */ Pgno nPage = 0; char dbFileVers[sizeof(pPager->dbFileVers)]; rc = pagerPagecount(pPager, &nPage); if( rc ) goto failed; if( nPage>0 ){ IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); if( rc!=SQLITE_OK ){ goto failed; } }else{ memset(dbFileVers, 0, sizeof(dbFileVers)); } if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ pager_reset(pPager); } } /* If there is a WAL file in the file-system, open this database in WAL ** mode. Otherwise, the following function call is a no-op. */ rc = pagerOpenWalIfPresent(pPager); assert( pPager->pWal==0 || rc==SQLITE_OK ); } if( pagerUseWal(pPager) ){ assert( rc==SQLITE_OK ); rc = pagerBeginReadTransaction(pPager); } if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ rc = pagerPagecount(pPager, &pPager->dbSize); } failed: if( rc!=SQLITE_OK ){ assert( !MEMDB ); pager_unlock(pPager); assert( pPager->eState==PAGER_OPEN ); }else{ pPager->eState = PAGER_READER; } return rc; } /* ** If the reference count has reached zero, rollback any active ** transaction and unlock the pager. ** ** Except, in locking_mode=EXCLUSIVE when there is nothing to in ** the rollback journal, the unlock is not performed and there is ** nothing to rollback, so this routine is a no-op. */ static void pagerUnlockIfUnused(Pager *pPager){ if( (sqlite3PcacheRefCount(pPager->pPCache)==0) ){ pagerUnlockAndRollback(pPager); } } /* ** Acquire a reference to page number pgno in pager pPager (a page ** reference has type DbPage*). If the requested reference is |
︙ | ︙ | |||
4331 4332 4333 4334 4335 4336 4337 4338 | Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int noContent /* Do not bother reading content from disk if true */ ){ int rc; PgHdr *pPg; assert( assert_pager_state(pPager) ); | > < | | 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 | Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int noContent /* Do not bother reading content from disk if true */ ){ int rc; PgHdr *pPg; assert( pPager->eState>=PAGER_READER ); assert( assert_pager_state(pPager) ); if( pgno==0 ){ return SQLITE_CORRUPT_BKPT; } /* If the pager is in the error state, return an error immediately. ** Otherwise, request the page from the PCache layer. */ if( pPager->errCode!=SQLITE_OK ){ rc = pPager->errCode; }else{ rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, ppPage); } if( rc!=SQLITE_OK ){ /* Either the call to sqlite3PcacheFetch() returned an error or the |
︙ | ︙ | |||
4366 4367 4368 4369 4370 4371 4372 | assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); PAGER_INCR(pPager->nHit); return SQLITE_OK; }else{ /* The pager cache has created a new page. Its content needs to ** be initialized. */ | < < < < < < | | 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 | assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); PAGER_INCR(pPager->nHit); return SQLITE_OK; }else{ /* The pager cache has created a new page. Its content needs to ** be initialized. */ PAGER_INCR(pPager->nMiss); pPg = *ppPage; pPg->pPager = pPager; /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page ** number greater than this, or the unused locking-page, is requested. */ if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ rc = SQLITE_CORRUPT_BKPT; goto pager_acquire_err; } if( MEMDB || pPager->dbSize<pgno || noContent || !isOpen(pPager->fd) ){ if( pgno>pPager->mxPgno ){ rc = SQLITE_FULL; goto pager_acquire_err; } if( noContent ){ /* Failure to set the bits in the InJournal bit-vectors is benign. ** It merely means that we might do some extra work to journal a |
︙ | ︙ | |||
4435 4436 4437 4438 4439 4440 4441 | *ppPage = 0; return rc; } /* ** Acquire a page if it is already in the in-memory cache. Do ** not read the page from disk. Return a pointer to the page, | | < < | | 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 | *ppPage = 0; return rc; } /* ** Acquire a page if it is already in the in-memory cache. Do ** not read the page from disk. Return a pointer to the page, ** or 0 if the page is not in cache. ** ** See also sqlite3PagerGet(). The difference between this routine ** and sqlite3PagerGet() is that _get() will go to the disk and read ** in the page if the page is not already in cache. This routine ** returns NULL if the page is not in cache or if a disk I/O error ** has ever happened. */ DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ PgHdr *pPg = 0; assert( pPager!=0 ); assert( pgno!=0 ); assert( pPager->pPCache!=0 ); assert( pPager->eState>=PAGER_READER && pPager->eState!=PAGER_ERROR ); sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg); return pPg; } /* ** Release a page reference. ** |
︙ | ︙ | |||
4495 4496 4497 4498 4499 4500 4501 | ** ** Return SQLITE_OK if everything is successful. Otherwise, return ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or ** an IO error code if opening or writing the journal file fails. */ static int pager_open_journal(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ | < < | | | < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < | | | | | > > > > > < < < < < < < < | > > | < | < < < < < < < < < < < < < < < | | < < | | | | | > > | | > | > | | > > > > > | < < < < < < < < | > > > | | > | > > > > | < < < | | | | | < | < < < < | > | | | > | > > > > > > > > > > | | | < < < | | | | < < < < < < < < < < < | < < < < < < < | < < | 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 | ** ** Return SQLITE_OK if everything is successful. Otherwise, return ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or ** an IO error code if opening or writing the journal file fails. */ static int pager_open_journal(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ assert( pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); assert( pPager->pInJournal==0 ); /* If already in the error state, this function is a no-op. But on ** the other hand, this routine is never called if we are already in ** an error state. */ if( NEVER(pPager->errCode) ) return pPager->errCode; if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); if( pPager->pInJournal==0 ){ return SQLITE_NOMEM; } /* Open the journal file if it is not already open. */ if( !isOpen(pPager->jfd) ){ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ sqlite3MemJournalOpen(pPager->jfd); }else{ const int flags = /* VFS flags to open journal file */ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| (pPager->tempFile ? (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL): (SQLITE_OPEN_MAIN_JOURNAL) ); #ifdef SQLITE_ENABLE_ATOMIC_WRITE rc = sqlite3JournalOpen( pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) ); #else rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); #endif } assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); } /* Write the first journal header to the journal file and open ** the sub-journal if necessary. */ if( rc==SQLITE_OK ){ /* TODO: Check if all of these are really required. */ pPager->nRec = 0; pPager->journalOff = 0; pPager->setMaster = 0; pPager->journalHdr = 0; rc = writeJournalHdr(pPager); } } if( rc!=SQLITE_OK ){ sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; }else{ assert( pPager->eState==PAGER_WRITER_LOCKED ); pPager->eState = PAGER_WRITER_CACHEMOD; } return rc; } /* ** Begin a write-transaction on the specified pager object. If a ** write-transaction has already been opened, this function is a no-op. ** ** If the exFlag argument is false, then acquire at least a RESERVED ** lock on the database file. If exFlag is true, then acquire at least ** an EXCLUSIVE lock. If such a lock is already held, no locking ** functions need be called. ** ** If the subjInMemory argument is non-zero, then any sub-journal opened ** within this transaction will be opened as an in-memory file. This ** has no effect if the sub-journal is already opened (as it may be when ** running in exclusive mode) or if the transaction does not require a ** sub-journal. If the subjInMemory argument is zero, then any required ** sub-journal is implemented in-memory if pPager is an in-memory database, ** or using a temporary file otherwise. */ int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ int rc = SQLITE_OK; if( pPager->errCode ) return pPager->errCode; assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); pPager->subjInMemory = (u8)subjInMemory; if( ALWAYS(pPager->eState==PAGER_READER) ){ assert( pPager->pInJournal==0 ); if( pagerUseWal(pPager) ){ /* If the pager is configured to use locking_mode=exclusive, and an ** exclusive lock on the database is not already held, obtain it now. */ if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ return rc; } sqlite3WalExclusiveMode(pPager->pWal, 1); } /* Grab the write lock on the log file. If successful, upgrade to ** PAGER_RESERVED state. Otherwise, return an error code to the caller. ** The busy-handler is not invoked if another connection already ** holds the write-lock. If possible, the upper layer will call it. */ rc = sqlite3WalBeginWriteTransaction(pPager->pWal); }else{ /* Obtain a RESERVED lock on the database file. If the exFlag parameter ** is true, then immediately upgrade this to an EXCLUSIVE lock. The ** busy-handler callback can be used when upgrading to the EXCLUSIVE ** lock, but not when obtaining the RESERVED lock. */ rc = pagerLockDb(pPager, RESERVED_LOCK); if( rc==SQLITE_OK && exFlag ){ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); } } if( rc==SQLITE_OK ){ /* Change to WRITER_LOCKED state. ** ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD ** when it has an open transaction, but never to DBMOD or FINISHED. ** This is because in those states the code to roll back savepoint ** transactions may copy data from the sub-journal into the database ** file as well as into the page cache. Which would be incorrect in ** WAL mode. */ pPager->eState = PAGER_WRITER_LOCKED; pPager->dbHintSize = pPager->dbSize; pPager->dbFileSize = pPager->dbSize; pPager->dbOrigSize = pPager->dbSize; pPager->journalOff = 0; } assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); } PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); return rc; } /* ** Mark a single data page as writeable. The page is written into the ** main journal or sub-journal as required. If the page is written into ** one of the journals, the corresponding bit is set in the ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs ** of any open savepoints as appropriate. */ static int pager_write(PgHdr *pPg){ void *pData = pPg->pData; Pager *pPager = pPg->pPager; int rc = SQLITE_OK; /* This routine is not called unless a write-transaction has already ** been started. The journal file may or may not be open at this point. ** It is never called in the ERROR state. */ assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); /* If an error has been previously detected, report the same error ** again. This should not happen, but the check provides robustness. */ if( NEVER(pPager->errCode) ) return pPager->errCode; /* Higher-level routines never call this function if database is not ** writable. But check anyway, just for robustness. */ if( NEVER(pPager->readOnly) ) return SQLITE_PERM; CHECK_PAGE(pPg); /* Mark the page as dirty. If the page has already been written ** to the journal then we can return right away. */ sqlite3PcacheMakeDirty(pPg); if( pageInJournal(pPg) && !subjRequiresPage(pPg) ){ assert( !pagerUseWal(pPager) ); assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); }else{ /* If we get this far, it means that the page needs to be ** written to the transaction journal or the checkpoint journal ** or both. ** ** Higher level routines have already obtained the necessary locks ** to begin the write-transaction, but the rollback journal might not ** yet be open. Open it now if this is the case. */ if( pPager->eState==PAGER_WRITER_LOCKED ){ rc = pager_open_journal(pPager); if( rc!=SQLITE_OK ) return rc; } assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); assert( assert_pager_state(pPager) ); /* The transaction journal now exists and we have a RESERVED or an ** EXCLUSIVE lock on the main database file. Write the current page to ** the transaction journal if it is not there already. */ if( !pageInJournal(pPg) && !pagerUseWal(pPager) ){ assert( pagerUseWal(pPager)==0 ); if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){ u32 cksum; char *pData2; i64 iOff = pPager->journalOff; /* We should never write to the journal file the page that ** contains the database locks. The following assert verifies ** that we do not. */ assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); assert( pPager->journalHdr<=pPager->journalOff ); CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); cksum = pager_cksum(pPager, (u8*)pData2); /* Even if an IO or diskfull error occurs while journalling the ** page in the block above, set the need-sync flag for the page. ** Otherwise, when the transaction is rolled back, the logic in ** playback_one_page() will think that the page needs to be restored ** in the database file. And if an IO error occurs while doing so, ** then corruption may follow. */ pPg->flags |= PGHDR_NEED_SYNC; rc = write32bits(pPager->jfd, iOff, pPg->pgno); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); if( rc!=SQLITE_OK ) return rc; rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); if( rc!=SQLITE_OK ) return rc; IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, pPager->journalOff, pPager->pageSize)); PAGER_INCR(sqlite3_pager_writej_count); PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); pPager->journalOff += 8 + pPager->pageSize; pPager->nRec++; assert( pPager->pInJournal!=0 ); rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); testcase( rc==SQLITE_NOMEM ); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); rc |= addToSavepointBitvecs(pPager, pPg->pgno); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return rc; } }else{ if( pPager->eState!=PAGER_WRITER_DBMOD ){ pPg->flags |= PGHDR_NEED_SYNC; } PAGERTRACE(("APPEND %d page %d needSync=%d\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); } } /* If the statement journal is open and the page is not in it, ** then write the current page to the statement journal. Note that ** the statement journal format differs from the standard journal format ** in that it omits the checksums and the header. */ if( subjRequiresPage(pPg) ){ rc = subjournalPage(pPg); } } /* Update the database size and return. */ if( pPager->dbSize<pPg->pgno ){ pPager->dbSize = pPg->pgno; } return rc; } /* |
︙ | ︙ | |||
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 | int sqlite3PagerWrite(DbPage *pDbPage){ int rc = SQLITE_OK; PgHdr *pPg = pDbPage; Pager *pPager = pPg->pPager; Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); if( nPagePerSector>1 ){ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage = 0; /* Number of pages starting at pg1 to journal */ int ii; /* Loop counter */ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ | > > > > | 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 | int sqlite3PagerWrite(DbPage *pDbPage){ int rc = SQLITE_OK; PgHdr *pPg = pDbPage; Pager *pPager = pPg->pPager; Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( pPager->eState!=PAGER_ERROR ); assert( assert_pager_state(pPager) ); if( nPagePerSector>1 ){ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage = 0; /* Number of pages starting at pg1 to journal */ int ii; /* Loop counter */ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ |
︙ | ︙ | |||
4858 4859 4860 4861 4862 4863 4864 | /* This trick assumes that both the page-size and sector-size are ** an integer power of 2. It sets variable pg1 to the identifier ** of the first page of the sector pPg is located on. */ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; | | < | | | | | | | | | | < < | < | 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 | /* This trick assumes that both the page-size and sector-size are ** an integer power of 2. It sets variable pg1 to the identifier ** of the first page of the sector pPg is located on. */ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; nPageCount = pPager->dbSize; if( pPg->pgno>nPageCount ){ nPage = (pPg->pgno - pg1)+1; }else if( (pg1+nPagePerSector-1)>nPageCount ){ nPage = nPageCount+1-pg1; }else{ nPage = nPagePerSector; } assert(nPage>0); assert(pg1<=pPg->pgno); assert((pg1+nPage)>pPg->pgno); for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ Pgno pg = pg1+ii; PgHdr *pPage; if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ if( pg!=PAGER_MJ_PGNO(pPager) ){ rc = sqlite3PagerGet(pPager, pg, &pPage); if( rc==SQLITE_OK ){ rc = pager_write(pPage); if( pPage->flags&PGHDR_NEED_SYNC ){ needSync = 1; } sqlite3PagerUnref(pPage); } } }else if( (pPage = pager_lookup(pPager, pg))!=0 ){ if( pPage->flags&PGHDR_NEED_SYNC ){ needSync = 1; } sqlite3PagerUnref(pPage); } } /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages ** starting at pg1, then it needs to be set for all of them. Because ** writing to any of these nPage pages may damage the others, the ** journal file must contain sync()ed copies of all of them ** before any of them can be written out to the database file. */ if( rc==SQLITE_OK && needSync ){ assert( !MEMDB ); for(ii=0; ii<nPage; ii++){ PgHdr *pPage = pager_lookup(pPager, pg1+ii); if( pPage ){ pPage->flags |= PGHDR_NEED_SYNC; sqlite3PagerUnref(pPage); } } } assert( pPager->doNotSyncSpill==1 ); pPager->doNotSyncSpill--; }else{ rc = pager_write(pDbPage); } |
︙ | ︙ | |||
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 | ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, ** if isDirect is non-zero, then the database file is updated directly ** by writing an updated version of page 1 using a call to the ** sqlite3OsWrite() function. */ static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ int rc = SQLITE_OK; /* Declare and initialize constant integer 'isDirect'. If the ** atomic-write optimization is enabled in this build, then isDirect ** is initialized to the value passed as the isDirectMode parameter ** to this function. Otherwise, it is always set to zero. ** ** The idea is that if the atomic-write optimization is not ** enabled at compile time, the compiler can omit the tests of ** 'isDirect' below, as well as the block enclosed in the ** "if( isDirect )" condition. */ #ifndef SQLITE_ENABLE_ATOMIC_WRITE # define DIRECT_MODE 0 assert( isDirectMode==0 ); UNUSED_PARAMETER(isDirectMode); #else # define DIRECT_MODE isDirectMode #endif | > > > > > < | 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 | ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, ** if isDirect is non-zero, then the database file is updated directly ** by writing an updated version of page 1 using a call to the ** sqlite3OsWrite() function. */ static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ int rc = SQLITE_OK; assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); /* Declare and initialize constant integer 'isDirect'. If the ** atomic-write optimization is enabled in this build, then isDirect ** is initialized to the value passed as the isDirectMode parameter ** to this function. Otherwise, it is always set to zero. ** ** The idea is that if the atomic-write optimization is not ** enabled at compile time, the compiler can omit the tests of ** 'isDirect' below, as well as the block enclosed in the ** "if( isDirect )" condition. */ #ifndef SQLITE_ENABLE_ATOMIC_WRITE # define DIRECT_MODE 0 assert( isDirectMode==0 ); UNUSED_PARAMETER(isDirectMode); #else # define DIRECT_MODE isDirectMode #endif if( !pPager->changeCountDone && pPager->dbSize>0 ){ PgHdr *pPgHdr; /* Reference to page 1 */ u32 change_counter; /* Initial value of change-counter field */ assert( !pPager->tempFile && isOpen(pPager->fd) ); /* Open page 1 of the file for writing. */ |
︙ | ︙ | |||
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 | if( pPager->noSync ){ rc = SQLITE_OK; }else{ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); } return rc; } /* ** Sync the database file for the pager pPager. zMaster points to the name ** of a master journal file that should be written into the individual ** journal file. zMaster may be NULL, which is interpreted as no master ** journal (a single database transaction). ** | > > > > > > > > > > > > > > > > > > > > > > > > | 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 | if( pPager->noSync ){ rc = SQLITE_OK; }else{ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); } return rc; } /* ** This function may only be called while a write-transaction is active in ** rollback. If the connection is in WAL mode, this call is a no-op. ** Otherwise, if the connection does not already have an EXCLUSIVE lock on ** the database file, an attempt is made to obtain one. ** ** If the EXCLUSIVE lock is already held or the attempt to obtain it is ** successful, or the connection is in WAL mode, SQLITE_OK is returned. ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is ** returned. */ int sqlite3PagerExclusiveLock(Pager *pPager){ int rc = SQLITE_OK; assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( 0==pagerUseWal(pPager) ){ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); } return rc; } /* ** Sync the database file for the pager pPager. zMaster points to the name ** of a master journal file that should be written into the individual ** journal file. zMaster may be NULL, which is interpreted as no master ** journal (a single database transaction). ** |
︙ | ︙ | |||
5100 5101 5102 5103 5104 5105 5106 | int sqlite3PagerCommitPhaseOne( Pager *pPager, /* Pager object */ const char *zMaster, /* If not NULL, the master journal name */ int noSync /* True to omit the xSync on the db file */ ){ int rc = SQLITE_OK; /* Return code */ | < | > > > > > | > > > | | | 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 | int sqlite3PagerCommitPhaseOne( Pager *pPager, /* Pager object */ const char *zMaster, /* If not NULL, the master journal name */ int noSync /* True to omit the xSync on the db file */ ){ int rc = SQLITE_OK; /* Return code */ assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD || pPager->eState==PAGER_ERROR ); assert( assert_pager_state(pPager) ); /* If a prior error occurred, report that error again. */ if( NEVER(pPager->errCode) ) return pPager->errCode; PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", pPager->zFilename, zMaster, pPager->dbSize)); /* If no database changes have been made, return early. */ if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; if( MEMDB ){ /* If this is an in-memory db, or no pages have been written to, or this ** function has already been called, it is mostly a no-op. However, any ** backup in progress needs to be restarted. */ sqlite3BackupRestart(pPager->pBackup); }else{ if( pagerUseWal(pPager) ){ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); if( pList ){ rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1, (pPager->fullSync ? pPager->sync_flags : 0) ); } |
︙ | ︙ | |||
5158 5159 5160 5161 5162 5163 5164 | PgHdr *pPg; assert( isOpen(pPager->jfd) || pPager->journalMode==PAGER_JOURNALMODE_OFF || pPager->journalMode==PAGER_JOURNALMODE_WAL ); if( !zMaster && isOpen(pPager->jfd) && pPager->journalOff==jrnlBufferSize(pPager) | | | 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 | PgHdr *pPg; assert( isOpen(pPager->jfd) || pPager->journalMode==PAGER_JOURNALMODE_OFF || pPager->journalMode==PAGER_JOURNALMODE_WAL ); if( !zMaster && isOpen(pPager->jfd) && pPager->journalOff==jrnlBufferSize(pPager) && pPager->dbSize>=pPager->dbOrigSize && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) ){ /* Update the db file change counter via the direct-write method. The ** following call will modify the in-memory representation of page 1 ** to include the updated change counter and then write page 1 ** directly to the database file. Because of the atomic-write ** property of the host file-system, this is safe. |
︙ | ︙ | |||
5188 5189 5190 5191 5192 5193 5194 | ** file. This can only happen in auto-vacuum mode. ** ** Before reading the pages with page numbers larger than the ** current value of Pager.dbSize, set dbSize back to the value ** that it took at the start of the transaction. Otherwise, the ** calls to sqlite3PagerGet() return zeroed pages instead of ** reading data from the database file. | < < < | | 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 | ** file. This can only happen in auto-vacuum mode. ** ** Before reading the pages with page numbers larger than the ** current value of Pager.dbSize, set dbSize back to the value ** that it took at the start of the transaction. Otherwise, the ** calls to sqlite3PagerGet() return zeroed pages instead of ** reading data from the database file. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( pPager->dbSize<pPager->dbOrigSize && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ Pgno i; /* Iterator variable */ const Pgno iSkip = PAGER_MJ_PGNO(pPager); /* Pending lock page */ const Pgno dbSize = pPager->dbSize; /* Database image size */ pPager->dbSize = pPager->dbOrigSize; for( i=dbSize+1; i<=pPager->dbOrigSize; i++ ){ if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){ |
︙ | ︙ | |||
5221 5222 5223 5224 5225 5226 5227 | /* Write the master journal name into the journal file. If a master ** journal file name has already been written to the journal file, ** or if zMaster is NULL (no master journal), then this call is a no-op. */ rc = writeMasterJournal(pPager, zMaster); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; | > | | | > > > > > > | < | < < > > > | 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 | /* Write the master journal name into the journal file. If a master ** journal file name has already been written to the journal file, ** or if zMaster is NULL (no master journal), then this call is a no-op. */ rc = writeMasterJournal(pPager, zMaster); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; /* Sync the journal file and write all dirty pages to the database. ** If the atomic-update optimization is being used, this sync will not ** create the journal file or perform any real IO. ** ** Because the change-counter page was just modified, unless the ** atomic-update optimization is used it is almost certain that the ** journal requires a sync here. However, in locking_mode=exclusive ** on a system under memory pressure it is just possible that this is ** not the case. In this case it is likely enough that the redundant ** xSync() call will be changed to a no-op by the OS anyhow. */ rc = syncJournal(pPager, 0); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache)); if( rc!=SQLITE_OK ){ assert( rc!=SQLITE_IOERR_BLOCKED ); goto commit_phase_one_exit; } sqlite3PcacheCleanAll(pPager->pPCache); /* If the file on disk is not the same size as the database image, ** then use pager_truncate to grow or shrink the file here. */ if( pPager->dbSize!=pPager->dbFileSize ){ Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); assert( pPager->eState==PAGER_WRITER_DBMOD ); rc = pager_truncate(pPager, nNew); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; } /* Finally, sync the database file. */ if( !pPager->noSync && !noSync ){ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); } IOTRACE(("DBSYNC %p\n", pPager)) } } commit_phase_one_exit: if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ pPager->eState = PAGER_WRITER_FINISHED; } return rc; } /* ** When this function is called, the database file has been completely ** updated to reflect the changes made by the current transaction and |
︙ | ︙ | |||
5284 5285 5286 5287 5288 5289 5290 | int rc = SQLITE_OK; /* Return code */ /* This routine should not be called if a prior error has occurred. ** But if (due to a coding error elsewhere in the system) it does get ** called, just return the same error code without doing anything. */ if( NEVER(pPager->errCode) ) return pPager->errCode; | | | | < < > | > | > < > > | > > > > | > < < | < < < < < < < < < | < < < < < < < < < > | < < < < < < < > > > > > > > > > > > < < | | < < < < < < < | < < < | < < | | < < > | < | | < | | < < | 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 | int rc = SQLITE_OK; /* Return code */ /* This routine should not be called if a prior error has occurred. ** But if (due to a coding error elsewhere in the system) it does get ** called, just return the same error code without doing anything. */ if( NEVER(pPager->errCode) ) return pPager->errCode; assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_FINISHED || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) ); assert( assert_pager_state(pPager) ); /* An optimization. If the database was not actually modified during ** this transaction, the pager is running in exclusive-mode and is ** using persistent journals, then this function is a no-op. ** ** The start of the journal file currently contains a single journal ** header with the nRec field set to 0. If such a journal is used as ** a hot-journal during hot-journal rollback, 0 changes will be made ** to the database file. So there is no need to zero the journal ** header. Since the pager is in exclusive mode, there is no need ** to drop any locks either. */ if( pPager->eState==PAGER_WRITER_LOCKED && pPager->exclusiveMode && pPager->journalMode==PAGER_JOURNALMODE_PERSIST ){ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); pPager->eState = PAGER_READER; return SQLITE_OK; } PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); rc = pager_end_transaction(pPager, pPager->setMaster); return pager_error(pPager, rc); } /* ** If a write transaction is open, then all changes made within the ** transaction are reverted and the current write-transaction is closed. ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR ** state if an error occurs. ** ** If the pager is already in PAGER_ERROR state when this function is called, ** it returns Pager.errCode immediately. No work is performed in this case. ** ** Otherwise, in rollback mode, this function performs two functions: ** ** 1) It rolls back the journal file, restoring all database file and ** in-memory cache pages to the state they were in when the transaction ** was opened, and ** ** 2) It finalizes the journal file, so that it is not used for hot ** rollback at any point in the future. ** ** Finalization of the journal file (task 2) is only performed if the ** rollback is successful. ** ** In WAL mode, all cache-entries containing data modified within the ** current transaction are either expelled from the cache or reverted to ** their pre-transaction state by re-reading data from the database or ** WAL files. The WAL transaction is then closed. */ int sqlite3PagerRollback(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); /* PagerRollback() is a no-op if called in READER or OPEN state. If ** the pager is already in the ERROR state, the rollback is not ** attempted here. Instead, the error code is returned to the caller. */ assert( assert_pager_state(pPager) ); if( pPager->eState==PAGER_ERROR ) return pPager->errCode; if( pPager->eState<=PAGER_READER ) return SQLITE_OK; if( pagerUseWal(pPager) ){ int rc2; rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); rc2 = pager_end_transaction(pPager, pPager->setMaster); if( rc==SQLITE_OK ) rc = rc2; }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ rc = pager_end_transaction(pPager, 0); }else{ rc = pager_playback(pPager, 0); } assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); assert( rc==SQLITE_OK || rc==SQLITE_FULL || (rc&0xFF)==SQLITE_IOERR ); /* If an error occurs during a ROLLBACK, we can no longer trust the pager ** cache. So call pager_error() on the way out to make any error persistent. */ return pager_error(pPager, rc); } /* ** Return TRUE if the database file is opened read-only. Return FALSE ** if the database is (in theory) writable. */ u8 sqlite3PagerIsreadonly(Pager *pPager){ |
︙ | ︙ | |||
5420 5421 5422 5423 5424 5425 5426 | } /* ** Return the approximate number of bytes of memory currently ** used by the pager and its associated cache. */ int sqlite3PagerMemUsed(Pager *pPager){ | | > | > | | | 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 | } /* ** Return the approximate number of bytes of memory currently ** used by the pager and its associated cache. */ int sqlite3PagerMemUsed(Pager *pPager){ int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) + 5*sizeof(void*); return perPageSize*sqlite3PcachePagecount(pPager->pPCache) + sqlite3MallocSize(pPager) + pPager->pageSize; } /* ** Return the number of references to the specified page. */ int sqlite3PagerPageRefcount(DbPage *pPage){ return sqlite3PcachePageRefcount(pPage); } #ifdef SQLITE_TEST /* ** This routine is used for testing and analysis only. */ int *sqlite3PagerStats(Pager *pPager){ static int a[11]; a[0] = sqlite3PcacheRefCount(pPager->pPCache); a[1] = sqlite3PcachePagecount(pPager->pPCache); a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; a[4] = pPager->eState; a[5] = pPager->errCode; a[6] = pPager->nHit; a[7] = pPager->nMiss; a[8] = 0; /* Used to be pPager->nOvfl */ a[9] = pPager->nRead; a[10] = pPager->nWrite; return a; |
︙ | ︙ | |||
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 | ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error ** occurs while opening the sub-journal file, then an IO error code is ** returned. Otherwise, SQLITE_OK. */ int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ int rc = SQLITE_OK; /* Return code */ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ if( nSavepoint>nCurrent && pPager->useJournal ){ int ii; /* Iterator variable */ PagerSavepoint *aNew; /* New Pager.aSavepoint array */ | > > > < < < < | | | 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 | ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error ** occurs while opening the sub-journal file, then an IO error code is ** returned. Otherwise, SQLITE_OK. */ int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ int rc = SQLITE_OK; /* Return code */ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( nSavepoint>nCurrent && pPager->useJournal ){ int ii; /* Iterator variable */ PagerSavepoint *aNew; /* New Pager.aSavepoint array */ /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM ** if the allocation fails. Otherwise, zero the new portion in case a ** malloc failure occurs while populating it in the for(...) loop below. */ aNew = (PagerSavepoint *)sqlite3Realloc( pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint ); if( !aNew ){ return SQLITE_NOMEM; } memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); pPager->aSavepoint = aNew; /* Populate the PagerSavepoint structures just allocated. */ for(ii=nCurrent; ii<nSavepoint; ii++){ aNew[ii].nOrig = pPager->dbSize; if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ aNew[ii].iOffset = pPager->journalOff; }else{ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); } aNew[ii].iSubRec = pPager->nSubRec; aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); if( !aNew[ii].pInSavepoint ){ return SQLITE_NOMEM; } if( pagerUseWal(pPager) ){ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); } pPager->nSavepoint = ii+1; |
︙ | ︙ | |||
5551 5552 5553 5554 5555 5556 5557 | ** then savepoint iSavepoint is also destroyed. ** ** This function may return SQLITE_NOMEM if a memory allocation fails, ** or an IO error code if an IO error occurs while rolling back a ** savepoint. If no errors occur, SQLITE_OK is returned. */ int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ | | | | 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 | ** then savepoint iSavepoint is also destroyed. ** ** This function may return SQLITE_NOMEM if a memory allocation fails, ** or an IO error code if an IO error occurs while rolling back a ** savepoint. If no errors occur, SQLITE_OK is returned. */ int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ int rc = pPager->errCode; /* Return code */ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ int ii; /* Iterator variable */ int nNew; /* Number of remaining savepoints after this op. */ /* Figure out how many savepoints will still be active after this ** operation. Store this value in nNew. Then free resources associated ** with any savepoints that are destroyed by this operation. */ |
︙ | ︙ | |||
5592 5593 5594 5595 5596 5597 5598 | ** the database file, so the playback operation can be skipped. */ else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; rc = pagerPlaybackSavepoint(pPager, pSavepoint); assert(rc!=SQLITE_DONE); } | | | | 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 | ** the database file, so the playback operation can be skipped. */ else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; rc = pagerPlaybackSavepoint(pPager, pSavepoint); assert(rc!=SQLITE_DONE); } } return rc; } /* ** Return the full pathname of the database file. */ const char *sqlite3PagerFilename(Pager *pPager){ |
︙ | ︙ | |||
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 | int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ PgHdr *pPgOld; /* The page being overwritten. */ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ int rc; /* Return code */ Pgno origPgno; /* The original page number */ assert( pPg->nRef>0 ); /* In order to be able to rollback, an in-memory database must journal ** the page we are moving from. */ if( MEMDB ){ rc = sqlite3PagerWrite(pPg); if( rc ) return rc; | > > > > | 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 | int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ PgHdr *pPgOld; /* The page being overwritten. */ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ int rc; /* Return code */ Pgno origPgno; /* The original page number */ assert( pPg->nRef>0 ); assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); /* In order to be able to rollback, an in-memory database must journal ** the page we are moving from. */ if( MEMDB ){ rc = sqlite3PagerWrite(pPg); if( rc ) return rc; |
︙ | ︙ | |||
5740 5741 5742 5743 5744 5745 5746 | ** the journal needs to be sync()ed before database page pPg->pgno ** can be written to. The caller has already promised not to write to it. */ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ needSyncPgno = pPg->pgno; assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize ); assert( pPg->flags&PGHDR_DIRTY ); | < | < | > > > > > > > > > | < < < < < < < < < < < < < < < < | 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 | ** the journal needs to be sync()ed before database page pPg->pgno ** can be written to. The caller has already promised not to write to it. */ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ needSyncPgno = pPg->pgno; assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize ); assert( pPg->flags&PGHDR_DIRTY ); } /* If the cache contains a page with page-number pgno, remove it ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for ** page pgno before the 'move' operation, it needs to be retained ** for the page moved there. */ pPg->flags &= ~PGHDR_NEED_SYNC; pPgOld = pager_lookup(pPager, pgno); assert( !pPgOld || pPgOld->nRef==1 ); if( pPgOld ){ pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); if( MEMDB ){ /* Do not discard pages from an in-memory database since we might ** need to rollback later. Just move the page out of the way. */ sqlite3PcacheMove(pPgOld, pPager->dbSize+1); }else{ sqlite3PcacheDrop(pPgOld); } } origPgno = pPg->pgno; sqlite3PcacheMove(pPg, pgno); sqlite3PcacheMakeDirty(pPg); /* For an in-memory database, make sure the original page continues ** to exist, in case the transaction needs to roll back. Use pPgOld ** as the original page since it has already been allocated. */ if( MEMDB ){ assert( pPgOld ); sqlite3PcacheMove(pPgOld, origPgno); sqlite3PagerUnref(pPgOld); } if( needSyncPgno ){ /* If needSyncPgno is non-zero, then the journal file needs to be ** sync()ed before any data is written to database file page needSyncPgno. ** Currently, no such page exists in the page-cache and the ** "is journaled" bitvec flag has been set. This needs to be remedied by ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC ** flag. ** ** If the attempt to load the page into the page-cache fails, (due ** to a malloc() or IO failure), clear the bit in the pInJournal[] ** array. Otherwise, if the page is loaded and written again in ** this transaction, it may be written to the database file before ** it is synced into the journal file. This way, it may end up in ** the journal file twice, but that is not a problem. */ PgHdr *pPgHdr; rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); if( rc!=SQLITE_OK ){ if( needSyncPgno<=pPager->dbOrigSize ){ assert( pPager->pTmpSpace!=0 ); sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); } return rc; } pPgHdr->flags |= PGHDR_NEED_SYNC; sqlite3PcacheMakeDirty(pPgHdr); sqlite3PagerUnref(pPgHdr); } return SQLITE_OK; } #endif /* ** Return a pointer to the data for the specified page. */ |
︙ | ︙ | |||
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 | ** ** * Temporary databases cannot have _WAL journalmode. ** ** The returned indicate the current (possibly updated) journal-mode. */ int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ u8 eOld = pPager->journalMode; /* Prior journalmode */ /* The eMode parameter is always valid */ assert( eMode==PAGER_JOURNALMODE_DELETE || eMode==PAGER_JOURNALMODE_TRUNCATE || eMode==PAGER_JOURNALMODE_PERSIST || eMode==PAGER_JOURNALMODE_OFF || eMode==PAGER_JOURNALMODE_WAL | > > > > > > > | 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 | ** ** * Temporary databases cannot have _WAL journalmode. ** ** The returned indicate the current (possibly updated) journal-mode. */ int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ u8 eOld = pPager->journalMode; /* Prior journalmode */ #ifdef SQLITE_DEBUG /* The print_pager_state() routine is intended to be used by the debugger ** only. We invoke it once here to suppress a compiler warning. */ print_pager_state(pPager); #endif /* The eMode parameter is always valid */ assert( eMode==PAGER_JOURNALMODE_DELETE || eMode==PAGER_JOURNALMODE_TRUNCATE || eMode==PAGER_JOURNALMODE_PERSIST || eMode==PAGER_JOURNALMODE_OFF || eMode==PAGER_JOURNALMODE_WAL |
︙ | ︙ | |||
5903 5904 5905 5906 5907 5908 5909 | assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ eMode = eOld; } } if( eMode!=eOld ){ | < < < < < < < | < > | > > > > | | > | | | | | | | | | | | | | | | | > > | | 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 | assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ eMode = eOld; } } if( eMode!=eOld ){ /* Change the journal mode. */ assert( pPager->eState!=PAGER_ERROR ); pPager->journalMode = (u8)eMode; /* When transistioning from TRUNCATE or PERSIST to any other journal ** mode except WAL, unless the pager is in locking_mode=exclusive mode, ** delete the journal file. */ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); assert( isOpen(pPager->fd) || pPager->exclusiveMode ); if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ /* In this case we would like to delete the journal file. If it is ** not possible, then that is not a problem. Deleting the journal file ** here is an optimization only. ** ** Before deleting the journal file, obtain a RESERVED lock on the ** database file. This ensures that the journal file is not deleted ** while it is in use by some other client. */ sqlite3OsClose(pPager->jfd); if( pPager->eLock>=RESERVED_LOCK ){ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); }else{ int rc = SQLITE_OK; int state = pPager->eState; assert( state==PAGER_OPEN || state==PAGER_READER ); if( state==PAGER_OPEN ){ rc = sqlite3PagerSharedLock(pPager); } if( pPager->eState==PAGER_READER ){ assert( rc==SQLITE_OK ); rc = pagerLockDb(pPager, RESERVED_LOCK); } if( rc==SQLITE_OK ){ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); } if( rc==SQLITE_OK && state==PAGER_READER ){ pagerUnlockDb(pPager, SHARED_LOCK); }else if( state==PAGER_OPEN ){ pager_unlock(pPager); } assert( state==pPager->eState ); } } } /* Return the new journal mode */ return (int)pPager->journalMode; } /* ** Return the current journal mode. */ int sqlite3PagerGetJournalMode(Pager *pPager){ return (int)pPager->journalMode; } /* ** Return TRUE if the pager is in a state where it is OK to change the ** journalmode. Journalmode changes can only happen when the database ** is unmodified. */ int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ assert( assert_pager_state(pPager) ); if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; return 1; } /* ** Get/set the size-limit used for persistent journal files. ** |
︙ | ︙ | |||
6040 6041 6042 6043 6044 6045 6046 | ** The caller must be holding a SHARED lock on the database file to call ** this function. ** ** If the pager passed as the first argument is open on a real database ** file (not a temp file or an in-memory database), and the WAL file ** is not already open, make an attempt to open it now. If successful, ** return SQLITE_OK. If an error occurs or the VFS used by the pager does | | | | > | > > | > > > > | | 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 | ** The caller must be holding a SHARED lock on the database file to call ** this function. ** ** If the pager passed as the first argument is open on a real database ** file (not a temp file or an in-memory database), and the WAL file ** is not already open, make an attempt to open it now. If successful, ** return SQLITE_OK. If an error occurs or the VFS used by the pager does ** not support the xShmXXX() methods, return an error code. *pbOpen is ** not modified in either case. ** ** If the pager is open on a temp-file (or in-memory database), or if ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK ** without doing anything. */ int sqlite3PagerOpenWal( Pager *pPager, /* Pager object */ int *pbOpen /* OUT: Set to true if call is a no-op */ ){ int rc = SQLITE_OK; /* Return code */ assert( assert_pager_state(pPager) ); assert( pPager->eState==PAGER_OPEN || pbOpen ); assert( pPager->eState==PAGER_READER || !pbOpen ); assert( pbOpen==0 || *pbOpen==0 ); assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); if( !pPager->tempFile && !pPager->pWal ){ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; /* Close any rollback journal previously open */ sqlite3OsClose(pPager->jfd); /* Open the connection to the log file. If this operation fails, ** (e.g. due to malloc() failure), unlock the database file and ** return an error code. */ rc = sqlite3WalOpen(pPager->pVfs, pPager->fd, pPager->zWal, &pPager->pWal); if( rc==SQLITE_OK ){ pPager->journalMode = PAGER_JOURNALMODE_WAL; pPager->eState = PAGER_OPEN; } }else{ *pbOpen = 1; } return rc; } /* ** This function is called to close the connection to the log file prior |
︙ | ︙ | |||
6094 6095 6096 6097 6098 6099 6100 | /* If the log file is not already open, but does exist in the file-system, ** it may need to be checkpointed before the connection can switch to ** rollback mode. Open it now so this can happen. */ if( !pPager->pWal ){ int logexists = 0; | | | | | 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 | /* If the log file is not already open, but does exist in the file-system, ** it may need to be checkpointed before the connection can switch to ** rollback mode. Open it now so this can happen. */ if( !pPager->pWal ){ int logexists = 0; rc = pagerLockDb(pPager, SHARED_LOCK); if( rc==SQLITE_OK ){ rc = sqlite3OsAccess( pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists ); } if( rc==SQLITE_OK && logexists ){ rc = sqlite3WalOpen(pPager->pVfs, pPager->fd, pPager->zWal, &pPager->pWal); } } /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on ** the database file, the log and log-summary files will be deleted. */ if( rc==SQLITE_OK && pPager->pWal ){ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc==SQLITE_OK ){ rc = sqlite3WalClose(pPager->pWal, (pPager->noSync ? 0 : pPager->sync_flags), pPager->pageSize, (u8*)pPager->pTmpSpace ); pPager->pWal = 0; }else{ /* If we cannot get an EXCLUSIVE lock, downgrade the PENDING lock ** that we did get back to SHARED. */ pagerUnlockDb(pPager, SQLITE_LOCK_SHARED); } } return rc; } #ifdef SQLITE_HAS_CODEC /* |
︙ | ︙ |
Changes to src/pager.h.
