Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Enhancements to the query planner to exploit transitive relationships in the WHERE clause, and other minor changes to bring the sessions branch into alignment with the trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | sessions |
Files: | files | file ages | folders |
SHA1: |
82d3d1ae824e1fbc7958657be7923159 |
User & Date: | drh 2013-01-25 02:10:06.424 |
Context
2013-02-13
| ||
13:42 | Enhancements to the query planner to make use of indices for ORDER BY even when IN constraints are in the WHERE clause. Add extended error codes for all SQLITE_CONSTRAINT errors. (check-in: 7e14dc734d user: drh tags: sessions) | |
2013-01-25
| ||
02:10 | Enhancements to the query planner to exploit transitive relationships in the WHERE clause, and other minor changes to bring the sessions branch into alignment with the trunk. (check-in: 82d3d1ae82 user: drh tags: sessions) | |
2013-01-23
| ||
18:53 | Improved parsing of the arguments to the ".backup" command in the command-line shell. (check-in: f1127e87b9 user: drh tags: trunk) | |
2013-01-09
| ||
14:49 | Merge latest trunk changes into the sessions branch, especially the ORDER BY bug fix of 3.7.15.2. (check-in: 34af6fac67 user: drh tags: sessions) | |
Changes
Changes to Makefile.msc.
︙ | ︙ | |||
679 680 681 682 683 684 685 686 687 688 689 690 691 692 | $(TOP)\src\test_autoext.c \ $(TOP)\src\test_async.c \ $(TOP)\src\test_backup.c \ $(TOP)\src\test_btree.c \ $(TOP)\src\test_config.c \ $(TOP)\src\test_demovfs.c \ $(TOP)\src\test_devsym.c \ $(TOP)\src\test_func.c \ $(TOP)\src\test_fuzzer.c \ $(TOP)\src\test_hexio.c \ $(TOP)\src\test_init.c \ $(TOP)\src\test_intarray.c \ $(TOP)\src\test_journal.c \ $(TOP)\src\test_malloc.c \ | > | 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | $(TOP)\src\test_autoext.c \ $(TOP)\src\test_async.c \ $(TOP)\src\test_backup.c \ $(TOP)\src\test_btree.c \ $(TOP)\src\test_config.c \ $(TOP)\src\test_demovfs.c \ $(TOP)\src\test_devsym.c \ $(TOP)\src\test_fs.c \ $(TOP)\src\test_func.c \ $(TOP)\src\test_fuzzer.c \ $(TOP)\src\test_hexio.c \ $(TOP)\src\test_init.c \ $(TOP)\src\test_intarray.c \ $(TOP)\src\test_journal.c \ $(TOP)\src\test_malloc.c \ |
︙ | ︙ |
Changes to ext/rtree/rtree.c.
︙ | ︙ | |||
3045 3046 3047 3048 3049 3050 3051 | ** This ensures that each node is stored on a single database page. If the ** database page-size is so large that more than RTREE_MAXCELLS entries ** would fit in a single node, use a smaller node-size. */ static int getNodeSize( sqlite3 *db, /* Database handle */ Rtree *pRtree, /* Rtree handle */ | | > > > > > > | 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 | ** This ensures that each node is stored on a single database page. If the ** database page-size is so large that more than RTREE_MAXCELLS entries ** would fit in a single node, use a smaller node-size. */ static int getNodeSize( sqlite3 *db, /* Database handle */ Rtree *pRtree, /* Rtree handle */ int isCreate, /* True for xCreate, false for xConnect */ char **pzErr /* OUT: Error message, if any */ ){ int rc; char *zSql; if( isCreate ){ int iPageSize = 0; zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); rc = getIntFromStmt(db, zSql, &iPageSize); if( rc==SQLITE_OK ){ pRtree->iNodeSize = iPageSize-64; if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; } }else{ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } }else{ zSql = sqlite3_mprintf( "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", pRtree->zDb, pRtree->zName ); rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } } sqlite3_free(zSql); return rc; } /* |
︙ | ︙ | |||
3128 3129 3130 3131 3132 3133 3134 | pRtree->nDim = (argc-4)/2; pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; pRtree->eCoordType = eCoordType; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); /* Figure out the node size to use. */ | | | 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 | pRtree->nDim = (argc-4)/2; pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; pRtree->eCoordType = eCoordType; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); /* Figure out the node size to use. */ rc = getNodeSize(db, pRtree, isCreate, pzErr); /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ if( rc==SQLITE_OK ){ if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
237 238 239 240 241 242 243 244 245 246 247 248 249 250 | $(TOP)/src/test_autoext.c \ $(TOP)/src/test_async.c \ $(TOP)/src/test_backup.c \ $(TOP)/src/test_btree.c \ $(TOP)/src/test_config.c \ $(TOP)/src/test_demovfs.c \ $(TOP)/src/test_devsym.c \ $(TOP)/src/test_func.c \ $(TOP)/src/test_fuzzer.c \ $(TOP)/src/test_hexio.c \ $(TOP)/src/test_init.c \ $(TOP)/src/test_intarray.c \ $(TOP)/src/test_journal.c \ $(TOP)/src/test_malloc.c \ | > | 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | $(TOP)/src/test_autoext.c \ $(TOP)/src/test_async.c \ $(TOP)/src/test_backup.c \ $(TOP)/src/test_btree.c \ $(TOP)/src/test_config.c \ $(TOP)/src/test_demovfs.c \ $(TOP)/src/test_devsym.c \ $(TOP)/src/test_fs.c \ $(TOP)/src/test_func.c \ $(TOP)/src/test_fuzzer.c \ $(TOP)/src/test_hexio.c \ $(TOP)/src/test_init.c \ $(TOP)/src/test_intarray.c \ $(TOP)/src/test_journal.c \ $(TOP)/src/test_malloc.c \ |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
1729 1730 1731 1732 1733 1734 1735 | sqlite3_key(db, zKey, i/2); }else{ sqlite3_rekey(db, zKey, i/2); } }else #endif #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) | | | 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 | sqlite3_key(db, zKey, i/2); }else{ sqlite3_rekey(db, zKey, i/2); } }else #endif #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) if( sqlite3StrICmp(zLeft, "activate_extensions")==0 && zRight ){ #ifdef SQLITE_HAS_CODEC if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ sqlite3_activate_see(&zRight[4]); } #endif #ifdef SQLITE_ENABLE_CEROD if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
1625 1626 1627 1628 1629 1630 1631 | } /* Process the input line. */ if( nArg==0 ) return 0; /* no tokens, no error */ n = strlen30(azArg[0]); c = azArg[0][0]; | | | | > > | | > > > | | > > > > > | > > | > > > | > > > > > > > > > > > | 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 | } /* Process the input line. */ if( nArg==0 ) return 0; /* no tokens, no error */ n = strlen30(azArg[0]); c = azArg[0][0]; if( c=='b' && n>=3 && strncmp(azArg[0], "backup", n)==0 ){ const char *zDestFile = 0; const char *zDb = 0; const char *zKey = 0; sqlite3 *pDest; sqlite3_backup *pBackup; int j; for(j=1; j<nArg; j++){ const char *z = azArg[j]; if( z[0]=='-' ){ while( z[0]=='-' ) z++; if( strcmp(z,"key")==0 && j<nArg-1 ){ zKey = azArg[++j]; }else { fprintf(stderr, "unknown option: %s\n", azArg[j]); return 1; } }else if( zDestFile==0 ){ zDestFile = azArg[j]; }else if( zDb==0 ){ zDb = zDestFile; zDestFile = azArg[j]; }else{ fprintf(stderr, "too many arguments to .backup\n"); return 1; } } if( zDestFile==0 ){ fprintf(stderr, "missing FILENAME argument on .backup\n"); return 1; } if( zDb==0 ) zDb = "main"; rc = sqlite3_open(zDestFile, &pDest); if( rc!=SQLITE_OK ){ fprintf(stderr, "Error: cannot open \"%s\"\n", zDestFile); sqlite3_close(pDest); return 1; } #ifdef SQLITE_HAS_CODEC sqlite3_key(pDest, zKey, (int)strlen(zKey)); #else (void)zKey; #endif open_db(p); pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb); if( pBackup==0 ){ fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest)); sqlite3_close(pDest); return 1; } |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
571 572 573 574 575 576 577 578 579 580 581 582 583 584 | /* ** A convenience macro that returns the number of elements in ** an array. */ #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) /* ** The following value as a destructor means to use sqlite3DbFree(). ** The sqlite3DbFree() routine requires two parameters instead of the ** one parameter that destructors normally want. So we have to introduce ** this magic value that the code knows to handle differently. Any ** pointer will work here as long as it is distinct from SQLITE_STATIC ** and SQLITE_TRANSIENT. | > > > > > | 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 | /* ** A convenience macro that returns the number of elements in ** an array. */ #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) /* ** Determine if the argument is a power of two */ #define IsPowerOfTwo(X) (((X)&((X)-1))==0) /* ** The following value as a destructor means to use sqlite3DbFree(). ** The sqlite3DbFree() routine requires two parameters instead of the ** one parameter that destructors normally want. So we have to introduce ** this magic value that the code knows to handle differently. Any ** pointer will work here as long as it is distinct from SQLITE_STATIC ** and SQLITE_TRANSIENT. |
︙ | ︙ | |||
