Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Rework internal data structures to make the VDBE about 15% smaller. (CVS 1203) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
8273c74bd09d1a044cb5154498b0a399 |
User & Date: | drh 2004-01-31 19:22:56.000 |
Context
2004-01-31
| ||
20:20 | A few more optimizations to the VDBE. (CVS 1204) (check-in: 06e7ff4cb8 user: drh tags: trunk) | |
19:22 | Rework internal data structures to make the VDBE about 15% smaller. (CVS 1203) (check-in: 8273c74bd0 user: drh tags: trunk) | |
2004-01-30
| ||
14:49 | Rework the VDBE data structures to combine string representations into the same structure with integer and floating point. This opens the door to significant optimizations. (CVS 1202) (check-in: c0faa1c67a user: drh tags: trunk) | |
Changes
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.253 2004/01/31 19:22:56 drh Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> #include "vdbeInt.h" /* |
︙ | ︙ | |||
178 179 180 181 182 183 184 | return pElem ? sqliteHashData(pElem) : 0; } /* ** Convert the given stack entity into a string if it isn't one ** already. */ | | | < | | | | < | | | | | | < | > > | > > > | > > > | > > | < | 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | return pElem ? sqliteHashData(pElem) : 0; } /* ** Convert the given stack entity into a string if it isn't one ** already. */ #define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);} static int hardStringify(Mem *pStack){ int fg = pStack->flags; if( fg & MEM_Real ){ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r); }else if( fg & MEM_Int ){ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i); }else{ pStack->zShort[0] = 0; } pStack->z = pStack->zShort; pStack->n = strlen(pStack->zShort)+1; pStack->flags = MEM_Str | MEM_Short; return 0; } /* ** Convert the given stack entity into a string that has been obtained ** from sqliteMalloc(). This is different from Stringify() above in that ** Stringify() will use the NBFS bytes of static string space if the string ** will fit but this routine always mallocs for space. ** Return non-zero if we run out of memory. */ #define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0) static int hardDynamicify(Mem *pStack){ int fg = pStack->flags; char *z; if( (fg & MEM_Str)==0 ){ hardStringify(pStack); } assert( (fg & MEM_Dyn)==0 ); z = sqliteMallocRaw( pStack->n ); if( z==0 ) return 1; memcpy(z, pStack->z, pStack->n); pStack->z = z; pStack->flags |= MEM_Dyn; return 0; } /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the stack entry ** does not control the string, it might be deleted without the stack ** entry knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the stack entry itself controls. In other words, it ** converts an MEM_Ephem string into an MEM_Dyn string. */ #define Deephemeralize(P) \ if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;} static int hardDeephem(Mem *pStack){ char *z; assert( (pStack->flags & MEM_Ephem)!=0 ); z = sqliteMallocRaw( pStack->n ); if( z==0 ) return 1; memcpy(z, pStack->z, pStack->n); pStack->z = z; pStack->flags &= ~MEM_Ephem; pStack->flags |= MEM_Dyn; return 0; } /* ** Release the memory associated with the given stack level. This ** leaves the Mem.flags field in an inconsistent state. */ #define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); } /* ** Pop the stack N times. */ static void popStack(Mem **ppTos, int N){ Mem *pTos = *ppTos; while( N>0 ){ N--; Release(pTos); pTos--; } *ppTos = pTos; } /* ** Return TRUE if zNum is a 32-bit signed integer and write ** the value of the integer into *pNum. If zNum is not an integer ** or is an integer that is too large to be expressed with just 32 ** bits, then return false. |
︙ | ︙ | |||
291 292 293 294 295 296 297 | /* ** Convert the given stack entity into a integer if it isn't one ** already. ** ** Any prior string or real representation is invalidated. ** NULLs are converted into 0. */ | | < | | | | | | | | | | < | | | | | | | | 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 | /* ** Convert the given stack entity into a integer if it isn't one ** already. ** ** Any prior string or real representation is invalidated. ** NULLs are converted into 0. */ #define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); } static void hardIntegerify(Mem *pStack){ if( pStack->flags & MEM_Real ){ pStack->i = (int)pStack->r; Release(pStack); }else if( pStack->flags & MEM_Str ){ toInt(pStack->z, &pStack->i); Release(pStack); }else{ pStack->i = 0; } pStack->flags = MEM_Int; } /* ** Get a valid Real representation for the given stack element. ** ** Any prior string or integer representation is retained. ** NULLs are converted into 0.0. */ #define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); } static void hardRealify(Mem *pStack){ if( pStack->flags & MEM_Str ){ pStack->r = sqliteAtoF(pStack->z); }else if( pStack->flags & MEM_Int ){ pStack->r = pStack->i; }else{ pStack->r = 0.0; } pStack->flags |= MEM_Real; } /* ** The parameters are pointers to the head of two sorted lists ** of Sorter structures. Merge these two lists together and return ** a single sorted list. This routine forms the core of the merge-sort ** algorithm. |
︙ | ︙ | |||
357 358 359 360 361 362 363 | pTail->pNext = pLeft; }else if( pRight ){ pTail->pNext = pRight; } return sHead.pNext; } | < < < < < < < < < < < | 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | pTail->pNext = pLeft; }else if( pRight ){ pTail->pNext = pRight; } return sHead.pNext; } /* ** The following routine works like a replacement for the standard ** library routine fgets(). The difference is in how end-of-line (EOL) ** is handled. Standard fgets() uses LF for EOL under unix, CRLF ** under windows, and CR under mac. This routine accepts any of these ** character sequences as an EOL mark. The EOL mark is replaced by ** a single LF character in zBuf. |
︙ | ︙ | |||
481 482 483 484 485 486 487 | int sqliteVdbeExec( Vdbe *p /* The VDBE */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite *db = p->db; /* The database */ | | > | | | 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | int sqliteVdbeExec( Vdbe *p /* The VDBE */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite *db = p->db; /* The database */ Mem *pTos; /* Top entry in the operand stack */ char zBuf[100]; /* Space to sprintf() an integer */ #ifdef VDBE_PROFILE unsigned long long start; /* CPU clock count at start of opcode */ int origPc; /* Program counter at start of opcode */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int nProgressOps = 0; /* Opcodes executed since progress callback. */ #endif if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; assert( db->magic==SQLITE_MAGIC_BUSY ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); p->rc = SQLITE_OK; assert( p->explain==0 ); if( sqlite_malloc_failed ) goto no_mem; pTos = p->pTos; if( p->popStack ){ popStack(&pTos, p->popStack); p->popStack = 0; } for(pc=p->pc; rc==SQLITE_OK; pc++){ assert( pc>=0 && pc<p->nOp ); assert( pTos<=&p->aStack[pc] ); #ifdef VDBE_PROFILE origPc = pc; start = hwtime(); #endif pOp = &p->aOp[pc]; /* Only allow tracing if NDEBUG is not defined. |
︙ | ︙ | |||
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 | ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { p->magic = VDBE_MAGIC_HALT; if( pOp->p1!=SQLITE_OK ){ p->rc = pOp->p1; p->errorAction = pOp->p2; if( pOp->p3 ){ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); } return SQLITE_ERROR; }else{ p->rc = SQLITE_OK; return SQLITE_DONE; } } /* Opcode: Integer P1 * P3 ** ** The integer value P1 is pushed onto the stack. If P3 is not zero ** then it is assumed to be a string representation of the same integer. */ case OP_Integer: { | > | | | | | | < | | < < | | | | < > | | | < < | | | > | > | < | | < | < | | | | | | < | | | | | | < | | | | | | | | > > > | < < | | | > > > | | < | < < | < | > | | < | | < | > < | > > | > | > | | | > < | | > | | > | 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 | ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { p->magic = VDBE_MAGIC_HALT; p->pTos = pTos; if( pOp->p1!=SQLITE_OK ){ p->rc = pOp->p1; p->errorAction = pOp->p2; if( pOp->p3 ){ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); } return SQLITE_ERROR; }else{ p->rc = SQLITE_OK; return SQLITE_DONE; } } /* Opcode: Integer P1 * P3 ** ** The integer value P1 is pushed onto the stack. If P3 is not zero ** then it is assumed to be a string representation of the same integer. */ case OP_Integer: { pTos++; pTos->i = pOp->p1; pTos->flags = MEM_Int; if( pOp->p3 ){ pTos->z = pOp->p3; pTos->flags |= MEM_Str | MEM_Static; pTos->n = strlen(pOp->p3)+1; } break; } /* Opcode: String * * P3 ** ** The string value P3 is pushed onto the stack. If P3==0 then a ** NULL is pushed onto the stack. */ case OP_String: { char *z = pOp->p3; pTos++; if( z==0 ){ pTos->flags = MEM_Null; }else{ pTos->z = z; pTos->n = strlen(z) + 1; pTos->flags = MEM_Str | MEM_Static; } break; } /* Opcode: Variable P1 * * ** ** Push the value of variable P1 onto the stack. A variable is ** an unknown in the original SQL string as handed to sqlite_compile(). ** Any occurance of the '?' character in the original SQL is considered ** a variable. Variables in the SQL string are number from left to ** right beginning with 1. The values of variables are set using the ** sqlite_bind() API. */ case OP_Variable: { int j = pOp->p1 - 1; pTos++; if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){ pTos->z = p->azVar[j]; pTos->n = p->anVar[j]; pTos->flags = MEM_Str | MEM_Static; }else{ pTos->flags = MEM_Null; } break; } /* Opcode: Pop P1 * * ** ** P1 elements are popped off of the top of stack and discarded. */ case OP_Pop: { assert( pOp->p1>=0 ); popStack(&pTos, pOp->p1); assert( pTos>=&p->aStack[-1] ); break; } /* Opcode: Dup P1 P2 * ** ** A copy of the P1-th element of the stack ** is made and pushed onto the top of the stack. ** The top of the stack is element 0. So the ** instruction "Dup 0 0 0" will make a copy of the ** top of the stack. ** ** If the content of the P1-th element is a dynamically ** allocated string, then a new copy of that string ** is made if P2==0. If P2!