︙ | ︙ | |||
95 96 97 98 99 100 101 | void(*)(DbPage*) ); int sqlite3PagerClose(Pager *pPager); int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); /* Functions used to configure a Pager object. */ void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); | | | 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | void(*)(DbPage*) ); int sqlite3PagerClose(Pager *pPager); int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); /* Functions used to configure a Pager object. */ void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); int sqlite3PagerSetPagesize(Pager*, u32*, int); int sqlite3PagerMaxPageCount(Pager*, int); void sqlite3PagerSetCachesize(Pager*, int); void sqlite3PagerSetSafetyLevel(Pager*,int,int); int sqlite3PagerLockingMode(Pager *, int); int sqlite3PagerSetJournalMode(Pager *, int); int sqlite3PagerGetJournalMode(Pager*); int sqlite3PagerOkToChangeJournalMode(Pager*); |
︙ | ︙ | |||
122 123 124 125 126 127 128 | void sqlite3PagerDontWrite(DbPage*); int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); int sqlite3PagerPageRefcount(DbPage*); void *sqlite3PagerGetData(DbPage *); void *sqlite3PagerGetExtra(DbPage *); /* Functions used to manage pager transactions and savepoints. */ | | > | 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | void sqlite3PagerDontWrite(DbPage*); int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); int sqlite3PagerPageRefcount(DbPage*); void *sqlite3PagerGetData(DbPage *); void *sqlite3PagerGetExtra(DbPage *); /* Functions used to manage pager transactions and savepoints. */ void sqlite3PagerPagecount(Pager*, int*); int sqlite3PagerBegin(Pager*, int exFlag, int); int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int); int sqlite3PagerExclusiveLock(Pager*); int sqlite3PagerSync(Pager *pPager); int sqlite3PagerCommitPhaseTwo(Pager*); int sqlite3PagerRollback(Pager*); int sqlite3PagerOpenSavepoint(Pager *pPager, int n); int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); int sqlite3PagerSharedLock(Pager *pPager); |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
776 777 778 779 780 781 782 | } expr(A) ::= VARIABLE(X). { spanExpr(&A, pParse, TK_VARIABLE, &X); sqlite3ExprAssignVarNumber(pParse, A.pExpr); spanSet(&A, &X, &X); } expr(A) ::= expr(E) COLLATE ids(C). { | | | 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | } expr(A) ::= VARIABLE(X). { spanExpr(&A, pParse, TK_VARIABLE, &X); sqlite3ExprAssignVarNumber(pParse, A.pExpr); spanSet(&A, &X, &X); } expr(A) ::= expr(E) COLLATE ids(C). { A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C); A.zStart = E.zStart; A.zEnd = &C.z[C.n]; } %ifndef SQLITE_OMIT_CAST expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); spanSet(&A,&X,&Y); |
︙ | ︙ | |||
1104 1105 1106 1107 1108 1109 1110 | idxlist_opt(A) ::= . {A = 0;} idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { Expr *p = 0; if( C.n>0 ){ p = sqlite3Expr(pParse->db, TK_COLUMN, 0); | | | | 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 | idxlist_opt(A) ::= . {A = 0;} idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { Expr *p = 0; if( C.n>0 ){ p = sqlite3Expr(pParse->db, TK_COLUMN, 0); sqlite3ExprSetCollByToken(pParse, p, &C); } A = sqlite3ExprListAppend(pParse,X, p); sqlite3ExprListSetName(pParse,A,&Y,1); sqlite3ExprListCheckLength(pParse, A, "index"); if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; } idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { Expr *p = 0; if( C.n>0 ){ p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); sqlite3ExprSetCollByToken(pParse, p, &C); } A = sqlite3ExprListAppend(pParse,0, p); sqlite3ExprListSetName(pParse, A, &Y, 1); sqlite3ExprListCheckLength(pParse, A, "index"); if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; } |
︙ | ︙ |
Changes to src/pcache1.c.
︙ | ︙ | |||
148 149 150 151 152 153 154 155 156 157 158 | ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no ** such buffer exists or there is no space left in it, this function falls ** back to sqlite3Malloc(). */ static void *pcache1Alloc(int nByte){ void *p; assert( sqlite3_mutex_held(pcache1.mutex) ); if( nByte<=pcache1.szSlot && pcache1.pFree ){ assert( pcache1.isInit ); p = (PgHdr1 *)pcache1.pFree; pcache1.pFree = pcache1.pFree->pNext; | > < | 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no ** such buffer exists or there is no space left in it, this function falls ** back to sqlite3Malloc(). */ static void *pcache1Alloc(int nByte){ void *p; assert( sqlite3_mutex_held(pcache1.mutex) ); sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); if( nByte<=pcache1.szSlot && pcache1.pFree ){ assert( pcache1.isInit ); p = (PgHdr1 *)pcache1.pFree; pcache1.pFree = pcache1.pFree->pNext; sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1); }else{ /* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the ** global pcache mutex and unlock the pager-cache object pCache. This is ** so that if the attempt to allocate a new buffer causes the the ** configured soft-heap-limit to be breached, it will be possible to |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
764 765 766 767 768 769 770 | || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) || (SQLITE_TEMP_STORE==2 && db->temp_store==1) ){ invalidateTempStorage(pParse); } sqlite3_free(sqlite3_temp_directory); if( zRight[0] ){ | | | 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) || (SQLITE_TEMP_STORE==2 && db->temp_store==1) ){ invalidateTempStorage(pParse); } sqlite3_free(sqlite3_temp_directory); if( zRight[0] ){ sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); }else{ sqlite3_temp_directory = 0; } #endif /* SQLITE_OMIT_WSD */ } }else |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
669 670 671 672 673 674 675 | sqlite3Error(db, rc, 0); } /* Delete any TriggerPrg structures allocated while parsing this statement. */ while( pParse->pTriggerPrg ){ TriggerPrg *pT = pParse->pTriggerPrg; pParse->pTriggerPrg = pT->pNext; | < | 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | sqlite3Error(db, rc, 0); } /* Delete any TriggerPrg structures allocated while parsing this statement. */ while( pParse->pTriggerPrg ){ TriggerPrg *pT = pParse->pTriggerPrg; pParse->pTriggerPrg = pT->pNext; sqlite3DbFree(db, pT); } end_prepare: sqlite3StackFree(db, pParse); rc = sqlite3ApiExit(db, rc); |
︙ | ︙ |
Changes to src/printf.c.
︙ | ︙ | |||
768 769 770 771 772 773 774 | if( szNew > p->mxAlloc ){ sqlite3StrAccumReset(p); p->tooBig = 1; return; }else{ p->nAlloc = (int)szNew; } | > | > > > | 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | if( szNew > p->mxAlloc ){ sqlite3StrAccumReset(p); p->tooBig = 1; return; }else{ p->nAlloc = (int)szNew; } if( p->useMalloc==1 ){ zNew = sqlite3DbMallocRaw(p->db, p->nAlloc ); }else{ zNew = sqlite3_malloc(p->nAlloc); } if( zNew ){ memcpy(zNew, p->zText, p->nChar); sqlite3StrAccumReset(p); p->zText = zNew; }else{ p->mallocFailed = 1; sqlite3StrAccumReset(p); |
︙ | ︙ | |||
793 794 795 796 797 798 799 | ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ p->zText[p->nChar] = 0; if( p->useMalloc && p->zText==p->zBase ){ | > | > > > > | > > > | 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 | ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ p->zText[p->nChar] = 0; if( p->useMalloc && p->zText==p->zBase ){ if( p->useMalloc==1 ){ p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); }else{ p->zText = sqlite3_malloc(p->nChar+1); } if( p->zText ){ memcpy(p->zText, p->zBase, p->nChar+1); }else{ p->mallocFailed = 1; } } } return p->zText; } /* ** Reset an StrAccum string. Reclaim all malloced memory. */ void sqlite3StrAccumReset(StrAccum *p){ if( p->zText!=p->zBase ){ if( p->useMalloc==1 ){ sqlite3DbFree(p->db, p->zText); }else{ sqlite3_free(p->zText); } } p->zText = 0; } /* ** Initialize a string accumulator */ |
︙ | ︙ | |||
891 892 893 894 895 896 897 898 899 900 901 902 903 904 | char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); sqlite3VXPrintf(&acc, 0, zFormat, ap); z = sqlite3StrAccumFinish(&acc); return z; } /* ** Print into memory obtained from sqlite3_malloc()(). Omit the internal | > | 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 | char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); acc.useMalloc = 2; sqlite3VXPrintf(&acc, 0, zFormat, ap); z = sqlite3StrAccumFinish(&acc); return z; } /* ** Print into memory obtained from sqlite3_malloc()(). Omit the internal |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
1294 1295 1296 1297 1298 1299 1300 | while( pSelect->pPrior ) pSelect = pSelect->pPrior; db->flags = savedFlags; pTab = sqlite3DbMallocZero(db, sizeof(Table) ); if( pTab==0 ){ return 0; } /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside | | < | | 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 | while( pSelect->pPrior ) pSelect = pSelect->pPrior; db->flags = savedFlags; pTab = sqlite3DbMallocZero(db, sizeof(Table) ); if( pTab==0 ){ return 0; } /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside ** is disabled */ assert( db->lookaside.bEnabled==0 ); pTab->nRef = 1; pTab->zName = 0; selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); pTab->iPKey = -1; if( db->mallocFailed ){ sqlite3DeleteTable(db, pTab); return 0; } return pTab; } /* ** Get a VDBE for the given parser context. Create a new one if necessary. |
︙ | ︙ | |||
1795 1796 1797 1798 1799 1800 1801 | ** The data to be output is contained in pIn->iMem. There are ** pIn->nMem columns to be output. pDest is where the output should ** be sent. ** ** regReturn is the number of the register holding the subroutine ** return address. ** | | | 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 | ** The data to be output is contained in pIn->iMem. There are ** pIn->nMem columns to be output. pDest is where the output should ** be sent. ** ** regReturn is the number of the register holding the subroutine ** return address. ** ** If regPrev>0 then it is the first register in a vector that ** records the previous output. mem[regPrev] is a flag that is false ** if there has been no previous output. If regPrev>0 then code is ** generated to suppress duplicates. pKeyInfo is used for comparing ** keys. ** ** If the LIMIT found in p->iLimit is reached, jump immediately to ** iBreak. |
︙ | ︙ | |||
2492 2493 2494 2495 2496 2497 2498 | ** Flattening is only attempted if all of the following are true: ** ** (1) The subquery and the outer query do not both use aggregates. ** ** (2) The subquery is not an aggregate or the outer query is not a join. ** ** (3) The subquery is not the right operand of a left outer join | | | | > | | | | 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 | ** Flattening is only attempted if all of the following are true: ** ** (1) The subquery and the outer query do not both use aggregates. ** ** (2) The subquery is not an aggregate or the outer query is not a join. ** ** (3) The subquery is not the right operand of a left outer join ** (Originally ticket #306. Strengthened by ticket #3300) ** ** (4) The subquery is not DISTINCT. ** ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT ** sub-queries that were excluded from this optimization. Restriction ** (4) has since been expanded to exclude all DISTINCT subqueries. ** ** (6) The subquery does not use aggregates or the outer query is not ** DISTINCT. ** ** (7) The subquery has a FROM clause. ** ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** ** (10) The subquery does not use aggregates or the outer query does not ** use LIMIT. ** ** (11) The subquery and the outer query do not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. ** ** (13) The subquery and outer query do not both use LIMIT. ** ** (14) The subquery does not use OFFSET. ** ** (15) The outer query is not part of a compound select or the ** subquery does not have a LIMIT clause. ** (See ticket #2339 and ticket [02a8e81d44]). ** ** (16) The outer query is not an aggregate or the subquery does ** not contain ORDER BY. (Ticket #2942) This used to not matter |
︙ | ︙ | |||
2610 2611 2612 2613 2614 2615 2616 | ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pOffset ) return 0; /* Restriction (14) */ if( p->pRightmost && pSub->pLimit ){ return 0; /* Restriction (15) */ } if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ | | | | | 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 | ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pOffset ) return 0; /* Restriction (14) */ if( p->pRightmost && pSub->pLimit ){ return 0; /* Restriction (15) */ } if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ return 0; /* Restrictions (8)(9) */ } if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ return 0; /* Restriction (6) */ } if( p->pOrderBy && pSub->pOrderBy ){ return 0; /* Restriction (11) */ } |
︙ | ︙ | |||
3092 3093 3094 3095 3096 3097 3098 | Select *pSel = pFrom->pSelect; /* A sub-query in the FROM clause of a SELECT */ assert( pSel!=0 ); assert( pFrom->pTab==0 ); sqlite3WalkSelect(pWalker, pSel); pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ) return WRC_Abort; | < | 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 | Select *pSel = pFrom->pSelect; /* A sub-query in the FROM clause of a SELECT */ assert( pSel!=0 ); assert( pFrom->pTab==0 ); sqlite3WalkSelect(pWalker, pSel); pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ) return WRC_Abort; pTab->nRef = 1; pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); while( pSel->pPrior ){ pSel = pSel->pPrior; } selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); pTab->iPKey = -1; pTab->tabFlags |= TF_Ephemeral; #endif |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
394 395 396 397 398 399 400 401 402 403 404 405 406 407 | ** An pointer to an instance of this structure is passed from ** the main program to the callback. This is used to communicate ** state and mode information. */ struct callback_data { sqlite3 *db; /* The database */ int echoOn; /* True to echo input commands */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ int mode; /* An output mode setting */ int writableSchema; /* True if PRAGMA writable_schema=ON */ int showHeader; /* True to show column names in List or Column mode */ char *zDestTable; /* Name of destination table when MODE_Insert */ char separator[20]; /* Separator character for MODE_List */ | > | 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | ** An pointer to an instance of this structure is passed from ** the main program to the callback. This is used to communicate ** state and mode information. */ struct callback_data { sqlite3 *db; /* The database */ int echoOn; /* True to echo input commands */ int statsOn; /* True to display memory stats before each finalize */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ int mode; /* An output mode setting */ int writableSchema; /* True if PRAGMA writable_schema=ON */ int showHeader; /* True to show column names in List or Column mode */ char *zDestTable; /* Name of destination table when MODE_Insert */ char separator[20]; /* Separator character for MODE_List */ |
︙ | ︙ | |||
956 957 958 959 960 961 962 963 964 965 966 967 968 969 | int nErrMsg = 1+strlen30(sqlite3_errmsg(db)); char *zErrMsg = sqlite3_malloc(nErrMsg); if( zErrMsg ){ memcpy(zErrMsg, sqlite3_errmsg(db), nErrMsg); } return zErrMsg; } /* ** Execute a statement or set of statements. Print ** any result rows/columns depending on the current mode ** set via the supplied callback. ** ** This is very similar to SQLite's built-in sqlite3_exec() | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | int nErrMsg = 1+strlen30(sqlite3_errmsg(db)); char *zErrMsg = sqlite3_malloc(nErrMsg); if( zErrMsg ){ memcpy(zErrMsg, sqlite3_errmsg(db), nErrMsg); } return zErrMsg; } /* ** Display memory stats. */ static int display_stats( sqlite3 *db, /* Database to query */ struct callback_data *pArg, /* Pointer to struct callback_data */ int bReset /* True to reset the stats */ ){ int iCur; int iHiwtr; if( pArg && pArg->out ){ iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_MEMORY_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Memory Used: %d (max %d) bytes\n", iCur, iHiwtr); iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_MALLOC_COUNT, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Number of Allocations: %d (max %d)\n", iCur, iHiwtr); /* ** Not currently used by the CLI. ** iHiwtr = iCur = -1; ** sqlite3_status(SQLITE_STATUS_PAGECACHE_USED, &iCur, &iHiwtr, bReset); ** fprintf(pArg->out, "Number of Pcache Pages Used: %d (max %d) pages\n", iCur, iHiwtr); */ iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_PAGECACHE_OVERFLOW, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Number of Pcache Overflow Bytes: %d (max %d) bytes\n", iCur, iHiwtr); /* ** Not currently used by the CLI. ** iHiwtr = iCur = -1; ** sqlite3_status(SQLITE_STATUS_SCRATCH_USED, &iCur, &iHiwtr, bReset); ** fprintf(pArg->out, "Number of Scratch Allocations Used: %d (max %d)\n", iCur, iHiwtr); */ iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_SCRATCH_OVERFLOW, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Number of Scratch Overflow Bytes: %d (max %d) bytes\n", iCur, iHiwtr); iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_MALLOC_SIZE, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Largest Allocation: %d bytes\n", iHiwtr); iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_PAGECACHE_SIZE, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Largest Pcache Allocation: %d bytes\n", iHiwtr); iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_SCRATCH_SIZE, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Largest Scratch Allocation: %d bytes\n", iHiwtr); #ifdef YYTRACKMAXSTACKDEPTH iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_PARSER_STACK, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Deepest Parser Stack: %d (max %d)\n", iCur, iHiwtr); #endif } if( pArg && pArg->out && db ){ iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Lookaside Slots Used: %d (max %d)\n", iCur, iHiwtr); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Pager Heap Usage: %d bytes\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Schema Heap Usage: %d bytes\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Statement Heap/Lookaside Usage: %d bytes\n", iCur); } if( pArg && pArg->out && db && pArg->pStmt ){ iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP, bReset); fprintf(pArg->out, "Fullscan Steps: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset); fprintf(pArg->out, "Sort Operations: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX, bReset); fprintf(pArg->out, "Autoindex Inserts: %d\n", iCur); } return 0; } /* ** Execute a statement or set of statements. Print ** any result rows/columns depending on the current mode ** set via the supplied callback. ** ** This is very similar to SQLite's built-in sqlite3_exec() |
︙ | ︙ | |||
995 996 997 998 999 1000 1001 1002 1003 | }else{ if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; while( isspace(zSql[0]) ) zSql++; continue; } /* echo the sql statement if echo on */ | > > > > > > | | | 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 | }else{ if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; while( isspace(zSql[0]) ) zSql++; continue; } /* save off the prepared statment handle and reset row count */ if( pArg ){ pArg->pStmt = pStmt; pArg->cnt = 0; } /* echo the sql statement if echo on */ if( pArg && pArg->echoOn ){ const char *zStmtSql = sqlite3_sql(pStmt); fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql); } /* perform the first step. this will tell us if we ** have a result set or not and how wide it is. */ rc = sqlite3_step(pStmt); /* if we have a result set... */ |
︙ | ︙ | |||
1025 1026 1027 1028 1029 1030 1031 | int *aiTypes = (int *)&azVals[nCol]; /* Result types */ int i; assert(sizeof(int) <= sizeof(char *)); /* save off ptrs to column names */ for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); } | < < < < < | 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 | int *aiTypes = (int *)&azVals[nCol]; /* Result types */ int i; assert(sizeof(int) <= sizeof(char *)); /* save off ptrs to column names */ for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); } do{ /* extract the data and data types */ for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); aiTypes[i] = sqlite3_column_type(pStmt, i); if( !azVals[i] && (aiTypes[i]!=SQLITE_NULL) ){ rc = SQLITE_NOMEM; |
︙ | ︙ | |||
1052 1053 1054 1055 1056 1057 1058 | rc = SQLITE_ABORT; }else{ rc = sqlite3_step(pStmt); } } } while( SQLITE_ROW == rc ); sqlite3_free(pData); | < < < > > > > > > > > > > | 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 | rc = SQLITE_ABORT; }else{ rc = sqlite3_step(pStmt); } } } while( SQLITE_ROW == rc ); sqlite3_free(pData); } }else{ do{ rc = sqlite3_step(pStmt); } while( rc == SQLITE_ROW ); } } /* print usage stats if stats on */ if( pArg && pArg->statsOn ){ display_stats(db, pArg, 0); } /* Finalize the statement just executed. If this fails, save a ** copy of the error message. Otherwise, set zSql to point to the ** next statement to execute. */ rc = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ){ zSql = zLeftover; while( isspace(zSql[0]) ) zSql++; }else if( pzErrMsg ){ *pzErrMsg = save_err_msg(db); } /* clear saved stmt handle */ if( pArg ){ pArg->pStmt = NULL; } } } /* end while */ return rc; } |
︙ | ︙ | |||
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 | ".read FILENAME Execute SQL in FILENAME\n" ".restore ?DB? FILE Restore content of DB (default \"main\") from FILE\n" ".schema ?TABLE? Show the CREATE statements\n" " If TABLE specified, only show tables matching\n" " LIKE pattern TABLE.\n" ".separator STRING Change separator used by output mode and .import\n" ".show Show the current values for various settings\n" ".tables ?TABLE? List names of tables\n" " If TABLE specified, only list tables matching\n" " LIKE pattern TABLE.\n" ".timeout MS Try opening locked tables for MS milliseconds\n" ".width NUM1 NUM2 ... Set column widths for \"column\" mode\n" ; | > | 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 | ".read FILENAME Execute SQL in FILENAME\n" ".restore ?DB? FILE Restore content of DB (default \"main\") from FILE\n" ".schema ?TABLE? Show the CREATE statements\n" " If TABLE specified, only show tables matching\n" " LIKE pattern TABLE.\n" ".separator STRING Change separator used by output mode and .import\n" ".show Show the current values for various settings\n" ".stats ON|OFF Turn stats on or off\n" ".tables ?TABLE? List names of tables\n" " If TABLE specified, only list tables matching\n" " LIKE pattern TABLE.\n" ".timeout MS Try opening locked tables for MS milliseconds\n" ".width NUM1 NUM2 ... Set column widths for \"column\" mode\n" ; |
︙ | ︙ | |||
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 | output_c_string(p->out, p->nullvalue); fprintf(p->out, "\n"); fprintf(p->out,"%9.9s: %s\n","output", strlen30(p->outfile) ? p->outfile : "stdout"); fprintf(p->out,"%9.9s: ", "separator"); output_c_string(p->out, p->separator); fprintf(p->out, "\n"); fprintf(p->out,"%9.9s: ","width"); for (i=0;i<(int)ArraySize(p->colWidth) && p->colWidth[i] != 0;i++) { fprintf(p->out,"%d ",p->colWidth[i]); } fprintf(p->out,"\n"); }else if( c=='t' && n>1 && strncmp(azArg[0], "tables", n)==0 && nArg<3 ){ char **azResult; int nRow; char *zErrMsg; open_db(p); if( nArg==1 ){ | > > > > > | 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 | output_c_string(p->out, p->nullvalue); fprintf(p->out, "\n"); fprintf(p->out,"%9.9s: %s\n","output", strlen30(p->outfile) ? p->outfile : "stdout"); fprintf(p->out,"%9.9s: ", "separator"); output_c_string(p->out, p->separator); fprintf(p->out, "\n"); fprintf(p->out,"%9.9s: %s\n","stats", p->statsOn ? "on" : "off"); fprintf(p->out,"%9.9s: ","width"); for (i=0;i<(int)ArraySize(p->colWidth) && p->colWidth[i] != 0;i++) { fprintf(p->out,"%d ",p->colWidth[i]); } fprintf(p->out,"\n"); }else if( c=='s' && strncmp(azArg[0], "stats", n)==0 && nArg>1 && nArg<3 ){ p->statsOn = booleanValue(azArg[1]); }else if( c=='t' && n>1 && strncmp(azArg[0], "tables", n)==0 && nArg<3 ){ char **azResult; int nRow; char *zErrMsg; open_db(p); if( nArg==1 ){ |
︙ | ︙ | |||
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 | " -batch force batch I/O\n" " -column set output mode to 'column'\n" " -csv set output mode to 'csv'\n" " -html set output mode to HTML\n" " -line set output mode to 'line'\n" " -list set output mode to 'list'\n" " -separator 'x' set output field separator (|)\n" " -nullvalue 'text' set text string for NULL values\n" " -version show SQLite version\n" ; static void usage(int showDetail){ fprintf(stderr, "Usage: %s [OPTIONS] FILENAME [SQL]\n" "FILENAME is the name of an SQLite database. A new database is created\n" | > | 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 | " -batch force batch I/O\n" " -column set output mode to 'column'\n" " -csv set output mode to 'csv'\n" " -html set output mode to HTML\n" " -line set output mode to 'line'\n" " -list set output mode to 'list'\n" " -separator 'x' set output field separator (|)\n" " -stats print memory stats before each finalize\n" " -nullvalue 'text' set text string for NULL values\n" " -version show SQLite version\n" ; static void usage(int showDetail){ fprintf(stderr, "Usage: %s [OPTIONS] FILENAME [SQL]\n" "FILENAME is the name of an SQLite database. A new database is created\n" |
︙ | ︙ | |||
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 | "%.*s",(int)sizeof(data.nullvalue)-1,argv[i]); }else if( strcmp(z,"-header")==0 ){ data.showHeader = 1; }else if( strcmp(z,"-noheader")==0 ){ data.showHeader = 0; }else if( strcmp(z,"-echo")==0 ){ data.echoOn = 1; }else if( strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( strcmp(z,"-version")==0 ){ printf("%s\n", sqlite3_libversion()); return 0; }else if( strcmp(z,"-interactive")==0 ){ stdin_is_interactive = 1; | > > | 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 | "%.*s",(int)sizeof(data.nullvalue)-1,argv[i]); }else if( strcmp(z,"-header")==0 ){ data.showHeader = 1; }else if( strcmp(z,"-noheader")==0 ){ data.showHeader = 0; }else if( strcmp(z,"-echo")==0 ){ data.echoOn = 1; }else if( strcmp(z,"-stats")==0 ){ data.statsOn = 1; }else if( strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( strcmp(z,"-version")==0 ){ printf("%s\n", sqlite3_libversion()); return 0; }else if( strcmp(z,"-interactive")==0 ){ stdin_is_interactive = 1; |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
88 89 90 91 92 93 94 | ** The SQLITE_VERSION_NUMBER for any given release of SQLite will also ** be larger than the release from which it is derived. Either Y will ** be held constant and Z will be incremented or else Y will be incremented ** and Z will be reset to zero. ** ** Since version 3.6.18, SQLite source code has been stored in the ** <a href="http://www.fossil-scm.org/">Fossil configuration management | | | 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | ** The SQLITE_VERSION_NUMBER for any given release of SQLite will also ** be larger than the release from which it is derived. Either Y will ** be held constant and Z will be incremented or else Y will be incremented ** and Z will be reset to zero. ** ** Since version 3.6.18, SQLite source code has been stored in the ** <a href="http://www.fossil-scm.org/">Fossil configuration management ** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to ** a string which identifies a particular check-in of SQLite ** within its configuration management system. ^The SQLITE_SOURCE_ID ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], |
︙ | ︙ | |||
145 146 147 148 149 150 151 | ** CAPI3REF: Run-Time Library Compilation Options Diagnostics ** ** ^The sqlite3_compileoption_used() function returns 0 or 1 ** indicating whether the specified option was defined at ** compile time. ^The SQLITE_ prefix may be omitted from the ** option name passed to sqlite3_compileoption_used(). ** | | | | 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | ** CAPI3REF: Run-Time Library Compilation Options Diagnostics ** ** ^The sqlite3_compileoption_used() function returns 0 or 1 ** indicating whether the specified option was defined at ** compile time. ^The SQLITE_ prefix may be omitted from the ** option name passed to sqlite3_compileoption_used(). ** ** ^The sqlite3_compileoption_get() function allows iterating ** over the list of options that were defined at compile time by ** returning the N-th compile time option string. ^If N is out of range, ** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_ ** prefix is omitted from any strings returned by ** sqlite3_compileoption_get(). ** ** ^Support for the diagnostic functions sqlite3_compileoption_used() ** and sqlite3_compileoption_get() may be omitted by specifying the ** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time. ** ** See also: SQL functions [sqlite_compileoption_used()] and ** [sqlite_compileoption_get()] and the [compile_options pragma]. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS int sqlite3_compileoption_used(const char *zOptName); |
︙ | ︙ | |||
259 260 261 262 263 264 265 | #endif /* ** CAPI3REF: Closing A Database Connection ** ** ^The sqlite3_close() routine is the destructor for the [sqlite3] object. ** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is | | | 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | #endif /* ** CAPI3REF: Closing A Database Connection ** ** ^The sqlite3_close() routine is the destructor for the [sqlite3] object. ** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is ** successfully destroyed and all associated resources are deallocated. ** ** Applications must [sqlite3_finalize | finalize] all [prepared statements] ** and [sqlite3_blob_close | close] all [BLOB handles] associated with ** the [sqlite3] object prior to attempting to close the object. ^If ** sqlite3_close() is called on a [database connection] that still has ** outstanding [prepared statements] or [BLOB handles], then it returns ** SQLITE_BUSY. |
︙ | ︙ | |||
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 | ** ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS ** layer a hint of how large the database file will grow to be during the ** current transaction. This hint is not guaranteed to be accurate but it ** is often close. The underlying VFS might choose to preallocate database ** file space based on this hint in order to help writes to the database ** file run faster. */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_GET_LOCKPROXYFILE 2 #define SQLITE_SET_LOCKPROXYFILE 3 #define SQLITE_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 /* ** CAPI3REF: Mutex Handle ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks ** at the internal representation of an [sqlite3_mutex]. It only | > > > > > > > > > | 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 | ** ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS ** layer a hint of how large the database file will grow to be during the ** current transaction. This hint is not guaranteed to be accurate but it ** is often close. The underlying VFS might choose to preallocate database ** file space based on this hint in order to help writes to the database ** file run faster. ** ** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS ** extends and truncates the database file in chunks of a size specified ** by the user. The fourth argument to [sqlite3_file_control()] should ** point to an integer (type int) containing the new chunk-size to use ** for the nominated database. Allocating database file space in large ** chunks (say 1MB at a time), may reduce file-system fragmentation and ** improve performance on some systems. */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_GET_LOCKPROXYFILE 2 #define SQLITE_SET_LOCKPROXYFILE 3 #define SQLITE_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 #define SQLITE_FCNTL_CHUNK_SIZE 6 /* ** CAPI3REF: Mutex Handle ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks ** at the internal representation of an [sqlite3_mutex]. It only |
︙ | ︙ | |||
2167 2168 2169 2170 2171 2172 2173 | ** ^(Additional sqlite3_trace() callbacks might occur ** as each triggered subprogram is entered. The callbacks for triggers ** contain a UTF-8 SQL comment that identifies the trigger.)^ ** ** ^The callback function registered by sqlite3_profile() is invoked ** as each SQL statement finishes. ^The profile callback contains ** the original statement text and an estimate of wall-clock time | | > > > > > > | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 | ** ^(Additional sqlite3_trace() callbacks might occur ** as each triggered subprogram is entered. The callbacks for triggers ** contain a UTF-8 SQL comment that identifies the trigger.)^ ** ** ^The callback function registered by sqlite3_profile() is invoked ** as each SQL statement finishes. ^The profile callback contains ** the original statement text and an estimate of wall-clock time ** of how long that statement took to run. ^The profile callback ** time is in units of nanoseconds, however the current implementation ** is only capable of millisecond resolution so the six least significant ** digits in the time are meaningless. Future versions of SQLite ** might provide greater resolution on the profiler callback. The ** sqlite3_profile() function is considered experimental and is ** subject to change in future versions of SQLite. */ void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*, void(*xProfile)(void*,const char*,sqlite3_uint64), void*); /* ** CAPI3REF: Query Progress Callbacks |
︙ | ︙ | |||
2648 2649 2650 2651 2652 2653 2654 | ** <li> ?NNN ** <li> :VVV ** <li> @VVV ** <li> $VVV ** </ul> ** ** In the templates above, NNN represents an integer literal, | | | 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 | ** <li> ?NNN ** <li> :VVV ** <li> @VVV ** <li> $VVV ** </ul> ** ** In the templates above, NNN represents an integer literal, ** and VVV represents an alphanumeric identifier.)^ ^The values of these ** parameters (also called "host parameter names" or "SQL parameters") ** can be set using the sqlite3_bind_*() routines defined here. ** ** ^The first argument to the sqlite3_bind_*() routines is always ** a pointer to the [sqlite3_stmt] object returned from ** [sqlite3_prepare_v2()] or its variants. ** |
︙ | ︙ | |||
3427 3428 3429 3430 3431 3432 3433 | const void *sqlite3_value_text16be(sqlite3_value*); int sqlite3_value_type(sqlite3_value*); int sqlite3_value_numeric_type(sqlite3_value*); /* ** CAPI3REF: Obtain Aggregate Function Context ** | | | 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 | const void *sqlite3_value_text16be(sqlite3_value*); int sqlite3_value_type(sqlite3_value*); int sqlite3_value_numeric_type(sqlite3_value*); /* ** CAPI3REF: Obtain Aggregate Function Context ** ** Implementations of aggregate SQL functions use this ** routine to allocate memory for storing their state. ** ** ^The first time the sqlite3_aggregate_context(C,N) routine is called ** for a particular aggregate function, SQLite ** allocates N of memory, zeroes out that memory, and returns a pointer ** to the new memory. ^On second and subsequent calls to ** sqlite3_aggregate_context() for the same aggregate function instance, |
︙ | ︙ | |||
3699 3700 3701 3702 3703 3704 3705 | ** expects pointers to be UTF-16 strings in the native byte order, or the ** argument can be [SQLITE_UTF16_ALIGNED] if the ** the routine expects pointers to 16-bit word aligned strings ** of UTF-16 in the native byte order. ** ** A pointer to the user supplied routine must be passed as the fifth ** argument. ^If it is NULL, this is the same as deleting the collation | | | 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 | ** expects pointers to be UTF-16 strings in the native byte order, or the ** argument can be [SQLITE_UTF16_ALIGNED] if the ** the routine expects pointers to 16-bit word aligned strings ** of UTF-16 in the native byte order. ** ** A pointer to the user supplied routine must be passed as the fifth ** argument. ^If it is NULL, this is the same as deleting the collation ** sequence (so that SQLite cannot call it any more). ** ^Each time the application supplied function is invoked, it is passed ** as its first parameter a copy of the void* passed as the fourth argument ** to sqlite3_create_collation() or sqlite3_create_collation16(). ** ** ^The remaining arguments to the application-supplied routine are two strings, ** each represented by a (length, data) pair and encoded in the encoding ** that was passed as the third argument when the collation sequence was |
︙ | ︙ | |||
4316 4317 4318 4319 4320 4321 4322 | int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** | | > | | > > | 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 | int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part ** of the [virtual table] interface to ** pass information into and receive the reply from the [xBestIndex] ** method of a [virtual table module]. The fields under **Inputs** are the ** inputs to xBestIndex and are read-only. xBestIndex inserts its ** results into the **Outputs** fields. ** ** ^(The aConstraint[] array records WHERE clause constraints of the form: ** ** <blockquote>column OP expr</blockquote> ** ** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is ** stored in aConstraint[].op using one of the ** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^ ** ^(The index of the column is stored in ** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the ** expr on the right-hand side can be evaluated (and thus the constraint ** is usable) and false if it cannot.)^ ** ** ^The optimizer automatically inverts terms of the form "expr OP column" ** and makes other simplifications to the WHERE clause in an attempt to ** get as many WHERE clause terms into the form shown above as possible. |
︙ | ︙ | |||
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 | } *aConstraintUsage; int idxNum; /* Number used to identify the index */ char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ double estimatedCost; /* Estimated cost of using this index */ }; #define SQLITE_INDEX_CONSTRAINT_EQ 2 #define SQLITE_INDEX_CONSTRAINT_GT 4 #define SQLITE_INDEX_CONSTRAINT_LE 8 #define SQLITE_INDEX_CONSTRAINT_LT 16 #define SQLITE_INDEX_CONSTRAINT_GE 32 #define SQLITE_INDEX_CONSTRAINT_MATCH 64 | > > > > > > > > > | 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 | } *aConstraintUsage; int idxNum; /* Number used to identify the index */ char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ double estimatedCost; /* Estimated cost of using this index */ }; /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros defined the allowed values for the ** [sqlite3_index_info].aConstraint[].op field. Each value represents ** an operator that is part of a constraint term in the wHERE clause of ** a query that uses a [virtual table]. */ #define SQLITE_INDEX_CONSTRAINT_EQ 2 #define SQLITE_INDEX_CONSTRAINT_GT 4 #define SQLITE_INDEX_CONSTRAINT_LE 8 #define SQLITE_INDEX_CONSTRAINT_LT 16 #define SQLITE_INDEX_CONSTRAINT_GE 32 #define SQLITE_INDEX_CONSTRAINT_MATCH 64 |
︙ | ︙ | |||
4905 4906 4907 4908 4909 4910 4911 | ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case, the results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** ** The xMutexInit() method must be threadsafe. ^It must be harmless to | | | 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 | ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case, the results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** ** The xMutexInit() method must be threadsafe. ^It must be harmless to ** invoke xMutexInit() multiple times within the same process and without ** intervening calls to xMutexEnd(). Second and subsequent calls to ** xMutexInit() must be no-ops. ** ** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] ** and its associates). ^Similarly, xMutexAlloc() must not use SQLite memory ** allocation for a static mutex. ^However xMutexAlloc() may use SQLite ** memory allocation for a fast or recursive mutex. |
︙ | ︙ | |||
5075 5076 5077 5078 5079 5080 5081 | #define SQLITE_TESTCTRL_PGHDRSZ 17 #define SQLITE_TESTCTRL_LAST 17 /* ** CAPI3REF: SQLite Runtime Status ** ** ^This interface is used to retrieve runtime status information | | | 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 | #define SQLITE_TESTCTRL_PGHDRSZ 17 #define SQLITE_TESTCTRL_LAST 17 /* ** CAPI3REF: SQLite Runtime Status ** ** ^This interface is used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for ** the specific parameter to measure. ^(Recognized integer codes ** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].)^ ** ^The current value of the parameter is returned into *pCurrent. ** ^The highest recorded value is returned in *pHighwater. ^If the ** resetFlag is true, then the highest record value is reset after ** *pHighwater is written. ^(Some parameters do not record the highest |
︙ | ︙ | |||
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 | ** ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt> ** <dd>This parameter records the largest memory allocation request ** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their ** internal equivalents). Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. ** The value written into the *pCurrent parameter is undefined.</dd>)^ ** ** ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt> ** <dd>This parameter returns the number of pages used out of the ** [pagecache memory allocator] that was configured using ** [SQLITE_CONFIG_PAGECACHE]. The ** value returned is in pages, not in bytes.</dd>)^ ** ** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt> | > > > | 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 | ** ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt> ** <dd>This parameter records the largest memory allocation request ** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their ** internal equivalents). Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. ** The value written into the *pCurrent parameter is undefined.</dd>)^ ** ** ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt> ** <dd>This parameter records the number of separate memory allocations.</dd>)^ ** ** ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt> ** <dd>This parameter returns the number of pages used out of the ** [pagecache memory allocator] that was configured using ** [SQLITE_CONFIG_PAGECACHE]. The ** value returned is in pages, not in bytes.</dd>)^ ** ** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt> |
︙ | ︙ | |||