977 978 979 980 981 982 983 984 985 986 987 988 989 990 | #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ #define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ #define SQLITE_AllOpts 0xffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #ifndef SQLITE_OMIT_BUILTIN_TEST #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) | > | 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 | #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ #define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ #define SQLITE_Transitive 0x0200 /* Transitive constraints */ #define SQLITE_AllOpts 0xffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #ifndef SQLITE_OMIT_BUILTIN_TEST #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 | extern int Sqlitetest_hexio_Init(Tcl_Interp*); extern int Sqlitetest_init_Init(Tcl_Interp*); extern int Sqlitetest_malloc_Init(Tcl_Interp*); extern int Sqlitetest_mutex_Init(Tcl_Interp*); extern int Sqlitetestschema_Init(Tcl_Interp*); extern int Sqlitetestsse_Init(Tcl_Interp*); extern int Sqlitetesttclvar_Init(Tcl_Interp*); extern int SqlitetestThread_Init(Tcl_Interp*); extern int SqlitetestOnefile_Init(); extern int SqlitetestOsinst_Init(Tcl_Interp*); extern int Sqlitetestbackup_Init(Tcl_Interp*); extern int Sqlitetestintarray_Init(Tcl_Interp*); extern int Sqlitetestvfs_Init(Tcl_Interp *); extern int Sqlitetestrtree_Init(Tcl_Interp*); | > | 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 | extern int Sqlitetest_hexio_Init(Tcl_Interp*); extern int Sqlitetest_init_Init(Tcl_Interp*); extern int Sqlitetest_malloc_Init(Tcl_Interp*); extern int Sqlitetest_mutex_Init(Tcl_Interp*); extern int Sqlitetestschema_Init(Tcl_Interp*); extern int Sqlitetestsse_Init(Tcl_Interp*); extern int Sqlitetesttclvar_Init(Tcl_Interp*); extern int Sqlitetestfs_Init(Tcl_Interp*); extern int SqlitetestThread_Init(Tcl_Interp*); extern int SqlitetestOnefile_Init(); extern int SqlitetestOsinst_Init(Tcl_Interp*); extern int Sqlitetestbackup_Init(Tcl_Interp*); extern int Sqlitetestintarray_Init(Tcl_Interp*); extern int Sqlitetestvfs_Init(Tcl_Interp *); extern int Sqlitetestrtree_Init(Tcl_Interp*); |
︙ | ︙ | |||
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 | Sqlitetest_func_Init(interp); Sqlitetest_hexio_Init(interp); Sqlitetest_init_Init(interp); Sqlitetest_malloc_Init(interp); Sqlitetest_mutex_Init(interp); Sqlitetestschema_Init(interp); Sqlitetesttclvar_Init(interp); SqlitetestThread_Init(interp); SqlitetestOnefile_Init(interp); SqlitetestOsinst_Init(interp); Sqlitetestbackup_Init(interp); Sqlitetestintarray_Init(interp); Sqlitetestvfs_Init(interp); Sqlitetestrtree_Init(interp); | > | 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 | Sqlitetest_func_Init(interp); Sqlitetest_hexio_Init(interp); Sqlitetest_init_Init(interp); Sqlitetest_malloc_Init(interp); Sqlitetest_mutex_Init(interp); Sqlitetestschema_Init(interp); Sqlitetesttclvar_Init(interp); Sqlitetestfs_Init(interp); SqlitetestThread_Init(interp); SqlitetestOnefile_Init(interp); SqlitetestOsinst_Init(interp); Sqlitetestbackup_Init(interp); Sqlitetestintarray_Init(interp); Sqlitetestvfs_Init(interp); Sqlitetestrtree_Init(interp); |
︙ | ︙ |
Added src/test_fs.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | /* ** 2013 Jan 11 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the virtual table interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** The FS virtual table is created as follows: ** ** CREATE VIRTUAL TABLE tbl USING fs(idx); ** ** where idx is the name of a table in the db with 2 columns. The virtual ** table also has two columns - file path and file contents. ** ** The first column of table idx must be an IPK, and the second contains file ** paths. For example: ** ** CREATE TABLE idx(id INTEGER PRIMARY KEY, path TEXT); ** INSERT INTO idx VALUES(4, '/etc/passwd'); ** ** Adding the row to the idx table automatically creates a row in the ** virtual table with rowid=4, path=/etc/passwd and a text field that ** contains data read from file /etc/passwd on disk. */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #if SQLITE_OS_UNIX # include <unistd.h> #endif #if SQLITE_OS_WIN # include <io.h> #endif #ifndef SQLITE_OMIT_VIRTUALTABLE typedef struct fs_vtab fs_vtab; typedef struct fs_cursor fs_cursor; /* ** A fs virtual-table object */ struct fs_vtab { sqlite3_vtab base; sqlite3 *db; char *zDb; /* Name of db containing zTbl */ char *zTbl; /* Name of docid->file map table */ }; /* A fs cursor object */ struct fs_cursor { sqlite3_vtab_cursor base; sqlite3_stmt *pStmt; char *zBuf; int nBuf; int nAlloc; }; /* ** This function is the implementation of both the xConnect and xCreate ** methods of the fs virtual table. ** ** The argv[] array contains the following: ** ** argv[0] -> module name ("fs") ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> other module argument fields. */ static int fsConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ fs_vtab *pVtab; int nByte; const char *zTbl; const char *zDb = argv[1]; if( argc!=4 ){ *pzErr = sqlite3_mprintf("wrong number of arguments"); return SQLITE_ERROR; } zTbl = argv[3]; nByte = sizeof(fs_vtab) + strlen(zTbl) + 1 + strlen(zDb) + 1; pVtab = (fs_vtab *)sqlite3MallocZero( nByte ); if( !pVtab ) return SQLITE_NOMEM; pVtab->zTbl = (char *)&pVtab[1]; pVtab->zDb = &pVtab->zTbl[strlen(zTbl)+1]; pVtab->db = db; memcpy(pVtab->zTbl, zTbl, strlen(zTbl)); memcpy(pVtab->zDb, zDb, strlen(zDb)); *ppVtab = &pVtab->base; sqlite3_declare_vtab(db, "CREATE TABLE xyz(path TEXT, data TEXT)"); return SQLITE_OK; } /* Note that for this virtual table, the xCreate and xConnect ** methods are identical. */ static int fsDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* The xDisconnect and xDestroy methods are also the same */ /* ** Open a new fs cursor. */ static int fsOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ fs_cursor *pCur; pCur = sqlite3MallocZero(sizeof(fs_cursor)); *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Close a fs cursor. */ static int fsClose(sqlite3_vtab_cursor *cur){ fs_cursor *pCur = (fs_cursor *)cur; sqlite3_finalize(pCur->pStmt); sqlite3_free(pCur->zBuf); sqlite3_free(pCur); return SQLITE_OK; } static int fsNext(sqlite3_vtab_cursor *cur){ fs_cursor *pCur = (fs_cursor *)cur; int rc; rc = sqlite3_step(pCur->pStmt); if( rc==SQLITE_ROW || rc==SQLITE_DONE ) rc = SQLITE_OK; return rc; } static int fsFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ int rc; fs_cursor *pCur = (fs_cursor *)pVtabCursor; fs_vtab *p = (fs_vtab *)(pVtabCursor->pVtab); assert( (idxNum==0 && argc==0) || (idxNum==1 && argc==1) ); if( idxNum==1 ){ char *zStmt = sqlite3_mprintf( "SELECT * FROM %Q.%Q WHERE rowid=?", p->zDb, p->zTbl); if( !zStmt ) return SQLITE_NOMEM; rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pCur->pStmt, 0); sqlite3_free(zStmt); if( rc==SQLITE_OK ){ sqlite3_bind_value(pCur->pStmt, 1, argv[0]); } }else{ char *zStmt = sqlite3_mprintf("SELECT * FROM %Q.%Q", p->zDb, p->zTbl); if( !zStmt ) return SQLITE_NOMEM; rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pCur->pStmt, 0); sqlite3_free(zStmt); } if( rc==SQLITE_OK ){ rc = fsNext(pVtabCursor); } return rc; } static int fsColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ fs_cursor *pCur = (fs_cursor*)cur; assert( i==0 || i==1 ); if( i==0 ){ sqlite3_result_value(ctx, sqlite3_column_value(pCur->pStmt, 0)); }else{ const char *zFile = (const char *)sqlite3_column_text(pCur->pStmt, 1); struct stat sbuf; int fd; fd = open(zFile, O_RDONLY); if( fd<0 ) return SQLITE_IOERR; fstat(fd, &sbuf); if( sbuf.st_size>=pCur->nAlloc ){ int nNew = sbuf.st_size*2; char *zNew; if( nNew<1024 ) nNew = 1024; zNew = sqlite3Realloc(pCur->zBuf, nNew); if( zNew==0 ){ close(fd); return SQLITE_NOMEM; } pCur->zBuf = zNew; pCur->nAlloc = nNew; } read(fd, pCur->zBuf, sbuf.st_size); close(fd); pCur->nBuf = sbuf.st_size; pCur->zBuf[pCur->nBuf] = '\0'; sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); } return SQLITE_OK; } static int fsRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ fs_cursor *pCur = (fs_cursor*)cur; *pRowid = sqlite3_column_int64(pCur->pStmt, 0); return SQLITE_OK; } static int fsEof(sqlite3_vtab_cursor *cur){ fs_cursor *pCur = (fs_cursor*)cur; return (sqlite3_data_count(pCur->pStmt)==0); } static int fsBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int ii; for(ii=0; ii<pIdxInfo->nConstraint; ii++){ struct sqlite3_index_constraint const *pCons = &pIdxInfo->aConstraint[ii]; if( pCons->iColumn<0 && pCons->usable && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){ struct sqlite3_index_constraint_usage *pUsage; pUsage = &pIdxInfo->aConstraintUsage[ii]; pUsage->omit = 0; pUsage->argvIndex = 1; pIdxInfo->idxNum = 1; pIdxInfo->estimatedCost = 1.0; break; } } return SQLITE_OK; } /* ** A virtual table module that provides read-only access to a ** Tcl global variable namespace. */ static sqlite3_module fsModule = { 0, /* iVersion */ fsConnect, fsConnect, fsBestIndex, fsDisconnect, fsDisconnect, fsOpen, /* xOpen - open a cursor */ fsClose, /* xClose - close a cursor */ fsFilter, /* xFilter - configure scan constraints */ fsNext, /* xNext - advance a cursor */ fsEof, /* xEof - check for end of scan */ fsColumn, /* xColumn - read data */ fsRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ }; /* ** Decode a pointer to an sqlite3 object. */ extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); /* ** Register the echo virtual table module. */ static int register_fs_module( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_create_module(db, "fs", &fsModule, (void *)interp); #endif return TCL_OK; } #endif /* ** Register commands with the TCL interpreter. */ int Sqlitetestfs_Init(Tcl_Interp *interp){ #ifndef SQLITE_OMIT_VIRTUALTABLE static struct { char *zName; Tcl_ObjCmdProc *xProc; void *clientData; } aObjCmd[] = { { "register_fs_module", register_fs_module, 0 }, }; int i; for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, aObjCmd[i].clientData, 0); } #endif return TCL_OK; } |