=0, then just a pointer ** to the string is copied. ** ** Also see the Pull instruction. */ case OP_Dup: { Mem *pFrom = &pTos[-pOp->p1]; assert( pFrom<=pTos && pFrom>=p->aStack ); pTos++; memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS); if( pTos->flags & MEM_Str ){ if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){ pTos->flags &= ~MEM_Dyn; pTos->flags |= MEM_Ephem; }else if( pTos->flags & MEM_Short ){ memcpy(pTos->zShort, pFrom->zShort, pTos->n); pTos->z = pTos->zShort; }else if( (pTos->flags & MEM_Static)==0 ){ pTos->z = sqliteMallocRaw(pFrom->n); if( sqlite_malloc_failed ) goto no_mem; memcpy(pTos->z, pFrom->z, pFrom->n); pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short); pTos->flags |= MEM_Dyn; } } break; } /* Opcode: Pull P1 * * ** ** The P1-th element is removed from its current location on ** the stack and pushed back on top of the stack. The ** top of the stack is element 0, so "Pull 0 0 0" is ** a no-op. "Pull 1 0 0" swaps the top two elements of ** the stack. ** ** See also the Dup instruction. */ case OP_Pull: { Mem *pFrom = &pTos[-pOp->p1]; int i; Mem ts; /* Deephemeralize(pFrom); *** not needed */ ts = *pFrom; Deephemeralize(pTos); for(i=0; i<pOp->p1; i++, pFrom++){ Deephemeralize(&pFrom[1]); *pFrom = pFrom[1]; assert( (pFrom->flags & MEM_Ephem)==0 ); if( pFrom->flags & MEM_Short ){ assert( pFrom->flags & MEM_Str ); assert( pFrom->z==pFrom[1].zShort ); assert( (pTos->flags & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 ); pFrom->z = pFrom->zShort; } } *pTos = ts; /* assert( (pTos->flags & MEM_Ephem)==0 ); *** not needed */ if( pTos->flags & MEM_Short ){ assert( pTos->flags & MEM_Str ); assert( pTos->z==pTos[-pOp->p1].zShort ); assert( (pTos->flags & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 ); pTos->z = pTos->zShort; } break; } /* Opcode: Push P1 * * ** ** Overwrite the value of the P1-th element down on the ** stack (P1==0 is the top of the stack) with the value ** of the top of the stack. Then pop the top of the stack. */ case OP_Push: { Mem *pTo = &pTos[-pOp->p1]; assert( pTo>=p->aStack ); Deephemeralize(pTos); Release(pTo); *pTo = *pTos; if( pTo->flags & MEM_Short ){ assert( pTo->z==pTos->zShort ); pTo->z = pTo->zShort; } pTos--; break; } /* Opcode: ColumnName P1 * P3 ** ** P3 becomes the P1-th column name (first is 0). An array of pointers ** to all column names is passed as the 4th parameter to the callback. */ case OP_ColumnName: { assert( pOp->p1>=0 && pOp->p1<p->nOp ); p->azColName[pOp->p1] = pOp->p3; p->nCallback = 0; break; } /* Opcode: Callback P1 * * ** ** Pop P1 values off the stack and form them into an array. Then ** invoke the callback function using the newly formed array as the ** 3rd parameter. */ case OP_Callback: { int i; char **azArgv = p->zArgv; Mem *pCol; pCol = &pTos[1-pOp->p1]; assert( pCol>=p->aStack ); for(i=0; i<pOp->p1; i++, pCol++){ if( pCol->flags & MEM_Null ){ azArgv[i] = 0; }else{ Stringify(pCol); azArgv[i] = pCol->z; } } azArgv[i] = 0; if( p->xCallback==0 ){ p->azResColumn = azArgv; p->nResColumn = pOp->p1; p->popStack = pOp->p1; p->pc = pc + 1; p->pTos = pTos; return SQLITE_ROW; } if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; if( p->xCallback(p->pCbArg, pOp->p1, azArgv, p->azColName)!=0 ){ rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; p->nCallback++; popStack(&pTos, pOp->p1); assert( pTos>=&p->aStack[-1] ); if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: NullCallback P1 * * ** ** Invoke the callback function once with the 2nd argument (the |
︙ | ︙ | |||
922 923 924 925 926 927 928 929 930 931 932 933 | case OP_Concat: { char *zNew; int nByte; int nField; int i, j; char *zSep; int nSep; nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); | > | | > | | | | > > | | < | > | | | < | | > > | | | | | 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | case OP_Concat: { char *zNew; int nByte; int nField; int i, j; char *zSep; int nSep; Mem *pTerm; nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); assert( &pTos[1-nField] >= p->aStack ); nByte = 1 - nSep; pTerm = &pTos[1-nField]; for(i=0; i<nField; i++, pTerm++){ if( pTerm->flags & MEM_Null ){ nByte = -1; break; }else{ Stringify(pTerm); nByte += pTerm->n - 1 + nSep; } } if( nByte<0 ){ if( pOp->p2==0 ){ popStack(&pTos, nField); } pTos++; pTos->flags = MEM_Null; break; } zNew = sqliteMallocRaw( nByte ); if( zNew==0 ) goto no_mem; j = 0; pTerm = &pTos[1-nField]; for(i=j=0; i<nField; i++, pTerm++){ assert( pTerm->flags & MEM_Str ); memcpy(&zNew[j], pTerm->z, pTerm->n-1); j += pTerm->n-1; if( nSep>0 && i<nField-1 ){ memcpy(&zNew[j], zSep, nSep); j += nSep; } } zNew[j] = 0; if( pOp->p2==0 ){ popStack(&pTos, nField); } pTos++; pTos->n = nByte; pTos->flags = MEM_Str|MEM_Dyn; pTos->z = zNew; break; } /* Opcode: Add * * * ** ** Pop the top two elements from the stack, add them together, ** and push the result back onto the stack. If either element |
︙ | ︙ | |||
1018 1019 1020 1021 1022 1023 1024 | ** If either operand is NULL, the result is NULL. */ case OP_Add: case OP_Subtract: case OP_Multiply: case OP_Divide: case OP_Remainder: { | | | < | > | | | | | | > | | | | | | | | > | | | | | | > | > > | | | | | | > < | | | | | < < | < < | | 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 | ** If either operand is NULL, the result is NULL. */ case OP_Add: case OP_Subtract: case OP_Multiply: case OP_Divide: case OP_Remainder: { Mem *pNos = &pTos[-1]; assert( pNos>=p->aStack ); if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ Release(pTos); pTos--; Release(pTos); pTos->flags = MEM_Null; }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ int a, b; a = pTos->i; b = pNos->i; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; case OP_Divide: { if( a==0 ) goto divide_by_zero; b /= a; break; } default: { if( a==0 ) goto divide_by_zero; b %= a; break; } } Release(pTos); pTos--; Release(pTos); pTos->i = b; pTos->flags = MEM_Int; }else{ double a, b; Realify(pTos); Realify(pNos); a = pTos->r; b = pNos->r; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; case OP_Divide: { if( a==0.0 ) goto divide_by_zero; b /= a; break; } default: { int ia = (int)a; int ib = (int)b; if( ia==0.0 ) goto divide_by_zero; b = ib % ia; break; } } Release(pTos); pTos--; Release(pTos); pTos->r = b; pTos->flags = MEM_Real; } break; divide_by_zero: Release(pTos); pTos--; Release(pTos); pTos->flags = MEM_Null; break; } /* Opcode: Function P1 * P3 ** ** Invoke a user function (P3 is a pointer to a Function structure that ** defines the function) with P1 string arguments taken from the stack. ** Pop all arguments from the stack and push back the result. ** ** See also: AggFunc */ case OP_Function: { int n, i; Mem *pArg; char **azArgv; sqlite_func ctx; n = pOp->p1; pArg = &pTos[1-n]; azArgv = p->zArgv; for(i=0; i<n; i++, pArg++){ if( pArg->flags & MEM_Null ){ azArgv[i] = 0; }else{ Stringify(pArg); azArgv[i] = pArg->z; } } ctx.pFunc = (FuncDef*)pOp->p3; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.isError = 0; ctx.isStep = 0; if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv); if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; popStack(&pTos, n); pTos++; *pTos = ctx.s; if( pTos->flags & MEM_Short ){ pTos->z = pTos->zShort; } if( ctx.isError ){ sqliteSetString(&p->zErrMsg, (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0); rc = SQLITE_ERROR; } break; } /* Opcode: BitAnd * * * ** |
︙ | ︙ | |||
1166 1167 1168 1169 1170 1171 1172 | ** right by N bits where N is the second element on the stack. ** If either operand is NULL, the result is NULL. */ case OP_BitAnd: case OP_BitOr: case OP_ShiftLeft: case OP_ShiftRight: { | | < | > | | | | | | | | | > | | | | < | | < < > | | > | | | | | | | < | | | | < | | | | | | | | | < | | | | | | | 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 | ** right by N bits where N is the second element on the stack. ** If either operand is NULL, the result is NULL. */ case OP_BitAnd: case OP_BitOr: case OP_ShiftLeft: case OP_ShiftRight: { Mem *pNos = &pTos[-1]; int a, b; assert( pNos>=p->aStack ); if( (pTos->flags | pNos->flags) & MEM_Null ){ popStack(&pTos, 2); pTos++; pTos->flags = MEM_Null; break; } Integerify(pTos); Integerify(pNos); a = pTos->i; b = pNos->i; switch( pOp->opcode ){ case OP_BitAnd: a &= b; break; case OP_BitOr: a |= b; break; case OP_ShiftLeft: a <<= b; break; case OP_ShiftRight: a >>= b; break; default: /* CANT HAPPEN */ break; } assert( (pTos->flags & MEM_Dyn)==0 ); assert( (pNos->flags & MEM_Dyn)==0 ); pTos--; pTos->i = a; assert( pTos->flags==MEM_Int ); break; } /* Opcode: AddImm P1 * * ** ** Add the value P1 to whatever is on top of the stack. The result ** is always an integer. ** ** To force the top of the stack to be an integer, just add 0. */ case OP_AddImm: { assert( pTos>=p->aStack ); Integerify(pTos); pTos->i += pOp->p1; break; } /* Opcode: ForceInt P1 P2 * ** ** Convert the top of the stack into an integer. If the current top of ** the stack is not numeric (meaning that is is a NULL or a string that ** does not look like an integer or floating point number) then pop the ** stack and jump to P2. If the top of the stack is numeric then ** convert it into the least integer that is greater than or equal to its ** current value if P1==0, or to the least integer that is strictly ** greater than its current value if P1==1. */ case OP_ForceInt: { int v; assert( pTos>=p->aStack ); if( (pTos->flags & (MEM_Int|MEM_Real))==0 && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){ Release(pTos); pTos--; pc = pOp->p2 - 1; break; } if( pTos->flags & MEM_Int ){ v = pTos->i + (pOp->p1!=0); }else{ Realify(pTos); v = (int)pTos->r; if( pTos->r>(double)v ) v++; if( pOp->p1 && pTos->r==(double)v ) v++; } Release(pTos); pTos->i = v; pTos->flags = MEM_Int; break; } /* Opcode: MustBeInt P1 P2 * ** ** Force the top of the stack to be an integer. If the top of the ** stack is not an integer and cannot be converted into an integer ** with out data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. ** ** If the top of the stack is not an integer and P2 is not zero and ** P1 is 1, then the stack is popped. In all other cases, the depth ** of the stack is unchanged. */ case OP_MustBeInt: { assert( pTos>=p->aStack ); if( pTos->flags & MEM_Int ){ /* Do nothing */ }else if( pTos->flags & MEM_Real ){ int i = (int)pTos->r; double r = (double)i; if( r!=pTos->r ){ goto mismatch; } pTos->i = i; }else if( pTos->flags & MEM_Str ){ int v; if( !toInt(pTos->z, &v) ){ double r; if( !sqliteIsNumber(pTos->z) ){ goto mismatch; } Realify(pTos); v = (int)pTos->r; r = (double)v; if( r!=pTos->r ){ goto mismatch; } } pTos->i = v; }else{ goto mismatch; } Release(pTos); pTos->flags = MEM_Int; break; mismatch: if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ if( pOp->p1 ) popStack(&pTos, 1); pc = pOp->p2 - 1; } break; } /* Opcode: Eq P1 P2 * ** |
︙ | ︙ | |||
1418 1419 1420 1421 1422 1423 1424 | */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: case OP_Ge: { | | < < | | > < < > | | | | < | < < | < | < < | | | | < | > | < | 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 | */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: case OP_Ge: { Mem *pNos = &pTos[-1]; int c, v; int ft, fn; assert( pNos>=p->aStack ); ft = pTos->flags; fn = pNos->flags; if( (ft | fn) & MEM_Null ){ popStack(&pTos, 2); if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ pTos++; pTos->flags = MEM_Null; } break; }else if( (ft & fn & MEM_Int)==MEM_Int ){ c = pNos->i - pTos->i; }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){ c = v - pTos->i; }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){ c = pNos->i - v; }else{ Stringify(pTos); Stringify(pNos); c = sqliteCompare(pNos->z, pTos->z); } switch( pOp->opcode ){ case OP_Eq: c = c==0; break; case OP_Ne: c = c!=0; break; case OP_Lt: c = c<0; break; case OP_Le: c = c<=0; break; case OP_Gt: c = c>0; break; default: c = c>=0; break; } popStack(&pTos, 2); if( pOp->p2 ){ if( c ) pc = pOp->p2-1; }else{ pTos++; pTos->i = c; pTos->flags = MEM_Int; } break; } /* INSERT NO CODE HERE! ** ** The opcode numbers are extracted from this source file by doing ** |