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 | #define SQLITE_STATUS_PAGECACHE_OVERFLOW 2 #define SQLITE_STATUS_SCRATCH_USED 3 #define SQLITE_STATUS_SCRATCH_OVERFLOW 4 #define SQLITE_STATUS_MALLOC_SIZE 5 #define SQLITE_STATUS_PARSER_STACK 6 #define SQLITE_STATUS_PAGECACHE_SIZE 7 #define SQLITE_STATUS_SCRATCH_SIZE 8 /* ** CAPI3REF: Database Connection Status ** ** ^This interface is used to retrieve runtime status information ** about a single [database connection]. ^The first argument is the ** database connection object to be interrogated. ^The second argument ** is an integer constant, taken from the set of ** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros, that | > | | 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 | #define SQLITE_STATUS_PAGECACHE_OVERFLOW 2 #define SQLITE_STATUS_SCRATCH_USED 3 #define SQLITE_STATUS_SCRATCH_OVERFLOW 4 #define SQLITE_STATUS_MALLOC_SIZE 5 #define SQLITE_STATUS_PARSER_STACK 6 #define SQLITE_STATUS_PAGECACHE_SIZE 7 #define SQLITE_STATUS_SCRATCH_SIZE 8 #define SQLITE_STATUS_MALLOC_COUNT 9 /* ** CAPI3REF: Database Connection Status ** ** ^This interface is used to retrieve runtime status information ** about a single [database connection]. ^The first argument is the ** database connection object to be interrogated. ^The second argument ** is an integer constant, taken from the set of ** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros, that ** determines the parameter to interrogate. The set of ** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros is likely ** to grow in future releases of SQLite. ** ** ^The current value of the requested parameter is written into *pCur ** and the highest instantaneous value is written into *pHiwtr. ^If ** the resetFlg is true, then the highest instantaneous value is ** reset back down to the current value. |
︙ | ︙ | |||
5227 5228 5229 5230 5231 5232 5233 | ** if a discontinued or unsupported verb is invoked. ** ** <dl> ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> ** <dd>This parameter returns the number of lookaside memory slots currently ** checked out.</dd>)^ ** | | | | > > > > > > > > > > > > > > > > > | | 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 | ** if a discontinued or unsupported verb is invoked. ** ** <dl> ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> ** <dd>This parameter returns the number of lookaside memory slots currently ** checked out.</dd>)^ ** ** ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt> ** <dd>This parameter returns the approximate number of of bytes of heap ** memory used by all pager caches associated with the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. ** ** ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt> ** <dd>This parameter returns the approximate number of of bytes of heap ** memory used to store the schema for all databases associated ** with the connection - main, temp, and any [ATTACH]-ed databases.)^ ** ^The full amount of memory used by the schemas is reported, even if the ** schema memory is shared with other database connections due to ** [shared cache mode] being enabled. ** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0. ** ** ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt> ** <dd>This parameter returns the approximate number of of bytes of heap ** and lookaside memory used by all prepared statements associated with ** the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0. ** </dd> ** </dl> */ #define SQLITE_DBSTATUS_LOOKASIDE_USED 0 #define SQLITE_DBSTATUS_CACHE_USED 1 #define SQLITE_DBSTATUS_SCHEMA_USED 2 #define SQLITE_DBSTATUS_STMT_USED 3 #define SQLITE_DBSTATUS_MAX 3 /* Largest defined DBSTATUS */ /* ** CAPI3REF: Prepared Statement Status ** ** ^(Each prepared statement maintains various ** [SQLITE_STMTSTATUS_SORT | counters] that measure the number |
︙ | ︙ | |||
5602 5603 5604 5605 5606 5607 5608 | ** is not a permanent error and does not affect the return value of ** sqlite3_backup_finish(). ** ** <b>sqlite3_backup_remaining(), sqlite3_backup_pagecount()</b> ** ** ^Each call to sqlite3_backup_step() sets two values inside ** the [sqlite3_backup] object: the number of pages still to be backed | | | 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 | ** is not a permanent error and does not affect the return value of ** sqlite3_backup_finish(). ** ** <b>sqlite3_backup_remaining(), sqlite3_backup_pagecount()</b> ** ** ^Each call to sqlite3_backup_step() sets two values inside ** the [sqlite3_backup] object: the number of pages still to be backed ** up and the total number of pages in the source database file. ** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces ** retrieve these two values, respectively. ** ** ^The values returned by these functions are only updated by ** sqlite3_backup_step(). ^If the source database is modified during a backup ** operation, then the values are not updated to account for any extra ** pages that need to be updated or the size of the source database file |
︙ | ︙ | |||
5698 5699 5700 5701 5702 5703 5704 | ** the other connections to use as the blocking connection. ** ** ^(There may be at most one unlock-notify callback registered by a ** blocked connection. If sqlite3_unlock_notify() is called when the ** blocked connection already has a registered unlock-notify callback, ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is ** called with a NULL pointer as its second argument, then any existing | | | 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 | ** the other connections to use as the blocking connection. ** ** ^(There may be at most one unlock-notify callback registered by a ** blocked connection. If sqlite3_unlock_notify() is called when the ** blocked connection already has a registered unlock-notify callback, ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is ** called with a NULL pointer as its second argument, then any existing ** unlock-notify callback is canceled. ^The blocked connections ** unlock-notify callback may also be canceled by closing the blocked ** connection using [sqlite3_close()]. ** ** The unlock-notify callback is not reentrant. If an application invokes ** any sqlite3_xxx API functions from within an unlock-notify callback, a ** crash or deadlock may be the result. ** |
︙ | ︙ | |||
5780 5781 5782 5783 5784 5785 5786 | /* ** CAPI3REF: String Comparison ** ** ^The [sqlite3_strnicmp()] API allows applications and extensions to ** compare the contents of two buffers containing UTF-8 strings in a | | | 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 | /* ** CAPI3REF: String Comparison ** ** ^The [sqlite3_strnicmp()] API allows applications and extensions to ** compare the contents of two buffers containing UTF-8 strings in a ** case-independent fashion, using the same definition of case independence ** that SQLite uses internally when comparing identifiers. */ int sqlite3_strnicmp(const char *, const char *, int); /* ** CAPI3REF: Error Logging Interface ** |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
657 658 659 660 661 662 663 | u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ u8 safety_level; /* How aggressive at syncing data to disk */ Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. | < < < < < < < < < < < | 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ u8 safety_level; /* How aggressive at syncing data to disk */ Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. */ struct Schema { int schema_cookie; /* Database schema version number for this file */ Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash fkeyHash; /* All foreign keys by referenced table name */ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ u8 file_format; /* Schema format version for this file */ u8 enc; /* Text encoding used by this database */ u16 flags; /* Flags associated with this schema */ int cache_size; /* Number of pages to use in the cache */ }; /* ** These macros can be used to test, set, or clear bits in the ** Db.pSchema->flags field. */ #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) |
︙ | ︙ | |||
867 868 869 870 871 872 873 874 875 876 877 878 879 880 | int busyTimeout; /* Busy handler timeout, in msec */ Db aDbStatic[2]; /* Static space for the 2 default backends */ Savepoint *pSavepoint; /* List of active savepoints */ int nSavepoint; /* Number of non-transaction savepoints */ int nStatement; /* Number of nested statement-transactions */ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ i64 nDeferredCons; /* Net deferred constraints this transaction. */ #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY /* The following variables are all protected by the STATIC_MASTER ** mutex, not by sqlite3.mutex. They are used by code in notify.c. ** ** When X.pUnlockConnection==Y, that means that X is waiting for Y to ** unlock so that it can proceed. | > | 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 | int busyTimeout; /* Busy handler timeout, in msec */ Db aDbStatic[2]; /* Static space for the 2 default backends */ Savepoint *pSavepoint; /* List of active savepoints */ int nSavepoint; /* Number of non-transaction savepoints */ int nStatement; /* Number of nested statement-transactions */ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ i64 nDeferredCons; /* Net deferred constraints this transaction. */ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY /* The following variables are all protected by the STATIC_MASTER ** mutex, not by sqlite3.mutex. They are used by code in notify.c. ** ** When X.pUnlockConnection==Y, that means that X is waiting for Y to ** unlock so that it can proceed. |
︙ | ︙ | |||
1224 1225 1226 1227 1228 1229 1230 | ** when the VDBE cursor to the table is closed. In this case Table.tnum ** refers VDBE cursor number that holds the table open, not to the root ** page number. Transient tables are used to hold the results of a ** sub-query that appears instead of a real table name in the FROM clause ** of a SELECT statement. */ struct Table { | < | 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 | ** when the VDBE cursor to the table is closed. In this case Table.tnum ** refers VDBE cursor number that holds the table open, not to the root ** page number. Transient tables are used to hold the results of a ** sub-query that appears instead of a real table name in the FROM clause ** of a SELECT statement. */ struct Table { char *zName; /* Name of the table or view */ int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ int nCol; /* Number of columns in this table */ Column *aCol; /* Information about each column */ Index *pIndex; /* List of SQL indexes on this table. */ int tnum; /* Root BTree node for this table (see note above) */ Select *pSelect; /* NULL for tables. Points to definition if a view. */ |
︙ | ︙ | |||
1361 1362 1363 1364 1365 1366 1367 | /* ** An instance of the following structure is passed as the first ** argument to sqlite3VdbeKeyCompare and is used to control the ** comparison of the two index keys. */ struct KeyInfo { sqlite3 *db; /* The database connection */ | | | | 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 | /* ** An instance of the following structure is passed as the first ** argument to sqlite3VdbeKeyCompare and is used to control the ** comparison of the two index keys. */ struct KeyInfo { sqlite3 *db; /* The database connection */ u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ u16 nField; /* Number of entries in aColl[] */ u8 *aSortOrder; /* Sort order for each column. May be NULL */ CollSeq *aColl[1]; /* Collating sequence for each term of the key */ }; /* ** An instance of the following structure holds information about a ** single index record that has already been parsed out into individual ** values. |
︙ | ︙ | |||
2333 2334 2335 2336 2337 2338 2339 | sqlite3 *db; /* Optional database for lookaside. Can be NULL */ char *zBase; /* A base allocation. Not from malloc. */ char *zText; /* The string collected so far */ int nChar; /* Length of the string so far */ int nAlloc; /* Amount of space allocated in zText */ int mxAlloc; /* Maximum allowed string length */ u8 mallocFailed; /* Becomes true if any memory allocation fails */ | | | 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 | sqlite3 *db; /* Optional database for lookaside. Can be NULL */ char *zBase; /* A base allocation. Not from malloc. */ char *zText; /* The string collected so far */ int nChar; /* Length of the string so far */ int nAlloc; /* Amount of space allocated in zText */ int mxAlloc; /* Maximum allowed string length */ u8 mallocFailed; /* Becomes true if any memory allocation fails */ u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ u8 tooBig; /* Becomes true if string size exceeds limits */ }; /* ** A pointer to this structure is used to communicate information ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. */ |
︙ | ︙ | |||
2631 2632 2633 2634 2635 2636 2637 | #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) int sqlite3ViewGetColumnNames(Parse*,Table*); #else # define sqlite3ViewGetColumnNames(A,B) 0 #endif void sqlite3DropTable(Parse*, SrcList*, int, int); | | | 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 | #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) int sqlite3ViewGetColumnNames(Parse*,Table*); #else # define sqlite3ViewGetColumnNames(A,B) 0 #endif void sqlite3DropTable(Parse*, SrcList*, int, int); void sqlite3DeleteTable(sqlite3*, Table*); #ifndef SQLITE_OMIT_AUTOINCREMENT void sqlite3AutoincrementBegin(Parse *pParse); void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif |
︙ | ︙ | |||
2865 2866 2867 2868 2869 2870 2871 | void *sqlite3HexToBlob(sqlite3*, const char *z, int n); int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); const char *sqlite3ErrStr(int); int sqlite3ReadSchema(Parse *pParse); CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); | | > | 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 | void *sqlite3HexToBlob(sqlite3*, const char *z, int n); int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); const char *sqlite3ErrStr(int); int sqlite3ReadSchema(Parse *pParse); CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); Expr *sqlite3ExprSetColl(Expr*, CollSeq*); Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); int sqlite3CheckCollSeq(Parse *, CollSeq *); int sqlite3CheckObjectName(Parse *, const char *); void sqlite3VdbeSetChanges(sqlite3 *, int); const void *sqlite3ValueText(sqlite3_value*, u8); int sqlite3ValueBytes(sqlite3_value*, u8); void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, |
︙ | ︙ | |||
2915 2916 2917 2918 2919 2920 2921 | CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); char sqlite3AffinityType(const char*); void sqlite3Analyze(Parse*, Token*, Token*); int sqlite3InvokeBusyHandler(BusyHandler*); int sqlite3FindDb(sqlite3*, Token*); int sqlite3FindDbName(sqlite3 *, const char *); int sqlite3AnalysisLoad(sqlite3*,int iDB); | | | 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 | CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); char sqlite3AffinityType(const char*); void sqlite3Analyze(Parse*, Token*, Token*); int sqlite3InvokeBusyHandler(BusyHandler*); int sqlite3FindDb(sqlite3*, Token*); int sqlite3FindDbName(sqlite3 *, const char *); int sqlite3AnalysisLoad(sqlite3*,int iDB); void sqlite3DeleteIndexSamples(sqlite3*,Index*); void sqlite3DefaultRowEst(Index*); void sqlite3RegisterLikeFunctions(sqlite3*, int); int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); void sqlite3MinimumFileFormat(Parse*, int, int); void sqlite3SchemaFree(void *); Schema *sqlite3SchemaGet(sqlite3 *, Btree *); int sqlite3SchemaToIndex(sqlite3 *db, Schema *); |
︙ | ︙ | |||
2977 2978 2979 2980 2981 2982 2983 | # define sqlite3VtabRollback(X) # define sqlite3VtabCommit(X) # define sqlite3VtabInSync(db) 0 # define sqlite3VtabLock(X) # define sqlite3VtabUnlock(X) # define sqlite3VtabUnlockList(X) #else | | | 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 | # define sqlite3VtabRollback(X) # define sqlite3VtabCommit(X) # define sqlite3VtabInSync(db) 0 # define sqlite3VtabLock(X) # define sqlite3VtabUnlock(X) # define sqlite3VtabUnlockList(X) #else void sqlite3VtabClear(sqlite3 *db, Table*); int sqlite3VtabSync(sqlite3 *db, char **); int sqlite3VtabRollback(sqlite3 *db); int sqlite3VtabCommit(sqlite3 *db); void sqlite3VtabLock(VTable *); void sqlite3VtabUnlock(VTable *); void sqlite3VtabUnlockList(sqlite3*); # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) |
︙ | ︙ | |||
3030 3031 3032 3033 3034 3035 3036 | #define sqlite3FkActions(a,b,c,d) #define sqlite3FkCheck(a,b,c,d) #define sqlite3FkDropTable(a,b,c) #define sqlite3FkOldmask(a,b) 0 #define sqlite3FkRequired(a,b,c,d) 0 #endif #ifndef SQLITE_OMIT_FOREIGN_KEY | | | | 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 | #define sqlite3FkActions(a,b,c,d) #define sqlite3FkCheck(a,b,c,d) #define sqlite3FkDropTable(a,b,c) #define sqlite3FkOldmask(a,b) 0 #define sqlite3FkRequired(a,b,c,d) 0 #endif #ifndef SQLITE_OMIT_FOREIGN_KEY void sqlite3FkDelete(sqlite3 *, Table*); #else #define sqlite3FkDelete(a,b) #endif /* ** Available fault injectors. Should be numbered beginning with 0. */ #define SQLITE_FAULTINJECTOR_MALLOC 0 |
︙ | ︙ | |||
3125 3126 3127 3128 3129 3130 3131 | ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of ** the MEMTYPE_* macros defined below. The type must be a bitmask with ** a single bit set. ** ** sqlite3MemdebugHasType() returns true if any of the bits in its second ** argument match the type set by the previous sqlite3MemdebugSetType(). ** sqlite3MemdebugHasType() is intended for use inside assert() statements. | < | > | | | | | | > > > | | | | > | 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 | ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of ** the MEMTYPE_* macros defined below. The type must be a bitmask with ** a single bit set. ** ** sqlite3MemdebugHasType() returns true if any of the bits in its second ** argument match the type set by the previous sqlite3MemdebugSetType(). ** sqlite3MemdebugHasType() is intended for use inside assert() statements. ** ** sqlite3MemdebugNoType() returns true if none of the bits in its second ** argument match the type set by the previous sqlite3MemdebugSetType(). ** ** Perhaps the most important point is the difference between MEMTYPE_HEAP ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means ** it might have been allocated by lookaside, except the allocation was ** too large or lookaside was already full. It is important to verify ** that allocations that might have been satisfied by lookaside are not ** passed back to non-lookaside free() routines. Asserts such as the ** example above are placed on the non-lookaside free() routines to verify ** this constraint. ** ** All of this is no-op for a production build. It only comes into ** play when the SQLITE_MEMDEBUG compile-time option is used. */ #ifdef SQLITE_MEMDEBUG void sqlite3MemdebugSetType(void*,u8); int sqlite3MemdebugHasType(void*,u8); int sqlite3MemdebugNoType(void*,u8); #else # define sqlite3MemdebugSetType(X,Y) /* no-op */ # define sqlite3MemdebugHasType(X,Y) 1 # define sqlite3MemdebugNoType(X,Y) 1 #endif #define MEMTYPE_HEAP 0x01 /* General heap allocations */ #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ #endif /* _SQLITEINT_H_ */ |
Changes to src/sqliteLimit.h.
︙ | ︙ | |||
129 130 131 132 133 134 135 | /* ** The maximum value of a ?nnn wildcard that the parser will accept. */ #ifndef SQLITE_MAX_VARIABLE_NUMBER # define SQLITE_MAX_VARIABLE_NUMBER 999 #endif | | | < | | 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | /* ** The maximum value of a ?nnn wildcard that the parser will accept. */ #ifndef SQLITE_MAX_VARIABLE_NUMBER # define SQLITE_MAX_VARIABLE_NUMBER 999 #endif /* Maximum page size. The upper bound on this value is 65536. This a limit ** imposed by the use of 16-bit offsets within each page. ** ** If this limit is changed, then the compiled library is technically ** incompatible with an SQLite library compiled with a different limit. If ** a process operating on a database with a page-size of 65536 bytes ** crashes, then an instance of SQLite compiled with the default page-size ** limit will not be able to rollback the aborted transaction. This could ** lead to database corruption. */ #ifndef SQLITE_MAX_PAGE_SIZE # define SQLITE_MAX_PAGE_SIZE 65536 #endif /* ** The default size of a database page. */ #ifndef SQLITE_DEFAULT_PAGE_SIZE |
︙ | ︙ |
Changes to src/status.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 17 18 19 20 21 22 | ** ************************************************************************* ** ** This module implements the sqlite3_status() interface and related ** functionality. */ #include "sqliteInt.h" /* ** Variables in which to record status information. */ typedef struct sqlite3StatType sqlite3StatType; static SQLITE_WSD struct sqlite3StatType { | > | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ** ************************************************************************* ** ** This module implements the sqlite3_status() interface and related ** functionality. */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** Variables in which to record status information. */ typedef struct sqlite3StatType sqlite3StatType; static SQLITE_WSD struct sqlite3StatType { int nowValue[10]; /* Current value */ int mxValue[10]; /* Maximum value */ } sqlite3Stat = { {0,}, {0,} }; /* The "wsdStat" macro will resolve to the status information ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdStat can refer directly |
︙ | ︙ | |||
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | int sqlite3_db_status( sqlite3 *db, /* The database connection whose status is desired */ int op, /* Status verb */ int *pCurrent, /* Write current value here */ int *pHighwater, /* Write high-water mark here */ int resetFlag /* Reset high-water mark if true */ ){ switch( op ){ case SQLITE_DBSTATUS_LOOKASIDE_USED: { *pCurrent = db->lookaside.nOut; *pHighwater = db->lookaside.mxOut; if( resetFlag ){ db->lookaside.mxOut = db->lookaside.nOut; } break; } /* ** Return an approximation for the amount of memory currently used ** by all pagers associated with the given database connection. The ** highwater mark is meaningless and is returned as zero. */ case SQLITE_DBSTATUS_CACHE_USED: { int totalUsed = 0; int i; for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); totalUsed += sqlite3PagerMemUsed(pPager); } } *pCurrent = totalUsed; *pHighwater = 0; break; } default: { | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | | 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | int sqlite3_db_status( sqlite3 *db, /* The database connection whose status is desired */ int op, /* Status verb */ int *pCurrent, /* Write current value here */ int *pHighwater, /* Write high-water mark here */ int resetFlag /* Reset high-water mark if true */ ){ int rc = SQLITE_OK; /* Return code */ sqlite3_mutex_enter(db->mutex); switch( op ){ case SQLITE_DBSTATUS_LOOKASIDE_USED: { *pCurrent = db->lookaside.nOut; *pHighwater = db->lookaside.mxOut; if( resetFlag ){ db->lookaside.mxOut = db->lookaside.nOut; } break; } /* ** Return an approximation for the amount of memory currently used ** by all pagers associated with the given database connection. The ** highwater mark is meaningless and is returned as zero. */ case SQLITE_DBSTATUS_CACHE_USED: { int totalUsed = 0; int i; sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); totalUsed += sqlite3PagerMemUsed(pPager); } } sqlite3BtreeLeaveAll(db); *pCurrent = totalUsed; *pHighwater = 0; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store the schema for all databases (main, temp, and any ATTACHed ** databases. *pHighwater is set to zero. */ case SQLITE_DBSTATUS_SCHEMA_USED: { int i; /* Used to iterate through schemas */ int nByte = 0; /* Used to accumulate return value */ db->pnBytesFreed = &nByte; for(i=0; i<db->nDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( ALWAYS(pSchema!=0) ){ HashElem *p; nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( pSchema->tblHash.count + pSchema->trigHash.count + pSchema->idxHash.count + pSchema->fkeyHash.count ); nByte += sqlite3MallocSize(pSchema->tblHash.ht); nByte += sqlite3MallocSize(pSchema->trigHash.ht); nByte += sqlite3MallocSize(pSchema->idxHash.ht); nByte += sqlite3MallocSize(pSchema->fkeyHash.ht); for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p)); } for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); } } } db->pnBytesFreed = 0; *pHighwater = 0; *pCurrent = nByte; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store all prepared statements. ** *pHighwater is set to zero. */ case SQLITE_DBSTATUS_STMT_USED: { struct Vdbe *pVdbe; /* Used to iterate through VMs */ int nByte = 0; /* Used to accumulate return value */ db->pnBytesFreed = &nByte; for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ sqlite3VdbeDeleteObject(db, pVdbe); } db->pnBytesFreed = 0; *pHighwater = 0; *pCurrent = nByte; break; } default: { rc = SQLITE_ERROR; } } sqlite3_mutex_leave(db->mutex); return rc; } |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
2567 2568 2569 2570 2571 2572 2573 | ** Display SQLITE_STMTSTATUS_FULLSCAN_STEP or ** SQLITE_STMTSTATUS_SORT for the most recent eval. */ case DB_STATUS: { int v; const char *zOp; if( objc!=3 ){ | | | 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 | ** Display SQLITE_STMTSTATUS_FULLSCAN_STEP or ** SQLITE_STMTSTATUS_SORT for the most recent eval. */ case DB_STATUS: { int v; const char *zOp; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 2, objv, "(step|sort|autoindex)"); return TCL_ERROR; } zOp = Tcl_GetString(objv[2]); if( strcmp(zOp, "step")==0 ){ v = pDb->nStep; }else if( strcmp(zOp, "sort")==0 ){ v = pDb->nSort; |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 | if( iArg!=0 ) { Tcl_AppendResult(interp, "Unexpected non-zero errno: ", Tcl_GetStringFromObj(Tcl_NewIntObj(iArg), 0), " ", 0); return TCL_ERROR; } return TCL_OK; } /* ** tclcmd: file_control_lockproxy_test DB PWD ** ** This TCL command runs the sqlite3_file_control interface and ** verifies correct operation of the SQLITE_GET_LOCKPROXYFILE and ** SQLITE_SET_LOCKPROXYFILE verbs. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 | if( iArg!=0 ) { Tcl_AppendResult(interp, "Unexpected non-zero errno: ", Tcl_GetStringFromObj(Tcl_NewIntObj(iArg), 0), " ", 0); return TCL_ERROR; } return TCL_OK; } /* ** tclcmd: file_control_chunksize_test DB DBNAME SIZE ** ** This TCL command runs the sqlite3_file_control interface and ** verifies correct operation of the SQLITE_GET_LOCKPROXYFILE and ** SQLITE_SET_LOCKPROXYFILE verbs. */ static int file_control_chunksize_test( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ int nSize; /* New chunk size */ char *zDb; /* Db name ("main", "temp" etc.) */ sqlite3 *db; /* Database handle */ int rc; /* file_control() return code */ if( objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB DBNAME SIZE"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) || Tcl_GetIntFromObj(interp, objv[3], &nSize) ){ return TCL_ERROR; } zDb = Tcl_GetString(objv[2]); if( zDb[0]=='\0' ) zDb = NULL; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_CHUNK_SIZE, (void *)&nSize); if( rc ){ Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC); return TCL_ERROR; } return TCL_OK; } /* ** tclcmd: file_control_lockproxy_test DB PWD ** ** This TCL command runs the sqlite3_file_control interface and ** verifies correct operation of the SQLITE_GET_LOCKPROXYFILE and ** SQLITE_SET_LOCKPROXYFILE verbs. |
︙ | ︙ | |||
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 | zDb = Tcl_GetString(objv[2]); } rc = sqlite3_wal_checkpoint(db, zDb); Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC); return TCL_OK; } /* ** tcl_objproc COMMANDNAME ARGS... ** ** Run a TCL command using its objProc interface. Throw an error if ** the command has no objProc interface. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 | zDb = Tcl_GetString(objv[2]); } rc = sqlite3_wal_checkpoint(db, zDb); Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC); return TCL_OK; } /* ** tclcmd: test_sqlite3_log ?SCRIPT? */ static struct LogCallback { Tcl_Interp *pInterp; Tcl_Obj *pObj; } logcallback = {0, 0}; static void xLogcallback(void *unused, int err, char *zMsg){ Tcl_Obj *pNew = Tcl_DuplicateObj(logcallback.pObj); Tcl_IncrRefCount(pNew); Tcl_ListObjAppendElement( 0, pNew, Tcl_NewStringObj(sqlite3TestErrorName(err), -1) ); Tcl_ListObjAppendElement(0, pNew, Tcl_NewStringObj(zMsg, -1)); Tcl_EvalObjEx(logcallback.pInterp, pNew, TCL_EVAL_GLOBAL|TCL_EVAL_DIRECT); Tcl_DecrRefCount(pNew); } static int test_sqlite3_log( ClientData clientData, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ if( objc>2 ){ Tcl_WrongNumArgs(interp, 1, objv, "SCRIPT"); return TCL_ERROR; } if( logcallback.pObj ){ Tcl_DecrRefCount(logcallback.pObj); logcallback.pObj = 0; logcallback.pInterp = 0; sqlite3_config(SQLITE_CONFIG_LOG, 0, 0); } if( objc>1 ){ logcallback.pObj = objv[1]; Tcl_IncrRefCount(logcallback.pObj); logcallback.pInterp = interp; sqlite3_config(SQLITE_CONFIG_LOG, xLogcallback, 0); } return TCL_OK; } /* ** tcl_objproc COMMANDNAME ARGS... ** ** Run a TCL command using its objProc interface. Throw an error if ** the command has no objProc interface. */ |
︙ | ︙ | |||
5212 5213 5214 5215 5216 5217 5218 5219 5220 | { "vfs_unlink_test", vfs_unlink_test, 0 }, { "vfs_initfail_test", vfs_initfail_test, 0 }, { "vfs_unregister_all", vfs_unregister_all, 0 }, { "vfs_reregister_all", vfs_reregister_all, 0 }, { "file_control_test", file_control_test, 0 }, { "file_control_lasterrno_test", file_control_lasterrno_test, 0 }, { "file_control_lockproxy_test", file_control_lockproxy_test, 0 }, { "path_is_local", path_is_local, 0 }, { "path_is_dos", path_is_dos, 0 }, | > > < | 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 | { "vfs_unlink_test", vfs_unlink_test, 0 }, { "vfs_initfail_test", vfs_initfail_test, 0 }, { "vfs_unregister_all", vfs_unregister_all, 0 }, { "vfs_reregister_all", vfs_reregister_all, 0 }, { "file_control_test", file_control_test, 0 }, { "file_control_lasterrno_test", file_control_lasterrno_test, 0 }, { "file_control_lockproxy_test", file_control_lockproxy_test, 0 }, { "file_control_chunksize_test", file_control_chunksize_test, 0 }, { "sqlite3_vfs_list", vfs_list, 0 }, { "path_is_local", path_is_local, 0 }, { "path_is_dos", path_is_dos, 0 }, /* Functions from os.h */ #ifndef SQLITE_OMIT_UTF16 { "add_test_collate", test_collate, 0 }, { "add_test_collate_needed", test_collate_needed, 0 }, { "add_test_function", test_function, 0 }, #endif |
︙ | ︙ | |||
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 | { "sqlite3_blob_write", test_blob_write, 0 }, #endif { "pcache_stats", test_pcache_stats, 0 }, #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY { "sqlite3_unlock_notify", test_unlock_notify, 0 }, #endif { "sqlite3_wal_checkpoint", test_wal_checkpoint, 0 }, }; static int bitmask_size = sizeof(Bitmask)*8; int i; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; extern int sqlite3_like_count; extern int sqlite3_xferopt_count; | > | 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 | { "sqlite3_blob_write", test_blob_write, 0 }, #endif { "pcache_stats", test_pcache_stats, 0 }, #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY { "sqlite3_unlock_notify", test_unlock_notify, 0 }, #endif { "sqlite3_wal_checkpoint", test_wal_checkpoint, 0 }, { "test_sqlite3_log", test_sqlite3_log, 0 }, }; static int bitmask_size = sizeof(Bitmask)*8; int i; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; extern int sqlite3_like_count; extern int sqlite3_xferopt_count; |
︙ | ︙ |
Changes to src/test2.c.
︙ | ︙ | |||
68 69 70 71 72 73 74 | */ static int pager_open( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ | | | 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | */ static int pager_open( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ u32 pageSize; Pager *pPager; int nPage; int rc; char zBuf[100]; if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " FILENAME N-PAGE\"", 0); |
︙ | ︙ |
Changes to src/test4.c.
︙ | ︙ | |||
138 139 140 141 142 143 144 | if( i<0 ) return TCL_ERROR; if( threadset[i].busy ){ Tcl_AppendResult(interp, "thread ", argv[1], " is already running", 0); return TCL_ERROR; } threadset[i].busy = 1; sqlite3_free(threadset[i].zFilename); | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | if( i<0 ) return TCL_ERROR; if( threadset[i].busy ){ Tcl_AppendResult(interp, "thread ", argv[1], " is already running", 0); return TCL_ERROR; } threadset[i].busy = 1; sqlite3_free(threadset[i].zFilename); threadset[i].zFilename = sqlite3_mprintf("%s", argv[2]); threadset[i].opnum = 1; threadset[i].completed = 0; rc = pthread_create(&x, 0, thread_main, &threadset[i]); if( rc ){ Tcl_AppendResult(interp, "failed to create the thread", 0); sqlite3_free(threadset[i].zFilename); threadset[i].busy = 0; |
︙ | ︙ | |||
472 473 474 475 476 477 478 | if( !threadset[i].busy ){ Tcl_AppendResult(interp, "no such thread", 0); return TCL_ERROR; } thread_wait(&threadset[i]); threadset[i].xOp = do_compile; sqlite3_free(threadset[i].zArg); | | | 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | if( !threadset[i].busy ){ Tcl_AppendResult(interp, "no such thread", 0); return TCL_ERROR; } thread_wait(&threadset[i]); threadset[i].xOp = do_compile; sqlite3_free(threadset[i].zArg); threadset[i].zArg = sqlite3_mprintf("%s", argv[2]); threadset[i].opnum++; return TCL_OK; } /* ** This procedure runs in the thread to step the virtual machine. */ |
︙ | ︙ |
Changes to src/test5.c.
︙ | ︙ | |||
151 152 153 154 155 156 157 | if( !enc_to ) return TCL_ERROR; pVal = sqlite3ValueNew(0); if( enc_from==SQLITE_UTF8 ){ z = Tcl_GetString(objv[1]); if( objc==5 ){ | | | 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | if( !enc_to ) return TCL_ERROR; pVal = sqlite3ValueNew(0); if( enc_from==SQLITE_UTF8 ){ z = Tcl_GetString(objv[1]); if( objc==5 ){ z = sqlite3_mprintf("%s", z); } sqlite3ValueSetStr(pVal, -1, z, enc_from, xDel); }else{ z = (char*)Tcl_GetByteArrayFromObj(objv[1], &len); if( objc==5 ){ char *zTmp = z; z = sqlite3_malloc(len); |
︙ | ︙ |
Changes to src/test7.c.
︙ | ︙ | |||
160 161 162 163 164 165 166 | if( i<0 ) return TCL_ERROR; if( threadset[i].busy ){ Tcl_AppendResult(interp, "thread ", argv[1], " is already running", 0); return TCL_ERROR; } threadset[i].busy = 1; sqlite3_free(threadset[i].zFilename); | | | 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | if( i<0 ) return TCL_ERROR; if( threadset[i].busy ){ Tcl_AppendResult(interp, "thread ", argv[1], " is already running", 0); return TCL_ERROR; } threadset[i].busy = 1; sqlite3_free(threadset[i].zFilename); threadset[i].zFilename = sqlite3_mprintf("%s", argv[2]); threadset[i].opnum = 1; threadset[i].completed = 0; rc = pthread_create(&x, 0, client_main, &threadset[i]); if( rc ){ Tcl_AppendResult(interp, "failed to create the thread", 0); sqlite3_free(threadset[i].zFilename); threadset[i].busy = 0; |
︙ | ︙ | |||
503 504 505 506 507 508 509 | if( !threadset[i].busy ){ Tcl_AppendResult(interp, "no such thread", 0); return TCL_ERROR; } client_wait(&threadset[i]); threadset[i].xOp = do_compile; sqlite3_free(threadset[i].zArg); | | | 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | if( !threadset[i].busy ){ Tcl_AppendResult(interp, "no such thread", 0); return TCL_ERROR; } client_wait(&threadset[i]); threadset[i].xOp = do_compile; sqlite3_free(threadset[i].zArg); threadset[i].zArg = sqlite3_mprintf("%s", argv[2]); threadset[i].opnum++; return TCL_OK; } /* ** This procedure runs in the thread to step the virtual machine. */ |
︙ | ︙ |
Changes to src/test8.c.
︙ | ︙ | |||
481 482 483 484 485 486 487 | char *zSql; echo_vtab *pVtab = *(echo_vtab **)ppVtab; pVtab->zLogName = sqlite3_mprintf("%s", argv[4]); zSql = sqlite3_mprintf("CREATE TABLE %Q(logmsg)", pVtab->zLogName); rc = sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ){ | | | 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | char *zSql; echo_vtab *pVtab = *(echo_vtab **)ppVtab; pVtab->zLogName = sqlite3_mprintf("%s", argv[4]); zSql = sqlite3_mprintf("CREATE TABLE %Q(logmsg)", pVtab->zLogName); rc = sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } } if( *ppVtab && rc!=SQLITE_OK ){ echoDestructor(*ppVtab); *ppVtab = 0; } |
︙ | ︙ |
Changes to src/test_demovfs.c.
︙ | ︙ | |||
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/file.h> #include <sys/param.h> #include <unistd.h> #include <time.h> /* ** Size of the write buffer used by journal files in bytes. */ #ifndef SQLITE_DEMOVFS_BUFFERSZ # define SQLITE_DEMOVFS_BUFFERSZ 8192 #endif /* ** When using this VFS, the sqlite3_file* handles that SQLite uses are ** actually pointers to instances of type DemoFile. */ typedef struct DemoFile DemoFile; struct DemoFile { sqlite3_file base; /* Base class. Must be first. */ | > > > > > > | 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/file.h> #include <sys/param.h> #include <unistd.h> #include <time.h> #include <errno.h> /* ** Size of the write buffer used by journal files in bytes. */ #ifndef SQLITE_DEMOVFS_BUFFERSZ # define SQLITE_DEMOVFS_BUFFERSZ 8192 #endif /* ** The maximum pathname length supported by this VFS. */ #define MAXPATHNAME 512 /* ** When using this VFS, the sqlite3_file* handles that SQLite uses are ** actually pointers to instances of type DemoFile. */ typedef struct DemoFile DemoFile; struct DemoFile { sqlite3_file base; /* Base class. Must be first. */ |
︙ | ︙ | |||
442 443 444 445 446 447 448 | /* ** Delete the file identified by argument zPath. If the dirSync parameter ** is non-zero, then ensure the file-system modification to delete the ** file has been synced to disk before returning. */ static int demoDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ | | > > > | | | | 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | /* ** Delete the file identified by argument zPath. If the dirSync parameter ** is non-zero, then ensure the file-system modification to delete the ** file has been synced to disk before returning. */ static int demoDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ int rc; /* Return code */ rc = unlink(zPath); if( rc!=0 && errno==ENOENT ) return SQLITE_OK; if( rc==0 && dirSync ){ int dfd; /* File descriptor open on directory */ int i; /* Iterator variable */ char zDir[MAXPATHNAME+1]; /* Name of directory containing file zPath */ /* Figure out the directory name from the path of the file deleted. */ sqlite3_snprintf(MAXPATHNAME, zDir, "%s", zPath); zDir[MAXPATHNAME] = '\0'; for(i=strlen(zDir); i>1 && zDir[i]!='/'; i++); zDir[i] = '\0'; /* Open a file-descriptor on the directory. Sync. Close. */ dfd = open(zDir, O_RDONLY, 0); if( dfd<0 ){ rc = -1; |
︙ | ︙ | |||
520 521 522 523 524 525 526 | */ static int demoFullPathname( sqlite3_vfs *pVfs, /* VFS */ const char *zPath, /* Input path (possibly a relative path) */ int nPathOut, /* Size of output buffer in bytes */ char *zPathOut /* Pointer to output buffer */ ){ | | | | 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | */ static int demoFullPathname( sqlite3_vfs *pVfs, /* VFS */ const char *zPath, /* Input path (possibly a relative path) */ int nPathOut, /* Size of output buffer in bytes */ char *zPathOut /* Pointer to output buffer */ ){ char zDir[MAXPATHNAME+1]; if( zPath[0]=='/' ){ zDir[0] = '\0'; }else{ getcwd(zDir, sizeof(zDir)); } zDir[MAXPATHNAME] = '\0'; sqlite3_snprintf(nPathOut, zPathOut, "%s/%s", zDir, zPath); zPathOut[nPathOut-1] = '\0'; return SQLITE_OK; } |
︙ | ︙ | |||
605 606 607 608 609 610 611 | ** ** sqlite3_vfs_register(sqlite3_demovfs(), 0); */ sqlite3_vfs *sqlite3_demovfs(void){ static sqlite3_vfs demovfs = { 1, /* iVersion */ sizeof(DemoFile), /* szOsFile */ | | | 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 | ** ** sqlite3_vfs_register(sqlite3_demovfs(), 0); */ sqlite3_vfs *sqlite3_demovfs(void){ static sqlite3_vfs demovfs = { 1, /* iVersion */ sizeof(DemoFile), /* szOsFile */ MAXPATHNAME, /* mxPathname */ 0, /* pNext */ "demo", /* zName */ 0, /* pAppData */ demoOpen, /* xOpen */ demoDelete, /* xDelete */ demoAccess, /* xAccess */ demoFullPathname, /* xFullPathname */ |
︙ | ︙ |
Changes to src/test_journal.c.
︙ | ︙ | |||
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 | ** the first journal-header is written to the journal file. */ static int openTransaction(jt_file *pMain, jt_file *pJournal){ unsigned char *aData; sqlite3_file *p = pMain->pReal; int rc = SQLITE_OK; aData = sqlite3_malloc(pMain->nPagesize); pMain->pWritable = sqlite3BitvecCreate(pMain->nPage); pMain->aCksum = sqlite3_malloc(sizeof(u32) * (pMain->nPage + 1)); pJournal->iMaxOff = 0; if( !pMain->pWritable || !pMain->aCksum || !aData ){ rc = SQLITE_IOERR_NOMEM; }else if( pMain->nPage>0 ){ u32 iTrunk; int iSave; int iSave2; stop_ioerr_simulation(&iSave, &iSave2); /* Read the database free-list. Add the page-number for each free-list ** leaf to the jt_file.pWritable bitvec. */ rc = sqlite3OsRead(p, aData, pMain->nPagesize, 0); iTrunk = decodeUint32(&aData[32]); while( rc==SQLITE_OK && iTrunk>0 ){ u32 nLeaf; u32 iLeaf; sqlite3_int64 iOff = (iTrunk-1)*pMain->nPagesize; rc = sqlite3OsRead(p, aData, pMain->nPagesize, iOff); nLeaf = decodeUint32(&aData[4]); | > > > > > > > > > > | 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | ** the first journal-header is written to the journal file. */ static int openTransaction(jt_file *pMain, jt_file *pJournal){ unsigned char *aData; sqlite3_file *p = pMain->pReal; int rc = SQLITE_OK; closeTransaction(pMain); aData = sqlite3_malloc(pMain->nPagesize); pMain->pWritable = sqlite3BitvecCreate(pMain->nPage); pMain->aCksum = sqlite3_malloc(sizeof(u32) * (pMain->nPage + 1)); pJournal->iMaxOff = 0; if( !pMain->pWritable || !pMain->aCksum || !aData ){ rc = SQLITE_IOERR_NOMEM; }else if( pMain->nPage>0 ){ u32 iTrunk; int iSave; int iSave2; stop_ioerr_simulation(&iSave, &iSave2); /* Read the database free-list. Add the page-number for each free-list ** leaf to the jt_file.pWritable bitvec. */ rc = sqlite3OsRead(p, aData, pMain->nPagesize, 0); if( rc==SQLITE_OK ){ u32 nDbsize = decodeUint32(&aData[28]); if( nDbsize>0 && memcmp(&aData[24], &aData[92], 4)==0 ){ u32 iPg; for(iPg=nDbsize+1; iPg<=pMain->nPage; iPg++){ sqlite3BitvecSet(pMain->pWritable, iPg); } } } iTrunk = decodeUint32(&aData[32]); while( rc==SQLITE_OK && iTrunk>0 ){ u32 nLeaf; u32 iLeaf; sqlite3_int64 iOff = (iTrunk-1)*pMain->nPagesize; rc = sqlite3OsRead(p, aData, pMain->nPagesize, iOff); nLeaf = decodeUint32(&aData[4]); |
︙ | ︙ | |||
487 488 489 490 491 492 493 | start_ioerr_simulation(iSave, iSave2); sqlite3_free(aPage); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } return rc; } | < | 497 498 499 500 501 502 503 504 505 506 507 508 509 510 | start_ioerr_simulation(iSave, iSave2); sqlite3_free(aPage); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } return rc; } /* ** Write data to an jt-file. */ static int jtWrite( sqlite3_file *pFile, const void *zBuf, |
︙ | ︙ |
Changes to src/test_malloc.c.