Changes to src/test_regexp.c.
︙ | ︙ | |||
22 23 24 25 26 27 28 | ** X|Y X or Y ** ^X X occurring at the beginning of the string ** X$ X occurring at the end of the string ** . Match any single character ** \c Character c where c is one of \{}()[]|*+?. ** \c C-language escapes for c in afnrtv. ex: \t or \n ** \uXXXX Where XXXX is exactly 4 hex digits, unicode value XXXX | | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ** X|Y X or Y ** ^X X occurring at the beginning of the string ** X$ X occurring at the end of the string ** . Match any single character ** \c Character c where c is one of \{}()[]|*+?. ** \c C-language escapes for c in afnrtv. ex: \t or \n ** \uXXXX Where XXXX is exactly 4 hex digits, unicode value XXXX ** \xXX Where XX is exactly 2 hex digits, unicode value XX ** [abc] Any single character from the set abc ** [^abc] Any single character not in the set abc ** [a-z] Any single character in the range a-z ** [^a-z] Any single character not in the range a-z ** \b Word boundary ** \w Word character. [A-Za-z0-9_] ** \W Non-word character |
︙ | ︙ | |||
374 375 376 377 378 379 380 | return 0; } *pV = (*pV)*16 + (c & 0xff); return 1; } /* A backslash character has been seen, read the next character and | | | < | | > | | | | 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | return 0; } *pV = (*pV)*16 + (c & 0xff); return 1; } /* A backslash character has been seen, read the next character and ** return its interpretation. */ static unsigned re_esc_char(ReCompiled *p){ static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]"; static const char zTrans[] = "\a\f\n\r\t\v"; int i, v = 0; char c; if( p->sIn.i>=p->sIn.mx ) return 0; c = p->sIn.z[p->sIn.i]; if( c=='u' && p->sIn.i+4<p->sIn.mx ){ const unsigned char *zIn = p->sIn.z + p->sIn.i; if( re_hex(zIn[1],&v) && re_hex(zIn[2],&v) && re_hex(zIn[3],&v) && re_hex(zIn[4],&v) ){ p->sIn.i += 5; return v; } } if( c=='x' && p->sIn.i+2<p->sIn.mx ){ const unsigned char *zIn = p->sIn.z + p->sIn.i; if( re_hex(zIn[1],&v) && re_hex(zIn[2],&v) ){ p->sIn.i += 3; return v; } } for(i=0; zEsc[i] && zEsc[i]!=c; i++){} if( zEsc[i] ){ if( i<6 ) c = zTrans[i]; p->sIn.i++; |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
2475 2476 2477 2478 2479 2480 2481 | for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); #if defined(SQLITE_ENABLE_TREE_EXPLAIN) | | | 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 | for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); #if defined(SQLITE_ENABLE_TREE_EXPLAIN) sqlite3DbFree(db, p->zExplain); sqlite3DbFree(db, p->pExplain); #endif } /* ** Delete an entire VDBE. */ |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
94 95 96 97 98 99 100 | typedef struct WhereTerm WhereTerm; struct WhereTerm { Expr *pExpr; /* Pointer to the subexpression that is this term */ int iParent; /* Disable pWC->a[iParent] when this term disabled */ int leftCursor; /* Cursor number of X in "X <op> <expr>" */ union { int leftColumn; /* Column number of X in "X <op> <expr>" */ | | | | 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | typedef struct WhereTerm WhereTerm; struct WhereTerm { Expr *pExpr; /* Pointer to the subexpression that is this term */ int iParent; /* Disable pWC->a[iParent] when this term disabled */ int leftCursor; /* Cursor number of X in "X <op> <expr>" */ union { int leftColumn; /* Column number of X in "X <op> <expr>" */ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */ WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */ } u; u16 eOperator; /* A WO_xx value describing <op> */ u8 wtFlags; /* TERM_xxx bit flags. See below */ u8 nChild; /* Number of children that must disable us */ WhereClause *pWC; /* The clause this term is part of */ Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ |
︙ | ︙ | |||
223 224 225 226 227 228 229 230 231 232 233 234 235 236 | #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) #define WO_MATCH 0x040 #define WO_ISNULL 0x080 #define WO_OR 0x100 /* Two or more OR-connected terms */ #define WO_AND 0x200 /* Two or more AND-connected terms */ #define WO_NOOP 0x800 /* This term does not restrict search space */ #define WO_ALL 0xfff /* Mask of all possible WO_* values */ #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ /* ** Value for wsFlags returned by bestIndex() and stored in | > | 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) #define WO_MATCH 0x040 #define WO_ISNULL 0x080 #define WO_OR 0x100 /* Two or more OR-connected terms */ #define WO_AND 0x200 /* Two or more AND-connected terms */ #define WO_EQUIV 0x400 /* Of the form A==B, both columns */ #define WO_NOOP 0x800 /* This term does not restrict search space */ #define WO_ALL 0xfff /* Mask of all possible WO_* values */ #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ /* ** Value for wsFlags returned by bestIndex() and stored in |
︙ | ︙ | |||
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | } /* ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" ** where X is a reference to the iColumn of table iCur and <op> is one of ** the WO_xx operator codes specified by the op parameter. ** Return a pointer to the term. Return 0 if not found. */ static WhereTerm *findTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ | > > > > > > > > > > > > > > > > > > | > > > > > > > > > | | > > | | | < | > > | | | < | | | > | < | | > > | | | | | | | | | | | | | > | > | > | > > > > > > > | > > > > | > > > > > > > > > | | 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 | } /* ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" ** where X is a reference to the iColumn of table iCur and <op> is one of ** the WO_xx operator codes specified by the op parameter. ** Return a pointer to the term. Return 0 if not found. ** ** The term returned might by Y=<expr> if there is another constraint in ** the WHERE clause that specifies that X=Y. Any such constraints will be ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The ** aEquiv[] array holds X and all its equivalents, with each SQL variable ** taking up two slots in aEquiv[]. The first slot is for the cursor number ** and the second is for the column number. There are 22 slots in aEquiv[] ** so that means we can look for X plus up to 10 other equivalent values. ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 ** and ... and A9=A10 and A10=<expr>. ** ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" ** then try for the one with no dependencies on <expr> - in other words where ** <expr> is a constant expression of some kind. Only return entries of ** the form "X <op> Y" where Y is a column in another table if no terms of ** the form "X <op> <const-expr>" exist. Other than this priority, if there ** are two or more terms that match, then the choice of which term to return ** is arbitrary. */ static WhereTerm *findTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ WhereTerm *pTerm; /* Term being examined as possible result */ WhereTerm *pResult = 0; /* The answer to return */ WhereClause *pWCOrig = pWC; /* Original pWC value */ int j, k; /* Loop counters */ Expr *pX; /* Pointer to an expression */ Parse *pParse; /* Parsing context */ int iOrigCol = iColumn; /* Original value of iColumn */ int nEquiv = 2; /* Number of entires in aEquiv[] */ int iEquiv = 2; /* Number of entries of aEquiv[] processed so far */ int aEquiv[22]; /* iCur,iColumn and up to 10 other equivalents */ assert( iCur>=0 ); aEquiv[0] = iCur; aEquiv[1] = iColumn; for(;;){ for(pWC=pWCOrig; pWC; pWC=pWC->pOuter){ for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ if( pTerm->leftCursor==iCur && pTerm->u.leftColumn==iColumn ){ if( (pTerm->prereqRight & notReady)==0 && (pTerm->eOperator & op & WO_ALL)!