︙ | ︙ | |||
1584 1585 1586 1587 1588 1589 1590 | */ case OP_StrEq: case OP_StrNe: case OP_StrLt: case OP_StrLe: case OP_StrGt: case OP_StrGe: { | | < < > | < < > | | | | | | < | | | | < < > | | | | | | | | | | | | < | | | | | | | | | | | | | | | | | < | | < < | > | < | | < < | > | 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 | */ case OP_StrEq: case OP_StrNe: case OP_StrLt: case OP_StrLe: case OP_StrGt: case OP_StrGe: { Mem *pNos = &pTos[-1]; int c; assert( pNos>=p->aStack ); if( (pNos->flags | pTos->flags) & MEM_Null ){ popStack(&pTos, 2); if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ pTos++; pTos->flags = MEM_Null; } break; }else{ Stringify(pTos); Stringify(pNos); c = strcmp(pNos->z, pTos->z); } /* The asserts on each case of the following switch are there to verify ** that string comparison opcodes are always exactly 6 greater than the ** corresponding numeric comparison opcodes. The code generator depends ** on this fact. */ switch( pOp->opcode ){ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break; case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break; case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break; case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break; case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break; default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break; } popStack(&pTos, 2); if( pOp->p2 ){ if( c ) pc = pOp->p2-1; }else{ pTos++; pTos->flags = MEM_Int; pTos->i = c; } break; } /* Opcode: And * * * ** ** Pop two values off the stack. Take the logical AND of the ** two values and push the resulting boolean value back onto the ** stack. */ /* Opcode: Or * * * ** ** Pop two values off the stack. Take the logical OR of the ** two values and push the resulting boolean value back onto the ** stack. */ case OP_And: case OP_Or: { Mem *pNos = &pTos[-1]; int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ assert( pNos>=p->aStack ); if( pTos->flags & MEM_Null ){ v1 = 2; }else{ Integerify(pTos); v1 = pTos->i==0; } if( pNos->flags & MEM_Null ){ v2 = 2; }else{ Integerify(pNos); v2 = pNos->i==0; } if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = or_logic[v1*3+v2]; } popStack(&pTos, 2); pTos++; if( v1==2 ){ pTos->flags = MEM_Null; }else{ pTos->i = v1==0; pTos->flags = MEM_Int; } break; } /* Opcode: Negative * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its additive inverse. If the top of the stack is NULL ** its value is unchanged. */ /* Opcode: AbsValue * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its absolute value. If the top of the stack is NULL ** its value is unchanged. */ case OP_Negative: case OP_AbsValue: { assert( pTos>=p->aStack ); if( pTos->flags & MEM_Real ){ Release(pTos); if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ pTos->r = -pTos->r; } pTos->flags = MEM_Real; }else if( pTos->flags & MEM_Int ){ Release(pTos); if( pOp->opcode==OP_Negative || pTos->i<0 ){ pTos->i = -pTos->i; } pTos->flags = MEM_Int; }else if( pTos->flags & MEM_Null ){ /* Do nothing */ }else{ Realify(pTos); Release(pTos); if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ pTos->r = -pTos->r; } pTos->flags = MEM_Real; } break; } /* Opcode: Not * * * ** ** Interpret the top of the stack as a boolean value. Replace it ** with its complement. If the top of the stack is NULL its value ** is unchanged. */ case OP_Not: { assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ Integerify(pTos); assert( pTos->flags==MEM_Int ); pTos->i = !pTos->i; break; } /* Opcode: BitNot * * * ** ** Interpret the top of the stack as an value. Replace it ** with its ones-complement. If the top of the stack is NULL its ** value is unchanged. */ case OP_BitNot: { assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ Integerify(pTos); assert( pTos->flags==MEM_Int ); pTos->i = ~pTos->i; break; } /* Opcode: Noop * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. |
︙ | ︙ | |||
1784 1785 1786 1787 1788 1789 1790 | ** ** If the value popped of the stack is NULL, then take the jump if P1 ** is true and fall through if P1 is false. */ case OP_If: case OP_IfNot: { int c; | | | | | > | > | > | | | | | | | 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 | ** ** If the value popped of the stack is NULL, then take the jump if P1 ** is true and fall through if P1 is false. */ case OP_If: case OP_IfNot: { int c; assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ){ c = pOp->p1; }else{ Integerify(pTos); c = pTos->i; if( pOp->opcode==OP_IfNot ) c = !c; } assert( (pTos->flags & MEM_Dyn)==0 ); pTos--; if( c ) pc = pOp->p2-1; break; } /* Opcode: IsNull P1 P2 * ** ** If any of the top abs(P1) values on the stack are NULL, then jump ** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack ** unchanged. */ case OP_IsNull: { int i, cnt; Mem *pTerm; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; pTerm = &pTos[1-cnt]; assert( pTerm>=p->aStack ); for(i=0; i<cnt; i++, pTerm++){ if( pTerm->flags & MEM_Null ){ pc = pOp->p2-1; break; } } if( pOp->p1>0 ) popStack(&pTos, cnt); break; } /* Opcode: NotNull P1 P2 * ** ** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the ** stack if P1 times if P1 is greater than zero. If P1 is less than ** zero then leave the stack unchanged. */ case OP_NotNull: { int i, cnt; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; assert( &pTos[1-cnt] >= p->aStack ); for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} if( i>=cnt ) pc = pOp->p2-1; if( pOp->p1>0 ) popStack(&pTos, cnt); break; } /* Opcode: MakeRecord P1 P2 * ** ** Convert the top P1 entries of the stack into a single entry ** suitable for use as a data record in a database table. The |
︙ | ︙ | |||
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 | case OP_MakeRecord: { char *zNewRecord; int nByte; int nField; int i, j; int idxWidth; u32 addr; int addUnique = 0; /* True to cause bytes to be added to make the ** generated record distinct */ char zTemp[NBFS]; /* Temp space for small records */ /* Assuming the record contains N fields, the record format looks ** like this: ** | > | 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 | case OP_MakeRecord: { char *zNewRecord; int nByte; int nField; int i, j; int idxWidth; u32 addr; Mem *pRec; int addUnique = 0; /* True to cause bytes to be added to make the ** generated record distinct */ char zTemp[NBFS]; /* Temp space for small records */ /* Assuming the record contains N fields, the record format looks ** like this: ** |
︙ | ︙ | |||
1886 1887 1888 1889 1890 1891 1892 | ** ** Each of the idx() entries is either 1, 2, or 3 bytes depending on ** how big the total record is. Idx(0) contains the offset to the start ** of data(0). Idx(k) contains the offset to the start of data(k). ** Idx(N) contains the total number of bytes in the record. */ nField = pOp->p1; | | > | | | | | 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 | ** ** Each of the idx() entries is either 1, 2, or 3 bytes depending on ** how big the total record is. Idx(0) contains the offset to the start ** of data(0). Idx(k) contains the offset to the start of data(k). ** Idx(N) contains the total number of bytes in the record. */ nField = pOp->p1; pRec = &pTos[1-nField]; assert( pRec>=p->aStack ); nByte = 0; for(i=0; i<nField; i++, pRec++){ if( pRec->flags & MEM_Null ){ addUnique = pOp->p2; }else{ Stringify(pRec); nByte += pRec->n; } } if( addUnique ) nByte += sizeof(p->uniqueCnt); if( nByte + nField + 1 < 256 ){ idxWidth = 1; }else if( nByte + 2*nField + 2 < 65536 ){ idxWidth = 2; |
︙ | ︙ | |||
1917 1918 1919 1920 1921 1922 1923 | zNewRecord = zTemp; }else{ zNewRecord = sqliteMallocRaw( nByte ); if( zNewRecord==0 ) goto no_mem; } j = 0; addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt); | | | | | | | | | | | | | | > | < | 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 | zNewRecord = zTemp; }else{ zNewRecord = sqliteMallocRaw( nByte ); if( zNewRecord==0 ) goto no_mem; } j = 0; addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt); for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){ zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( (pRec->flags & MEM_Null)==0 ){ addr += pRec->n; } } zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( addUnique ){ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt)); p->uniqueCnt++; j += sizeof(p->uniqueCnt); } for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){ if( (pRec->flags & MEM_Null)==0 ){ memcpy(&zNewRecord[j], pRec->z, pRec->n); j += pRec->n; } } popStack(&pTos, nField); pTos++; pTos->n = nByte; if( nByte<=NBFS ){ assert( zNewRecord==zTemp ); memcpy(pTos->zShort, zTemp, nByte); pTos->z = pTos->zShort; pTos->flags = MEM_Str | MEM_Short; }else{ assert( zNewRecord!=zTemp ); pTos->z = zNewRecord; pTos->flags = MEM_Str | MEM_Dyn; } break; } /* Opcode: MakeKey P1 P2 P3 ** ** Convert the top P1 entries of the stack into a single entry suitable |
︙ | ︙ | |||