︙ | ︙ | |||
724 725 726 727 728 729 730 | extern int sqlite3MemdebugSettitle(const char*); sqlite3MemdebugSettitle(zTitle); } #endif return TCL_OK; } | | > > > | | | 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 | extern int sqlite3MemdebugSettitle(const char*); sqlite3MemdebugSettitle(zTitle); } #endif return TCL_OK; } #define MALLOC_LOG_FRAMES 10 #define MALLOC_LOG_KEYINTS ( \ 10 * ((sizeof(int)>=sizeof(void*)) ? 1 : sizeof(void*)/sizeof(int)) \ ) static Tcl_HashTable aMallocLog; static int mallocLogEnabled = 0; typedef struct MallocLog MallocLog; struct MallocLog { int nCall; int nByte; }; #ifdef SQLITE_MEMDEBUG static void test_memdebug_callback(int nByte, int nFrame, void **aFrame){ if( mallocLogEnabled ){ MallocLog *pLog; Tcl_HashEntry *pEntry; int isNew; int aKey[MALLOC_LOG_KEYINTS]; int nKey = sizeof(int)*MALLOC_LOG_KEYINTS; memset(aKey, 0, nKey); if( (sizeof(void*)*nFrame)<nKey ){ nKey = nFrame*sizeof(void*); } memcpy(aKey, aFrame, nKey); |
︙ | ︙ | |||
777 778 779 780 781 782 783 | pEntry; pEntry=Tcl_NextHashEntry(&search) ){ MallocLog *pLog = (MallocLog *)Tcl_GetHashValue(pEntry); Tcl_Free((char *)pLog); } Tcl_DeleteHashTable(&aMallocLog); | | | 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 | pEntry; pEntry=Tcl_NextHashEntry(&search) ){ MallocLog *pLog = (MallocLog *)Tcl_GetHashValue(pEntry); Tcl_Free((char *)pLog); } Tcl_DeleteHashTable(&aMallocLog); Tcl_InitHashTable(&aMallocLog, MALLOC_LOG_KEYINTS); } static int test_memdebug_log( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] |
︙ | ︙ | |||
800 801 802 803 804 805 806 | if( !isInit ){ #ifdef SQLITE_MEMDEBUG extern void sqlite3MemdebugBacktraceCallback( void (*xBacktrace)(int, int, void **)); sqlite3MemdebugBacktraceCallback(test_memdebug_callback); #endif | | | 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 | if( !isInit ){ #ifdef SQLITE_MEMDEBUG extern void sqlite3MemdebugBacktraceCallback( void (*xBacktrace)(int, int, void **)); sqlite3MemdebugBacktraceCallback(test_memdebug_callback); #endif Tcl_InitHashTable(&aMallocLog, MALLOC_LOG_KEYINTS); isInit = 1; } if( objc<2 ){ Tcl_WrongNumArgs(interp, 1, objv, "SUB-COMMAND ..."); } if( Tcl_GetIndexFromObj(interp, objv[1], MB_strs, "sub-command", 0, &iSub) ){ |
︙ | ︙ | |||
823 824 825 826 827 828 829 | mallocLogEnabled = 0; break; case MB_LOG_DUMP: { Tcl_HashSearch search; Tcl_HashEntry *pEntry; Tcl_Obj *pRet = Tcl_NewObj(); | | | | | 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 | mallocLogEnabled = 0; break; case MB_LOG_DUMP: { Tcl_HashSearch search; Tcl_HashEntry *pEntry; Tcl_Obj *pRet = Tcl_NewObj(); assert(sizeof(Tcl_WideInt)>=sizeof(void*)); for( pEntry=Tcl_FirstHashEntry(&aMallocLog, &search); pEntry; pEntry=Tcl_NextHashEntry(&search) ){ Tcl_Obj *apElem[MALLOC_LOG_FRAMES+2]; MallocLog *pLog = (MallocLog *)Tcl_GetHashValue(pEntry); Tcl_WideInt *aKey = (Tcl_WideInt *)Tcl_GetHashKey(&aMallocLog, pEntry); int ii; apElem[0] = Tcl_NewIntObj(pLog->nCall); apElem[1] = Tcl_NewIntObj(pLog->nByte); for(ii=0; ii<MALLOC_LOG_FRAMES; ii++){ apElem[ii+2] = Tcl_NewWideIntObj(aKey[ii]); } Tcl_ListObjAppendElement(interp, pRet, Tcl_NewListObj(MALLOC_LOG_FRAMES+2, apElem) ); } |
︙ | ︙ | |||
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 | { "SQLITE_STATUS_PAGECACHE_USED", SQLITE_STATUS_PAGECACHE_USED }, { "SQLITE_STATUS_PAGECACHE_OVERFLOW", SQLITE_STATUS_PAGECACHE_OVERFLOW }, { "SQLITE_STATUS_PAGECACHE_SIZE", SQLITE_STATUS_PAGECACHE_SIZE }, { "SQLITE_STATUS_SCRATCH_USED", SQLITE_STATUS_SCRATCH_USED }, { "SQLITE_STATUS_SCRATCH_OVERFLOW", SQLITE_STATUS_SCRATCH_OVERFLOW }, { "SQLITE_STATUS_SCRATCH_SIZE", SQLITE_STATUS_SCRATCH_SIZE }, { "SQLITE_STATUS_PARSER_STACK", SQLITE_STATUS_PARSER_STACK }, }; Tcl_Obj *pResult; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "PARAMETER RESETFLAG"); return TCL_ERROR; } zOpName = Tcl_GetString(objv[1]); | > | 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 | { "SQLITE_STATUS_PAGECACHE_USED", SQLITE_STATUS_PAGECACHE_USED }, { "SQLITE_STATUS_PAGECACHE_OVERFLOW", SQLITE_STATUS_PAGECACHE_OVERFLOW }, { "SQLITE_STATUS_PAGECACHE_SIZE", SQLITE_STATUS_PAGECACHE_SIZE }, { "SQLITE_STATUS_SCRATCH_USED", SQLITE_STATUS_SCRATCH_USED }, { "SQLITE_STATUS_SCRATCH_OVERFLOW", SQLITE_STATUS_SCRATCH_OVERFLOW }, { "SQLITE_STATUS_SCRATCH_SIZE", SQLITE_STATUS_SCRATCH_SIZE }, { "SQLITE_STATUS_PARSER_STACK", SQLITE_STATUS_PARSER_STACK }, { "SQLITE_STATUS_MALLOC_COUNT", SQLITE_STATUS_MALLOC_COUNT }, }; Tcl_Obj *pResult; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "PARAMETER RESETFLAG"); return TCL_ERROR; } zOpName = Tcl_GetString(objv[1]); |
︙ | ︙ | |||
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 | int getDbPointer(Tcl_Interp*, const char*, sqlite3**); static const struct { const char *zName; int op; } aOp[] = { { "SQLITE_DBSTATUS_LOOKASIDE_USED", SQLITE_DBSTATUS_LOOKASIDE_USED }, { "SQLITE_DBSTATUS_CACHE_USED", SQLITE_DBSTATUS_CACHE_USED }, }; Tcl_Obj *pResult; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "PARAMETER RESETFLAG"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; | > > | 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 | int getDbPointer(Tcl_Interp*, const char*, sqlite3**); static const struct { const char *zName; int op; } aOp[] = { { "SQLITE_DBSTATUS_LOOKASIDE_USED", SQLITE_DBSTATUS_LOOKASIDE_USED }, { "SQLITE_DBSTATUS_CACHE_USED", SQLITE_DBSTATUS_CACHE_USED }, { "SQLITE_DBSTATUS_SCHEMA_USED", SQLITE_DBSTATUS_SCHEMA_USED }, { "SQLITE_DBSTATUS_STMT_USED", SQLITE_DBSTATUS_STMT_USED } }; Tcl_Obj *pResult; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "PARAMETER RESETFLAG"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
︙ | ︙ |
Changes to src/test_stat.c.
︙ | ︙ | |||
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 | sqlite3_free(pCsr->zPath); pCsr->zPath = 0; if( pCsr->aPage[0].pPg==0 ){ rc = sqlite3_step(pCsr->pStmt); if( rc==SQLITE_ROW ){ u32 iRoot = sqlite3_column_int64(pCsr->pStmt, 1); rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg); pCsr->aPage[0].iPgno = iRoot; pCsr->aPage[0].iCell = 0; pCsr->aPage[0].zPath = sqlite3_mprintf("/"); pCsr->iPage = 0; }else{ pCsr->isEof = 1; | > > > > > > | 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | sqlite3_free(pCsr->zPath); pCsr->zPath = 0; if( pCsr->aPage[0].pPg==0 ){ rc = sqlite3_step(pCsr->pStmt); if( rc==SQLITE_ROW ){ int nPage; u32 iRoot = sqlite3_column_int64(pCsr->pStmt, 1); sqlite3PagerPagecount(pPager, &nPage); if( nPage==0 ){ pCsr->isEof = 1; return sqlite3_reset(pCsr->pStmt); } rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg); pCsr->aPage[0].iPgno = iRoot; pCsr->aPage[0].iCell = 0; pCsr->aPage[0].zPath = sqlite3_mprintf("/"); pCsr->iPage = 0; }else{ pCsr->isEof = 1; |
︙ | ︙ | |||
482 483 484 485 486 487 488 | } static int statFilter( sqlite3_vtab_cursor *pCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ | < < | < < < < < < | 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | } static int statFilter( sqlite3_vtab_cursor *pCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ StatCursor *pCsr = (StatCursor *)pCursor; statResetCsr(pCsr); return statNext(pCursor); } static int statColumn( sqlite3_vtab_cursor *pCursor, sqlite3_context *ctx, int i |
︙ | ︙ |
Changes to src/test_vfs.c.
︙ | ︙ | |||
996 997 998 999 1000 1001 1002 | Tcl_AppendResult(interp, "no such file: ", Tcl_GetString(objv[2]), 0); return TCL_ERROR; } if( objc==4 ){ int n; u8 *a = Tcl_GetByteArrayFromObj(objv[3], &n); int pgsz = pBuffer->pgsz; | | | | 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 | Tcl_AppendResult(interp, "no such file: ", Tcl_GetString(objv[2]), 0); return TCL_ERROR; } if( objc==4 ){ int n; u8 *a = Tcl_GetByteArrayFromObj(objv[3], &n); int pgsz = pBuffer->pgsz; if( pgsz==0 ) pgsz = 65536; for(i=0; i*pgsz<n; i++){ int nByte = pgsz; tvfsAllocPage(pBuffer, i, pgsz); if( n-i*pgsz<pgsz ){ nByte = n; } memcpy(pBuffer->aPage[i], &a[i*pgsz], nByte); } } pObj = Tcl_NewObj(); for(i=0; pBuffer->aPage[i]; i++){ int pgsz = pBuffer->pgsz; if( pgsz==0 ) pgsz = 65536; Tcl_AppendObjToObj(pObj, Tcl_NewByteArrayObj(pBuffer->aPage[i], pgsz)); } Tcl_SetObjResult(interp, pObj); break; } case CMD_FILTER: { |
︙ | ︙ |
Changes to src/tokenize.c.
︙ | ︙ | |||
492 493 494 495 496 497 498 | if( pParse->nested==0 ){ sqlite3DbFree(db, pParse->aTableLock); pParse->aTableLock = 0; pParse->nTableLock = 0; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE | | | | | 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | if( pParse->nested==0 ){ sqlite3DbFree(db, pParse->aTableLock); pParse->aTableLock = 0; pParse->nTableLock = 0; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_free(pParse->apVtabLock); #endif if( !IN_DECLARE_VTAB ){ /* If the pParse->declareVtab flag is set, do not delete any table ** structure built up in pParse->pNewTable. The calling code (see vtab.c) ** will take responsibility for freeing the Table structure. */ sqlite3DeleteTable(db, pParse->pNewTable); } sqlite3DeleteTrigger(db, pParse->pNewTrigger); sqlite3DbFree(db, pParse->apVarExpr); sqlite3DbFree(db, pParse->aAlias); while( pParse->pAinc ){ AutoincInfo *p = pParse->pAinc; pParse->pAinc = p->pNext; sqlite3DbFree(db, p); } while( pParse->pZombieTab ){ Table *p = pParse->pZombieTab; pParse->pZombieTab = p->pNextZombie; sqlite3DeleteTable(db, p); } if( nErr>0 && pParse->rc==SQLITE_OK ){ pParse->rc = SQLITE_ERROR; } return nErr; } |
Changes to src/trigger.c.
︙ | ︙ | |||
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | Vdbe *v; /* Temporary VM */ NameContext sNC; /* Name context for sub-vdbe */ SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */ Parse *pSubParse; /* Parse context for sub-vdbe */ int iEndTrigger = 0; /* Label to jump to if WHEN is false */ assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) ); /* Allocate the TriggerPrg and SubProgram objects. To ensure that they ** are freed if an error occurs, link them into the Parse.pTriggerPrg ** list of the top-level Parse object sooner rather than later. */ pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg)); if( !pPrg ) return 0; pPrg->pNext = pTop->pTriggerPrg; pTop->pTriggerPrg = pPrg; pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram)); if( !pProgram ) return 0; | > | | 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 | Vdbe *v; /* Temporary VM */ NameContext sNC; /* Name context for sub-vdbe */ SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */ Parse *pSubParse; /* Parse context for sub-vdbe */ int iEndTrigger = 0; /* Label to jump to if WHEN is false */ assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) ); assert( pTop->pVdbe ); /* Allocate the TriggerPrg and SubProgram objects. To ensure that they ** are freed if an error occurs, link them into the Parse.pTriggerPrg ** list of the top-level Parse object sooner rather than later. */ pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg)); if( !pPrg ) return 0; pPrg->pNext = pTop->pTriggerPrg; pTop->pTriggerPrg = pPrg; pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram)); if( !pProgram ) return 0; sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram); pPrg->pTrigger = pTrigger; pPrg->orconf = orconf; pPrg->aColmask[0] = 0xffffffff; pPrg->aColmask[1] = 0xffffffff; /* Allocate and populate a new Parse context to use for coding the ** trigger sub-program. */ |
︙ | ︙ | |||
940 941 942 943 944 945 946 947 | TriggerPrg *pPrg; pPrg = getRowTrigger(pParse, p, pTab, orconf); assert( pPrg || pParse->nErr || pParse->db->mallocFailed ); /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program ** is a pointer to the sub-vdbe containing the trigger program. */ if( pPrg ){ sqlite3VdbeAddOp3(v, OP_Program, reg, ignoreJump, ++pParse->nMem); | > > < | | 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 | TriggerPrg *pPrg; pPrg = getRowTrigger(pParse, p, pTab, orconf); assert( pPrg || pParse->nErr || pParse->db->mallocFailed ); /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program ** is a pointer to the sub-vdbe containing the trigger program. */ if( pPrg ){ int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers)); sqlite3VdbeAddOp3(v, OP_Program, reg, ignoreJump, ++pParse->nMem); sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM); VdbeComment( (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf))); /* Set the P5 operand of the OP_Program instruction to non-zero if ** recursive invocation of this trigger program is disallowed. Recursive ** invocation is disallowed if (a) the sub-program is really a trigger, ** not a foreign key action, and (b) the flag to enable recursive triggers ** is clear. */ sqlite3VdbeChangeP5(v, (u8)bRecursive); } } /* ** This is called to code the required FOR EACH ROW triggers for an operation ** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE) ** is given by the op paramater. The tr_tm parameter determines whether the |
︙ | ︙ |
Changes to src/update.c.
1 2 3 4 5 6 7 8 9 10 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_VIRTUALTABLE /* Forward declaration */ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
496 497 498 499 500 501 502 503 504 505 506 507 508 509 | int n = 0; Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Execute as much of a VDBE program as we can then return. ** ** sqlite3VdbeMakeReady() must be called before this routine in order to ** close the program with a final OP_Halt and to set up the callbacks ** and the error message pointer. | > > > > > > > > > > > > > > | 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | int n = 0; Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored ** in memory obtained from sqlite3DbMalloc). */ static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){ sqlite3 *db = p->db; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; } /* ** Execute as much of a VDBE program as we can then return. ** ** sqlite3VdbeMakeReady() must be called before this routine in order to ** close the program with a final OP_Halt and to set up the callbacks ** and the error message pointer. |
︙ | ︙ | |||
4026 4027 4028 4029 4030 4031 4032 | v = pC->movetoTarget; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( pC->pVtabCursor ){ pVtab = pC->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->pVtabCursor, &v); | < < | | 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 | v = pC->movetoTarget; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( pC->pVtabCursor ){ pVtab = pC->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->pVtabCursor, &v); importVtabErrMsg(p, pVtab); #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->pCursor!=0 ); rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; if( pC->rowidIsValid ){ v = pC->lastRowid; |
︙ | ︙ | |||
4333 4334 4335 4336 4337 4338 4339 | ** then jump to P2. Otherwise fall through to the next instruction. ** ** If P5 is non-zero then the key value is increased by an epsilon ** prior to the comparison. This make the opcode work like IdxGT except ** that if the key from register P3 is a prefix of the key in the cursor, ** the result is false whereas it would be true with IdxGT. */ | | | 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 | ** then jump to P2. Otherwise fall through to the next instruction. ** ** If P5 is non-zero then the key value is increased by an epsilon ** prior to the comparison. This make the opcode work like IdxGT except ** that if the key from register P3 is a prefix of the key in the cursor, ** the result is false whereas it would be true with IdxGT. */ /* Opcode: IdxLT P1 P2 P3 P4 P5 ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the ROWID. Compare this key value against the index ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. ** ** If the P1 index entry is less than the key value then jump to P2. ** Otherwise fall through to the next instruction. |
︙ | ︙ | |||
5371 5372 5373 5374 5375 5376 5377 | ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { VTable *pVTab; pVTab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, pVTab); | | < < < < | 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 | ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { VTable *pVTab; pVTab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, pVTab); if( pVTab ) importVtabErrMsg(p, pVTab->pVtab); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCreate P1 * * P4 * ** |
︙ | ︙ | |||
5425 5426 5427 5428 5429 5430 5431 | pCur = 0; pVtabCursor = 0; pVtab = pOp->p4.pVtab->pVtab; pModule = (sqlite3_module *)pVtab->pModule; assert(pVtab && pModule); rc = pModule->xOpen(pVtab, &pVtabCursor); | < < | | 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 | pCur = 0; pVtabCursor = 0; pVtab = pOp->p4.pVtab->pVtab; pModule = (sqlite3_module *)pVtab->pModule; assert(pVtab && pModule); rc = pModule->xOpen(pVtab, &pVtabCursor); importVtabErrMsg(p, pVtab); if( SQLITE_OK==rc ){ /* Initialize sqlite3_vtab_cursor base class */ pVtabCursor->pVtab = pVtab; /* Initialise vdbe cursor object */ pCur = allocateCursor(p, pOp->p1, 0, -1, 0); if( pCur ){ |
︙ | ︙ | |||
5504 5505 5506 5507 5508 5509 5510 | apArg[i] = &pArgc[i+1]; sqlite3VdbeMemStoreType(apArg[i]); } p->inVtabMethod = 1; rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; | < < | | 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 | apArg[i] = &pArgc[i+1]; sqlite3VdbeMemStoreType(apArg[i]); } p->inVtabMethod = 1; rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pVtabCursor); } if( res ){ pc = pOp->p2 - 1; } |
︙ | ︙ | |||
5556 5557 5558 5559 5560 5561 5562 | ** can use the already allocated buffer instead of allocating a ** new one. */ sqlite3VdbeMemMove(&sContext.s, pDest); MemSetTypeFlag(&sContext.s, MEM_Null); rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); | < < | | 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 | ** can use the already allocated buffer instead of allocating a ** new one. */ sqlite3VdbeMemMove(&sContext.s, pDest); MemSetTypeFlag(&sContext.s, MEM_Null); rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); importVtabErrMsg(p, pVtab); if( sContext.isError ){ rc = sContext.isError; } /* Copy the result of the function to the P3 register. We ** do this regardless of whether or not an error occurred to ensure any ** dynamic allocation in sContext.s (a Mem struct) is released. |
︙ | ︙ | |||
5611 5612 5613 5614 5615 5616 5617 | ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ p->inVtabMethod = 1; rc = pModule->xNext(pCur->pVtabCursor); p->inVtabMethod = 0; | < < | | 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 | ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ p->inVtabMethod = 1; rc = pModule->xNext(pCur->pVtabCursor); p->inVtabMethod = 0; importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pCur->pVtabCursor); } if( !res ){ /* If there is data, jump to P2 */ pc = pOp->p2 - 1; |
︙ | ︙ | |||
5643 5644 5645 5646 5647 5648 5649 | pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); rc = pVtab->pModule->xRename(pVtab, pName->z); | < < | | 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 | pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); rc = pVtab->pModule->xRename(pVtab, pName->z); importVtabErrMsg(p, pVtab); break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 * |
︙ | ︙ | |||
5697 5698 5699 5700 5701 5702 5703 | pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); | < < | | 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 | pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); db->lastRowid = rowid; } p->nChange++; } break; |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
77 78 79 80 81 82 83 | ** A sub-routine used to implement a trigger program. */ struct SubProgram { VdbeOp *aOp; /* Array of opcodes for sub-program */ int nOp; /* Elements in aOp[] */ int nMem; /* Number of memory cells required */ int nCsr; /* Number of cursors required */ | < > | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | ** A sub-routine used to implement a trigger program. */ struct SubProgram { VdbeOp *aOp; /* Array of opcodes for sub-program */ int nOp; /* Elements in aOp[] */ int nMem; /* Number of memory cells required */ int nCsr; /* Number of cursors required */ void *token; /* id that may be used to recursive triggers */ SubProgram *pNext; /* Next sub-program already visited */ }; /* ** A smaller version of VdbeOp used for the VdbeAddOpList() function because ** it takes up less space. */ struct VdbeOpList { |
︙ | ︙ | |||
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N); void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); void sqlite3VdbeUsesBtree(Vdbe*, int); VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); int sqlite3VdbeMakeLabel(Vdbe*); void sqlite3VdbeRunOnlyOnce(Vdbe*); void sqlite3VdbeDelete(Vdbe*); void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int); int sqlite3VdbeFinalize(Vdbe*); void sqlite3VdbeResolveLabel(Vdbe*, int); int sqlite3VdbeCurrentAddr(Vdbe*); #ifdef SQLITE_DEBUG int sqlite3VdbeAssertMayAbort(Vdbe *, int); void sqlite3VdbeTrace(Vdbe*,FILE*); #endif void sqlite3VdbeResetStepResult(Vdbe*); int sqlite3VdbeReset(Vdbe*); void sqlite3VdbeSetNumCols(Vdbe*,int); int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); void sqlite3VdbeCountChanges(Vdbe*); sqlite3 *sqlite3VdbeDb(Vdbe*); void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); void sqlite3VdbeSwap(Vdbe*,Vdbe*); VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); | > < > > > > | 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N); void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); void sqlite3VdbeUsesBtree(Vdbe*, int); VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); int sqlite3VdbeMakeLabel(Vdbe*); void sqlite3VdbeRunOnlyOnce(Vdbe*); void sqlite3VdbeDelete(Vdbe*); void sqlite3VdbeDeleteObject(sqlite3*,Vdbe*); void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int); int sqlite3VdbeFinalize(Vdbe*); void sqlite3VdbeResolveLabel(Vdbe*, int); int sqlite3VdbeCurrentAddr(Vdbe*); #ifdef SQLITE_DEBUG int sqlite3VdbeAssertMayAbort(Vdbe *, int); void sqlite3VdbeTrace(Vdbe*,FILE*); #endif void sqlite3VdbeResetStepResult(Vdbe*); int sqlite3VdbeReset(Vdbe*); void sqlite3VdbeSetNumCols(Vdbe*,int); int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); void sqlite3VdbeCountChanges(Vdbe*); sqlite3 *sqlite3VdbeDb(Vdbe*); void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); void sqlite3VdbeSwap(Vdbe*,Vdbe*); VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8); void sqlite3VdbeSetVarmask(Vdbe*, int); #ifndef SQLITE_OMIT_TRACE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int); void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*); int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); #ifndef SQLITE_OMIT_TRIGGER void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); #endif #ifndef NDEBUG void sqlite3VdbeComment(Vdbe*, const char*, ...); # define VdbeComment(X) sqlite3VdbeComment X void sqlite3VdbeNoopComment(Vdbe*, const char*, ...); # define VdbeNoopComment(X) sqlite3VdbeNoopComment X #else # define VdbeComment(X) # define VdbeNoopComment(X) #endif #endif |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
319 320 321 322 323 324 325 326 327 328 329 330 331 332 | int iStatement; /* Statement number (or 0 if has not opened stmt) */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif VdbeFrame *pFrame; /* Parent frame */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ | > | 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | int iStatement; /* Statement number (or 0 if has not opened stmt) */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif VdbeFrame *pFrame; /* Parent frame */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
411 412 413 414 415 416 417 | #ifndef SQLITE_OMIT_TRACE /* Invoke the profile callback if there is one */ if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ sqlite3_int64 iNow; sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); | | | 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | #ifndef SQLITE_OMIT_TRACE /* Invoke the profile callback if there is one */ if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ sqlite3_int64 iNow; sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); } #endif if( rc==SQLITE_DONE ){ assert( p->rc==SQLITE_OK ); p->rc = doWalCallbacks(db); if( p->rc!=SQLITE_OK ){ |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ sqlite3DbFree(db, pDef); } } /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ switch( p4type ){ case P4_REAL: case P4_INT64: | > > > < > > > > | > | > > > > > | < < < < | 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ sqlite3DbFree(db, pDef); } } static void vdbeFreeOpArray(sqlite3 *, Op *, int); /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ assert( db ); switch( p4type ){ case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_KEYINFO: case P4_INTARRAY: case P4_KEYINFO_HANDOFF: { sqlite3DbFree(db, p4); break; } case P4_MPRINTF: { if( db->pnBytesFreed==0 ) sqlite3_free(p4); break; } case P4_VDBEFUNC: { VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; freeEphemeralFunction(db, pVdbeFunc->pFunc); if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); sqlite3DbFree(db, pVdbeFunc); break; } case P4_FUNCDEF: { freeEphemeralFunction(db, (FuncDef*)p4); break; } case P4_MEM: { if( db->pnBytesFreed==0 ){ sqlite3ValueFree((sqlite3_value*)p4); }else{ Mem *p = (Mem*)p4; sqlite3DbFree(db, p->zMalloc); sqlite3DbFree(db, p); } break; } case P4_VTAB : { if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); break; } } } } /* |
︙ | ︙ | |||
631 632 633 634 635 636 637 | #endif } } sqlite3DbFree(db, aOp); } /* | | < < | < < < < < | < | < < < | | < < | < < < < < < < | 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 | #endif } } sqlite3DbFree(db, aOp); } /* ** Link the SubProgram object passed as the second argument into the linked ** list at Vdbe.pSubProgram. This list is used to delete all sub-program ** objects when the VM is no longer required. */ void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ p->pNext = pVdbe->pProgram; pVdbe->pProgram = p; } /* ** Change N opcodes starting at addr to No-ops. */ void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ if( p->aOp ){ VdbeOp *pOp = &p->aOp[addr]; |
︙ | ︙ | |||
735 736 737 738 739 740 741 | pOp->p4type = P4_NOTUSED; }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; | | | 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | pOp->p4type = P4_NOTUSED; }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; pKeyInfo = sqlite3DbMallocRaw(0, nByte); pOp->p4.pKeyInfo = pKeyInfo; if( pKeyInfo ){ u8 *aSortOrder; memcpy((char*)pKeyInfo, zP4, nByte - nField); aSortOrder = pKeyInfo->aSortOrder; if( aSortOrder ){ pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; |
︙ | ︙ | |||
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 | ** Release an array of N Mem elements */ static void releaseMemArray(Mem *p, int N){ if( p && N ){ Mem *pEnd; sqlite3 *db = p->db; u8 malloc_failed = db->mallocFailed; for(pEnd=&p[N]; p<pEnd; p++){ assert( (&p[1])==pEnd || p[0].db==p[1].db ); /* This block is really an inlined version of sqlite3VdbeMemRelease() ** that takes advantage of the fact that the memory cell value is ** being set to NULL after releasing any dynamic resources. ** | > > > > > > | 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 | ** Release an array of N Mem elements */ static void releaseMemArray(Mem *p, int N){ if( p && N ){ Mem *pEnd; sqlite3 *db = p->db; u8 malloc_failed = db->mallocFailed; if( db->pnBytesFreed ){ for(pEnd=&p[N]; p<pEnd; p++){ sqlite3DbFree(db, p->zMalloc); } return; } for(pEnd=&p[N]; p<pEnd; p++){ assert( (&p[1])==pEnd || p[0].db==p[1].db ); /* This block is really an inlined version of sqlite3VdbeMemRelease() ** that takes advantage of the fact that the memory cell value is ** being set to NULL after releasing any dynamic resources. ** |
︙ | ︙ | |||
1648 1649 1650 1651 1652 1653 1654 | /* Before doing anything else, call the xSync() callback for any ** virtual module tables written in this transaction. This has to ** be done before determining whether a master journal file is ** required, as an xSync() callback may add an attached database ** to the transaction. */ rc = sqlite3VtabSync(db, &p->zErrMsg); | < < < | > > > > | 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 | /* Before doing anything else, call the xSync() callback for any ** virtual module tables written in this transaction. This has to ** be done before determining whether a master journal file is ** required, as an xSync() callback may add an attached database ** to the transaction. */ rc = sqlite3VtabSync(db, &p->zErrMsg); /* This loop determines (a) if the commit hook should be invoked and ** (b) how many database files have open write transactions, not ** including the temp database. (b) is important because if more than ** one database file has an open write transaction, a master journal ** file is required for an atomic commit. */ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeIsInTrans(pBt) ){ needXcommit = 1; if( i!=1 ) nTrans++; rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); } } if( rc!=SQLITE_OK ){ return rc; } /* If there are any write-transactions at all, invoke the commit hook */ if( needXcommit && db->xCommitCallback ){ rc = db->xCommitCallback(db->pCommitArg); if( rc ){ return SQLITE_CONSTRAINT; |
︙ | ︙ | |||
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); } } sqlite3OsCloseFree(pMaster); if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zMaster); return rc; } /* Delete the master journal file. This commits the transaction. After ** doing this the directory is synced again before any individual | > | 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); } } sqlite3OsCloseFree(pMaster); assert( rc!=SQLITE_BUSY ); if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zMaster); return rc; } /* Delete the master journal file. This commits the transaction. After ** doing this the directory is synced again before any individual |
︙ | ︙ | |||
2061 2062 2063 2064 2065 2066 2067 | /* Check for one of the special errors */ mrc = p->rc & 0xff; assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; if( isSpecialError ){ | | > > > > > > > > > | | 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 | /* Check for one of the special errors */ mrc = p->rc & 0xff; assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; if( isSpecialError ){ /* If the query was read-only and the error code is SQLITE_INTERRUPT, ** no rollback is necessary. Otherwise, at least a savepoint ** transaction must be rolled back to restore the database to a ** consistent state. ** ** Even if the statement is read-only, it is important to perform ** a statement or transaction rollback operation. If the error ** occured while writing to the journal, sub-journal or database ** file as part of an effort to free up cache space (see function ** pagerStress() in pager.c), the rollback is required to restore ** the pager to a consistent state. */ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ /* We are forced to roll back the active transaction. Before doing ** so, abort any other statements this handle currently has active. |
︙ | ︙ | |||
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 | if( pAux->xDelete ){ pAux->xDelete(pAux->pAux); } pAux->pAux = 0; } } } /* ** Delete an entire VDBE. */ void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; if( NEVER(p==0) ) return; db = p->db; if( p->pPrev ){ p->pPrev->pNext = p->pNext; }else{ assert( db->pVdbe==p ); db->pVdbe = p->pNext; } if( p->pNext ){ p->pNext->pPrev = p->pPrev; } | > > > > > > > > > > > > > > > > > > > > > > > > < < < < < < < | | 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 | if( pAux->xDelete ){ pAux->xDelete(pAux->pAux); } pAux->pAux = 0; } } } /* ** Free all memory associated with the Vdbe passed as the second argument. ** The difference between this function and sqlite3VdbeDelete() is that ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with ** the database connection. */ void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( p->db==0 || p->db==db ); releaseMemArray(p->aVar, p->nVar); releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); for(pSub=p->pProgram; pSub; pSub=pNext){ pNext = pSub->pNext; vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); sqlite3DbFree(db, pSub); } vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); sqlite3DbFree(db, p); } /* ** Delete an entire VDBE. */ void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; if( NEVER(p==0) ) return; db = p->db; if( p->pPrev ){ p->pPrev->pNext = p->pNext; }else{ assert( db->pVdbe==p ); db->pVdbe = p->pNext; } if( p->pNext ){ p->pNext->pPrev = p->pPrev; } p->magic = VDBE_MAGIC_DEAD; p->db = 0; sqlite3VdbeDeleteObject(db, p); } /* ** Make sure the cursor p is ready to read or write the row to which it ** was last positioned. Return an error code if an OOM fault or I/O error ** prevents us from positioning the cursor to its correct position. ** |
︙ | ︙ | |||
2383 2384 2385 2386 2387 2388 2389 | #ifdef SQLITE_TEST extern int sqlite3_search_count; #endif assert( p->isTable ); rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); if( rc ) return rc; p->lastRowid = p->movetoTarget; | > | < < < < | 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 | #ifdef SQLITE_TEST extern int sqlite3_search_count; #endif assert( p->isTable ); rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); if( rc ) return rc; p->lastRowid = p->movetoTarget; if( res!=0 ) return SQLITE_CORRUPT_BKPT; p->rowidIsValid = 1; #ifdef SQLITE_TEST sqlite3_search_count++; #endif p->deferredMoveto = 0; p->cacheStatus = CACHE_STALE; }else if( ALWAYS(p->pCursor) ){ int hasMoved; |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
1012 1013 1014 1015 1016 1017 1018 | if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; | | | 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 | if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2. ** The ifdef here is to enable us to achieve 100% branch test coverage even ** when SQLITE_ENABLE_STAT2 is omitted. */ #ifdef SQLITE_ENABLE_STAT2 if( op==TK_REGISTER ) op = pExpr->op2; #else if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; |
︙ | ︙ |
Changes to src/vtab.c.
︙ | ︙ | |||
217 218 219 220 221 222 223 | ** structure is associated with a single sqlite3* user of the schema. ** The reference count of the VTable structure associated with database ** connection db is decremented immediately (which may lead to the ** structure being xDisconnected and free). Any other VTable structures ** in the list are moved to the sqlite3.pDisconnect list of the associated ** database connection. */ | | | | | | 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | ** structure is associated with a single sqlite3* user of the schema. ** The reference count of the VTable structure associated with database ** connection db is decremented immediately (which may lead to the ** structure being xDisconnected and free). Any other VTable structures ** in the list are moved to the sqlite3.pDisconnect list of the associated ** database connection. */ void sqlite3VtabClear(sqlite3 *db, Table *p){ if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); if( p->azModuleArg ){ int i; for(i=0; i<p->nModuleArg; i++){ sqlite3DbFree(db, p->azModuleArg[i]); } sqlite3DbFree(db, p->azModuleArg); } } /* ** Add a new module argument to pTable->azModuleArg[]. ** The string is not copied - the pointer is stored. The ** string will be freed automatically when the table is |
︙ | ︙ | |||
389 390 391 392 393 394 395 | int nName = sqlite3Strlen30(zName); pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); if( pOld ){ db->mallocFailed = 1; assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ return; } | < | 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | int nName = sqlite3Strlen30(zName); pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); if( pOld ){ db->mallocFailed = 1; assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ return; } pParse->pNewTable = 0; } } /* ** The parser calls this routine when it sees the first token ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. |
︙ | ︙ | |||
463 464 465 466 467 468 469 | if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); | | | 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); sqlite3_free(zErr); } sqlite3DbFree(db, pVTable); }else if( ALWAYS(pVTable->pVtab) ){ /* Justification of ALWAYS(): A correct vtab constructor must allocate ** the sqlite3_vtab object if successful. */ pVTable->pVtab->pModule = pMod->pModule; pVTable->nRef = 1; |
︙ | ︙ | |||
678 679 680 681 682 683 684 | rc = SQLITE_ERROR; } pParse->declareVtab = 0; if( pParse->pVdbe ){ sqlite3VdbeFinalize(pParse->pVdbe); } | | | 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 | rc = SQLITE_ERROR; } pParse->declareVtab = 0; if( pParse->pVdbe ){ sqlite3VdbeFinalize(pParse->pVdbe); } sqlite3DeleteTable(db, pParse->pNewTable); sqlite3StackFree(db, pParse); } assert( (rc&0xff)==rc ); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; |
︙ | ︙ | |||
765 766 767 768 769 770 771 | db->aVTrans = 0; for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3DbFree(db, *pzErrmsg); | | | | 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 | db->aVTrans = 0; for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3DbFree(db, *pzErrmsg); *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg); sqlite3_free(pVtab->zErrMsg); } } db->aVTrans = aVTrans; return rc; } /* |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
288 289 290 291 292 293 294 295 296 297 298 299 300 301 | /* ** The following object holds a copy of the wal-index header content. ** ** The actual header in the wal-index consists of two copies of this ** object. */ struct WalIndexHdr { u32 iVersion; /* Wal-index version */ u32 unused; /* Unused (padding) field */ u32 iChange; /* Counter incremented each transaction */ u8 isInit; /* 1 when initialized */ u8 bigEndCksum; /* True if checksums in WAL are big-endian */ | > > > > | | 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | /* ** The following object holds a copy of the wal-index header content. ** ** The actual header in the wal-index consists of two copies of this ** object. ** ** The szPage value can be any power of 2 between 512 and 32768, inclusive. ** Or it can be 1 to represent a 65536-byte page. The latter case was ** added in 3.7.1 when support for 64K pages was added. */ struct WalIndexHdr { u32 iVersion; /* Wal-index version */ u32 unused; /* Unused (padding) field */ u32 iChange; /* Counter incremented each transaction */ u8 isInit; /* 1 when initialized */ u8 bigEndCksum; /* True if checksums in WAL are big-endian */ u16 szPage; /* Database page size in bytes. 1==64K */ u32 mxFrame; /* Index of last valid frame in the WAL */ u32 nPage; /* Size of database in pages */ u32 aFrameCksum[2]; /* Checksum of last frame in log */ u32 aSalt[2]; /* Two salt values copied from WAL header */ u32 aCksum[2]; /* Checksum over all prior fields */ }; |
︙ | ︙ | |||
406 407 408 409 410 411 412 | struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ int nWiData; /* Size of array apWiData */ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ | | | 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ int nWiData; /* Size of array apWiData */ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ u32 szPage; /* Database page size */ i16 readLock; /* Which read lock is being held. -1 for none */ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ u8 readOnly; /* True if the WAL file is open read-only */ WalIndexHdr hdr; /* Wal-index header for current transaction */ const char *zWalName; /* Name of WAL file */ |
︙ | ︙ | |||
1077 1078 1079 1080 1081 1082 1083 | || szPage&(szPage-1) || szPage>SQLITE_MAX_PAGE_SIZE || szPage<512 ){ goto finished; } pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); | | | 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 | || szPage&(szPage-1) || szPage>SQLITE_MAX_PAGE_SIZE || szPage<512 ){ goto finished; } pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); pWal->szPage = szPage; pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); /* Verify that the WAL header checksum is correct */ walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum ); |
︙ | ︙ | |||
1127 1128 1129 1130 1131 1132 1133 | rc = walIndexAppend(pWal, ++iFrame, pgno); if( rc!=SQLITE_OK ) break; /* If nTruncate is non-zero, this is a commit record. */ if( nTruncate ){ pWal->hdr.mxFrame = iFrame; pWal->hdr.nPage = nTruncate; | | > > | 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 | rc = walIndexAppend(pWal, ++iFrame, pgno); if( rc!=SQLITE_OK ) break; /* If nTruncate is non-zero, this is a commit record. */ if( nTruncate ){ pWal->hdr.mxFrame = iFrame; pWal->hdr.nPage = nTruncate; pWal->hdr.szPage = (szPage&0xff00) | (szPage>>16); testcase( szPage<=32768 ); testcase( szPage>=65536 ); aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; } } sqlite3_free(aFrame); } |
︙ | ︙ | |||
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 | ** currently holding locks that exclude all other readers, writers and ** checkpointers. */ pInfo = walCkptInfo(pWal); pInfo->nBackfill = 0; pInfo->aReadMark[0] = 0; for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; } recovery_error: WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); walUnlockExclusive(pWal, iLock, nLock); return rc; } | > > > > > > > > > > > | 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 | ** currently holding locks that exclude all other readers, writers and ** checkpointers. */ pInfo = walCkptInfo(pWal); pInfo->nBackfill = 0; pInfo->aReadMark[0] = 0; for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; /* If more than one frame was recovered from the log file, report an ** event via sqlite3_log(). This is to help with identifying performance ** problems caused by applications routinely shutting down without ** checkpointing the log file. */ if( pWal->hdr.nPage ){ sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s", pWal->hdr.nPage, pWal->zWalName ); } } recovery_error: WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); walUnlockExclusive(pWal, iLock, nLock); return rc; } |
︙ | ︙ | |||
1512 1513 1514 1515 1516 1517 1518 | static int walCheckpoint( Wal *pWal, /* Wal connection */ int sync_flags, /* Flags for OsSync() (or 0) */ int nBuf, /* Size of zBuf in bytes */ u8 *zBuf /* Temporary buffer to use */ ){ int rc; /* Return code */ | | > > > > | > > > > > > > > > > > > > | | 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 | static int walCheckpoint( Wal *pWal, /* Wal connection */ int sync_flags, /* Flags for OsSync() (or 0) */ int nBuf, /* Size of zBuf in bytes */ u8 *zBuf /* Temporary buffer to use */ ){ int rc; /* Return code */ int szPage; /* Database page-size */ WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ u32 mxSafeFrame; /* Max frame that can be backfilled */ u32 mxPage; /* Max database page to write */ int i; /* Loop counter */ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); testcase( szPage<=32768 ); testcase( szPage>=65536 ); if( pWal->hdr.mxFrame==0 ) return SQLITE_OK; /* Allocate the iterator */ rc = walIteratorInit(pWal, &pIter); if( rc!=SQLITE_OK ){ return rc; } assert( pIter ); /*** TODO: Move this test out to the caller. Make it an assert() here ***/ if( szPage!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; goto walcheckpoint_out; } /* Compute in mxSafeFrame the index of the last frame of the WAL that is ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; pInfo = walCkptInfo(pWal); for(i=1; i<WAL_NREADER; i++){ u32 y = pInfo->aReadMark[i]; if( mxSafeFrame>=y ){ assert( y<=pWal->hdr.mxFrame ); rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ pInfo->aReadMark[i] = READMARK_NOT_USED; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc==SQLITE_BUSY ){ mxSafeFrame = y; }else{ goto walcheckpoint_out; } } } if( pInfo->nBackfill<mxSafeFrame && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK ){ i64 nSize; /* Current size of database file */ u32 nBackfill = pInfo->nBackfill; /* Sync the WAL to disk */ if( sync_flags ){ rc = sqlite3OsSync(pWal->pWalFd, sync_flags); } /* If the database file may grow as a result of this checkpoint, hint ** about the eventual size of the db file to the VFS layer. */ if( rc==SQLITE_OK ){ i64 nReq = ((i64)mxPage * szPage); rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); if( rc==SQLITE_OK && nSize<nReq ){ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); } } /* Iterate through the contents of the WAL, copying data to the db file. */ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ i64 iOffset; assert( walFramePgno(pWal, iFrame)==iDbpage ); if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue; iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); if( rc!=SQLITE_OK ) break; iOffset = (iDbpage-1)*(i64)szPage; testcase( IS_BIG_INT(iOffset) ); rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); |
︙ | ︙ | |||
1679 1680 1681 1682 1683 1684 1685 | u32 aCksum[2]; /* Checksum on the header content */ WalIndexHdr h1, h2; /* Two copies of the header content */ WalIndexHdr volatile *aHdr; /* Header in shared memory */ /* The first page of the wal-index must be mapped at this point. */ assert( pWal->nWiData>0 && pWal->apWiData[0] ); | | | 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 | u32 aCksum[2]; /* Checksum on the header content */ WalIndexHdr h1, h2; /* Two copies of the header content */ WalIndexHdr volatile *aHdr; /* Header in shared memory */ /* The first page of the wal-index must be mapped at this point. */ assert( pWal->nWiData>0 && pWal->apWiData[0] ); /* Read the header. This might happen concurrently with a write to the ** same area of shared memory on a different CPU in a SMP, ** meaning it is possible that an inconsistent snapshot is read ** from the file. If this happens, return non-zero. ** ** There are two copies of the header at the beginning of the wal-index. ** When reading, read [0] first then [1]. Writes are in the reverse order. ** Memory barriers are used to prevent the compiler or the hardware from |
︙ | ︙ | |||
1708 1709 1710 1711 1712 1713 1714 | if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ return 1; /* Checksum does not match */ } if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ *pChanged = 1; memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); | > | > | 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 | if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ return 1; /* Checksum does not match */ } if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ *pChanged = 1; memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); testcase( pWal->szPage<=32768 ); testcase( pWal->szPage>=65536 ); } /* The header was successfully read. Return zero. */ return 0; } /* |
︙ | ︙ | |||
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 | } /* ** Finish with a read transaction. All this does is release the ** read-lock. */ void sqlite3WalEndReadTransaction(Wal *pWal){ if( pWal->readLock>=0 ){ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->readLock = -1; } } /* | > | 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 | } /* ** Finish with a read transaction. All this does is release the ** read-lock. */ void sqlite3WalEndReadTransaction(Wal *pWal){ sqlite3WalEndWriteTransaction(pWal); if( pWal->readLock>=0 ){ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->readLock = -1; } } /* |
︙ | ︙ | |||
2137 2138 2139 2140 2141 2142 2143 | } #endif /* If iRead is non-zero, then it is the log frame number that contains the ** required page. Read and return data from the log file. */ if( iRead ){ | > > > > > > | | | | | > > | 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 | } #endif /* If iRead is non-zero, then it is the log frame number that contains the ** required page. Read and return data from the log file. */ if( iRead ){ int sz; i64 iOffset; sz = pWal->hdr.szPage; sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); testcase( sz<=32768 ); testcase( sz>=65536 ); iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; *pInWal = 1; /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset); } *pInWal = 0; return SQLITE_OK; } /* ** Return the size of the database in pages (or zero, if unknown). */ Pgno sqlite3WalDbsize(Wal *pWal){ if( pWal && ALWAYS(pWal->readLock>=0) ){ return pWal->hdr.nPage; } return 0; } /* ** This function starts a write transaction on the WAL. ** ** A read transaction must have already been started by a prior call |
︙ | ︙ | |||
2229 2230 2231 2232 2233 2234 2235 | ** returned to the caller. ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; | | | 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 | ** returned to the caller. ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( ALWAYS(pWal->writeLock) ){ Pgno iMax = pWal->hdr.mxFrame; Pgno iFrame; /* Restore the clients cache of the wal-index header to the state it ** was in before the client began writing to the database. */ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); |
︙ | ︙ | |||
2418 2419 2420 2421 2422 2423 2424 | sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); sqlite3_randomness(8, pWal->hdr.aSalt); memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); sqlite3Put4byte(&aWalHdr[24], aCksum[0]); sqlite3Put4byte(&aWalHdr[28], aCksum[1]); | | | 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 | sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); sqlite3_randomness(8, pWal->hdr.aSalt); memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); sqlite3Put4byte(&aWalHdr[24], aCksum[0]); sqlite3Put4byte(&aWalHdr[28], aCksum[1]); pWal->szPage = szPage; pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; pWal->hdr.aFrameCksum[0] = aCksum[0]; pWal->hdr.aFrameCksum[1] = aCksum[1]; rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); if( rc!=SQLITE_OK ){ |
︙ | ︙ | |||
2513 2514 2515 2516 2517 2518 2519 | iFrame++; nLast--; rc = walIndexAppend(pWal, iFrame, pLast->pgno); } if( rc==SQLITE_OK ){ /* Update the private copy of the header. */ | | > > | 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 | iFrame++; nLast--; rc = walIndexAppend(pWal, iFrame, pLast->pgno); } if( rc==SQLITE_OK ){ /* Update the private copy of the header. */ pWal->hdr.szPage = (szPage&0xff00) | (szPage>>16); testcase( szPage<=32768 ); testcase( szPage>=65536 ); pWal->hdr.mxFrame = iFrame; if( isCommit ){ pWal->hdr.iChange++; pWal->hdr.nPage = nTruncate; } /* If this is a commit, update the wal-index header too. */ if( isCommit ){ |
︙ | ︙ |
Changes to src/wal.h.
