Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge all the latest trunk changes into the apple-osx branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA1: |
77376b332b4460208f837f7bdf6df8c9 |
User & Date: | drh 2011-08-02 18:25:20.857 |
Context
2011-08-23
| ||
18:06 | Merge latest trunk changes into the apple-osx branch. (check-in: c5f7977b89 user: dan tags: apple-osx) | |
2011-08-02
| ||
18:25 | Merge all the latest trunk changes into the apple-osx branch. (check-in: 77376b332b user: drh tags: apple-osx) | |
01:57 | Make sure IS NOT NULL constraints work on virtual tables. Fix for ticket [6c14288a473ceff]. (check-in: a55f4ab999 user: drh tags: trunk) | |
2011-06-25
| ||
21:43 | Changes to make pragma synchronous sticky when SQLITE_DEFAULT_WAL_SAFETYLEVEL is used (check-in: c6158b254f user: adam tags: apple-osx) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
527 528 529 530 531 532 533 534 535 536 537 538 539 540 | $(TCLSH_CMD) $(TOP)/tool/vdbe-compress.tcl <tsrc/vdbe.c >vdbe.new mv vdbe.new tsrc/vdbe.c touch .target_source sqlite3.c: .target_source $(TOP)/tool/mksqlite3c.tcl $(TCLSH_CMD) $(TOP)/tool/mksqlite3c.tcl # Rule to build the amalgamation # sqlite3.lo: sqlite3.c $(LTCOMPILE) $(TEMP_STORE) -c sqlite3.c # Rules to build the LEMON compiler generator # | > > > | 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 | $(TCLSH_CMD) $(TOP)/tool/vdbe-compress.tcl <tsrc/vdbe.c >vdbe.new mv vdbe.new tsrc/vdbe.c touch .target_source sqlite3.c: .target_source $(TOP)/tool/mksqlite3c.tcl $(TCLSH_CMD) $(TOP)/tool/mksqlite3c.tcl sqlite3-all.c: sqlite3.c $(TOP)/tool/split-sqlite3c.tcl $(TCLSH_CMD) $(TOP)/tool/split-sqlite3c.tcl # Rule to build the amalgamation # sqlite3.lo: sqlite3.c $(LTCOMPILE) $(TEMP_STORE) -c sqlite3.c # Rules to build the LEMON compiler generator # |
︙ | ︙ | |||
795 796 797 798 799 800 801 | cp $(TOP)/src/parse.y . rm -f parse.h ./lemon$(BEXE) $(OPT_FEATURE_FLAGS) $(OPTS) parse.y mv parse.h parse.h.temp $(NAWK) -f $(TOP)/addopcodes.awk parse.h.temp >parse.h sqlite3.h: $(TOP)/src/sqlite.h.in $(TOP)/manifest.uuid $(TOP)/VERSION | | | 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | cp $(TOP)/src/parse.y . rm -f parse.h ./lemon$(BEXE) $(OPT_FEATURE_FLAGS) $(OPTS) parse.y mv parse.h parse.h.temp $(NAWK) -f $(TOP)/addopcodes.awk parse.h.temp >parse.h sqlite3.h: $(TOP)/src/sqlite.h.in $(TOP)/manifest.uuid $(TOP)/VERSION $(TCLSH_CMD) $(TOP)/tool/mksqlite3h.tcl $(TOP) >sqlite3.h keywordhash.h: $(TOP)/tool/mkkeywordhash.c $(BCC) -o mkkeywordhash$(BEXE) $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)/tool/mkkeywordhash.c ./mkkeywordhash$(BEXE) >keywordhash.h |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
39 40 41 42 43 44 45 | # Define -DNDEBUG to compile without debugging (i.e., for production usage) # Omitting the define will cause extra debugging code to be inserted and # includes extra comments when "EXPLAIN stmt" is used. # TCC = $(TCC) -DNDEBUG | > | > > > | > > > > > > > > | > > > > | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | # Define -DNDEBUG to compile without debugging (i.e., for production usage) # Omitting the define will cause extra debugging code to be inserted and # includes extra comments when "EXPLAIN stmt" is used. # TCC = $(TCC) -DNDEBUG # The locations of the Tcl header and library files. Also, the library that # non-stubs enabled programs using Tcl must link against. These variables # (TCLINCDIR, TCLLIBDIR, and LIBTCL) may be overridden via the environment # prior to running nmake in order to match the actual installed location and # version on this machine. # !if "$(TCLINCDIR)" == "" TCLINCDIR = c:\tcl\include !endif !if "$(TCLLIBDIR)" == "" TCLLIBDIR = c:\tcl\lib !endif !if "$(LIBTCL)" == "" LIBTCL = tcl85.lib !endif # This is the command to use for tclsh - normally just "tclsh", but we may # know the specific version we want to use. This variable (TCLSH_CMD) may be # overridden via the environment prior to running nmake in order to select a # specific Tcl shell to use. # !if "$(TCLSH_CMD)" == "" TCLSH_CMD = tclsh85 !endif # Compiler options needed for programs that use the readline() library. # READLINE_FLAGS = -DHAVE_READLINE=0 # The library that programs using readline() must link against. # |
︙ | ︙ | |||
114 115 116 117 118 119 120 | # to deduce the binary type based on the object files. !IF "$(PLATFORM)"!="" LTLINKOPTS = /MACHINE:$(PLATFORM) LTLIBOPTS = /MACHINE:$(PLATFORM) !ENDIF # nawk compatible awk. | | | 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | # to deduce the binary type based on the object files. !IF "$(PLATFORM)"!="" LTLINKOPTS = /MACHINE:$(PLATFORM) LTLIBOPTS = /MACHINE:$(PLATFORM) !ENDIF # nawk compatible awk. NAWK = gawk.exe # You should not have to change anything below this line ############################################################################### # Object files for the SQLite library (non-amalgamation). # LIBOBJS0 = alter.lo analyze.lo attach.lo auth.lo \ |
︙ | ︙ | |||
435 436 437 438 439 440 441 | $(TOP)\ext\icu\sqliteicu.h EXTHDR = $(EXTHDR) \ $(TOP)\ext\rtree\sqlite3rtree.h # This is the default Makefile target. The objects listed here # are what get build when you type just "make" with no arguments. # | | | 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | $(TOP)\ext\icu\sqliteicu.h EXTHDR = $(EXTHDR) \ $(TOP)\ext\rtree\sqlite3rtree.h # This is the default Makefile target. The objects listed here # are what get build when you type just "make" with no arguments. # all: dll libsqlite3.lib sqlite3.exe libtclsqlite3.lib libsqlite3.lib: $(LIBOBJ) $(LTLIB) $(LTLIBOPTS) /OUT:$@ $(LIBOBJ) $(TLIBS) libtclsqlite3.lib: tclsqlite.lo libsqlite3.lib $(LTLIB) $(LTLIBOPTS) /LIBPATH:$(TCLLIBDIR) /OUT:$@ tclsqlite.lo libsqlite3.lib $(LIBTCL:tcl=tclstub) $(TLIBS) |
︙ | ︙ | |||
459 460 461 462 463 464 465 | # all that automatic generation. # .target_source: $(SRC) $(TOP)\tool\vdbe-compress.tcl -rmdir /S/Q tsrc -mkdir tsrc for %i in ($(SRC)) do copy /Y %i tsrc del /Q tsrc\sqlite.h.in tsrc\parse.y | | > > > | 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 | # all that automatic generation. # .target_source: $(SRC) $(TOP)\tool\vdbe-compress.tcl -rmdir /S/Q tsrc -mkdir tsrc for %i in ($(SRC)) do copy /Y %i tsrc del /Q tsrc\sqlite.h.in tsrc\parse.y $(TCLSH_CMD) $(TOP)\tool\vdbe-compress.tcl < tsrc\vdbe.c > vdbe.new move vdbe.new tsrc\vdbe.c echo > .target_source sqlite3.c: .target_source $(TOP)\tool\mksqlite3c.tcl $(TCLSH_CMD) $(TOP)\tool\mksqlite3c.tcl sqlite3-all.c: sqlite3.c $(TOP)/tool/split-sqlite3c.tcl $(TCLSH_CMD) $(TOP)/tool/split-sqlite3c.tcl # Rule to build the amalgamation # sqlite3.lo: sqlite3.c $(LTCOMPILE) -c sqlite3.c # Rules to build the LEMON compiler generator |
︙ | ︙ | |||
716 717 718 719 720 721 722 | tclsqlite3.exe: tclsqlite-shell.lo libsqlite3.lib $(LTLINK) tclsqlite-shell.lo \ /link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) libsqlite3.lib $(LIBTCL) # Rules to build opcodes.c and opcodes.h # opcodes.c: opcodes.h $(TOP)\mkopcodec.awk | | | | | | | 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 | tclsqlite3.exe: tclsqlite-shell.lo libsqlite3.lib $(LTLINK) tclsqlite-shell.lo \ /link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) libsqlite3.lib $(LIBTCL) # Rules to build opcodes.c and opcodes.h # opcodes.c: opcodes.h $(TOP)\mkopcodec.awk $(NAWK) "/#define OP_/ { print }" opcodes.h | sort /+45 | $(NAWK) -f $(TOP)\mkopcodec.awk > opcodes.c opcodes.h: parse.h $(TOP)\src\vdbe.c $(TOP)\mkopcodeh.awk type parse.h $(TOP)\src\vdbe.c | $(NAWK) -f $(TOP)\mkopcodeh.awk > opcodes.h # Rules to build parse.c and parse.h - the outputs of lemon. # parse.h: parse.c parse.c: $(TOP)\src\parse.y lemon.exe $(TOP)\addopcodes.awk del /Q parse.y parse.h parse.h.temp copy $(TOP)\src\parse.y . .\lemon.exe $(OPT_FEATURE_FLAGS) $(OPTS) parse.y move parse.h parse.h.temp $(NAWK) -f $(TOP)\addopcodes.awk parse.h.temp > parse.h sqlite3.h: $(TOP)\src\sqlite.h.in $(TOP)\manifest.uuid $(TOP)\VERSION $(TCLSH_CMD) $(TOP)\tool\mksqlite3h.tcl $(TOP) > sqlite3.h mkkeywordhash.exe: $(TOP)\tool\mkkeywordhash.c $(BCC) -Femkkeywordhash.exe $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)\tool\mkkeywordhash.c keywordhash.h: $(TOP)\tool\mkkeywordhash.c mkkeywordhash.exe .\mkkeywordhash.exe > keywordhash.h # Rules to build the extension objects. # icu.lo: $(TOP)\ext\icu\icu.c $(HDR) $(EXTHDR) $(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\icu\icu.c |
︙ | ︙ | |||
835 836 837 838 839 840 841 | .\testfixture.exe $(TOP)\test\all.test -soak=1 test: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\veryquick.test spaceanal_tcl.h: $(TOP)\tool\spaceanal.tcl $(NAWK) -f $(TOP)/tool/tostr.awk \ | | | 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 | .\testfixture.exe $(TOP)\test\all.test -soak=1 test: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\veryquick.test spaceanal_tcl.h: $(TOP)\tool\spaceanal.tcl $(NAWK) -f $(TOP)/tool/tostr.awk \ $(TOP)\tool\spaceanal.tcl > spaceanal_tcl.h sqlite3_analyzer.exe: $(TESTFIXTURE_SRC) spaceanal_tcl.h $(LTLINK) -DTCLSH=2 -DSQLITE_TEST=1 -DSQLITE_CRASH_TEST=1 \ -DSQLITE_SERVER=1 -DSQLITE_PRIVATE="" -DSQLITE_CORE \ -DBUILD_sqlite -I$(TCLINCDIR) \ $(TESTFIXTURE_SRC) \ /link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) $(LIBTCL) $(TLIBS) |
︙ | ︙ | |||
862 863 864 865 866 867 868 | # # Windows section # dll: sqlite3.dll sqlite3.def: libsqlite3.lib | | | | 881 882 883 884 885 886 887 888 889 890 891 892 893 894 | # # Windows section # dll: sqlite3.dll sqlite3.def: libsqlite3.lib echo EXPORTS > sqlite3.def dumpbin /all libsqlite3.lib \ | $(NAWK) "/ 1 _sqlite3_/ { sub(/^.* _/,\"\");print }" \ | sort >> sqlite3.def sqlite3.dll: $(LIBOBJ) sqlite3.def link $(LTLINKOPTS) /DLL /DEF:sqlite3.def /OUT:$@ $(LIBOBJ) |
Changes to VERSION.
|
| | | 1 | 3.7.8 |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.62 for sqlite 3.7.8. # # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, # 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## --------------------- ## ## M4sh Initialization. ## |
︙ | ︙ | |||
739 740 741 742 743 744 745 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='3.7.8' PACKAGE_STRING='sqlite 3.7.8' PACKAGE_BUGREPORT='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H # include <sys/types.h> |
︙ | ︙ | |||
1481 1482 1483 1484 1485 1486 1487 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite 3.7.8 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1546 1547 1548 1549 1550 1551 1552 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite 3.7.8:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1662 1663 1664 1665 1666 1667 1668 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | | 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure 3.7.8 generated by GNU Autoconf 2.62 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me 3.7.8, which was generated by GNU Autoconf 2.62. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
14026 14027 14028 14029 14030 14031 14032 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me 3.7.8, which was generated by GNU Autoconf 2.62. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
14079 14080 14081 14082 14083 14084 14085 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ | | | 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ sqlite config.status 3.7.8 configured by $0, generated by GNU Autoconf 2.62, with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" Copyright (C) 2008 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Changes to doc/lemon.html.
︙ | ︙ | |||
278 279 280 281 282 283 284 | tokens) and it honors the same commenting conventions as C and C++.</p> <h3>Terminals and Nonterminals</h3> <p>A terminal symbol (token) is any string of alphanumeric and underscore characters that begins with an upper case letter. | | | 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | tokens) and it honors the same commenting conventions as C and C++.</p> <h3>Terminals and Nonterminals</h3> <p>A terminal symbol (token) is any string of alphanumeric and underscore characters that begins with an upper case letter. A terminal can contain lowercase letters after the first character, but the usual convention is to make terminals all upper case. A nonterminal, on the other hand, is any string of alphanumeric and underscore characters than begins with a lower case letter. Again, the usual convention is to make nonterminals use all lower case letters.</p> <p>In Lemon, terminal and nonterminal symbols do not need to |
︙ | ︙ |
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
308 309 310 311 312 313 314 315 316 317 318 319 320 321 | #include "fts3.h" #ifndef SQLITE_CORE # include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #endif /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. ** The number of bytes written is returned. */ int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ unsigned char *q = (unsigned char *) p; | > > > > > | 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | #include "fts3.h" #ifndef SQLITE_CORE # include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #endif static int fts3EvalNext(Fts3Cursor *pCsr); static int fts3EvalStart(Fts3Cursor *pCsr); static int fts3TermSegReaderCursor( Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. ** The number of bytes written is returned. */ int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ unsigned char *q = (unsigned char *) p; |
︙ | ︙ | |||
816 817 818 819 820 821 822 823 | for(i=0; i<p->nColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); } sqlite3_free(zFree); return zRet; } static int fts3GobbleInt(const char **pp, int *pnOut){ | > > > > > > > > > > > > > | | > | > > > > > > > > > > > > > > > > | < | | | | 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 | for(i=0; i<p->nColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); } sqlite3_free(zFree); return zRet; } /* ** This function interprets the string at (*pp) as a non-negative integer ** value. It reads the integer and sets *pnOut to the value read, then ** sets *pp to point to the byte immediately following the last byte of ** the integer value. ** ** Only decimal digits ('0'..'9') may be part of an integer value. ** ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and ** the output value undefined. Otherwise SQLITE_OK is returned. ** ** This function is used when parsing the "prefix=" FTS4 parameter. */ static int fts3GobbleInt(const char **pp, int *pnOut){ const char *p = *pp; /* Iterator pointer */ int nInt = 0; /* Output value */ for(p=*pp; p[0]>='0' && p[0]<='9'; p++){ nInt = nInt * 10 + (p[0] - '0'); } if( p==*pp ) return SQLITE_ERROR; *pnOut = nInt; *pp = p; return SQLITE_OK; } /* ** This function is called to allocate an array of Fts3Index structures ** representing the indexes maintained by the current FTS table. FTS tables ** always maintain the main "terms" index, but may also maintain one or ** more "prefix" indexes, depending on the value of the "prefix=" parameter ** (if any) specified as part of the CREATE VIRTUAL TABLE statement. ** ** Argument zParam is passed the value of the "prefix=" option if one was ** specified, or NULL otherwise. ** ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to ** the allocated array. *pnIndex is set to the number of elements in the ** array. If an error does occur, an SQLite error code is returned. ** ** Regardless of whether or not an error is returned, it is the responsibility ** of the caller to call sqlite3_free() on the output array to free it. */ static int fts3PrefixParameter( const char *zParam, /* ABC in prefix=ABC parameter to parse */ int *pnIndex, /* OUT: size of *apIndex[] array */ struct Fts3Index **apIndex /* OUT: Array of indexes for this table */ ){ struct Fts3Index *aIndex; /* Allocated array */ int nIndex = 1; /* Number of entries in array */ if( zParam && zParam[0] ){ const char *p; nIndex++; for(p=zParam; *p; p++){ if( *p==',' ) nIndex++; } } aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex); *apIndex = aIndex; *pnIndex = nIndex; if( !aIndex ){ return SQLITE_NOMEM; } memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex); if( zParam ){ |
︙ | ︙ | |||
904 905 906 907 908 909 910 | int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ int nIndex; /* Size of aIndex[] array */ | | < | 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 | int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ int nIndex; /* Size of aIndex[] array */ struct Fts3Index *aIndex = 0; /* Array of indexes for this table */ /* The results of parsing supported FTS4 key=value options: */ int bNoDocsize = 0; /* True to omit %_docsize table */ int bDescIdx = 0; /* True to store descending indexes */ char *zPrefix = 0; /* Prefix parameter value (or NULL) */ char *zCompress = 0; /* compress=? parameter (or NULL) */ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ |
︙ | ︙ | |||
1042 1043 1044 1045 1046 1047 1048 | if( pTokenizer==0 ){ rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr); if( rc!=SQLITE_OK ) goto fts3_init_out; } assert( pTokenizer ); | | | 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 | if( pTokenizer==0 ){ rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr); if( rc!=SQLITE_OK ) goto fts3_init_out; } assert( pTokenizer ); rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex); if( rc==SQLITE_ERROR ){ assert( zPrefix ); *pzErr = sqlite3_mprintf("error parsing prefix parameter: %s", zPrefix); } if( rc!=SQLITE_OK ) goto fts3_init_out; /* Allocate and populate the Fts3Table structure. */ |
︙ | ︙ | |||
1129 1130 1131 1132 1133 1134 1135 | p->nNodeSize = p->nPgsz-35; /* Declare the table schema to SQLite. */ fts3DeclareVtab(&rc, p); fts3_init_out: sqlite3_free(zPrefix); | | | 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 | p->nNodeSize = p->nPgsz-35; /* Declare the table schema to SQLite. */ fts3DeclareVtab(&rc, p); fts3_init_out: sqlite3_free(zPrefix); sqlite3_free(aIndex); sqlite3_free(zCompress); sqlite3_free(zUncompress); sqlite3_free((void *)aCol); if( rc!=SQLITE_OK ){ if( p ){ fts3DisconnectMethod((sqlite3_vtab *)p); }else if( pTokenizer ){ |
︙ | ︙ | |||
1720 1721 1722 1723 1724 1725 1726 | *p++ = POS_END; *pp = p; *pp1 = p1 + 1; *pp2 = p2 + 1; } /* | < < > > | 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 | *p++ = POS_END; *pp = p; *pp1 = p1 + 1; *pp2 = p2 + 1; } /* ** This function is used to merge two position lists into one. When it is ** called, *pp1 and *pp2 must both point to position lists. A position-list is ** the part of a doclist that follows each document id. For example, if a row ** contains: ** ** 'a b c'|'x y z'|'a b b a' ** ** Then the position list for this row for token 'b' would consist of: ** ** 0x02 0x01 0x02 0x03 0x03 0x00 ** ** When this function returns, both *pp1 and *pp2 are left pointing to the ** byte following the 0x00 terminator of their respective position lists. ** ** If isSaveLeft is 0, an entry is added to the output position list for ** each position in *pp2 for which there exists one or more positions in ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. ** when the *pp1 token appears before the *pp2 token, but not more than nToken ** slots before it. ** ** e.g. nToken==1 searches for adjacent positions. */ static int fts3PoslistPhraseMerge( char **pp, /* IN/OUT: Preallocated output buffer */ int nToken, /* Maximum difference in token positions */ int isSaveLeft, /* Save the left position */ int isExact, /* If *pp1 is exactly nTokens before *pp2 */ char **pp1, /* IN/OUT: Left input list */ |
︙ | ︙ | |||
1907 1908 1909 1910 1911 1912 1913 | res = 0; } return res; } /* | | | > < | | | > > > > > > > > > > > > | | | | > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > | | 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 | res = 0; } return res; } /* ** An instance of this function is used to merge together the (potentially ** large number of) doclists for each term that matches a prefix query. ** See function fts3TermSelectMerge() for details. */ typedef struct TermSelect TermSelect; struct TermSelect { char *aaOutput[16]; /* Malloc'd output buffers */ int anOutput[16]; /* Size each output buffer in bytes */ }; /* ** This function is used to read a single varint from a buffer. Parameter ** pEnd points 1 byte past the end of the buffer. When this function is ** called, if *pp points to pEnd or greater, then the end of the buffer ** has been reached. In this case *pp is set to 0 and the function returns. ** ** If *pp does not point to or past pEnd, then a single varint is read ** from *pp. *pp is then set to point 1 byte past the end of the read varint. ** ** If bDescIdx is false, the value read is added to *pVal before returning. ** If it is true, the value read is subtracted from *pVal before this ** function returns. */ static void fts3GetDeltaVarint3( char **pp, /* IN/OUT: Point to read varint from */ char *pEnd, /* End of buffer */ int bDescIdx, /* True if docids are descending */ sqlite3_int64 *pVal /* IN/OUT: Integer value */ ){ if( *pp>=pEnd ){ *pp = 0; }else{ sqlite3_int64 iVal; *pp += sqlite3Fts3GetVarint(*pp, &iVal); if( bDescIdx ){ *pVal -= iVal; }else{ *pVal += iVal; } } } /* ** This function is used to write a single varint to a buffer. The varint ** is written to *pp. Before returning, *pp is set to point 1 byte past the ** end of the value written. ** ** If *pbFirst is zero when this function is called, the value written to ** the buffer is that of parameter iVal. ** ** If *pbFirst is non-zero when this function is called, then the value ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal) ** (if bDescIdx is non-zero). ** ** Before returning, this function always sets *pbFirst to 1 and *piPrev ** to the value of parameter iVal. */ static void fts3PutDeltaVarint3( char **pp, /* IN/OUT: Output pointer */ int bDescIdx, /* True for descending docids */ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ int *pbFirst, /* IN/OUT: True after first int written */ sqlite3_int64 iVal /* Write this value to the list */ ){ sqlite3_int64 iWrite; if( bDescIdx==0 || *pbFirst==0 ){ iWrite = iVal - *piPrev; }else{ iWrite = *piPrev - iVal; } assert( *pbFirst || *piPrev==0 ); assert( *pbFirst==0 || iWrite>0 ); *pp += sqlite3Fts3PutVarint(*pp, iWrite); *piPrev = iVal; *pbFirst = 1; } /* ** This macro is used by various functions that merge doclists. The two ** arguments are 64-bit docid values. If the value of the stack variable ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). ** Otherwise, (i2-i1). ** ** Using this makes it easier to write code that can merge doclists that are ** sorted in either ascending or descending order. */ #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2)) /* ** This function does an "OR" merge of two doclists (output contains all ** positions contained in either argument doclist). If the docids in the ** input doclists are sorted in ascending order, parameter bDescDoclist ** should be false. If they are sorted in ascending order, it should be ** passed a non-zero value. ** ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer ** containing the output doclist and SQLITE_OK is returned. In this case ** *pnOut is set to the number of bytes in the output doclist. ** ** If an error occurs, an SQLite error code is returned. The output values ** are undefined in this case. */ static int fts3DoclistOrMerge( int bDescDoclist, /* True if arguments are desc */ char *a1, int n1, /* First doclist */ char *a2, int n2, /* Second doclist */ char **paOut, int *pnOut /* OUT: Malloc'd doclist */ ){ sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; |
︙ | ︙ | |||
1985 1986 1987 1988 1989 1990 1991 | aOut = sqlite3_malloc(n1+n2); if( !aOut ) return SQLITE_NOMEM; p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 || p2 ){ | | | | | | | | | > > > > > > > > > > > > | | 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 | aOut = sqlite3_malloc(n1+n2); if( !aOut ) return SQLITE_NOMEM; p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 || p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( p2 && p1 && iDiff==0 ){ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); fts3PoslistMerge(&p, &p1, &p2); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); }else if( !p2 || (p1 && iDiff<0) ){ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); fts3PoslistCopy(&p, &p1); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); }else{ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2); fts3PoslistCopy(&p, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } } *paOut = aOut; *pnOut = (p-aOut); return SQLITE_OK; } /* ** This function does a "phrase" merge of two doclists. In a phrase merge, ** the output contains a copy of each position from the right-hand input ** doclist for which there is a position in the left-hand input doclist ** exactly nDist tokens before it. ** ** If the docids in the input doclists are sorted in ascending order, ** parameter bDescDoclist should be false. If they are sorted in ascending ** order, it should be passed a non-zero value. ** ** The right-hand input doclist is overwritten by this function. */ static void fts3DoclistPhraseMerge( int bDescDoclist, /* True if arguments are desc */ int nDist, /* Distance from left to right (1=adjacent) */ char *aLeft, int nLeft, /* Left doclist */ char *aRight, int *pnRight /* IN/OUT: Right/output doclist */ ){ sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; |
︙ | ︙ | |||
2032 2033 2034 2035 2036 2037 2038 | assert( nDist>0 ); p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 && p2 ){ | | | | | | | | | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 | assert( nDist>0 ); p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 && p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( iDiff==0 ){ char *pSave = p; sqlite3_int64 iPrevSave = iPrev; int bFirstOutSave = bFirstOut; fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){ p = pSave; iPrev = iPrevSave; bFirstOut = bFirstOutSave; } fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); }else if( iDiff<0 ){ fts3PoslistCopy(0, &p1); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); }else{ fts3PoslistCopy(0, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } } *pnRight = p - aOut; } /* ** Merge all doclists in the TermSelect.aaOutput[] array into a single ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all ** other doclists (except the aaOutput[0] one) and return SQLITE_OK. ** ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is ** the responsibility of the caller to free any doclists left in the ** TermSelect.aaOutput[] array. */ static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){ char *aOut = 0; int nOut = 0; int i; /* Loop through the doclists in the aaOutput[] array. Merge them all ** into a single doclist. */ |
︙ | ︙ | |||
2109 2110 2111 2112 2113 2114 2115 | pTS->aaOutput[0] = aOut; pTS->anOutput[0] = nOut; return SQLITE_OK; } /* | > > > > | > > | | > > > | | | < < | | < < < < < < | 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 | pTS->aaOutput[0] = aOut; pTS->anOutput[0] = nOut; return SQLITE_OK; } /* ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed ** as the first argument. The merge is an "OR" merge (see function ** fts3DoclistOrMerge() for details). ** ** This function is called with the doclist for each term that matches ** a queried prefix. It merges all these doclists into one, the doclist ** for the specified prefix. Since there can be a very large number of ** doclists to merge, the merging is done pair-wise using the TermSelect ** object. ** ** This function returns SQLITE_OK if the merge is successful, or an ** SQLite error code (SQLITE_NOMEM) if an error occurs. */ static int fts3TermSelectMerge( Fts3Table *p, /* FTS table handle */ TermSelect *pTS, /* TermSelect object to merge into */ char *aDoclist, /* Pointer to doclist */ int nDoclist /* Size of aDoclist in bytes */ ){ if( pTS->aaOutput[0]==0 ){ /* If this is the first term selected, copy the doclist to the output ** buffer using memcpy(). */ pTS->aaOutput[0] = sqlite3_malloc(nDoclist); pTS->anOutput[0] = nDoclist; if( pTS->aaOutput[0] ){ memcpy(pTS->aaOutput[0], aDoclist, nDoclist); |
︙ | ︙ | |||
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 | } pCsr->apSegment = apNew; } pCsr->apSegment[pCsr->nSegment++] = pNew; return SQLITE_OK; } static int fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ | > > > > > > > | | < | > | 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 | } pCsr->apSegment = apNew; } pCsr->apSegment[pCsr->nSegment++] = pNew; return SQLITE_OK; } /* ** Add seg-reader objects to the Fts3MultiSegReader object passed as the ** 8th argument. ** ** This function returns SQLITE_OK if successful, or an SQLite error code ** otherwise. */ static int fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ int rc = SQLITE_OK; /* Error code */ sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */ int rc2; /* Result of sqlite3_reset() */ /* If iLevel is less than 0 and this is not a scan, include a seg-reader ** for the pending-terms. If this is a scan, then this call must be being ** made by an fts4aux module, not an FTS table. In this case calling ** Fts3SegReaderPending might segfault, as the data structures used by ** fts4aux are not completely populated. So it's easiest to filter these ** calls out here. */ |
︙ | ︙ | |||
2298 2299 2300 2301 2302 2303 2304 2305 | memset(pCsr, 0, sizeof(Fts3MultiSegReader)); return fts3SegReaderCursor( p, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr ); } static int fts3SegReaderCursorAddZero( | > > > > > > | | | | | > > > > > > > > > > > > | | | 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 | memset(pCsr, 0, sizeof(Fts3MultiSegReader)); return fts3SegReaderCursor( p, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr ); } /* ** In addition to its current configuration, have the Fts3MultiSegReader ** passed as the 4th argument also scan the doclist for term zTerm/nTerm. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3SegReaderCursorAddZero( Fts3Table *p, /* FTS virtual table handle */ const char *zTerm, /* Term to scan doclist of */ int nTerm, /* Number of bytes in zTerm */ Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */ ){ return fts3SegReaderCursor(p, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr); } /* ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or, ** if isPrefix is true, to scan the doclist for all terms for which ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return ** an SQLite error code. ** ** It is the responsibility of the caller to free this object by eventually ** passing it to fts3SegReaderCursorFree() ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. ** Output parameter *ppSegcsr is set to 0 if an error occurs. */ static int fts3TermSegReaderCursor( Fts3Cursor *pCsr, /* Virtual table cursor handle */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */ ){ Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */ int rc = SQLITE_NOMEM; /* Return code */ pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader)); if( pSegcsr ){ int i; int bFound = 0; /* True once an index has been found */ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