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 | case OP_MakeKey: { char *zNewKey; int nByte; int nField; int addRowid; int i, j; int containsNull = 0; char zTemp[NBFS]; addRowid = pOp->opcode==OP_MakeIdxKey; nField = pOp->p1; | > | > | | | | | | | | | | | | | | | | | > | | < | > > | > | < < | | > > | | | | | | | | | < | > < | < < < | | | > | < < > | | 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 | case OP_MakeKey: { char *zNewKey; int nByte; int nField; int addRowid; int i, j; int containsNull = 0; Mem *pRec; char zTemp[NBFS]; addRowid = pOp->opcode==OP_MakeIdxKey; nField = pOp->p1; pRec = &pTos[1-nField]; assert( pRec>=p->aStack ); nByte = 0; for(j=0, i=0; i<nField; i++, j++, pRec++){ int flags = pRec->flags; int len; char *z; if( flags & MEM_Null ){ nByte += 2; containsNull = 1; }else if( pOp->p3 && pOp->p3[j]=='t' ){ Stringify(pRec); pRec->flags &= ~(MEM_Int|MEM_Real); nByte += pRec->n+1; }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){ if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){ pRec->r = pRec->i; }else if( (flags & (MEM_Real|MEM_Int))==0 ){ pRec->r = sqliteAtoF(pRec->z); } Release(pRec); z = pRec->zShort; sqliteRealToSortable(pRec->r, z); len = strlen(z); pRec->z = 0; pRec->flags = MEM_Real; pRec->n = len+1; nByte += pRec->n+1; }else{ nByte += pRec->n+1; } } if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ rc = SQLITE_TOOBIG; goto abort_due_to_error; } if( addRowid ) nByte += sizeof(u32); if( nByte<=NBFS ){ zNewKey = zTemp; }else{ zNewKey = sqliteMallocRaw( nByte ); if( zNewKey==0 ) goto no_mem; } j = 0; pRec = &pTos[1-nField]; for(i=0; i<nField; i++, pRec++){ if( pRec->flags & MEM_Null ){ zNewKey[j++] = 'a'; zNewKey[j++] = 0; }else if( pRec->flags==MEM_Real ){ zNewKey[j++] = 'b'; memcpy(&zNewKey[j], pRec->zShort, pRec->n); j += pRec->n; }else{ assert( pRec->flags & MEM_Str ); zNewKey[j++] = 'c'; memcpy(&zNewKey[j], pRec->z, pRec->n); j += pRec->n; } } if( addRowid ){ u32 iKey; pRec = &pTos[-nField]; assert( pRec>=p->aStack ); Integerify(pRec); iKey = intToKey(pRec->i); memcpy(&zNewKey[j], &iKey, sizeof(u32)); popStack(&pTos, nField+1); if( pOp->p2 && containsNull ) pc = pOp->p2 - 1; }else{ if( pOp->p2==0 ) popStack(&pTos, nField); } pTos++; pTos->n = nByte; if( nByte<=NBFS ){ assert( zNewKey==zTemp ); pTos->z = pTos->zShort; memcpy(pTos->zShort, zTemp, nByte); pTos->flags = MEM_Str | MEM_Short; }else{ pTos->z = zNewKey; pTos->flags = MEM_Str | MEM_Dyn; } break; } /* Opcode: IncrKey * * * ** ** The top of the stack should contain an index key generated by ** The MakeKey opcode. This routine increases the least significant ** byte of that key by one. This is used so that the MoveTo opcode ** will move to the first entry greater than the key rather than to ** the key itself. */ case OP_IncrKey: { assert( pTos>=p->aStack ); /* The IncrKey opcode is only applied to keys generated by ** MakeKey or MakeIdxKey and the results of those operands ** are always dynamic strings or zShort[] strings. So we ** are always free to modify the string in place. */ assert( pTos->flags & (MEM_Dyn|MEM_Short) ); pTos->z[pTos->n-1]++; break; } /* Opcode: Checkpoint P1 * * ** ** Begin a checkpoint. A checkpoint is the beginning of a operation that ** is part of a larger transaction but which might need to be rolled back |
︙ | ︙ | |||
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 | rc = sqliteBtreeBeginTrans(db->aDb[i].pBt); switch( rc ){ case SQLITE_BUSY: { if( db->xBusyCallback==0 ){ p->pc = pc; p->undoTransOnError = 1; p->rc = SQLITE_BUSY; return SQLITE_BUSY; }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); busy = 0; } break; } | > | 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 | rc = sqliteBtreeBeginTrans(db->aDb[i].pBt); switch( rc ){ case SQLITE_BUSY: { if( db->xBusyCallback==0 ){ p->pc = pc; p->undoTransOnError = 1; p->rc = SQLITE_BUSY; p->pTos = pTos; return SQLITE_BUSY; }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); busy = 0; } break; } |
︙ | ︙ | |||
2291 2292 2293 2294 2295 2296 2297 | ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { | < > | | | | | > | | 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 | ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( db->aDb[pOp->p1].pBt!=0 ); rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); pTos++; pTos->i = aMeta[1+pOp->p2]; pTos->flags = MEM_Int; break; } /* Opcode: SetCookie P1 P2 * ** ** Write the top of the stack into cookie number P2 of database P1. ** P2==0 is the schema version. P2==1 is the database format. ** P2==2 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( db->aDb[pOp->p1].pBt!=0 ); assert( pTos>=p->aStack ); Integerify(pTos) rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); if( rc==SQLITE_OK ){ aMeta[1+pOp->p2] = pTos->i; rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta); } assert( pTos->flags==MEM_Int ); pTos--; break; } /* Opcode: VerifyCookie P1 P2 * ** ** Check the value of global database parameter number 0 (the ** schema version) and make sure it is equal to P2. |
︙ | ︙ | |||
2403 2404 2405 2406 2407 2408 2409 | ** ** See also OpenRead. */ case OP_OpenRead: case OP_OpenWrite: { int busy = 0; int i = pOp->p1; | < | | | | | < > | | | | | > < < < < | 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 | ** ** See also OpenRead. */ case OP_OpenRead: case OP_OpenWrite: { int busy = 0; int i = pOp->p1; int p2 = pOp->p2; int wrFlag; Btree *pX; int iDb; assert( pTos>=p->aStack ); Integerify(pTos); iDb = pTos->i; pTos--; assert( iDb>=0 && iDb<db->nDb ); pX = db->aDb[iDb].pBt; assert( pX!=0 ); wrFlag = pOp->opcode==OP_OpenWrite; if( p2<=0 ){ assert( pTos>=p->aStack ); Integerify(pTos); p2 = pTos->i; pTos--; if( p2<2 ){ sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0); rc = SQLITE_INTERNAL; break; } } assert( i>=0 ); if( expandCursorArraySize(p, i) ) goto no_mem; sqliteVdbeCleanupCursor(&p->aCsr[i]); memset(&p->aCsr[i], 0, sizeof(Cursor)); p->aCsr[i].nullRow = 1; if( pX==0 ) break; do{ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor); switch( rc ){ case SQLITE_BUSY: { if( db->xBusyCallback==0 ){ p->pc = pc; p->rc = SQLITE_BUSY; p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ return SQLITE_BUSY; }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); busy = 0; } break; } case SQLITE_OK: { busy = 0; break; } default: { goto abort_due_to_error; } } }while( busy ); break; } /* Opcode: OpenTemp P1 P2 * ** ** Open a new cursor to a transient table. ** The transient cursor is always opened read/write even if |
︙ | ︙ | |||
2485 2486 2487 2488 2489 2490 2491 | ** context of this opcode means for the duration of a single SQL statement ** whereas "Temporary" in the context of CREATE TABLE means for the duration ** of the connection to the database. Same word; different meanings. */ case OP_OpenTemp: { int i = pOp->p1; Cursor *pCx; | | | 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 | ** context of this opcode means for the duration of a single SQL statement ** whereas "Temporary" in the context of CREATE TABLE means for the duration ** of the connection to the database. Same word; different meanings. */ case OP_OpenTemp: { int i = pOp->p1; Cursor *pCx; assert( i>=0 ); if( expandCursorArraySize(p, i) ) goto no_mem; pCx = &p->aCsr[i]; sqliteVdbeCleanupCursor(pCx); memset(pCx, 0, sizeof(*pCx)); pCx->nullRow = 1; rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); |
︙ | ︙ | |||
2523 2524 2525 2526 2527 2528 2529 | ** ** A pseudo-table created by this opcode is useful for holding the ** NEW or OLD tables in a trigger. */ case OP_OpenPseudo: { int i = pOp->p1; Cursor *pCx; | | | 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 | ** ** A pseudo-table created by this opcode is useful for holding the ** NEW or OLD tables in a trigger. */ case OP_OpenPseudo: { int i = pOp->p1; Cursor *pCx; assert( i>=0 ); if( expandCursorArraySize(p, i) ) goto no_mem; pCx = &p->aCsr[i]; sqliteVdbeCleanupCursor(pCx); memset(pCx, 0, sizeof(*pCx)); pCx->nullRow = 1; pCx->pseudoTable = 1; break; |
︙ | ︙ | |||
2570 2571 2572 2573 2574 2575 2576 | ** is not zero then an immediate jump to P2 is made. ** ** See also: MoveTo */ case OP_MoveLt: case OP_MoveTo: { int i = pOp->p1; | < < > | | > | | | | | 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 | ** is not zero then an immediate jump to P2 is made. ** ** See also: MoveTo */ case OP_MoveLt: case OP_MoveTo: { int i = pOp->p1; Cursor *pC; assert( pTos>=p->aStack ); assert( i>=0 && i<p->nCursor ); pC = &p->aCsr[i]; if( pC->pCursor!=0 ){ int res, oc; pC->nullRow = 0; if( pTos->flags & MEM_Int ){ int iKey = intToKey(pTos->i); if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){ pC->movetoTarget = iKey; pC->deferredMoveto = 1; Release(pTos); pTos--; break; } sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); pC->lastRecno = pTos->i; pC->recnoIsValid = res==0; }else{ Stringify(pTos); sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); pC->recnoIsValid = 0; } pC->deferredMoveto = 0; sqlite_search_count++; oc = pOp->opcode; if( oc==OP_MoveTo && res<0 ){ sqliteBtreeNext(pC->pCursor, &res); |
︙ | ︙ | |||
2620 2621 2622 2623 2624 2625 2626 | res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0; } if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } } } | > | | 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 | res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0; } if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } } } Release(pTos); pTos--; break; } /* Opcode: Distinct P1 P2 * ** ** Use the top of the stack as a string key. If a record with that key does ** not exist in the table of cursor P1, then jump to P2. If the record |
︙ | ︙ | |||
2661 2662 2663 2664 2665 2666 2667 | ** ** See also: Distinct, Found, MoveTo, NotExists, IsUnique */ case OP_Distinct: case OP_NotFound: case OP_Found: { int i = pOp->p1; | < > | | | | > | | 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 | ** ** See also: Distinct, Found, MoveTo, NotExists, IsUnique */ case OP_Distinct: case OP_NotFound: case OP_Found: { int i = pOp->p1; int alreadyExists = 0; Cursor *pC; assert( pTos>=p->aStack ); assert( i>=0 && i<p->nCursor ); if( (pC = &p->aCsr[i])->pCursor!=0 ){ int res, rx; Stringify(pTos); rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); alreadyExists = rx==SQLITE_OK && res==0; pC->deferredMoveto = 0; } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; } if( pOp->opcode!=OP_Distinct ){ Release(pTos); pTos--; } break; } /* Opcode: IsUnique P1 P2 * ** ** The top of the stack is an integer record number. Call this |
︙ | ︙ | |||
2705 2706 2707 2708 2709 2710 2711 | ** number for that entry is pushed onto the stack and control ** falls through to the next instruction. ** ** See also: Distinct, NotFound, NotExists, Found */ case OP_IsUnique: { int i = pOp->p1; | | < | | | | > | | | | | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 | ** number for that entry is pushed onto the stack and control ** falls through to the next instruction. ** ** See also: Distinct, NotFound, NotExists, Found */ case OP_IsUnique: { int i = pOp->p1; Mem *pNos = &pTos[-1]; BtCursor *pCrsr; int R; /* Pop the value R off the top of the stack */ assert( pNos>=p->aStack ); Integerify(pTos); R = pTos->i; pTos--; assert( i>=0 && i<=p->nCursor ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; int v; /* The record number on the P1 entry that matches K */ char *zKey; /* The value of K */ int nKey; /* Number of bytes in K */ /* Make sure K is a string and make zKey point to K */ Stringify(pNos); zKey = pNos->z; nKey = pNos->n; assert( nKey >= 4 ); /* Search for an entry in P1 where all but the last four bytes match K. ** If there is no such entry, jump immediately to P2. */ assert( p->aCsr[i].deferredMoveto==0 ); rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); |
︙ | ︙ | |||