︙ | ︙ | |||
21 22 23 24 25 26 27 | #ifdef SQLITE_OMIT_WAL # define sqlite3WalOpen(x,y,z) 0 # define sqlite3WalClose(w,x,y,z) 0 # define sqlite3WalBeginReadTransaction(y,z) 0 # define sqlite3WalEndReadTransaction(z) # define sqlite3WalRead(v,w,x,y,z) 0 | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | #ifdef SQLITE_OMIT_WAL # define sqlite3WalOpen(x,y,z) 0 # define sqlite3WalClose(w,x,y,z) 0 # define sqlite3WalBeginReadTransaction(y,z) 0 # define sqlite3WalEndReadTransaction(z) # define sqlite3WalRead(v,w,x,y,z) 0 # define sqlite3WalDbsize(y) 0 # define sqlite3WalBeginWriteTransaction(y) 0 # define sqlite3WalEndWriteTransaction(x) 0 # define sqlite3WalUndo(x,y,z) 0 # define sqlite3WalSavepoint(y,z) # define sqlite3WalSavepointUndo(y,z) 0 # define sqlite3WalFrames(u,v,w,x,y,z) 0 # define sqlite3WalCheckpoint(u,v,w,x) 0 |
︙ | ︙ | |||
57 58 59 60 61 62 63 | */ int sqlite3WalBeginReadTransaction(Wal *pWal, int *); void sqlite3WalEndReadTransaction(Wal *pWal); /* Read a page from the write-ahead log, if it is present. */ int sqlite3WalRead(Wal *pWal, Pgno pgno, int *pInWal, int nOut, u8 *pOut); | | < | | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | */ int sqlite3WalBeginReadTransaction(Wal *pWal, int *); void sqlite3WalEndReadTransaction(Wal *pWal); /* Read a page from the write-ahead log, if it is present. */ int sqlite3WalRead(Wal *pWal, Pgno pgno, int *pInWal, int nOut, u8 *pOut); /* If the WAL is not empty, return the size of the database. */ Pgno sqlite3WalDbsize(Wal *pWal); /* Obtain or release the WRITER lock. */ int sqlite3WalBeginWriteTransaction(Wal *pWal); int sqlite3WalEndWriteTransaction(Wal *pWal); /* Undo any frames written (but not committed) to the log */ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
323 324 325 326 327 328 329 330 331 332 333 334 335 336 | ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ WhereTerm *pTerm; int idx; if( pWC->nTerm>=pWC->nSlot ){ WhereTerm *pOld = pWC->a; sqlite3 *db = pWC->pParse->db; pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); if( pWC->a==0 ){ if( wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, p); | > | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ WhereTerm *pTerm; int idx; testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */ if( pWC->nTerm>=pWC->nSlot ){ WhereTerm *pOld = pWC->a; sqlite3 *db = pWC->pParse->db; pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); if( pWC->a==0 ){ if( wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, p); |
︙ | ︙ | |||
468 469 470 471 472 473 474 475 476 477 478 479 480 481 | return mask; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", and "IN". */ static int allowedOp(int op){ assert( TK_GT>TK_EQ && TK_GT<TK_GE ); assert( TK_LT>TK_EQ && TK_LT<TK_GE ); assert( TK_LE>TK_EQ && TK_LE<TK_GE ); assert( TK_GE==TK_EQ+4 ); return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; | > > > > > > > | 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | return mask; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", and "IN". ** ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be ** of one of the following forms: column = expression column > expression ** column >= expression column < expression column <= expression ** expression = column expression > column expression >= column ** expression < column expression <= column column IN ** (expression-list) column IN (subquery) column IS NULL */ static int allowedOp(int op){ assert( TK_GT>TK_EQ && TK_GT<TK_GE ); assert( TK_LT>TK_EQ && TK_LT<TK_GE ); assert( TK_LE>TK_EQ && TK_LE<TK_GE ); assert( TK_GE==TK_EQ+4 ); return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
︙ | ︙ | |||
631 632 633 634 635 636 637 | ){ const char *z = 0; /* String on RHS of LIKE operator */ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ ExprList *pList; /* List of operands to the LIKE operator */ int c; /* One character in z[] */ int cnt; /* Number of non-wildcard prefix characters */ char wc[3]; /* Wildcard characters */ | < < < < < < < < < < < < < < | 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 | ){ const char *z = 0; /* String on RHS of LIKE operator */ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ ExprList *pList; /* List of operands to the LIKE operator */ int c; /* One character in z[] */ int cnt; /* Number of non-wildcard prefix characters */ char wc[3]; /* Wildcard characters */ sqlite3 *db = pParse->db; /* Database connection */ sqlite3_value *pVal = 0; int op; /* Opcode of pRight */ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ return 0; } #ifdef SQLITE_EBCDIC if( *pnoCase ) return 0; #endif pList = pExpr->x.pList; pLeft = pList->a[1].pExpr; if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){ /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must ** be the name of an indexed column with TEXT affinity. */ return 0; } assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ pRight = pList->a[0].pExpr; op = pRight->op; if( op==TK_REGISTER ){ op = pRight->op2; } if( op==TK_VARIABLE ){ |
︙ | ︙ | |||
685 686 687 688 689 690 691 | z = pRight->u.zToken; } if( z ){ cnt = 0; while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } | | | | 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 | z = pRight->u.zToken; } if( z ){ cnt = 0; while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } if( cnt!=0 && 255!=(u8)z[cnt-1] ){ Expr *pPrefix; *pisComplete = c==wc[0] && z[cnt+1]==0; pPrefix = sqlite3Expr(db, TK_STRING, z); if( pPrefix ) pPrefix->u.zToken[cnt] = 0; *ppPrefix = pPrefix; if( op==TK_VARIABLE ){ Vdbe *v = pParse->pVdbe; sqlite3VdbeSetVarmask(v, pRight->iColumn); if( *pisComplete && pRight->u.zToken[1] ){ |
︙ | ︙ | |||
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | } } } /* At this point, okToChngToIN is true if original pTerm satisfies ** case 1. In that case, construct a new virtual term that is ** pTerm converted into an IN operator. */ if( okToChngToIN ){ Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ | > > | 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 | } } } /* At this point, okToChngToIN is true if original pTerm satisfies ** case 1. In that case, construct a new virtual term that is ** pTerm converted into an IN operator. ** ** EV: R-00211-15100 */ if( okToChngToIN ){ Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ |
︙ | ︙ | |||
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 | ){ Expr *pLeft; /* LHS of LIKE/GLOB operator */ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr *pNewExpr1; Expr *pNewExpr2; int idxNew1; int idxNew2; pLeft = pExpr->x.pList->a[1].pExpr; pStr2 = sqlite3ExprDup(db, pStr1, 0); if( !db->mallocFailed ){ u8 c, *pC; /* Last character before the first wildcard */ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; c = *pC; if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ | > | > > | > > | > > | 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 | ){ Expr *pLeft; /* LHS of LIKE/GLOB operator */ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr *pNewExpr1; Expr *pNewExpr2; int idxNew1; int idxNew2; CollSeq *pColl; /* Collating sequence to use */ pLeft = pExpr->x.pList->a[1].pExpr; pStr2 = sqlite3ExprDup(db, pStr1, 0); if( !db->mallocFailed ){ u8 c, *pC; /* Last character before the first wildcard */ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; c = *pC; if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ c = sqlite3UpperToLower[c]; } *pC = c + 1; } pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0); pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), pStr1, 0); idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew1==0 ); exprAnalyze(pSrc, pWC, idxNew1); pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), pStr2, 0); idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ pWC->a[idxNew1].iParent = idxTerm; pWC->a[idxNew2].iParent = idxTerm; |
︙ | ︙ | |||
2018 2019 2020 2021 2022 2023 2024 | pParse->db->mallocFailed = 1; }else if( !pVtab->zErrMsg ){ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); }else{ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); } } | | | 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 | pParse->db->mallocFailed = 1; }else if( !pVtab->zErrMsg ){ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); }else{ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); } } sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; for(i=0; i<p->nConstraint; i++){ if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ sqlite3ErrorMsg(pParse, "table %s: xBestIndex returned an invalid plan", pTab->zName); } |
︙ | ︙ | |||
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 | ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get | > > > | 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 | ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are ** completely satisfied by indices. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get |
︙ | ︙ | |||
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 | int r1; int k = pIdx->aiColumn[j]; pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); if( NEVER(pTerm==0) ) break; /* The following true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); | > | 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 | int r1; int k = pIdx->aiColumn[j]; pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); if( NEVER(pTerm==0) ) break; /* The following true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
︙ | ︙ | |||
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 | */ iReleaseReg = sqlite3GetTempReg(pParse); pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( pTerm->leftCursor==iCur ); assert( omitTable==0 ); iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); VdbeComment((v, "pk")); pLevel->op = OP_Noop; | > | 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 | */ iReleaseReg = sqlite3GetTempReg(pParse); pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( pTerm->leftCursor==iCur ); assert( omitTable==0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); VdbeComment((v, "pk")); pLevel->op = OP_Noop; |
︙ | ︙ | |||
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 | /* TK_LT */ OP_SeekLt, /* TK_GE */ OP_SeekGe }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ pX = pStart->pExpr; assert( pX!=0 ); assert( pStart->leftCursor==iCur ); r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); VdbeComment((v, "pk")); sqlite3ExprCacheAffinityChange(pParse, r1, 1); sqlite3ReleaseTempReg(pParse, rTemp); disableTerm(pLevel, pStart); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( pEnd->leftCursor==iCur ); memEndValue = ++pParse->nMem; sqlite3ExprCode(pParse, pX->pRight, memEndValue); if( pX->op==TK_LT || pX->op==TK_GT ){ testOp = bRev ? OP_Le : OP_Ge; }else{ testOp = bRev ? OP_Lt : OP_Gt; } | > > | 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 | /* TK_LT */ OP_SeekLt, /* TK_GE */ OP_SeekGe }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ pX = pStart->pExpr; assert( pX!=0 ); assert( pStart->leftCursor==iCur ); r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); VdbeComment((v, "pk")); sqlite3ExprCacheAffinityChange(pParse, r1, 1); sqlite3ReleaseTempReg(pParse, rTemp); disableTerm(pLevel, pStart); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( pEnd->leftCursor==iCur ); testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ memEndValue = ++pParse->nMem; sqlite3ExprCode(pParse, pX->pRight, memEndValue); if( pX->op==TK_LT || pX->op==TK_GT ){ testOp = bRev ? OP_Le : OP_Ge; }else{ testOp = bRev ? OP_Lt : OP_Gt; } |
︙ | ︙ | |||
3351 3352 3353 3354 3355 3356 3357 | ** If there are no inequality constraints, then N is at ** least one. ** ** This case is also used when there are no WHERE clause ** constraints but an index is selected anyway, in order ** to force the output order to conform to an ORDER BY. */ | | | | | | | | | 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 | ** If there are no inequality constraints, then N is at ** least one. ** ** This case is also used when there are no WHERE clause ** constraints but an index is selected anyway, in order ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_Noop, /* 0: (!end_constraints) */ OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; int nEq = pLevel->plan.nEq; /* Number of == or IN terms */ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ int regBase; /* Base register holding constraint values */ int r1; /* Temp register */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char *zEndAff; /* Affinity for end of range constraint */ pIdx = pLevel->plan.u.pIdx; iIdxCur = pLevel->iIdxCur; k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ |
︙ | ︙ | |||
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 | zStartAff[nEq] = SQLITE_AFF_NONE; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ zStartAff[nEq] = SQLITE_AFF_NONE; } } nConstraint++; }else if( isMinQuery ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); | > | 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 | zStartAff[nEq] = SQLITE_AFF_NONE; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ zStartAff[nEq] = SQLITE_AFF_NONE; } } nConstraint++; testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ }else if( isMinQuery ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); |
︙ | ︙ | |||
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 | } if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ zEndAff[nEq] = SQLITE_AFF_NONE; } } codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); nConstraint++; } sqlite3DbFree(pParse->db, zStartAff); sqlite3DbFree(pParse->db, zEndAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); | > | 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 | } if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ zEndAff[nEq] = SQLITE_AFF_NONE; } } codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); nConstraint++; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ } sqlite3DbFree(pParse->db, zStartAff); sqlite3DbFree(pParse->db, zEndAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
︙ | ︙ | |||
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 | pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } notReady &= ~getMask(pWC->pMaskSet, iCur); /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ k = 0; for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; | > > > > | | 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 | pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } notReady &= ~getMask(pWC->pMaskSet, iCur); /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. ** ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through ** the use of indices become tests that are evaluated against each row of ** the relevant input tables. */ k = 0; for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & notReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); pWInfo->untestedTerms = 1; continue; |
︙ | ︙ | |||
3738 3739 3740 3741 3742 3743 3744 | */ if( pLevel->iLeftJoin ){ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); VdbeComment((v, "record LEFT JOIN hit")); sqlite3ExprCacheClear(pParse); for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ | | | 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 | */ if( pLevel->iLeftJoin ){ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); VdbeComment((v, "record LEFT JOIN hit")); sqlite3ExprCacheClear(pParse); for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & notReady)!=0 ){ assert( pWInfo->untestedTerms ); continue; } assert( pTerm->pExpr ); |
︙ | ︙ | |||
3956 3957 3958 3959 3960 3961 3962 | /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(pWC, pParse, pMaskSet); sqlite3ExprCodeConstants(pParse, pWhere); | | | 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 | /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(pWC, pParse, pMaskSet); sqlite3ExprCodeConstants(pParse, pWhere); whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */ /* Special case: a WHERE clause that is constant. Evaluate the ** expression and either jump over all of the code or fall thru. */ if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); pWhere = 0; |
︙ | ︙ | |||
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 | for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ WhereCost bestPlan; /* Most efficient plan seen so far */ Index *pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ int bestJ = -1; /* The value of j */ Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ memset(&bestPlan, 0, sizeof(bestPlan)); bestPlan.rCost = SQLITE_BIG_DBL; /* Loop through the remaining entries in the FROM clause to find the ** next nested loop. The loop tests all FROM clause entries ** either once or twice. | > > | 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 | for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ WhereCost bestPlan; /* Most efficient plan seen so far */ Index *pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ int bestJ = -1; /* The value of j */ Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ int nUnconstrained; /* Number tables without INDEXED BY */ Bitmask notIndexed; /* Mask of tables that cannot use an index */ memset(&bestPlan, 0, sizeof(bestPlan)); bestPlan.rCost = SQLITE_BIG_DBL; /* Loop through the remaining entries in the FROM clause to find the ** next nested loop. The loop tests all FROM clause entries ** either once or twice. |
︙ | ︙ | |||
4085 4086 4087 4088 4089 4090 4091 4092 | ** The best strategy is to iterate through table t1 first. However it ** is not possible to determine this with a simple greedy algorithm. ** However, since the cost of a linear scan through table t2 is the same ** as the cost of a linear scan through table t1, a simple greedy ** algorithm may choose to use t2 for the outer loop, which is a much ** costlier approach. */ for(isOptimal=(iFrom<nTabList-1); isOptimal>=0; isOptimal--){ | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > | | | 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 | ** The best strategy is to iterate through table t1 first. However it ** is not possible to determine this with a simple greedy algorithm. ** However, since the cost of a linear scan through table t2 is the same ** as the cost of a linear scan through table t1, a simple greedy ** algorithm may choose to use t2 for the outer loop, which is a much ** costlier approach. */ nUnconstrained = 0; notIndexed = 0; for(isOptimal=(iFrom<nTabList-1); isOptimal>=0; isOptimal--){ Bitmask mask; /* Mask of tables not yet ready */ for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ int doNotReorder; /* True if this table should not be reordered */ WhereCost sCost; /* Cost information from best[Virtual]Index() */ ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; if( j!=iFrom && doNotReorder ) break; m = getMask(pMaskSet, pTabItem->iCursor); if( (m & notReady)==0 ){ if( j==iFrom ) iFrom++; continue; } mask = (isOptimal ? m : notReady); pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); if( pTabItem->pIndex==0 ) nUnconstrained++; assert( pTabItem->pTab ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTabItem->pTab) ){ sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp); }else #endif { bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost); } assert( isOptimal || (sCost.used¬Ready)==0 ); /* If an INDEXED BY clause is present, then the plan must use that ** index if it uses any index at all */ assert( pTabItem->pIndex==0 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 || sCost.plan.u.pIdx==pTabItem->pIndex ); if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ notIndexed |= m; } /* Conditions under which this table becomes the best so far: ** ** (1) The table must not depend on other tables that have not ** yet run. ** ** (2) A full-table-scan plan cannot supercede another plan unless ** it is an "optimal" plan as defined above. ** ** (3) All tables have an INDEXED BY clause or this table lacks an ** INDEXED BY clause or this table uses the specific ** index specified by its INDEXED BY clause. This rule ensures ** that a best-so-far is always selected even if an impossible ** combination of INDEXED BY clauses are given. The error ** will be detected and relayed back to the application later. ** The NEVER() comes about because rule (2) above prevents ** An indexable full-table-scan from reaching rule (3). ** ** (4) The plan cost must be lower than prior plans or else the ** cost must be the same and the number of rows must be lower. */ if( (sCost.used¬Ready)==0 /* (1) */ && (bestJ<0 || (notIndexed&m)!=0 /* (2) */ || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0) && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */ || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */ || (sCost.rCost<=bestPlan.rCost && sCost.nRow<bestPlan.nRow)) ){ WHERETRACE(("... best so far with cost=%g and nRow=%g\n", sCost.rCost, sCost.nRow)); bestPlan = sCost; bestJ = j; } if( doNotReorder ) break; |
︙ | ︙ |
Changes to test/analyze3.test.
︙ | ︙ | |||
264 265 266 267 268 269 270 271 272 273 274 275 276 277 | set like "a%" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {101 0 100} do_test analyze3-2.5 { set like "%a" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {999 999 100} #------------------------------------------------------------------------- # This block of tests checks that statements are correctly marked as # expired when the values bound to any parameters that may affect the # query plan are modified. # | > > > > > > > > > > > > > > > > | 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | set like "a%" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {101 0 100} do_test analyze3-2.5 { set like "%a" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {999 999 100} do_test analyze3-2.6 { set like "a" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {101 0 0} do_test analyze3-2.7 { set like "ab" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {11 0 0} do_test analyze3-2.8 { set like "abc" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {2 0 1} do_test analyze3-2.9 { set like "a_c" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {101 0 10} #------------------------------------------------------------------------- # This block of tests checks that statements are correctly marked as # expired when the values bound to any parameters that may affect the # query plan are modified. # |
︙ | ︙ | |||
383 384 385 386 387 388 389 | sqlite3_expired $S } {1} do_test analyze3-3.6.5 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.7.1 { | < | 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | sqlite3_expired $S } {1} do_test analyze3-3.6.5 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.7.1 { set S [sqlite3_prepare_v2 db { SELECT * FROM t1 WHERE a IN ( ?1, ?2, ?3, ?4, ?5, ?6, ?7, ?8, ?9, ?33, ?11, ?12, ?13, ?14, ?15, ?16, ?17, ?18, ?19, ?20, ?21, ?22, ?23, ?24, ?25, ?26, ?27, ?28, ?29, ?30, ?31, ?32 ) AND b>?10; } -1 dummy] |
︙ | ︙ |
Changes to test/conflict.test.
︙ | ︙ | |||
784 785 786 787 788 789 790 791 792 | do_test conflict-12.4 { execsql { UPDATE OR REPLACE t5 SET a=a+1 WHERE a=1; SELECT * FROM t5; } } {2 one} finish_test | > > > > > > > > > > > > > > > > > > > > > > | 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | do_test conflict-12.4 { execsql { UPDATE OR REPLACE t5 SET a=a+1 WHERE a=1; SELECT * FROM t5; } } {2 one} # Ticket [c38baa3d969eab7946dc50ba9d9b4f0057a19437] # REPLACE works like ABORT on a CHECK constraint. # do_test conflict-13.1 { execsql { CREATE TABLE t13(a CHECK(a!=2)); BEGIN; REPLACE INTO t13 VALUES(1); } catchsql { REPLACE INTO t13 VALUES(2); } } {1 {constraint failed}} do_test conflict-13.2 { execsql { REPLACE INTO t13 VALUES(3); COMMIT; SELECT * FROM t13; } } {1 3} finish_test |
Changes to test/dbstatus.test.
︙ | ︙ | |||
29 30 31 32 33 34 35 | set sz1 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_CACHE_USED 0] 1] db eval { CREATE TABLE t2(y); } set sz2 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_CACHE_USED 0] 1] set ::PAGESZ [expr {$sz2-$sz1}] set ::BASESZ [expr {$sz1-$::PAGESZ}] | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | set sz1 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_CACHE_USED 0] 1] db eval { CREATE TABLE t2(y); } set sz2 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_CACHE_USED 0] 1] set ::PAGESZ [expr {$sz2-$sz1}] set ::BASESZ [expr {$sz1-$::PAGESZ}] expr {$::PAGESZ>1024 && $::PAGESZ<1300} } {1} do_test dbstatus-1.2 { db eval { INSERT INTO t1 VALUES(zeroblob(9000)); } lindex [sqlite3_db_status db SQLITE_DBSTATUS_CACHE_USED 0] 1 } [expr {$BASESZ + 10*$PAGESZ}] proc lookaside {db} { expr { $::lookaside_buffer_size * [lindex [sqlite3_db_status $db SQLITE_DBSTATUS_LOOKASIDE_USED 0] 1] } } #--------------------------------------------------------------------------- # Run the dbstatus-2 and dbstatus-3 tests with several of different # lookaside buffer sizes. # foreach ::lookaside_buffer_size {0 64 120} { # Do not run any of these tests if there is SQL configured to run # as part of the [sqlite3] command. This prevents the script from # configuring the size of the lookaside buffer after [sqlite3] has # returned. if {[presql] != ""} break #------------------------------------------------------------------------- # Tests for SQLITE_DBSTATUS_SCHEMA_USED. # # Each test in the following block works as follows. Each test uses a # different database schema. # # 1. Open a connection to an empty database. Disable statement caching. # # 2. Execute the SQL to create the database schema. Measure the total # heap and lookaside memory allocated by SQLite, and the memory # allocated for the database schema according to sqlite3_db_status(). # # 3. Drop all tables in the database schema. Measure the total memory # and the schema memory again. # # 4. Repeat step 2. # # 5. Repeat step 3. # # Then test that: # # a) The difference in schema memory quantities in steps 2 and 3 is the # same as the difference in total memory in steps 2 and 3. # # b) Step 4 reports the same amount of schema and total memory used as # in step 2. # # c) Step 5 reports the same amount of schema and total memory used as # in step 3. # foreach {tn schema} { 1 { CREATE TABLE t1(a, b) } 2 { CREATE TABLE t1(a PRIMARY KEY, b REFERENCES t1, c UNIQUE) } 3 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); } 4 { CREATE TABLE t1(a, b); CREATE TABLE t2(c, d); CREATE TRIGGER AFTER INSERT ON t1 BEGIN INSERT INTO t2 VALUES(new.a, new.b); SELECT * FROM t1, t2 WHERE a=c AND b=d GROUP BY b HAVING a>5 ORDER BY a; END; } 5 { CREATE TABLE t1(a, b); CREATE TABLE t2(c, d); CREATE VIEW v1 AS SELECT * FROM t1 UNION SELECT * FROM t2; } 6 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); CREATE INDEX i2 ON t1(a,b); CREATE INDEX i3 ON t1(b,b); INSERT INTO t1 VALUES(randomblob(20), randomblob(25)); INSERT INTO t1 SELECT randomblob(20), randomblob(25) FROM t1; INSERT INTO t1 SELECT randomblob(20), randomblob(25) FROM t1; INSERT INTO t1 SELECT randomblob(20), randomblob(25) FROM t1; ANALYZE; } 7 { CREATE TABLE t1(a, b); CREATE TABLE t2(c, d); CREATE VIEW v1 AS SELECT * FROM t1 UNION SELECT * FROM t2 UNION ALL SELECT c||b, d||a FROM t2 LEFT OUTER JOIN t1 GROUP BY c, d ORDER BY 1, 2 ; CREATE TRIGGER tr1 INSTEAD OF INSERT ON v1 BEGIN SELECT * FROM v1; UPDATE t1 SET a=5, b=(SELECT c FROM t2); END; SELECT * FROM v1; } 8x { CREATE TABLE t1(a, b, UNIQUE(a, b)); CREATE VIRTUAL TABLE t2 USING echo(t1); } } { set tn "$::lookaside_buffer_size-$tn" # Step 1. db close file delete -force test.db sqlite3 db test.db sqlite3_db_config_lookaside db 0 $::lookaside_buffer_size 500 db cache size 0 catch { register_echo_module db } ifcapable !vtab { if {[string match *x $tn]} continue } # Step 2. execsql $schema set nAlloc1 [lindex [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] 1] incr nAlloc1 [lookaside db] set nSchema1 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_SCHEMA_USED 0] 1] # Step 3. drop_all_tables set nAlloc2 [lindex [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] 1] incr nAlloc2 [lookaside db] set nSchema2 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_SCHEMA_USED 0] 1] # Step 4. execsql $schema set nAlloc3 [lindex [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] 1] incr nAlloc3 [lookaside db] set nSchema3 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_SCHEMA_USED 0] 1] # Step 5. drop_all_tables set nAlloc4 [lindex [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] 1] incr nAlloc4 [lookaside db] set nSchema4 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_SCHEMA_USED 0] 1] set nFree [expr {$nAlloc1-$nAlloc2}] # Tests for which the test name ends in an "x" report slightly less # memory than is actually freed when all schema items are finalized. # This is because memory allocated by virtual table implementations # for any reason is not counted as "schema memory". # # Additionally, in auto-vacuum mode, dropping tables and indexes causes # the page-cache to shrink. So the amount of memory freed is always # much greater than just that reported by DBSTATUS_SCHEMA_USED in this # case. # if {[string match *x $tn] || $AUTOVACUUM} { do_test dbstatus-2.$tn.ax { expr {($nSchema1-$nSchema2)<=$nFree} } 1 } else { do_test dbstatus-2.$tn.a { expr {$nSchema1-$nSchema2} } $nFree } do_test dbstatus-2.$tn.b { list $nAlloc1 $nSchema1 } "$nAlloc3 $nSchema3" do_test dbstatus-2.$tn.c { list $nAlloc2 $nSchema2 } "$nAlloc4 $nSchema4" } #------------------------------------------------------------------------- # Tests for SQLITE_DBSTATUS_STMT_USED. # # Each test in the following block works as follows. Each test uses a # different database schema. # # 1. Open a connection to an empty database. Initialized the database # schema. # # 2. Prepare a bunch of SQL statements. Measure the total heap and # lookaside memory allocated by SQLite, and the memory allocated # for the prepared statements according to sqlite3_db_status(). # # 3. Finalize all prepared statements Measure the total memory # and the prepared statement memory again. # # 4. Repeat step 2. # # 5. Repeat step 3. # # Then test that: # # a) The difference in schema memory quantities in steps 2 and 3 is the # same as the difference in total memory in steps 2 and 3. # # b) Step 4 reports the same amount of schema and total memory used as # in step 2. # # c) Step 5 reports the same amount of schema and total memory used as # in step 3. # foreach {tn schema statements} { 1 { CREATE TABLE t1(a, b) } { SELECT * FROM t1; INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 SELECT * FROM t1; UPDATE t1 SET a=5; DELETE FROM t1; } 2 { PRAGMA recursive_triggers = 1; CREATE TABLE t1(a, b); CREATE TRIGGER tr1 AFTER INSERT ON t1 WHEN (new.a>0) BEGIN INSERT INTO t1 VALUES(new.a-1, new.b); END; } { INSERT INTO t1 VALUES(5, 'x'); } 3 { PRAGMA recursive_triggers = 1; CREATE TABLE t1(a, b); CREATE TABLE t2(a, b); CREATE TRIGGER tr1 AFTER INSERT ON t1 WHEN (new.a>0) BEGIN INSERT INTO t2 VALUES(new.a-1, new.b); END; CREATE TRIGGER tr2 AFTER INSERT ON t1 WHEN (new.a>0) BEGIN INSERT INTO t1 VALUES(new.a-1, new.b); END; } { INSERT INTO t1 VALUES(10, 'x'); } 4 { CREATE TABLE t1(a, b); } { SELECT count(*) FROM t1 WHERE upper(a)='ABC'; } 5x { CREATE TABLE t1(a, b UNIQUE); CREATE VIRTUAL TABLE t2 USING echo(t1); } { SELECT count(*) FROM t2; SELECT * FROM t2 WHERE b>5; SELECT * FROM t2 WHERE b='abcdefg'; } } { set tn "$::lookaside_buffer_size-$tn" # Step 1. db close file delete -force test.db sqlite3 db test.db sqlite3_db_config_lookaside db 0 $::lookaside_buffer_size 500 db cache size 1000 catch { register_echo_module db } ifcapable !vtab { if {[string match *x $tn]} continue } execsql $schema db cache flush # Step 2. execsql $statements set nAlloc1 [lindex [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] 1] incr nAlloc1 [lookaside db] set nStmt1 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_STMT_USED 0] 1] execsql $statements # Step 3. db cache flush set nAlloc2 [lindex [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] 1] incr nAlloc2 [lookaside db] set nStmt2 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_STMT_USED 0] 1] # Step 3. execsql $statements set nAlloc3 [lindex [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] 1] incr nAlloc3 [lookaside db] set nStmt3 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_STMT_USED 0] 1] execsql $statements # Step 4. db cache flush set nAlloc4 [lindex [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] 1] incr nAlloc4 [lookaside db] set nStmt4 [lindex [sqlite3_db_status db SQLITE_DBSTATUS_STMT_USED 0] 1] set nFree [expr {$nAlloc1-$nAlloc2}] do_test dbstatus-3.$tn.a { expr $nStmt2 } {0} # Tests for which the test name ends in an "x" report slightly less # memory than is actually freed when all statements are finalized. # This is because a small amount of memory allocated by a virtual table # implementation using sqlite3_mprintf() is technically considered # external and so is not counted as "statement memory". # #puts "$nStmt1 $nFree" if {[string match *x $tn]} { do_test dbstatus-3.$tn.bx { expr $nStmt1<=$nFree } {1} } else { do_test dbstatus-3.$tn.b { expr $nStmt1==$nFree } {1} } do_test dbstatus-3.$tn.c { list $nAlloc1 $nStmt1 } [list $nAlloc3 $nStmt3] do_test dbstatus-3.$tn.d { list $nAlloc2 $nStmt2 } [list $nAlloc4 $nStmt4] } } finish_test |
Changes to test/e_expr.test.