=0 ){ if( iOrigCol>=0 && pIdx && (pTerm->eOperator & WO_ISNULL)==0 ){ CollSeq *pColl; char idxaff; pX = pTerm->pExpr; pParse = pWC->pParse; idxaff = pIdx->pTable->aCol[iOrigCol].affinity; if( !sqlite3IndexAffinityOk(pX, idxaff) ){ continue; } /* Figure out the collation sequence required from an index for ** it to be useful for optimising expression pX. Store this ** value in variable pColl. */ assert(pX->pLeft); pColl = sqlite3BinaryCompareCollSeq(pParse,pX->pLeft,pX->pRight); if( pColl==0 ) pColl = pParse->db->pDfltColl; for(j=0; pIdx->aiColumn[j]!=iOrigCol; j++){ if( NEVER(j>=pIdx->nColumn) ) return 0; } if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ){ continue; } } pResult = pTerm; if( pTerm->prereqRight==0 ) goto findTerm_success; } if( (pTerm->eOperator & WO_EQUIV)!=0 && nEquiv<ArraySize(aEquiv) ){ pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); assert( pX->op==TK_COLUMN ); for(j=0; j<nEquiv; j+=2){ if( aEquiv[j]==pX->iTable && aEquiv[j+1]==pX->iColumn ) break; } if( j==nEquiv ){ aEquiv[j] = pX->iTable; aEquiv[j+1] = pX->iColumn; nEquiv += 2; } } } } } if( iEquiv>=nEquiv ) break; iCur = aEquiv[iEquiv++]; iColumn = aEquiv[iEquiv++]; } findTerm_success: return pResult; } /* Forward reference */ static void exprAnalyze(SrcList*, WhereClause*, int); /* ** Call exprAnalyze on all terms in a WHERE clause. |
︙ | ︙ | |||
950 951 952 953 954 955 956 | ** Compute the set of tables that might satisfy cases 1 or 2. */ indexable = ~(Bitmask)0; chngToIN = ~(pWC->vmask); for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ WhereAndInfo *pAndInfo; | < | 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 | ** Compute the set of tables that might satisfy cases 1 or 2. */ indexable = ~(Bitmask)0; chngToIN = ~(pWC->vmask); for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ WhereAndInfo *pAndInfo; assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); chngToIN = 0; pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); if( pAndInfo ){ WhereClause *pAndWC; WhereTerm *pAndTerm; int j; |
︙ | ︙ | |||
989 990 991 992 993 994 995 | Bitmask b; b = getMask(pMaskSet, pOrTerm->leftCursor); if( pOrTerm->wtFlags & TERM_VIRTUAL ){ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; b |= getMask(pMaskSet, pOther->leftCursor); } indexable &= b; | | | 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 | Bitmask b; b = getMask(pMaskSet, pOrTerm->leftCursor); if( pOrTerm->wtFlags & TERM_VIRTUAL ){ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; b |= getMask(pMaskSet, pOther->leftCursor); } indexable &= b; if( (pOrTerm->eOperator & WO_EQ)==0 ){ chngToIN = 0; }else{ chngToIN &= b; } } } |
︙ | ︙ | |||
1040 1041 1042 1043 1044 1045 1046 | ** will be recorded in iCursor and iColumn. There might not be any ** such table and column. Set okToChngToIN if an appropriate table ** and column is found but leave okToChngToIN false if not found. */ for(j=0; j<2 && !okToChngToIN; j++){ pOrTerm = pOrWc->a; for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ | | | 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 | ** will be recorded in iCursor and iColumn. There might not be any ** such table and column. Set okToChngToIN if an appropriate table ** and column is found but leave okToChngToIN false if not found. */ for(j=0; j<2 && !okToChngToIN; j++){ pOrTerm = pOrWc->a; for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ assert( pOrTerm->eOperator & WO_EQ ); pOrTerm->wtFlags &= ~TERM_OR_OK; if( pOrTerm->leftCursor==iCursor ){ /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } |
︙ | ︙ | |||
1066 1067 1068 1069 1070 1071 1072 | iCursor = pOrTerm->leftCursor; break; } if( i<0 ){ /* No candidate table+column was found. This can only occur ** on the second iteration */ assert( j==1 ); | | | | 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 | iCursor = pOrTerm->leftCursor; break; } if( i<0 ){ /* No candidate table+column was found. This can only occur ** on the second iteration */ assert( j==1 ); assert( IsPowerOfTwo(chngToIN) ); assert( chngToIN==getMask(pMaskSet, iCursor) ); break; } testcase( j==1 ); /* We have found a candidate table and column. Check to see if that ** table and column is common to every term in the OR clause */ okToChngToIN = 1; for(; i>=0 && okToChngToIN; i--, pOrTerm++){ assert( pOrTerm->eOperator & WO_EQ ); if( pOrTerm->leftCursor!=iCursor ){ pOrTerm->wtFlags &= ~TERM_OR_OK; }else if( pOrTerm->u.leftColumn!=iColumn ){ okToChngToIN = 0; }else{ int affLeft, affRight; /* If the right-hand side is also a column, then the affinities |
︙ | ︙ | |||
1112 1113 1114 1115 1116 1117 1118 | Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; | | | 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 | Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; assert( pOrTerm->eOperator & WO_EQ ); assert( pOrTerm->leftCursor==iCursor ); assert( pOrTerm->u.leftColumn==iColumn ); pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); pLeft = pOrTerm->pExpr->pLeft; } assert( pLeft!=0 ); |
︙ | ︙ | |||
1141 1142 1143 1144 1145 1146 1147 | sqlite3ExprListDelete(db, pList); } pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ } } } #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ | < | 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 | sqlite3ExprListDelete(db, pList); } pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ } } } #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ /* ** The input to this routine is an WhereTerm structure with only the ** "pExpr" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the WhereTerm ** structure. ** |
︙ | ︙ | |||
1211 1212 1213 1214 1215 1216 1217 | extraRight = x-1; /* ON clause terms may not be used with an index ** on left table of a LEFT JOIN. Ticket #3015 */ } pTerm->prereqAll = prereqAll; pTerm->leftCursor = -1; pTerm->iParent = -1; pTerm->eOperator = 0; | | > | > > > > > > > > | | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 | extraRight = x-1; /* ON clause terms may not be used with an index ** on left table of a LEFT JOIN. Ticket #3015 */ } pTerm->prereqAll = prereqAll; pTerm->leftCursor = -1; pTerm->iParent = -1; pTerm->eOperator = 0; if( allowedOp(op) ){ Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; if( pLeft->op==TK_COLUMN ){ pTerm->leftCursor = pLeft->iTable; pTerm->u.leftColumn = pLeft->iColumn; pTerm->eOperator = operatorMask(op) & opMask; } if( pRight && pRight->op==TK_COLUMN ){ WhereTerm *pNew; Expr *pDup; u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ if( pTerm->leftCursor>=0 ){ int idxNew; pDup = sqlite3ExprDup(db, pExpr, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); return; } idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); if( idxNew==0 ) return; pNew = &pWC->a[idxNew]; pNew->iParent = idxTerm; pTerm = &pWC->a[idxTerm]; pTerm->nChild = 1; pTerm->wtFlags |= TERM_COPIED; if( pExpr->op==TK_EQ && !ExprHasProperty(pExpr, EP_FromJoin) && OptimizationEnabled(db, SQLITE_Transitive) ){ pTerm->eOperator |= WO_EQUIV; eExtraOp = WO_EQUIV; } }else{ pDup = pExpr; pNew = pTerm; } exprCommute(pParse, pDup); pLeft = sqlite3ExprSkipCollate(pDup->pLeft); pNew->leftCursor = pLeft->iTable; pNew->u.leftColumn = pLeft->iColumn; testcase( (prereqLeft | extraRight) != prereqLeft ); pNew->prereqRight = prereqLeft | extraRight; pNew->prereqAll = prereqAll; pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; } } #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION /* If a term is the BETWEEN operator, create two new virtual terms ** that define the range that the BETWEEN implements. For example: ** |
︙ | ︙ | |||
1706 1707 1708 1709 1710 1711 1712 | } if( pWC->wctrlFlags & WHERE_AND_ONLY ){ return; } /* Search the WHERE clause terms for a usable WO_OR term. */ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | | | | 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 | } if( pWC->wctrlFlags & WHERE_AND_ONLY ){ return; } /* Search the WHERE clause terms for a usable WO_OR term. */ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( (pTerm->eOperator & WO_OR)!=0 && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 ){ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; WhereTerm *pOrTerm; int flags = WHERE_MULTI_OR; double rTotal = 0; double nRow = 0; Bitmask used = 0; WhereBestIdx sBOI; sBOI = *p; sBOI.pOrderBy = 0; sBOI.pDistinct = 0; sBOI.ppIdxInfo = 0; for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", (pOrTerm - pOrWC->a), (pTerm - pWC->a) )); if( (pOrTerm->eOperator& WO_AND)!=0 ){ sBOI.pWC = &pOrTerm->u.pAndInfo->wc; bestIndex(&sBOI); }else if( pOrTerm->leftCursor==iCur ){ WhereClause tempWC; tempWC.pParse = pWC->pParse; tempWC.pMaskSet = pWC->pMaskSet; tempWC.pOuter = pWC; |
︙ | ︙ | |||