︙ | ︙ | |||
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 | } } *ppSegcsr = pSegcsr; return rc; } static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){ sqlite3Fts3SegReaderFinish(pSegcsr); sqlite3_free(pSegcsr); } /* ** This function retreives the doclist for the specified term (or term | > > > | < < < < < < < < | | < | < < | < | | 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 | } } *ppSegcsr = pSegcsr; return rc; } /* ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor(). */ static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){ sqlite3Fts3SegReaderFinish(pSegcsr); sqlite3_free(pSegcsr); } /* ** This function retreives the doclist for the specified term (or term ** prefix) from the database. */ static int fts3TermSelect( Fts3Table *p, /* Virtual table handle */ Fts3PhraseToken *pTok, /* Token to query for */ int iColumn, /* Column to query (or -ve for all columns) */ int *pnOut, /* OUT: Size of buffer at *ppOut */ char **ppOut /* OUT: Malloced result buffer */ ){ int rc; /* Return code */ Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */ TermSelect tsc; /* Object for pair-wise doclist merging */ Fts3SegFilter filter; /* Segment term filter configuration */ pSegcsr = pTok->pSegcsr; memset(&tsc, 0, sizeof(TermSelect)); filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); filter.iCol = iColumn; filter.zTerm = pTok->z; filter.nTerm = pTok->n; rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); while( SQLITE_OK==rc && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) ){ rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist); } if( rc==SQLITE_OK ){ rc = fts3TermSelectFinishMerge(p, &tsc); } if( rc==SQLITE_OK ){ *ppOut = tsc.aaOutput[0]; *pnOut = tsc.anOutput[0]; }else{ int i; for(i=0; i<SizeofArray(tsc.aaOutput); i++){ |
︙ | ︙ | |||
2436 2437 2438 2439 2440 2441 2442 | ** in buffer aList[], size nList bytes. ** ** If the isPoslist argument is true, then it is assumed that the doclist ** contains a position-list following each docid. Otherwise, it is assumed ** that the doclist is simply a list of docids stored as delta encoded ** varints. */ | | < < < < < < < < | | | | < | 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 | ** in buffer aList[], size nList bytes. ** ** If the isPoslist argument is true, then it is assumed that the doclist ** contains a position-list following each docid. Otherwise, it is assumed ** that the doclist is simply a list of docids stored as delta encoded ** varints. */ static int fts3DoclistCountDocids(char *aList, int nList){ int nDoc = 0; /* Return value */ if( aList ){ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ char *p = aList; /* Cursor */ while( p<aEnd ){ nDoc++; while( (*p++)&0x80 ); /* Skip docid varint */ fts3PoslistCopy(0, &p); /* Skip over position list */ } } return nDoc; } /* |
︙ | ︙ | |||
2483 2484 2485 2486 2487 2488 2489 | pCsr->isEof = 1; rc = sqlite3_reset(pCsr->pStmt); }else{ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); rc = SQLITE_OK; } }else{ | | | 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 | pCsr->isEof = 1; rc = sqlite3_reset(pCsr->pStmt); }else{ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); rc = SQLITE_OK; } }else{ rc = fts3EvalNext((Fts3Cursor *)pCursor); } assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); return rc; } /* ** This is the xFilter interface for the virtual table. See |
︙ | ︙ | |||
2560 2561 2562 2563 2564 2565 2566 | } return rc; } rc = sqlite3Fts3ReadLock(p); if( rc!=SQLITE_OK ) return rc; | | | 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 | } return rc; } rc = sqlite3Fts3ReadLock(p); if( rc!=SQLITE_OK ) return rc; rc = fts3EvalStart(pCsr); sqlite3Fts3SegmentsClose(p); if( rc!=SQLITE_OK ) return rc; pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; } |
︙ | ︙ | |||
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 | fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", p->zDb, p->zName, zName ); return rc; } static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ UNUSED_PARAMETER(iSavepoint); assert( ((Fts3Table *)pVtab)->inTransaction ); assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint ); TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint ); return fts3SyncMethod(pVtab); } static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); UNUSED_PARAMETER(iSavepoint); UNUSED_PARAMETER(pVtab); assert( p->inTransaction ); assert( p->mxSavepoint >= iSavepoint ); TESTONLY( p->mxSavepoint = iSavepoint-1 ); return SQLITE_OK; } static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ Fts3Table *p = (Fts3Table*)pVtab; UNUSED_PARAMETER(iSavepoint); assert( p->inTransaction ); assert( p->mxSavepoint >= iSavepoint ); TESTONLY( p->mxSavepoint = iSavepoint ); sqlite3Fts3PendingTermsClear(p); | > > > > > > > > > > > > > > > > > | 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 | fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", p->zDb, p->zName, zName ); return rc; } /* ** The xSavepoint() method. ** ** Flush the contents of the pending-terms table to disk. */ static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ UNUSED_PARAMETER(iSavepoint); assert( ((Fts3Table *)pVtab)->inTransaction ); assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint ); TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint ); return fts3SyncMethod(pVtab); } /* ** The xRelease() method. ** ** This is a no-op. */ static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); UNUSED_PARAMETER(iSavepoint); UNUSED_PARAMETER(pVtab); assert( p->inTransaction ); assert( p->mxSavepoint >= iSavepoint ); TESTONLY( p->mxSavepoint = iSavepoint-1 ); return SQLITE_OK; } /* ** The xRollbackTo() method. ** ** Discard the contents of the pending terms table. */ static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ Fts3Table *p = (Fts3Table*)pVtab; UNUSED_PARAMETER(iSavepoint); assert( p->inTransaction ); assert( p->mxSavepoint >= iSavepoint ); TESTONLY( p->mxSavepoint = iSavepoint ); sqlite3Fts3PendingTermsClear(p); |
︙ | ︙ | |||
3131 3132 3133 3134 3135 3136 3137 | assert( rc!=SQLITE_OK ); if( pHash ){ sqlite3Fts3HashClear(pHash); sqlite3_free(pHash); } return rc; } | < < < < < < < < < < < < | | | | > > > > > > > > | | | | | | 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 | assert( rc!=SQLITE_OK ); if( pHash ){ sqlite3Fts3HashClear(pHash); sqlite3_free(pHash); } return rc; } /* ** Allocate an Fts3MultiSegReader for each token in the expression headed ** by pExpr. ** ** An Fts3SegReader object is a cursor that can seek or scan a range of ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple ** Fts3SegReader objects internally to provide an interface to seek or scan ** within the union of all segments of a b-tree. Hence the name. ** ** If the allocated Fts3MultiSegReader just seeks to a single entry in a ** segment b-tree (if the term is not a prefix or it is a prefix for which ** there exists prefix b-tree of the right length) then it may be traversed ** and merged incrementally. Otherwise, it has to be merged into an in-memory ** doclist and then traversed. */ static void fts3EvalAllocateReaders( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Allocate readers for this expression */ int *pnToken, /* OUT: Total number of tokens in phrase. */ int *pnOr, /* OUT: Total number of OR nodes in expr. */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int i; int nToken = pExpr->pPhrase->nToken; *pnToken += nToken; for(i=0; i<nToken; i++){ Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i]; int rc = fts3TermSegReaderCursor(pCsr, pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr ); if( rc!=SQLITE_OK ){ *pRc = rc; return; } } assert( pExpr->pPhrase->iDoclistToken==0 ); pExpr->pPhrase->iDoclistToken = -1; }else{ *pnOr += (pExpr->eType==FTSQUERY_OR); fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc); fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc); } } } /* ** Arguments pList/nList contain the doclist for token iToken of phrase p. ** It is merged into the main doclist stored in p->doclist.aAll/nAll. ** ** This function assumes that pList points to a buffer allocated using ** sqlite3_malloc(). This function takes responsibility for eventually ** freeing the buffer. */ static void fts3EvalPhraseMergeToken( Fts3Table *pTab, /* FTS Table pointer */ Fts3Phrase *p, /* Phrase to merge pList/nList into */ int iToken, /* Token pList/nList corresponds to */ char *pList, /* Pointer to doclist */ int nList /* Number of bytes in pList */ ){ assert( iToken!=p->iDoclistToken ); if( pList==0 ){ sqlite3_free(p->doclist.aAll); p->doclist.aAll = 0; p->doclist.nAll = 0; |
︙ | ︙ | |||
3245 3246 3247 3248 3249 3250 3251 3252 | p->doclist.aAll = pRight; p->doclist.nAll = nRight; } if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; } static int fts3EvalPhraseLoad( | > > > > > > | | | > > > > > > > > > > | | < < | | | | 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 | p->doclist.aAll = pRight; p->doclist.nAll = nRight; } if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; } /* ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist ** does not take deferred tokens into account. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalPhraseLoad( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p /* Phrase object */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int iToken; int rc = SQLITE_OK; for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){ Fts3PhraseToken *pToken = &p->aToken[iToken]; assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); if( pToken->pSegcsr ){ int nThis = 0; char *pThis = 0; rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); if( rc==SQLITE_OK ){ fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis); } } assert( pToken->pSegcsr==0 ); } return rc; } /* ** This function is called on each phrase after the position lists for ** any deferred tokens have been loaded into memory. It updates the phrases ** current position list to include only those positions that are really ** instances of the phrase (after considering deferred tokens). If this ** means that the phrase does not appear in the current row, doclist.pList ** and doclist.nList are both zeroed. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){ int iToken; /* Used to iterate through phrase tokens */ int rc = SQLITE_OK; /* Return code */ char *aPoslist = 0; /* Position list for deferred tokens */ int nPoslist = 0; /* Number of bytes in aPoslist */ int iPrev = -1; /* Token number of previous deferred token */ assert( pPhrase->doclist.bFreeList==0 ); for(iToken=0; rc==SQLITE_OK && iToken<pPhrase->nToken; iToken++){ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; Fts3DeferredToken *pDeferred = pToken->pDeferred; |
︙ | ︙ | |||
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 | } } iPrev = iToken; } } if( iPrev>=0 ){ if( nMaxUndeferred<0 ){ pPhrase->doclist.pList = aPoslist; pPhrase->doclist.nList = nPoslist; pPhrase->doclist.iDocid = pCsr->iPrevId; pPhrase->doclist.bFreeList = 1; }else{ int nDistance; | > | 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 | } } iPrev = iToken; } } if( iPrev>=0 ){ int nMaxUndeferred = pPhrase->iDoclistToken; if( nMaxUndeferred<0 ){ pPhrase->doclist.pList = aPoslist; pPhrase->doclist.nList = nPoslist; pPhrase->doclist.iDocid = pCsr->iPrevId; pPhrase->doclist.bFreeList = 1; }else{ int nDistance; |
︙ | ︙ | |||
3372 3373 3374 3375 3376 3377 3378 3379 3380 | } /* ** This function is called for each Fts3Phrase in a full-text query ** expression to initialize the mechanism for returning rows. Once this ** function has been called successfully on an Fts3Phrase, it may be ** used with fts3EvalPhraseNext() to iterate through the matching docids. */ static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){ | > > > > > > | | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 | } /* ** This function is called for each Fts3Phrase in a full-text query ** expression to initialize the mechanism for returning rows. Once this ** function has been called successfully on an Fts3Phrase, it may be ** used with fts3EvalPhraseNext() to iterate through the matching docids. ** ** If parameter bOptOk is true, then the phrase may (or may not) use the ** incremental loading strategy. Otherwise, the entire doclist is loaded into ** memory within this call. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){ int rc; /* Error code */ Fts3PhraseToken *pFirst = &p->aToken[0]; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; if( pCsr->bDesc==pTab->bDescIdx && bOptOk==1 && p->nToken==1 && pFirst->pSegcsr |
︙ | ︙ | |||
3402 3403 3404 3405 3406 3407 3408 | assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr ); return rc; } /* ** This function is used to iterate backwards (from the end to start) | | > > > > > > | 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 | assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr ); return rc; } /* ** This function is used to iterate backwards (from the end to start) ** through doclists. It is used by this module to iterate through phrase ** doclists in reverse and by the fts3_write.c module to iterate through ** pending-terms lists when writing to databases with "order=desc". ** ** The doclist may be sorted in ascending (parameter bDescIdx==0) or ** descending (parameter bDescIdx==1) order of docid. Regardless, this ** function iterates from the end of the doclist to the beginning. */ void sqlite3Fts3DoclistPrev( int bDescIdx, /* True if the doclist is desc */ char *aDoclist, /* Pointer to entire doclist */ int nDoclist, /* Length of aDoclist in bytes */ char **ppIter, /* IN/OUT: Iterator pointer */ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ |
︙ | ︙ | |||
3467 3468 3469 3470 3471 3472 3473 | ** SQLITE_OK. ** ** If there is no "next" entry and no error occurs, then *pbEof is set to ** 1 before returning. Otherwise, if no error occurs and the iterator is ** successfully advanced, *pbEof is set to 0. */ static int fts3EvalPhraseNext( | | | | | 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 | ** SQLITE_OK. ** ** If there is no "next" entry and no error occurs, then *pbEof is set to ** 1 before returning. Otherwise, if no error occurs and the iterator is ** successfully advanced, *pbEof is set to 0. */ static int fts3EvalPhraseNext( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p, /* Phrase object to advance to next docid */ u8 *pbEof /* OUT: Set to 1 if EOF */ ){ int rc = SQLITE_OK; Fts3Doclist *pDL = &p->doclist; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; if( p->bIncr ){ assert( p->nToken==1 ); |
︙ | ︙ | |||
3515 3516 3517 3518 3519 3520 3521 | } pDL->pList = pIter; fts3PoslistCopy(0, &pIter); pDL->nList = (pIter - pDL->pList); /* pIter now points just past the 0x00 that terminates the position- ** list for document pDL->iDocid. However, if this position-list was | | | > > > > > > > > > > > > > > > > | | | | > > > > > > > > > > > > | | > > > > > > > | | | | | | | 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 | } pDL->pList = pIter; fts3PoslistCopy(0, &pIter); pDL->nList = (pIter - pDL->pList); /* pIter now points just past the 0x00 that terminates the position- ** list for document pDL->iDocid. However, if this position-list was ** edited in place by fts3EvalNearTrim(), then pIter may not actually ** point to the start of the next docid value. The following line deals ** with this case by advancing pIter past the zero-padding added by ** fts3EvalNearTrim(). */ while( pIter<pEnd && *pIter==0 ) pIter++; pDL->pNextDocid = pIter; assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter ); *pbEof = 0; } } return rc; } /* ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the ** expression. Also the Fts3Expr.bDeferred variable is set to true for any ** expressions for which all descendent tokens are deferred. ** ** If parameter bOptOk is zero, then it is guaranteed that the ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for ** each phrase in the expression (subject to deferred token processing). ** Or, if bOptOk is non-zero, then one or more tokens within the expression ** may be loaded incrementally, meaning doclist.aAll/nAll is not available. ** ** If an error occurs within this function, *pRc is set to an SQLite error ** code before returning. */ static void fts3EvalStartReaders( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expression to initialize phrases in */ int bOptOk, /* True to enable incremental loading */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int i; int nToken = pExpr->pPhrase->nToken; for(i=0; i<nToken; i++){ if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break; } pExpr->bDeferred = (i==nToken); *pRc = fts3EvalPhraseStart(pCsr, bOptOk, pExpr->pPhrase); }else{ fts3EvalStartReaders(pCsr, pExpr->pLeft, bOptOk, pRc); fts3EvalStartReaders(pCsr, pExpr->pRight, bOptOk, pRc); pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred); } } } /* ** An array of the following structures is assembled as part of the process ** of selecting tokens to defer before the query starts executing (as part ** of the xFilter() method). There is one element in the array for each ** token in the FTS expression. ** ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong ** to phrases that are connected only by AND and NEAR operators (not OR or ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered ** separately. The root of a tokens AND/NEAR cluster is stored in ** Fts3TokenAndCost.pRoot. */ typedef struct Fts3TokenAndCost Fts3TokenAndCost; struct Fts3TokenAndCost { Fts3Phrase *pPhrase; /* The phrase the token belongs to */ int iToken; /* Position of token in phrase */ Fts3PhraseToken *pToken; /* The token itself */ Fts3Expr *pRoot; /* Root of NEAR/AND cluster */ int nOvfl; /* Number of overflow pages to load doclist */ int iCol; /* The column the token must match */ }; /* ** This function is used to populate an allocated Fts3TokenAndCost array. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, if an error occurs during execution, *pRc is set to an ** SQLite error code. */ static void fts3EvalTokenCosts( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */ Fts3Expr *pExpr, /* Expression to consider */ Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */ Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==SQLITE_OK && pExpr ){ if( pExpr->eType==FTSQUERY_PHRASE ){ Fts3Phrase *pPhrase = pExpr->pPhrase; int i; for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){ Fts3TokenAndCost *pTC = (*ppTC)++; |
︙ | ︙ | |||
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 | (*ppOr)++; } fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc); } } } static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ if( pCsr->nRowAvg==0 ){ /* The average document size, which is required to calculate the cost | > > > > > > > > > > > | | | | | | | | | | | 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 | (*ppOr)++; } fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc); } } } /* ** Determine the average document (row) size in pages. If successful, ** write this value to *pnPage and return SQLITE_OK. Otherwise, return ** an SQLite error code. ** ** The average document size in pages is calculated by first calculating ** determining the average size in bytes, B. If B is less than the amount ** of data that will fit on a single leaf page of an intkey table in ** this database, then the average docsize is 1. Otherwise, it is 1 plus ** the number of overflow pages consumed by a record B bytes in size. */ static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ if( pCsr->nRowAvg==0 ){ /* The average document size, which is required to calculate the cost ** of each doclist, has not yet been determined. Read the required ** data from the %_stat table to calculate it. ** ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 ** varints, where nCol is the number of columns in the FTS3 table. ** The first varint is the number of documents currently stored in ** the table. The following nCol varints contain the total amount of ** data stored in all rows of each column of the table, from left ** to right. */ int rc; Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; sqlite3_stmt *pStmt; sqlite3_int64 nDoc = 0; sqlite3_int64 nByte = 0; const char *pEnd; const char *a; |
︙ | ︙ | |||
3648 3649 3650 3651 3652 3653 3654 3655 | if( rc!=SQLITE_OK ) return rc; } *pnPage = pCsr->nRowAvg; return SQLITE_OK; } static int fts3EvalSelectDeferred( | > > > > > > > > > > > > > > | | | | > | < | < | > > | | > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > | | | > | | | | < | > > > > | < > > > | > > > > > | < | > > > > < < < < < < < < > > > > > > > > > > > > | | < < < < < < < < < < < < < < < < < | < < | | | > > > | > > > > > > > > > > > > > > > > > > > > > > | | | 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 | if( rc!=SQLITE_OK ) return rc; } *pnPage = pCsr->nRowAvg; return SQLITE_OK; } /* ** This function is called to select the tokens (if any) that will be ** deferred. The array aTC[] has already been populated when this is ** called. ** ** This function is called once for each AND/NEAR cluster in the ** expression. Each invocation determines which tokens to defer within ** the cluster with root node pRoot. See comments above the definition ** of struct Fts3TokenAndCost for more details. ** ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken() ** called on each token to defer. Otherwise, an SQLite error code is ** returned. */ static int fts3EvalSelectDeferred( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pRoot, /* Consider tokens with this root node */ Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */ int nTC /* Number of entries in aTC[] */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int nDocSize = 0; /* Number of pages per doc loaded */ int rc = SQLITE_OK; /* Return code */ int ii; /* Iterator variable for various purposes */ int nOvfl = 0; /* Total overflow pages used by doclists */ int nToken = 0; /* Total number of tokens in cluster */ int nMinEst = 0; /* The minimum count for any phrase so far. */ int nLoad4 = 1; /* (Phrases that will be loaded)^4. */ /* Count the tokens in this AND/NEAR cluster. If none of the doclists ** associated with the tokens spill onto overflow pages, or if there is ** only 1 token, exit early. No tokens to defer in this case. */ for(ii=0; ii<nTC; ii++){ if( aTC[ii].pRoot==pRoot ){ nOvfl += aTC[ii].nOvfl; nToken++; } } if( nOvfl==0 || nToken<2 ) return SQLITE_OK; /* Obtain the average docsize (in pages). */ rc = fts3EvalAverageDocsize(pCsr, &nDocSize); assert( rc!=SQLITE_OK || nDocSize>0 ); /* Iterate through all tokens in this AND/NEAR cluster, in ascending order ** of the number of overflow pages that will be loaded by the pager layer ** to retrieve the entire doclist for the token from the full-text index. ** Load the doclists for tokens that are either: ** ** a. The cheapest token in the entire query (i.e. the one visited by the ** first iteration of this loop), or ** ** b. Part of a multi-token phrase. ** ** After each token doclist is loaded, merge it with the others from the ** same phrase and count the number of documents that the merged doclist ** contains. Set variable "nMinEst" to the smallest number of documents in ** any phrase doclist for which 1 or more token doclists have been loaded. ** Let nOther be the number of other phrases for which it is certain that ** one or more tokens will not be deferred. ** ** Then, for each token, defer it if loading the doclist would result in ** loading N or more overflow pages into memory, where N is computed as: ** ** (nMinEst + 4^nOther - 1) / (4^nOther) */ for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){ int iTC; /* Used to iterate through aTC[] array. */ Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */ /* Set pTC to point to the cheapest remaining token. */ for(iTC=0; iTC<nTC; iTC++){ if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl) ){ pTC = &aTC[iTC]; } } assert( pTC ); if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){ /* The number of overflow pages to load for this (and therefore all ** subsequent) tokens is greater than the estimated number of pages ** that will be loaded if all subsequent tokens are deferred. */ Fts3PhraseToken *pToken = pTC->pToken; rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol); fts3SegReaderCursorFree(pToken->pSegcsr); pToken->pSegcsr = 0; }else{ nLoad4 = nLoad4*4; if( ii==0 || pTC->pPhrase->nToken>1 ){ /* Either this is the cheapest token in the entire query, or it is ** part of a multi-token phrase. Either way, the entire doclist will ** (eventually) be loaded into memory. It may as well be now. */ Fts3PhraseToken *pToken = pTC->pToken; int nList = 0; char *pList = 0; rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); assert( rc==SQLITE_OK || pList==0 ); if( rc==SQLITE_OK ){ int nCount; fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList); nCount = fts3DoclistCountDocids( pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll ); if( ii==0 || nCount<nMinEst ) nMinEst = nCount; } } } pTC->pToken = 0; } return rc; } /* ** This function is called from within the xFilter method. It initializes ** the full-text query currently stored in pCsr->pExpr. To iterate through ** the results of a query, the caller does: ** ** fts3EvalStart(pCsr); ** while( 1 ){ ** fts3EvalNext(pCsr); ** if( pCsr->bEof ) break; ** ... return row pCsr->iPrevId to the caller ... ** } */ static int fts3EvalStart(Fts3Cursor *pCsr){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int nToken = 0; int nOr = 0; /* Allocate a MultiSegReader for each token in the expression. */ fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc); /* Determine which, if any, tokens in the expression should be deferred. */ if( rc==SQLITE_OK && nToken>1 && pTab->bHasStat ){ Fts3TokenAndCost *aTC; Fts3Expr **apOr; aTC = (Fts3TokenAndCost *)sqlite3_malloc( sizeof(Fts3TokenAndCost) * nToken + sizeof(Fts3Expr *) * nOr * 2 ); apOr = (Fts3Expr **)&aTC[nToken]; if( !aTC ){ rc = SQLITE_NOMEM; }else{ int ii; Fts3TokenAndCost *pTC = aTC; Fts3Expr **ppOr = apOr; fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc); nToken = pTC-aTC; nOr = ppOr-apOr; if( rc==SQLITE_OK ){ rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken); for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){ rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken); } } sqlite3_free(aTC); } } fts3EvalStartReaders(pCsr, pCsr->pExpr, 1, &rc); return rc; } /* ** Invalidate the current position list for phrase pPhrase. */ static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){ if( pPhrase->doclist.bFreeList ){ sqlite3_free(pPhrase->doclist.pList); } pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; pPhrase->doclist.bFreeList = 0; } /* ** This function is called to edit the position list associated with ** the phrase object passed as the fifth argument according to a NEAR ** condition. For example: ** ** abc NEAR/5 "def ghi" ** ** Parameter nNear is passed the NEAR distance of the expression (5 in ** the example above). When this function is called, *paPoslist points to ** the position list, and *pnToken is the number of phrase tokens in, the ** phrase on the other side of the NEAR operator to pPhrase. For example, ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to ** the position list associated with phrase "abc". ** ** All positions in the pPhrase position list that are not sufficiently ** close to a position in the *paPoslist position list are removed. If this ** leaves 0 positions, zero is returned. Otherwise, non-zero. ** ** Before returning, *paPoslist is set to point to the position lsit ** associated with pPhrase. And *pnToken is set to the number of tokens in ** pPhrase. */ static int fts3EvalNearTrim( int nNear, /* NEAR distance. As in "NEAR/nNear". */ char *aTmp, /* Temporary space to use */ char **paPoslist, /* IN/OUT: Position list */ int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */ Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */ ){ int nParam1 = nNear + pPhrase->nToken; int nParam2 = nNear + *pnToken; |
︙ | ︙ | |||