︙ | ︙ | |||
324 325 326 327 328 329 330 331 332 | set test e_expr-8.2.$n1.$n2 do_execsql_test $test.1 "SELECT $lhs IS $rhs, $lhs IS NOT $rhs" $eq do_execsql_test $test.2 " SELECT ($lhs IS $rhs) IS NULL, ($lhs IS NOT $rhs) IS NULL " {0 0} } } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 | set test e_expr-8.2.$n1.$n2 do_execsql_test $test.1 "SELECT $lhs IS $rhs, $lhs IS NOT $rhs" $eq do_execsql_test $test.2 " SELECT ($lhs IS $rhs) IS NULL, ($lhs IS NOT $rhs) IS NULL " {0 0} } } #------------------------------------------------------------------------- # Run some tests on the COLLATE "unary postfix operator". # # This collation sequence reverses both arguments before using # [string compare] to compare them. For example, when comparing the # strings 'one' and 'four', return the result of: # # string compare eno ruof # proc reverse_str {zStr} { set out "" foreach c [split $zStr {}] { set out "${c}${out}" } set out } proc reverse_collate {zLeft zRight} { string compare [reverse_str $zLeft] [reverse_str $zRight] } db collate reverse reverse_collate # EVIDENCE-OF: R-59577-33471 The COLLATE operator is a unary postfix # operator that assigns a collating sequence to an expression. # # EVIDENCE-OF: R-23441-22541 The COLLATE operator has a higher # precedence (binds more tightly) than any prefix unary operator or any # binary operator. # do_execsql_test e_expr-9.1 { SELECT 'abcd' < 'bbbb' COLLATE reverse } 0 do_execsql_test e_expr-9.2 { SELECT ('abcd' < 'bbbb') COLLATE reverse } 1 do_execsql_test e_expr-9.3 { SELECT 'abcd' <= 'bbbb' COLLATE reverse } 0 do_execsql_test e_expr-9.4 { SELECT ('abcd' <= 'bbbb') COLLATE reverse } 1 do_execsql_test e_expr-9.5 { SELECT 'abcd' > 'bbbb' COLLATE reverse } 1 do_execsql_test e_expr-9.6 { SELECT ('abcd' > 'bbbb') COLLATE reverse } 0 do_execsql_test e_expr-9.7 { SELECT 'abcd' >= 'bbbb' COLLATE reverse } 1 do_execsql_test e_expr-9.8 { SELECT ('abcd' >= 'bbbb') COLLATE reverse } 0 do_execsql_test e_expr-9.10 { SELECT 'abcd' = 'ABCD' COLLATE nocase } 1 do_execsql_test e_expr-9.11 { SELECT ('abcd' = 'ABCD') COLLATE nocase } 0 do_execsql_test e_expr-9.12 { SELECT 'abcd' == 'ABCD' COLLATE nocase } 1 do_execsql_test e_expr-9.13 { SELECT ('abcd' == 'ABCD') COLLATE nocase } 0 do_execsql_test e_expr-9.14 { SELECT 'abcd' IS 'ABCD' COLLATE nocase } 1 do_execsql_test e_expr-9.15 { SELECT ('abcd' IS 'ABCD') COLLATE nocase } 0 do_execsql_test e_expr-9.16 { SELECT 'abcd' != 'ABCD' COLLATE nocase } 0 do_execsql_test e_expr-9.17 { SELECT ('abcd' != 'ABCD') COLLATE nocase } 1 do_execsql_test e_expr-9.18 { SELECT 'abcd' <> 'ABCD' COLLATE nocase } 0 do_execsql_test e_expr-9.19 { SELECT ('abcd' <> 'ABCD') COLLATE nocase } 1 do_execsql_test e_expr-9.20 { SELECT 'abcd' IS NOT 'ABCD' COLLATE nocase } 0 do_execsql_test e_expr-9.21 { SELECT ('abcd' IS NOT 'ABCD') COLLATE nocase } 1 do_execsql_test e_expr-9.22 { SELECT 'bbb' BETWEEN 'AAA' AND 'CCC' COLLATE nocase } 1 do_execsql_test e_expr-9.23 { SELECT ('bbb' BETWEEN 'AAA' AND 'CCC') COLLATE nocase } 0 # EVIDENCE-OF: R-58731-25439 The collating sequence set by the COLLATE # operator overrides the collating sequence determined by the COLLATE # clause in a table column definition. # do_execsql_test e_expr-9.24 { CREATE TABLE t24(a COLLATE NOCASE, b); INSERT INTO t24 VALUES('aaa', 1); INSERT INTO t24 VALUES('bbb', 2); INSERT INTO t24 VALUES('ccc', 3); } {} do_execsql_test e_expr-9.25 { SELECT 'BBB' = a FROM t24 } {0 1 0} do_execsql_test e_expr-9.25 { SELECT a = 'BBB' FROM t24 } {0 1 0} do_execsql_test e_expr-9.25 { SELECT 'BBB' = a COLLATE binary FROM t24 } {0 0 0} do_execsql_test e_expr-9.25 { SELECT a COLLATE binary = 'BBB' FROM t24 } {0 0 0} #------------------------------------------------------------------------- # Test statements related to literal values. # # EVIDENCE-OF: R-31536-32008 Literal values may be integers, floating # point numbers, strings, BLOBs, or NULLs. # do_execsql_test e_expr-10.1.1 { SELECT typeof(5) } {integer} do_execsql_test e_expr-10.1.2 { SELECT typeof(5.1) } {real} do_execsql_test e_expr-10.1.3 { SELECT typeof('5.1') } {text} do_execsql_test e_expr-10.1.4 { SELECT typeof(X'ABCD') } {blob} do_execsql_test e_expr-10.1.5 { SELECT typeof(NULL) } {null} # EVIDENCE-OF: R-26921-59298 Scientific notation is supported for # floating point literal values. # do_execsql_test e_expr-10.2.1 { SELECT typeof(3.4e-02) } {real} do_execsql_test e_expr-10.2.2 { SELECT typeof(3e+5) } {real} do_execsql_test e_expr-10.2.3 { SELECT 3.4e-02 } {0.034} do_execsql_test e_expr-10.2.4 { SELECT 3e+4 } {30000.0} # EVIDENCE-OF: R-35229-17830 A string constant is formed by enclosing # the string in single quotes ('). # # EVIDENCE-OF: R-07100-06606 A single quote within the string can be # encoded by putting two single quotes in a row - as in Pascal. # do_execsql_test e_expr-10.3.1 { SELECT 'is not' } {{is not}} do_execsql_test e_expr-10.3.2 { SELECT typeof('is not') } {text} do_execsql_test e_expr-10.3.3 { SELECT 'isn''t' } {isn't} do_execsql_test e_expr-10.3.4 { SELECT typeof('isn''t') } {text} # EVIDENCE-OF: R-09593-03321 BLOB literals are string literals # containing hexadecimal data and preceded by a single "x" or "X" # character. # # EVIDENCE-OF: R-39344-59787 For example: X'53514C697465' # do_execsql_test e_expr-10.4.1 { SELECT typeof(X'0123456789ABCDEF') } blob do_execsql_test e_expr-10.4.2 { SELECT typeof(x'0123456789ABCDEF') } blob do_execsql_test e_expr-10.4.3 { SELECT typeof(X'0123456789abcdef') } blob do_execsql_test e_expr-10.4.4 { SELECT typeof(x'0123456789abcdef') } blob do_execsql_test e_expr-10.4.5 { SELECT typeof(X'53514C697465') } blob # EVIDENCE-OF: R-23914-51476 A literal value can also be the token # "NULL". # do_execsql_test e_expr-10.5.1 { SELECT NULL } {{}} do_execsql_test e_expr-10.5.2 { SELECT typeof(NULL) } {null} #------------------------------------------------------------------------- # Test statements related to bound parameters # proc parameter_test {tn sql params result} { set stmt [sqlite3_prepare_v2 db $sql -1] foreach {number name} $params { set nm [sqlite3_bind_parameter_name $stmt $number] do_test $tn.name.$number [list set {} $nm] $name sqlite3_bind_int $stmt $number [expr -1 * $number] } sqlite3_step $stmt set res [list] for {set i 0} {$i < [sqlite3_column_count $stmt]} {incr i} { lappend res [sqlite3_column_text $stmt $i] } set rc [sqlite3_finalize $stmt] do_test $tn.rc [list set {} $rc] SQLITE_OK do_test $tn.res [list set {} $res] $result } # EVIDENCE-OF: R-33509-39458 A question mark followed by a number NNN # holds a spot for the NNN-th parameter. NNN must be between 1 and # SQLITE_MAX_VARIABLE_NUMBER. # set mvn $SQLITE_MAX_VARIABLE_NUMBER parameter_test e_expr-11.1 " SELECT ?1, ?123, ?$SQLITE_MAX_VARIABLE_NUMBER, ?123, ?4 " "1 ?1 123 ?123 $mvn ?$mvn 4 ?4" "-1 -123 -$mvn -123 -4" set errmsg "variable number must be between ?1 and ?$SQLITE_MAX_VARIABLE_NUMBER" foreach {tn param_number} [list \ 2 0 \ 3 [expr $SQLITE_MAX_VARIABLE_NUMBER+1] \ 4 [expr $SQLITE_MAX_VARIABLE_NUMBER+2] \ 5 12345678903456789034567890234567890 \ 6 2147483648 \ 7 2147483649 \ 8 4294967296 \ 9 4294967297 \ 10 9223372036854775808 \ 11 9223372036854775809 \ 12 18446744073709551616 \ 13 18446744073709551617 \ ] { do_catchsql_test e_expr-11.1.$tn "SELECT ?$param_number" [list 1 $errmsg] } # EVIDENCE-OF: R-33670-36097 A question mark that is not followed by a # number creates a parameter with a number one greater than the largest # parameter number already assigned. # # EVIDENCE-OF: R-42938-07030 If this means the parameter number is # greater than SQLITE_MAX_VARIABLE_NUMBER, it is an error. # parameter_test e_expr-11.2.1 "SELECT ?" {1 {}} -1 parameter_test e_expr-11.2.2 "SELECT ?, ?" {1 {} 2 {}} {-1 -2} parameter_test e_expr-11.2.3 "SELECT ?5, ?" {5 ?5 6 {}} {-5 -6} parameter_test e_expr-11.2.4 "SELECT ?, ?5" {1 {} 5 ?5} {-1 -5} parameter_test e_expr-11.2.5 "SELECT ?, ?456, ?" { 1 {} 456 ?456 457 {} } {-1 -456 -457} parameter_test e_expr-11.2.5 "SELECT ?, ?456, ?4, ?" { 1 {} 456 ?456 4 ?4 457 {} } {-1 -456 -4 -457} foreach {tn sql} [list \ 1 "SELECT ?$mvn, ?" \ 2 "SELECT ?[expr $mvn-5], ?, ?, ?, ?, ?, ?" \ 3 "SELECT ?[expr $mvn], ?5, ?6, ?" \ ] { do_catchsql_test e_expr-11.3.$tn $sql [list 1 {too many SQL variables}] } # EVIDENCE-OF: R-11620-22743 A colon followed by an identifier name # holds a spot for a named parameter with the name :AAAA. # # Identifiers in SQLite consist of alphanumeric, '_' and '$' characters, # and any UTF characters with codepoints larger than 127 (non-ASCII # characters). # parameter_test e_expr-11.2.1 {SELECT :AAAA} {1 :AAAA} -1 parameter_test e_expr-11.2.2 {SELECT :123} {1 :123} -1 parameter_test e_expr-11.2.3 {SELECT :__} {1 :__} -1 parameter_test e_expr-11.2.4 {SELECT :_$_} {1 :_$_} -1 parameter_test e_expr-11.2.5 " SELECT :\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25 " "1 :\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25" -1 parameter_test e_expr-11.2.6 "SELECT :\u0080" "1 :\u0080" -1 # EVIDENCE-OF: R-49783-61279 An "at" sign works exactly like a colon, # except that the name of the parameter created is @AAAA. # parameter_test e_expr-11.3.1 {SELECT @AAAA} {1 @AAAA} -1 parameter_test e_expr-11.3.2 {SELECT @123} {1 @123} -1 parameter_test e_expr-11.3.3 {SELECT @__} {1 @__} -1 parameter_test e_expr-11.3.4 {SELECT @_$_} {1 @_$_} -1 parameter_test e_expr-11.3.5 " SELECT @\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25 " "1 @\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25" -1 parameter_test e_expr-11.3.6 "SELECT @\u0080" "1 @\u0080" -1 # EVIDENCE-OF: R-62610-51329 A dollar-sign followed by an identifier # name also holds a spot for a named parameter with the name $AAAA. # # EVIDENCE-OF: R-55025-21042 The identifier name in this case can # include one or more occurrences of "::" and a suffix enclosed in # "(...)" containing any text at all. # # Note: Looks like an identifier cannot consist entirely of "::" # characters or just a suffix. Also, the other named variable characters # (: and @) work the same way internally. Why not just document it that way? # parameter_test e_expr-11.4.1 {SELECT $AAAA} {1 $AAAA} -1 parameter_test e_expr-11.4.2 {SELECT $123} {1 $123} -1 parameter_test e_expr-11.4.3 {SELECT $__} {1 $__} -1 parameter_test e_expr-11.4.4 {SELECT $_$_} {1 $_$_} -1 parameter_test e_expr-11.4.5 " SELECT \$\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25 " "1 \$\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25" -1 parameter_test e_expr-11.4.6 "SELECT \$\u0080" "1 \$\u0080" -1 parameter_test e_expr-11.5.1 {SELECT $::::a(++--++)} {1 $::::a(++--++)} -1 parameter_test e_expr-11.5.2 {SELECT $::a()} {1 $::a()} -1 parameter_test e_expr-11.5.3 {SELECT $::1(::#$)} {1 $::1(::#$)} -1 # EVIDENCE-OF: R-11370-04520 Named parameters are also numbered. The # number assigned is one greater than the largest parameter number # already assigned. # # EVIDENCE-OF: R-42620-22184 If this means the parameter would be # assigned a number greater than SQLITE_MAX_VARIABLE_NUMBER, it is an # error. # parameter_test e_expr-11.6.1 "SELECT ?, @abc" {1 {} 2 @abc} {-1 -2} parameter_test e_expr-11.6.2 "SELECT ?123, :a1" {123 ?123 124 :a1} {-123 -124} parameter_test e_expr-11.6.3 {SELECT $a, ?8, ?, $b, ?2, $c} { 1 $a 8 ?8 9 {} 10 $b 2 ?2 11 $c } {-1 -8 -9 -10 -2 -11} foreach {tn sql} [list \ 1 "SELECT ?$mvn, \$::a" \ 2 "SELECT ?$mvn, ?4, @a1" \ 3 "SELECT ?[expr $mvn-2], :bag, @123, \$x" \ ] { do_catchsql_test e_expr-11.7.$tn $sql [list 1 {too many SQL variables}] } # EVIDENCE-OF: R-14068-49671 Parameters that are not assigned values # using sqlite3_bind() are treated as NULL. # do_test e_expr-11.7.1 { set stmt [sqlite3_prepare_v2 db { SELECT ?, :a, @b, $d } -1] sqlite3_step $stmt list [sqlite3_column_type $stmt 0] \ [sqlite3_column_type $stmt 1] \ [sqlite3_column_type $stmt 2] \ [sqlite3_column_type $stmt 3] } {NULL NULL NULL NULL} do_test e_expr-11.7.1 { sqlite3_finalize $stmt } SQLITE_OK #------------------------------------------------------------------------- # "Test" the syntax diagrams in lang_expr.html. # # EVIDENCE-OF: R-04177-20688 -- syntax diagram signed-number # do_execsql_test e_expr-12.1.1 { SELECT 0, +0, -0 } {0 0 0} do_execsql_test e_expr-12.1.2 { SELECT 1, +1, -1 } {1 1 -1} do_execsql_test e_expr-12.1.3 { SELECT 2, +2, -2 } {2 2 -2} do_execsql_test e_expr-12.1.4 { SELECT 1.4, +1.4, -1.4 } {1.4 1.4 -1.4} do_execsql_test e_expr-12.1.5 { SELECT 1.5e+5, +1.5e+5, -1.5e+5 } {150000.0 150000.0 -150000.0} do_execsql_test e_expr-12.1.6 { SELECT 0.0001, +0.0001, -0.0001 } {0.0001 0.0001 -0.0001} # EVIDENCE-OF: R-30740-26723 -- syntax diagram literal-value # set sqlite_current_time 1 do_execsql_test e_expr-12.2.1 {SELECT 123} {123} do_execsql_test e_expr-12.2.2 {SELECT 123.4e05} {12340000.0} do_execsql_test e_expr-12.2.3 {SELECT 'abcde'} {abcde} do_execsql_test e_expr-12.2.4 {SELECT X'414243'} {ABC} do_execsql_test e_expr-12.2.5 {SELECT NULL} {{}} do_execsql_test e_expr-12.2.6 {SELECT CURRENT_TIME} {00:00:01} do_execsql_test e_expr-12.2.7 {SELECT CURRENT_DATE} {1970-01-01} do_execsql_test e_expr-12.2.8 {SELECT CURRENT_TIMESTAMP} {{1970-01-01 00:00:01}} set sqlite_current_time 0 # EVIDENCE-OF: R-57598-59332 -- syntax diagram expr # file delete -force test.db2 execsql { ATTACH 'test.db2' AS dbname; CREATE TABLE dbname.tblname(cname); } proc glob {args} {return 1} db function glob glob db function match glob db function regexp glob foreach {tn expr} { 1 123 2 123.4e05 3 'abcde' 4 X'414243' 5 NULL 6 CURRENT_TIME 7 CURRENT_DATE 8 CURRENT_TIMESTAMP 9 ? 10 ?123 11 @hello 12 :world 13 $tcl 14 $tcl(array) 15 cname 16 tblname.cname 17 dbname.tblname.cname 18 "+ EXPR" 19 "- EXPR" 20 "NOT EXPR" 21 "~ EXPR" 22 "EXPR1 || EXPR2" 23 "EXPR1 * EXPR2" 24 "EXPR1 / EXPR2" 25 "EXPR1 % EXPR2" 26 "EXPR1 + EXPR2" 27 "EXPR1 - EXPR2" 28 "EXPR1 << EXPR2" 29 "EXPR1 >> EXPR2" 30 "EXPR1 & EXPR2" 31 "EXPR1 | EXPR2" 32 "EXPR1 < EXPR2" 33 "EXPR1 <= EXPR2" 34 "EXPR1 > EXPR2" 35 "EXPR1 >= EXPR2" 36 "EXPR1 = EXPR2" 37 "EXPR1 == EXPR2" 38 "EXPR1 != EXPR2" 39 "EXPR1 <> EXPR2" 40 "EXPR1 IS EXPR2" 41 "EXPR1 IS NOT EXPR2" 42 "EXPR1 AND EXPR2" 43 "EXPR1 OR EXPR2" 44 "count(*)" 45 "count(DISTINCT EXPR)" 46 "substr(EXPR, 10, 20)" 47 "changes()" 48 "( EXPR )" 49 "CAST ( EXPR AS integer )" 50 "CAST ( EXPR AS 'abcd' )" 51 "CAST ( EXPR AS 'ab$ $cd' )" 52 "EXPR COLLATE nocase" 53 "EXPR COLLATE binary" 54 "EXPR1 LIKE EXPR2" 55 "EXPR1 LIKE EXPR2 ESCAPE EXPR" 56 "EXPR1 GLOB EXPR2" 57 "EXPR1 GLOB EXPR2 ESCAPE EXPR" 58 "EXPR1 REGEXP EXPR2" 59 "EXPR1 REGEXP EXPR2 ESCAPE EXPR" 60 "EXPR1 MATCH EXPR2" 61 "EXPR1 MATCH EXPR2 ESCAPE EXPR" 62 "EXPR1 NOT LIKE EXPR2" 63 "EXPR1 NOT LIKE EXPR2 ESCAPE EXPR" 64 "EXPR1 NOT GLOB EXPR2" 65 "EXPR1 NOT GLOB EXPR2 ESCAPE EXPR" 66 "EXPR1 NOT REGEXP EXPR2" 67 "EXPR1 NOT REGEXP EXPR2 ESCAPE EXPR" 68 "EXPR1 NOT MATCH EXPR2" 69 "EXPR1 NOT MATCH EXPR2 ESCAPE EXPR" 70 "EXPR ISNULL" 71 "EXPR NOTNULL" 72 "EXPR NOT NULL" 73 "EXPR1 IS EXPR2" 74 "EXPR1 IS NOT EXPR2" 75 "EXPR NOT BETWEEN EXPR1 AND EXPR2" 76 "EXPR BETWEEN EXPR1 AND EXPR2" 77 "EXPR NOT IN (SELECT cname FROM tblname)" 78 "EXPR NOT IN (1)" 79 "EXPR NOT IN (1, 2, 3)" 80 "EXPR NOT IN tblname" 81 "EXPR NOT IN dbname.tblname" 82 "EXPR IN (SELECT cname FROM tblname)" 83 "EXPR IN (1)" 84 "EXPR IN (1, 2, 3)" 85 "EXPR IN tblname" 86 "EXPR IN dbname.tblname" 87 "EXISTS (SELECT cname FROM tblname)" 88 "NOT EXISTS (SELECT cname FROM tblname)" 89 "CASE EXPR WHEN EXPR1 THEN EXPR2 ELSE EXPR END" 90 "CASE EXPR WHEN EXPR1 THEN EXPR2 END" 91 "CASE EXPR WHEN EXPR1 THEN EXPR2 WHEN EXPR THEN EXPR1 ELSE EXPR2 END" 92 "CASE EXPR WHEN EXPR1 THEN EXPR2 WHEN EXPR THEN EXPR1 END" 93 "CASE WHEN EXPR1 THEN EXPR2 ELSE EXPR END" 94 "CASE WHEN EXPR1 THEN EXPR2 END" 95 "CASE WHEN EXPR1 THEN EXPR2 WHEN EXPR THEN EXPR1 ELSE EXPR2 END" 96 "CASE WHEN EXPR1 THEN EXPR2 WHEN EXPR THEN EXPR1 END" } { # If the expression string being parsed contains "EXPR2", then replace # string "EXPR1" and "EXPR2" with arbitrary SQL expressions. If it # contains "EXPR", then replace EXPR with an arbitrary SQL expression. # set elist [list $expr] if {[string match *EXPR2* $expr]} { set elist [list] foreach {e1 e2} { cname "34+22" } { lappend elist [string map [list EXPR1 $e1 EXPR2 $e2] $expr] } } if {[string match *EXPR* $expr]} { set elist2 [list] foreach el $elist { foreach e { cname "34+22" } { lappend elist2 [string map [list EXPR $e] $el] } } set elist $elist2 } set x 0 foreach e $elist { incr x do_test e_expr-12.3.$tn.$x { set rc [catch { execsql "SELECT $e FROM tblname" } msg] } {0} } } # EVIDENCE-OF: R-49462-56079 -- syntax diagram raise-function # foreach {tn raiseexpr} { 1 "RAISE(IGNORE)" 2 "RAISE(ROLLBACK, 'error message')" 3 "RAISE(ABORT, 'error message')" 4 "RAISE(FAIL, 'error message')" } { do_execsql_test e_expr-12.4.$tn " CREATE TRIGGER dbname.tr$tn BEFORE DELETE ON tblname BEGIN SELECT $raiseexpr ; END; " {} } #------------------------------------------------------------------------- # Test the statements related to the BETWEEN operator. # # EVIDENCE-OF: R-40079-54503 The BETWEEN operator is logically # equivalent to a pair of comparisons. "x BETWEEN y AND z" is equivalent # to "x>=y AND x<=z" except that with BETWEEN, the x expression is # only evaluated once. # db func x x proc x {} { incr ::xcount ; return [expr $::x] } foreach {tn x expr res nEval} { 1 10 "x() >= 5 AND x() <= 15" 1 2 2 10 "x() BETWEEN 5 AND 15" 1 1 3 5 "x() >= 5 AND x() <= 5" 1 2 4 5 "x() BETWEEN 5 AND 5" 1 1 } { do_test e_expr-13.1.$tn { set ::xcount 0 set a [execsql "SELECT $expr"] list $::xcount $a } [list $nEval $res] } # EVIDENCE-OF: R-05155-34454 The precedence of the BETWEEN operator is # the same as the precedence as operators == and != and LIKE and groups # left to right. # # Therefore, BETWEEN groups more tightly than operator "AND", but less # so than "<". # do_execsql_test e_expr-13.2.1 { SELECT 1 == 10 BETWEEN 0 AND 2 } 1 do_execsql_test e_expr-13.2.2 { SELECT (1 == 10) BETWEEN 0 AND 2 } 1 do_execsql_test e_expr-13.2.3 { SELECT 1 == (10 BETWEEN 0 AND 2) } 0 do_execsql_test e_expr-13.2.4 { SELECT 6 BETWEEN 4 AND 8 == 1 } 1 do_execsql_test e_expr-13.2.5 { SELECT (6 BETWEEN 4 AND 8) == 1 } 1 do_execsql_test e_expr-13.2.6 { SELECT 6 BETWEEN 4 AND (8 == 1) } 0 do_execsql_test e_expr-13.2.7 { SELECT 5 BETWEEN 0 AND 0 != 1 } 1 do_execsql_test e_expr-13.2.8 { SELECT (5 BETWEEN 0 AND 0) != 1 } 1 do_execsql_test e_expr-13.2.9 { SELECT 5 BETWEEN 0 AND (0 != 1) } 0 do_execsql_test e_expr-13.2.10 { SELECT 1 != 0 BETWEEN 0 AND 2 } 1 do_execsql_test e_expr-13.2.11 { SELECT (1 != 0) BETWEEN 0 AND 2 } 1 do_execsql_test e_expr-13.2.12 { SELECT 1 != (0 BETWEEN 0 AND 2) } 0 do_execsql_test e_expr-13.2.13 { SELECT 1 LIKE 10 BETWEEN 0 AND 2 } 1 do_execsql_test e_expr-13.2.14 { SELECT (1 LIKE 10) BETWEEN 0 AND 2 } 1 do_execsql_test e_expr-13.2.15 { SELECT 1 LIKE (10 BETWEEN 0 AND 2) } 0 do_execsql_test e_expr-13.2.16 { SELECT 6 BETWEEN 4 AND 8 LIKE 1 } 1 do_execsql_test e_expr-13.2.17 { SELECT (6 BETWEEN 4 AND 8) LIKE 1 } 1 do_execsql_test e_expr-13.2.18 { SELECT 6 BETWEEN 4 AND (8 LIKE 1) } 0 do_execsql_test e_expr-13.2.19 { SELECT 0 AND 0 BETWEEN 0 AND 1 } 0 do_execsql_test e_expr-13.2.20 { SELECT 0 AND (0 BETWEEN 0 AND 1) } 0 do_execsql_test e_expr-13.2.21 { SELECT (0 AND 0) BETWEEN 0 AND 1 } 1 do_execsql_test e_expr-13.2.22 { SELECT 0 BETWEEN -1 AND 1 AND 0 } 0 do_execsql_test e_expr-13.2.23 { SELECT (0 BETWEEN -1 AND 1) AND 0 } 0 do_execsql_test e_expr-13.2.24 { SELECT 0 BETWEEN -1 AND (1 AND 0) } 1 do_execsql_test e_expr-13.2.25 { SELECT 2 < 3 BETWEEN 0 AND 1 } 1 do_execsql_test e_expr-13.2.26 { SELECT (2 < 3) BETWEEN 0 AND 1 } 1 do_execsql_test e_expr-13.2.27 { SELECT 2 < (3 BETWEEN 0 AND 1) } 0 do_execsql_test e_expr-13.2.28 { SELECT 2 BETWEEN 1 AND 2 < 3 } 0 do_execsql_test e_expr-13.2.29 { SELECT 2 BETWEEN 1 AND (2 < 3) } 0 do_execsql_test e_expr-13.2.30 { SELECT (2 BETWEEN 1 AND 2) < 3 } 1 finish_test |
Changes to test/exclusive.test.
︙ | ︙ | |||
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | # a transaction. # # These tests are not run on windows because the windows backend # opens the journal file for exclusive access, preventing its contents # from being inspected externally. # if {$tcl_platform(platform) != "windows"} { proc filestate {fname} { set exists 0 set content 0 if {[file exists $fname]} { set exists 1 set hdr [hexio_read $fname 0 28] set content [expr {0==[string match $hdr [string repeat 0 56]]}] } list $exists $content } do_test exclusive-3.0 { filestate test.db-journal } {0 0} do_test exclusive-3.1 { execsql { PRAGMA locking_mode = exclusive; BEGIN; | > > > > > > | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | # a transaction. # # These tests are not run on windows because the windows backend # opens the journal file for exclusive access, preventing its contents # from being inspected externally. # if {$tcl_platform(platform) != "windows"} { # Return a list of two booleans (either 0 or 1). The first is true # if the named file exists. The second is true only if the file # exists and the first 28 bytes contain at least one non-zero byte. # proc filestate {fname} { set exists 0 set content 0 if {[file exists $fname]} { set exists 1 set hdr [hexio_read $fname 0 28] set content [expr {0==[string match $hdr [string repeat 0 56]]}] } list $exists $content } do_test exclusive-3.0 { filestate test.db-journal } {0 0} do_test exclusive-3.1 { execsql { PRAGMA locking_mode = exclusive; BEGIN; |
︙ | ︙ |
Added test/fallocate.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | # 2010 July 28 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl file_control_chunksize_test db main [expr 1024*1024] do_test fallocate-1.1 { execsql { PRAGMA page_size = 1024; PRAGMA auto_vacuum = 1; CREATE TABLE t1(a, b); } file size test.db } [expr 1*1024*1024] do_test fallocate-1.2 { execsql { INSERT INTO t1 VALUES(1, zeroblob(1024*900)) } file size test.db } [expr 1*1024*1024] do_test fallocate-1.3 { execsql { INSERT INTO t1 VALUES(2, zeroblob(1024*900)) } file size test.db } [expr 2*1024*1024] do_test fallocate-1.4 { execsql { DELETE FROM t1 WHERE a = 1 } file size test.db } [expr 1*1024*1024] do_test fallocate-1.5 { execsql { DELETE FROM t1 WHERE a = 2 } file size test.db } [expr 1*1024*1024] do_test fallocate-1.6 { execsql { PRAGMA freelist_count } } {0} # Start a write-transaction and read the "database file size" field from # the journal file. This field should be set to the number of pages in # the database file based on the size of the file on disk, not the actual # logical size of the database within the file. # # We need to check this to verify that if in the unlikely event a rollback # causes a database file to grow, the database grows to its previous size # on disk, not to the minimum size required to hold the database image. # do_test fallocate-1.7 { execsql { BEGIN; INSERT INTO t1 VALUES(1, 2); } if {[permutation] != "inmemory_journal"} { hexio_get_int [hexio_read test.db-journal 16 4] } else { set {} 1024 } } {1024} do_test fallocate-1.8 { execsql { COMMIT } } {} #------------------------------------------------------------------------- # The following tests - fallocate-2.* - test that things work in WAL # mode as well. # set skipwaltests [expr { [permutation]=="journaltest" || [permutation]=="inmemory_journal" }] ifcapable !wal { set skipwaltests 1 } if {!$skipwaltests} { db close file delete -force test.db sqlite3 db test.db file_control_chunksize_test db main [expr 32*1024] do_test fallocate-2.1 { execsql { PRAGMA page_size = 1024; PRAGMA journal_mode = WAL; CREATE TABLE t1(a, b); } file size test.db } [expr 32*1024] do_test fallocate-2.2 { execsql { INSERT INTO t1 VALUES(1, zeroblob(35*1024)) } execsql { PRAGMA wal_checkpoint } file size test.db } [expr 64*1024] do_test fallocate-2.3 { execsql { DELETE FROM t1 } execsql { VACUUM } file size test.db } [expr 64*1024] do_test fallocate-2.4 { execsql { PRAGMA wal_checkpoint } file size test.db } [expr 32*1024] do_test fallocate-2.5 { execsql { INSERT INTO t1 VALUES(2, randomblob(35*1024)); PRAGMA wal_checkpoint; INSERT INTO t1 VALUES(3, randomblob(128)); DELETE FROM t1 WHERE a = 2; VACUUM; } file size test.db } [expr 64*1024] do_test fallocate-2.6 { sqlite3 db2 test.db execsql { BEGIN ; SELECT count(a) FROM t1 } db2 execsql { INSERT INTO t1 VALUES(4, randomblob(128)); PRAGMA wal_checkpoint; } file size test.db } [expr 64*1024] do_test fallocate-2.7 { execsql { SELECT count(b) FROM t1 } db2 } {1} do_test fallocate-2.8 { execsql { COMMIT } db2 execsql { PRAGMA wal_checkpoint } file size test.db } [expr 32*1024] } finish_test |
Changes to test/fkey2.test.
︙ | ︙ | |||
1932 1933 1934 1935 1936 1937 1938 1939 1940 | } {1 {foreign key constraint failed}} do_test fkey2-dd08e5.1.6 { catchsql { UPDATE tdd08 SET a=a+1; } } {1 {foreign key constraint failed}} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 | } {1 {foreign key constraint failed}} do_test fkey2-dd08e5.1.6 { catchsql { UPDATE tdd08 SET a=a+1; } } {1 {foreign key constraint failed}} #------------------------------------------------------------------------- # Verify that ticket ce7c133ea6cc9ccdc1a60d80441f80b6180f5eba # fixed. # do_test fkey2-ce7c13.1.1 { execsql { CREATE TABLE tce71(a INTEGER PRIMARY KEY, b); CREATE UNIQUE INDEX ice71 ON tce71(a,b); INSERT INTO tce71 VALUES(100,200); CREATE TABLE tce72(w, x, y, FOREIGN KEY(x,y) REFERENCES tce71(a,b)); INSERT INTO tce72 VALUES(300,100,200); UPDATE tce71 set b = 200 where a = 100; SELECT * FROM tce71, tce72; } } {100 200 300 100 200} do_test fkey2-ce7c13.1.2 { catchsql { UPDATE tce71 set b = 201 where a = 100; } } {1 {foreign key constraint failed}} do_test fkey2-ce7c13.1.3 { catchsql { UPDATE tce71 set a = 101 where a = 100; } } {1 {foreign key constraint failed}} do_test fkey2-ce7c13.1.4 { execsql { CREATE TABLE tce73(a INTEGER PRIMARY KEY, b, UNIQUE(a,b)); INSERT INTO tce73 VALUES(100,200); CREATE TABLE tce74(w, x, y, FOREIGN KEY(x,y) REFERENCES tce73(a,b)); INSERT INTO tce74 VALUES(300,100,200); UPDATE tce73 set b = 200 where a = 100; SELECT * FROM tce73, tce74; } } {100 200 300 100 200} do_test fkey2-ce7c13.1.5 { catchsql { UPDATE tce73 set b = 201 where a = 100; } } {1 {foreign key constraint failed}} do_test fkey2-ce7c13.1.6 { catchsql { UPDATE tce73 set a = 101 where a = 100; } } {1 {foreign key constraint failed}} finish_test |
Changes to test/icu.test.
︙ | ︙ | |||
110 111 112 113 114 115 116 117 | # do_test icu-4.3 { execsql { SELECT name FROM fruit ORDER BY name COLLATE Lithuanian ASC; } } {apricot cherry chokecherry yamot peach plum} finish_test | > > > > > > > > > > > > > > > > > > > | 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | # do_test icu-4.3 { execsql { SELECT name FROM fruit ORDER BY name COLLATE Lithuanian ASC; } } {apricot cherry chokecherry yamot peach plum} #------------------------------------------------------------------------- # Test that it is not possible to call the ICU regex() function with # anything other than exactly two arguments. See also: # # http://src.chromium.org/viewvc/chrome/trunk/src/third_party/sqlite/icu-regexp.patch?revision=34807&view=markup # do_catchsql_test icu-5.1 { SELECT regexp('a[abc]c.*', 'abc') } {0 1} do_catchsql_test icu-5.2 { SELECT regexp('a[abc]c.*') } {1 {wrong number of arguments to function regexp()}} do_catchsql_test icu-5.3 { SELECT regexp('a[abc]c.*', 'abc', 'c') } {1 {wrong number of arguments to function regexp()}} do_catchsql_test icu-5.4 { SELECT 'abc' REGEXP 'a[abc]c.*' } {0 1} do_catchsql_test icu-5.4 { SELECT 'abc' REGEXP } {1 {near " ": syntax error}} do_catchsql_test icu-5.5 { SELECT 'abc' REGEXP, 1 } {1 {near ",": syntax error}} finish_test |
Changes to test/indexedby.test.
︙ | ︙ | |||
119 120 121 122 123 124 125 126 127 128 129 130 131 132 | # do_test indexedby-4.1 { EQP { SELECT * FROM t1, t2 WHERE a = c } } {0 0 {TABLE t1} 1 1 {TABLE t2 WITH INDEX i3}} do_test indexedby-4.2 { EQP { SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c } } {0 1 {TABLE t2} 1 0 {TABLE t1 WITH INDEX i1}} # Test embedding an INDEXED BY in a CREATE VIEW statement. This block # also tests that nothing bad happens if an index refered to by # a CREATE VIEW statement is dropped and recreated. # do_test indexedby-5.1 { execsql { | > > > > > > > > > > | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | # do_test indexedby-4.1 { EQP { SELECT * FROM t1, t2 WHERE a = c } } {0 0 {TABLE t1} 1 1 {TABLE t2 WITH INDEX i3}} do_test indexedby-4.2 { EQP { SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c } } {0 1 {TABLE t2} 1 0 {TABLE t1 WITH INDEX i1}} do_test indexedby-4.3 { catchsql { SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c } } {1 {cannot use index: i1}} do_test indexedby-4.4 { catchsql { SELECT * FROM t2 INDEXED BY i3, t1 INDEXED BY i1 WHERE a=c } } {1 {cannot use index: i3}} # Test embedding an INDEXED BY in a CREATE VIEW statement. This block # also tests that nothing bad happens if an index refered to by # a CREATE VIEW statement is dropped and recreated. # do_test indexedby-5.1 { execsql { |
︙ | ︙ |
Changes to test/ioerr5.test.
︙ | ︙ | |||
87 88 89 90 91 92 93 94 95 96 97 98 99 100 | # Dirty (at least) one of the pages in the cache. do_test ioerr5-1.$locking_mode-$iFail.1 { execsql { BEGIN EXCLUSIVE; INSERT INTO a VALUES(1, 'ABCDEFGHIJKLMNOP'); } } {} # Now try to commit the transaction. Cause an IO error to occur # within this operation, which moves the pager into the error state. # set ::sqlite_io_error_persist 1 set ::sqlite_io_error_pending $iFail do_test ioerr5-1.$locking_mode-$iFail.2 { | > > > > > > > > > | 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | # Dirty (at least) one of the pages in the cache. do_test ioerr5-1.$locking_mode-$iFail.1 { execsql { BEGIN EXCLUSIVE; INSERT INTO a VALUES(1, 'ABCDEFGHIJKLMNOP'); } } {} # Open a read-only cursor on table "a". If the COMMIT below is # interrupted by a persistent IO error, the pager will transition to # PAGER_ERROR state. If there are no other read-only cursors open, # from there the pager immediately discards all cached data and # switches to PAGER_OPEN state. This read-only cursor stops that # from happening, leaving the pager stuck in PAGER_ERROR state. # set channel [db incrblob -readonly a Name [db last_insert_rowid]] # Now try to commit the transaction. Cause an IO error to occur # within this operation, which moves the pager into the error state. # set ::sqlite_io_error_persist 1 set ::sqlite_io_error_pending $iFail do_test ioerr5-1.$locking_mode-$iFail.2 { |
︙ | ︙ | |||
114 115 116 117 118 119 120 | # Set a very low soft-limit and then try to compile an SQL statement # from UTF-16 text. To do this, SQLite will need to reclaim memory # from the pager that is in error state. Including that associated # with the dirty page. # do_test ioerr5-1.$locking_mode-$iFail.3 { | < < | < < < < | < < < < < | < < < | | 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | # Set a very low soft-limit and then try to compile an SQL statement # from UTF-16 text. To do this, SQLite will need to reclaim memory # from the pager that is in error state. Including that associated # with the dirty page. # do_test ioerr5-1.$locking_mode-$iFail.3 { sqlite3_soft_heap_limit 1024 compilesql16 "SELECT 10" } {} close $channel # Ensure that nothing was written to the database while reclaiming # memory from the pager in error state. # do_test ioerr5-1.$locking_mode-$iFail.4 { set fd [open test.db] fconfigure $fd -translation binary -encoding binary set zDatabase2 [read $fd] close $fd expr {$zDatabase eq $zDatabase2} } {1} if {$rc eq [list 0 {}]} { do_test ioerr5.1-$locking_mode-$iFail.3 { execsql { SELECT count(*) FROM a } } [expr $nRow+1] break } } |
︙ | ︙ |
Changes to test/jrnlmode.test.
︙ | ︙ | |||
519 520 521 522 523 524 525 526 527 | PRAGMA page_size = 1024; PRAGMA user_version = 5; PRAGMA user_version; } } {memory 5} do_test jrnlmode-7.2 { file size test.db } {1024} } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | PRAGMA page_size = 1024; PRAGMA user_version = 5; PRAGMA user_version; } } {memory 5} do_test jrnlmode-7.2 { file size test.db } {1024} } do_execsql_test jrnlmode-8.1 { PRAGMA locking_mode=EXCLUSIVE } {exclusive} do_execsql_test jrnlmode-8.2 { CREATE TABLE t1(x) } {} do_execsql_test jrnlmode-8.3 { INSERT INTO t1 VALUES(123) } {} do_execsql_test jrnlmode-8.4 { SELECT * FROM t1 } {123} do_execsql_test jrnlmode-8.5 { PRAGMA journal_mode=PERSIST } {persist} do_execsql_test jrnlmode-8.6 { PRAGMA journal_mode=DELETE } {delete} do_execsql_test jrnlmode-8.7 { PRAGMA journal_mode=TRUNCATE } {truncate} do_execsql_test jrnlmode-8.8 { PRAGMA journal_mode=DELETE } {delete} do_execsql_test jrnlmode-8.9 { CREATE TABLE t2(y) } {} do_execsql_test jrnlmode-8.10 { INSERT INTO t2 VALUES(456) } {} do_execsql_test jrnlmode-8.11 { SELECT * FROM t1, t2 } {123 456} do_execsql_test jrnlmode-8.12 { PRAGMA locking_mode=NORMAL } {normal} do_execsql_test jrnlmode-8.13 { PRAGMA journal_mode=PERSIST } {persist} do_execsql_test jrnlmode-8.14 { PRAGMA journal_mode=TRUNCATE } {truncate} do_execsql_test jrnlmode-8.15 { PRAGMA journal_mode=PERSIST } {persist} do_execsql_test jrnlmode-8.16 { PRAGMA journal_mode=DELETE } {delete} do_execsql_test jrnlmode-8.17 { PRAGMA journal_mode=TRUNCATE } {truncate} do_execsql_test jrnlmode-8.18 { PRAGMA locking_mode=EXCLUSIVE } {exclusive} do_execsql_test jrnlmode-8.19 { CREATE TABLE t3(z) } {} do_execsql_test jrnlmode-8.20 { BEGIN IMMEDIATE } {} do_execsql_test jrnlmode-8.21 { PRAGMA journal_mode=DELETE } {delete} do_execsql_test jrnlmode-8.22 { COMMIT } {} do_execsql_test jrnlmode-8.23 { PRAGMA journal_mode=DELETE } {delete} do_execsql_test jrnlmode-8.24 { PRAGMA journal_mode=TRUNCATE } {truncate} do_execsql_test jrnlmode-8.25 { PRAGMA locking_mode=NORMAL } {normal} do_execsql_test jrnlmode-8.26 { CREATE TABLE t4(w) } {} do_execsql_test jrnlmode-8.27 { BEGIN IMMEDIATE } {} do_execsql_test jrnlmode-8.28 { PRAGMA journal_mode=DELETE } {delete} do_execsql_test jrnlmode-8.29 { COMMIT } {} do_execsql_test jrnlmode-8.30 { PRAGMA journal_mode=DELETE } {delete} finish_test |
Changes to test/like.test.
︙ | ︙ | |||
189 190 191 192 193 194 195 196 197 198 199 200 201 202 | queryplan { SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1; } } {abc abcd nosort {} i1} do_test like-3.4 { set sqlite_like_count } 0 # Partial optimization when the pattern does not end in '%' # do_test like-3.5 { set sqlite_like_count 0 queryplan { SELECT x FROM t1 WHERE x LIKE 'a_c' ORDER BY 1; | > > > > > > > > > > > > > > > > > > > > > > > > > | 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | queryplan { SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1; } } {abc abcd nosort {} i1} do_test like-3.4 { set sqlite_like_count } 0 # The LIKE optimization still works when the RHS is a string with no # wildcard. Ticket [e090183531fc2747] # do_test like-3.4.2 { queryplan { SELECT x FROM t1 WHERE x LIKE 'a' ORDER BY 1; } } {a nosort {} i1} do_test like-3.4.3 { queryplan { SELECT x FROM t1 WHERE x LIKE 'ab' ORDER BY 1; } } {ab nosort {} i1} do_test like-3.4.4 { queryplan { SELECT x FROM t1 WHERE x LIKE 'abcd' ORDER BY 1; } } {abcd nosort {} i1} do_test like-3.4.5 { queryplan { SELECT x FROM t1 WHERE x LIKE 'abcde' ORDER BY 1; } } {nosort {} i1} # Partial optimization when the pattern does not end in '%' # do_test like-3.5 { set sqlite_like_count 0 queryplan { SELECT x FROM t1 WHERE x LIKE 'a_c' ORDER BY 1; |
︙ | ︙ | |||
304 305 306 307 308 309 310 311 312 313 314 315 316 317 | PRAGMA case_sensitive_like=off; SELECT x FROM t1 WHERE x GLOB 'a[bc]d' ORDER BY 1; } } {abd acd nosort {} i1} do_test like-3.24 { set sqlite_like_count } 6 # No optimization if the LHS of the LIKE is not a column name or # if the RHS is not a string. # do_test like-4.1 { execsql {PRAGMA case_sensitive_like=on} set sqlite_like_count 0 | > > > > > > > > > > > > > > > > > > > > | 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | PRAGMA case_sensitive_like=off; SELECT x FROM t1 WHERE x GLOB 'a[bc]d' ORDER BY 1; } } {abd acd nosort {} i1} do_test like-3.24 { set sqlite_like_count } 6 # GLOB optimization when there is no wildcard. Ticket [e090183531fc2747] # do_test like-3.25 { queryplan { SELECT x FROM t1 WHERE x GLOB 'a' ORDER BY 1; } } {a nosort {} i1} do_test like-3.26 { queryplan { SELECT x FROM t1 WHERE x GLOB 'abcd' ORDER BY 1; } } {abcd nosort {} i1} do_test like-3.27 { queryplan { SELECT x FROM t1 WHERE x GLOB 'abcde' ORDER BY 1; } } {nosort {} i1} # No optimization if the LHS of the LIKE is not a column name or # if the RHS is not a string. # do_test like-4.1 { execsql {PRAGMA case_sensitive_like=on} set sqlite_like_count 0 |
︙ | ︙ | |||
728 729 730 731 732 733 734 735 | } } {12 123 scan 3 like 0} do_test like-10.15 { count { SELECT a FROM t10b WHERE a GLOB '12*' ORDER BY a; } } {12 123 scan 5 like 6} | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 | } } {12 123 scan 3 like 0} do_test like-10.15 { count { SELECT a FROM t10b WHERE a GLOB '12*' ORDER BY a; } } {12 123 scan 5 like 6} # LIKE and GLOB where the default collating sequence is not appropriate # but an index with the appropriate collating sequence exists. # do_test like-11.0 { execsql { CREATE TABLE t11( a INTEGER PRIMARY KEY, b TEXT COLLATE nocase, c TEXT COLLATE binary ); INSERT INTO t11 VALUES(1, 'a','a'); INSERT INTO t11 VALUES(2, 'ab','ab'); INSERT INTO t11 VALUES(3, 'abc','abc'); INSERT INTO t11 VALUES(4, 'abcd','abcd'); INSERT INTO t11 VALUES(5, 'A','A'); INSERT INTO t11 VALUES(6, 'AB','AB'); INSERT INTO t11 VALUES(7, 'ABC','ABC'); INSERT INTO t11 VALUES(8, 'ABCD','ABCD'); INSERT INTO t11 VALUES(9, 'x','x'); INSERT INTO t11 VALUES(10, 'yz','yz'); INSERT INTO t11 VALUES(11, 'X','X'); INSERT INTO t11 VALUES(12, 'YZ','YZ'); SELECT count(*) FROM t11; } } {12} do_test like-11.1 { queryplan { PRAGMA case_sensitive_like=OFF; SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a; } } {abc abcd ABC ABCD nosort t11 *} do_test like-11.2 { queryplan { PRAGMA case_sensitive_like=ON; SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a; } } {abc abcd nosort t11 *} do_test like-11.3 { queryplan { PRAGMA case_sensitive_like=OFF; CREATE INDEX t11b ON t11(b); SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a; } } {abc abcd ABC ABCD sort {} t11b} do_test like-11.4 { queryplan { PRAGMA case_sensitive_like=ON; SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a; } } {abc abcd nosort t11 *} do_test like-11.5 { queryplan { PRAGMA case_sensitive_like=OFF; DROP INDEX t11b; CREATE INDEX t11bnc ON t11(b COLLATE nocase); SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a; } } {abc abcd ABC ABCD sort {} t11bnc} do_test like-11.6 { queryplan { CREATE INDEX t11bb ON t11(b COLLATE binary); SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a; } } {abc abcd ABC ABCD sort {} t11bnc} do_test like-11.7 { queryplan { PRAGMA case_sensitive_like=ON; SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a; } } {abc abcd sort {} t11bb} do_test like-11.8 { queryplan { PRAGMA case_sensitive_like=OFF; SELECT b FROM t11 WHERE b GLOB 'abc*' ORDER BY a; } } {abc abcd sort {} t11bb} do_test like-11.9 { queryplan { CREATE INDEX t11cnc ON t11(c COLLATE nocase); CREATE INDEX t11cb ON t11(c COLLATE binary); SELECT c FROM t11 WHERE c LIKE 'abc%' ORDER BY a; } } {abc abcd ABC ABCD sort {} t11cnc} do_test like-11.10 { queryplan { SELECT c FROM t11 WHERE c GLOB 'abc*' ORDER BY a; } } {abc abcd sort {} t11cb} finish_test |
Changes to test/lock_common.tcl.