2766 2767 2768 2769 2770 2771 2772 | } /* The last four bytes of the key are different from R. Convert the ** last four bytes of the key into an integer and push it onto the ** stack. (These bytes are the record number of an entry that ** violates a UNIQUE constraint.) */ | | | | < > | | | | | > | > | | 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 | } /* The last four bytes of the key are different from R. Convert the ** last four bytes of the key into an integer and push it onto the ** stack. (These bytes are the record number of an entry that ** violates a UNIQUE constraint.) */ pTos++; pTos->i = v; pTos->flags = MEM_Int; } break; } /* Opcode: NotExists P1 P2 * ** ** Use the top of the stack as a integer key. If a record with that key ** does not exist in table of P1, then jump to P2. If the record ** does exist, then fall thru. The cursor is left pointing to the ** record if it exists. The integer key is popped from the stack. ** ** The difference between this operation and NotFound is that this ** operation assumes the key is an integer and NotFound assumes it ** is a string. ** ** See also: Distinct, Found, MoveTo, NotFound, IsUnique */ case OP_NotExists: { int i = pOp->p1; BtCursor *pCrsr; assert( pTos>=p->aStack ); assert( i>=0 && i<p->nCursor ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rx, iKey; assert( pTos->flags & MEM_Int ); iKey = intToKey(pTos->i); rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res); p->aCsr[i].lastRecno = pTos->i; p->aCsr[i].recnoIsValid = res==0; p->aCsr[i].nullRow = 0; if( rx!=SQLITE_OK || res!=0 ){ pc = pOp->p2 - 1; p->aCsr[i].recnoIsValid = 0; } } Release(pTos); pTos--; break; } /* Opcode: NewRecno P1 * * ** ** Get a new integer record number used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is pushed ** onto the stack. */ case OP_NewRecno: { int i = pOp->p1; int v = 0; Cursor *pC; assert( i>=0 && i<p->nCursor ); if( (pC = &p->aCsr[i])->pCursor==0 ){ v = 0; }else{ /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum |
︙ | ︙ | |||
2903 2904 2905 2906 2907 2908 2909 | rc = SQLITE_FULL; goto abort_due_to_error; } } pC->recnoIsValid = 0; pC->deferredMoveto = 0; } | | | | | 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 | rc = SQLITE_FULL; goto abort_due_to_error; } } pC->recnoIsValid = 0; pC->deferredMoveto = 0; } pTos++; pTos->i = v; pTos->flags = MEM_Int; break; } /* Opcode: PutIntKey P1 P2 * ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing |
︙ | ︙ | |||
2933 2934 2935 2936 2937 2938 2939 | ** stack. The key is the next value down on the stack. The key must ** be a string. The stack is popped twice by this instruction. ** ** P1 may not be a pseudo-table opened using the OpenPseudo opcode. */ case OP_PutIntKey: case OP_PutStrKey: { | | < < > | | | | | | | | | | | | < | | | < | < | 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 | ** stack. The key is the next value down on the stack. The key must ** be a string. The stack is popped twice by this instruction. ** ** P1 may not be a pseudo-table opened using the OpenPseudo opcode. */ case OP_PutIntKey: case OP_PutStrKey: { Mem *pNos = &pTos[-1]; int i = pOp->p1; Cursor *pC; assert( pNos>=p->aStack ); assert( i>=0 && i<p->nCursor ); if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ char *zKey; int nKey, iKey; if( pOp->opcode==OP_PutStrKey ){ Stringify(pNos); nKey = pNos->n; zKey = pNos->z; }else{ assert( pNos->flags & MEM_Int ); nKey = sizeof(int); iKey = intToKey(pNos->i); zKey = (char*)&iKey; if( pOp->p2 ){ db->nChange++; db->lastRowid = pNos->i; } if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ pC->nextRowidValid = 0; } } if( pC->pseudoTable ){ /* PutStrKey does not work for pseudo-tables. ** The following assert makes sure we are not trying to use ** PutStrKey on a pseudo-table */ assert( pOp->opcode==OP_PutIntKey ); sqliteFree(pC->pData); pC->iKey = iKey; pC->nData = pTos->n; if( pTos->flags & MEM_Dyn ){ pC->pData = pTos->z; pTos->flags = MEM_Null; }else{ pC->pData = sqliteMallocRaw( pC->nData ); if( pC->pData ){ memcpy(pC->pData, pTos->z, pC->nData); } } pC->nullRow = 0; }else{ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); } pC->recnoIsValid = 0; pC->deferredMoveto = 0; } popStack(&pTos, 2); break; } /* Opcode: Delete P1 P2 * ** ** Delete the record at which the P1 cursor is currently pointing. ** |
︙ | ︙ | |||
3054 3055 3056 3057 3058 3059 3060 | ** ** If the cursor is not pointing to a valid row, a NULL is pushed ** onto the stack. */ case OP_RowKey: case OP_RowData: { int i = pOp->p1; | < > | | | | | | | | | | | | | | 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 | ** ** If the cursor is not pointing to a valid row, a NULL is pushed ** onto the stack. */ case OP_RowKey: case OP_RowData: { int i = pOp->p1; Cursor *pC; int n; pTos++; assert( i>=0 && i<p->nCursor ); pC = &p->aCsr[i]; if( pC->nullRow ){ pTos->flags = MEM_Null; }else if( pC->pCursor!=0 ){ BtCursor *pCrsr = pC->pCursor; sqliteVdbeCursorMoveto(pC); if( pC->nullRow ){ pTos->flags = MEM_Null; break; }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ sqliteBtreeKeySize(pCrsr, &n); }else{ sqliteBtreeDataSize(pCrsr, &n); } pTos->n = n; if( n<=NBFS ){ pTos->flags = MEM_Str | MEM_Short; pTos->z = pTos->zShort; }else{ char *z = sqliteMallocRaw( n ); if( z==0 ) goto no_mem; pTos->flags = MEM_Str | MEM_Dyn; pTos->z = z; } if( pC->keyAsData || pOp->opcode==OP_RowKey ){ sqliteBtreeKey(pCrsr, 0, n, pTos->z); }else{ sqliteBtreeData(pCrsr, 0, n, pTos->z); } }else if( pC->pseudoTable ){ pTos->n = pC->nData; pTos->z = pC->pData; pTos->flags = MEM_Str|MEM_Ephem; }else{ pTos->flags = MEM_Null; } break; } /* Opcode: Column P1 P2 * ** ** Interpret the data that cursor P1 points to as |
︙ | ︙ | |||
3121 3122 3123 3124 3125 3126 3127 | ** value pushed is always just a pointer into the record which is ** stored further down on the stack. The column value is not copied. */ case OP_Column: { int amt, offset, end, payloadSize; int i = pOp->p1; int p2 = pOp->p2; | < > < > | | | | 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 | ** value pushed is always just a pointer into the record which is ** stored further down on the stack. The column value is not copied. */ case OP_Column: { int amt, offset, end, payloadSize; int i = pOp->p1; int p2 = pOp->p2; Cursor *pC; char *zRec; BtCursor *pCrsr; int idxWidth; unsigned char aHdr[10]; assert( i<p->nCursor ); pTos++; if( i<0 ){ assert( &pTos[i]>=p->aStack ); assert( pTos[i].flags & MEM_Str ); zRec = pTos[i].z; payloadSize = pTos[i].n; }else if( (pC = &p->aCsr[i])->pCursor!=0 ){ sqliteVdbeCursorMoveto(pC); zRec = 0; pCrsr = pC->pCursor; if( pC->nullRow ){ payloadSize = 0; }else if( pC->keyAsData ){ |
︙ | ︙ | |||
3157 3158 3159 3160 3161 3162 3163 | payloadSize = 0; } /* Figure out how many bytes in the column data and where the column ** data begins. */ if( payloadSize==0 ){ | | < | 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 | payloadSize = 0; } /* Figure out how many bytes in the column data and where the column ** data begins. */ if( payloadSize==0 ){ pTos->flags = MEM_Null; break; }else if( payloadSize<256 ){ idxWidth = 1; }else if( payloadSize<65536 ){ idxWidth = 2; }else{ idxWidth = 3; |
︙ | ︙ | |||
3200 3201 3202 3203 3204 3205 3206 3207 | rc = SQLITE_CORRUPT; goto abort_due_to_error; } /* amt and offset now hold the offset to the start of data and the ** amount of data. Go get the data and put it on the stack. */ if( amt==0 ){ | > | | < | | | < | | < | | < < > | | | < | | > > | | | | | | | 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 | rc = SQLITE_CORRUPT; goto abort_due_to_error; } /* amt and offset now hold the offset to the start of data and the ** amount of data. Go get the data and put it on the stack. */ pTos->n = amt; if( amt==0 ){ pTos->flags = MEM_Null; }else if( zRec ){ pTos->flags = MEM_Str | MEM_Ephem; pTos->z = &zRec[offset]; }else{ if( amt<=NBFS ){ pTos->flags = MEM_Str | MEM_Short; pTos->z = pTos->zShort; }else{ char *z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; pTos->flags = MEM_Str | MEM_Dyn; pTos->z = z; } if( pC->keyAsData ){ sqliteBtreeKey(pCrsr, offset, amt, pTos->z); }else{ sqliteBtreeData(pCrsr, offset, amt, pTos->z); } } break; } /* Opcode: Recno P1 * * ** ** Push onto the stack an integer which is the first 4 bytes of the ** the key to the current entry in a sequential scan of the database ** file P1. The sequential scan should have been started using the ** Next opcode. */ case OP_Recno: { int i = pOp->p1; Cursor *pC; int v; assert( i>=0 && i<p->nCursor ); pC = &p->aCsr[i]; sqliteVdbeCursorMoveto(pC); pTos++; if( pC->recnoIsValid ){ v = pC->lastRecno; }else if( pC->pseudoTable ){ v = keyToInt(pC->iKey); }else if( pC->nullRow || pC->pCursor==0 ){ pTos->flags = MEM_Null; break; }else{ assert( pC->pCursor!=0 ); sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v); v = keyToInt(v); } pTos->i = v; pTos->flags = MEM_Int; break; } /* Opcode: FullKey P1 * * ** ** Extract the complete key from the record that cursor P1 is currently ** pointing to and push the key onto the stack as a string. ** ** Compare this opcode to Recno. The Recno opcode extracts the first ** 4 bytes of the key and pushes those bytes onto the stack as an ** integer. This instruction pushes the entire key as a string. ** ** This opcode may not be used on a pseudo-table. */ case OP_FullKey: { int i = pOp->p1; BtCursor *pCrsr; assert( p->aCsr[i].keyAsData ); assert( !p->aCsr[i].pseudoTable ); assert( i>=0 && i<p->nCursor ); pTos++; if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int amt; char *z; sqliteVdbeCursorMoveto(&p->aCsr[i]); sqliteBtreeKeySize(pCrsr, &amt); if( amt<=0 ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( amt>NBFS ){ z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; pTos->flags = MEM_Str | MEM_Dyn; }else{ z = pTos->zShort; pTos->flags = MEM_Str | MEM_Short; } sqliteBtreeKey(pCrsr, 0, amt, z); pTos->z = z; pTos->n = amt; } break; } /* Opcode: NullRow P1 * * ** ** Move the cursor P1 to a null row. Any OP_Column operations |
︙ | ︙ | |||
3436 3437 3438 3439 3440 3441 3442 | ** If P2==1, then the key must be unique. If the key is not unique, ** the program aborts with a SQLITE_CONSTRAINT error and the database ** is rolled back. If P3 is not null, then it becomes part of the ** error message returned with the SQLITE_CONSTRAINT. */ case OP_IdxPut: { int i = pOp->p1; | < > | > | | | | | 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 | ** If P2==1, then the key must be unique. If the key is not unique, ** the program aborts with a SQLITE_CONSTRAINT error and the database ** is rolled back. If P3 is not null, then it becomes part of the ** error message returned with the SQLITE_CONSTRAINT. */ case OP_IdxPut: { int i = pOp->p1; BtCursor *pCrsr; assert( pTos>=p->aStack ); assert( i>=0 && i<p->nCursor ); assert( pTos->flags & MEM_Str ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int nKey = pTos->n; const char *zKey = pTos->z; if( pOp->p2 ){ int res, n; assert( nKey >= 4 ); rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; while( res!=0 ){ int c; sqliteBtreeKeySize(pCrsr, &n); if( n==nKey && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK |
︙ | ︙ | |||