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 | *paPoslist = pPhrase->doclist.pList; *pnToken = pPhrase->nToken; } return res; } static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){ int res = 1; /* The following block runs if pExpr is the root of a NEAR query. ** For example, the query: ** ** "w" NEAR "x" NEAR "y" NEAR "z" | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 | *paPoslist = pPhrase->doclist.pList; *pnToken = pPhrase->nToken; } return res; } /* ** This function is a no-op if *pRc is other than SQLITE_OK when it is called. ** Otherwise, it advances the expression passed as the second argument to ** point to the next matching row in the database. Expressions iterate through ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero, ** or descending if it is non-zero. ** ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if ** successful, the following variables in pExpr are set: ** ** Fts3Expr.bEof (non-zero if EOF - there is no next row) ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row) ** ** If the expression is of type FTSQUERY_PHRASE, and the expression is not ** at EOF, then the following variables are populated with the position list ** for the phrase for the visited row: ** ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes) ** FTs3Expr.pPhrase->doclist.pList (pointer to position list) ** ** It says above that this function advances the expression to the next ** matching row. This is usually true, but there are the following exceptions: ** ** 1. Deferred tokens are not taken into account. If a phrase consists ** entirely of deferred tokens, it is assumed to match every row in ** the db. In this case the position-list is not populated at all. ** ** Or, if a phrase contains one or more deferred tokens and one or ** more non-deferred tokens, then the expression is advanced to the ** next possible match, considering only non-deferred tokens. In other ** words, if the phrase is "A B C", and "B" is deferred, the expression ** is advanced to the next row that contains an instance of "A * C", ** where "*" may match any single token. The position list in this case ** is populated as for "A * C" before returning. ** ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is ** advanced to point to the next row that matches "x AND y". ** ** See fts3EvalTestDeferredAndNear() for details on testing if a row is ** really a match, taking into account deferred tokens and NEAR operators. */ static void fts3EvalNextRow( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expr. to advance to next matching row */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==SQLITE_OK ){ int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */ assert( pExpr->bEof==0 ); pExpr->bStart = 1; switch( pExpr->eType ){ case FTSQUERY_NEAR: case FTSQUERY_AND: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; assert( !pLeft->bDeferred || !pRight->bDeferred ); if( pLeft->bDeferred ){ /* LHS is entirely deferred. So we assume it matches every row. ** Advance the RHS iterator to find the next row visited. */ fts3EvalNextRow(pCsr, pRight, pRc); pExpr->iDocid = pRight->iDocid; pExpr->bEof = pRight->bEof; }else if( pRight->bDeferred ){ /* RHS is entirely deferred. So we assume it matches every row. ** Advance the LHS iterator to find the next row visited. */ fts3EvalNextRow(pCsr, pLeft, pRc); pExpr->iDocid = pLeft->iDocid; pExpr->bEof = pLeft->bEof; }else{ /* Neither the RHS or LHS are deferred. */ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){ sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid); if( iDiff==0 ) break; if( iDiff<0 ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else{ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = (pLeft->bEof || pRight->bEof); } break; } case FTSQUERY_OR: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); assert( pRight->bStart || pLeft->iDocid==pRight->iDocid ); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){ fts3EvalNextRow(pCsr, pRight, pRc); }else{ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); } pExpr->bEof = (pLeft->bEof && pRight->bEof); iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ pExpr->iDocid = pLeft->iDocid; }else{ pExpr->iDocid = pRight->iDocid; } break; } case FTSQUERY_NOT: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; if( pRight->bStart==0 ){ fts3EvalNextRow(pCsr, pRight, pRc); assert( *pRc!=SQLITE_OK || pRight->bStart ); } fts3EvalNextRow(pCsr, pLeft, pRc); if( pLeft->bEof==0 ){ while( !*pRc && !pRight->bEof && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 ){ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = pLeft->bEof; break; } default: { Fts3Phrase *pPhrase = pExpr->pPhrase; fts3EvalInvalidatePoslist(pPhrase); *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof); pExpr->iDocid = pPhrase->doclist.iDocid; break; } } } } /* ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR ** cluster, then this function returns 1 immediately. ** ** Otherwise, it checks if the current row really does match the NEAR ** expression, using the data currently stored in the position lists ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression. ** ** If the current row is a match, the position list associated with each ** phrase in the NEAR expression is edited in place to contain only those ** phrase instances sufficiently close to their peers to satisfy all NEAR ** constraints. In this case it returns 1. If the NEAR expression does not ** match the current row, 0 is returned. The position lists may or may not ** be edited if 0 is returned. */ static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){ int res = 1; /* The following block runs if pExpr is the root of a NEAR query. ** For example, the query: ** ** "w" NEAR "x" NEAR "y" NEAR "z" |
︙ | ︙ | |||
3844 3845 3846 3847 3848 3849 3850 | ** | | ** +--NEAR--+ "y" ** | | ** "w" "x" ** ** The right-hand child of a NEAR node is always a phrase. The ** left-hand child may be either a phrase or a NEAR node. There are | | | 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 | ** | | ** +--NEAR--+ "y" ** | | ** "w" "x" ** ** The right-hand child of a NEAR node is always a phrase. The ** left-hand child may be either a phrase or a NEAR node. There are ** no exceptions to this - it's the way the parser in fts3_expr.c works. */ if( *pRc==SQLITE_OK && pExpr->eType==FTSQUERY_NEAR && pExpr->bEof==0 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; |
︙ | ︙ | |||
3871 3872 3873 3874 3875 3876 3877 | }else{ char *aPoslist = p->pPhrase->doclist.pList; int nToken = p->pPhrase->nToken; for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ Fts3Phrase *pPhrase = p->pRight->pPhrase; int nNear = p->nNear; | | | | < < | < < < | < < < < < < < < | < < < < < < < < < < < < < < < < < | < < < < < < < < < | < < < < < | < < < < | < < | < < < < < < < < | < < < < < < < | < < | < < < | < < < < | < < < < < | < < < < < < < < < < < < < < < < < < < < | | | | 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 | }else{ char *aPoslist = p->pPhrase->doclist.pList; int nToken = p->pPhrase->nToken; for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ Fts3Phrase *pPhrase = p->pRight->pPhrase; int nNear = p->nNear; res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } aPoslist = pExpr->pRight->pPhrase->doclist.pList; nToken = pExpr->pRight->pPhrase->nToken; for(p=pExpr->pLeft; p && res; p=p->pLeft){ int nNear = p->pParent->nNear; Fts3Phrase *pPhrase = ( p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase ); res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } } sqlite3_free(aTmp); } return res; } /* ** This function is a helper function for fts3EvalTestDeferredAndNear(). ** Assuming no error occurs or has occurred, It returns non-zero if the ** expression passed as the second argument matches the row that pCsr ** currently points to, or zero if it does not. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** If an error occurs during execution of this function, *pRc is set to ** the appropriate SQLite error code. In this case the returned value is ** undefined. */ static int fts3EvalTestExpr( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Expr to test. May or may not be root. */ int *pRc /* IN/OUT: Error code */ ){ int bHit = 1; /* Return value */ if( *pRc==SQLITE_OK ){ switch( pExpr->eType ){ case FTSQUERY_NEAR: case FTSQUERY_AND: bHit = ( fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) && fts3EvalNearTest(pExpr, pRc) ); /* If the NEAR expression does not match any rows, zero the doclist for ** all phrases involved in the NEAR. This is because the snippet(), ** offsets() and matchinfo() functions are not supposed to recognize ** any instances of phrases that are part of unmatched NEAR queries. |
︙ | ︙ | |||
4039 4040 4041 4042 4043 4044 4045 | if( bHit==0 && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; for(p=pExpr; p->pPhrase==0; p=p->pLeft){ if( p->pRight->iDocid==pCsr->iPrevId ){ | | | | | | | | > > > > > > > > > > > > > | | | > > > > > > > | > > | | | | | | 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 | if( bHit==0 && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; for(p=pExpr; p->pPhrase==0; p=p->pLeft){ if( p->pRight->iDocid==pCsr->iPrevId ){ fts3EvalInvalidatePoslist(p->pRight->pPhrase); } } if( p->iDocid==pCsr->iPrevId ){ fts3EvalInvalidatePoslist(p->pPhrase); } } break; case FTSQUERY_OR: { int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc); int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc); bHit = bHit1 || bHit2; break; } case FTSQUERY_NOT: bHit = ( fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) ); break; default: { if( pCsr->pDeferred && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred) ){ Fts3Phrase *pPhrase = pExpr->pPhrase; assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 ); if( pExpr->bDeferred ){ fts3EvalInvalidatePoslist(pPhrase); } *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase); bHit = (pPhrase->doclist.pList!=0); pExpr->iDocid = pCsr->iPrevId; }else{ bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId); } break; } } } return bHit; } /* ** This function is called as the second part of each xNext operation when ** iterating through the results of a full-text query. At this point the ** cursor points to a row that matches the query expression, with the ** following caveats: ** ** * Up until this point, "NEAR" operators in the expression have been ** treated as "AND". ** ** * Deferred tokens have not yet been considered. ** ** If *pRc is not SQLITE_OK when this function is called, it immediately ** returns 0. Otherwise, it tests whether or not after considering NEAR ** operators and deferred tokens the current row is still a match for the ** expression. It returns 1 if both of the following are true: ** ** 1. *pRc is SQLITE_OK when this function returns, and ** ** 2. After scanning the current FTS table row for the deferred tokens, ** it is determined that the row does *not* match the query. ** ** Or, if no error occurs and it seems the current row does match the FTS ** query, return 0. */ static int fts3EvalTestDeferredAndNear(Fts3Cursor *pCsr, int *pRc){ int rc = *pRc; int bMiss = 0; if( rc==SQLITE_OK ){ /* If there are one or more deferred tokens, load the current row into ** memory and scan it to determine the position list for each deferred ** token. Then, see if this row is really a match, considering deferred ** tokens and NEAR operators (neither of which were taken into account ** earlier, by fts3EvalNextRow()). */ if( pCsr->pDeferred ){ rc = fts3CursorSeek(0, pCsr); if( rc==SQLITE_OK ){ rc = sqlite3Fts3CacheDeferredDoclists(pCsr); } } bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc)); /* Free the position-lists accumulated for each deferred token above. */ sqlite3Fts3FreeDeferredDoclists(pCsr); *pRc = rc; } return (rc==SQLITE_OK && bMiss); } /* ** Advance to the next document that matches the FTS expression in ** Fts3Cursor.pExpr. */ static int fts3EvalNext(Fts3Cursor *pCsr){ int rc = SQLITE_OK; /* Return Code */ Fts3Expr *pExpr = pCsr->pExpr; assert( pCsr->isEof==0 ); if( pExpr==0 ){ pCsr->isEof = 1; }else{ do { if( pCsr->isRequireSeek==0 ){ sqlite3_reset(pCsr->pStmt); } assert( sqlite3_data_count(pCsr->pStmt)==0 ); fts3EvalNextRow(pCsr, pExpr, &rc); pCsr->isEof = pExpr->bEof; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->iPrevId = pExpr->iDocid; }while( pCsr->isEof==0 && fts3EvalTestDeferredAndNear(pCsr, &rc) ); } return rc; } /* ** Restart interation for expression pExpr so that the next call to ** fts3EvalNext() visits the first row. Do not allow incremental ** loading or merging of phrase doclists for this iteration. ** ** If *pRc is other than SQLITE_OK when this function is called, it is ** a no-op. If an error occurs within this function, *pRc is set to an ** SQLite error code before returning. */ static void fts3EvalRestart( Fts3Cursor *pCsr, Fts3Expr *pExpr, int *pRc ){ if( pExpr && *pRc==SQLITE_OK ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase ){ fts3EvalInvalidatePoslist(pPhrase); if( pPhrase->bIncr ){ assert( pPhrase->nToken==1 ); assert( pPhrase->aToken[0].pSegcsr ); sqlite3Fts3MsrIncrRestart(pPhrase->aToken[0].pSegcsr); *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase); } |
︙ | ︙ | |||
4273 4274 4275 4276 4277 4278 4279 | do { /* Ensure the %_content statement is reset. */ if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt); assert( sqlite3_data_count(pCsr->pStmt)==0 ); /* Advance to the next document */ | | | | 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 | do { /* Ensure the %_content statement is reset. */ if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt); assert( sqlite3_data_count(pCsr->pStmt)==0 ); /* Advance to the next document */ fts3EvalNextRow(pCsr, pRoot, &rc); pCsr->isEof = pRoot->bEof; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->iPrevId = pRoot->iDocid; }while( pCsr->isEof==0 && pRoot->eType==FTSQUERY_NEAR && fts3EvalTestDeferredAndNear(pCsr, &rc) ); if( rc==SQLITE_OK && pCsr->isEof==0 ){ fts3EvalUpdateCounts(pRoot); } } |
︙ | ︙ | |||
4302 4303 4304 4305 4306 4307 4308 | ** order. For this reason, even though it seems more defensive, the ** do loop can not be written: ** ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK ); */ fts3EvalRestart(pCsr, pRoot, &rc); do { | | | | 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 | ** order. For this reason, even though it seems more defensive, the ** do loop can not be written: ** ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK ); */ fts3EvalRestart(pCsr, pRoot, &rc); do { fts3EvalNextRow(pCsr, pRoot, &rc); assert( pRoot->bEof==0 ); }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK ); fts3EvalTestDeferredAndNear(pCsr, &rc); } } return rc; } /* ** This function is used by the matchinfo() module to query a phrase |
︙ | ︙ | |||
4436 4437 4438 4439 4440 4441 4442 | ** * the contents of pPhrase->doclist, and ** * any Fts3MultiSegReader objects held by phrase tokens. */ void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){ if( pPhrase ){ int i; sqlite3_free(pPhrase->doclist.aAll); | | > > > > > > > > > > > > > > | 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 | ** * the contents of pPhrase->doclist, and ** * any Fts3MultiSegReader objects held by phrase tokens. */ void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){ if( pPhrase ){ int i; sqlite3_free(pPhrase->doclist.aAll); fts3EvalInvalidatePoslist(pPhrase); memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist)); for(i=0; i<pPhrase->nToken; i++){ fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr); pPhrase->aToken[i].pSegcsr = 0; } } } #if !SQLITE_CORE /* ** Initialize API pointer table, if required. */ int sqlite3_extension_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3Fts3Init(db); } #endif #endif |
Changes to ext/fts3/fts3Int.h.
︙ | ︙ | |||
23 24 25 26 27 28 29 | ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. */ #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) # define SQLITE_ENABLE_FTS3 #endif | > > > | > > > > | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. */ #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) # define SQLITE_ENABLE_FTS3 #endif #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* If not building as part of the core, include sqlite3ext.h. */ #ifndef SQLITE_CORE # include "sqlite3ext.h" extern const sqlite3_api_routines *sqlite3_api; #endif #include "sqlite3.h" #include "fts3_tokenizer.h" #include "fts3_hash.h" /* ** This constant controls how often segments are merged. Once there are ** FTS3_MERGE_COUNT segments of level N, they are merged into a single |
︙ | ︙ | |||
286 287 288 289 290 291 292 | int nAll; /* Size of a[] in bytes */ char *pNextDocid; /* Pointer to next docid */ sqlite3_int64 iDocid; /* Current docid (if pList!=0) */ int bFreeList; /* True if pList should be sqlite3_free()d */ char *pList; /* Pointer to position list following iDocid */ int nList; /* Length of position list */ | | | 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | int nAll; /* Size of a[] in bytes */ char *pNextDocid; /* Pointer to next docid */ sqlite3_int64 iDocid; /* Current docid (if pList!=0) */ int bFreeList; /* True if pList should be sqlite3_free()d */ char *pList; /* Pointer to position list following iDocid */ int nList; /* Length of position list */ }; /* ** A "phrase" is a sequence of one or more tokens that must match in ** sequence. A single token is the base case and the most common case. ** For a sequence of tokens contained in double-quotes (i.e. "one two three") ** nToken will be the number of tokens in the string. */ |
︙ | ︙ | |||
486 487 488 489 490 491 492 | int sqlite3Fts3ExprInitTestInterface(sqlite3 *db); int sqlite3Fts3InitTerm(sqlite3 *db); #endif /* fts3_aux.c */ int sqlite3Fts3InitAux(sqlite3 *db); | < < < < < < < < < < < | | 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | int sqlite3Fts3ExprInitTestInterface(sqlite3 *db); int sqlite3Fts3InitTerm(sqlite3 *db); #endif /* fts3_aux.c */ int sqlite3Fts3InitAux(sqlite3 *db); void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *); int sqlite3Fts3MsrIncrStart( Fts3Table*, Fts3MultiSegReader*, int, const char*, int); int sqlite3Fts3MsrIncrNext( Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *); char *sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol); int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *); int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr); int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *); #endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */ #endif /* _FTSINT_H */ |
Changes to ext/fts3/fts3_hash.c.
︙ | ︙ | |||
26 27 28 29 30 31 32 | #include "fts3Int.h" #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #include <assert.h> #include <stdlib.h> #include <string.h> | < | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #include "fts3Int.h" #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #include <assert.h> #include <stdlib.h> #include <string.h> #include "fts3_hash.h" /* ** Malloc and Free functions */ static void *fts3HashMalloc(int n){ void *p = sqlite3_malloc(n); |
︙ | ︙ |
Changes to ext/fts3/fts3_test.c.
︙ | ︙ | |||
14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ** testing. It contains a Tcl command that can be used to test if a document ** matches an FTS NEAR expression. */ #include <tcl.h> #include <string.h> #include <assert.h> /* Required so that the "ifdef SQLITE_ENABLE_FTS3" below works */ #include "fts3Int.h" #define NM_MAX_TOKEN 12 typedef struct NearPhrase NearPhrase; | > > | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ** testing. It contains a Tcl command that can be used to test if a document ** matches an FTS NEAR expression. */ #include <tcl.h> #include <string.h> #include <assert.h> #ifdef SQLITE_TEST /* Required so that the "ifdef SQLITE_ENABLE_FTS3" below works */ #include "fts3Int.h" #define NM_MAX_TOKEN 12 typedef struct NearPhrase NearPhrase; |
︙ | ︙ | |||
315 316 317 318 319 320 321 | int Sqlitetestfts3_Init(Tcl_Interp *interp){ Tcl_CreateObjCommand(interp, "fts3_near_match", fts3_near_match_cmd, 0, 0); Tcl_CreateObjCommand(interp, "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0 ); return TCL_OK; } | > | 317 318 319 320 321 322 323 324 | int Sqlitetestfts3_Init(Tcl_Interp *interp){ Tcl_CreateObjCommand(interp, "fts3_near_match", fts3_near_match_cmd, 0, 0); Tcl_CreateObjCommand(interp, "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0 ); return TCL_OK; } #endif /* ifdef SQLITE_TEST */ |
Changes to ext/fts3/fts3_tokenizer.c.
︙ | ︙ | |||
19 20 21 22 23 24 25 | ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ | < < < < < | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ #include "fts3Int.h" #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #include <assert.h> #include <string.h> /* ** Implementation of the SQL scalar function for accessing the underlying |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
382 383 384 385 386 387 388 389 390 391 392 393 394 395 | sqlite3.c: target_source $(TOP)/tool/mksqlite3c.tcl tclsh $(TOP)/tool/mksqlite3c.tcl echo '#ifndef USE_SYSTEM_SQLITE' >tclsqlite3.c cat sqlite3.c >>tclsqlite3.c echo '#endif /* USE_SYSTEM_SQLITE */' >>tclsqlite3.c cat $(TOP)/src/tclsqlite.c >>tclsqlite3.c fts2amal.c: target_source $(TOP)/ext/fts2/mkfts2amal.tcl tclsh $(TOP)/ext/fts2/mkfts2amal.tcl fts3amal.c: target_source $(TOP)/ext/fts3/mkfts3amal.tcl tclsh $(TOP)/ext/fts3/mkfts3amal.tcl | > > > | 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | sqlite3.c: target_source $(TOP)/tool/mksqlite3c.tcl tclsh $(TOP)/tool/mksqlite3c.tcl echo '#ifndef USE_SYSTEM_SQLITE' >tclsqlite3.c cat sqlite3.c >>tclsqlite3.c echo '#endif /* USE_SYSTEM_SQLITE */' >>tclsqlite3.c cat $(TOP)/src/tclsqlite.c >>tclsqlite3.c sqlite3-all.c: sqlite3.c $(TOP)/tool/split-sqlite3c.tcl tclsh $(TOP)/tool/split-sqlite3c.tcl fts2amal.c: target_source $(TOP)/ext/fts2/mkfts2amal.tcl tclsh $(TOP)/ext/fts2/mkfts2amal.tcl fts3amal.c: target_source $(TOP)/ext/fts3/mkfts3amal.tcl tclsh $(TOP)/ext/fts3/mkfts3amal.tcl |
︙ | ︙ | |||
564 565 566 567 568 569 570 571 572 573 574 575 576 577 | TEST_EXTENSION = $(SHPREFIX)testloadext.$(SO) $(TEST_EXTENSION): $(TOP)/src/test_loadext.c $(MKSHLIB) $(TOP)/src/test_loadext.c -o $(TEST_EXTENSION) extensiontest: testfixture$(EXE) $(TEST_EXTENSION) ./testfixture$(EXE) $(TOP)/test/loadext.test # Standard install and cleanup targets # install: sqlite3 libsqlite3.a sqlite3.h mv sqlite3 /usr/bin mv libsqlite3.a /usr/lib | > > > > > > > | 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | TEST_EXTENSION = $(SHPREFIX)testloadext.$(SO) $(TEST_EXTENSION): $(TOP)/src/test_loadext.c $(MKSHLIB) $(TOP)/src/test_loadext.c -o $(TEST_EXTENSION) extensiontest: testfixture$(EXE) $(TEST_EXTENSION) ./testfixture$(EXE) $(TOP)/test/loadext.test # This target will fail if the SQLite amalgamation contains any exported # symbols that do not begin with "sqlite3_". It is run as part of the # releasetest.tcl script. # checksymbols: sqlite3.o nm -g --defined-only sqlite3.o | grep -v " sqlite3_" ; test $$? -ne 0 # Standard install and cleanup targets # install: sqlite3 libsqlite3.a sqlite3.h mv sqlite3 /usr/bin mv libsqlite3.a /usr/lib |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
2787 2788 2789 2790 2791 2792 2793 | ** the zStmt variable */ if( pStart ){ assert( pEnd!=0 ); /* A named index with an explicit CREATE INDEX statement */ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", onError==OE_None ? "" : " UNIQUE", | | | 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 | ** the zStmt variable */ if( pStart ){ assert( pEnd!=0 ); /* A named index with an explicit CREATE INDEX statement */ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", onError==OE_None ? "" : " UNIQUE", (int)(pEnd->z - pName->z) + 1, pName->z); }else{ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ /* zStmt = sqlite3MPrintf(""); */ zStmt = 0; } |
︙ | ︙ |
Changes to src/date.c.
︙ | ︙ | |||
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | ** routine will always fail. */ static int osLocaltime(time_t *t, struct tm *pTm){ int rc; #if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \ && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S) struct tm *pX; sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sqlite3_mutex_enter(mutex); pX = localtime(t); #ifndef SQLITE_OMIT_BUILTIN_TEST if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; #endif if( pX ) *pTm = *pX; sqlite3_mutex_leave(mutex); | > > | 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | ** routine will always fail. */ static int osLocaltime(time_t *t, struct tm *pTm){ int rc; #if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \ && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S) struct tm *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); #endif sqlite3_mutex_enter(mutex); pX = localtime(t); #ifndef SQLITE_OMIT_BUILTIN_TEST if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; #endif if( pX ) *pTm = *pX; sqlite3_mutex_leave(mutex); |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
367 368 369 370 371 372 373 | int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */ int iRowid = ++pParse->nMem; /* Used for storing rowid values. */ int regRowid; /* Actual register containing rowids */ /* Collect rowids of every row to be deleted. */ sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); | | > > | 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */ int iRowid = ++pParse->nMem; /* Used for storing rowid values. */ int regRowid; /* Actual register containing rowids */ /* Collect rowids of every row to be deleted. */ sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, 0, 0, WHERE_DUPLICATES_OK ); if( pWInfo==0 ) goto delete_from_cleanup; regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid); sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid); if( db->flags & SQLITE_CountRows ){ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); } sqlite3WhereEnd(pWInfo); |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
898 899 900 901 902 903 904 905 906 907 908 909 910 911 | Table *pTab; pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); pNewItem->jointype = pOldItem->jointype; pNewItem->iCursor = pOldItem->iCursor; pNewItem->isPopulated = pOldItem->isPopulated; pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); pNewItem->notIndexed = pOldItem->notIndexed; pNewItem->pIndex = pOldItem->pIndex; pTab = pNewItem->pTab = pOldItem->pTab; if( pTab ){ pTab->nRef++; } | > | 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 | Table *pTab; pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); pNewItem->jointype = pOldItem->jointype; pNewItem->iCursor = pOldItem->iCursor; pNewItem->isPopulated = pOldItem->isPopulated; pNewItem->isCorrelated = pOldItem->isCorrelated; pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); pNewItem->notIndexed = pOldItem->notIndexed; pNewItem->pIndex = pOldItem->pIndex; pTab = pNewItem->pTab = pOldItem->pTab; if( pTab ){ pTab->nRef++; } |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
556 557 558 559 560 561 562 | sNameContext.pParse = pParse; sqlite3ResolveExprNames(&sNameContext, pWhere); /* Create VDBE to loop through the entries in pSrc that match the WHERE ** clause. If the constraint is not deferred, throw an exception for ** each row found. Otherwise, for deferred constraints, increment the ** deferred constraint counter by nIncr for each row selected. */ | | | 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 | sNameContext.pParse = pParse; sqlite3ResolveExprNames(&sNameContext, pWhere); /* Create VDBE to loop through the entries in pSrc that match the WHERE ** clause. If the constraint is not deferred, throw an exception for ** each row found. Otherwise, for deferred constraints, increment the ** deferred constraint counter by nIncr for each row selected. */ pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0); if( nIncr>0 && pFKey->isDeferred==0 ){ sqlite3ParseToplevel(pParse)->mayAbort = 1; } sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); if( pWInfo ){ sqlite3WhereEnd(pWInfo); } |
︙ | ︙ |
Changes to src/loadext.c.
︙ | ︙ | |||
80 81 82 83 84 85 86 87 88 89 90 91 92 93 | # define sqlite3_progress_handler 0 #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define sqlite3_create_module 0 # define sqlite3_create_module_v2 0 # define sqlite3_declare_vtab 0 #endif #ifdef SQLITE_OMIT_SHARED_CACHE # define sqlite3_enable_shared_cache 0 #endif #ifdef SQLITE_OMIT_TRACE | > > | 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | # define sqlite3_progress_handler 0 #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define sqlite3_create_module 0 # define sqlite3_create_module_v2 0 # define sqlite3_declare_vtab 0 # define sqlite3_vtab_config 0 # define sqlite3_vtab_on_conflict 0 #endif #ifdef SQLITE_OMIT_SHARED_CACHE # define sqlite3_enable_shared_cache 0 #endif #ifdef SQLITE_OMIT_TRACE |
︙ | ︙ | |||
103 104 105 106 107 108 109 110 111 112 113 114 115 116 | #ifdef SQLITE_OMIT_INCRBLOB #define sqlite3_bind_zeroblob 0 #define sqlite3_blob_bytes 0 #define sqlite3_blob_close 0 #define sqlite3_blob_open 0 #define sqlite3_blob_read 0 #define sqlite3_blob_write 0 #endif /* ** The following structure contains pointers to all SQLite API routines. ** A pointer to this structure is passed into extensions when they are ** loaded so that the extension can make calls back into the SQLite ** library. | > | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | #ifdef SQLITE_OMIT_INCRBLOB #define sqlite3_bind_zeroblob 0 #define sqlite3_blob_bytes 0 #define sqlite3_blob_close 0 #define sqlite3_blob_open 0 #define sqlite3_blob_read 0 #define sqlite3_blob_write 0 #define sqlite3_blob_reopen 0 #endif /* ** The following structure contains pointers to all SQLite API routines. ** A pointer to this structure is passed into extensions when they are ** loaded so that the extension can make calls back into the SQLite ** library. |
︙ | ︙ | |||
368 369 370 371 372 373 374 375 376 377 378 379 380 381 | sqlite3_wal_checkpoint, sqlite3_wal_hook, #else 0, 0, 0, #endif }; /* ** Attempt to load an SQLite extension library contained in the file ** zFile. The entry point is zProc. zProc may be 0 in which case a ** default entry point name (sqlite3_extension_init) is used. Use ** of the default name is recommended. | > > > | 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | sqlite3_wal_checkpoint, sqlite3_wal_hook, #else 0, 0, 0, #endif sqlite3_blob_reopen, sqlite3_vtab_config, sqlite3_vtab_on_conflict, }; /* ** Attempt to load an SQLite extension library contained in the file ** zFile. The entry point is zProc. zProc may be 0 in which case a ** default entry point name (sqlite3_extension_init) is used. Use ** of the default name is recommended. |
︙ | ︙ |
Changes to src/mem3.c.
︙ | ︙ | |||
429 430 431 432 433 434 435 | /* ** Free an outstanding memory allocation. ** ** This function assumes that the necessary mutexes, if any, are ** already held by the caller. Hence "Unsafe". */ | | | 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | /* ** Free an outstanding memory allocation. ** ** This function assumes that the necessary mutexes, if any, are ** already held by the caller. Hence "Unsafe". */ static void memsys3FreeUnsafe(void *pOld){ Mem3Block *p = (Mem3Block*)pOld; int i; u32 size, x; assert( sqlite3_mutex_held(mem3.mutex) ); assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); i = p - mem3.aPool; assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); |
︙ | ︙ | |||
504 505 506 507 508 509 510 | memsys3Leave(); return (void*)p; } /* ** Free memory. */ | | | | 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | memsys3Leave(); return (void*)p; } /* ** Free memory. */ static void memsys3Free(void *pPrior){ assert( pPrior ); memsys3Enter(); memsys3FreeUnsafe(pPrior); memsys3Leave(); } /* ** Change the size of an existing memory allocation */ static void *memsys3Realloc(void *pPrior, int nBytes){ int nOld; void *p; if( pPrior==0 ){ return sqlite3_malloc(nBytes); } if( nBytes<=0 ){ sqlite3_free(pPrior); |
︙ | ︙ |
Changes to src/os.c.