︙ | ︙ | |||
23 24 25 26 27 28 29 30 31 32 33 34 35 36 | set tn 1 } { proc code2 {tcl} { uplevel #0 $tcl } proc code3 {tcl} { uplevel #0 $tcl } set tn 2 }] { faultsim_delete_and_reopen # Open connections [db2] and [db3]. Depending on which iteration this # is, the connections may be created in this interpreter, or in # interpreters running in other OS processes. As such, the [db2] and [db3] # commands should only be accessed within [code2] and [code3] blocks, # respectively. # | > > | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | set tn 1 } { proc code2 {tcl} { uplevel #0 $tcl } proc code3 {tcl} { uplevel #0 $tcl } set tn 2 }] { faultsim_delete_and_reopen proc code1 {tcl} { uplevel #0 $tcl } # Open connections [db2] and [db3]. Depending on which iteration this # is, the connections may be created in this interpreter, or in # interpreters running in other OS processes. As such, the [db2] and [db3] # commands should only be accessed within [code2] and [code3] blocks, # respectively. # |
︙ | ︙ |
Changes to test/notify3.test.
︙ | ︙ | |||
88 89 90 91 92 93 94 | # # This block tests that if the loading of schemas as a result of an # ATTACH fails due to locks on the schema table held by other shared-cache # connections the extended error code is SQLITE_LOCKED_SHAREDCACHE and # it is possible to use the unlock-notify mechanism to determine when # the ATTACH might succeed. # | > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | # # This block tests that if the loading of schemas as a result of an # ATTACH fails due to locks on the schema table held by other shared-cache # connections the extended error code is SQLITE_LOCKED_SHAREDCACHE and # it is possible to use the unlock-notify mechanism to determine when # the ATTACH might succeed. # # This test does not work for test-permutations that specify SQL to # be executed as part of the [sqlite3] command that opens the database. # Executing such SQL causes SQLite to load the database schema into memory # earlier than expected, causing test cases to fail. # if {[presql] == ""} { foreach { tn db1_loaded db2_loaded enable_extended_errors result error1 error2 } " 0 0 0 0 $err SQLITE_LOCKED SQLITE_LOCKED_SHAREDCACHE 1 0 0 1 $err SQLITE_LOCKED_SHAREDCACHE SQLITE_LOCKED_SHAREDCACHE 2 0 1 0 $err SQLITE_LOCKED SQLITE_LOCKED_SHAREDCACHE 3 0 1 1 $err SQLITE_LOCKED_SHAREDCACHE SQLITE_LOCKED_SHAREDCACHE 4 1 0 0 $err SQLITE_LOCKED SQLITE_LOCKED_SHAREDCACHE 5 1 0 1 $err SQLITE_LOCKED_SHAREDCACHE SQLITE_LOCKED_SHAREDCACHE 6 1 1 0 $noerr SQLITE_OK SQLITE_OK 7 1 1 1 $noerr SQLITE_OK SQLITE_OK " { do_test notify3-2.$tn.1 { catch { db1 close } catch { db2 close } sqlite3 db1 test.db sqlite3 db2 test.db2 sqlite3_extended_result_codes db1 $enable_extended_errors sqlite3_extended_result_codes db2 $enable_extended_errors if { $db1_loaded } { db1 eval "SELECT * FROM sqlite_master" } if { $db2_loaded } { db2 eval "SELECT * FROM sqlite_master" } db2 eval "BEGIN EXCLUSIVE" catchsql "ATTACH 'test.db2' AS two" db1 } $result do_test notify3-2.$tn.2 { list [sqlite3_errcode db1] [sqlite3_extended_errcode db1] } [list $error1 $error2] do_test notify3-2.$tn.3 { db1 unlock_notify {set invoked 1} set invoked 0 db2 eval commit set invoked } [lindex $result 0] } } catch { db1 close } catch { db2 close } sqlite3_enable_shared_cache $esc finish_test |
︙ | ︙ |
Changes to test/pager1.test.
︙ | ︙ | |||
498 499 500 501 502 503 504 | 3 20 32 {1 2 3 4} 4 20 33 {1 2 3 4} 5 20 65536 {1 2 3 4} 6 20 131072 {1 2 3 4} 7 24 511 {1 2 3 4} 8 24 513 {1 2 3 4} | | | 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | 3 20 32 {1 2 3 4} 4 20 33 {1 2 3 4} 5 20 65536 {1 2 3 4} 6 20 131072 {1 2 3 4} 7 24 511 {1 2 3 4} 8 24 513 {1 2 3 4} 9 24 131072 {1 2 3 4} 10 32 65536 {1 2} } { do_test pager1.4.3.$tn { faultsim_restore_and_reopen hexio_write test.db-journal $ofst [format %.8x $value] execsql { SELECT * FROM t1 } |
︙ | ︙ | |||
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 | PRAGMA max_page_count = 13; } {13} do_execsql_test pager1-6.8 { INSERT INTO t11 VALUES(3, 4); PRAGMA max_page_count = 10; } {11} do_execsql_test pager1-6.9 { COMMIT } {} #------------------------------------------------------------------------- # The following tests work with "PRAGMA journal_mode=TRUNCATE" and # "PRAGMA locking_mode=EXCLUSIVE". # # Each test is specified with 5 variables. As follows: | > > > > | 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 | PRAGMA max_page_count = 13; } {13} do_execsql_test pager1-6.8 { INSERT INTO t11 VALUES(3, 4); PRAGMA max_page_count = 10; } {11} do_execsql_test pager1-6.9 { COMMIT } {} do_execsql_test pager1-6.10 { PRAGMA max_page_count = 10 } {10} do_execsql_test pager1-6.11 { SELECT * FROM t11 } {1 2 3 4} do_execsql_test pager1-6.12 { PRAGMA max_page_count } {11} #------------------------------------------------------------------------- # The following tests work with "PRAGMA journal_mode=TRUNCATE" and # "PRAGMA locking_mode=EXCLUSIVE". # # Each test is specified with 5 variables. As follows: |
︙ | ︙ | |||
1756 1757 1758 1759 1760 1761 1762 | PRAGMA omit_readlock = 1; ATTACH 'test.db' AS two; BEGIN; SELECT * FROM t1; } } {1 2 3 4 5 6} do_test pager1-17.$tn.3.2 { | | | 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 | PRAGMA omit_readlock = 1; ATTACH 'test.db' AS two; BEGIN; SELECT * FROM t1; } } {1 2 3 4 5 6} do_test pager1-17.$tn.3.2 { csql1 { INSERT INTO t1 VALUES(3, 4) } } {1 {database is locked}} do_test pager1-17.$tn.3.3 { sql2 COMMIT } {} } #------------------------------------------------------------------------- # Test the pagers response to the b-tree layer requesting illegal page # numbers: |
︙ | ︙ | |||
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 | do_execsql_test pager1-26.1 { UPDATE tbl SET b = a_string(550); } {} db close tv delete #------------------------------------------------------------------------- do_test pager1.27.1 { faultsim_delete_and_reopen sqlite3_pager_refcounts db execsql { BEGIN; CREATE TABLE t1(a, b); } sqlite3_pager_refcounts db execsql COMMIT } {} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 | do_execsql_test pager1-26.1 { UPDATE tbl SET b = a_string(550); } {} db close tv delete #------------------------------------------------------------------------- # do_test pager1.27.1 { faultsim_delete_and_reopen sqlite3_pager_refcounts db execsql { BEGIN; CREATE TABLE t1(a, b); } sqlite3_pager_refcounts db execsql COMMIT } {} #------------------------------------------------------------------------- # Test that attempting to open a write-transaction with # locking_mode=exclusive in WAL mode fails if there are other clients on # the same database. # catch { db close } do_multiclient_test tn { do_test pager1-28.$tn.1 { sql1 { PRAGMA journal_mode = WAL; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES('a', 'b'); } } {wal} do_test pager1-28.$tn.2 { sql2 { SELECT * FROM t1 } } {a b} do_test pager1-28.$tn.3 { sql1 { PRAGMA locking_mode=exclusive } } {exclusive} do_test pager1-28.$tn.4 { csql1 { BEGIN; INSERT INTO t1 VALUES('c', 'd'); } } {1 {database is locked}} code2 { db2 close ; sqlite3 db2 test.db } do_test pager1-28.$tn.4 { sql1 { INSERT INTO t1 VALUES('c', 'd'); COMMIT } } {} } #------------------------------------------------------------------------- # Normally, when changing from journal_mode=PERSIST to DELETE the pager # attempts to delete the journal file. However, if it cannot obtain a # RESERVED lock on the database file, this step is skipped. # do_multiclient_test tn { do_test pager1-28.$tn.1 { sql1 { PRAGMA journal_mode = PERSIST; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES('a', 'b'); } } {persist} do_test pager1-28.$tn.2 { file exists test.db-journal } 1 do_test pager1-28.$tn.3 { sql1 { PRAGMA journal_mode = DELETE } } delete do_test pager1-28.$tn.4 { file exists test.db-journal } 0 do_test pager1-28.$tn.5 { sql1 { PRAGMA journal_mode = PERSIST; INSERT INTO t1 VALUES('c', 'd'); } } {persist} do_test pager1-28.$tn.6 { file exists test.db-journal } 1 do_test pager1-28.$tn.7 { sql2 { BEGIN; INSERT INTO t1 VALUES('e', 'f'); } } {} do_test pager1-28.$tn.8 { file exists test.db-journal } 1 do_test pager1-28.$tn.9 { sql1 { PRAGMA journal_mode = DELETE } } delete do_test pager1-28.$tn.10 { file exists test.db-journal } 1 do_test pager1-28.$tn.11 { sql2 COMMIT } {} do_test pager1-28.$tn.12 { file exists test.db-journal } 0 do_test pager1-28-$tn.13 { code1 { set channel [db incrblob -readonly t1 a 2] } sql1 { PRAGMA journal_mode = PERSIST; INSERT INTO t1 VALUES('g', 'h'); } } {persist} do_test pager1-28.$tn.14 { file exists test.db-journal } 1 do_test pager1-28.$tn.15 { sql2 { BEGIN; INSERT INTO t1 VALUES('e', 'f'); } } {} do_test pager1-28.$tn.16 { sql1 { PRAGMA journal_mode = DELETE } } delete do_test pager1-28.$tn.17 { file exists test.db-journal } 1 do_test pager1-28.$tn.17 { csql2 { COMMIT } } {1 {database is locked}} do_test pager1-28-$tn.18 { code1 { read $channel } } c do_test pager1-28-$tn.19 { code1 { close $channel } } {} do_test pager1-28.$tn.20 { sql2 { COMMIT } } {} } do_test pager1-29.1 { faultsim_delete_and_reopen execsql { PRAGMA page_size = 1024; PRAGMA auto_vacuum = full; PRAGMA locking_mode=exclusive; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); } file size test.db } [expr 1024*3] do_test pager1-29.2 { execsql { PRAGMA page_size = 4096; VACUUM; } file size test.db } [expr 4096*3] finish_test |
Changes to test/pager2.test.
︙ | ︙ | |||
112 113 114 115 116 117 118 119 | } [list $x ok] } } } db close tv delete finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | } [list $x ok] } } } db close tv delete #------------------------------------------------------------------------- # # pager2-2.1: Test a ROLLBACK with journal_mode=off. # pager2-2.2: Test shrinking the database (auto-vacuum) with # journal_mode=off # do_test pager2-2.1 { faultsim_delete_and_reopen execsql { CREATE TABLE t1(a, b); PRAGMA journal_mode = off; BEGIN; INSERT INTO t1 VALUES(1, 2); ROLLBACK; SELECT * FROM t1; } } {off 1 2} do_test pager2-2.2 { faultsim_delete_and_reopen execsql { PRAGMA auto_vacuum = incremental; PRAGMA page_size = 1024; PRAGMA journal_mode = off; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(zeroblob(5000), zeroblob(5000)); DELETE FROM t1; PRAGMA incremental_vacuum; } file size test.db } {3072} finish_test |
Added test/pager3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # 2010 June 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl foreach {tn sql res j} { 1 "PRAGMA journal_mode = DELETE" delete 0 2 "CREATE TABLE t1(a, b)" {} 0 3 "PRAGMA locking_mode=EXCLUSIVE" {exclusive} 0 4 "INSERT INTO t1 VALUES(1, 2)" {} 1 5 "PRAGMA locking_mode=NORMAL" {normal} 1 6 "SELECT * FROM t1" {1 2} 0 } { do_execsql_test pager3-1.$tn.1 $sql $res do_test pager3-1.$tn.2 { file exists test.db-journal } $j } finish_test |
Changes to test/pagerfault.test.
︙ | ︙ | |||
1073 1074 1075 1076 1077 1078 1079 1080 1081 | } -body { execsql { INSERT INTO t2 VALUES(2) } execsql { SELECT * FROM t2 } } -test { faultsim_test_result {0 {1 2}} faultsim_integrity_check } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 | } -body { execsql { INSERT INTO t2 VALUES(2) } execsql { SELECT * FROM t2 } } -test { faultsim_test_result {0 {1 2}} faultsim_integrity_check } #------------------------------------------------------------------------- # When a 3.7.0 client opens a write-transaction on a database file that # has been appended to or truncated by a pre-370 client, it updates # the db-size in the file header immediately. This test case provokes # errors during that operation. # do_test pagerfault-22-pre1 { faultsim_delete_and_reopen db func a_string a_string execsql { PRAGMA page_size = 1024; PRAGMA auto_vacuum = 0; CREATE TABLE t1(a); CREATE INDEX i1 ON t1(a); INSERT INTO t1 VALUES(a_string(3000)); CREATE TABLE t2(a); INSERT INTO t2 VALUES(1); } db close sql36231 { INSERT INTO t1 VALUES(a_string(3000)) } faultsim_save_and_close } {} do_faultsim_test pagerfault-22 -prep { faultsim_restore_and_reopen } -body { execsql { INSERT INTO t2 VALUES(2) } execsql { SELECT * FROM t2 } } -test { faultsim_test_result {0 {1 2}} faultsim_integrity_check } #------------------------------------------------------------------------- # Provoke an OOM error during a commit of multi-file transaction. One of # the databases written during the transaction is an in-memory database. # This test causes rollback of the in-memory database after CommitPhaseOne() # has successfully returned. i.e. the series of calls for the aborted commit # is: # # PagerCommitPhaseOne(<in-memory-db>) -> SQLITE_OK # PagerCommitPhaseOne(<file-db>) -> SQLITE_IOERR # PagerRollback(<in-memory-db>) # PagerRollback(<file-db>) # do_faultsim_test pagerfault-23 -prep { foreach f [glob -nocomplain test.db*] { file delete -force $f } sqlite3 db :memory: db eval { ATTACH 'test.db2' AS aux; CREATE TABLE t1(a, b); CREATE TABLE aux.t2(a, b); } } -body { execsql { BEGIN; INSERT INTO t1 VALUES(1,2); INSERT INTO t2 VALUES(3,4); COMMIT; } } -test { faultsim_test_result {0 {}} faultsim_integrity_check } do_faultsim_test pagerfault-24 -prep { faultsim_delete_and_reopen db eval { PRAGMA temp_store = file } execsql { CREATE TABLE x(a, b) } } -body { execsql { CREATE TEMP TABLE t1(a, b) } } -test { faultsim_test_result {0 {}} \ {1 {unable to open a temporary database file for storing temporary tables}} set ic [db eval { PRAGMA temp.integrity_check }] if {$ic != "ok"} { error "Integrity check: $ic" } } proc lockrows {n} { if {$n==0} { return "" } db eval { SELECT * FROM t1 WHERE oid = $n } { return [lockrows [expr {$n-1}]] } } do_test pagerfault-25-pre1 { faultsim_delete_and_reopen db func a_string a_string execsql { PRAGMA page_size = 1024; PRAGMA auto_vacuum = 0; CREATE TABLE t1(a); INSERT INTO t1 VALUES(a_string(500)); INSERT INTO t1 SELECT a_string(500) FROM t1; INSERT INTO t1 SELECT a_string(500) FROM t1; INSERT INTO t1 SELECT a_string(500) FROM t1; INSERT INTO t1 SELECT a_string(500) FROM t1; INSERT INTO t1 SELECT a_string(500) FROM t1; } faultsim_save_and_close } {} do_faultsim_test pagerfault-25 -prep { faultsim_restore_and_reopen db func a_string a_string set ::channel [db incrblob -readonly t1 a 1] execsql { PRAGMA cache_size = 10; BEGIN; INSERT INTO t1 VALUES(a_string(3000)); INSERT INTO t1 VALUES(a_string(3000)); } } -body { lockrows 30 } -test { catch { lockrows 30 } catch { db eval COMMIT } close $::channel faultsim_test_result {0 {}} } do_faultsim_test pagerfault-26 -prep { faultsim_delete_and_reopen execsql { PRAGMA page_size = 1024; PRAGMA journal_mode = truncate; PRAGMA auto_vacuum = full; PRAGMA locking_mode=exclusive; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); PRAGMA page_size = 4096; } } -body { execsql { VACUUM; } } -test { faultsim_test_result {0 {}} set contents [db eval {SELECT * FROM t1}] if {$contents != "1 2"} { error "Bad database contents ($contents)" } set sz [file size test.db] if {$testrc!=0 && $sz!=1024*3 && $sz!=4096*3} { error "Expected file size to be 3072 or 12288 bytes - actual size $sz bytes" } if {$testrc==0 && $sz!=4096*3} { error "Expected file size to be 12288 bytes - actual size $sz bytes" } } finish_test |
Changes to test/permutations.test.
︙ | ︙ | |||
125 126 127 128 129 130 131 | lappend ::testsuitelist xxx test_suite "veryquick" -prefix "" -description { "Very" quick test suite. Runs in less than 5 minutes on a workstation. This test suite is the same as the "quick" tests, except that some files that test malloc and IO errors are omitted. } -files [ | | | 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | lappend ::testsuitelist xxx test_suite "veryquick" -prefix "" -description { "Very" quick test suite. Runs in less than 5 minutes on a workstation. This test suite is the same as the "quick" tests, except that some files that test malloc and IO errors are omitted. } -files [ test_set $allquicktests -exclude *malloc* *ioerr* *fault* ] test_suite "quick" -prefix "" -description { Quick test suite. Runs in around 10 minutes on a workstation. } -files [ test_set $allquicktests ] |
︙ | ︙ |
Changes to test/selectC.test.
︙ | ︙ | |||
206 207 208 209 210 211 212 213 | } {abc xxxabc def yyydef} do_test selectC-3.3 { execsql { SELECT b, max(a || b) FROM t2 WHERE (b||b||b)!='value' GROUP BY a; } } {xxx abcxxx yyy defyyy} finish_test | > > > > > > > > > > > > > > > > > > > > > > > | 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | } {abc xxxabc def yyydef} do_test selectC-3.3 { execsql { SELECT b, max(a || b) FROM t2 WHERE (b||b||b)!='value' GROUP BY a; } } {xxx abcxxx yyy defyyy} proc udf {} { incr ::udf } set ::udf 0 db function udf udf do_execsql_test selectC-4.1 { create table t_distinct_bug (a, b, c); insert into t_distinct_bug values ('1', '1', 'a'); insert into t_distinct_bug values ('1', '2', 'b'); insert into t_distinct_bug values ('1', '3', 'c'); insert into t_distinct_bug values ('1', '1', 'd'); insert into t_distinct_bug values ('1', '2', 'e'); insert into t_distinct_bug values ('1', '3', 'f'); } {} do_execsql_test selectC-4.2 { select a from (select distinct a, b from t_distinct_bug) } {1 1 1} do_execsql_test selectC-4.3 { select a, udf() from (select distinct a, b from t_distinct_bug) } {1 1 1 2 1 3} finish_test |
Changes to test/shared.test.
︙ | ︙ | |||
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 | lappend res $name } set res } {db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12 db13 db14} do_test shared-$av.14.3 { db close } {} } sqlite3_enable_shared_cache $::enable_shared_cache finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 | lappend res $name } set res } {db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12 db13 db14} do_test shared-$av.14.3 { db close } {} # Populate a database schema using connection [db]. Then drop it using # [db2]. This is to try to find any points where shared-schema elements # are allocated using the lookaside buffer of [db]. # # Mutexes are enabled for this test as that activates a couple of useful # assert() statements in the C code. # do_test shared-$av-15.1 { file delete -force test.db sqlite3 db test.db -fullmutex 1 sqlite3 db2 test.db -fullmutex 1 execsql { CREATE TABLE t1(a, b, c); CREATE INDEX i1 ON t1(a, b); CREATE VIEW v1 AS SELECT * FROM t1; CREATE VIEW v2 AS SELECT * FROM t1, v1 WHERE t1.c=v1.c GROUP BY t1.a ORDER BY v1.b; CREATE TRIGGER tr1 AFTER INSERT ON t1 WHEN new.a!=1 BEGIN DELETE FROM t1 WHERE a=5; INSERT INTO t1 VALUES(1, 2, 3); UPDATE t1 SET c=c+1; END; INSERT INTO t1 VALUES(5, 6, 7); INSERT INTO t1 VALUES(8, 9, 10); INSERT INTO t1 VALUES(11, 12, 13); ANALYZE; SELECT * FROM t1; } } {1 2 6 8 9 12 1 2 5 11 12 14 1 2 4} do_test shared-$av-15.2 { execsql { DROP TABLE t1 } db2 } {} db close db2 close } sqlite3_enable_shared_cache $::enable_shared_cache finish_test |
Changes to test/tester.tcl.
︙ | ︙ | |||
66 67 68 69 70 71 72 73 74 75 76 77 78 79 | # Commands to help create test files that run with the "WAL" and other # permutations (see file permutations.test): # # wal_is_wal_mode # wal_set_journal_mode ?DB? # wal_check_journal_mode TESTNAME?DB? # permutation # # Set the precision of FP arithmatic used by the interpreter. And # configure SQLite to take database file locks on the page that begins # 64KB into the database file instead of the one 1GB in. This means # the code that handles that special case can be tested without creating # very large database files. | > | 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | # Commands to help create test files that run with the "WAL" and other # permutations (see file permutations.test): # # wal_is_wal_mode # wal_set_journal_mode ?DB? # wal_check_journal_mode TESTNAME?DB? # permutation # presql # # Set the precision of FP arithmatic used by the interpreter. And # configure SQLite to take database file locks on the page that begins # 64KB into the database file instead of the one 1GB in. This means # the code that handles that special case can be tested without creating # very large database files. |
︙ | ︙ | |||
437 438 439 440 441 442 443 | if {$::cmdlinearg(binarylog)} { vfslog finalize binarylog } if {$sqlite_open_file_count} { puts "$sqlite_open_file_count files were left open" incr nErr } | > | | > | 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | if {$::cmdlinearg(binarylog)} { vfslog finalize binarylog } if {$sqlite_open_file_count} { puts "$sqlite_open_file_count files were left open" incr nErr } if {[lindex [sqlite3_status SQLITE_STATUS_MALLOC_COUNT 0] 1]>0 || [sqlite3_memory_used]>0} { puts "Unfreed memory: [sqlite3_memory_used] bytes in\ [lindex [sqlite3_status SQLITE_STATUS_MALLOC_COUNT 0] 1] allocations" incr nErr ifcapable memdebug||mem5||(mem3&&debug) { puts "Writing unfreed memory log to \"./memleak.txt\"" sqlite3_memdebug_dump ./memleak.txt } } else { puts "All memory allocations freed - no leaks" |
︙ | ︙ | |||
489 490 491 492 493 494 495 496 497 498 499 500 501 502 | # proc show_memstats {} { set x [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] set y [sqlite3_status SQLITE_STATUS_MALLOC_SIZE 0] set val [format {now %10d max %10d max-size %10d} \ [lindex $x 1] [lindex $x 2] [lindex $y 2]] puts "Memory used: $val" set x [sqlite3_status SQLITE_STATUS_PAGECACHE_USED 0] set y [sqlite3_status SQLITE_STATUS_PAGECACHE_SIZE 0] set val [format {now %10d max %10d max-size %10d} \ [lindex $x 1] [lindex $x 2] [lindex $y 2]] puts "Page-cache used: $val" set x [sqlite3_status SQLITE_STATUS_PAGECACHE_OVERFLOW 0] set val [format {now %10d max %10d} [lindex $x 1] [lindex $x 2]] | > > > | 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 | # proc show_memstats {} { set x [sqlite3_status SQLITE_STATUS_MEMORY_USED 0] set y [sqlite3_status SQLITE_STATUS_MALLOC_SIZE 0] set val [format {now %10d max %10d max-size %10d} \ [lindex $x 1] [lindex $x 2] [lindex $y 2]] puts "Memory used: $val" set x [sqlite3_status SQLITE_STATUS_MALLOC_COUNT 0] set val [format {now %10d max %10d} [lindex $x 1] [lindex $x 2]] puts "Allocation count: $val" set x [sqlite3_status SQLITE_STATUS_PAGECACHE_USED 0] set y [sqlite3_status SQLITE_STATUS_PAGECACHE_SIZE 0] set val [format {now %10d max %10d max-size %10d} \ [lindex $x 1] [lindex $x 2] [lindex $y 2]] puts "Page-cache used: $val" set x [sqlite3_status SQLITE_STATUS_PAGECACHE_OVERFLOW 0] set val [format {now %10d max %10d} [lindex $x 1] [lindex $x 2]] |
︙ | ︙ | |||
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 | } } proc permutation {} { set perm "" catch {set perm $::G(perm:name)} set perm } proc forced_proxy_locking {} { ifcapable lock_proxy_pragmas&&prefer_proxy_locking { set force_proxy_value 0 set force_key "SQLITE_FORCE_PROXY_LOCKING=" foreach {env_pair} [exec env] { | > > > > > | 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 | } } proc permutation {} { set perm "" catch {set perm $::G(perm:name)} set perm } proc presql {} { set presql "" catch {set presql $::G(perm:presql)} set presql } proc forced_proxy_locking {} { ifcapable lock_proxy_pragmas&&prefer_proxy_locking { set force_proxy_value 0 set force_key "SQLITE_FORCE_PROXY_LOCKING=" foreach {env_pair} [exec env] { |
︙ | ︙ |
Added test/threadtest3.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 | /* ** The code in this file runs a few multi-threaded test cases using the ** SQLite library. It can be compiled to an executable on unix using the ** following command: ** ** gcc -O2 threadtest3.c sqlite3.c -ldl -lpthread -lm ** ** Then run the compiled program. The exit status is non-zero if any tests ** failed (hopefully there is also some output to stdout to clarify what went ** wrong). ** ** There are three parts to the code in this file, in the following order: ** ** 1. Code for the SQL aggregate function md5sum() copied from ** tclsqlite.c in the SQLite distribution. The names of all the ** types and functions in this section begin with "MD5" or "md5". ** ** 2. A set of utility functions that may be used to implement ** multi-threaded test cases. These are all called by test code ** via macros that help with error reporting. The macros are defined ** immediately below this comment. ** ** 3. The test code itself. And a main() routine to drive the test ** code. */ /************************************************************************* ** Start of test code/infrastructure interface macros. ** ** The following macros constitute the interface between the test ** programs and the test infrastructure. Test infrastructure code ** does not itself use any of these macros. Test code should not ** call any of the macroname_x() functions directly. ** ** See the header comments above the corresponding macroname_x() ** function for a description of each interface. */ /* Database functions */ #define opendb(w,x,y,z) (SEL(w), opendb_x(w,x,y,z)) #define closedb(y,z) (SEL(y), closedb_x(y,z)) /* Functions to execute SQL */ #define sql_script(x,y,z) (SEL(x), sql_script_x(x,y,z)) #define integrity_check(x,y) (SEL(x), integrity_check_x(x,y)) #define execsql_i64(x,y,...) (SEL(x), execsql_i64_x(x,y,__VA_ARGS__)) #define execsql_text(x,y,z,...) (SEL(x), execsql_text_x(x,y,z,__VA_ARGS__)) #define execsql(x,y,...) (SEL(x), (void)execsql_i64_x(x,y,__VA_ARGS__)) /* Thread functions */ #define launch_thread(w,x,y,z) (SEL(w), launch_thread_x(w,x,y,z)) #define join_all_threads(y,z) (SEL(y), join_all_threads_x(y,z)) /* Timer functions */ #define setstoptime(y,z) (SEL(y), setstoptime_x(y,z)) #define timetostop(z) (SEL(z), timetostop_x(z)) /* Report/clear errors. */ #define test_error(z, ...) test_error_x(z, sqlite3_mprintf(__VA_ARGS__)) #define clear_error(y,z) clear_error_x(y, z) /* File-system operations */ #define filesize(y,z) (SEL(y), filesize_x(y,z)) #define filecopy(x,y,z) (SEL(x), filecopy_x(x,y,z)) /* ** End of test code/infrastructure interface macros. *************************************************************************/ #include <sqlite3.h> #include <unistd.h> #include <stdio.h> #include <pthread.h> #include <assert.h> #include <sys/types.h> #include <sys/stat.h> #include <string.h> #include <fcntl.h> #include <errno.h> /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ /* * If compiled on a machine that doesn't have a 32-bit integer, * you just set "uint32" to the appropriate datatype for an * unsigned 32-bit integer. For example: * * cc -Duint32='unsigned long' md5.c * */ #ifndef uint32 # define uint32 unsigned int #endif struct MD5Context { int isInit; uint32 buf[4]; uint32 bits[2]; unsigned char in[64]; }; typedef struct MD5Context MD5Context; /* * Note: this code is harmless on little-endian machines. */ static void byteReverse (unsigned char *buf, unsigned longs){ uint32 t; do { t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 | ((unsigned)buf[1]<<8 | buf[0]); *(uint32 *)buf = t; buf += 4; } while (--longs); } /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform(uint32 buf[4], const uint32 in[16]){ register uint32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ static void MD5Init(MD5Context *ctx){ ctx->isInit = 1; ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ static void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len){ uint32 t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if ( t ) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64-t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ static void MD5Final(unsigned char digest[16], MD5Context *ctx){ unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count-8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ ((uint32 *)ctx->in)[ 14 ] = ctx->bits[0]; ((uint32 *)ctx->in)[ 15 ] = ctx->bits[1]; MD5Transform(ctx->buf, (uint32 *)ctx->in); byteReverse((unsigned char *)ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(ctx)); /* In case it is sensitive */ } /* ** Convert a 128-bit MD5 digest into a 32-digit base-16 number. */ static void MD5DigestToBase16(unsigned char *digest, char *zBuf){ static char const zEncode[] = "0123456789abcdef"; int i, j; for(j=i=0; i<16; i++){ int a = digest[i]; zBuf[j++] = zEncode[(a>>4)&0xf]; zBuf[j++] = zEncode[a & 0xf]; } zBuf[j] = 0; } /* ** During testing, the special md5sum() aggregate function is available. ** inside SQLite. The following routines implement that function. */ static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){ MD5Context *p; int i; if( argc<1 ) return; p = sqlite3_aggregate_context(context, sizeof(*p)); if( p==0 ) return; if( !p->isInit ){ MD5Init(p); } for(i=0; i<argc; i++){ const char *zData = (char*)sqlite3_value_text(argv[i]); if( zData ){ MD5Update(p, (unsigned char*)zData, strlen(zData)); } } } static void md5finalize(sqlite3_context *context){ MD5Context *p; unsigned char digest[16]; char zBuf[33]; p = sqlite3_aggregate_context(context, sizeof(*p)); MD5Final(digest,p); MD5DigestToBase16(digest, zBuf); sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); } /************************************************************************* ** End of copied md5sum() code. */ typedef sqlite3_int64 i64; typedef struct Error Error; typedef struct Sqlite Sqlite; typedef struct Statement Statement; typedef struct Threadset Threadset; typedef struct Thread Thread; /* Total number of errors in this process so far. */ static int nGlobalErr = 0; /* Set to true to run in "process" instead of "thread" mode. */ static int bProcessMode = 0; struct Error { int rc; int iLine; char *zErr; }; struct Sqlite { sqlite3 *db; /* Database handle */ Statement *pCache; /* Linked list of cached statements */ int nText; /* Size of array at aText[] */ char **aText; /* Stored text results */ }; struct Statement { sqlite3_stmt *pStmt; /* Pre-compiled statement handle */ Statement *pNext; /* Next statement in linked-list */ }; struct Thread { int iTid; /* Thread number within test */ int iArg; /* Integer argument passed by caller */ pthread_t tid; /* Thread id */ char *(*xProc)(int, int); /* Thread main proc */ Thread *pNext; /* Next in this list of threads */ }; struct Threadset { int iMaxTid; /* Largest iTid value allocated so far */ Thread *pThread; /* Linked list of threads */ }; static void free_err(Error *p){ sqlite3_free(p->zErr); p->zErr = 0; p->rc = 0; } static void print_err(Error *p){ if( p->rc!=SQLITE_OK ){ printf("Error: (%d) \"%s\" at line %d\n", p->rc, p->zErr, p->iLine); nGlobalErr++; } } static void print_and_free_err(Error *p){ print_err(p); free_err(p); } static void system_error(Error *pErr, int iSys){ pErr->rc = iSys; pErr->zErr = (char *)sqlite3_malloc(512); strerror_r(iSys, pErr->zErr, 512); pErr->zErr[511] = '\0'; } static void sqlite_error( Error *pErr, Sqlite *pDb, const char *zFunc ){ pErr->rc = sqlite3_errcode(pDb->db); pErr->zErr = sqlite3_mprintf( "sqlite3_%s() - %s (%d)", zFunc, sqlite3_errmsg(pDb->db), sqlite3_extended_errcode(pDb->db) ); } static void test_error_x( Error *pErr, char *zErr ){ if( pErr->rc==SQLITE_OK ){ pErr->rc = 1; pErr->zErr = zErr; }else{ sqlite3_free(zErr); } } static void clear_error_x( Error *pErr, int rc ){ if( pErr->rc==rc ){ pErr->rc = SQLITE_OK; sqlite3_free(pErr->zErr); pErr->zErr = 0; } } static int busyhandler(void *pArg, int n){ usleep(10*1000); return 1; } static void opendb_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* OUT: Database handle */ const char *zFile, /* Database file name */ int bDelete /* True to delete db file before opening */ ){ if( pErr->rc==SQLITE_OK ){ int rc; if( bDelete ) unlink(zFile); rc = sqlite3_open(zFile, &pDb->db); if( rc ){ sqlite_error(pErr, pDb, "open"); sqlite3_close(pDb->db); pDb->db = 0; }else{ sqlite3_create_function( pDb->db, "md5sum", -1, SQLITE_UTF8, 0, 0, md5step, md5finalize ); sqlite3_busy_handler(pDb->db, busyhandler, 0); sqlite3_exec(pDb->db, "PRAGMA synchronous=OFF", 0, 0, 0); } } } static void closedb_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb /* OUT: Database handle */ ){ int rc; int i; Statement *pIter; Statement *pNext; for(pIter=pDb->pCache; pIter; pIter=pNext){ pNext = pIter->pNext; sqlite3_finalize(pIter->pStmt); sqlite3_free(pIter); } for(i=0; i<pDb->nText; i++){ sqlite3_free(pDb->aText[i]); } sqlite3_free(pDb->aText); rc = sqlite3_close(pDb->db); if( rc && pErr->rc==SQLITE_OK ){ pErr->zErr = sqlite3_mprintf("%s", sqlite3_errmsg(pDb->db)); } memset(pDb, 0, sizeof(Sqlite)); } static void sql_script_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ const char *zSql /* SQL script to execute */ ){ if( pErr->rc==SQLITE_OK ){ pErr->rc = sqlite3_exec(pDb->db, zSql, 0, 0, &pErr->zErr); } } static Statement *getSqlStatement( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ const char *zSql /* SQL statement */ ){ Statement *pRet; int rc; for(pRet=pDb->pCache; pRet; pRet=pRet->pNext){ if( 0==strcmp(sqlite3_sql(pRet->pStmt), zSql) ){ return pRet; } } pRet = sqlite3_malloc(sizeof(Statement)); rc = sqlite3_prepare_v2(pDb->db, zSql, -1, &pRet->pStmt, 0); if( rc!=SQLITE_OK ){ sqlite_error(pErr, pDb, "prepare_v2"); return 0; } assert( 0==strcmp(sqlite3_sql(pRet->pStmt), zSql) ); pRet->pNext = pDb->pCache; pDb->pCache = pRet; return pRet; } static sqlite3_stmt *getAndBindSqlStatement( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ va_list ap /* SQL followed by parameters */ ){ Statement *pStatement; /* The SQLite statement wrapper */ sqlite3_stmt *pStmt; /* The SQLite statement to return */ int i; /* Used to iterate through parameters */ pStatement = getSqlStatement(pErr, pDb, va_arg(ap, const char *)); if( !pStatement ) return 0; pStmt = pStatement->pStmt; for(i=1; i<=sqlite3_bind_parameter_count(pStmt); i++){ const char *zName = sqlite3_bind_parameter_name(pStmt, i); void * pArg = va_arg(ap, void*); switch( zName[1] ){ case 'i': sqlite3_bind_int64(pStmt, i, *(i64 *)pArg); break; default: pErr->rc = 1; pErr->zErr = sqlite3_mprintf("Cannot discern type: \"%s\"", zName); pStmt = 0; break; } } return pStmt; } static i64 execsql_i64_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ ... /* SQL and pointers to parameter values */ ){ i64 iRet = 0; if( pErr->rc==SQLITE_OK ){ sqlite3_stmt *pStmt; /* SQL statement to execute */ va_list ap; /* ... arguments */ int i; /* Used to iterate through parameters */ va_start(ap, pDb); pStmt = getAndBindSqlStatement(pErr, pDb, ap); if( pStmt ){ int rc; int first = 1; while( SQLITE_ROW==sqlite3_step(pStmt) ){ if( first && sqlite3_column_count(pStmt)>0 ){ iRet = sqlite3_column_int64(pStmt, 0); } first = 0; } if( SQLITE_OK!=sqlite3_reset(pStmt) ){ sqlite_error(pErr, pDb, "reset"); } } va_end(ap); } return iRet; } static char * execsql_text_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ int iSlot, /* Db handle slot to store text in */ ... /* SQL and pointers to parameter values */ ){ char *zRet = 0; if( iSlot>=pDb->nText ){ int nByte = sizeof(char *)*(iSlot+1); pDb->aText = (char **)sqlite3_realloc(pDb->aText, nByte); memset(&pDb->aText[pDb->nText], 0, sizeof(char*)*(iSlot+1-pDb->nText)); pDb->nText = iSlot+1; } if( pErr->rc==SQLITE_OK ){ sqlite3_stmt *pStmt; /* SQL statement to execute */ va_list ap; /* ... arguments */ int i; /* Used to iterate through parameters */ va_start(ap, iSlot); pStmt = getAndBindSqlStatement(pErr, pDb, ap); if( pStmt ){ int rc; int first = 1; while( SQLITE_ROW==sqlite3_step(pStmt) ){ if( first && sqlite3_column_count(pStmt)>0 ){ zRet = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0)); sqlite3_free(pDb->aText[iSlot]); pDb->aText[iSlot] = zRet; } first = 0; } if( SQLITE_OK!=sqlite3_reset(pStmt) ){ sqlite_error(pErr, pDb, "reset"); } } va_end(ap); } return zRet; } static void integrity_check_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb /* Database handle */ ){ if( pErr->rc==SQLITE_OK ){ Statement *pStatement; /* Statement to execute */ int rc; /* Return code */ char *zErr = 0; /* Integrity check error */ pStatement = getSqlStatement(pErr, pDb, "PRAGMA integrity_check"); if( pStatement ){ sqlite3_stmt *pStmt = pStatement->pStmt; while( SQLITE_ROW==sqlite3_step(pStmt) ){ const char *z = sqlite3_column_text(pStmt, 0); if( strcmp(z, "ok") ){ if( zErr==0 ){ zErr = sqlite3_mprintf("%s", z); }else{ zErr = sqlite3_mprintf("%z\n%s", zErr, z); } } } sqlite3_reset(pStmt); if( zErr ){ pErr->zErr = zErr; pErr->rc = 1; } } } } static void *launch_thread_main(void *pArg){ Thread *p = (Thread *)pArg; return (void *)p->xProc(p->iTid, p->iArg); } static void launch_thread_x( Error *pErr, /* IN/OUT: Error code */ Threadset *pThreads, /* Thread set */ char *(*xProc)(int, int), /* Proc to run */ int iArg /* Argument passed to thread proc */ ){ if( pErr->rc==SQLITE_OK ){ int iTid = ++pThreads->iMaxTid; Thread *p; int rc; p = (Thread *)sqlite3_malloc(sizeof(Thread)); memset(p, 0, sizeof(Thread)); p->iTid = iTid; p->iArg = iArg; p->xProc = xProc; rc = pthread_create(&p->tid, NULL, launch_thread_main, (void *)p); if( rc!=0 ){ system_error(pErr, rc); sqlite3_free(p); }else{ p->pNext = pThreads->pThread; pThreads->pThread = p; } } } static void join_all_threads_x( Error *pErr, /* IN/OUT: Error code */ Threadset *pThreads /* Thread set */ ){ Thread *p; Thread *pNext; for(p=pThreads->pThread; p; p=pNext){ void *ret; pNext = p->pNext; int rc; rc = pthread_join(p->tid, &ret); if( rc!