3471 3472 3473 3474 3475 3476 3477 | break; } } } rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); assert( p->aCsr[i].deferredMoveto==0 ); } | > | < > | > | | > | < > > | | | | > > | 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 | break; } } } rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); assert( p->aCsr[i].deferredMoveto==0 ); } Release(pTos); pTos--; break; } /* Opcode: IdxDelete P1 * * ** ** The top of the stack is an index key built using the MakeIdxKey opcode. ** This opcode removes that entry from the index. */ case OP_IdxDelete: { int i = pOp->p1; BtCursor *pCrsr; assert( pTos>=p->aStack ); assert( pTos->flags & MEM_Str ); assert( i>=0 && i<p->nCursor ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int rx, res; rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res); if( rx==SQLITE_OK && res==0 ){ rc = sqliteBtreeDelete(pCrsr); } assert( p->aCsr[i].deferredMoveto==0 ); } Release(pTos); pTos--; break; } /* Opcode: IdxRecno P1 * * ** ** Push onto the stack an integer which is the last 4 bytes of the ** the key to the current entry in index P1. These 4 bytes should ** be the record number of the table entry to which this index entry ** points. ** ** See also: Recno, MakeIdxKey. */ case OP_IdxRecno: { int i = pOp->p1; BtCursor *pCrsr; assert( i>=0 && i<p->nCursor ); pTos++; if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int v; int sz; assert( p->aCsr[i].deferredMoveto==0 ); sqliteBtreeKeySize(pCrsr, &sz); if( sz<sizeof(u32) ){ pTos->flags = MEM_Null; }else{ sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v); v = keyToInt(v); pTos->i = v; pTos->flags = MEM_Int; } }else{ pTos->flags = MEM_Null; } break; } /* Opcode: IdxGT P1 P2 * ** ** Compare the top of the stack against the key on the index entry that |
︙ | ︙ | |||
3557 3558 3559 3560 3561 3562 3563 | ** then jump to P2. Otherwise fall through to the next instruction. ** In either case, the stack is popped once. */ case OP_IdxLT: case OP_IdxGT: case OP_IdxGE: { int i= pOp->p1; | < > > | | | > | < | | | | > | | 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 | ** then jump to P2. Otherwise fall through to the next instruction. ** In either case, the stack is popped once. */ case OP_IdxLT: case OP_IdxGT: case OP_IdxGE: { int i= pOp->p1; BtCursor *pCrsr; assert( i>=0 && i<p->nCursor ); assert( pTos>=p->aStack ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; Stringify(pTos); assert( p->aCsr[i].deferredMoveto==0 ); rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res); if( rc!=SQLITE_OK ){ break; } if( pOp->opcode==OP_IdxLT ){ res = -res; }else if( pOp->opcode==OP_IdxGE ){ res++; } if( res>0 ){ pc = pOp->p2 - 1 ; } } Release(pTos); pTos--; break; } /* Opcode: IdxIsNull P1 P2 * ** ** The top of the stack contains an index entry such as might be generated ** by the MakeIdxKey opcode. This routine looks at the first P1 fields of ** that key. If any of the first P1 fields are NULL, then a jump is made ** to address P2. Otherwise we fall straight through. ** ** The index entry is always popped from the stack. */ case OP_IdxIsNull: { int i = pOp->p1; int k, n; const char *z; assert( pTos>=p->aStack ); assert( pTos->flags & MEM_Str ); z = pTos->z; n = pTos->n; for(k=0; k<n && i>0; i--){ if( z[k]=='a' ){ pc = pOp->p2-1; break; } while( k<n && z[k] ){ k++; } k++; } Release(pTos); pTos--; break; } /* Opcode: Destroy P1 P2 * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. |
︙ | ︙ | |||
3673 3674 3675 3676 3677 3678 3679 | ** auxiliary database file if P2==1. Push the page number of the ** root page of the new index onto the stack. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: case OP_CreateTable: { | < > | | | 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 | ** auxiliary database file if P2==1. Push the page number of the ** root page of the new index onto the stack. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: case OP_CreateTable: { int pgno; assert( pOp->p3!=0 && pOp->p3type==P3_POINTER ); assert( pOp->p2>=0 && pOp->p2<db->nDb ); assert( db->aDb[pOp->p2].pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); }else{ rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); } pTos++; if( rc==SQLITE_OK ){ pTos->i = pgno; pTos->flags = MEM_Int; *(u32*)pOp->p3 = pgno; pOp->p3 = 0; } break; } /* Opcode: IntegrityCk P1 P2 * |
︙ | ︙ | |||
3711 3712 3713 3714 3715 3716 3717 | ** file, not the main database file. ** ** This opcode is used for testing purposes only. */ case OP_IntegrityCk: { int nRoot; int *aRoot; | < | > | | | | | | | | | > | | 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 | ** file, not the main database file. ** ** This opcode is used for testing purposes only. */ case OP_IntegrityCk: { int nRoot; int *aRoot; int iSet = pOp->p1; Set *pSet; int j; HashElem *i; char *z; assert( iSet>=0 && iSet<p->nSet ); pTos++; pSet = &p->aSet[iSet]; nRoot = sqliteHashCount(&pSet->hash); aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) ); if( aRoot==0 ) goto no_mem; for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){ toInt((char*)sqliteHashKey(i), &aRoot[j]); } aRoot[j] = 0; sqliteHashClear(&pSet->hash); pSet->prev = 0; z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); if( z==0 || z[0]==0 ){ if( z ) sqliteFree(z); pTos->z = "ok"; pTos->n = 3; pTos->flags = MEM_Str | MEM_Static; }else{ pTos->z = z; pTos->n = strlen(z) + 1; pTos->flags = MEM_Str | MEM_Dyn; } sqliteFree(aRoot); break; } /* Opcode: ListWrite * * * ** ** Write the integer on the top of the stack ** into the temporary storage list. */ case OP_ListWrite: { Keylist *pKeylist; assert( pTos>=p->aStack ); pKeylist = p->pList; if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); if( pKeylist==0 ) goto no_mem; pKeylist->nKey = 1000; pKeylist->nRead = 0; pKeylist->nUsed = 0; pKeylist->pNext = p->pList; p->pList = pKeylist; } Integerify(pTos); pKeylist->aKey[pKeylist->nUsed++] = pTos->i; assert( pTos->flags==MEM_Int ); pTos--; break; } /* Opcode: ListRewind * * * ** ** Rewind the temporary buffer back to the beginning. This is ** now a no-op. |
︙ | ︙ | |||
3789 3790 3791 3792 3793 3794 3795 | ** push nothing but instead jump to P2. */ case OP_ListRead: { Keylist *pKeylist; CHECK_FOR_INTERRUPT; pKeylist = p->pList; if( pKeylist!=0 ){ | < | | | < | | | < | 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 | ** push nothing but instead jump to P2. */ case OP_ListRead: { Keylist *pKeylist; CHECK_FOR_INTERRUPT; pKeylist = p->pList; if( pKeylist!=0 ){ assert( pKeylist->nRead>=0 ); assert( pKeylist->nRead<pKeylist->nUsed ); assert( pKeylist->nRead<pKeylist->nKey ); pTos++; pTos->i = pKeylist->aKey[pKeylist->nRead++]; pTos->flags = MEM_Int; if( pKeylist->nRead>=pKeylist->nUsed ){ p->pList = pKeylist->pNext; sqliteFree(pKeylist); } }else{ pc = pOp->p2 - 1; } |
︙ | ︙ | |||
3861 3862 3863 3864 3865 3866 3867 | /* Opcode: SortPut * * * ** ** The TOS is the key and the NOS is the data. Pop both from the stack ** and put them on the sorter. The key and data should have been ** made using SortMakeKey and SortMakeRec, respectively. */ case OP_SortPut: { | | < < > | | | | > | < | < < < < < < < | | > | > | | | | | | | | | | | | | | | | 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 | /* Opcode: SortPut * * * ** ** The TOS is the key and the NOS is the data. Pop both from the stack ** and put them on the sorter. The key and data should have been ** made using SortMakeKey and SortMakeRec, respectively. */ case OP_SortPut: { Mem *pNos = &pTos[-1]; Sorter *pSorter; assert( pNos>=p->aStack ); if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem; pSorter = sqliteMallocRaw( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->pSort; p->pSort = pSorter; assert( pTos->flags & MEM_Dyn ); pSorter->nKey = pTos->n; pSorter->zKey = pTos->z; assert( pNos->flags & MEM_Dyn ); pSorter->nData = pNos->n; pSorter->pData = pNos->z; pTos -= 2; break; } /* Opcode: SortMakeRec P1 * * ** ** The top P1 elements are the arguments to a callback. Form these ** elements into a single data entry that can be stored on a sorter ** using SortPut and later fed to a callback using SortCallback. */ case OP_SortMakeRec: { char *z; char **azArg; int nByte; int nField; int i; Mem *pRec; nField = pOp->p1; pRec = &pTos[1-nField]; assert( pRec>=p->aStack ); nByte = 0; for(i=0; i<nField; i++, pRec++){ if( (pRec->flags & MEM_Null)==0 ){ Stringify(pRec); nByte += pRec->n; } } nByte += sizeof(char*)*(nField+1); azArg = sqliteMallocRaw( nByte ); if( azArg==0 ) goto no_mem; z = (char*)&azArg[nField+1]; for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){ if( pRec->flags & MEM_Null ){ azArg[i] = 0; }else{ azArg[i] = z; memcpy(z, pRec->z, pRec->n); z += pRec->n; } } popStack(&pTos, nField); pTos++; pTos->n = nByte; pTos->z = (char*)azArg; pTos->flags = MEM_Str | MEM_Dyn; break; } /* Opcode: SortMakeKey * * P3 ** ** Convert the top few entries of the stack into a sort key. The ** number of stack entries consumed is the number of characters in |
︙ | ︙ | |||
3950 3951 3952 3953 3954 3955 3956 3957 3958 | ** See also the MakeKey and MakeIdxKey opcodes. */ case OP_SortMakeKey: { char *zNewKey; int nByte; int nField; int i, j, k; nField = strlen(pOp->p3); | > | | | | | | | | | | | | | | | 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 | ** See also the MakeKey and MakeIdxKey opcodes. */ case OP_SortMakeKey: { char *zNewKey; int nByte; int nField; int i, j, k; Mem *pRec; nField = strlen(pOp->p3); pRec = &pTos[1-nField]; nByte = 1; for(i=0; i<nField; i++, pRec++){ if( pRec->flags & MEM_Null ){ nByte += 2; }else{ Stringify(pRec); nByte += pRec->n+2; } } zNewKey = sqliteMallocRaw( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; k = 0; for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){ if( pRec->flags & MEM_Null ){ zNewKey[j++] = 'N'; zNewKey[j++] = 0; k++; }else{ zNewKey[j++] = pOp->p3[k++]; memcpy(&zNewKey[j], pRec->z, pRec->n-1); j += pRec->n-1; zNewKey[j++] = 0; } } zNewKey[j] = 0; assert( j<nByte ); popStack(&pTos, nField); pTos++; pTos->n = nByte; pTos->flags = MEM_Str|MEM_Dyn; pTos->z = zNewKey; break; } /* Opcode: Sort * * * ** ** Sort all elements on the sorter. The algorithm is a ** mergesort. |
︙ | ︙ | |||