1788 1789 1790 1791 1792 1793 1794 | static int termCanDriveIndex( WhereTerm *pTerm, /* WHERE clause term to check */ struct SrcList_item *pSrc, /* Table we are trying to access */ Bitmask notReady /* Tables in outer loops of the join */ ){ char aff; if( pTerm->leftCursor!=pSrc->iCursor ) return 0; | | | 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 | static int termCanDriveIndex( WhereTerm *pTerm, /* WHERE clause term to check */ struct SrcList_item *pSrc, /* Table we are trying to access */ Bitmask notReady /* Tables in outer loops of the join */ ){ char aff; if( pTerm->leftCursor!=pSrc->iCursor ) return 0; if( (pTerm->eOperator & WO_EQ)==0 ) return 0; if( (pTerm->prereqRight & notReady)!=0 ) return 0; aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; return 1; } #endif |
︙ | ︙ | |||
2050 2051 2052 2053 2054 2055 2056 | WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); /* Count the number of possible WHERE clause constraints referring ** to this virtual table */ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; | | | | | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 | WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); /* Count the number of possible WHERE clause constraints referring ** to this virtual table */ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_ISNULL ); if( pTerm->eOperator & (WO_ISNULL) ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; nTerm++; } /* If the ORDER BY clause contains only columns in the current ** virtual table then allocate space for the aOrderBy part of |
︙ | ︙ | |||
2103 2104 2105 2106 2107 2108 2109 | *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = pUsage; for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ u8 op; if( pTerm->leftCursor != pSrc->iCursor ) continue; | | | | | | 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 | *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = pUsage; for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ u8 op; if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_ISNULL ); if( pTerm->eOperator & (WO_ISNULL) ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; pIdxCons[j].iColumn = pTerm->u.leftColumn; pIdxCons[j].iTermOffset = i; op = (u8)pTerm->eOperator & WO_ALL; if( op==WO_IN ) op = WO_EQ; pIdxCons[j].op = op; /* The direct assignment in the previous line is possible only because ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The ** following asserts verify this fact. */ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
︙ | ︙ | |||
2280 2281 2282 2283 2284 2285 2286 | */ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; pUsage = pIdxInfo->aConstraintUsage; for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ j = pIdxCons->iTermOffset; pTerm = &pWC->a[j]; if( (pTerm->prereqRight&p->notReady)==0 | | | 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 | */ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; pUsage = pIdxInfo->aConstraintUsage; for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ j = pIdxCons->iTermOffset; pTerm = &pWC->a[j]; if( (pTerm->prereqRight&p->notReady)==0 && (bAllowIN || (pTerm->eOperator & WO_IN)==0) ){ pIdxCons->usable = 1; }else{ pIdxCons->usable = 0; } } memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
︙ | ︙ | |||
2312 2313 2314 2315 2316 2317 2318 | pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ if( pUsage[i].argvIndex>0 ){ j = pIdxCons->iTermOffset; pTerm = &pWC->a[j]; p->cost.used |= pTerm->prereqRight; | | | 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 | pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ if( pUsage[i].argvIndex>0 ){ j = pIdxCons->iTermOffset; pTerm = &pWC->a[j]; p->cost.used |= pTerm->prereqRight; if( (pTerm->eOperator & WO_IN)!=0 && pUsage[i].omit==0 ){ /* Do not attempt to use an IN constraint if the virtual table ** says that the equivalent EQ constraint cannot be safely omitted. ** If we do attempt to use such a constraint, some rows might be ** repeated in the output. */ break; } } |
︙ | ︙ | |||
2618 2619 2620 2621 2622 2623 2624 | tRowcnt iUpper = p->aiRowEst[0]; tRowcnt a[2]; u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; if( pLower ){ Expr *pExpr = pLower->pExpr->pRight; rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal); | | | | | | 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 | tRowcnt iUpper = p->aiRowEst[0]; tRowcnt a[2]; u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; if( pLower ){ Expr *pExpr = pLower->pExpr->pRight; rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal); assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 ); if( rc==SQLITE_OK && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK ){ iLower = a[0]; if( (pLower->eOperator & WO_GT)!=0 ) iLower += a[1]; } sqlite3ValueFree(pRangeVal); } if( rc==SQLITE_OK && pUpper ){ Expr *pExpr = pUpper->pExpr->pRight; rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal); assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); if( rc==SQLITE_OK && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK ){ iUpper = a[0]; if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1]; } sqlite3ValueFree(pRangeVal); } if( rc==SQLITE_OK ){ if( iUpper<=iLower ){ *pRangeDiv = (double)p->aiRowEst[0]; }else{ |
︙ | ︙ | |||
2943 2944 2945 2946 2947 2948 2949 | /* If X is the column in the index and ORDER BY clause, check to see ** if there are any X= or X IS NULL constraints in the WHERE clause. */ pConstraint = findTerm(p->pWC, base, iColumn, p->notReady, WO_EQ|WO_ISNULL|WO_IN, pIdx); if( pConstraint==0 ){ isEq = 0; | | | | 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 | /* If X is the column in the index and ORDER BY clause, check to see ** if there are any X= or X IS NULL constraints in the WHERE clause. */ pConstraint = findTerm(p->pWC, base, iColumn, p->notReady, WO_EQ|WO_ISNULL|WO_IN, pIdx); if( pConstraint==0 ){ isEq = 0; }else if( (pConstraint->eOperator & WO_IN)!=0 ){ /* Constraints of the form: "X IN ..." cannot be used with an ORDER BY ** because we do not know in what order the values on the RHS of the IN ** operator will occur. */ break; }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){ uniqueNotNull = 0; isEq = 1; /* "X IS NULL" means X has only a single value */ }else if( pConstraint->prereqRight==0 ){ isEq = 1; /* Constraint "X=constant" means X has only a single value */ }else{ Expr *pRight = pConstraint->pExpr->pRight; if( pRight->op==TK_COLUMN ){ |
︙ | ︙ | |||
3361 3362 3363 3364 3365 3366 3367 | ** to get a better estimate on the number of rows based on ** VALUE and how common that value is according to the histogram. */ if( pc.plan.nRow>(double)1 && pc.plan.nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){ assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 ); if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ | | | > | | 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 | ** to get a better estimate on the number of rows based on ** VALUE and how common that value is according to the histogram. */ if( pc.plan.nRow>(double)1 && pc.plan.nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){ assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 ); if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ testcase( pFirstTerm->eOperator & WO_EQ ); testcase( pFirstTerm->eOperator & WO_EQUIV ); testcase( pFirstTerm->eOperator & WO_ISNULL ); whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &pc.plan.nRow); }else if( bInEst==0 ){ assert( pFirstTerm->eOperator & WO_IN ); whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &pc.plan.nRow); } } #endif /* SQLITE_ENABLE_STAT3 */ /* Adjust the number of output rows and downward to reflect rows |
︙ | ︙ | |||
3513 3514 3515 3516 3517 3518 3519 | ** set size by a factor of 3. Indexed range constraints reduce ** the search space by a larger factor: 4. We make indexed range ** more selective intentionally because of the subjective ** observation that indexed range constraints really are more ** selective in practice, on average. */ pc.plan.nRow /= 3; } | | | 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 | ** set size by a factor of 3. Indexed range constraints reduce ** the search space by a larger factor: 4. We make indexed range ** more selective intentionally because of the subjective ** observation that indexed range constraints really are more ** selective in practice, on average. */ pc.plan.nRow /= 3; } }else if( (pTerm->eOperator & WO_NOOP)==0 ){ /* Any other expression lowers the output row count by half */ pc.plan.nRow /= 2; } } if( pc.plan.nRow<2 ) pc.plan.nRow = 2; } |
︙ | ︙ | |||