︙ | ︙ | |||
134 135 136 137 138 139 140 | int openFlags; DO_OS_MALLOC_TEST(0); /* 0x87f3f is a mask of SQLITE_OPEN_ flags that are valid to be passed ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before ** reaching the VFS. */ #if SQLITE_ENABLE_DATA_PROTECTION | | | | 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | int openFlags; DO_OS_MALLOC_TEST(0); /* 0x87f3f is a mask of SQLITE_OPEN_ flags that are valid to be passed ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before ** reaching the VFS. */ #if SQLITE_ENABLE_DATA_PROTECTION openFlags = flags & (0x87f7f | SQLITE_OPEN_FILEPROTECTION_MASK); #else openFlags = flags & 0x87f7f; #endif rc = pVfs->xOpen(pVfs, zPath, pFile, openFlags, pFlagsOut); assert( rc==SQLITE_OK || pFile->pMethods==0 ); return rc; } int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ return pVfs->xDelete(pVfs, zPath, dirSync); |
︙ | ︙ |
Changes to src/os_common.h.
︙ | ︙ | |||
26 27 28 29 30 31 32 | ** switch. The following code should catch this problem at compile-time. */ #ifdef MEMORY_DEBUG # error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." #endif #ifdef SQLITE_DEBUG | > > > | | | | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | ** switch. The following code should catch this problem at compile-time. */ #ifdef MEMORY_DEBUG # error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." #endif #ifdef SQLITE_DEBUG # ifndef SQLITE_DEBUG_OS_TRACE # define SQLITE_DEBUG_OS_TRACE 0 # endif int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X #else # define OSTRACE(X) #endif /* ** Macros for performance tracing. Normally turned off. Only works ** on i486 hardware. */ #ifdef SQLITE_PERFORMANCE_TRACE |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
254 255 256 257 258 259 260 | char aPadding[32]; #endif }; /* ** Allowed values for the unixFile.ctrlFlags bitmask: */ | | | > | 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | char aPadding[32]; #endif }; /* ** Allowed values for the unixFile.ctrlFlags bitmask: */ #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ /* ** Include code that is common to all os_*.c files */ #include "os_common.h" /* |
︙ | ︙ | |||
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | case EIO: case EBADF: case EINVAL: case ENOTCONN: case ENODEV: case ENXIO: case ENOENT: case ESTALE: case ENOSYS: /* these should force the client to close the file and reconnect */ default: return sqliteIOErr; } } | > > | 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 | case EIO: case EBADF: case EINVAL: case ENOTCONN: case ENODEV: case ENXIO: case ENOENT: #ifdef ESTALE /* ESTALE is not defined on Interix systems */ case ESTALE: #endif case ENOSYS: /* these should force the client to close the file and reconnect */ default: return sqliteIOErr; } } |
︙ | ︙ | |||
3789 3790 3791 3792 3793 3794 3795 | ** file-control operation. ** ** If the user has configured a chunk-size for this file, it could be ** that the file needs to be extended at this point. Otherwise, the ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix. */ static int fcntlSizeHint(unixFile *pFile, i64 nByte){ | | > | > > > > > | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 | ** file-control operation. ** ** If the user has configured a chunk-size for this file, it could be ** that the file needs to be extended at this point. Otherwise, the ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix. */ static int fcntlSizeHint(unixFile *pFile, i64 nByte){ { /* preserve indentation of removed "if" */ i64 nSize; /* Required file size */ i64 szChunk; /* Chunk size */ struct stat buf; /* Used to hold return values of fstat() */ if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; szChunk = pFile->szChunk; if( szChunk==0 ){ nSize = nByte; }else{ nSize = ((nByte+szChunk-1) / szChunk) * szChunk; } if( nSize>(i64)buf.st_size ){ #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE /* The code below is handling the return value of osFallocate() ** correctly. posix_fallocate() is defined to "returns zero on success, ** or an error number on failure". See the manpage for details. */ int err; |
︙ | ︙ | |||
3845 3846 3847 3848 3849 3850 3851 3852 3853 | #endif static int isProxyLockingMode(unixFile *); /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { | > | | | | > > > > > > > > > > > | 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 | #endif static int isProxyLockingMode(unixFile *); /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = pFile->eFileLock; return SQLITE_OK; } case SQLITE_LAST_ERRNO: { *(int*)pArg = pFile->lastErrno; return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { pFile->szChunk = *(int *)pArg; return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { return fcntlSizeHint(pFile, *(i64 *)pArg); } case SQLITE_FCNTL_PERSIST_WAL: { int bPersist = *(int*)pArg; if( bPersist<0 ){ *(int*)pArg = (pFile->ctrlFlags & UNIXFILE_PERSIST_WAL)!=0; }else if( bPersist==0 ){ pFile->ctrlFlags &= ~UNIXFILE_PERSIST_WAL; }else{ pFile->ctrlFlags |= UNIXFILE_PERSIST_WAL; } return SQLITE_OK; } #ifndef NDEBUG /* The pager calls this method to signal that it has done ** a rollback and that the database is therefore unchanged and ** it hence it is OK for the transaction change counter to be ** unchanged. */ |
︙ | ︙ | |||
4334 4335 4336 4337 4338 4339 4340 | */ static void unixShmPurge(unixFile *pFd){ unixShmNode *p = pFd->pInode->pShmNode; assert( unixMutexHeld() ); if( p && p->nRef==0 ){ int i; assert( p->pInode==pFd->pInode ); | | | 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 | */ static void unixShmPurge(unixFile *pFd){ unixShmNode *p = pFd->pInode->pShmNode; assert( unixMutexHeld() ); if( p && p->nRef==0 ){ int i; assert( p->pInode==pFd->pInode ); sqlite3_mutex_free(p->mutex); for(i=0; i<p->nRegion; i++){ if( p->h>=0 ){ munmap(p->apRegion[i], p->szRegion); }else{ sqlite3_free(p->apRegion[i]); } } |
︙ | ︙ | |||
5467 5468 5469 5470 5471 5472 5473 | ** almost certain that an open() call on the same path will also fail. ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of ** not searching for a resusable file descriptor are not dire. */ | | | 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 | ** almost certain that an open() call on the same path will also fail. ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of ** not searching for a resusable file descriptor are not dire. */ if( 0==osStat(zPath, &sStat) ){ unixInodeInfo *pInode; unixEnterMutex(); pInode = inodeList; while( pInode && (pInode->fileId.dev!=sStat.st_dev || pInode->fileId.ino!=sStat.st_ino) ){ pInode = pInode->pNext; |
︙ | ︙ | |||
5545 5546 5547 5548 5549 5550 5551 | */ nDb = sqlite3Strlen30(zPath) - 1; while( nDb>0 && zPath[nDb]!='-' ) nDb--; if( nDb==0 ) return SQLITE_OK; memcpy(zDb, zPath, nDb); zDb[nDb] = '\0'; | | | 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 | */ nDb = sqlite3Strlen30(zPath) - 1; while( nDb>0 && zPath[nDb]!='-' ) nDb--; if( nDb==0 ) return SQLITE_OK; memcpy(zDb, zPath, nDb); zDb[nDb] = '\0'; if( 0==osStat(zDb, &sStat) ){ *pMode = sStat.st_mode & 0777; *pUid = sStat.st_uid; *pGid = sStat.st_gid; }else{ rc = SQLITE_IOERR_FSTAT; } }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ |
︙ | ︙ | |||
5910 5911 5912 5913 5914 5915 5916 | default: assert(!"Invalid flags argument"); } *pResOut = (osAccess(zPath, amode)==0); if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ struct stat buf; | | | 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 | default: assert(!"Invalid flags argument"); } *pResOut = (osAccess(zPath, amode)==0); if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ struct stat buf; if( 0==osStat(zPath, &buf) && buf.st_size==0 ){ *pResOut = 0; } } return SQLITE_OK; } |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
98 99 100 101 102 103 104 | ** portability layer. */ typedef struct winFile winFile; struct winFile { const sqlite3_io_methods *pMethod; /*** Must be first ***/ sqlite3_vfs *pVfs; /* The VFS used to open this file */ HANDLE h; /* Handle for accessing the file */ | | > | 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | ** portability layer. */ typedef struct winFile winFile; struct winFile { const sqlite3_io_methods *pMethod; /*** Must be first ***/ sqlite3_vfs *pVfs; /* The VFS used to open this file */ HANDLE h; /* Handle for accessing the file */ u8 locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ u8 bPersistWal; /* True to persist WAL files */ DWORD lastErrno; /* The Windows errno from the last I/O error */ DWORD sectorSize; /* Sector size of the device file is on */ winShm *pShm; /* Instance of shared memory on this file */ const char *zPath; /* Full pathname of this file */ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ #if SQLITE_OS_WINCE WCHAR *zDeleteOnClose; /* Name of file to delete when closing */ |
︙ | ︙ | |||
397 398 399 400 401 402 403 404 405 406 407 408 409 410 | sqlite3_log(errcode, "os_win.c:%d: (%d) %s(%s) - %s", iLine, iErrno, zFunc, zPath, zMsg ); return errcode; } #if SQLITE_OS_WINCE /************************************************************************* ** This section contains code for WinCE only. */ /* ** WindowsCE does not have a localtime() function. So create a | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | sqlite3_log(errcode, "os_win.c:%d: (%d) %s(%s) - %s", iLine, iErrno, zFunc, zPath, zMsg ); return errcode; } /* ** The number of times that a ReadFile(), WriteFile(), and DeleteFile() ** will be retried following a locking error - probably caused by ** antivirus software. Also the initial delay before the first retry. ** The delay increases linearly with each retry. */ #ifndef SQLITE_WIN32_IOERR_RETRY # define SQLITE_WIN32_IOERR_RETRY 10 #endif #ifndef SQLITE_WIN32_IOERR_RETRY_DELAY # define SQLITE_WIN32_IOERR_RETRY_DELAY 25 #endif static int win32IoerrRetry = SQLITE_WIN32_IOERR_RETRY; static int win32IoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY; /* ** If a ReadFile() or WriteFile() error occurs, invoke this routine ** to see if it should be retried. Return TRUE to retry. Return FALSE ** to give up with an error. */ static int retryIoerr(int *pnRetry){ DWORD e; if( *pnRetry>=win32IoerrRetry ){ return 0; } e = GetLastError(); if( e==ERROR_ACCESS_DENIED || e==ERROR_LOCK_VIOLATION || e==ERROR_SHARING_VIOLATION ){ Sleep(win32IoerrRetryDelay*(1+*pnRetry)); ++*pnRetry; return 1; } return 0; } /* ** Log a I/O error retry episode. */ static void logIoerr(int nRetry){ if( nRetry ){ sqlite3_log(SQLITE_IOERR, "delayed %dms for lock/sharing conflict", win32IoerrRetryDelay*nRetry*(nRetry+1)/2 ); } } #if SQLITE_OS_WINCE /************************************************************************* ** This section contains code for WinCE only. */ /* ** WindowsCE does not have a localtime() function. So create a |
︙ | ︙ | |||
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 | sqlite3_file *id, /* File to read from */ void *pBuf, /* Write content into this buffer */ int amt, /* Number of bytes to read */ sqlite3_int64 offset /* Begin reading at this offset */ ){ winFile *pFile = (winFile*)id; /* file handle */ DWORD nRead; /* Number of bytes actually read from file */ assert( id!=0 ); SimulateIOError(return SQLITE_IOERR_READ); OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype)); if( seekWinFile(pFile, offset) ){ return SQLITE_FULL; } | > | > > | 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 | sqlite3_file *id, /* File to read from */ void *pBuf, /* Write content into this buffer */ int amt, /* Number of bytes to read */ sqlite3_int64 offset /* Begin reading at this offset */ ){ winFile *pFile = (winFile*)id; /* file handle */ DWORD nRead; /* Number of bytes actually read from file */ int nRetry = 0; /* Number of retrys */ assert( id!=0 ); SimulateIOError(return SQLITE_IOERR_READ); OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype)); if( seekWinFile(pFile, offset) ){ return SQLITE_FULL; } while( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ if( retryIoerr(&nRetry) ) continue; pFile->lastErrno = GetLastError(); return winLogError(SQLITE_IOERR_READ, "winRead", pFile->zPath); } logIoerr(nRetry); if( nRead<(DWORD)amt ){ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[nRead], 0, amt-nRead); return SQLITE_IOERR_SHORT_READ; } return SQLITE_OK; |
︙ | ︙ | |||
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 | sqlite3_file *id, /* File to write into */ const void *pBuf, /* The bytes to be written */ int amt, /* Number of bytes to write */ sqlite3_int64 offset /* Offset into the file to begin writing at */ ){ int rc; /* True if error has occured, else false */ winFile *pFile = (winFile*)id; /* File handle */ assert( amt>0 ); assert( pFile ); SimulateIOError(return SQLITE_IOERR_WRITE); SimulateDiskfullError(return SQLITE_FULL); OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype)); rc = seekWinFile(pFile, offset); if( rc==0 ){ u8 *aRem = (u8 *)pBuf; /* Data yet to be written */ int nRem = amt; /* Number of bytes yet to be written */ DWORD nWrite; /* Bytes written by each WriteFile() call */ | > > | > > > > > > | 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 | sqlite3_file *id, /* File to write into */ const void *pBuf, /* The bytes to be written */ int amt, /* Number of bytes to write */ sqlite3_int64 offset /* Offset into the file to begin writing at */ ){ int rc; /* True if error has occured, else false */ winFile *pFile = (winFile*)id; /* File handle */ int nRetry = 0; /* Number of retries */ assert( amt>0 ); assert( pFile ); SimulateIOError(return SQLITE_IOERR_WRITE); SimulateDiskfullError(return SQLITE_FULL); OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype)); rc = seekWinFile(pFile, offset); if( rc==0 ){ u8 *aRem = (u8 *)pBuf; /* Data yet to be written */ int nRem = amt; /* Number of bytes yet to be written */ DWORD nWrite; /* Bytes written by each WriteFile() call */ while( nRem>0 ){ if( !WriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){ if( retryIoerr(&nRetry) ) continue; break; } if( nWrite<=0 ) break; aRem += nWrite; nRem -= nWrite; } if( nRem>0 ){ pFile->lastErrno = GetLastError(); rc = 1; } } if( rc ){ if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ) || ( pFile->lastErrno==ERROR_DISK_FULL )){ return SQLITE_FULL; } return winLogError(SQLITE_IOERR_WRITE, "winWrite", pFile->zPath); }else{ logIoerr(nRetry); } return SQLITE_OK; } /* ** Truncate an open file to a specified size */ |
︙ | ︙ | |||
1272 1273 1274 1275 1276 1277 1278 1279 1280 | return rc; } /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { | > | | | > > > > > > > > > > > > > > > > > > > > > > > | 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 | return rc; } /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ winFile *pFile = (winFile*)id; switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = pFile->locktype; return SQLITE_OK; } case SQLITE_LAST_ERRNO: { *(int*)pArg = (int)pFile->lastErrno; return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { pFile->szChunk = *(int *)pArg; return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { sqlite3_int64 sz = *(sqlite3_int64*)pArg; SimulateIOErrorBenign(1); winTruncate(id, sz); SimulateIOErrorBenign(0); return SQLITE_OK; } case SQLITE_FCNTL_PERSIST_WAL: { int bPersist = *(int*)pArg; if( bPersist<0 ){ *(int*)pArg = pFile->bPersistWal; }else{ pFile->bPersistWal = bPersist!=0; } return SQLITE_OK; } case SQLITE_FCNTL_SYNC_OMITTED: { return SQLITE_OK; } case SQLITE_FCNTL_WIN32_AV_RETRY: { int *a = (int*)pArg; if( a[0]>0 ){ win32IoerrRetry = a[0]; }else{ a[0] = win32IoerrRetry; } if( a[1]>0 ){ win32IoerrRetryDelay = a[1]; }else{ a[1] = win32IoerrRetryDelay; } return SQLITE_OK; } } return SQLITE_NOTFOUND; } /* ** Return the sector size in bytes of the underlying block device for |
︙ | ︙ | |||
2312 2313 2314 2315 2316 2317 2318 | ** will open a journal file shortly after it is created in order to do ** whatever it does. While this other process is holding the ** file open, we will be unable to delete it. To work around this ** problem, we delay 100 milliseconds and try to delete again. Up ** to MX_DELETION_ATTEMPTs deletion attempts are run before giving ** up and returning an error. */ | < | < < > > | < | < < < > > | < | < < > > > > > | < < < | < < | 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 | ** will open a journal file shortly after it is created in order to do ** whatever it does. While this other process is holding the ** file open, we will be unable to delete it. To work around this ** problem, we delay 100 milliseconds and try to delete again. Up ** to MX_DELETION_ATTEMPTs deletion attempts are run before giving ** up and returning an error. */ static int winDelete( sqlite3_vfs *pVfs, /* Not used on win32 */ const char *zFilename, /* Name of file to delete */ int syncDir /* Not used on win32 */ ){ int cnt = 0; int rc; void *zConverted; UNUSED_PARAMETER(pVfs); UNUSED_PARAMETER(syncDir); SimulateIOError(return SQLITE_IOERR_DELETE); zConverted = convertUtf8Filename(zFilename); if( zConverted==0 ){ return SQLITE_NOMEM; } if( isNT() ){ rc = 1; while( GetFileAttributesW(zConverted)!=INVALID_FILE_ATTRIBUTES && (rc = DeleteFileW(zConverted))==0 && retryIoerr(&cnt) ){} rc = rc ? SQLITE_OK : SQLITE_ERROR; /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. ** Since the ASCII version of these Windows API do not exist for WINCE, ** it's important to not reference them for WINCE builds. */ #if SQLITE_OS_WINCE==0 }else{ rc = 1; while( GetFileAttributesA(zConverted)!=INVALID_FILE_ATTRIBUTES && (rc = DeleteFileA(zConverted))==0 && retryIoerr(&cnt) ){} rc = rc ? SQLITE_OK : SQLITE_ERROR; #endif } if( rc ){ rc = winLogError(SQLITE_IOERR_DELETE, "winDelete", zFilename); }else{ logIoerr(cnt); } free(zConverted); OSTRACE(("DELETE \"%s\" %s\n", zFilename, (rc ? "failed" : "ok" ))); return rc; } /* ** Check the existance and status of a file. */ static int winAccess( sqlite3_vfs *pVfs, /* Not used on win32 */ |
︙ | ︙ | |||
2381 2382 2383 2384 2385 2386 2387 2388 2389 | SimulateIOError( return SQLITE_IOERR_ACCESS; ); zConverted = convertUtf8Filename(zFilename); if( zConverted==0 ){ return SQLITE_NOMEM; } if( isNT() ){ WIN32_FILE_ATTRIBUTE_DATA sAttrData; memset(&sAttrData, 0, sizeof(sAttrData)); | > | | > > | 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 | SimulateIOError( return SQLITE_IOERR_ACCESS; ); zConverted = convertUtf8Filename(zFilename); if( zConverted==0 ){ return SQLITE_NOMEM; } if( isNT() ){ int cnt = 0; WIN32_FILE_ATTRIBUTE_DATA sAttrData; memset(&sAttrData, 0, sizeof(sAttrData)); while( !(rc = GetFileAttributesExW((WCHAR*)zConverted, GetFileExInfoStandard, &sAttrData)) && retryIoerr(&cnt) ){} if( rc ){ /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file ** as if it does not exist. */ if( flags==SQLITE_ACCESS_EXISTS && sAttrData.nFileSizeHigh==0 && sAttrData.nFileSizeLow==0 ){ attr = INVALID_FILE_ATTRIBUTES; }else{ attr = sAttrData.dwFileAttributes; } }else{ logIoerr(cnt); if( GetLastError()!=ERROR_FILE_NOT_FOUND ){ winLogError(SQLITE_IOERR_ACCESS, "winAccess", zFilename); free(zConverted); return SQLITE_IOERR_ACCESS; }else{ attr = INVALID_FILE_ATTRIBUTES; } |
︙ | ︙ | |||
2421 2422 2423 2424 2425 2426 2427 | free(zConverted); switch( flags ){ case SQLITE_ACCESS_READ: case SQLITE_ACCESS_EXISTS: rc = attr!=INVALID_FILE_ATTRIBUTES; break; case SQLITE_ACCESS_READWRITE: | > | | 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 | free(zConverted); switch( flags ){ case SQLITE_ACCESS_READ: case SQLITE_ACCESS_EXISTS: rc = attr!=INVALID_FILE_ATTRIBUTES; break; case SQLITE_ACCESS_READWRITE: rc = attr!=INVALID_FILE_ATTRIBUTES && (attr & FILE_ATTRIBUTE_READONLY)==0; break; default: assert(!"Invalid flags argument"); } *pResOut = rc; return SQLITE_OK; } |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 | } /* Recursively resolve names in all subqueries */ for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; if( pItem->pSelect ){ const char *zSavedContext = pParse->zAuthContext; if( pItem->zName ) pParse->zAuthContext = pItem->zName; sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC); pParse->zAuthContext = zSavedContext; if( pParse->nErr || db->mallocFailed ) return WRC_Abort; } } /* If there are no aggregate functions in the result-set, and no GROUP BY ** expression, do not allow aggregates in any of the other expressions. */ assert( (p->selFlags & SF_Aggregate)==0 ); | > > > > > > > > > > > > > > | 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 | } /* Recursively resolve names in all subqueries */ for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; if( pItem->pSelect ){ NameContext *pNC; /* Used to iterate name contexts */ int nRef = 0; /* Refcount for pOuterNC and outer contexts */ const char *zSavedContext = pParse->zAuthContext; /* Count the total number of references to pOuterNC and all of its ** parent contexts. After resolving references to expressions in ** pItem->pSelect, check if this value has changed. If so, then ** SELECT statement pItem->pSelect must be correlated. Set the ** pItem->isCorrelated flag if this is the case. */ for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef += pNC->nRef; if( pItem->zName ) pParse->zAuthContext = pItem->zName; sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC); pParse->zAuthContext = zSavedContext; if( pParse->nErr || db->mallocFailed ) return WRC_Abort; for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef; assert( pItem->isCorrelated==0 && nRef<=0 ); pItem->isCorrelated = (nRef!=0); } } /* If there are no aggregate functions in the result-set, and no GROUP BY ** expression, do not allow aggregates in any of the other expressions. */ assert( (p->selFlags & SF_Aggregate)==0 ); |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 | ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ Expr *pHaving; /* The HAVING clause. May be NULL */ int isDistinct; /* True if the DISTINCT keyword is present */ int distinct; /* Table to use for the distinct set */ int rc = 1; /* Value to return from this function */ int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ AggInfo sAggInfo; /* Information used by aggregate queries */ int iEnd; /* Address of the end of the query */ sqlite3 *db; /* The database connection */ #ifndef SQLITE_OMIT_EXPLAIN int iRestoreSelectId = pParse->iSelectId; pParse->iSelectId = pParse->iNextSelectId++; | > | 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 | ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ Expr *pHaving; /* The HAVING clause. May be NULL */ int isDistinct; /* True if the DISTINCT keyword is present */ int distinct; /* Table to use for the distinct set */ int rc = 1; /* Value to return from this function */ int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */ AggInfo sAggInfo; /* Information used by aggregate queries */ int iEnd; /* Address of the end of the query */ sqlite3 *db; /* The database connection */ #ifndef SQLITE_OMIT_EXPLAIN int iRestoreSelectId = pParse->iSelectId; pParse->iSelectId = pParse->iNextSelectId++; |
︙ | ︙ | |||
3843 3844 3845 3846 3847 3848 3849 | } rc = multiSelect(pParse, p, pDest); explainSetInteger(pParse->iSelectId, iRestoreSelectId); return rc; } #endif | < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > | 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 | } rc = multiSelect(pParse, p, pDest); explainSetInteger(pParse->iSelectId, iRestoreSelectId); return rc; } #endif /* If there is both a GROUP BY and an ORDER BY clause and they are ** identical, then disable the ORDER BY clause since the GROUP BY ** will cause elements to come out in the correct order. This is ** an optimization - the correct answer should result regardless. ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER ** to disable this optimization for testing purposes. */ if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 && (db->flags & SQLITE_GroupByOrder)==0 ){ pOrderBy = 0; } /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and ** if the select-list is the same as the ORDER BY list, then this query ** can be rewritten as a GROUP BY. In other words, this: ** ** SELECT DISTINCT xyz FROM ... ORDER BY xyz ** ** is transformed to: ** ** SELECT xyz FROM ... GROUP BY xyz ** ** The second form is preferred as a single index (or temp-table) may be ** used for both the ORDER BY and DISTINCT processing. As originally ** written the query must use a temp-table for at least one of the ORDER ** BY and DISTINCT, and an index or separate temp-table for the other. */ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && sqlite3ExprListCompare(pOrderBy, p->pEList)==0 ){ p->selFlags &= ~SF_Distinct; p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); pGroupBy = p->pGroupBy; pOrderBy = 0; } /* If there is an ORDER BY clause, then this sorting ** index might end up being unused if the data can be ** extracted in pre-sorted order. If that is the case, then the ** OP_OpenEphemeral instruction will be changed to an OP_Noop once ** we figure out that the sorting index is not needed. The addrSortIndex ** variable is used to facilitate that change. |
︙ | ︙ | |||
3900 3901 3902 3903 3904 3905 3906 | p->nSelectRow = (double)LARGEST_INT64; computeLimitRegisters(pParse, p, iEnd); /* Open a virtual index to use for the distinct set. */ if( p->selFlags & SF_Distinct ){ KeyInfo *pKeyInfo; | < | | | > | | < | > > | > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 | p->nSelectRow = (double)LARGEST_INT64; computeLimitRegisters(pParse, p, iEnd); /* Open a virtual index to use for the distinct set. */ if( p->selFlags & SF_Distinct ){ KeyInfo *pKeyInfo; distinct = pParse->nTab++; pKeyInfo = keyInfoFromExprList(pParse, p->pEList); addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); }else{ distinct = addrDistinctIndex = -1; } /* Aggregate and non-aggregate queries are handled differently */ if( !isAgg && pGroupBy==0 ){ ExprList *pDist = (isDistinct ? p->pEList : 0); /* Begin the database scan. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0); if( pWInfo==0 ) goto select_end; if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; /* If sorting index that was created by a prior OP_OpenEphemeral ** instruction ended up not being needed, then change the OP_OpenEphemeral ** into an OP_Noop. */ if( addrSortIndex>=0 && pOrderBy==0 ){ sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); p->addrOpenEphm[2] = -1; } if( pWInfo->eDistinct ){ VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ assert( addrDistinctIndex>0 ); pOp = sqlite3VdbeGetOp(v, addrDistinctIndex); assert( isDistinct ); assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE ); distinct = -1; if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){ int iJump; int iExpr; int iFlag = ++pParse->nMem; int iBase = pParse->nMem+1; int iBase2 = iBase + pEList->nExpr; pParse->nMem += (pEList->nExpr*2); /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The ** OP_Integer initializes the "first row" flag. */ pOp->opcode = OP_Integer; pOp->p1 = 1; pOp->p2 = iFlag; sqlite3ExprCodeExprList(pParse, pEList, iBase, 1); iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1; sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1); for(iExpr=0; iExpr<pEList->nExpr; iExpr++){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr); sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr); sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); } sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue); sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag); assert( sqlite3VdbeCurrentAddr(v)==iJump ); sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr); }else{ pOp->opcode = OP_Noop; } } /* Use the standard inner loop. */ selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest, pWInfo->iContinue, pWInfo->iBreak); /* End the database scan loop. */ sqlite3WhereEnd(pWInfo); }else{ /* This is the processing for aggregate queries */ |
︙ | ︙ | |||
4041 4042 4043 4044 4045 4046 4047 | /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | | | 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 | /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0); if( pWInfo==0 ) goto select_end; if( pGroupBy==0 ){ /* The optimizer is able to deliver rows in group by order so ** we do not have to sort. The OP_OpenEphemeral table will be ** cancelled later because we still need to use the pKeyInfo */ pGroupBy = p->pGroupBy; |
︙ | ︙ | |||
4303 4304 4305 4306 4307 4308 4309 | } /* This case runs if the aggregate has no GROUP BY clause. The ** processing is much simpler since there is only a single row ** of output. */ resetAccumulator(pParse, &sAggInfo); | | | 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 | } /* This case runs if the aggregate has no GROUP BY clause. The ** processing is much simpler since there is only a single row ** of output. */ resetAccumulator(pParse, &sAggInfo); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag); if( pWInfo==0 ){ sqlite3ExprListDelete(db, pDel); goto select_end; } updateAccumulator(pParse, &sAggInfo); if( !pMinMax && flag ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 | " -stats print memory stats before each finalize\n" " -nullvalue 'text' set text string for NULL values\n" " -version show SQLite version\n" " -vfs NAME use NAME as the default VFS\n" #ifdef SQLITE_ENABLE_VFSTRACE " -vfstrace enable tracing of all VFS calls\n" #endif ; static void usage(int showDetail){ fprintf(stderr, "Usage: %s [OPTIONS] FILENAME [SQL]\n" "FILENAME is the name of an SQLite database. A new database is created\n" "if the file does not previously exist.\n", Argv0); if( showDetail ){ | > > > | 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 | " -stats print memory stats before each finalize\n" " -nullvalue 'text' set text string for NULL values\n" " -version show SQLite version\n" " -vfs NAME use NAME as the default VFS\n" #ifdef SQLITE_ENABLE_VFSTRACE " -vfstrace enable tracing of all VFS calls\n" #endif #ifdef SQLITE_ENABLE_MULTIPLEX " -multiplex enable the multiplexor VFS\n" #endif ; static void usage(int showDetail){ fprintf(stderr, "Usage: %s [OPTIONS] FILENAME [SQL]\n" "FILENAME is the name of an SQLite database. A new database is created\n" "if the file does not previously exist.\n", Argv0); if( showDetail ){ |
︙ | ︙ | |||
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 | const char *zOldVfsName, int (*xOut)(const char*,void*), void *pOutArg, int makeDefault ); vfstrace_register("trace",0,(int(*)(const char*,void*))fputs,stderr,1); #endif }else if( strcmp(argv[i],"-vfs")==0 ){ sqlite3_vfs *pVfs = sqlite3_vfs_find(argv[++i]); if( pVfs ){ sqlite3_vfs_register(pVfs, 1); }else{ fprintf(stderr, "no such VFS: \"%s\"\n", argv[i]); exit(1); | > > > > > | 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 | const char *zOldVfsName, int (*xOut)(const char*,void*), void *pOutArg, int makeDefault ); vfstrace_register("trace",0,(int(*)(const char*,void*))fputs,stderr,1); #endif #ifdef SQLITE_ENABLE_MULTIPLEX }else if( strcmp(argv[i],"-multiplex")==0 ){ extern int sqlite3_multiple_initialize(const char*,int); sqlite3_multiplex_initialize(0, 1); #endif }else if( strcmp(argv[i],"-vfs")==0 ){ sqlite3_vfs *pVfs = sqlite3_vfs_find(argv[++i]); if( pVfs ){ sqlite3_vfs_register(pVfs, 1); }else{ fprintf(stderr, "no such VFS: \"%s\"\n", argv[i]); exit(1); |
︙ | ︙ | |||
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 | stdin_is_interactive = 1; }else if( strcmp(z,"-batch")==0 ){ stdin_is_interactive = 0; }else if( strcmp(z,"-heap")==0 ){ i++; }else if( strcmp(z,"-vfs")==0 ){ i++; }else if( strcmp(z,"-vfstrace")==0 ){ i++; }else if( strcmp(z,"-help")==0 || strcmp(z, "--help")==0 ){ usage(1); }else{ fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z); fprintf(stderr,"Use -help for a list of options.\n"); return 1; } | > > > > > > | 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 | stdin_is_interactive = 1; }else if( strcmp(z,"-batch")==0 ){ stdin_is_interactive = 0; }else if( strcmp(z,"-heap")==0 ){ i++; }else if( strcmp(z,"-vfs")==0 ){ i++; #ifdef SQLITE_ENABLE_VFSTRACE }else if( strcmp(z,"-vfstrace")==0 ){ i++; #endif #ifdef SQLITE_ENABLE_MULTIPLEX }else if( strcmp(z,"-multiplex")==0 ){ i++; #endif }else if( strcmp(z,"-help")==0 || strcmp(z, "--help")==0 ){ usage(1); }else{ fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z); fprintf(stderr,"Use -help for a list of options.\n"); return 1; } |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 | ** when the database connection has [PRAGMA synchronous] set to OFF.)^ ** Some specialized VFSes need this signal in order to operate correctly ** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most ** VFSes do not need this signal and should silently ignore this opcode. ** Applications should not call [sqlite3_file_control()] with this ** opcode as doing so may disrupt the operation of the specialized VFSes ** that do require it. */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_GET_LOCKPROXYFILE 2 #define SQLITE_SET_LOCKPROXYFILE 3 #define SQLITE_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 #define SQLITE_FCNTL_CHUNK_SIZE 6 #define SQLITE_FCNTL_FILE_POINTER 7 #define SQLITE_FCNTL_SYNC_OMITTED 8 | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 | ** when the database connection has [PRAGMA synchronous] set to OFF.)^ ** Some specialized VFSes need this signal in order to operate correctly ** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most ** VFSes do not need this signal and should silently ignore this opcode. ** Applications should not call [sqlite3_file_control()] with this ** opcode as doing so may disrupt the operation of the specialized VFSes ** that do require it. ** ** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic ** retry counts and intervals for certain disk I/O operations for the ** windows [VFS] in order to work to provide robustness against ** anti-virus programs. By default, the windows VFS will retry file read, ** file write, and file delete opertions up to 10 times, with a delay ** of 25 milliseconds before the first retry and with the delay increasing ** by an additional 25 milliseconds with each subsequent retry. This ** opcode allows those to values (10 retries and 25 milliseconds of delay) ** to be adjusted. The values are changed for all database connections ** within the same process. The argument is a pointer to an array of two ** integers where the first integer i the new retry count and the second ** integer is the delay. If either integer is negative, then the setting ** is not changed but instead the prior value of that setting is written ** into the array entry, allowing the current retry settings to be ** interrogated. The zDbName parameter is ignored. ** ** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the ** persistent [WAL | Write AHead Log] setting. By default, the auxiliary ** write ahead log and shared memory files used for transaction control ** are automatically deleted when the latest connection to the database ** closes. Setting persistent WAL mode causes those files to persist after ** close. Persisting the files is useful when other processes that do not ** have write permission on the directory containing the database file want ** to read the database file, as the WAL and shared memory files must exist ** in order for the database to be readable. The fourth parameter to ** [sqlite3_file_control()] for this opcode should be a pointer to an integer. ** That integer is 0 to disable persistent WAL mode or 1 to enable persistent ** WAL mode. If the integer is -1, then it is overwritten with the current ** WAL persistence setting. ** */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_GET_LOCKPROXYFILE 2 #define SQLITE_SET_LOCKPROXYFILE 3 #define SQLITE_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 #define SQLITE_FCNTL_CHUNK_SIZE 6 #define SQLITE_FCNTL_FILE_POINTER 7 #define SQLITE_FCNTL_SYNC_OMITTED 8 #define SQLITE_FCNTL_WIN32_AV_RETRY 9 #define SQLITE_FCNTL_PERSIST_WAL 10 /* ** CAPI3REF: Mutex Handle ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks ** at the internal representation of an [sqlite3_mutex]. It only |
︙ | ︙ |
Changes to src/sqlite3ext.h.