4037 4038 4039 4040 4041 4042 4043 | ** to instruction P2. */ case OP_SortNext: { Sorter *pSorter = p->pSort; CHECK_FOR_INTERRUPT; if( pSorter!=0 ){ p->pSort = pSorter->pNext; | | | | | | | | > | > | | | 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 | ** to instruction P2. */ case OP_SortNext: { Sorter *pSorter = p->pSort; CHECK_FOR_INTERRUPT; if( pSorter!=0 ){ p->pSort = pSorter->pNext; pTos++; pTos->z = pSorter->pData; pTos->n = pSorter->nData; pTos->flags = MEM_Str|MEM_Dyn; sqliteFree(pSorter->zKey); sqliteFree(pSorter); }else{ pc = pOp->p2 - 1; } break; } /* Opcode: SortCallback P1 * * ** ** The top of the stack contains a callback record built using ** the SortMakeRec operation with the same P1 value as this ** instruction. Pop this record from the stack and invoke the ** callback on it. */ case OP_SortCallback: { assert( pTos>=p->aStack ); assert( pTos->flags & MEM_Str ); if( p->xCallback==0 ){ p->pc = pc+1; p->azResColumn = (char**)pTos->z; p->nResColumn = pOp->p1; p->popStack = 1; p->pTos = pTos; return SQLITE_ROW; }else{ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; if( p->xCallback(p->pCbArg, pOp->p1, (char**)pTos->z, p->azColName)!=0){ rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; p->nCallback++; } Release(pTos); pTos--; if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SortReset * * * ** ** Remove any elements that remain on the sorter. */ case OP_SortReset: { sqliteVdbeSorterReset(p); break; } /* Opcode: FileOpen * * P3 ** ** Open the file named by P3 for reading using the FileRead opcode. ** If P3 is "stdin" then open standard input for reading. */ case OP_FileOpen: { assert( pOp->p3!=0 ); if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ p->pFile = stdin; }else{ |
︙ | ︙ | |||
4238 4239 4240 4241 4242 4243 4244 | ** ** Push onto the stack the P1-th column of the most recently read line ** from the input file. */ case OP_FileColumn: { int i = pOp->p1; char *z; | | > | | | | < < | < | | | | | | | > | < < | | | < < | > | | < | | | | | 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 | ** ** Push onto the stack the P1-th column of the most recently read line ** from the input file. */ case OP_FileColumn: { int i = pOp->p1; char *z; assert( i>=0 && i<p->nField ); if( p->azField ){ z = p->azField[i]; }else{ z = 0; } pTos++; if( z ){ pTos->n = strlen(z) + 1; pTos->z = z; pTos->flags = MEM_Str | MEM_Ephem; }else{ pTos->flags = MEM_Null; } break; } /* Opcode: MemStore P1 P2 * ** ** Write the top of the stack into memory location P1. ** P1 should be a small integer since space is allocated ** for all memory locations between 0 and P1 inclusive. ** ** After the data is stored in the memory location, the ** stack is popped once if P2 is 1. If P2 is zero, then ** the original data remains on the stack. */ case OP_MemStore: { int i = pOp->p1; char *zOld; Mem *pMem; int flags; assert( pTos>=p->aStack ); if( i>=p->nMem ){ int nOld = p->nMem; Mem *aMem; p->nMem = i + 5; aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); if( aMem==0 ) goto no_mem; if( aMem!=p->aMem ){ int j; for(j=0; j<nOld; j++){ if( aMem[j].flags & MEM_Short ){ aMem[j].z = aMem[j].zShort; } } } p->aMem = aMem; if( nOld<p->nMem ){ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); } } pMem = &p->aMem[i]; flags = pMem->flags; if( flags & MEM_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } *pMem = *pTos; flags = pMem->flags; if( flags & MEM_Dyn ){ if( pOp->p2 ){ pTos->flags = MEM_Null; }else{ /* OR: perhaps just make the stack ephermeral */ pMem->z = sqliteMallocRaw( pMem->n ); if( pMem->z==0 ) goto no_mem; memcpy(pMem->z, pTos->z, pMem->n); } }else if( flags & MEM_Short ){ pMem->z = pMem->zShort; } if( zOld ) sqliteFree(zOld); if( pOp->p2 ){ Release(pTos); pTos--; } break; } /* Opcode: MemLoad P1 * * ** ** Push a copy of the value in memory location P1 onto the stack. ** ** If the value is a string, then the value pushed is a pointer to ** the string that is stored in the memory location. If the memory ** location is subsequently changed (using OP_MemStore) then the ** value pushed onto the stack will change too. */ case OP_MemLoad: { int i = pOp->p1; assert( i>=0 && i<p->nMem ); pTos++; memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);; if( pTos->flags & MEM_Str ){ pTos->flags |= MEM_Ephem; pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); } break; } /* Opcode: MemIncr P1 P2 * ** ** Increment the integer valued memory cell P1 by 1. If P2 is not zero ** and the result after the increment is greater than zero, then jump ** to P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemIncr: { int i = pOp->p1; Mem *pMem; assert( i>=0 && i<p->nMem ); pMem = &p->aMem[i]; assert( pMem->flags==MEM_Int ); pMem->i++; if( pOp->p2>0 && pMem->i>0 ){ pc = pOp->p2 - 1; } break; } |
︙ | ︙ | |||
4388 4389 4390 4391 4392 4393 4394 | ** ** Initialize the function parameters for an aggregate function. ** The aggregate will operate out of aggregate column P2. ** P3 is a pointer to the FuncDef structure for the function. */ case OP_AggInit: { int i = pOp->p2; | | | > | < | > > | | | | > < | | | | | 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 | ** ** Initialize the function parameters for an aggregate function. ** The aggregate will operate out of aggregate column P2. ** P3 is a pointer to the FuncDef structure for the function. */ case OP_AggInit: { int i = pOp->p2; assert( i>=0 && i<p->agg.nMem ); p->agg.apFunc[i] = (FuncDef*)pOp->p3; break; } /* Opcode: AggFunc * P2 P3 ** ** Execute the step function for an aggregate. The ** function has P2 arguments. P3 is a pointer to the FuncDef ** structure that specifies the function. ** ** The top of the stack must be an integer which is the index of ** the aggregate column that corresponds to this aggregate function. ** Ideally, this index would be another parameter, but there are ** no free parameters left. The integer is popped from the stack. */ case OP_AggFunc: { int n = pOp->p2; int i; Mem *pMem, *pRec; char **azArgv = p->zArgv; sqlite_func ctx; assert( n>=0 ); assert( pTos->flags==MEM_Int ); pRec = &pTos[-n]; assert( pRec>=p->aStack ); for(i=0; i<n; i++, pRec++){ if( pRec->flags & MEM_Null ){ azArgv[i] = 0; }else{ Stringify(pRec); azArgv[i] = pRec->z; } } i = pTos->i; assert( i>=0 && i<p->agg.nMem ); ctx.pFunc = (FuncDef*)pOp->p3; pMem = &p->agg.pCurrent->aMem[i]; ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ ctx.pAgg = pMem->z; ctx.cnt = ++pMem->i; ctx.isError = 0; ctx.isStep = 1; (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv); pMem->z = ctx.pAgg; pMem->flags = MEM_AggCtx; popStack(&pTos, n+1); if( ctx.isError ){ rc = SQLITE_ERROR; } break; } /* Opcode: AggFocus * P2 * |
︙ | ︙ | |||
4455 4456 4457 4458 4459 4460 4461 | ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggFocus: { | < | | | | > | | < > > | | | < | < < | > | < > > > | | | | | 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 | ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggFocus: { AggElem *pElem; char *zKey; int nKey; assert( pTos>=p->aStack ); Stringify(pTos); zKey = pTos->z; nKey = pTos->n; pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); if( pElem ){ p->agg.pCurrent = pElem; pc = pOp->p2 - 1; }else{ AggInsert(&p->agg, zKey, nKey); if( sqlite_malloc_failed ) goto no_mem; } Release(pTos); pTos--; break; } /* Opcode: AggSet * P2 * ** ** Move the top of the stack into the P2-th field of the current ** aggregate. String values are duplicated into new memory. */ case OP_AggSet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; assert( pTos>=p->aStack ); if( pFocus==0 ) goto no_mem; assert( i>=0 ); assert( i<p->agg.nMem ); if( i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; char *zOld; if( pMem->flags & MEM_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } Deephemeralize(pTos); *pMem = *pTos; if( pMem->flags & MEM_Dyn ){ pTos->flags = MEM_Null; }else if( pMem->flags & MEM_Short ){ pMem->z = pMem->zShort; } if( zOld ) sqliteFree(zOld); } Release(pTos); pTos--; break; } /* Opcode: AggGet * P2 * ** ** Push a new entry onto the stack which is a copy of the P2-th field ** of the current aggregate. Strings are not duplicated so ** string values will be ephemeral. */ case OP_AggGet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; if( pFocus==0 ) goto no_mem; assert( i>=0 ); pTos++; assert( i<p->agg.nMem ); if( i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; *pTos = *pMem; pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); pTos->flags |= MEM_Ephem; } break; } /* Opcode: AggNext * P2 * ** ** Make the next aggregate value the current aggregate. The prior |
︙ | ︙ | |||
4574 4575 4576 4577 4578 4579 4580 | ctx.isStep = 0; ctx.pFunc = p->agg.apFunc[i]; (*p->agg.apFunc[i]->xFinalize)(&ctx); if( freeCtx ){ sqliteFree( aMem[i].z ); } aMem[i] = ctx.s; | | < | 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 | ctx.isStep = 0; ctx.pFunc = p->agg.apFunc[i]; (*p->agg.apFunc[i]->xFinalize)(&ctx); if( freeCtx ){ sqliteFree( aMem[i].z ); } aMem[i] = ctx.s; if( aMem[i].flags & MEM_Short ){ aMem[i].z = aMem[i].zShort; } } } break; } |
︙ | ︙ | |||
4604 4605 4606 4607 4608 4609 4610 | sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1); } p->nSet = i+1; } if( pOp->p3 ){ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); }else{ | | < | | > | | < | | < > | | < | | > | < | | | | | | 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 | sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1); } p->nSet = i+1; } if( pOp->p3 ){ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); }else{ assert( pTos>=p->aStack ); Stringify(pTos); sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p); Release(pTos); pTos--; } if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SetFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped exists in set P1, ** then jump to P2. Otherwise fall through. */ case OP_SetFound: { int i = pOp->p1; assert( pTos>=p->aStack ); Stringify(pTos); if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){ pc = pOp->p2 - 1; } Release(pTos); pTos--; break; } /* Opcode: SetNotFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped does not exists in ** set P1, then jump to P2. Otherwise fall through. */ case OP_SetNotFound: { int i = pOp->p1; assert( pTos>=p->aStack ); Stringify(pTos); if( i<0 || i>=p->nSet || sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){ pc = pOp->p2 - 1; } Release(pTos); pTos--; break; } /* Opcode: SetFirst P1 P2 * ** ** Read the first element from set P1 and push it onto the stack. If the ** set is empty, push nothing and jump immediately to P2. This opcode is ** used in combination with OP_SetNext to loop over all elements of a set. */ /* Opcode: SetNext P1 P2 * ** ** Read the next element from set P1 and push it onto the stack. If there ** are no more elements in the set, do not do the push and fall through. ** Otherwise, jump to P2 after pushing the next set element. */ case OP_SetFirst: case OP_SetNext: { Set *pSet; CHECK_FOR_INTERRUPT; if( pOp->p1<0 || pOp->p1>=p->nSet ){ if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1; break; } pSet = &p->aSet[pOp->p1]; if( pOp->opcode==OP_SetFirst ){ pSet->prev = sqliteHashFirst(&pSet->hash); if( pSet->prev==0 ){ pc = pOp->p2 - 1; break; } }else{ assert( pSet->prev ); pSet->prev = sqliteHashNext(pSet->prev); if( pSet->prev==0 ){ break; }else{ pc = pOp->p2 - 1; } } pTos++; pTos->z = sqliteHashKey(pSet->prev); pTos->n = sqliteHashKeysize(pSet->prev); pTos->flags = MEM_Str | MEM_Ephem; break; } /* Opcode: Vacuum * * * ** ** Vacuum the entire database. This opcode will cause other virtual ** machines to be created and run. It may not be called from within |