3565 3566 3567 3568 3569 3570 3571 | assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 ); assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 ); assert( pSrc->pIndex==0 || p->cost.plan.u.pIdx==0 || p->cost.plan.u.pIdx==pSrc->pIndex ); | | | > | 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 | assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 ); assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 ); assert( pSrc->pIndex==0 || p->cost.plan.u.pIdx==0 || p->cost.plan.u.pIdx==pSrc->pIndex ); WHERETRACE((" best index is %s cost=%.1f\n", p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk", p->cost.rCost)); bestOrClauseIndex(p); bestAutomaticIndex(p); p->cost.plan.wsFlags |= eqTermMask; } /* |
︙ | ︙ | |||
4148 4149 4150 4151 4152 4153 4154 | ** we reference multiple rows using a "rowid IN (...)" ** construct. */ iReleaseReg = sqlite3GetTempReg(pParse); pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); | < | 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 | ** we reference multiple rows using a "rowid IN (...)" ** construct. */ iReleaseReg = sqlite3GetTempReg(pParse); pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( omitTable==0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
︙ | ︙ | |||
4539 4540 4541 4542 4543 4544 4545 | int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; /* Loop counter */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ pTerm = pLevel->plan.u.pTerm; assert( pTerm!=0 ); | | | 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 | int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; /* Loop counter */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ pTerm = pLevel->plan.u.pTerm; assert( pTerm!=0 ); assert( pTerm->eOperator & WO_OR ); assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); pOrWc = &pTerm->u.pOrInfo->wc; pLevel->op = OP_Return; pLevel->p1 = regReturn; /* Set up a new SrcList in pOrTab containing the table being scanned ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. |
︙ | ︙ | |||
4612 4613 4614 4615 4616 4617 4618 | if( pAndExpr ){ pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); } } for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; | | | 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 | if( pAndExpr ){ pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); } } for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ Expr *pOrExpr = pOrTerm->pExpr; if( pAndExpr ){ pAndExpr->pLeft = pOrExpr; pOrExpr = pAndExpr; } /* Loop through table entries that match term pOrTerm. */ |
︙ | ︙ | |||
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 | for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){ WhereCost bestPlan; /* Most efficient plan seen so far */ Index *pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ int bestJ = -1; /* The value of j */ Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ int nUnconstrained; /* Number tables without INDEXED BY */ Bitmask notIndexed; /* Mask of tables that cannot use an index */ memset(&bestPlan, 0, sizeof(bestPlan)); bestPlan.rCost = SQLITE_BIG_DBL; WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i)); | > | 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 | for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){ WhereCost bestPlan; /* Most efficient plan seen so far */ Index *pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ int bestJ = -1; /* The value of j */ Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ int ckOptimal; /* Do the optimal scan check */ int nUnconstrained; /* Number tables without INDEXED BY */ Bitmask notIndexed; /* Mask of tables that cannot use an index */ memset(&bestPlan, 0, sizeof(bestPlan)); bestPlan.rCost = SQLITE_BIG_DBL; WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i)); |
︙ | ︙ | |||
5101 5102 5103 5104 5105 5106 5107 | ** that do not use indices. But this nRow reduction only happens if the ** table really is the innermost join. ** ** The second loop iteration is only performed if no optimal scan ** strategies were found by the first iteration. This second iteration ** is used to search for the lowest cost scan overall. ** | | < < | | > > > > > > < < < < > > > > > > > > > > > > > > > > > > > > > > | 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 | ** that do not use indices. But this nRow reduction only happens if the ** table really is the innermost join. ** ** The second loop iteration is only performed if no optimal scan ** strategies were found by the first iteration. This second iteration ** is used to search for the lowest cost scan overall. ** ** Without the optimal scan step (the first iteration) a suboptimal ** plan might be chosen for queries like this: ** ** CREATE TABLE t1(a, b); ** CREATE TABLE t2(c, d); ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; ** ** The best strategy is to iterate through table t1 first. However it ** is not possible to determine this with a simple greedy algorithm. ** Since the cost of a linear scan through table t2 is the same ** as the cost of a linear scan through table t1, a simple greedy ** algorithm may choose to use t2 for the outer loop, which is a much ** costlier approach. */ nUnconstrained = 0; notIndexed = 0; /* The optimal scan check only occurs if there are two or more tables ** available to be reordered */ if( iFrom==nTabList-1 ){ ckOptimal = 0; /* Common case of just one table in the FROM clause */ }else{ ckOptimal = -1; for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){ m = getMask(pMaskSet, sWBI.pSrc->iCursor); if( (m & sWBI.notValid)==0 ){ if( j==iFrom ) iFrom++; continue; } if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break; if( ++ckOptimal ) break; if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break; } } assert( ckOptimal==0 || ckOptimal==1 ); for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){ for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){ if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){ /* This break and one like it in the ckOptimal computation loop ** above prevent table reordering across LEFT and CROSS JOINs. ** The LEFT JOIN case is necessary for correctness. The prohibition ** against reordering across a CROSS JOIN is an SQLite feature that ** allows the developer to control table reordering */ break; } m = getMask(pMaskSet, sWBI.pSrc->iCursor); if( (m & sWBI.notValid)==0 ){ assert( j>iFrom ); continue; } sWBI.notReady = (isOptimal ? m : sWBI.notValid); if( sWBI.pSrc->pIndex==0 ) nUnconstrained++; WHERETRACE((" === trying table %d (%s) with isOptimal=%d ===\n", j, sWBI.pSrc->pTab->zName, isOptimal)); assert( sWBI.pSrc->pTab ); |
︙ | ︙ | |||
5158 5159 5160 5161 5162 5163 5164 | || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex ); if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ notIndexed |= m; } if( isOptimal ){ pWInfo->a[j].rOptCost = sWBI.cost.rCost; | | | | 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 | || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex ); if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ notIndexed |= m; } if( isOptimal ){ pWInfo->a[j].rOptCost = sWBI.cost.rCost; }else if( ckOptimal ){ /* If two or more tables have nearly the same outer loop cost, but ** very different inner loop (optimal) cost, we want to choose ** for the outer loop that table which benefits the least from ** being in the inner loop. The following code scales the ** outer loop cost estimate to accomplish that. */ WHERETRACE((" scaling cost from %.1f to %.1f\n", sWBI.cost.rCost, sWBI.cost.rCost/pWInfo->a[j].rOptCost)); |
︙ | ︙ | |||
5204 5205 5206 5207 5208 5209 5210 | " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n", j, sWBI.pSrc->pTab->zName, sWBI.cost.rCost, sWBI.cost.plan.nRow, sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags)); bestPlan = sWBI.cost; bestJ = j; } | | > > > > > > > > | 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 | " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n", j, sWBI.pSrc->pTab->zName, sWBI.cost.rCost, sWBI.cost.plan.nRow, sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags)); bestPlan = sWBI.cost; bestJ = j; } /* In a join like "w JOIN x LEFT JOIN y JOIN z" make sure that ** table y (and not table z) is always the next inner loop inside ** of table x. */ if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break; } } assert( bestJ>=0 ); assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 ); testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 ); testcase( bestJ>iFrom && bestJ<nTabList-1 && (pTabList->a[bestJ+1].jointype & JT_LEFT)!=0 ); WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n" " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n", bestJ, pTabList->a[bestJ].pTab->zName, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow, bestPlan.plan.nOBSat, bestPlan.plan.wsFlags)); if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){ assert( pWInfo->eDistinct==0 ); |
︙ | ︙ |
Changes to test/autoindex1.test.