︙ | ︙ | |||
208 209 210 211 212 213 214 215 216 217 218 219 220 221 | const char *(*sourceid)(void); int (*stmt_status)(sqlite3_stmt*,int,int); int (*strnicmp)(const char*,const char*,int); int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*); int (*wal_autocheckpoint)(sqlite3*,int); int (*wal_checkpoint)(sqlite3*,const char*); void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*); }; /* ** The following macros redefine the API routines so that they are ** redirected throught the global sqlite3_api structure. ** ** This header file is also used by the loadext.c source file | > > > | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | const char *(*sourceid)(void); int (*stmt_status)(sqlite3_stmt*,int,int); int (*strnicmp)(const char*,const char*,int); int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*); int (*wal_autocheckpoint)(sqlite3*,int); int (*wal_checkpoint)(sqlite3*,const char*); void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*); int (*blob_reopen)(sqlite3_blob*,sqlite3_int64); int (*vtab_config)(sqlite3*,int op,...); int (*vtab_on_conflict)(sqlite3*); }; /* ** The following macros redefine the API routines so that they are ** redirected throught the global sqlite3_api structure. ** ** This header file is also used by the loadext.c source file |
︙ | ︙ | |||
408 409 410 411 412 413 414 415 416 417 418 419 420 | #define sqlite3_sourceid sqlite3_api->sourceid #define sqlite3_stmt_status sqlite3_api->stmt_status #define sqlite3_strnicmp sqlite3_api->strnicmp #define sqlite3_unlock_notify sqlite3_api->unlock_notify #define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint #define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint #define sqlite3_wal_hook sqlite3_api->wal_hook #endif /* SQLITE_CORE */ #define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api = 0; #define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v; #endif /* _SQLITE3EXT_H_ */ | > > > | 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | #define sqlite3_sourceid sqlite3_api->sourceid #define sqlite3_stmt_status sqlite3_api->stmt_status #define sqlite3_strnicmp sqlite3_api->strnicmp #define sqlite3_unlock_notify sqlite3_api->unlock_notify #define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint #define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint #define sqlite3_wal_hook sqlite3_api->wal_hook #define sqlite3_blob_reopen sqlite3_api->blob_reopen #define sqlite3_vtab_config sqlite3_api->vtab_config #define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict #endif /* SQLITE_CORE */ #define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api = 0; #define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v; #endif /* _SQLITE3EXT_H_ */ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
962 963 964 965 966 967 968 969 970 971 972 973 974 975 | #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ #define SQLITE_IndexCover 0x10 /* Disable index covering table */ #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */ #define SQLITE_IdxRealAsInt 0x80 /* Store REAL as INT in indices */ #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ | > | 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 | #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ #define SQLITE_IndexCover 0x10 /* Disable index covering table */ #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */ #define SQLITE_IdxRealAsInt 0x80 /* Store REAL as INT in indices */ #define SQLITE_DistinctOpt 0x80 /* DISTINCT using indexes */ #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ |
︙ | ︙ | |||
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 | char *zName; /* Name of the table */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ Table *pTab; /* An SQL table corresponding to zName */ Select *pSelect; /* A SELECT statement used in place of a table name */ u8 isPopulated; /* Temporary table associated with SELECT is populated */ u8 jointype; /* Type of join between this able and the previous */ u8 notIndexed; /* True if there is a NOT INDEXED clause */ #ifndef SQLITE_OMIT_EXPLAIN u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ #endif int iCursor; /* The VDBE cursor number used to access this table */ Expr *pOn; /* The ON clause of a join */ IdList *pUsing; /* The USING clause of a join */ Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ | > | 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 | char *zName; /* Name of the table */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ Table *pTab; /* An SQL table corresponding to zName */ Select *pSelect; /* A SELECT statement used in place of a table name */ u8 isPopulated; /* Temporary table associated with SELECT is populated */ u8 jointype; /* Type of join between this able and the previous */ u8 notIndexed; /* True if there is a NOT INDEXED clause */ u8 isCorrelated; /* True if sub-query is correlated */ #ifndef SQLITE_OMIT_EXPLAIN u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ #endif int iCursor; /* The VDBE cursor number used to access this table */ Expr *pOn; /* The ON clause of a join */ IdList *pUsing; /* The USING clause of a join */ Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ |
︙ | ︙ | |||
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 | ** into the second half to give some continuity. */ struct WhereInfo { Parse *pParse; /* Parsing and code generating context */ u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ SrcList *pTabList; /* List of tables in the join */ int iTop; /* The very beginning of the WHERE loop */ int iContinue; /* Jump here to continue with next record */ int iBreak; /* Jump here to break out of the loop */ int nLevel; /* Number of nested loop */ struct WhereClause *pWC; /* Decomposition of the WHERE clause */ double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ double nRowOut; /* Estimated number of output rows */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; /* ** A NameContext defines a context in which to resolve table and column ** names. The context consists of a list of tables (the pSrcList) field and ** a list of named expression (pEList). The named expression list may ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or ** to the table being operated on by INSERT, UPDATE, or DELETE. The ** pEList corresponds to the result set of a SELECT and is NULL for | > > > > | 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 | ** into the second half to give some continuity. */ struct WhereInfo { Parse *pParse; /* Parsing and code generating context */ u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ u8 eDistinct; SrcList *pTabList; /* List of tables in the join */ int iTop; /* The very beginning of the WHERE loop */ int iContinue; /* Jump here to continue with next record */ int iBreak; /* Jump here to break out of the loop */ int nLevel; /* Number of nested loop */ struct WhereClause *pWC; /* Decomposition of the WHERE clause */ double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ double nRowOut; /* Estimated number of output rows */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; #define WHERE_DISTINCT_UNIQUE 1 #define WHERE_DISTINCT_ORDERED 2 /* ** A NameContext defines a context in which to resolve table and column ** names. The context consists of a list of tables (the pSrcList) field and ** a list of named expression (pEList). The named expression list may ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or ** to the table being operated on by INSERT, UPDATE, or DELETE. The ** pEList corresponds to the result set of a SELECT and is NULL for |
︙ | ︙ | |||
2744 2745 2746 2747 2748 2749 2750 | int sqlite3IsReadOnly(Parse*, Table*, int); void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); #endif void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); | | | 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 | int sqlite3IsReadOnly(Parse*, Table*, int); void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); #endif void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**,ExprList*,u16); void sqlite3WhereEnd(WhereInfo*); int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int); void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); void sqlite3ExprCodeMove(Parse*, int, int, int); void sqlite3ExprCodeCopy(Parse*, int, int, int); void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
103 104 105 106 107 108 109 110 111 112 113 114 115 116 | }; typedef struct IncrblobChannel IncrblobChannel; /* ** There is one instance of this structure for each SQLite database ** that has been opened by the SQLite TCL interface. */ typedef struct SqliteDb SqliteDb; struct SqliteDb { sqlite3 *db; /* The "real" database structure. MUST BE FIRST */ Tcl_Interp *interp; /* The interpreter used for this database */ char *zBusy; /* The busy callback routine */ char *zCommit; /* The commit hook callback routine */ | > > > > > | 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | }; typedef struct IncrblobChannel IncrblobChannel; /* ** There is one instance of this structure for each SQLite database ** that has been opened by the SQLite TCL interface. ** ** If this module is built with SQLITE_TEST defined (to create the SQLite ** testfixture executable), then it may be configured to use either ** sqlite3_prepare_v2() or sqlite3_prepare() to prepare SQL statements. ** If SqliteDb.bLegacyPrepare is true, sqlite3_prepare() is used. */ typedef struct SqliteDb SqliteDb; struct SqliteDb { sqlite3 *db; /* The "real" database structure. MUST BE FIRST */ Tcl_Interp *interp; /* The interpreter used for this database */ char *zBusy; /* The busy callback routine */ char *zCommit; /* The commit hook callback routine */ |
︙ | ︙ | |||
131 132 133 134 135 136 137 138 139 140 141 142 143 144 | SqlPreparedStmt *stmtList; /* List of prepared statements*/ SqlPreparedStmt *stmtLast; /* Last statement in the list */ int maxStmt; /* The next maximum number of stmtList */ int nStmt; /* Number of statements in stmtList */ IncrblobChannel *pIncrblob;/* Linked list of open incrblob channels */ int nStep, nSort, nIndex; /* Statistics for most recent operation */ int nTransaction; /* Number of nested [transaction] methods */ }; struct IncrblobChannel { sqlite3_blob *pBlob; /* sqlite3 blob handle */ SqliteDb *pDb; /* Associated database connection */ int iSeek; /* Current seek offset */ Tcl_Channel channel; /* Channel identifier */ | > > > | 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | SqlPreparedStmt *stmtList; /* List of prepared statements*/ SqlPreparedStmt *stmtLast; /* Last statement in the list */ int maxStmt; /* The next maximum number of stmtList */ int nStmt; /* Number of statements in stmtList */ IncrblobChannel *pIncrblob;/* Linked list of open incrblob channels */ int nStep, nSort, nIndex; /* Statistics for most recent operation */ int nTransaction; /* Number of nested [transaction] methods */ #ifdef SQLITE_TEST int bLegacyPrepare; /* True to use sqlite3_prepare() */ #endif }; struct IncrblobChannel { sqlite3_blob *pBlob; /* sqlite3 blob handle */ SqliteDb *pDb; /* Associated database connection */ int iSeek; /* Current seek offset */ Tcl_Channel channel; /* Channel identifier */ |
︙ | ︙ | |||
424 425 426 427 428 429 430 431 432 433 434 | } pNew->interp = pDb->interp; pNew->pScript = 0; pNew->pNext = pDb->pFunc; pDb->pFunc = pNew; return pNew; } /* ** Finalize and free a list of prepared statements */ | > > > > > > > > > > > > > | > < < | | | > | 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 | } pNew->interp = pDb->interp; pNew->pScript = 0; pNew->pNext = pDb->pFunc; pDb->pFunc = pNew; return pNew; } /* ** Free a single SqlPreparedStmt object. */ static void dbFreeStmt(SqlPreparedStmt *pStmt){ #ifdef SQLITE_TEST if( sqlite3_sql(pStmt->pStmt)==0 ){ Tcl_Free((char *)pStmt->zSql); } #endif sqlite3_finalize(pStmt->pStmt); Tcl_Free((char *)pStmt); } /* ** Finalize and free a list of prepared statements */ static void flushStmtCache(SqliteDb *pDb){ SqlPreparedStmt *pPreStmt; SqlPreparedStmt *pNext; for(pPreStmt = pDb->stmtList; pPreStmt; pPreStmt=pNext){ pNext = pPreStmt->pNext; dbFreeStmt(pPreStmt); } pDb->nStmt = 0; pDb->stmtLast = 0; pDb->stmtList = 0; } /* ** TCL calls this procedure when an sqlite3 database command is ** deleted. */ static void DbDeleteCmd(void *db){ |
︙ | ︙ | |||
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 | } sqlite3_exec(pDb->db, "ROLLBACK", 0, 0, 0); } pDb->disableAuth--; return rc; } /* ** Search the cache for a prepared-statement object that implements the ** first SQL statement in the buffer pointed to by parameter zIn. If ** no such prepared-statement can be found, allocate and prepare a new ** one. In either case, bind the current values of the relevant Tcl ** variables to any $var, :var or @var variables in the statement. Before | > > > > > > > > > > > > > > > > > > > > > | 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 | } sqlite3_exec(pDb->db, "ROLLBACK", 0, 0, 0); } pDb->disableAuth--; return rc; } /* ** Unless SQLITE_TEST is defined, this function is a simple wrapper around ** sqlite3_prepare_v2(). If SQLITE_TEST is defined, then it uses either ** sqlite3_prepare_v2() or legacy interface sqlite3_prepare(), depending ** on whether or not the [db_use_legacy_prepare] command has been used to ** configure the connection. */ static int dbPrepare( SqliteDb *pDb, /* Database object */ const char *zSql, /* SQL to compile */ sqlite3_stmt **ppStmt, /* OUT: Prepared statement */ const char **pzOut /* OUT: Pointer to next SQL statement */ ){ #ifdef SQLITE_TEST if( pDb->bLegacyPrepare ){ return sqlite3_prepare(pDb->db, zSql, -1, ppStmt, pzOut); } #endif return sqlite3_prepare_v2(pDb->db, zSql, -1, ppStmt, pzOut); } /* ** Search the cache for a prepared-statement object that implements the ** first SQL statement in the buffer pointed to by parameter zIn. If ** no such prepared-statement can be found, allocate and prepare a new ** one. In either case, bind the current values of the relevant Tcl ** variables to any $var, :var or @var variables in the statement. Before |
︙ | ︙ | |||
1096 1097 1098 1099 1100 1101 1102 | } /* If no prepared statement was found. Compile the SQL text. Also allocate ** a new SqlPreparedStmt structure. */ if( pPreStmt==0 ){ int nByte; | | | 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 | } /* If no prepared statement was found. Compile the SQL text. Also allocate ** a new SqlPreparedStmt structure. */ if( pPreStmt==0 ){ int nByte; if( SQLITE_OK!=dbPrepare(pDb, zSql, &pStmt, pzOut) ){ Tcl_SetObjResult(interp, dbTextToObj(sqlite3_errmsg(pDb->db))); return TCL_ERROR; } if( pStmt==0 ){ if( SQLITE_OK!=sqlite3_errcode(pDb->db) ){ /* A compile-time error in the statement. */ Tcl_SetObjResult(interp, dbTextToObj(sqlite3_errmsg(pDb->db))); |
︙ | ︙ | |||
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 | pPreStmt = (SqlPreparedStmt*)Tcl_Alloc(nByte); memset(pPreStmt, 0, nByte); pPreStmt->pStmt = pStmt; pPreStmt->nSql = (*pzOut - zSql); pPreStmt->zSql = sqlite3_sql(pStmt); pPreStmt->apParm = (Tcl_Obj **)&pPreStmt[1]; } assert( pPreStmt ); assert( strlen30(pPreStmt->zSql)==pPreStmt->nSql ); assert( 0==memcmp(pPreStmt->zSql, zSql, pPreStmt->nSql) ); /* Bind values to parameters that begin with $ or : */ for(i=1; i<=nVar; i++){ | > > > > > > > > | 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 | pPreStmt = (SqlPreparedStmt*)Tcl_Alloc(nByte); memset(pPreStmt, 0, nByte); pPreStmt->pStmt = pStmt; pPreStmt->nSql = (*pzOut - zSql); pPreStmt->zSql = sqlite3_sql(pStmt); pPreStmt->apParm = (Tcl_Obj **)&pPreStmt[1]; #ifdef SQLITE_TEST if( pPreStmt->zSql==0 ){ char *zCopy = Tcl_Alloc(pPreStmt->nSql + 1); memcpy(zCopy, zSql, pPreStmt->nSql); zCopy[pPreStmt->nSql] = '\0'; pPreStmt->zSql = zCopy; } #endif } assert( pPreStmt ); assert( strlen30(pPreStmt->zSql)==pPreStmt->nSql ); assert( 0==memcmp(pPreStmt->zSql, zSql, pPreStmt->nSql) ); /* Bind values to parameters that begin with $ or : */ for(i=1; i<=nVar; i++){ |
︙ | ︙ | |||
1176 1177 1178 1179 1180 1181 1182 | } pPreStmt->nParm = iParm; *ppPreStmt = pPreStmt; return TCL_OK; } | < | 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 | } pPreStmt->nParm = iParm; *ppPreStmt = pPreStmt; return TCL_OK; } /* ** Release a statement reference obtained by calling dbPrepareAndBind(). ** There should be exactly one call to this function for each call to ** dbPrepareAndBind(). ** ** If the discard parameter is non-zero, then the statement is deleted ** immediately. Otherwise it is added to the LRU list and may be returned |
︙ | ︙ | |||
1201 1202 1203 1204 1205 1206 1207 | for(i=0; i<pPreStmt->nParm; i++){ Tcl_DecrRefCount(pPreStmt->apParm[i]); } pPreStmt->nParm = 0; if( pDb->maxStmt<=0 || discard ){ /* If the cache is turned off, deallocated the statement */ | < | | | < > | 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 | for(i=0; i<pPreStmt->nParm; i++){ Tcl_DecrRefCount(pPreStmt->apParm[i]); } pPreStmt->nParm = 0; if( pDb->maxStmt<=0 || discard ){ /* If the cache is turned off, deallocated the statement */ dbFreeStmt(pPreStmt); }else{ /* Add the prepared statement to the beginning of the cache list. */ pPreStmt->pNext = pDb->stmtList; pPreStmt->pPrev = 0; if( pDb->stmtList ){ pDb->stmtList->pPrev = pPreStmt; } pDb->stmtList = pPreStmt; if( pDb->stmtLast==0 ){ assert( pDb->nStmt==0 ); pDb->stmtLast = pPreStmt; }else{ assert( pDb->nStmt>0 ); } pDb->nStmt++; /* If we have too many statement in cache, remove the surplus from ** the end of the cache list. */ while( pDb->nStmt>pDb->maxStmt ){ SqlPreparedStmt *pLast = pDb->stmtLast; pDb->stmtLast = pLast->pPrev; pDb->stmtLast->pNext = 0; pDb->nStmt--; dbFreeStmt(pLast); } } } /* ** Structure used with dbEvalXXX() functions: ** |
︙ | ︙ | |||
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 | ** A return value of TCL_OK means there is a row of data available. The ** data may be accessed using dbEvalRowInfo() and dbEvalColumnValue(). This ** is analogous to a return of SQLITE_ROW from sqlite3_step(). If TCL_BREAK ** is returned, then the SQL script has finished executing and there are ** no further rows available. This is similar to SQLITE_DONE. */ static int dbEvalStep(DbEvalContext *p){ while( p->zSql[0] || p->pPreStmt ){ int rc; if( p->pPreStmt==0 ){ rc = dbPrepareAndBind(p->pDb, p->zSql, &p->zSql, &p->pPreStmt); if( rc!=TCL_OK ) return rc; }else{ int rcs; SqliteDb *pDb = p->pDb; SqlPreparedStmt *pPreStmt = p->pPreStmt; sqlite3_stmt *pStmt = pPreStmt->pStmt; | > > > | 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 | ** A return value of TCL_OK means there is a row of data available. The ** data may be accessed using dbEvalRowInfo() and dbEvalColumnValue(). This ** is analogous to a return of SQLITE_ROW from sqlite3_step(). If TCL_BREAK ** is returned, then the SQL script has finished executing and there are ** no further rows available. This is similar to SQLITE_DONE. */ static int dbEvalStep(DbEvalContext *p){ const char *zPrevSql = 0; /* Previous value of p->zSql */ while( p->zSql[0] || p->pPreStmt ){ int rc; if( p->pPreStmt==0 ){ zPrevSql = (p->zSql==zPrevSql ? 0 : p->zSql); rc = dbPrepareAndBind(p->pDb, p->zSql, &p->zSql, &p->pPreStmt); if( rc!=TCL_OK ) return rc; }else{ int rcs; SqliteDb *pDb = p->pDb; SqlPreparedStmt *pPreStmt = p->pPreStmt; sqlite3_stmt *pStmt = pPreStmt->pStmt; |
︙ | ︙ | |||
1388 1389 1390 1391 1392 1393 1394 | pDb->nIndex = sqlite3_stmt_status(pStmt,SQLITE_STMTSTATUS_AUTOINDEX,1); dbReleaseColumnNames(p); p->pPreStmt = 0; if( rcs!=SQLITE_OK ){ /* If a run-time error occurs, report the error and stop reading ** the SQL. */ | < > > > > > > > > > > > > | 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 | pDb->nIndex = sqlite3_stmt_status(pStmt,SQLITE_STMTSTATUS_AUTOINDEX,1); dbReleaseColumnNames(p); p->pPreStmt = 0; if( rcs!=SQLITE_OK ){ /* If a run-time error occurs, report the error and stop reading ** the SQL. */ dbReleaseStmt(pDb, pPreStmt, 1); #if SQLITE_TEST if( p->pDb->bLegacyPrepare && rcs==SQLITE_SCHEMA && zPrevSql ){ /* If the runtime error was an SQLITE_SCHEMA, and the database ** handle is configured to use the legacy sqlite3_prepare() ** interface, retry prepare()/step() on the same SQL statement. ** This only happens once. If there is a second SQLITE_SCHEMA ** error, the error will be returned to the caller. */ p->zSql = zPrevSql; continue; } #endif Tcl_SetObjResult(pDb->interp, dbTextToObj(sqlite3_errmsg(pDb->db))); return TCL_ERROR; }else{ dbReleaseStmt(pDb, pPreStmt, 0); } } } |
︙ | ︙ | |||
2922 2923 2924 2925 2926 2927 2928 | if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR; if( b ){ flags |= SQLITE_OPEN_NOMUTEX; flags &= ~SQLITE_OPEN_FULLMUTEX; }else{ flags &= ~SQLITE_OPEN_NOMUTEX; } | | | 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 | if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR; if( b ){ flags |= SQLITE_OPEN_NOMUTEX; flags &= ~SQLITE_OPEN_FULLMUTEX; }else{ flags &= ~SQLITE_OPEN_NOMUTEX; } }else if( strcmp(zArg, "-fullmutex")==0 ){ int b; if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR; if( b ){ flags |= SQLITE_OPEN_FULLMUTEX; flags &= ~SQLITE_OPEN_NOMUTEX; }else{ flags &= ~SQLITE_OPEN_FULLMUTEX; |
︙ | ︙ | |||
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 | if( !slave ){ return TCL_ERROR; } init_all(slave); return TCL_OK; } #endif /* ** Configure the interpreter passed as the first argument to have access ** to the commands and linked variables that make up: ** ** * the [sqlite3] extension itself, | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 | if( !slave ){ return TCL_ERROR; } init_all(slave); return TCL_OK; } /* ** Tclcmd: db_use_legacy_prepare DB BOOLEAN ** ** The first argument to this command must be a database command created by ** [sqlite3]. If the second argument is true, then the handle is configured ** to use the sqlite3_prepare_v2() function to prepare statements. If it ** is false, sqlite3_prepare(). */ static int db_use_legacy_prepare_cmd( ClientData cd, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ Tcl_CmdInfo cmdInfo; SqliteDb *pDb; int bPrepare; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB BOOLEAN"); return TCL_ERROR; } if( !Tcl_GetCommandInfo(interp, Tcl_GetString(objv[1]), &cmdInfo) ){ Tcl_AppendResult(interp, "no such db: ", Tcl_GetString(objv[1]), (char*)0); return TCL_ERROR; } pDb = (SqliteDb*)cmdInfo.objClientData; if( Tcl_GetBooleanFromObj(interp, objv[2], &bPrepare) ){ return TCL_ERROR; } pDb->bLegacyPrepare = bPrepare; Tcl_ResetResult(interp); return TCL_OK; } #endif /* ** Configure the interpreter passed as the first argument to have access ** to the commands and linked variables that make up: ** ** * the [sqlite3] extension itself, |
︙ | ︙ | |||
3629 3630 3631 3632 3633 3634 3635 | Sqlitetestfuzzer_Init(interp); Sqlitetestwholenumber_Init(interp); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) Sqlitetestfts3_Init(interp); #endif | | > > > > > | 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 | Sqlitetestfuzzer_Init(interp); Sqlitetestwholenumber_Init(interp); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) Sqlitetestfts3_Init(interp); #endif Tcl_CreateObjCommand( interp, "load_testfixture_extensions", init_all_cmd, 0, 0 ); Tcl_CreateObjCommand( interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0 ); #ifdef SQLITE_SSE Sqlitetestsse_Init(interp); #endif } #endif } |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 | } #else Tcl_SetObjResult(interp, Tcl_NewIntObj(0)); #endif return TCL_OK; } /* ** tclcmd: sqlite3_vfs_list ** ** Return a tcl list containing the names of all registered vfs's. */ static int vfs_list( | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 | } #else Tcl_SetObjResult(interp, Tcl_NewIntObj(0)); #endif return TCL_OK; } /* ** tclcmd: file_control_win32_av_retry DB NRETRY DELAY ** ** This TCL command runs the sqlite3_file_control interface with ** the SQLITE_FCNTL_WIN32_AV_RETRY opcode. */ static int file_control_win32_av_retry( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; int rc; int a[2]; char z[100]; if( objc!=4 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetStringFromObj(objv[0], 0), " DB NRETRY DELAY", 0); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[2], &a[0]) ) return TCL_ERROR; if( Tcl_GetIntFromObj(interp, objv[3], &a[1]) ) return TCL_ERROR; rc = sqlite3_file_control(db, NULL, SQLITE_FCNTL_WIN32_AV_RETRY, (void*)a); sqlite3_snprintf(sizeof(z), z, "%d %d %d", rc, a[0], a[1]); Tcl_AppendResult(interp, z, (char*)0); return TCL_OK; } /* ** tclcmd: file_control_persist_wal DB PERSIST-FLAG ** ** This TCL command runs the sqlite3_file_control interface with ** the SQLITE_FCNTL_PERSIST_WAL opcode. */ static int file_control_persist_wal( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; int rc; int bPersist; char z[100]; if( objc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetStringFromObj(objv[0], 0), " DB FLAG", 0); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[2], &bPersist) ) return TCL_ERROR; rc = sqlite3_file_control(db, NULL, SQLITE_FCNTL_PERSIST_WAL, (void*)&bPersist); sqlite3_snprintf(sizeof(z), z, "%d %d", rc, bPersist); Tcl_AppendResult(interp, z, (char*)0); return TCL_OK; } /* ** tclcmd: sqlite3_vfs_list ** ** Return a tcl list containing the names of all registered vfs's. */ static int vfs_list( |
︙ | ︙ | |||
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 | } } Tcl_ResetResult(interp); return TCL_OK; } /* ** optimization_control DB OPT BOOLEAN ** ** Enable or disable query optimizations using the sqlite3_test_control() ** interface. Disable if BOOLEAN is false and enable if BOOLEAN is true. ** OPT is the name of the optimization to be disabled. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 | } } Tcl_ResetResult(interp); return TCL_OK; } #if SQLITE_OS_WIN /* ** Information passed from the main thread into the windows file locker ** background thread. */ struct win32FileLocker { HANDLE h; /* Handle of the file to be locked */ int delay1; /* Delay before locking */ int delay2; /* Delay before unlocking */ int ok; /* Finished ok */ int err; /* True if an error occurs */ }; #endif #if SQLITE_OS_WIN /* ** The background thread that does file locking. */ static void win32_file_locker(void *pAppData){ struct win32FileLocker *p = (struct win32FileLocker*)pAppData; if( p->delay1 ) Sleep(p->delay1); if( LockFile(p->h, 0, 0, 100000000, 0) ){ Sleep(p->delay2); UnlockFile(p->h, 0, 0, 100000000, 0); p->ok = 1; }else{ p->err = 1; } CloseHandle(p->h); p->h = 0; p->delay1 = 0; p->delay2 = 0; } #endif #if SQLITE_OS_WIN /* ** lock_win32_file FILENAME DELAY1 DELAY2 ** ** Get an exclusive manditory lock on file for DELAY2 milliseconds. ** Wait DELAY1 milliseconds before acquiring the lock. */ static int win32_file_lock( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ static struct win32FileLocker x = { 0, 0, 0 }; const char *zFilename; int retry = 0; if( objc!=4 && objc!=1 ){ Tcl_WrongNumArgs(interp, 1, objv, "FILENAME DELAY1 DELAY2"); return TCL_ERROR; } if( objc==1 ){ char zBuf[200]; sqlite3_snprintf(sizeof(zBuf), zBuf, "%d %d %d %d %d", x.ok, x.err, x.delay1, x.delay2, x.h); Tcl_AppendResult(interp, zBuf, (char*)0); return TCL_OK; } while( x.h && retry<30 ){ retry++; Sleep(100); } if( x.h ){ Tcl_AppendResult(interp, "busy", (char*)0); return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[2], &x.delay1) ) return TCL_ERROR; if( Tcl_GetIntFromObj(interp, objv[3], &x.delay2) ) return TCL_ERROR; zFilename = Tcl_GetString(objv[1]); x.h = CreateFile(zFilename, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, 0, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0); if( !x.h ){ Tcl_AppendResult(interp, "cannot open file: ", zFilename, (char*)0); return TCL_ERROR; } _beginthread(win32_file_locker, 0, (void*)&x); Sleep(0); return TCL_OK; } #endif /* ** optimization_control DB OPT BOOLEAN ** ** Enable or disable query optimizations using the sqlite3_test_control() ** interface. Disable if BOOLEAN is false and enable if BOOLEAN is true. ** OPT is the name of the optimization to be disabled. |