=0 ){ if( pErr->rc==SQLITE_OK ) system_error(pErr, rc); }else{ printf("Thread %d says: %s\n", p->iTid, (ret==0 ? "..." : (char *)ret)); } sqlite3_free(p); } pThreads->pThread = 0; } static i64 filesize_x( Error *pErr, const char *zFile ){ i64 iRet = 0; if( pErr->rc==SQLITE_OK ){ struct stat sStat; if( stat(zFile, &sStat) ){ iRet = -1; }else{ iRet = sStat.st_size; } } return iRet; } static void filecopy_x( Error *pErr, const char *zFrom, const char *zTo ){ if( pErr->rc==SQLITE_OK ){ i64 nByte = filesize_x(pErr, zFrom); if( nByte<0 ){ test_error_x(pErr, sqlite3_mprintf("no such file: %s", zFrom)); }else{ i64 iOff; char aBuf[1024]; int fd1; int fd2; unlink(zTo); fd1 = open(zFrom, O_RDONLY); if( fd1<0 ){ system_error(pErr, errno); return; } fd2 = open(zTo, O_RDWR|O_CREAT|O_EXCL, 0644); if( fd2<0 ){ system_error(pErr, errno); close(fd1); return; } iOff = 0; while( iOff<nByte ){ int nCopy = sizeof(aBuf); if( nCopy+iOff>nByte ){ nCopy = nByte - iOff; } if( nCopy!=read(fd1, aBuf, nCopy) ){ system_error(pErr, errno); break; } if( nCopy!=write(fd2, aBuf, nCopy) ){ system_error(pErr, errno); break; } iOff += nCopy; } close(fd1); close(fd2); } } } /* ** Used by setstoptime() and timetostop(). */ static double timelimit = 0.0; static sqlite3_vfs *pTimelimitVfs = 0; static void setstoptime_x( Error *pErr, /* IN/OUT: Error code */ int nMs /* Milliseconds until "stop time" */ ){ if( pErr->rc==SQLITE_OK ){ double t; int rc; pTimelimitVfs = sqlite3_vfs_find(0); rc = pTimelimitVfs->xCurrentTime(pTimelimitVfs, &t); if( rc!=SQLITE_OK ){ pErr->rc = rc; }else{ timelimit = t + ((double)nMs)/(1000.0*60.0*60.0*24.0); } } } static int timetostop_x( Error *pErr /* IN/OUT: Error code */ ){ int ret = 1; if( pErr->rc==SQLITE_OK ){ double t; int rc; rc = pTimelimitVfs->xCurrentTime(pTimelimitVfs, &t); if( rc!=SQLITE_OK ){ pErr->rc = rc; }else{ ret = (t >= timelimit); } } return ret; } /* ** The "Set Error Line" macro. */ #define SEL(e) ((e)->iLine = ((e)->rc ? (e)->iLine : __LINE__)) /************************************************************************* ************************************************************************** ************************************************************************** ** End infrastructure. Begin tests. */ #define WALTHREAD1_NTHREAD 10 #define WALTHREAD3_NTHREAD 6 static char *walthread1_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ int nIter = 0; /* Iterations so far */ opendb(&err, &db, "test.db", 0); while( !timetostop(&err) ){ const char *azSql[] = { "SELECT md5sum(x) FROM t1 WHERE rowid != (SELECT max(rowid) FROM t1)", "SELECT x FROM t1 WHERE rowid = (SELECT max(rowid) FROM t1)", }; char *z1, *z2, *z3; execsql(&err, &db, "BEGIN"); integrity_check(&err, &db); z1 = execsql_text(&err, &db, 1, azSql[0]); z2 = execsql_text(&err, &db, 2, azSql[1]); z3 = execsql_text(&err, &db, 3, azSql[0]); execsql(&err, &db, "COMMIT"); if( strcmp(z1, z2) || strcmp(z1, z3) ){ test_error(&err, "Failed read: %s %s %s", z1, z2, z3); } sql_script(&err, &db, "BEGIN;" "INSERT INTO t1 VALUES(randomblob(100));" "INSERT INTO t1 VALUES(randomblob(100));" "INSERT INTO t1 SELECT md5sum(x) FROM t1;" "COMMIT;" ); nIter++; } closedb(&err, &db); print_and_free_err(&err); return sqlite3_mprintf("%d iterations", nIter); } static char *walthread1_ckpt_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ int nCkpt = 0; /* Checkpoints so far */ opendb(&err, &db, "test.db", 0); while( !timetostop(&err) ){ usleep(500*1000); execsql(&err, &db, "PRAGMA wal_checkpoint"); if( err.rc==SQLITE_OK ) nCkpt++; clear_error(&err, SQLITE_BUSY); } closedb(&err, &db); print_and_free_err(&err); return sqlite3_mprintf("%d checkpoints", nCkpt); } static void walthread1(int nMs){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ Threadset threads = {0}; /* Test threads */ int i; /* Iterator variable */ opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "PRAGMA journal_mode = WAL;" "CREATE TABLE t1(x PRIMARY KEY);" "INSERT INTO t1 VALUES(randomblob(100));" "INSERT INTO t1 VALUES(randomblob(100));" "INSERT INTO t1 SELECT md5sum(x) FROM t1;" ); setstoptime(&err, nMs); for(i=0; i<WALTHREAD1_NTHREAD; i++){ launch_thread(&err, &threads, walthread1_thread, 0); } launch_thread(&err, &threads, walthread1_ckpt_thread, 0); join_all_threads(&err, &threads); print_and_free_err(&err); } static char *walthread2_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ int anTrans[2] = {0, 0}; /* Number of WAL and Rollback transactions */ const char *zJournal = "PRAGMA journal_mode = WAL"; if( iArg ){ zJournal = "PRAGMA journal_mode = DELETE"; } while( !timetostop(&err) ){ int journal_exists = 0; int wal_exists = 0; opendb(&err, &db, "test.db", 0); sql_script(&err, &db, zJournal); clear_error(&err, SQLITE_BUSY); sql_script(&err, &db, "BEGIN"); sql_script(&err, &db, "INSERT INTO t1 VALUES(NULL, randomblob(100))"); journal_exists = (filesize(&err, "test.db-journal") >= 0); wal_exists = (filesize(&err, "test.db-wal") >= 0); if( (journal_exists+wal_exists)!=1 ){ test_error(&err, "File system looks incorrect (%d, %d)", journal_exists, wal_exists ); } anTrans[journal_exists]++; sql_script(&err, &db, "COMMIT"); integrity_check(&err, &db); closedb(&err, &db); } print_and_free_err(&err); return sqlite3_mprintf("W %d R %d", anTrans[0], anTrans[1]); } static void walthread2(int nMs){ Error err = {0}; Sqlite db = {0}; Threadset threads = {0}; opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "CREATE TABLE t1(x INTEGER PRIMARY KEY, y UNIQUE)"); closedb(&err, &db); setstoptime(&err, nMs); launch_thread(&err, &threads, walthread2_thread, 0); launch_thread(&err, &threads, walthread2_thread, 0); launch_thread(&err, &threads, walthread2_thread, 1); launch_thread(&err, &threads, walthread2_thread, 1); join_all_threads(&err, &threads); print_and_free_err(&err); } static char *walthread3_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ i64 iNextWrite; /* Next value this thread will write */ opendb(&err, &db, "test.db", 0); sql_script(&err, &db, "PRAGMA wal_autocheckpoint = 10"); iNextWrite = iArg+1; while( 1 ){ i64 sum1; i64 sum2; int stop = 0; /* True to stop executing (test timed out) */ while( 0==(stop = timetostop(&err)) ){ i64 iMax = execsql_i64(&err, &db, "SELECT max(cnt) FROM t1"); if( iMax+1==iNextWrite ) break; } if( stop ) break; sum1 = execsql_i64(&err, &db, "SELECT sum(cnt) FROM t1"); sum2 = execsql_i64(&err, &db, "SELECT sum(sum1) FROM t1"); execsql_i64(&err, &db, "INSERT INTO t1 VALUES(:iNextWrite, :iSum1, :iSum2)", &iNextWrite, &sum1, &sum2 ); integrity_check(&err, &db); iNextWrite += WALTHREAD3_NTHREAD; } closedb(&err, &db); print_and_free_err(&err); return 0; } static void walthread3(int nMs){ Error err = {0}; Sqlite db = {0}; Threadset threads = {0}; int i; opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "PRAGMA journal_mode = WAL;" "CREATE TABLE t1(cnt PRIMARY KEY, sum1, sum2);" "CREATE INDEX i1 ON t1(sum1);" "CREATE INDEX i2 ON t1(sum2);" "INSERT INTO t1 VALUES(0, 0, 0);" ); closedb(&err, &db); setstoptime(&err, nMs); for(i=0; i<WALTHREAD3_NTHREAD; i++){ launch_thread(&err, &threads, walthread3_thread, i); } join_all_threads(&err, &threads); print_and_free_err(&err); } static char *walthread4_reader_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ opendb(&err, &db, "test.db", 0); while( !timetostop(&err) ){ integrity_check(&err, &db); } closedb(&err, &db); print_and_free_err(&err); return 0; } static char *walthread4_writer_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ i64 iRow = 1; opendb(&err, &db, "test.db", 0); sql_script(&err, &db, "PRAGMA wal_autocheckpoint = 15;"); while( !timetostop(&err) ){ execsql_i64( &err, &db, "REPLACE INTO t1 VALUES(:iRow, randomblob(300))", &iRow ); iRow++; if( iRow==10 ) iRow = 0; } closedb(&err, &db); print_and_free_err(&err); return 0; } static void walthread4(int nMs){ Error err = {0}; Sqlite db = {0}; Threadset threads = {0}; opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "PRAGMA journal_mode = WAL;" "CREATE TABLE t1(a INTEGER PRIMARY KEY, b UNIQUE);" ); closedb(&err, &db); setstoptime(&err, nMs); launch_thread(&err, &threads, walthread4_reader_thread, 0); launch_thread(&err, &threads, walthread4_writer_thread, 0); join_all_threads(&err, &threads); print_and_free_err(&err); } static char *walthread5_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ i64 nRow; opendb(&err, &db, "test.db", 0); nRow = execsql_i64(&err, &db, "SELECT count(*) FROM t1"); closedb(&err, &db); if( nRow!=65536 ) test_error(&err, "Bad row count: %d", (int)nRow); print_and_free_err(&err); return 0; } static void walthread5(int nMs){ Error err = {0}; Sqlite db = {0}; Threadset threads = {0}; opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "PRAGMA wal_autocheckpoint = 0;" "PRAGMA page_size = 1024;" "PRAGMA journal_mode = WAL;" "CREATE TABLE t1(x);" "BEGIN;" "INSERT INTO t1 VALUES(randomblob(900));" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 32 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 64 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 128 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 256 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 512 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 1024 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2048 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4096 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8192 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16384 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 32768 */" "INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 65536 */" "COMMIT;" ); filecopy(&err, "test.db", "test_sv.db"); filecopy(&err, "test.db-wal", "test_sv.db-wal"); closedb(&err, &db); filecopy(&err, "test_sv.db", "test.db"); filecopy(&err, "test_sv.db-wal", "test.db-wal"); if( err.rc==SQLITE_OK ){ printf(" WAL file is %d bytes,", (int)filesize(&err,"test.db-wal")); printf(" DB file is %d.\n", (int)filesize(&err,"test.db")); } setstoptime(&err, nMs); launch_thread(&err, &threads, walthread5_thread, 0); launch_thread(&err, &threads, walthread5_thread, 0); launch_thread(&err, &threads, walthread5_thread, 0); launch_thread(&err, &threads, walthread5_thread, 0); launch_thread(&err, &threads, walthread5_thread, 0); join_all_threads(&err, &threads); if( err.rc==SQLITE_OK ){ printf(" WAL file is %d bytes,", (int)filesize(&err,"test.db-wal")); printf(" DB file is %d.\n", (int)filesize(&err,"test.db")); } print_and_free_err(&err); } /*------------------------------------------------------------------------ ** Test case "cgt_pager_1" */ #define CALLGRINDTEST1_NROW 10000 static void cgt_pager_1_populate(Error *pErr, Sqlite *pDb){ const char *zInsert = "INSERT INTO t1 VALUES(:iRow, zeroblob(:iBlob))"; i64 iRow; sql_script(pErr, pDb, "BEGIN"); for(iRow=1; iRow<=CALLGRINDTEST1_NROW; iRow++){ i64 iBlob = 600 + (iRow%300); execsql(pErr, pDb, zInsert, &iRow, &iBlob); } sql_script(pErr, pDb, "COMMIT"); } static void cgt_pager_1_update(Error *pErr, Sqlite *pDb){ const char *zUpdate = "UPDATE t1 SET b = zeroblob(:iBlob) WHERE a = :iRow"; i64 iRow; sql_script(pErr, pDb, "BEGIN"); for(iRow=1; iRow<=CALLGRINDTEST1_NROW; iRow++){ i64 iBlob = 600 + ((iRow+100)%300); execsql(pErr, pDb, zUpdate, &iBlob, &iRow); } sql_script(pErr, pDb, "COMMIT"); } static void cgt_pager_1_read(Error *pErr, Sqlite *pDb){ i64 iRow; sql_script(pErr, pDb, "BEGIN"); for(iRow=1; iRow<=CALLGRINDTEST1_NROW; iRow++){ execsql(pErr, pDb, "SELECT * FROM t1 WHERE a = :iRow", &iRow); } sql_script(pErr, pDb, "COMMIT"); } static void cgt_pager_1(int nMs){ void (*xSub)(Error *, Sqlite *); Error err = {0}; Sqlite db = {0}; opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "PRAGMA cache_size = 2000;" "PRAGMA page_size = 1024;" "CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB);" ); xSub = cgt_pager_1_populate; xSub(&err, &db); xSub = cgt_pager_1_update; xSub(&err, &db); xSub = cgt_pager_1_read; xSub(&err, &db); closedb(&err, &db); print_and_free_err(&err); } int main(int argc, char **argv){ struct ThreadTest { void (*xTest)(int); const char *zTest; int nMs; } aTest[] = { { walthread1, "walthread1", 20000 }, { walthread2, "walthread2", 20000 }, { walthread3, "walthread3", 20000 }, { walthread4, "walthread4", 20000 }, { walthread5, "walthread5", 1000 }, { walthread5, "walthread5", 1000 }, { cgt_pager_1, "cgt_pager_1", 0 }, }; int i; char *zTest = 0; int nTest = 0; int bTestfound = 0; int bPrefix = 0; if( argc>2 ) goto usage; if( argc==2 ){ zTest = argv[1]; nTest = strlen(zTest); if( zTest[nTest-1]=='*' ){ nTest--; bPrefix = 1; } } sqlite3_config(SQLITE_CONFIG_MULTITHREAD); for(i=0; i<sizeof(aTest)/sizeof(aTest[0]); i++){ char const *z = aTest[i].zTest; int n = strlen(z); if( !zTest || ((bPrefix || n==nTest) && 0==strncmp(zTest, z, nTest)) ){ printf("Running %s for %d seconds...\n", z, aTest[i].nMs/1000); aTest[i].xTest(aTest[i].nMs); bTestfound++; } } if( bTestfound==0 ) goto usage; printf("Total of %d errors across all tests\n", nGlobalErr); return (nGlobalErr>0 ? 255 : 0); usage: printf("Usage: %s [testname|testprefix*]\n", argv[0]); printf("Available tests are:\n"); for(i=0; i<sizeof(aTest)/sizeof(aTest[0]); i++){ printf(" %s\n", aTest[i].zTest); } return 254; } |
Added test/tkt-f3e5abed55.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | # 2010 July 29 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl foreach f [glob -nocomplain test.db*mj*] { file delete -force $f } file delete -force test.db2 do_test tkt-f3e5abed55-1.1 { execsql { ATTACH 'test.db2' AS aux; CREATE TABLE main.t1(a, b); CREATE TABLE aux.t2(c, d); } } {} do_test tkt-f3e5abed55-1.2 { glob -nocomplain test.db*mj* } {} do_test tkt-f3e5abed55-1.3 { sqlite3 db2 test.db execsql { BEGIN; SELECT * FROM t1 } db2 } {} do_test tkt-f3e5abed55-1.4 { execsql { BEGIN; INSERT INTO t1 VALUES(1, 2); INSERT INTO t2 VALUES(1, 2); } catchsql COMMIT } {1 {database is locked}} do_test tkt-f3e5abed55-1.5 { execsql COMMIT db2 execsql COMMIT } {} do_test tkt-f3e5abed55-1.6 { glob -nocomplain test.db*mj* } {} foreach f [glob -nocomplain test.db*mj*] { file delete -force $f } db close db2 close # Set up a testvfs so that the next time SQLite tries to delete the # file "test.db-journal", a snapshot of the current file-system contents # is taken. # testvfs tvfs -default 1 tvfs script xDelete tvfs filter xDelete proc xDelete {method file args} { if {[file tail $file] == "test.db-journal"} { faultsim_save tvfs filter {} } return "SQLITE_OK" } sqlite3 db test.db sqlite3 db2 test.db do_test tkt-f3e5abed55-2.1 { execsql { ATTACH 'test.db2' AS aux; BEGIN; INSERT INTO t1 VALUES(3, 4); INSERT INTO t2 VALUES(3, 4); } } {} do_test tkt-f3e5abed55-2.2 { execsql { BEGIN; SELECT * FROM t1 } db2 } {1 2} do_test tkt-f3e5abed55-2.3 { catchsql COMMIT } {1 {database is locked}} do_test tkt-f3e5abed55-2.4 { execsql COMMIT db2 execsql { COMMIT; SELECT * FROM t1; SELECT * FROM t2; } } {1 2 3 4 1 2 3 4} do_test tkt-f3e5abed55-2.5 { db close db2 close faultsim_restore_and_reopen execsql { ATTACH 'test.db2' AS aux; SELECT * FROM t1; SELECT * FROM t2; } } {1 2 3 4 1 2 3 4} finish_test |
Changes to test/triggerC.test.
︙ | ︙ | |||
911 912 913 914 915 916 917 918 919 920 921 | CREATE TRIGGER tv2 INSTEAD OF INSERT ON v2 BEGIN INSERT INTO log VALUES(new.a, new.b); END; INSERT INTO v2 DEFAULT VALUES; SELECT a, b, a IS NULL, b IS NULL FROM log; } } {{} {} 1 1} finish_test | > > > > > > > > > > > > > > > > > > > > > | 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 | CREATE TRIGGER tv2 INSTEAD OF INSERT ON v2 BEGIN INSERT INTO log VALUES(new.a, new.b); END; INSERT INTO v2 DEFAULT VALUES; SELECT a, b, a IS NULL, b IS NULL FROM log; } } {{} {} 1 1} do_test triggerC-12.1 { db close file delete -force test.db sqlite3 db test.db execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN SELECT 1 ; END ; SELECT count(*) FROM sqlite_master; } } {2} do_test triggerC-12.2 { db eval { SELECT * FROM t1 } { if {$a == 3} { execsql { DROP TRIGGER tr1 } } } execsql { SELECT count(*) FROM sqlite_master } } {1} finish_test |
Changes to test/wal.test.
︙ | ︙ | |||
58 59 60 61 62 63 64 | # wal-2.*: Test MVCC with one reader, one writer. # wal-3.*: Test transaction rollback. # wal-4.*: Test savepoint/statement rollback. # wal-5.*: Test the temp database. # wal-6.*: Test creating databases with different page sizes. # # | | | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | # wal-2.*: Test MVCC with one reader, one writer. # wal-3.*: Test transaction rollback. # wal-4.*: Test savepoint/statement rollback. # wal-5.*: Test the temp database. # wal-6.*: Test creating databases with different page sizes. # # # do_test wal-0.1 { execsql { PRAGMA auto_vacuum = 0 } execsql { PRAGMA synchronous = normal } execsql { PRAGMA journal_mode = wal } } {wal} do_test wal-0.2 { file size test.db |
︙ | ︙ | |||
1239 1240 1241 1242 1243 1244 1245 | 3 512 1 4 1024 1 5 2048 1 6 4096 1 7 8192 1 8 16384 1 9 32768 1 | | > | 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 | 3 512 1 4 1024 1 5 2048 1 6 4096 1 7 8192 1 8 16384 1 9 32768 1 10 65536 1 11 131072 0 11 1016 0 } { if {$::SQLITE_MAX_PAGE_SIZE < $pgsz} { set works 0 } |
︙ | ︙ | |||
1442 1443 1444 1445 1446 1447 1448 1449 1450 | COMMIT; SELECT * FROM t1; } } {1 2 3 4 5 6 7 8 9 10 11 12} do_test wal-21.3 { execsql { PRAGMA integrity_check } } {ok} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 | COMMIT; SELECT * FROM t1; } } {1 2 3 4 5 6 7 8 9 10 11 12} do_test wal-21.3 { execsql { PRAGMA integrity_check } } {ok} #------------------------------------------------------------------------- # Test reading and writing of databases with different page-sizes. # foreach pgsz {512 1024 2048 4096 8192 16384 32768 65536} { do_multiclient_test tn [string map [list %PGSZ% $pgsz] { do_test wal-22.%PGSZ%.$tn.1 { sql1 { PRAGMA main.page_size = %PGSZ%; PRAGMA auto_vacuum = 0; PRAGMA journal_mode = WAL; CREATE TABLE t1(x UNIQUE); INSERT INTO t1 SELECT randomblob(800); INSERT INTO t1 SELECT randomblob(800); INSERT INTO t1 SELECT randomblob(800); } } {wal} do_test wal-22.%PGSZ%.$tn.2 { sql2 { PRAGMA integrity_check } } {ok} do_test wal-22.%PGSZ%.$tn.3 { sql1 {PRAGMA wal_checkpoint} expr {[file size test.db] % %PGSZ%} } {0} }] } #------------------------------------------------------------------------- # Test that when 1 or more pages are recovered from a WAL file, # sqlite3_log() is invoked to report this to the user. # set walfile [file join [pwd] test.db-wal] catch {db close} file delete -force test.db do_test wal-23.1 { faultsim_delete_and_reopen execsql { CREATE TABLE t1(a, b); PRAGMA journal_mode = WAL; INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); } faultsim_save_and_close sqlite3_shutdown test_sqlite3_log [list lappend ::log] set ::log [list] sqlite3 db test.db execsql { SELECT * FROM t1 } } {1 2 3 4} do_test wal-23.2 { set ::log } {} do_test wal-23.3 { db close set ::log [list] faultsim_restore_and_reopen execsql { SELECT * FROM t1 } } {1 2 3 4} do_test wal-23.4 { set ::log } [list SQLITE_OK "Recovered 2 frames from WAL file $walfile"] db close sqlite3_shutdown test_sqlite3_log sqlite3_initialize finish_test |
Changes to test/wal2.test.
︙ | ︙ | |||
456 457 458 459 460 461 462 | } } {normal main exclusive temp closed} do_test wal2-6.1.5 { execsql { SELECT * FROM t1; PRAGMA lock_status; } | | | 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | } } {normal main exclusive temp closed} do_test wal2-6.1.5 { execsql { SELECT * FROM t1; PRAGMA lock_status; } } {1 2 main shared temp closed} do_test wal2-6.1.6 { execsql { INSERT INTO t1 VALUES(3, 4); PRAGMA lock_status; } } {main shared temp closed} db close |
︙ | ︙ | |||
522 523 524 525 526 527 528 | BEGIN IMMEDIATE; COMMIT; PRAGMA locking_mode = NORMAL; } execsql { SELECT * FROM t1; pragma lock_status; } | | | 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 | BEGIN IMMEDIATE; COMMIT; PRAGMA locking_mode = NORMAL; } execsql { SELECT * FROM t1; pragma lock_status; } } {1 2 3 4 main shared temp closed} do_test wal2-6.2.9 { execsql { INSERT INTO t1 VALUES(5, 6); SELECT * FROM t1; pragma lock_status; } } {1 2 3 4 5 6 main shared temp closed} |
︙ | ︙ | |||
608 609 610 611 612 613 614 615 616 617 618 619 620 621 | } set READMARK1_SET { {4 1 lock exclusive} {4 1 unlock exclusive} } set READMARK1_READ { {4 1 lock shared} {4 1 unlock shared} } foreach {tn sql res expected_locks} { 2 { PRAGMA journal_mode = WAL; BEGIN; CREATE TABLE t1(x); INSERT INTO t1 VALUES('Leonard'); | > > > > > | 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | } set READMARK1_SET { {4 1 lock exclusive} {4 1 unlock exclusive} } set READMARK1_READ { {4 1 lock shared} {4 1 unlock shared} } set READMARK1_WRITE { {4 1 lock shared} {0 1 lock exclusive} {0 1 unlock exclusive} {4 1 unlock shared} } foreach {tn sql res expected_locks} { 2 { PRAGMA journal_mode = WAL; BEGIN; CREATE TABLE t1(x); INSERT INTO t1 VALUES('Leonard'); |
︙ | ︙ | |||
664 665 666 667 668 669 670 | 8 { PRAGMA locking_mode = normal } {normal} { } 9 { SELECT * FROM t1 ORDER BY x | | < | < < < | 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 | 8 { PRAGMA locking_mode = normal } {normal} { } 9 { SELECT * FROM t1 ORDER BY x } {Arthur {Julius Henry} Karl Leonard} $READMARK1_READ 10 { DELETE FROM t1 } {} $READMARK1_WRITE 11 { SELECT * FROM t1 } {} { $READMARK1_SET $READMARK1_READ } |
︙ | ︙ | |||
942 943 944 945 946 947 948 | faultsim_restore_and_reopen execsql { SELECT * FROM t1 } } {1 2 3 4} do_test wal2-10.2.2 { set hdr [set_tvfs_hdr $::filename] lindex $hdr 0 } {3007000} | < | 943 944 945 946 947 948 949 950 951 952 953 954 955 956 | faultsim_restore_and_reopen execsql { SELECT * FROM t1 } } {1 2 3 4} do_test wal2-10.2.2 { set hdr [set_tvfs_hdr $::filename] lindex $hdr 0 } {3007000} do_test wal2-10.2.3 { lset hdr 0 3007001 wal_fix_walindex_cksum hdr set_tvfs_hdr $::filename $hdr catchsql { SELECT * FROM t1 } } {1 {unable to open database file}} db close |
︙ | ︙ | |||
980 981 982 983 984 985 986 | } {wal 1 2 3 4 5 6 7 8 9} do_test wal2-11.1.1 { sqlite3 db2 test.db execsql { SELECT name FROM sqlite_master } db2 } {t1} | > | | | | | | | | | | | | | | | | | | | | | | | > | 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 | } {wal 1 2 3 4 5 6 7 8 9} do_test wal2-11.1.1 { sqlite3 db2 test.db execsql { SELECT name FROM sqlite_master } db2 } {t1} if {$::tcl_version>=8.5} { # Set all zeroed slots in the first hash table to invalid values. # set blob [string range [tvfs shm $::filename] 0 16383] set I [string range [tvfs shm $::filename] 16384 end] binary scan $I t* L set I [list] foreach p $L { lappend I [expr $p ? $p : 400] } append blob [binary format t* $I] tvfs shm $::filename $blob do_test wal2-11.2 { catchsql { INSERT INTO t1 VALUES(10, 11, 12) } } {1 {database disk image is malformed}} # Fill up the hash table on the first page of shared memory with 0x55 bytes. # set blob [string range [tvfs shm $::filename] 0 16383] append blob [string repeat [binary format c 55] 16384] tvfs shm $::filename $blob do_test wal2-11.3 { catchsql { SELECT * FROM t1 } db2 } {1 {database disk image is malformed}} } db close db2 close tvfs delete #------------------------------------------------------------------------- # If a connection is required to create a WAL or SHM file, it creates |
︙ | ︙ | |||
1148 1149 1150 1151 1152 1153 1154 | } $b($can_read,$can_write) } catch { db close } } } finish_test | < | 1150 1151 1152 1153 1154 1155 1156 | } $b($can_read,$can_write) } catch { db close } } } finish_test |
Changes to test/wal3.test.
︙ | ︙ | |||
109 110 111 112 113 114 115 116 117 118 119 120 121 122 | execsql { SELECT x FROM t1 WHERE rowid = $i } } $str do_test wal3-1.$i.7 { execsql { PRAGMA integrity_check } db2 } {ok} db2 close } do_multiclient_test i { set testname(1) multiproc set testname(2) singleproc set tn $testname($i) | > > > > > | 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | execsql { SELECT x FROM t1 WHERE rowid = $i } } $str do_test wal3-1.$i.7 { execsql { PRAGMA integrity_check } db2 } {ok} db2 close } proc byte_is_zero {file offset} { if {[file size test.db] <= $offset} { return 1 } expr { [hexio_read $file $offset 1] == "00" } } do_multiclient_test i { set testname(1) multiproc set testname(2) singleproc set tn $testname($i) |
︙ | ︙ | |||
158 159 160 161 162 163 164 | # no-op, as the entire log has already been backfilled. # do_test wal3-2.$tn.4 { sql1 { COMMIT; PRAGMA wal_checkpoint; } | < | > | | > | | > | 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | # no-op, as the entire log has already been backfilled. # do_test wal3-2.$tn.4 { sql1 { COMMIT; PRAGMA wal_checkpoint; } byte_is_zero test.db [expr $AUTOVACUUM ? 4*1024 : 3*1024] } {1} do_test wal3-2.$tn.5 { sql2 { COMMIT; PRAGMA wal_checkpoint; } list [byte_is_zero test.db [expr $AUTOVACUUM ? 4*1024 : 3*1024]] \ [byte_is_zero test.db [expr $AUTOVACUUM ? 5*1024 : 4*1024]] } {0 1} do_test wal3-2.$tn.6 { sql3 { COMMIT; PRAGMA wal_checkpoint; } list [byte_is_zero test.db [expr $AUTOVACUUM ? 4*1024 : 3*1024]] \ [byte_is_zero test.db [expr $AUTOVACUUM ? 5*1024 : 4*1024]] } {0 1} } catch {db close} #------------------------------------------------------------------------- # Test that that for the simple test: # # CREATE TABLE x(y); |
︙ | ︙ | |||
700 701 702 703 704 705 706 707 708 709 710 711 712 713 | # the client takes a shared-lock on a slot without modifying the value # and continues. # do_test wal3-9.0 { file delete -force test.db test.db-journal test.db wal sqlite3 db test.db execsql { PRAGMA journal_mode = WAL; CREATE TABLE whoami(x); INSERT INTO whoami VALUES('nobody'); } } {wal} for {set i 0} {$i < 50} {incr i} { set c db$i | > | 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 | # the client takes a shared-lock on a slot without modifying the value # and continues. # do_test wal3-9.0 { file delete -force test.db test.db-journal test.db wal sqlite3 db test.db execsql { PRAGMA page_size = 1024; PRAGMA journal_mode = WAL; CREATE TABLE whoami(x); INSERT INTO whoami VALUES('nobody'); } } {wal} for {set i 0} {$i < 50} {incr i} { set c db$i |
︙ | ︙ | |||
722 723 724 725 726 727 728 729 730 731 | } for {set i 0} {$i < 50} {incr i} { set c db$i do_test wal3-9.2.$i { execsql { SELECT * FROM whoami } $c } $c } do_test wal3-9.3 { for {set i 0} {$i < 49} {incr i} { db$i close } execsql { PRAGMA wal_checkpoint } | > > | > > | | | 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | } for {set i 0} {$i < 50} {incr i} { set c db$i do_test wal3-9.2.$i { execsql { SELECT * FROM whoami } $c } $c } set sz [expr 1024 * (2+$AUTOVACUUM)] do_test wal3-9.3 { for {set i 0} {$i < 49} {incr i} { db$i close } execsql { PRAGMA wal_checkpoint } byte_is_zero test.db [expr $sz-1024] } {1} do_test wal3-9.4 { db49 close execsql { PRAGMA wal_checkpoint } set sz2 [file size test.db] byte_is_zero test.db [expr $sz-1024] } {0} db close finish_test |
Changes to test/walmode.test.
︙ | ︙ | |||
386 387 388 389 390 391 392 393 394 | do_execsql_test walmode-8.16 { PRAGMA two.journal_mode } {wal} do_execsql_test walmode-8.17 { INSERT INTO two.t2 DEFAULT VALUES } {} do_execsql_test walmode-8.18 { PRAGMA two.journal_mode } {wal} sqlite3 db2 test.db2 do_test walmode-8.19 { execsql { PRAGMA main.journal_mode } db2 } {wal} db2 close finish_test | > > > > > > > | 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | do_execsql_test walmode-8.16 { PRAGMA two.journal_mode } {wal} do_execsql_test walmode-8.17 { INSERT INTO two.t2 DEFAULT VALUES } {} do_execsql_test walmode-8.18 { PRAGMA two.journal_mode } {wal} sqlite3 db2 test.db2 do_test walmode-8.19 { execsql { PRAGMA main.journal_mode } db2 } {wal} db2 close do_execsql_test walmode-8.20 { PRAGMA journal_mode = DELETE } {delete} do_execsql_test walmode-8.21 { PRAGMA main.journal_mode } {delete} do_execsql_test walmode-8.22 { PRAGMA two.journal_mode } {delete} do_execsql_test walmode-8.21 { PRAGMA journal_mode = WAL } {wal} do_execsql_test walmode-8.21 { PRAGMA main.journal_mode } {wal} do_execsql_test walmode-8.22 { PRAGMA two.journal_mode } {wal} finish_test |
Added test/walshared.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | # 2010 August 2 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL" mode with shared-cache turned on. # set testdir [file dirname $argv0] source $testdir/tester.tcl db close set ::enable_shared_cache [sqlite3_enable_shared_cache 1] sqlite3 db test.db sqlite3 db2 test.db do_test walshared-1.0 { execsql { PRAGMA cache_size = 10; PRAGMA journal_mode = WAL; CREATE TABLE t1(a PRIMARY KEY, b UNIQUE); INSERT INTO t1 VALUES(randomblob(100), randomblob(200)); } } {wal} do_test walshared-1.1 { execsql { BEGIN; INSERT INTO t1 VALUES(randomblob(100), randomblob(200)); INSERT INTO t1 SELECT randomblob(100), randomblob(200) FROM t1; INSERT INTO t1 SELECT randomblob(100), randomblob(200) FROM t1; INSERT INTO t1 SELECT randomblob(100), randomblob(200) FROM t1; } } {} do_test walshared-1.2 { catchsql { PRAGMA wal_checkpoint } } {1 {database table is locked}} do_test walshared-1.3 { catchsql { PRAGMA wal_checkpoint } db2 } {1 {database table is locked}} do_test walshared-1.4 { execsql { COMMIT } execsql { PRAGMA integrity_check } db2 } {ok} sqlite3_enable_shared_cache $::enable_shared_cache finish_test |
Changes to test/where3.test.
︙ | ︙ | |||
208 209 210 211 212 213 214 215 216 | do_test where3-2.7 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=bx AND apk=cx } } {tB {} tC * tA * tD *} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | do_test where3-2.7 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=bx AND apk=cx } } {tB {} tC * tA * tD *} # Ticket [13f033c865f878953] # If the outer loop must be a full table scan, do not let ANALYZE trick # the planner into use a table for the outer loop that might be indexable # if held until an inner loop. # do_test where3-3.0 { execsql { CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c); CREATE INDEX t301c ON t301(c); INSERT INTO t301 VALUES(1,2,3); CREATE TABLE t302(x, y); ANALYZE; explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y; } } {0 0 {TABLE t302} 1 1 {TABLE t301 USING PRIMARY KEY}} do_test where3-3.1 { execsql { explain query plan SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y; } } {0 1 {TABLE t302} 1 0 {TABLE t301 USING PRIMARY KEY}} # Verify that when there are multiple tables in a join which must be # full table scans that the query planner attempts put the table with # the fewest number of output rows as the outer loop. # do_test where3-4.0 { execsql { CREATE TABLE t400(a INTEGER PRIMARY KEY, b, c); CREATE TABLE t401(p INTEGER PRIMARY KEY, q, r); CREATE TABLE t402(x INTEGER PRIMARY KEY, y, z); EXPLAIN QUERY PLAN SELECT * FROM t400, t401, t402 WHERE t402.z GLOB 'abc*'; } } {0 2 {TABLE t402} 1 0 {TABLE t400} 2 1 {TABLE t401}} do_test where3-4.1 { execsql { EXPLAIN QUERY PLAN SELECT * FROM t400, t401, t402 WHERE t401.r GLOB 'abc*'; } } {0 1 {TABLE t401} 1 0 {TABLE t400} 2 2 {TABLE t402}} do_test where3-4.2 { execsql { EXPLAIN QUERY PLAN SELECT * FROM t400, t401, t402 WHERE t400.c GLOB 'abc*'; } } {0 0 {TABLE t400} 1 1 {TABLE t401} 2 2 {TABLE t402}} finish_test |
Changes to tool/shell1.test.
︙ | ︙ | |||
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | } {0 {}} do_test shell1-1.14.3 { set res [catchcmd "-separator" ""] set rc [lindex $res 0] list $rc \ [regexp {Error: missing argument for option: -separator} $res] } {1 1} # -nullvalue 'text' set text string for NULL values do_test shell1-1.15.1 { catchcmd "-nullvalue 'x' test.db" "" } {0 {}} do_test shell1-1.15.2 { catchcmd "-nullvalue x test.db" "" } {0 {}} do_test shell1-1.15.3 { set res [catchcmd "-nullvalue" ""] set rc [lindex $res 0] list $rc \ [regexp {Error: missing argument for option: -nullvalue} $res] } {1 1} # -version show SQLite version do_test shell1-1.16.1 { catchcmd "-version test.db" "" | > > > > > | | 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | } {0 {}} do_test shell1-1.14.3 { set res [catchcmd "-separator" ""] set rc [lindex $res 0] list $rc \ [regexp {Error: missing argument for option: -separator} $res] } {1 1} # -stats print memory stats before each finalize do_test shell1-1.14b.1 { catchcmd "-stats test.db" "" } {0 {}} # -nullvalue 'text' set text string for NULL values do_test shell1-1.15.1 { catchcmd "-nullvalue 'x' test.db" "" } {0 {}} do_test shell1-1.15.2 { catchcmd "-nullvalue x test.db" "" } {0 {}} do_test shell1-1.15.3 { set res [catchcmd "-nullvalue" ""] set rc [lindex $res 0] list $rc \ [regexp {Error: missing argument for option: -nullvalue} $res] } {1 1} # -version show SQLite version do_test shell1-1.16.1 { catchcmd "-version test.db" "" } {0 3.7.1} #---------------------------------------------------------------------------- # Test cases shell1-2.*: Basic "dot" command token parsing. # # check first token handling do_test shell1-2.1.1 { |
︙ | ︙ | |||
617 618 619 620 621 622 623 624 | list [regexp {echo:} $res] \ [regexp {explain:} $res] \ [regexp {headers:} $res] \ [regexp {mode:} $res] \ [regexp {nullvalue:} $res] \ [regexp {output:} $res] \ [regexp {separator:} $res] \ [regexp {width:} $res] | > | > > > > > > > > > > > > > > > | 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 | list [regexp {echo:} $res] \ [regexp {explain:} $res] \ [regexp {headers:} $res] \ [regexp {mode:} $res] \ [regexp {nullvalue:} $res] \ [regexp {output:} $res] \ [regexp {separator:} $res] \ [regexp {stats:} $res] \ [regexp {width:} $res] } {1 1 1 1 1 1 1 1 1} do_test shell1-3.23.2 { # too many arguments catchcmd "test.db" ".show BAD" } {1 {Error: unknown command or invalid arguments: "show". Enter ".help" for help}} # .stats ON|OFF Turn stats on or off do_test shell1-3.23b.1 { catchcmd "test.db" ".stats" } {1 {Error: unknown command or invalid arguments: "stats". Enter ".help" for help}} do_test shell1-3.23b.2 { catchcmd "test.db" ".stats ON" } {0 {}} do_test shell1-3.23b.3 { catchcmd "test.db" ".stats OFF" } {0 {}} do_test shell1-3.23b.4 { # too many arguments catchcmd "test.db" ".stats OFF BAD" } {1 {Error: unknown command or invalid arguments: "stats". Enter ".help" for help}} # .tables ?TABLE? List names of tables # If TABLE specified, only list tables matching # LIKE pattern TABLE. do_test shell1-3.24.1 { catchcmd "test.db" ".tables" } {0 {}} do_test shell1-3.24.2 { |
︙ | ︙ |
Added tool/shell4.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | # 2010 July 28 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # The focus of this file is testing the CLI shell tool. # # $Id: shell4.test,v 1.7 2009/07/17 16:54:48 shaneh Exp $ # # Test plan: # # shell4-1.*: Basic tests specific to the "stats" command. # package require sqlite3 set CLI "./sqlite3" proc do_test {name cmd expected} { puts -nonewline "$name ..." set res [uplevel $cmd] if {$res eq $expected} { puts Ok } else { puts Error puts " Got: $res" puts " Expected: $expected" exit } } proc execsql {sql} { uplevel [list db eval $sql] } proc catchsql {sql} { set rc [catch {uplevel [list db eval $sql]} msg] list $rc $msg } proc catchcmd {db {cmd ""}} { global CLI set out [open cmds.txt w] puts $out $cmd close $out set line "exec $CLI $db < cmds.txt" set rc [catch { eval $line } msg] list $rc $msg } file delete -force test.db test.db.journal sqlite3 db test.db #---------------------------------------------------------------------------- # Test cases shell4-1.*: Tests specific to the "stats" command. # # should default to off do_test shell4-1.1.1 { set res [catchcmd "test.db" ".show"] list [regexp {stats: off} $res] } {1} do_test shell4-1.1.2 { set res [catchcmd "test.db" ".show"] list [regexp {stats: on} $res] } {0} # -stats should turn it on do_test shell4-1.2.1 { set res [catchcmd "-stats test.db" ".show"] list [regexp {stats: on} $res] } {1} do_test shell4-1.2.2 { set res [catchcmd "-stats test.db" ".show"] list [regexp {stats: off} $res] } {0} # .stats ON|OFF Turn stats on or off do_test shell4-1.3.1 { catchcmd "test.db" ".stats" } {1 {Error: unknown command or invalid arguments: "stats". Enter ".help" for help}} do_test shell4-1.3.2 { catchcmd "test.db" ".stats ON" } {0 {}} do_test shell4-1.3.3 { catchcmd "test.db" ".stats OFF" } {0 {}} do_test shell4-1.3.4 { # too many arguments catchcmd "test.db" ".stats OFF BAD" } {1 {Error: unknown command or invalid arguments: "stats". Enter ".help" for help}} # NB. whitespace is important do_test shell4-1.4.1 { set res [catchcmd "test.db" {.show}] list [regexp {stats: off} $res] } {1} do_test shell4-1.4.2 { set res [catchcmd "test.db" {.stats ON .show }] list [regexp {stats: on} $res] } {1} do_test shell4-1.4.3 { set res [catchcmd "test.db" {.stats OFF .show }] list [regexp {stats: off} $res] } {1} # make sure stats not present when off do_test shell4-1.5.1 { set res [catchcmd "test.db" {SELECT 1;}] list [regexp {Memory Used} $res] \ [regexp {Heap Usage} $res] \ [regexp {Autoindex Inserts} $res] } {0 0 0} # make sure stats are present when on do_test shell4-1.5.2 { set res [catchcmd "test.db" {.stats ON SELECT 1; }] list [regexp {Memory Used} $res] \ [regexp {Heap Usage} $res] \ [regexp {Autoindex Inserts} $res] } {1 1 1} puts "CLI tests completed successfully" |