︙ | ︙ | |||
253 254 255 256 257 258 259 260 261 | CREATE TABLE t5(a, b, c); EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c; } { 0 0 0 {SCAN TABLE t5 (~100000 rows)} 0 0 0 {USE TEMP B-TREE FOR ORDER BY} } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | CREATE TABLE t5(a, b, c); EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c; } { 0 0 0 {SCAN TABLE t5 (~100000 rows)} 0 0 0 {USE TEMP B-TREE FOR ORDER BY} } # The following checks a performance issue reported on the sqlite-dev # mailing list on 2013-01-10 # do_execsql_test autoindex1-800 { CREATE TABLE accounts( _id INTEGER PRIMARY KEY AUTOINCREMENT, account_name TEXT, account_type TEXT, data_set TEXT ); CREATE TABLE data( _id INTEGER PRIMARY KEY AUTOINCREMENT, package_id INTEGER REFERENCES package(_id), mimetype_id INTEGER REFERENCES mimetype(_id) NOT NULL, raw_contact_id INTEGER REFERENCES raw_contacts(_id) NOT NULL, is_read_only INTEGER NOT NULL DEFAULT 0, is_primary INTEGER NOT NULL DEFAULT 0, is_super_primary INTEGER NOT NULL DEFAULT 0, data_version INTEGER NOT NULL DEFAULT 0, data1 TEXT, data2 TEXT, data3 TEXT, data4 TEXT, data5 TEXT, data6 TEXT, data7 TEXT, data8 TEXT, data9 TEXT, data10 TEXT, data11 TEXT, data12 TEXT, data13 TEXT, data14 TEXT, data15 TEXT, data_sync1 TEXT, data_sync2 TEXT, data_sync3 TEXT, data_sync4 TEXT ); CREATE TABLE mimetypes( _id INTEGER PRIMARY KEY AUTOINCREMENT, mimetype TEXT NOT NULL ); CREATE TABLE raw_contacts( _id INTEGER PRIMARY KEY AUTOINCREMENT, account_id INTEGER REFERENCES accounts(_id), sourceid TEXT, raw_contact_is_read_only INTEGER NOT NULL DEFAULT 0, version INTEGER NOT NULL DEFAULT 1, dirty INTEGER NOT NULL DEFAULT 0, deleted INTEGER NOT NULL DEFAULT 0, contact_id INTEGER REFERENCES contacts(_id), aggregation_mode INTEGER NOT NULL DEFAULT 0, aggregation_needed INTEGER NOT NULL DEFAULT 1, custom_ringtone TEXT, send_to_voicemail INTEGER NOT NULL DEFAULT 0, times_contacted INTEGER NOT NULL DEFAULT 0, last_time_contacted INTEGER, starred INTEGER NOT NULL DEFAULT 0, display_name TEXT, display_name_alt TEXT, display_name_source INTEGER NOT NULL DEFAULT 0, phonetic_name TEXT, phonetic_name_style TEXT, sort_key TEXT, sort_key_alt TEXT, name_verified INTEGER NOT NULL DEFAULT 0, sync1 TEXT, sync2 TEXT, sync3 TEXT, sync4 TEXT, sync_uid TEXT, sync_version INTEGER NOT NULL DEFAULT 1, has_calendar_event INTEGER NOT NULL DEFAULT 0, modified_time INTEGER, is_restricted INTEGER DEFAULT 0, yp_source TEXT, method_selected INTEGER DEFAULT 0, custom_vibration_type INTEGER DEFAULT 0, custom_ringtone_path TEXT, message_notification TEXT, message_notification_path TEXT ); CREATE INDEX data_mimetype_data1_index ON data (mimetype_id,data1); CREATE INDEX data_raw_contact_id ON data (raw_contact_id); CREATE UNIQUE INDEX mime_type ON mimetypes (mimetype); CREATE INDEX raw_contact_sort_key1_index ON raw_contacts (sort_key); CREATE INDEX raw_contact_sort_key2_index ON raw_contacts (sort_key_alt); CREATE INDEX raw_contacts_contact_id_index ON raw_contacts (contact_id); CREATE INDEX raw_contacts_source_id_account_id_index ON raw_contacts (sourceid, account_id); ANALYZE sqlite_master; INSERT INTO sqlite_stat1 VALUES('raw_contacts','raw_contact_sort_key2_index','1600 4'); INSERT INTO sqlite_stat1 VALUES('raw_contacts','raw_contact_sort_key1_index','1600 4'); INSERT INTO sqlite_stat1 VALUES('raw_contacts','raw_contacts_source_id_account_id_index', '1600 1600 1600'); INSERT INTO sqlite_stat1 VALUES('raw_contacts','raw_contacts_contact_id_index','1600 1'); INSERT INTO sqlite_stat1 VALUES('mimetypes','mime_type','12 1'); INSERT INTO sqlite_stat1 VALUES('data','data_mimetype_data1_index','9819 2455 3'); INSERT INTO sqlite_stat1 VALUES('data','data_raw_contact_id','9819 7'); INSERT INTO sqlite_stat1 VALUES('accounts',NULL,'1'); DROP TABLE IF EXISTS sqlite_stat3; ANALYZE sqlite_master; EXPLAIN QUERY PLAN SELECT * FROM data JOIN mimetypes ON (data.mimetype_id=mimetypes._id) JOIN raw_contacts ON (data.raw_contact_id=raw_contacts._id) JOIN accounts ON (raw_contacts.account_id=accounts._id) WHERE mimetype_id=10 AND data14 IS NOT NULL; } {/SEARCH TABLE data .*SEARCH TABLE raw_contacts/} do_execsql_test autoindex1-801 { EXPLAIN QUERY PLAN SELECT * FROM data JOIN mimetypes ON (data.mimetype_id=mimetypes._id) JOIN raw_contacts ON (data.raw_contact_id=raw_contacts._id) JOIN accounts ON (raw_contacts.account_id=accounts._id) WHERE mimetypes._id=10 AND data14 IS NOT NULL; } {/SEARCH TABLE data .*SEARCH TABLE raw_contacts/} finish_test |
Changes to test/fts4content.test.