︙ | ︙ | |||
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 | { "sqlite3_extended_result_codes", test_extended_result_codes, 0}, { "sqlite3_limit", test_limit, 0}, { "save_prng_state", save_prng_state, 0 }, { "restore_prng_state", restore_prng_state, 0 }, { "reset_prng_state", reset_prng_state, 0 }, { "optimization_control", optimization_control,0}, { "tcl_objproc", runAsObjProc, 0 }, /* sqlite3_column_*() API */ { "sqlite3_column_count", test_column_count ,0 }, { "sqlite3_data_count", test_data_count ,0 }, { "sqlite3_column_type", test_column_type ,0 }, { "sqlite3_column_blob", test_column_blob ,0 }, | > > > | 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 | { "sqlite3_extended_result_codes", test_extended_result_codes, 0}, { "sqlite3_limit", test_limit, 0}, { "save_prng_state", save_prng_state, 0 }, { "restore_prng_state", restore_prng_state, 0 }, { "reset_prng_state", reset_prng_state, 0 }, { "optimization_control", optimization_control,0}, #if SQLITE_OS_WIN { "lock_win32_file", win32_file_lock, 0 }, #endif { "tcl_objproc", runAsObjProc, 0 }, /* sqlite3_column_*() API */ { "sqlite3_column_count", test_column_count ,0 }, { "sqlite3_data_count", test_data_count ,0 }, { "sqlite3_column_type", test_column_type ,0 }, { "sqlite3_column_blob", test_column_blob ,0 }, |
︙ | ︙ | |||
5989 5990 5991 5992 5993 5994 5995 | { "file_control_lasterrno_test", file_control_lasterrno_test, 0 }, { "file_control_lockproxy_test", file_control_lockproxy_test, 0 }, #ifdef __APPLE__ { "file_control_truncate_test", file_control_truncate_test, 0 }, { "file_control_replace_test", file_control_replace_test, 0 }, #endif { "file_control_chunksize_test", file_control_chunksize_test, 0 }, | | > > | 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 | { "file_control_lasterrno_test", file_control_lasterrno_test, 0 }, { "file_control_lockproxy_test", file_control_lockproxy_test, 0 }, #ifdef __APPLE__ { "file_control_truncate_test", file_control_truncate_test, 0 }, { "file_control_replace_test", file_control_replace_test, 0 }, #endif { "file_control_chunksize_test", file_control_chunksize_test, 0 }, { "file_control_sizehint_test", file_control_sizehint_test, 0 }, { "file_control_win32_av_retry", file_control_win32_av_retry, 0 }, { "file_control_persist_wal", file_control_persist_wal, 0 }, { "sqlite3_vfs_list", vfs_list, 0 }, { "sqlite3_create_function_v2", test_create_function_v2, 0 }, { "path_is_local", path_is_local, 0 }, { "path_is_dos", path_is_dos, 0 }, /* Functions from os.h */ #ifndef SQLITE_OMIT_UTF16 |
︙ | ︙ |
Changes to src/test_config.c.
︙ | ︙ | |||
593 594 595 596 597 598 599 600 601 602 603 604 605 606 | LINKVAR( MAX_LIKE_PATTERN_LENGTH ); LINKVAR( MAX_TRIGGER_DEPTH ); LINKVAR( DEFAULT_TEMP_CACHE_SIZE ); LINKVAR( DEFAULT_CACHE_SIZE ); LINKVAR( DEFAULT_PAGE_SIZE ); LINKVAR( DEFAULT_FILE_FORMAT ); LINKVAR( MAX_ATTACHED ); { static const int cv_TEMP_STORE = SQLITE_TEMP_STORE; Tcl_LinkVar(interp, "TEMP_STORE", (char *)&(cv_TEMP_STORE), TCL_LINK_INT | TCL_LINK_READ_ONLY); } } | > | 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | LINKVAR( MAX_LIKE_PATTERN_LENGTH ); LINKVAR( MAX_TRIGGER_DEPTH ); LINKVAR( DEFAULT_TEMP_CACHE_SIZE ); LINKVAR( DEFAULT_CACHE_SIZE ); LINKVAR( DEFAULT_PAGE_SIZE ); LINKVAR( DEFAULT_FILE_FORMAT ); LINKVAR( MAX_ATTACHED ); LINKVAR( MAX_DEFAULT_PAGE_SIZE ); { static const int cv_TEMP_STORE = SQLITE_TEMP_STORE; Tcl_LinkVar(interp, "TEMP_STORE", (char *)&(cv_TEMP_STORE), TCL_LINK_INT | TCL_LINK_READ_ONLY); } } |
︙ | ︙ |
Changes to src/test_multiplex.c.
︙ | ︙ | |||
41 42 43 44 45 46 47 48 49 50 51 52 53 54 | ** The multiplex VFS allows databases up to 32 GiB in size. But it splits ** the files up into 1 GiB pieces, so that they will work even on filesystems ** that do not support large files. */ #include "sqlite3.h" #include <string.h> #include <assert.h> #include "test_multiplex.h" #ifndef SQLITE_CORE #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ #endif #include "sqlite3ext.h" | > | 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | ** The multiplex VFS allows databases up to 32 GiB in size. But it splits ** the files up into 1 GiB pieces, so that they will work even on filesystems ** that do not support large files. */ #include "sqlite3.h" #include <string.h> #include <assert.h> #include <stdlib.h> #include "test_multiplex.h" #ifndef SQLITE_CORE #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ #endif #include "sqlite3ext.h" |
︙ | ︙ | |||
74 75 76 77 78 79 80 | #define sqlite3_mutex_held(X) ((void)(X),1) #define sqlite3_mutex_notheld(X) ((void)(X),1) #endif /* SQLITE_THREADSAFE==0 */ /************************ Shim Definitions ******************************/ | > | > | > | > > | > | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | #define sqlite3_mutex_held(X) ((void)(X),1) #define sqlite3_mutex_notheld(X) ((void)(X),1) #endif /* SQLITE_THREADSAFE==0 */ /************************ Shim Definitions ******************************/ #ifndef SQLITE_MULTIPLEX_VFS_NAME # define SQLITE_MULTIPLEX_VFS_NAME "multiplex" #endif /* This is the limit on the chunk size. It may be changed by calling ** the xFileControl() interface. It will be rounded up to a ** multiple of MAX_PAGE_SIZE. We default it here to 2GiB less 64KiB. */ #ifndef SQLITE_MULTIPLEX_CHUNK_SIZE # define SQLITE_MULTIPLEX_CHUNK_SIZE 2147418112 #endif /* Default limit on number of chunks. Care should be taken ** so that values for chunks numbers fit in the SQLITE_MULTIPLEX_EXT_FMT ** format specifier. It may be changed by calling ** the xFileControl() interface. */ #ifndef SQLITE_MULTIPLEX_MAX_CHUNKS # define SQLITE_MULTIPLEX_MAX_CHUNKS 32 #endif /* If SQLITE_MULTIPLEX_EXT_OVWR is defined, the ** last SQLITE_MULTIPLEX_EXT_SZ characters of the ** filename will be overwritten, otherwise, the ** multiplex extension is simply appended to the filename. ** Ex. (undefined) test.db -> test.db01 ** (defined) test.db -> test.01 |
︙ | ︙ | |||
115 116 117 118 119 120 121 | ** makeup a single SQLite DB file. This allows the size of the DB ** to exceed the limits imposed by the file system. ** ** There is an instance of the following object for each defined multiplex ** group. */ struct multiplexGroup { | > > > | | | < | 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | ** makeup a single SQLite DB file. This allows the size of the DB ** to exceed the limits imposed by the file system. ** ** There is an instance of the following object for each defined multiplex ** group. */ struct multiplexGroup { struct multiplexReal { /* For each chunk */ sqlite3_file *p; /* Handle for the chunk */ char *z; /* Name of this chunk */ } *aReal; /* list of all chunks */ int nReal; /* Number of chunks */ char *zName; /* Base filename of this group */ int nName; /* Length of base filename */ int flags; /* Flags used for original opening */ unsigned int szChunk; /* Chunk size used for this group */ int bEnabled; /* TRUE to use Multiplex VFS for this file */ multiplexGroup *pNext, *pPrev; /* Doubly linked list of all group objects */ }; /* ** An instance of the following object represents each open connection ** to a file that is multiplex'ed. This object is a |
︙ | ︙ | |||
180 181 182 183 184 185 186 | ** shim, the following mutex must be held. */ sqlite3_mutex *pMutex; /* List of multiplexGroup objects. */ multiplexGroup *pGroups; | < < < < < < | 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | ** shim, the following mutex must be held. */ sqlite3_mutex *pMutex; /* List of multiplexGroup objects. */ multiplexGroup *pGroups; } gMultiplex; /************************* Utility Routines *********************************/ /* ** Acquire and release the mutex used to serialize access to the ** list of multiplexGroups. */ |
︙ | ︙ | |||
261 262 263 264 265 266 267 | j = multiplexStrlen30(zBuf); if( (j + 8 + 1 + 3 + 1) <= nBuf ){ /* Make 3 attempts to generate a unique name. */ do { attempts++; sqlite3_randomness(8, &zBuf[j]); for(i=0; i<8; i++){ | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > | | | < | | < | < < | > > | | > | | | < | < | < < < | 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | j = multiplexStrlen30(zBuf); if( (j + 8 + 1 + 3 + 1) <= nBuf ){ /* Make 3 attempts to generate a unique name. */ do { attempts++; sqlite3_randomness(8, &zBuf[j]); for(i=0; i<8; i++){ unsigned char uc = (unsigned char)zBuf[j+i]; zBuf[j+i] = (char)zChars[uc%(sizeof(zChars)-1)]; } memcpy(&zBuf[j+i], ".tmp", 5); rc = pOrigVfs->xAccess(pOrigVfs, zBuf, SQLITE_ACCESS_EXISTS, &exists); } while ( (rc==SQLITE_OK) && exists && (attempts<3) ); if( rc==SQLITE_OK && exists ){ rc = SQLITE_ERROR; } } } return rc; } /* Compute the filename for the iChunk-th chunk */ static int multiplexSubFilename(multiplexGroup *pGroup, int iChunk){ if( iChunk>=pGroup->nReal ){ struct multiplexReal *p; p = sqlite3_realloc(pGroup->aReal, (iChunk+1)*sizeof(*p)); if( p==0 ){ return SQLITE_NOMEM; } memset(&p[pGroup->nReal], 0, sizeof(p[0])*(iChunk+1-pGroup->nReal)); pGroup->aReal = p; pGroup->nReal = iChunk+1; } if( pGroup->aReal[iChunk].z==0 ){ char *z; int n = pGroup->nName; pGroup->aReal[iChunk].z = z = sqlite3_malloc( n+3 ); if( z==0 ){ return SQLITE_NOMEM; } memcpy(z, pGroup->zName, n+1); if( iChunk>0 ){ #ifdef SQLITE_ENABLE_8_3_NAMES if( n>3 && z[n-3]=='.' ){ n--; }else if( n>4 && z[n-4]=='.' ){ n -= 2; } #endif sqlite3_snprintf(3,&z[n],"%02d",iChunk); } } return SQLITE_OK; } /* Translate an sqlite3_file* that is really a multiplexGroup* into ** the sqlite3_file* for the underlying original VFS. */ static sqlite3_file *multiplexSubOpen( multiplexGroup *pGroup, int iChunk, int *rc, int *pOutFlags ){ sqlite3_file *pSubOpen = 0; sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ *rc = multiplexSubFilename(pGroup, iChunk); if( (*rc)==SQLITE_OK && (pSubOpen = pGroup->aReal[iChunk].p)==0 ){ pSubOpen = sqlite3_malloc( pOrigVfs->szOsFile ); if( pSubOpen==0 ){ *rc = SQLITE_NOMEM; return 0; } pGroup->aReal[iChunk].p = pSubOpen; *rc = pOrigVfs->xOpen(pOrigVfs, pGroup->aReal[iChunk].z, pSubOpen, pGroup->flags, pOutFlags); if( *rc!=SQLITE_OK ){ sqlite3_free(pSubOpen); pGroup->aReal[iChunk].p = 0; return 0; } } return pSubOpen; } /* ** This is the implementation of the multiplex_control() SQL function. */ static void multiplexControlFunc( sqlite3_context *context, |
︙ | ︙ | |||
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | const sqlite3_api_routines *pApi ){ int rc; rc = sqlite3_create_function(db, "multiplex_control", 2, SQLITE_ANY, 0, multiplexControlFunc, 0, 0); return rc; } /************************* VFS Method Wrappers *****************************/ /* ** This is the xOpen method used for the "multiplex" VFS. ** ** Most of the work is done by the underlying original VFS. This method ** simply links the new file into the appropriate multiplex group if it is a ** file that needs to be tracked. */ static int multiplexOpen( sqlite3_vfs *pVfs, /* The multiplex VFS */ const char *zName, /* Name of file to be opened */ sqlite3_file *pConn, /* Fill in this file descriptor */ int flags, /* Flags to control the opening */ int *pOutFlags /* Flags showing results of opening */ ){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | < > > > > > > | < > | < < < | < < < < < < < | | | > | | > > | | < | < > | > > | > > > > > | > < < < > > | | > > > > > > > > > > > > > > > | | > > > > | < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < | 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 | const sqlite3_api_routines *pApi ){ int rc; rc = sqlite3_create_function(db, "multiplex_control", 2, SQLITE_ANY, 0, multiplexControlFunc, 0, 0); return rc; } /* ** Close a single sub-file in the connection group. */ static void multiplexSubClose( multiplexGroup *pGroup, int iChunk, sqlite3_vfs *pOrigVfs ){ sqlite3_file *pSubOpen = pGroup->aReal[iChunk].p; if( pSubOpen ){ pSubOpen->pMethods->xClose(pSubOpen); if( pOrigVfs ) pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); sqlite3_free(pGroup->aReal[iChunk].p); } sqlite3_free(pGroup->aReal[iChunk].z); memset(&pGroup->aReal[iChunk], 0, sizeof(pGroup->aReal[iChunk])); } /* ** Deallocate memory held by a multiplexGroup */ static void multiplexFreeComponents(multiplexGroup *pGroup){ int i; for(i=0; i<pGroup->nReal; i++){ multiplexSubClose(pGroup, i, 0); } sqlite3_free(pGroup->aReal); pGroup->aReal = 0; pGroup->nReal = 0; } /************************* VFS Method Wrappers *****************************/ /* ** This is the xOpen method used for the "multiplex" VFS. ** ** Most of the work is done by the underlying original VFS. This method ** simply links the new file into the appropriate multiplex group if it is a ** file that needs to be tracked. */ static int multiplexOpen( sqlite3_vfs *pVfs, /* The multiplex VFS */ const char *zName, /* Name of file to be opened */ sqlite3_file *pConn, /* Fill in this file descriptor */ int flags, /* Flags to control the opening */ int *pOutFlags /* Flags showing results of opening */ ){ int rc = SQLITE_OK; /* Result code */ multiplexConn *pMultiplexOpen; /* The new multiplex file descriptor */ multiplexGroup *pGroup; /* Corresponding multiplexGroup object */ sqlite3_file *pSubOpen = 0; /* Real file descriptor */ sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ int nName; int sz; char *zToFree = 0; UNUSED_PARAMETER(pVfs); memset(pConn, 0, pVfs->szOsFile); /* We need to create a group structure and manage ** access to this group of files. */ multiplexEnter(); pMultiplexOpen = (multiplexConn*)pConn; /* If the second argument to this function is NULL, generate a ** temporary file name to use. This will be handled by the ** original xOpen method. We just need to allocate space for ** it. */ if( !zName ){ zName = zToFree = sqlite3_malloc( pOrigVfs->mxPathname + 10 ); if( zName==0 ){ rc = SQLITE_NOMEM; }else{ rc = multiplexGetTempname(pOrigVfs, pOrigVfs->mxPathname, zToFree); } } if( rc==SQLITE_OK ){ /* allocate space for group */ nName = multiplexStrlen30(zName); sz = sizeof(multiplexGroup) /* multiplexGroup */ + nName + 1; /* zName */ pGroup = sqlite3_malloc( sz ); if( pGroup==0 ){ rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ /* assign pointers to extra space allocated */ char *p = (char *)&pGroup[1]; pMultiplexOpen->pGroup = pGroup; memset(pGroup, 0, sz); pGroup->bEnabled = -1; pGroup->szChunk = SQLITE_MULTIPLEX_CHUNK_SIZE; if( flags & SQLITE_OPEN_URI ){ const char *zChunkSize; zChunkSize = sqlite3_uri_parameter(zName, "chunksize"); if( zChunkSize ){ unsigned int n = 0; int i; for(i=0; zChunkSize[i]>='0' && zChunkSize[i]<='9'; i++){ n = n*10 + zChunkSize[i] - '0'; } if( n>0 ){ pGroup->szChunk = (n+0xffff)&~0xffff; }else{ /* A zero or negative chunksize disabled the multiplexor */ pGroup->bEnabled = 0; } } } pGroup->zName = p; /* save off base filename, name length, and original open flags */ memcpy(pGroup->zName, zName, nName+1); pGroup->nName = nName; pGroup->flags = flags; rc = multiplexSubFilename(pGroup, 1); if( rc==SQLITE_OK ){ pSubOpen = multiplexSubOpen(pGroup, 0, &rc, pOutFlags); } if( pSubOpen ){ int exists, rc2, rc3; sqlite3_int64 sz; rc2 = pSubOpen->pMethods->xFileSize(pSubOpen, &sz); if( rc2==SQLITE_OK ){ /* If the first overflow file exists and if the size of the main file ** is different from the chunk size, that means the chunk size is set ** set incorrectly. So fix it. ** ** Or, if the first overflow file does not exist and the main file is ** larger than the chunk size, that means the chunk size is too small. ** But we have no way of determining the intended chunk size, so ** just disable the multiplexor all togethre. */ rc3 = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[1].z, SQLITE_ACCESS_EXISTS, &exists); if( rc3==SQLITE_OK && exists && sz==(sz&0xffff0000) && sz>0 && sz!=pGroup->szChunk ){ pGroup->szChunk = sz; }else if( rc3==SQLITE_OK && !exists && sz>pGroup->szChunk ){ pGroup->bEnabled = 0; } } if( pSubOpen->pMethods->iVersion==1 ){ pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV1; }else{ pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV2; } /* place this group at the head of our list */ pGroup->pNext = gMultiplex.pGroups; if( gMultiplex.pGroups ) gMultiplex.pGroups->pPrev = pGroup; gMultiplex.pGroups = pGroup; }else{ multiplexFreeComponents(pGroup); sqlite3_free(pGroup); } } multiplexLeave(); sqlite3_free(zToFree); return rc; } /* ** This is the xDelete method used for the "multiplex" VFS. ** It attempts to delete the filename specified. */ static int multiplexDelete( sqlite3_vfs *pVfs, /* The multiplex VFS */ const char *zName, /* Name of file to delete */ int syncDir ){ sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ return pOrigVfs->xDelete(pOrigVfs, zName, syncDir); } static int multiplexAccess(sqlite3_vfs *a, const char *b, int c, int *d){ return gMultiplex.pOrigVfs->xAccess(gMultiplex.pOrigVfs, b, c, d); } static int multiplexFullPathname(sqlite3_vfs *a, const char *b, int c, char *d){ return gMultiplex.pOrigVfs->xFullPathname(gMultiplex.pOrigVfs, b, c, d); |
︙ | ︙ | |||
568 569 570 571 572 573 574 | ** The group structure for this file is unlinked from ** our list of groups and freed. */ static int multiplexClose(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; | < < < | < < < < < < | 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 | ** The group structure for this file is unlinked from ** our list of groups and freed. */ static int multiplexClose(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); multiplexFreeComponents(pGroup); /* remove from linked list */ if( pGroup->pNext ) pGroup->pNext->pPrev = pGroup->pPrev; if( pGroup->pPrev ){ pGroup->pPrev->pNext = pGroup->pNext; }else{ gMultiplex.pGroups = pGroup->pNext; } |
︙ | ︙ | |||
606 607 608 609 610 611 612 | sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ | | > > > | > | | | | > | 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL); if( pSubOpen==0 ){ rc = SQLITE_IOERR_READ; }else{ rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst); } }else{ while( iAmt > 0 ){ int i = (int)(iOfst / pGroup->szChunk); sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL); if( pSubOpen ){ int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk; if( extra<0 ) extra = 0; iAmt -= extra; rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst % pGroup->szChunk); if( rc!=SQLITE_OK ) break; pBuf = (char *)pBuf + iAmt; iOfst += iAmt; iAmt = extra; }else{ rc = SQLITE_IOERR_READ; break; |
︙ | ︙ | |||
646 647 648 649 650 651 652 | sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ | | > > > | > | | | > | > | 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 | sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL); if( pSubOpen==0 ){ rc = SQLITE_IOERR_WRITE; }else{ rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst); } }else{ while( iAmt > 0 ){ int i = (int)(iOfst / pGroup->szChunk); sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL); if( pSubOpen ){ int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk; if( extra<0 ) extra = 0; iAmt -= extra; rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst % pGroup->szChunk); if( rc!=SQLITE_OK ) break; pBuf = (char *)pBuf + iAmt; iOfst += iAmt; iAmt = extra; }else{ rc = SQLITE_IOERR_WRITE; break; |
︙ | ︙ | |||
681 682 683 684 685 686 687 | */ static int multiplexTruncate(sqlite3_file *pConn, sqlite3_int64 size){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ | | > > > | > < | < < < < < < < < < < < < < | < < < < | | | < < | > | > > > | > > | | < < < < < | | | < < < < < < < < < < | | | | | | | | < | | | | | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 | */ static int multiplexTruncate(sqlite3_file *pConn, sqlite3_int64 size){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexEnter(); if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL); if( pSubOpen==0 ){ rc = SQLITE_IOERR_TRUNCATE; }else{ rc = pSubOpen->pMethods->xTruncate(pSubOpen, size); } }else{ int rc2; int i; sqlite3_file *pSubOpen; sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ /* delete the chunks above the truncate limit */ for(i=(int)(size / pGroup->szChunk)+1; i<pGroup->nReal; i++){ multiplexSubClose(pGroup, i, pOrigVfs); } pSubOpen = multiplexSubOpen(pGroup, (int)(size/pGroup->szChunk), &rc2,0); if( pSubOpen ){ rc2 = pSubOpen->pMethods->xTruncate(pSubOpen, size % pGroup->szChunk); if( rc2!=SQLITE_OK ) rc = rc2; }else{ rc = SQLITE_IOERR_TRUNCATE; } } multiplexLeave(); return rc; } /* Pass xSync requests through to the original VFS without change */ static int multiplexSync(sqlite3_file *pConn, int flags){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; int i; multiplexEnter(); for(i=0; i<pGroup->nReal; i++){ sqlite3_file *pSubOpen = pGroup->aReal[i].p; if( pSubOpen ){ int rc2 = pSubOpen->pMethods->xSync(pSubOpen, flags); if( rc2!=SQLITE_OK ) rc = rc2; } } multiplexLeave(); return rc; } /* Pass xFileSize requests through to the original VFS. ** Aggregate the size of all the chunks before returning. */ static int multiplexFileSize(sqlite3_file *pConn, sqlite3_int64 *pSize){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; int rc2; int i; multiplexEnter(); if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL); if( pSubOpen==0 ){ rc = SQLITE_IOERR_FSTAT; }else{ rc = pSubOpen->pMethods->xFileSize(pSubOpen, pSize); } }else{ sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; *pSize = 0; for(i=0; 1; i++){ sqlite3_file *pSubOpen = 0; int exists = 0; rc = multiplexSubFilename(pGroup, i); if( rc ) break; rc2 = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[i].z, SQLITE_ACCESS_EXISTS, &exists); if( rc2==SQLITE_OK && exists){ /* if it exists, open it */ pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL); }else{ /* stop at first "gap" */ break; } if( pSubOpen ){ sqlite3_int64 sz; rc2 = pSubOpen->pMethods->xFileSize(pSubOpen, &sz); if( rc2!=SQLITE_OK ){ rc = rc2; }else{ if( sz>pGroup->szChunk ){ rc = SQLITE_IOERR_FSTAT; } *pSize += sz; } }else{ break; } } } multiplexLeave(); return rc; } /* Pass xLock requests through to the original VFS unchanged. */ static int multiplexLock(sqlite3_file *pConn, int lock){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ return pSubOpen->pMethods->xLock(pSubOpen, lock); } return SQLITE_BUSY; } /* Pass xUnlock requests through to the original VFS unchanged. */ static int multiplexUnlock(sqlite3_file *pConn, int lock){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ return pSubOpen->pMethods->xUnlock(pSubOpen, lock); } return SQLITE_IOERR_UNLOCK; } /* Pass xCheckReservedLock requests through to the original VFS unchanged. */ static int multiplexCheckReservedLock(sqlite3_file *pConn, int *pResOut){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut); } return SQLITE_IOERR_CHECKRESERVEDLOCK; } /* Pass xFileControl requests through to the original VFS unchanged, |
︙ | ︙ | |||
863 864 865 866 867 868 869 | int bEnabled = *(int *)pArg; pGroup->bEnabled = bEnabled; rc = SQLITE_OK; } break; case MULTIPLEX_CTRL_SET_CHUNK_SIZE: if( pArg ) { | | | | | | < < < < < < | < < | | | | | | | | | 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 | int bEnabled = *(int *)pArg; pGroup->bEnabled = bEnabled; rc = SQLITE_OK; } break; case MULTIPLEX_CTRL_SET_CHUNK_SIZE: if( pArg ) { unsigned int szChunk = *(unsigned*)pArg; if( szChunk<1 ){ rc = SQLITE_MISUSE; }else{ /* Round up to nearest multiple of MAX_PAGE_SIZE. */ szChunk = (szChunk + (MAX_PAGE_SIZE-1)); szChunk &= ~(MAX_PAGE_SIZE-1); pGroup->szChunk = szChunk; rc = SQLITE_OK; } } break; case MULTIPLEX_CTRL_SET_MAX_CHUNKS: rc = SQLITE_OK; break; case SQLITE_FCNTL_SIZE_HINT: case SQLITE_FCNTL_CHUNK_SIZE: /* no-op these */ rc = SQLITE_OK; break; default: pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL); if( pSubOpen ){ rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg); } break; } return rc; } /* Pass xSectorSize requests through to the original VFS unchanged. */ static int multiplexSectorSize(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ return pSubOpen->pMethods->xSectorSize(pSubOpen); } return DEFAULT_SECTOR_SIZE; } /* Pass xDeviceCharacteristics requests through to the original VFS unchanged. */ static int multiplexDeviceCharacteristics(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ return pSubOpen->pMethods->xDeviceCharacteristics(pSubOpen); } return 0; } /* Pass xShmMap requests through to the original VFS unchanged. */ static int multiplexShmMap( sqlite3_file *pConn, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int bExtend, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ return pSubOpen->pMethods->xShmMap(pSubOpen, iRegion, szRegion, bExtend,pp); } return SQLITE_IOERR; } /* Pass xShmLock requests through to the original VFS unchanged. */ static int multiplexShmLock( sqlite3_file *pConn, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ int flags /* What to do with the lock */ ){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ return pSubOpen->pMethods->xShmLock(pSubOpen, ofst, n, flags); } return SQLITE_BUSY; } /* Pass xShmBarrier requests through to the original VFS unchanged. */ static void multiplexShmBarrier(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ pSubOpen->pMethods->xShmBarrier(pSubOpen); } } /* Pass xShmUnmap requests through to the original VFS unchanged. */ static int multiplexShmUnmap(sqlite3_file *pConn, int deleteFlag){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL); if( pSubOpen ){ return pSubOpen->pMethods->xShmUnmap(pSubOpen, deleteFlag); } return SQLITE_OK; } /************************** Public Interfaces *****************************/ |
︙ | ︙ | |||