︙ | ︙ | |||
4748 4749 4750 4751 4752 4753 4754 | ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG if( pc<-1 || pc>=p->nOp ){ sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); rc = SQLITE_INTERNAL; } | | | | | | | | | | | | | | | | | | | | | 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 | ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG if( pc<-1 || pc>=p->nOp ){ sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); rc = SQLITE_INTERNAL; } if( p->trace && pTos>=p->aStack ){ int i; fprintf(p->trace, "Stack:"); for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ if( pTos[i].flags & MEM_Null ){ fprintf(p->trace, " NULL"); }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ fprintf(p->trace, " si:%d", pTos[i].i); }else if( pTos[i].flags & MEM_Int ){ fprintf(p->trace, " i:%d", pTos[i].i); }else if( pTos[i].flags & MEM_Real ){ fprintf(p->trace, " r:%g", pTos[i].r); }else if( pTos[i].flags & MEM_Str ){ int j, k; char zBuf[100]; zBuf[0] = ' '; if( pTos[i].flags & MEM_Dyn ){ zBuf[1] = 'z'; assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 ); }else if( pTos[i].flags & MEM_Static ){ zBuf[1] = 't'; assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 ); }else if( pTos[i].flags & MEM_Ephem ){ zBuf[1] = 'e'; assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 ); }else{ zBuf[1] = 's'; } zBuf[2] = '['; k = 3; for(j=0; j<20 && j<pTos[i].n; j++){ int c = pTos[i].z[j]; if( c==0 && j==pTos[i].n-1 ) break; if( isprint(c) && !isspace(c) ){ zBuf[k++] = c; }else{ zBuf[k++] = '.'; } } zBuf[k++] = ']'; |
︙ | ︙ | |||
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 | if( rc ){ p->rc = rc; rc = SQLITE_ERROR; }else{ rc = SQLITE_DONE; } p->magic = VDBE_MAGIC_HALT; return rc; /* Jump to here if a malloc() fails. It's hard to get a malloc() ** to fail on a modern VM computer, so this code is untested. */ no_mem: sqliteSetString(&p->zErrMsg, "out of memory", (char*)0); | > | 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 | if( rc ){ p->rc = rc; rc = SQLITE_ERROR; }else{ rc = SQLITE_DONE; } p->magic = VDBE_MAGIC_HALT; p->pTos = pTos; return rc; /* Jump to here if a malloc() fails. It's hard to get a malloc() ** to fail on a modern VM computer, so this code is untested. */ no_mem: sqliteSetString(&p->zErrMsg, "out of memory", (char*)0); |
︙ | ︙ | |||
4848 4849 4850 4851 4852 4853 4854 | if( db->magic!=SQLITE_MAGIC_BUSY ){ rc = SQLITE_MISUSE; }else{ rc = SQLITE_INTERRUPT; } sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); goto vdbe_halt; | | < < < < < < < < < < < < < < < < < < < | 4826 4827 4828 4829 4830 4831 4832 4833 | if( db->magic!=SQLITE_MAGIC_BUSY ){ rc = SQLITE_MISUSE; }else{ rc = SQLITE_INTERRUPT; } sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); goto vdbe_halt; } |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
125 126 127 128 129 130 131 132 133 134 135 136 | #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Dyn 0x0010 /* Need to call sqliteFree() on Mem.z */ #define MEM_Static 0x0020 /* Mem.z points to a static string */ #define MEM_Ephem 0x0040 /* Mem.z points to an ephemeral string */ /* The following MEM_ value appears only in AggElem.aMem.s.flag fields. ** It indicates that the corresponding AggElem.aMem.z points to a ** aggregate function context that needs to be finalized. */ | > | | 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Dyn 0x0010 /* Need to call sqliteFree() on Mem.z */ #define MEM_Static 0x0020 /* Mem.z points to a static string */ #define MEM_Ephem 0x0040 /* Mem.z points to an ephemeral string */ #define MEM_Short 0x0080 /* Mem.z points to Mem.zShort */ /* The following MEM_ value appears only in AggElem.aMem.s.flag fields. ** It indicates that the corresponding AggElem.aMem.z points to a ** aggregate function context that needs to be finalized. */ #define MEM_AggCtx 0x0100 /* Mem.z points to an agg function context */ /* ** The "context" argument for a installable function. A pointer to an ** instance of this structure is the first argument to the routines used ** implement the SQL functions. ** ** There is a typedef for this structure in sqlite.h. So all routines, |
︙ | ︙ | |||
219 220 221 222 223 224 225 | FILE *trace; /* Write an execution trace here, if not NULL */ int nOp; /* Number of instructions in the program */ int nOpAlloc; /* Number of slots allocated for aOp[] */ Op *aOp; /* Space to hold the virtual machine's program */ int nLabel; /* Number of labels used */ int nLabelAlloc; /* Number of slots allocated in aLabel[] */ int *aLabel; /* Space to hold the labels */ | < > | 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | FILE *trace; /* Write an execution trace here, if not NULL */ int nOp; /* Number of instructions in the program */ int nOpAlloc; /* Number of slots allocated for aOp[] */ Op *aOp; /* Space to hold the virtual machine's program */ int nLabel; /* Number of labels used */ int nLabelAlloc; /* Number of slots allocated in aLabel[] */ int *aLabel; /* Space to hold the labels */ Mem *aStack; /* The operand stack, except string values */ Mem *pTos; /* Top entry in the operand stack */ char **zArgv; /* Text values used by the callback */ char **azColName; /* Becomes the 4th parameter to callbacks */ int nCursor; /* Number of slots in aCsr[] */ Cursor *aCsr; /* One element of this array for each open cursor */ Sorter *pSort; /* A linked list of objects to be sorted */ FILE *pFile; /* At most one open file handler */ int nField; /* Number of file fields */ |
︙ | ︙ | |||
270 271 272 273 274 275 276 | ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ #define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */ #define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */ | < < < < < < < < < < | 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ #define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */ #define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */ /* ** Function prototypes */ void sqliteVdbeCleanupCursor(Cursor*); void sqliteVdbeSorterReset(Vdbe*); void sqliteVdbeAggReset(Agg*); void sqliteVdbeKeylistFree(Keylist*); void sqliteVdbePopStack(Vdbe*,int); int sqliteVdbeCursorMoveto(Cursor*); int sqliteVdbeByteSwap(int); #if !defined(NDEBUG) || defined(VDBE_PROFILE) void sqliteVdbePrintOp(FILE*, int, Op*); #endif |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
384 385 386 387 388 389 390 | p->s.z = 0; p->s.n = 0; }else{ if( n<0 ) n = strlen(zResult); if( n<NBFS-1 ){ memcpy(p->s.zShort, zResult, n); p->s.zShort[n] = 0; | | | 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | p->s.z = 0; p->s.n = 0; }else{ if( n<0 ) n = strlen(zResult); if( n<NBFS-1 ){ memcpy(p->s.zShort, zResult, n); p->s.zShort[n] = 0; p->s.flags = MEM_Str | MEM_Short; p->s.z = p->s.zShort; }else{ p->s.z = sqliteMallocRaw( n+1 ); if( p->s.z ){ memcpy(p->s.z, zResult, n); p->s.z[n] = 0; } |
︙ | ︙ | |||
593 594 595 596 597 598 599 | ** Allocation all the stack space we will ever need. */ if( p->aStack==0 ){ p->nVar = nVar; assert( nVar>=0 ); n = isExplain ? 10 : p->nOp; p->aStack = sqliteMalloc( | | | | | 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 | ** Allocation all the stack space we will ever need. */ if( p->aStack==0 ){ p->nVar = nVar; assert( nVar>=0 ); n = isExplain ? 10 : p->nOp; p->aStack = sqliteMalloc( n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) /* aStack and zArgv */ + p->nVar*(sizeof(char*)+sizeof(int)+1) /* azVar, anVar, abVar */ ); p->zArgv = (char**)&p->aStack[n]; p->azColName = (char**)&p->zArgv[n]; p->azVar = (char**)&p->azColName[n]; p->anVar = (int*)&p->azVar[p->nVar]; p->abVar = (u8*)&p->anVar[p->nVar]; } sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0); p->agg.pSearch = 0; #ifdef MEMORY_DEBUG if( sqliteOsFileExists("vdbe_trace") ){ p->trace = stdout; } #endif p->pTos = &p->aStack[-1]; p->pc = 0; p->rc = SQLITE_OK; p->uniqueCnt = 0; p->returnDepth = 0; p->errorAction = OE_Abort; p->undoTransOnError = 0; p->xCallback = xCallback; |
︙ | ︙ | |||
647 648 649 650 651 652 653 | p->pSort = pSorter->pNext; sqliteFree(pSorter->zKey); sqliteFree(pSorter->pData); sqliteFree(pSorter); } } | < < < < < < < < < < < < < < < < | 647 648 649 650 651 652 653 654 655 656 657 658 659 660 | p->pSort = pSorter->pNext; sqliteFree(pSorter->zKey); sqliteFree(pSorter->pData); sqliteFree(pSorter); } } /* ** Reset an Agg structure. Delete all its contents. ** ** For installable aggregate functions, if the step function has been ** called, make sure the finalizer function has also been called. The ** finalizer might need to free memory that was allocated as part of its ** private context. If the finalizer has not been called yet, call it |
︙ | ︙ | |||
754 755 756 757 758 759 760 | ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. It also deletes the values of ** variables in the azVariable[] array. */ static void Cleanup(Vdbe *p){ int i; | > > > > | > > > > > | 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 | ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. It also deletes the values of ** variables in the azVariable[] array. */ static void Cleanup(Vdbe *p){ int i; if( p->aStack ){ Mem *pTos = p->pTos; while( pTos>=p->aStack ){ if( pTos->flags & MEM_Dyn ){ sqliteFree(pTos->z); } pTos--; } p->pTos = pTos; } closeAllCursors(p); if( p->aMem ){ for(i=0; i<p->nMem; i++){ if( p->aMem[i].flags & MEM_Dyn ){ sqliteFree(p->aMem[i].z); } } |
︙ | ︙ | |||
867 868 869 870 871 872 873 | } for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){ sqliteBtreeCommitCkpt(db->aDb[i].pBt); db->aDb[i].inTrans = 1; } } | | | 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 | } for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){ sqliteBtreeCommitCkpt(db->aDb[i].pBt); db->aDb[i].inTrans = 1; } } assert( p->pTos<&p->aStack[p->pc] || sqlite_malloc_failed==1 ); #ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ int i; fprintf(out, "---- "); for(i=0; i<p->nOp; i++){ |
︙ | ︙ |
Changes to tool/memleak.awk.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # # This script looks for memory leaks by analyzing the output of "sqlite" # when compiled with the MEMORY_DEBUG=2 option. # /[0-9]+ malloc / { mem[$6] = $0 } /[0-9]+ realloc / { mem[$8] = ""; mem[$10] = $0 } /[0-9]+ free / { mem[$6] = ""; str[$6] = "" } /^string at / { addr = $4 sub("string at " addr " is ","") str[addr] = $0 | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # # This script looks for memory leaks by analyzing the output of "sqlite" # when compiled with the MEMORY_DEBUG=2 option. # /[0-9]+ malloc / { mem[$6] = $0 } /[0-9]+ realloc / { mem[$8] = ""; mem[$10] = $0 } /[0-9]+ free / { if (mem[$6]=="") { print "*** free without a malloc at",$6 } mem[$6] = ""; str[$6] = "" } /^string at / { addr = $4 sub("string at " addr " is ","") str[addr] = $0 |
︙ | ︙ |