︙ | ︙ | |||
42 43 44 45 46 47 48 49 50 51 52 53 54 55 | # 7.* - Test that if content=xxx is specified and table xxx does not # exist, the FTS table can still be used for INSERT and some # SELECT statements. # # 8.* - Test that if the content=xxx and prefix options are used together, # the 'rebuild' command still works. # do_execsql_test 1.1.1 { CREATE TABLE t1(a, b, c); INSERT INTO t1 VALUES('w x', 'x y', 'y z'); CREATE VIRTUAL TABLE ft1 USING fts4(content=t1); } | > > | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | # 7.* - Test that if content=xxx is specified and table xxx does not # exist, the FTS table can still be used for INSERT and some # SELECT statements. # # 8.* - Test that if the content=xxx and prefix options are used together, # the 'rebuild' command still works. # # 9.* - Test using content=xxx where xxx is a virtual table. # do_execsql_test 1.1.1 { CREATE TABLE t1(a, b, c); INSERT INTO t1 VALUES('w x', 'x y', 'y z'); CREATE VIRTUAL TABLE ft1 USING fts4(content=t1); } |
︙ | ︙ | |||
517 518 519 520 521 522 523 524 525 | } do_execsql_test 8.2 { SELECT * FROM ft10 WHERE a MATCH 'ab*'; } do_execsql_test 8.3 { INSERT INTO ft10(ft10) VALUES('rebuild'); } do_execsql_test 8.4 { SELECT rowid FROM ft10 WHERE a MATCH 'ab*'; } {1 2 3} do_execsql_test 8.5 { SELECT rowid FROM ft10 WHERE b MATCH 'abav*'; } {3} do_execsql_test 8.6 { SELECT rowid FROM ft10 WHERE ft10 MATCH 'abas*'; } {1} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | } do_execsql_test 8.2 { SELECT * FROM ft10 WHERE a MATCH 'ab*'; } do_execsql_test 8.3 { INSERT INTO ft10(ft10) VALUES('rebuild'); } do_execsql_test 8.4 { SELECT rowid FROM ft10 WHERE a MATCH 'ab*'; } {1 2 3} do_execsql_test 8.5 { SELECT rowid FROM ft10 WHERE b MATCH 'abav*'; } {3} do_execsql_test 8.6 { SELECT rowid FROM ft10 WHERE ft10 MATCH 'abas*'; } {1} #------------------------------------------------------------------------- # Test cases 9.* # reset_db register_echo_module [sqlite3_connection_pointer db] do_execsql_test 9.1 { CREATE TABLE tbl1(a, b); INSERT INTO tbl1 VALUES('a b', 'c d'); INSERT INTO tbl1 VALUES('e f', 'a b'); CREATE VIRTUAL TABLE e1 USING echo(tbl1); CREATE VIRTUAL TABLE ft1 USING fts4(content=e1); INSERT INTO ft1(ft1) VALUES('rebuild'); } do_execsql_test 9.2 { SELECT rowid, * FROM ft1 WHERE ft1 MATCH 'e' } {2 {e f} {a b}} do_execsql_test 9.3 { SELECT rowid, * FROM ft1 WHERE ft1 MATCH 'a' } {1 {a b} {c d} 2 {e f} {a b}} do_execsql_test 9.4 { DELETE FROM ft1 WHERE docid=1; } do_execsql_test 9.5 { SELECT rowid, * FROM ft1 WHERE ft1 MATCH 'a' } {2 {e f} {a b}} do_execsql_test 9.6 { INSERT INTO ft1(ft1) VALUES('rebuild'); SELECT rowid, * FROM ft1 WHERE ft1 MATCH 'a' } {1 {a b} {c d} 2 {e f} {a b}} #------------------------------------------------------------------------- # Test cases 10.* # reset_db register_fs_module [sqlite3_connection_pointer db] proc write_file {path text} { set fd [open $path w] puts -nonewline $fd $text close $fd } write_file t1.txt {a b c d e f g h i j k l m n o p q r s t u v w x y z} write_file t2.txt {a b c d e f g h i j k l m a b c d e f g h i j k l m} write_file t3.txt {n o p q r s t u v w x y z n o p q r s t u v w x y z} do_execsql_test 10.1 { CREATE TABLE idx(id INTEGER PRIMARY KEY, path TEXT); INSERT INTO idx VALUES (1, 't1.txt'); INSERT INTO idx VALUES (2, 't2.txt'); INSERT INTO idx VALUES (3, 't3.txt'); CREATE VIRTUAL TABLE vt USING fs(idx); SELECT * FROM vt; } { 1 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2 {a b c d e f g h i j k l m a b c d e f g h i j k l m} 3 {n o p q r s t u v w x y z n o p q r s t u v w x y z} } do_execsql_test 10.2 { SELECT * FROM vt WHERE rowid = 2; } { 2 {a b c d e f g h i j k l m a b c d e f g h i j k l m} } do_execsql_test 10.3 { CREATE VIRTUAL TABLE ft USING fts4(content=vt); INSERT INTO ft(ft) VALUES('rebuild'); } do_execsql_test 10.4 { SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e' } { {...c d [e] f g...} {...c d [e] f g...} } do_execsql_test 10.5 { SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 't' } { {...r s [t] u v...} {...r s [t] u v...} } do_execsql_test 10.6 { DELETE FROM ft WHERE docid=2 } do_execsql_test 10.7 { SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e' } { {...c d [e] f g...} } finish_test |
Changes to test/regexp1.test.
︙ | ︙ | |||
193 194 195 196 197 198 199 | 'abc{4}x' REGEXP '^abc\{4\}x$', 'abc|def' REGEXP '^abc\|def$' } {1 1 1 1 1 1 1 1 1 1 1 1} do_execsql_test regexp1-2.20 { SELECT 'abc$¢€xyz' REGEXP '^abc\u0024\u00a2\u20acxyz$', 'abc$¢€xyz' REGEXP '^abc\u0024\u00A2\u20ACxyz$', | | | | 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | 'abc{4}x' REGEXP '^abc\{4\}x$', 'abc|def' REGEXP '^abc\|def$' } {1 1 1 1 1 1 1 1 1 1 1 1} do_execsql_test regexp1-2.20 { SELECT 'abc$¢€xyz' REGEXP '^abc\u0024\u00a2\u20acxyz$', 'abc$¢€xyz' REGEXP '^abc\u0024\u00A2\u20ACxyz$', 'abc$¢€xyz' REGEXP '^abc\x24\xa2\u20acxyz$' } {1 1 1} do_execsql_test regexp1-2.21 { SELECT 'abc$¢€xyz' REGEXP '^abc[\u0024][\u00a2][\u20ac]xyz$', 'abc$¢€xyz' REGEXP '^abc[\u0024\u00A2\u20AC]{3}xyz$', 'abc$¢€xyz' REGEXP '^abc[\x24][\xa2\u20ac]+xyz$' } {1 1 1} do_execsql_test regexp1-2.22 { SELECT 'abc$¢€xyz' REGEXP '^abc[^\u0025-X][^ -\u007f][^\u20ab]xyz$' } {1} finish_test |
Changes to test/shell1.test.
︙ | ︙ | |||
249 250 251 252 253 254 255 | #---------------------------------------------------------------------------- # Test cases shell1-3.*: Basic test that "dot" command can be called. # # .backup ?DB? FILE Backup DB (default "main") to FILE do_test shell1-3.1.1 { catchcmd "test.db" ".backup" | | | | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | #---------------------------------------------------------------------------- # Test cases shell1-3.*: Basic test that "dot" command can be called. # # .backup ?DB? FILE Backup DB (default "main") to FILE do_test shell1-3.1.1 { catchcmd "test.db" ".backup" } {1 {missing FILENAME argument on .backup}} do_test shell1-3.1.2 { catchcmd "test.db" ".backup FOO" } {0 {}} do_test shell1-3.1.3 { catchcmd "test.db" ".backup FOO BAR" } {1 {Error: unknown database FOO}} do_test shell1-3.1.4 { # too many arguments catchcmd "test.db" ".backup FOO BAR BAD" } {1 {too many arguments to .backup}} # .bail ON|OFF Stop after hitting an error. Default OFF do_test shell1-3.2.1 { catchcmd "test.db" ".bail" } {1 {Error: unknown command or invalid arguments: "bail". Enter ".help" for help}} do_test shell1-3.2.2 { catchcmd "test.db" ".bail ON" |
︙ | ︙ |
Added test/transitive1.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | # 2013 April 17 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing of transitive WHERE clause constraints # set testdir [file dirname $argv0] source $testdir/tester.tcl do_execsql_test transitive1-100 { CREATE TABLE t1(a TEXT, b TEXT, c TEXT COLLATE NOCASE); INSERT INTO t1 VALUES('abc','abc','Abc'); INSERT INTO t1 VALUES('def','def','def'); INSERT INTO t1 VALUES('ghi','ghi','GHI'); CREATE INDEX t1a1 ON t1(a); CREATE INDEX t1a2 ON t1(a COLLATE nocase); SELECT * FROM t1 WHERE a=b AND c=b AND c='DEF'; } {def def def} do_execsql_test transitive1-110 { SELECT * FROM t1 WHERE a=b AND c=b AND c>='DEF' ORDER BY +a; } {def def def ghi ghi GHI} do_execsql_test transitive1-120 { SELECT * FROM t1 WHERE a=b AND c=b AND c<='DEF' ORDER BY +a; } {abc abc Abc def def def} do_execsql_test transitive1-200 { CREATE TABLE t2(a INTEGER, b INTEGER, c TEXT); INSERT INTO t2 VALUES(100,100,100); INSERT INTO t2 VALUES(20,20,20); INSERT INTO t2 VALUES(3,3,3); SELECT * FROM t2 WHERE a=b AND c=b AND c=20; } {20 20 20} do_execsql_test transitive1-210 { SELECT * FROM t2 WHERE a=b AND c=b AND c>=20 ORDER BY +a; } {3 3 3 20 20 20} do_execsql_test transitive1-220 { SELECT * FROM t2 WHERE a=b AND c=b AND c<=20 ORDER BY +a; } {20 20 20 100 100 100} finish_test |