1006 1007 1008 1009 1010 1011 1012 | pOrigVfs = sqlite3_vfs_find(zOrigVfsName); if( pOrigVfs==0 ) return SQLITE_ERROR; assert( pOrigVfs!=&gMultiplex.sThisVfs ); gMultiplex.pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( !gMultiplex.pMutex ){ return SQLITE_NOMEM; } | < < < < < | 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 | pOrigVfs = sqlite3_vfs_find(zOrigVfsName); if( pOrigVfs==0 ) return SQLITE_ERROR; assert( pOrigVfs!=&gMultiplex.sThisVfs ); gMultiplex.pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( !gMultiplex.pMutex ){ return SQLITE_NOMEM; } gMultiplex.pGroups = NULL; gMultiplex.isInitialized = 1; gMultiplex.pOrigVfs = pOrigVfs; gMultiplex.sThisVfs = *pOrigVfs; gMultiplex.sThisVfs.szOsFile += sizeof(multiplexConn); gMultiplex.sThisVfs.zName = SQLITE_MULTIPLEX_VFS_NAME; gMultiplex.sThisVfs.xOpen = multiplexOpen; |
︙ | ︙ | |||
1043 1044 1045 1046 1047 1048 1049 | gMultiplex.sIoMethodsV1.xSync = multiplexSync; gMultiplex.sIoMethodsV1.xFileSize = multiplexFileSize; gMultiplex.sIoMethodsV1.xLock = multiplexLock; gMultiplex.sIoMethodsV1.xUnlock = multiplexUnlock; gMultiplex.sIoMethodsV1.xCheckReservedLock = multiplexCheckReservedLock; gMultiplex.sIoMethodsV1.xFileControl = multiplexFileControl; gMultiplex.sIoMethodsV1.xSectorSize = multiplexSectorSize; | | > | 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 | gMultiplex.sIoMethodsV1.xSync = multiplexSync; gMultiplex.sIoMethodsV1.xFileSize = multiplexFileSize; gMultiplex.sIoMethodsV1.xLock = multiplexLock; gMultiplex.sIoMethodsV1.xUnlock = multiplexUnlock; gMultiplex.sIoMethodsV1.xCheckReservedLock = multiplexCheckReservedLock; gMultiplex.sIoMethodsV1.xFileControl = multiplexFileControl; gMultiplex.sIoMethodsV1.xSectorSize = multiplexSectorSize; gMultiplex.sIoMethodsV1.xDeviceCharacteristics = multiplexDeviceCharacteristics; gMultiplex.sIoMethodsV2 = gMultiplex.sIoMethodsV1; gMultiplex.sIoMethodsV2.iVersion = 2; gMultiplex.sIoMethodsV2.xShmMap = multiplexShmMap; gMultiplex.sIoMethodsV2.xShmLock = multiplexShmLock; gMultiplex.sIoMethodsV2.xShmBarrier = multiplexShmBarrier; gMultiplex.sIoMethodsV2.xShmUnmap = multiplexShmUnmap; sqlite3_vfs_register(&gMultiplex.sThisVfs, makeDefault); |
︙ | ︙ | |||
1070 1071 1072 1073 1074 1075 1076 | ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while ** shutting down in order to free all remaining multiplex groups. */ int sqlite3_multiplex_shutdown(void){ if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE; if( gMultiplex.pGroups ) return SQLITE_MISUSE; gMultiplex.isInitialized = 0; | < | 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 | ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while ** shutting down in order to free all remaining multiplex groups. */ int sqlite3_multiplex_shutdown(void){ if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE; if( gMultiplex.pGroups ) return SQLITE_MISUSE; gMultiplex.isInitialized = 0; sqlite3_mutex_free(gMultiplex.pMutex); sqlite3_vfs_unregister(&gMultiplex.sThisVfs); memset(&gMultiplex, 0, sizeof(gMultiplex)); return SQLITE_OK; } /***************************** Test Code ***********************************/ |
︙ | ︙ | |||
1172 1173 1174 1175 1176 1177 1178 | Tcl_NewStringObj(pGroup->zName, -1)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(pGroup->nName)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(pGroup->flags)); /* count number of chunks with open handles */ | | | | | | 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 | Tcl_NewStringObj(pGroup->zName, -1)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(pGroup->nName)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(pGroup->flags)); /* count number of chunks with open handles */ for(i=0; i<pGroup->nReal; i++){ if( pGroup->aReal[i].p!=0 ) nChunks++; } Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(nChunks)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(pGroup->szChunk)); Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewIntObj(pGroup->nReal)); Tcl_ListObjAppendElement(interp, pResult, pGroupTerm); } multiplexLeave(); Tcl_SetObjResult(interp, pResult); return TCL_OK; } |
︙ | ︙ |
Changes to src/trigger.c.
︙ | ︙ | |||
113 114 115 116 117 118 119 120 121 122 123 124 125 | }else{ /* Figure out the db that the the trigger will be created in */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ){ goto trigger_cleanup; } } /* If the trigger name was unqualified, and the table is a temp table, ** then set iDb to 1 to create the trigger in the temporary database. ** If sqlite3SrcListLookup() returns 0, indicating the table does not ** exist, the error is caught by the block below. */ | > > > > > > > > > > > > > > > > < < < | 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | }else{ /* Figure out the db that the the trigger will be created in */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ){ goto trigger_cleanup; } } if( !pTableName || db->mallocFailed ){ goto trigger_cleanup; } /* A long-standing parser bug is that this syntax was allowed: ** ** CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab .... ** ^^^^^^^^ ** ** To maintain backwards compatibility, ignore the database ** name on pTableName if we are reparsing our of SQLITE_MASTER. */ if( db->init.busy && iDb!=1 ){ sqlite3DbFree(db, pTableName->a[0].zDatabase); pTableName->a[0].zDatabase = 0; } /* If the trigger name was unqualified, and the table is a temp table, ** then set iDb to 1 to create the trigger in the temporary database. ** If sqlite3SrcListLookup() returns 0, indicating the table does not ** exist, the error is caught by the block below. */ pTab = sqlite3SrcListLookup(pParse, pTableName); if( db->init.busy==0 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } /* Ensure the table name matches database name and that the table exists */ |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
307 308 309 310 311 312 313 | if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } /* Begin the database scan */ sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid); | | > > | 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } /* Begin the database scan */ sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid); pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED ); if( pWInfo==0 ) goto update_cleanup; okOnePass = pWInfo->okOnePass; /* Remember the rowid of every item to be updated. */ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid); if( !okOnePass ){ |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
1145 1146 1147 1148 1149 1150 1151 | if( x>=0 ) return x; if( x==(int)0x80000000 ) return 0x7fffffff; return -x; } #ifdef SQLITE_ENABLE_8_3_NAMES /* | | > > > > | > > | 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 | if( x>=0 ) return x; if( x==(int)0x80000000 ) return 0x7fffffff; return -x; } #ifdef SQLITE_ENABLE_8_3_NAMES /* ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than ** three characters, then shorten the suffix on z[] to be the last three ** characters of the original suffix. ** ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always ** do the suffix shortening regardless of URI parameter. ** ** Examples: ** ** test.db-journal => test.nal ** test.db-wal => test.wal ** test.db-shm => test.shm */ void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ #if SQLITE_ENABLE_8_3_NAMES<2 const char *zOk; zOk = sqlite3_uri_parameter(zBaseFilename, "8_3_names"); if( zOk && sqlite3GetBoolean(zOk) ) #endif { int i, sz; sz = sqlite3Strlen30(z); for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} if( z[i]=='.' && ALWAYS(sz>i+4) ) memcpy(&z[i+1], &z[sz-3], 4); } } #endif |
Changes to src/vdbe.c.
︙ | ︙ | |||
3168 3169 3170 3171 3172 3173 3174 | ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an BLOB_INTKEY table). */ if( pOp->p4.pKeyInfo ){ int pgno; assert( pOp->p4type==P4_KEYINFO ); | | | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 | ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an BLOB_INTKEY table). */ if( pOp->p4.pKeyInfo ){ int pgno; assert( pOp->p4type==P4_KEYINFO ); rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); if( rc==SQLITE_OK ){ assert( pgno==MASTER_ROOT+1 ); rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, (KeyInfo*)pOp->p4.z, pCx->pCursor); pCx->pKeyInfo = pOp->p4.pKeyInfo; pCx->pKeyInfo->enc = ENC(p->db); } |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
501 502 503 504 505 506 507 | } db = v->db; sqlite3_mutex_enter(db->mutex); while( (rc = sqlite3Step(v))==SQLITE_SCHEMA && cnt++ < SQLITE_MAX_SCHEMA_RETRY && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ sqlite3_reset(pStmt); | | | 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | } db = v->db; sqlite3_mutex_enter(db->mutex); while( (rc = sqlite3Step(v))==SQLITE_SCHEMA && cnt++ < SQLITE_MAX_SCHEMA_RETRY && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ sqlite3_reset(pStmt); assert( v->expired==0 ); } if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ /* This case occurs after failing to recompile an sql statement. ** The error message from the SQL compiler has already been loaded ** into the database handle. This block copies the error message ** from the database handle into the statement and sets the statement ** program counter to 0 to ensure that when the statement is |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 | p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); if( pParse->explain && nMem<10 ){ nMem = 10; } memset(zCsr, 0, zEnd-zCsr); zCsr += (zCsr - (u8*)0)&7; assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); /* Memory for registers, parameters, cursor, etc, is allocated in two ** passes. On the first pass, we try to reuse unused space at the ** end of the opcode array. If we are unable to satisfy all memory ** requirements by reusing the opcode array tail, then the second ** pass will fill in the rest using a fresh allocation. ** | > | 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 | p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); if( pParse->explain && nMem<10 ){ nMem = 10; } memset(zCsr, 0, zEnd-zCsr); zCsr += (zCsr - (u8*)0)&7; assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); p->expired = 0; /* Memory for registers, parameters, cursor, etc, is allocated in two ** passes. On the first pass, we try to reuse unused space at the ** end of the opcode array. If we are unable to satisfy all memory ** requirements by reusing the opcode array tail, then the second ** pass will fill in the rest using a fresh allocation. ** |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 | ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = sqlite3WalCheckpoint( pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 ); | > > | | 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 | ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ int bPersistWal = -1; if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = sqlite3WalCheckpoint( pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 ); sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersistWal); if( rc==SQLITE_OK && bPersistWal!=1 ){ isDelete = 1; } } walIndexClose(pWal, isDelete); sqlite3OsClose(pWal->pWalFd); if( isDelete ){ |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
249 250 251 252 253 254 255 256 257 258 259 260 261 262 | #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */ /* ** Initialize a preallocated WhereClause structure. */ static void whereClauseInit( WhereClause *pWC, /* The WhereClause to be initialized */ Parse *pParse, /* The parsing context */ | > | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */ #define WHERE_DISTINCT 0x40000000 /* Correct order for DISTINCT */ /* ** Initialize a preallocated WhereClause structure. */ static void whereClauseInit( WhereClause *pWC, /* The WhereClause to be initialized */ Parse *pParse, /* The parsing context */ |
︙ | ︙ | |||
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 | if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ return 1; } } return 0; } /* ** This routine decides if pIdx can be used to satisfy the ORDER BY ** clause. If it can, it returns 1. If pIdx cannot satisfy the ** ORDER BY clause, this routine returns 0. ** ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 | if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ return 1; } } return 0; } /* ** This function searches the expression list passed as the second argument ** for an expression of type TK_COLUMN that refers to the same column and ** uses the same collation sequence as the iCol'th column of index pIdx. ** Argument iBase is the cursor number used for the table that pIdx refers ** to. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. */ static int findIndexCol( Parse *pParse, /* Parse context */ ExprList *pList, /* Expression list to search */ int iBase, /* Cursor for table associated with pIdx */ Index *pIdx, /* Index to match column of */ int iCol /* Column of index to match */ ){ int i; const char *zColl = pIdx->azColl[iCol]; for(i=0; i<pList->nExpr; i++){ Expr *p = pList->a[i].pExpr; if( p->op==TK_COLUMN && p->iColumn==pIdx->aiColumn[iCol] && p->iTable==iBase ){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, p); if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ return i; } } } return -1; } /* ** This routine determines if pIdx can be used to assist in processing a ** DISTINCT qualifier. In other words, it tests whether or not using this ** index for the outer loop guarantees that rows with equal values for ** all expressions in the pDistinct list are delivered grouped together. ** ** For example, the query ** ** SELECT DISTINCT a, b, c FROM tbl WHERE a = ? ** ** can benefit from any index on columns "b" and "c". */ static int isDistinctIndex( Parse *pParse, /* Parsing context */ WhereClause *pWC, /* The WHERE clause */ Index *pIdx, /* The index being considered */ int base, /* Cursor number for the table pIdx is on */ ExprList *pDistinct, /* The DISTINCT expressions */ int nEqCol /* Number of index columns with == */ ){ Bitmask mask = 0; /* Mask of unaccounted for pDistinct exprs */ int i; /* Iterator variable */ if( pIdx->zName==0 || pDistinct==0 || pDistinct->nExpr>=BMS ) return 0; testcase( pDistinct->nExpr==BMS-1 ); /* Loop through all the expressions in the distinct list. If any of them ** are not simple column references, return early. Otherwise, test if the ** WHERE clause contains a "col=X" clause. If it does, the expression ** can be ignored. If it does not, and the column does not belong to the ** same table as index pIdx, return early. Finally, if there is no ** matching "col=X" expression and the column is on the same table as pIdx, ** set the corresponding bit in variable mask. */ for(i=0; i<pDistinct->nExpr; i++){ WhereTerm *pTerm; Expr *p = pDistinct->a[i].pExpr; if( p->op!=TK_COLUMN ) return 0; pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0); if( pTerm ){ Expr *pX = pTerm->pExpr; CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); CollSeq *p2 = sqlite3ExprCollSeq(pParse, p); if( p1==p2 ) continue; } if( p->iTable!=base ) return 0; mask |= (((Bitmask)1) << i); } for(i=nEqCol; mask && i<pIdx->nColumn; i++){ int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i); if( iExpr<0 ) break; mask &= ~(((Bitmask)1) << iExpr); } return (mask==0); } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. A DISTINCT list is redundant if the database contains a ** UNIQUE index that guarantees that the result of the query will be distinct ** anyway. */ static int isDistinctRedundant( Parse *pParse, SrcList *pTabList, WhereClause *pWC, ExprList *pDistinct ){ Table *pTab; Index *pIdx; int i; int iBase; /* If there is more than one table or sub-select in the FROM clause of ** this query, then it will not be possible to show that the DISTINCT ** clause is redundant. */ if( pTabList->nSrc!=1 ) return 0; iBase = pTabList->a[0].iCursor; pTab = pTabList->a[0].pTab; /* If any of the expressions is an IPK column on table iBase, then return ** true. Note: The (p->iTable==iBase) part of this test may be false if the ** current SELECT is a correlated sub-query. */ for(i=0; i<pDistinct->nExpr; i++){ Expr *p = pDistinct->a[i].pExpr; if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; } /* Loop through all indices on the table, checking each to see if it makes ** the DISTINCT qualifier redundant. It does so if: ** ** 1. The index is itself UNIQUE, and ** ** 2. All of the columns in the index are either part of the pDistinct ** list, or else the WHERE clause contains a term of the form "col=X", ** where X is a constant value. The collation sequences of the ** comparison and select-list expressions must match those of the index. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_None ) continue; for(i=0; i<pIdx->nColumn; i++){ int iCol = pIdx->aiColumn[i]; if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) && 0>findIndexCol(pParse, pDistinct, iBase, pIdx, i) ){ break; } } if( i==pIdx->nColumn ){ /* This index implies that the DISTINCT qualifier is redundant. */ return 1; } } return 0; } /* ** This routine decides if pIdx can be used to satisfy the ORDER BY ** clause. If it can, it returns 1. If pIdx cannot satisfy the ** ORDER BY clause, this routine returns 0. ** ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the |
︙ | ︙ | |||
1429 1430 1431 1432 1433 1434 1435 | ){ int i, j; /* Loop counters */ int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ int nTerm; /* Number of ORDER BY terms */ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ sqlite3 *db = pParse->db; | | > > > | 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 | ){ int i, j; /* Loop counters */ int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ int nTerm; /* Number of ORDER BY terms */ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ sqlite3 *db = pParse->db; if( !pOrderBy ) return 0; if( wsFlags & WHERE_COLUMN_IN ) return 0; if( pIdx->bUnordered ) return 0; nTerm = pOrderBy->nExpr; assert( nTerm>0 ); /* Argument pIdx must either point to a 'real' named index structure, ** or an index structure allocated on the stack by bestBtreeIndex() to ** represent the rowid index that is part of every table. */ assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); |
︙ | ︙ | |||
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 | double nTableRow; /* Rows in the input table */ double logN; /* log(nTableRow) */ double costTempIdx; /* per-query cost of the transient index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ Table *pTable; /* Table tht might be indexed */ if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ /* Automatic indices are disabled at run-time */ return; } if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){ /* We already have some kind of index in use for this query. */ return; } if( pSrc->notIndexed ){ /* The NOT INDEXED clause appears in the SQL. */ return; } assert( pParse->nQueryLoop >= (double)1 ); pTable = pSrc->pTab; nTableRow = pTable->nRowEst; logN = estLog(nTableRow); costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); | > > > > > > > > | 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 | double nTableRow; /* Rows in the input table */ double logN; /* log(nTableRow) */ double costTempIdx; /* per-query cost of the transient index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ Table *pTable; /* Table tht might be indexed */ if( pParse->nQueryLoop<=(double)1 ){ /* There is no point in building an automatic index for a single scan */ return; } if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ /* Automatic indices are disabled at run-time */ return; } if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){ /* We already have some kind of index in use for this query. */ return; } if( pSrc->notIndexed ){ /* The NOT INDEXED clause appears in the SQL. */ return; } if( pSrc->isCorrelated ){ /* The source is a correlated sub-query. No point in indexing it. */ return; } assert( pParse->nQueryLoop >= (double)1 ); pTable = pSrc->pTab; nTableRow = pTable->nRowEst; logN = estLog(nTableRow); costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); |
︙ | ︙ | |||
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 | ** to this virtual table */ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); testcase( pTerm->eOperator==WO_IN ); testcase( pTerm->eOperator==WO_ISNULL ); if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; nTerm++; } /* If the ORDER BY clause contains only columns in the current ** virtual table then allocate space for the aOrderBy part of ** the sqlite3_index_info structure. */ | > | 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 | ** to this virtual table */ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); testcase( pTerm->eOperator==WO_IN ); testcase( pTerm->eOperator==WO_ISNULL ); if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; nTerm++; } /* If the ORDER BY clause contains only columns in the current ** virtual table then allocate space for the aOrderBy part of ** the sqlite3_index_info structure. */ |
︙ | ︙ | |||
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 | for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); testcase( pTerm->eOperator==WO_IN ); testcase( pTerm->eOperator==WO_ISNULL ); if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; pIdxCons[j].iColumn = pTerm->u.leftColumn; pIdxCons[j].iTermOffset = i; pIdxCons[j].op = (u8)pTerm->eOperator; /* The direct assignment in the previous line is possible only because ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The ** following asserts verify this fact. */ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); | > | 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 | for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); testcase( pTerm->eOperator==WO_IN ); testcase( pTerm->eOperator==WO_ISNULL ); if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; pIdxCons[j].iColumn = pTerm->u.leftColumn; pIdxCons[j].iTermOffset = i; pIdxCons[j].op = (u8)pTerm->eOperator; /* The direct assignment in the previous line is possible only because ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The ** following asserts verify this fact. */ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
︙ | ︙ | |||
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 | static void bestBtreeIndex( Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ struct SrcList_item *pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors not available for indexing */ Bitmask notValid, /* Cursors not available for any purpose */ ExprList *pOrderBy, /* The ORDER BY clause */ WhereCost *pCost /* Lowest cost query plan */ ){ int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ Index *pProbe; /* An index we are evaluating */ Index *pIdx; /* Copy of pProbe, or zero for IPK index */ int eqTermMask; /* Current mask of valid equality operators */ int idxEqTermMask; /* Index mask of valid equality operators */ | > | 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 | static void bestBtreeIndex( Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ struct SrcList_item *pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors not available for indexing */ Bitmask notValid, /* Cursors not available for any purpose */ ExprList *pOrderBy, /* The ORDER BY clause */ ExprList *pDistinct, /* The select-list if query is DISTINCT */ WhereCost *pCost /* Lowest cost query plan */ ){ int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ Index *pProbe; /* An index we are evaluating */ Index *pIdx; /* Copy of pProbe, or zero for IPK index */ int eqTermMask; /* Current mask of valid equality operators */ int idxEqTermMask; /* Index mask of valid equality operators */ |
︙ | ︙ | |||
2825 2826 2827 2828 2829 2830 2831 | ** SELECT a, b, c FROM tbl WHERE a = 1; */ int nEq; /* Number of == or IN terms matching index */ int bInEst = 0; /* True if "x IN (SELECT...)" seen */ int nInMul = 1; /* Number of distinct equalities to lookup */ int estBound = 100; /* Estimated reduction in search space */ int nBound = 0; /* Number of range constraints seen */ | | > | 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 | ** SELECT a, b, c FROM tbl WHERE a = 1; */ int nEq; /* Number of == or IN terms matching index */ int bInEst = 0; /* True if "x IN (SELECT...)" seen */ int nInMul = 1; /* Number of distinct equalities to lookup */ int estBound = 100; /* Estimated reduction in search space */ int nBound = 0; /* Number of range constraints seen */ int bSort = !!pOrderBy; /* True if external sort required */ int bDist = !!pDistinct; /* True if index cannot help with DISTINCT */ int bLookup = 0; /* True if not a covering index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ #ifdef SQLITE_ENABLE_STAT2 WhereTerm *pFirstTerm = 0; /* First term matching the index */ #endif /* Determine the values of nEq and nInMul */ |
︙ | ︙ | |||
2889 2890 2891 2892 2893 2894 2895 | } } /* If there is an ORDER BY clause and the index being considered will ** naturally scan rows in the required order, set the appropriate flags ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index ** will scan rows in a different order, set the bSort variable. */ | | < < | < | > | | < < | > > > > > > > | 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 | } } /* If there is an ORDER BY clause and the index being considered will ** naturally scan rows in the required order, set the appropriate flags ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index ** will scan rows in a different order, set the bSort variable. */ if( isSortingIndex( pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, nEq, wsFlags, &rev) ){ bSort = 0; wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; wsFlags |= (rev ? WHERE_REVERSE : 0); } /* If there is a DISTINCT qualifier and this index will scan rows in ** order of the DISTINCT expressions, clear bDist and set the appropriate ** flags in wsFlags. */ if( isDistinctIndex(pParse, pWC, pProbe, iCur, pDistinct, nEq) ){ bDist = 0; wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT; } /* If currently calculating the cost of using an index (not the IPK ** index), determine if all required column data may be obtained without ** using the main table (i.e. if the index is a covering ** index for this query). If it is, set the WHERE_IDX_ONLY flag in ** wsFlags. Otherwise, set the bLookup variable to true. */ |
︙ | ︙ | |||
2934 2935 2936 2937 2938 2939 2940 | nRow = (double)(aiRowEst[nEq] * nInMul); if( bInEst && nRow*2>aiRowEst[0] ){ nRow = aiRowEst[0]/2; nInMul = (int)(nRow / aiRowEst[nEq]); } #ifdef SQLITE_ENABLE_STAT2 | | > | | 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 | nRow = (double)(aiRowEst[nEq] * nInMul); if( bInEst && nRow*2>aiRowEst[0] ){ nRow = aiRowEst[0]/2; nInMul = (int)(nRow / aiRowEst[nEq]); } #ifdef SQLITE_ENABLE_STAT2 /* If the constraint is of the form x=VALUE or x IN (E1,E2,...) ** and we do not think that values of x are unique and if histogram ** data is available for column x, then it might be possible ** to get a better estimate on the number of rows based on ** VALUE and how common that value is according to the histogram. */ if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){ if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ testcase( pFirstTerm->eOperator==WO_EQ ); testcase( pFirstTerm->eOperator==WO_ISNULL ); whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow); }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){ whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow); } |
︙ | ︙ | |||
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 | ** adds C*N*log10(N) to the cost, where N is the number of rows to be ** sorted and C is a factor between 1.95 and 4.3. We will split the ** difference and select C of 3.0. */ if( bSort ){ cost += nRow*estLog(nRow)*3; } /**** Cost of using this index has now been computed ****/ /* If there are additional constraints on this table that cannot ** be used with the current index, but which might lower the number ** of output rows, adjust the nRow value accordingly. This only ** matters if the current index is the least costly, so do not bother | > > > | 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 | ** adds C*N*log10(N) to the cost, where N is the number of rows to be ** sorted and C is a factor between 1.95 and 4.3. We will split the ** difference and select C of 3.0. */ if( bSort ){ cost += nRow*estLog(nRow)*3; } if( bDist ){ cost += nRow*estLog(nRow)*3; } /**** Cost of using this index has now been computed ****/ /* If there are additional constraints on this table that cannot ** be used with the current index, but which might lower the number ** of output rows, adjust the nRow value accordingly. This only ** matters if the current index is the least costly, so do not bother |
︙ | ︙ | |||
3161 3162 3163 3164 3165 3166 3167 | if( p->needToFreeIdxStr ){ sqlite3_free(p->idxStr); } sqlite3DbFree(pParse->db, p); }else #endif { | | | 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 | if( p->needToFreeIdxStr ){ sqlite3_free(p->idxStr); } sqlite3DbFree(pParse->db, p); }else #endif { bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, 0, pCost); } } /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON ** or USING clause of that join. |
︙ | ︙ | |||
4123 4124 4125 4126 4127 4128 4129 | iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ /* Loop through table entries that match term pOrTerm. */ | | | 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 | iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ /* Loop through table entries that match term pOrTerm. */ pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0, 0, WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY); if( pSubWInfo ){ explainOneScan( pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 ); if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
︙ | ︙ | |||
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 | ** output order, then the *ppOrderBy is unchanged. */ WhereInfo *sqlite3WhereBegin( Parse *pParse, /* The parser context */ SrcList *pTabList, /* A list of all tables to be scanned */ Expr *pWhere, /* The WHERE clause */ ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ ){ int i; /* Loop counter */ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ int nTabList; /* Number of elements in pTabList */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ | > | 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 | ** output order, then the *ppOrderBy is unchanged. */ WhereInfo *sqlite3WhereBegin( Parse *pParse, /* The parser context */ SrcList *pTabList, /* A list of all tables to be scanned */ Expr *pWhere, /* The WHERE clause */ ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ ExprList *pDistinct, /* The select-list for DISTINCT queries - or NULL */ u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ ){ int i; /* Loop counter */ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ int nTabList; /* Number of elements in pTabList */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
︙ | ︙ | |||
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 | pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; pWInfo->iBreak = sqlite3VdbeMakeLabel(v); pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; pWInfo->wctrlFlags = wctrlFlags; pWInfo->savedNQueryLoop = pParse->nQueryLoop; pMaskSet = (WhereMaskSet*)&pWC[1]; /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(pWC, pParse, pMaskSet); sqlite3ExprCodeConstants(pParse, pWhere); | > > > > | 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 | pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; pWInfo->iBreak = sqlite3VdbeMakeLabel(v); pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; pWInfo->wctrlFlags = wctrlFlags; pWInfo->savedNQueryLoop = pParse->nQueryLoop; pMaskSet = (WhereMaskSet*)&pWC[1]; /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ if( db->flags & SQLITE_DistinctOpt ) pDistinct = 0; /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(pWC, pParse, pMaskSet); sqlite3ExprCodeConstants(pParse, pWhere); |
︙ | ︙ | |||
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 | ** want to analyze these virtual terms, so start analyzing at the end ** and work forward so that the added virtual terms are never processed. */ exprAnalyzeAll(pTabList, pWC); if( db->mallocFailed ){ goto whereBeginError; } /* Chose the best index to use for each table in the FROM clause. ** ** This loop fills in the following fields: ** ** pWInfo->a[].pIdx The index to use for this level of the loop. ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx | > > > > > > > > > | 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 | ** want to analyze these virtual terms, so start analyzing at the end ** and work forward so that the added virtual terms are never processed. */ exprAnalyzeAll(pTabList, pWC); if( db->mallocFailed ){ goto whereBeginError; } /* Check if the DISTINCT qualifier, if there is one, is redundant. ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT. */ if( pDistinct && isDistinctRedundant(pParse, pTabList, pWC, pDistinct) ){ pDistinct = 0; pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } /* Chose the best index to use for each table in the FROM clause. ** ** This loop fills in the following fields: ** ** pWInfo->a[].pIdx The index to use for this level of the loop. ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx |
︙ | ︙ | |||
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 | notIndexed = 0; for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){ Bitmask mask; /* Mask of tables not yet ready */ for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ int doNotReorder; /* True if this table should not be reordered */ WhereCost sCost; /* Cost information from best[Virtual]Index() */ ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; if( j!=iFrom && doNotReorder ) break; m = getMask(pMaskSet, pTabItem->iCursor); if( (m & notReady)==0 ){ if( j==iFrom ) iFrom++; continue; } mask = (isOptimal ? m : notReady); pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); if( pTabItem->pIndex==0 ) nUnconstrained++; WHERETRACE(("=== trying table %d with isOptimal=%d ===\n", j, isOptimal)); assert( pTabItem->pTab ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTabItem->pTab) ){ sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, &sCost, pp); }else #endif { bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, | > > | | 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 | notIndexed = 0; for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){ Bitmask mask; /* Mask of tables not yet ready */ for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ int doNotReorder; /* True if this table should not be reordered */ WhereCost sCost; /* Cost information from best[Virtual]Index() */ ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ ExprList *pDist; /* DISTINCT clause for index to optimize */ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; if( j!=iFrom && doNotReorder ) break; m = getMask(pMaskSet, pTabItem->iCursor); if( (m & notReady)==0 ){ if( j==iFrom ) iFrom++; continue; } mask = (isOptimal ? m : notReady); pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); pDist = (i==0 ? pDistinct : 0); if( pTabItem->pIndex==0 ) nUnconstrained++; WHERETRACE(("=== trying table %d with isOptimal=%d ===\n", j, isOptimal)); assert( pTabItem->pTab ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTabItem->pTab) ){ sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, &sCost, pp); }else #endif { bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, pDist, &sCost); } assert( isOptimal || (sCost.used¬Ready)==0 ); /* If an INDEXED BY clause is present, then the plan must use that ** index if it uses any index at all */ assert( pTabItem->pIndex==0 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 |
︙ | ︙ | |||
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 | assert( bestJ>=0 ); assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); WHERETRACE(("*** Optimizer selects table %d for loop %d" " with cost=%g and nRow=%g\n", bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow)); if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ *ppOrderBy = 0; } andFlags &= bestPlan.plan.wsFlags; pLevel->plan = bestPlan.plan; testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ pLevel->iIdxCur = pParse->nTab++; | > > > > | 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 | assert( bestJ>=0 ); assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); WHERETRACE(("*** Optimizer selects table %d for loop %d" " with cost=%g and nRow=%g\n", bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow)); if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ *ppOrderBy = 0; } if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){ assert( pWInfo->eDistinct==0 ); pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; } andFlags &= bestPlan.plan.wsFlags; pLevel->plan = bestPlan.plan; testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ pLevel->iIdxCur = pParse->nTab++; |
︙ | ︙ |
Changes to test/all.test.
︙ | ︙ | |||
34 35 36 37 38 39 40 41 42 43 44 45 46 47 | run_test_suite journaltest run_test_suite inmemory_journal run_test_suite pcache0 run_test_suite pcache10 run_test_suite pcache50 run_test_suite pcache90 run_test_suite pcache100 if {$::tcl_platform(platform)=="unix"} { ifcapable !default_autovacuum { run_test_suite autovacuum_crash } } | > | 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | run_test_suite journaltest run_test_suite inmemory_journal run_test_suite pcache0 run_test_suite pcache10 run_test_suite pcache50 run_test_suite pcache90 run_test_suite pcache100 run_test_suite prepare if {$::tcl_platform(platform)=="unix"} { ifcapable !default_autovacuum { run_test_suite autovacuum_crash } } |
︙ | ︙ |
Changes to test/alter2.test.
︙ | ︙ | |||
133 134 135 136 137 138 139 140 141 142 143 144 145 146 | execsql { SELECT sum(a), c FROM abc GROUP BY c; } } {8 {} 1 10} do_test alter2-1.9 { # ALTER TABLE abc ADD COLUMN d; alter_table abc {CREATE TABLE abc(a, b, c, d);} execsql { SELECT * FROM abc; } execsql { UPDATE abc SET d = 11 WHERE c IS NULL AND a<4; SELECT * FROM abc; } } {1 2 10 {} 3 4 {} 11 5 6 {} {}} do_test alter2-1.10 { | > | 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | execsql { SELECT sum(a), c FROM abc GROUP BY c; } } {8 {} 1 10} do_test alter2-1.9 { # ALTER TABLE abc ADD COLUMN d; alter_table abc {CREATE TABLE abc(a, b, c, d);} if {[permutation] == "prepare"} { db cache flush } execsql { SELECT * FROM abc; } execsql { UPDATE abc SET d = 11 WHERE c IS NULL AND a<4; SELECT * FROM abc; } } {1 2 10 {} 3 4 {} 11 5 6 {} {}} do_test alter2-1.10 { |
︙ | ︙ |
Changes to test/autoindex1.test.
︙ | ︙ | |||
243 244 245 246 247 248 249 250 251 | 1 0 0 {SCAN TABLE sheep AS s (~1000000 rows)} 1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?) (~2 rows)} 1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?) (~1 rows)} 0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index (~1000000 rows)} 0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?) (~8 rows)} } finish_test | > > > > > > > > > > | 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | 1 0 0 {SCAN TABLE sheep AS s (~1000000 rows)} 1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?) (~2 rows)} 1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?) (~1 rows)} 0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index (~1000000 rows)} 0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?) (~8 rows)} } do_execsql_test autoindex1-700 { CREATE TABLE t5(a, b, c); EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c; } { 0 0 0 {SCAN TABLE t5 (~100000 rows)} 0 0 0 {USE TEMP B-TREE FOR ORDER BY} } finish_test |
Changes to test/collate5.test.
︙ | ︙ | |||
53 54 55 56 57 58 59 | INSERT INTO collate5t1 VALUES('N', NULL); } } {} do_test collate5-1.1 { execsql { SELECT DISTINCT a FROM collate5t1; } | | | | | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | INSERT INTO collate5t1 VALUES('N', NULL); } } {} do_test collate5-1.1 { execsql { SELECT DISTINCT a FROM collate5t1; } } {a b n} do_test collate5-1.2 { execsql { SELECT DISTINCT b FROM collate5t1; } } {apple Apple banana {}} do_test collate5-1.3 { execsql { SELECT DISTINCT a, b FROM collate5t1; } } {a apple A Apple b banana n {}} # Ticket #3376 # do_test collate5-1.11 { execsql { CREATE TABLE tkt3376(a COLLATE nocase PRIMARY KEY); INSERT INTO tkt3376 VALUES('abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz'); |
︙ | ︙ |
Added test/distinct.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | # 2011 July 1 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is the DISTINCT modifier. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix distinct proc is_distinct_noop {sql} { set sql1 $sql set sql2 [string map {DISTINCT ""} $sql] set program1 [list] set program2 [list] db eval "EXPLAIN $sql1" { if {$opcode != "Noop"} { lappend program1 $opcode } } db eval "EXPLAIN $sql2" { if {$opcode != "Noop"} { lappend program2 $opcode } } return [expr {$program1==$program2}] } proc do_distinct_noop_test {tn sql} { uplevel [list do_test $tn [list is_distinct_noop $sql] 1] } proc do_distinct_not_noop_test {tn sql} { uplevel [list do_test $tn [list is_distinct_noop $sql] 0] } proc do_temptables_test {tn sql temptables} { uplevel [list do_test $tn [subst -novar { set ret "" db eval "EXPLAIN [set sql]" { if {$opcode == "OpenEphemeral"} { if {$p5 != "10" && $p5!="00"} { error "p5 = $p5" } if {$p5 == "10"} { lappend ret hash } else { lappend ret btree } } } set ret }] $temptables] } #------------------------------------------------------------------------- # The following tests - distinct-1.* - check that the planner correctly # detects cases where a UNIQUE index means that a DISTINCT clause is # redundant. Currently the planner only detects such cases when there # is a single table in the FROM clause. # do_execsql_test 1.0 { CREATE TABLE t1(a, b, c, d); CREATE UNIQUE INDEX i1 ON t1(b, c); CREATE UNIQUE INDEX i2 ON t1(d COLLATE nocase); CREATE TABLE t2(x INTEGER PRIMARY KEY, y); CREATE TABLE t3(c1 PRIMARY KEY, c2); CREATE INDEX i3 ON t3(c2); } foreach {tn noop sql} { 1 1 "SELECT DISTINCT b, c FROM t1" 2 1 "SELECT DISTINCT c FROM t1 WHERE b = ?" 3 1 "SELECT DISTINCT rowid FROM t1" 4 1 "SELECT DISTINCT rowid, a FROM t1" 5 1 "SELECT DISTINCT x FROM t2" 6 1 "SELECT DISTINCT * FROM t2" 7 1 "SELECT DISTINCT * FROM (SELECT * FROM t2)" 8 1 "SELECT DISTINCT * FROM t1" 8 0 "SELECT DISTINCT a, b FROM t1" 9 0 "SELECT DISTINCT c FROM t1 WHERE b IN (1,2)" 10 0 "SELECT DISTINCT c FROM t1" 11 0 "SELECT DISTINCT b FROM t1" 12 0 "SELECT DISTINCT a, d FROM t1" 13 0 "SELECT DISTINCT a, b, c COLLATE nocase FROM t1" 14 1 "SELECT DISTINCT a, d COLLATE nocase FROM t1" 15 0 "SELECT DISTINCT a, d COLLATE binary FROM t1" 16 1 "SELECT DISTINCT a, b, c COLLATE binary FROM t1" 16 0 "SELECT DISTINCT t1.rowid FROM t1, t2" 17 0 { /* Technically, it would be possible to detect that DISTINCT ** is a no-op in cases like the following. But SQLite does not ** do so. */ SELECT DISTINCT t1.rowid FROM t1, t2 WHERE t1.rowid=t2.rowid } 18 1 "SELECT DISTINCT c1, c2 FROM t3" 19 1 "SELECT DISTINCT c1 FROM t3" 20 1 "SELECT DISTINCT * FROM t3" 21 0 "SELECT DISTINCT c2 FROM t3" 22 0 "SELECT DISTINCT * FROM (SELECT 1, 2, 3 UNION SELECT 4, 5, 6)" 23 1 "SELECT DISTINCT rowid FROM (SELECT 1, 2, 3 UNION SELECT 4, 5, 6)" 24 0 "SELECT DISTINCT rowid/2 FROM t1" 25 1 "SELECT DISTINCT rowid/2, rowid FROM t1" 26 1 "SELECT DISTINCT rowid/2, b FROM t1 WHERE c = ?" } { if {$noop} { do_distinct_noop_test 1.$tn $sql } else { do_distinct_not_noop_test 1.$tn $sql } } #------------------------------------------------------------------------- # The following tests - distinct-2.* - test cases where an index is # used to deliver results in order of the DISTINCT expressions. # drop_all_tables do_execsql_test 2.0 { CREATE TABLE t1(a, b, c); CREATE INDEX i1 ON t1(a, b); CREATE INDEX i2 ON t1(b COLLATE nocase, c COLLATE nocase); INSERT INTO t1 VALUES('a', 'b', 'c'); INSERT INTO t1 VALUES('A', 'B', 'C'); INSERT INTO t1 VALUES('a', 'b', 'c'); INSERT INTO t1 VALUES('A', 'B', 'C'); } foreach {tn sql temptables res} { 1 "a, b FROM t1" {} {A B a b} 2 "b, a FROM t1" {} {B A b a} 3 "a, b, c FROM t1" {hash} {a b c A B C} 4 "a, b, c FROM t1 ORDER BY a, b, c" {btree} {A B C a b c} 5 "b FROM t1 WHERE a = 'a'" {} {b} 6 "b FROM t1" {hash} {b B} 7 "a FROM t1" {} {A a} 8 "b COLLATE nocase FROM t1" {} {b} 9 "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {} {B} } { do_execsql_test 2.$tn.1 "SELECT DISTINCT $sql" $res do_temptables_test 2.$tn.2 "SELECT DISTINCT $sql" $temptables } do_execsql_test 2.A { SELECT (SELECT DISTINCT o.a FROM t1 AS i) FROM t1 AS o; } {a A a A} finish_test |
Changes to test/e_select.test.
︙ | ︙ | |||
1234 1235 1236 1237 1238 1239 1240 | do_select_tests e_select-5 { 3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four} 3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four} 3.1 "SELECT x FROM h2" {One Two Three Four one two three four} 3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four} | | | | | | | | 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 | do_select_tests e_select-5 { 3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four} 3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four} 3.1 "SELECT x FROM h2" {One Two Three Four one two three four} 3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four} 4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four} 4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four} } # EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate # rows, two NULL values are considered to be equal. # do_select_tests e_select-5.5 { 1 "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3} } # EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation # sequence to compare text values with apply. # do_select_tests e_select-5.6 { 1 "SELECT DISTINCT b FROM h1" {one I i four IV iv} 2 "SELECT DISTINCT b COLLATE nocase FROM h1" {one I four IV} 3 "SELECT DISTINCT x FROM h2" {One Two Three Four} 4 "SELECT DISTINCT x COLLATE binary FROM h2" { One Two Three Four one two three four } } #------------------------------------------------------------------------- # The following tests - e_select-7.* - test that statements made to do # with compound SELECT statements are correct. # |
︙ | ︙ |
Changes to test/exists.test.
︙ | ︙ | |||
155 156 157 158 159 160 161 | sql1 { DROP INDEX IF EXISTS aux.i2 } sql2 { SELECT name FROM aux.sqlite_master WHERE type = 'index' } } {} do_test 3.$tn.2.2 { sql1 { DROP INDEX IF EXISTS i2 } sql2 { CREATE INDEX aux.i2 ON t2(x) } sql1 { DROP INDEX IF EXISTS i2 } | | | 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | sql1 { DROP INDEX IF EXISTS aux.i2 } sql2 { SELECT name FROM aux.sqlite_master WHERE type = 'index' } } {} do_test 3.$tn.2.2 { sql1 { DROP INDEX IF EXISTS i2 } sql2 { CREATE INDEX aux.i2 ON t2(x) } sql1 { DROP INDEX IF EXISTS i2 } sql2 { SELECT * FROM aux.sqlite_master WHERE type = 'index' } } {} # VIEW objects. # do_test 3.$tn.3.1 { sql1 { DROP VIEW IF EXISTS aux.v1 } sql2 { CREATE VIEW aux.v1 AS SELECT * FROM t2 } |
︙ | ︙ |
Changes to test/fts3auto.test.
︙ | ︙ | |||
103 104 105 106 107 108 109 | do_execsql_test $tn$title.4 " SELECT docid, mit(matchinfo($tbl, 'x')) FROM $tbl WHERE $tbl MATCH '$match' ORDER BY docid ASC " $matchinfo_asc } | | | > | > | 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | do_execsql_test $tn$title.4 " SELECT docid, mit(matchinfo($tbl, 'x')) FROM $tbl WHERE $tbl MATCH '$match' ORDER BY docid ASC " $matchinfo_asc } # fts3_make_deferrable TABLE TOKEN ?NROW? # proc fts3_make_deferrable {tbl token {nRow 0}} { set stmt [sqlite3_prepare db "SELECT * FROM $tbl" -1 dummy] set name [sqlite3_column_name $stmt 0] sqlite3_finalize $stmt if {$nRow==0} { set nRow [db one "SELECT count(*) FROM $tbl"] } set pgsz [db one "PRAGMA page_size"] execsql BEGIN for {set i 0} {$i < ($nRow * $pgsz * 1.2)/100} {incr i} { set doc [string repeat "$token " 100] execsql "INSERT INTO $tbl ($name) VALUES(\$doc)" } execsql "INSERT INTO $tbl ($name) VALUES('aaaaaaa ${token}aaaaa')" |
︙ | ︙ | |||
648 649 650 651 652 653 654 655 656 657 658 | do_fts3query_test 6.$tn.2 t1 {b:G AND c:I} do_fts3query_test 6.$tn.3 t1 {b:G NEAR c:I} do_fts3query_test 6.$tn.4 t1 {a:C OR b:G OR c:K OR d:C} do_fts3query_test 6.$tn.5 t1 {a:G OR b:G} catchsql { COMMIT } } set sqlite_fts3_enable_parentheses $sfep finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 | do_fts3query_test 6.$tn.2 t1 {b:G AND c:I} do_fts3query_test 6.$tn.3 t1 {b:G NEAR c:I} do_fts3query_test 6.$tn.4 t1 {a:C OR b:G OR c:K OR d:C} do_fts3query_test 6.$tn.5 t1 {a:G OR b:G} catchsql { COMMIT } } foreach {tn create} { 1 "fts4(x)" 2 "fts4(x, order=DESC)" } { execsql [subst { DROP TABLE IF EXISTS t1; CREATE VIRTUAL TABLE t1 USING $create; }] foreach {x} { "F E N O T K X V A X I E X A P G Q V H U" "R V A E T C V Q N I E L O N U G J K L U" "U Y I G W M V F J L X I D C H F P J Q B" "S G D Z X R P G S S Y B K A S G A I L L" "L S I C H T Z S R Q P R N K J X L F M J" "C C C D P X B Z C M A D A C X S B T X V" "W Y J M D R G V R K B X S A W R I T N C" "P K L W T M S P O Y Y V V O E H Q A I R" "C D Y I C Z F H J C O Y A Q F L S B D K" "P G S C Y C Y V I M B D S Z D D Y W I E" "Z K Z U E E S F Y X T U A L W O U J C Q" "P A T Z S W L P L Q V Y Y I P W U X S S" "I U I H U O F Z F R H R F T N D X A G M" "N A B M S H K X S O Y D T X S B R Y H Z" "L U D A S K I L S V Z J P U B E B Y H M" } { execsql { INSERT INTO t1 VALUES($x) } } # Add extra documents to the database such that token "B" will be considered # deferrable if considering the other tokens means that 2 or fewer documents # will be loaded into memory. # fts3_make_deferrable t1 B 2 # B is not deferred in either of the first two tests below, since filtering # on "M" or "D" returns 10 documents or so. But filtering on "M * D" only # returns 2, so B is deferred in this case. # do_fts3query_test 7.$tn.1 t1 {"M B"} do_fts3query_test 7.$tn.2 t1 {"B D"} do_fts3query_test 7.$tn.3 -deferred B t1 {"M B D"} } set sqlite_fts3_enable_parentheses $sfep finish_test |
Changes to test/func3.test.
︙ | ︙ | |||
13 14 15 16 17 18 19 | # with functions created using sqlite3_create_function_v2() is # correctly invoked. # set testdir [file dirname $argv0] source $testdir/tester.tcl | > | | | | | | | | | | | | | | | | | | > | 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | # with functions created using sqlite3_create_function_v2() is # correctly invoked. # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable utf16 { do_test func3-1.1 { set destroyed 0 proc destroy {} { set ::destroyed 1 } sqlite3_create_function_v2 db f2 -1 any -func f2 -destroy destroy set destroyed } 0 do_test func3-1.2 { sqlite3_create_function_v2 db f2 -1 utf8 -func f2 set destroyed } 0 do_test func3-1.3 { sqlite3_create_function_v2 db f2 -1 utf16le -func f2 set destroyed } 0 do_test func3-1.4 { sqlite3_create_function_v2 db f2 -1 utf16be -func f2 set destroyed } 1 } do_test func3-2.1 { set destroyed 0 proc destroy {} { set ::destroyed 1 } sqlite3_create_function_v2 db f3 -1 utf8 -func f3 -destroy destroy set destroyed } 0 |
︙ | ︙ |
Changes to test/fuzzer1.test.
︙ | ︙ | |||
1372 1373 1374 1375 1376 1377 1378 | do_test fuzzer1-2.3 { execsql { SELECT DISTINCT streetname.n FROM f2, streetname WHERE f2.word MATCH 'tayle' AND f2.distance<=200 AND streetname.n>=f2.word AND streetname.n<=(f2.word || x'F7BFBFBF') } | | | 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 | do_test fuzzer1-2.3 { execsql { SELECT DISTINCT streetname.n FROM f2, streetname WHERE f2.word MATCH 'tayle' AND f2.distance<=200 AND streetname.n>=f2.word AND streetname.n<=(f2.word || x'F7BFBFBF') } } {{tyler finley} trailer taymouth steelewood tallia tallu talwyn thelema} finish_test |
Changes to test/incrblob_err.test.
︙ | ︙ | |||
31 32 33 34 35 36 37 38 39 40 41 42 43 44 | set bytes [file size [info script]] execsql { CREATE TABLE blobs(k, v BLOB); INSERT INTO blobs VALUES(1, zeroblob($::bytes)); } } -tclbody { set ::blob [db incrblob blobs v 1] set rc [catch {puts -nonewline $::blob $::data}] if {$rc} { error "out of memory" } } do_malloc_test 2 -tclprep { execsql { CREATE TABLE blobs(k, v BLOB); | > | 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | set bytes [file size [info script]] execsql { CREATE TABLE blobs(k, v BLOB); INSERT INTO blobs VALUES(1, zeroblob($::bytes)); } } -tclbody { set ::blob [db incrblob blobs v 1] fconfigure $::blob -translation binary set rc [catch {puts -nonewline $::blob $::data}] if {$rc} { error "out of memory" } } do_malloc_test 2 -tclprep { execsql { CREATE TABLE blobs(k, v BLOB); |
︙ | ︙ | |||
67 68 69 70 71 72 73 | } elseif {$::r ne $::data} { error "Bad data read..." } set rc [catch {close $::blob}] if {$rc} { error "out of memory" } | | < > > | 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | } elseif {$::r ne $::data} { error "Bad data read..." } set rc [catch {close $::blob}] if {$rc} { error "out of memory" } } do_ioerr_test incrblob_err-4 -cksum 1 -sqlprep { CREATE TABLE blobs(k, v BLOB); INSERT INTO blobs VALUES(1, $::data); } -tclbody { set ::blob [db incrblob blobs v 1] read $::blob } do_ioerr_test incrblob_err-5 -cksum 1 -sqlprep { CREATE TABLE blobs(k, v BLOB); INSERT INTO blobs VALUES(1, zeroblob(length(CAST($::data AS BLOB)))); } -tclbody { set ::blob [db incrblob blobs v 1] fconfigure $::blob -translation binary puts -nonewline $::blob $::data close $::blob } do_ioerr_test incrblob_err-6 -cksum 1 -sqlprep { CREATE TABLE blobs(k, v BLOB); INSERT INTO blobs VALUES(1, $::data || $::data || $::data); } -tclbody { set ::blob [db incrblob blobs v 1] fconfigure $::blob -translation binary seek $::blob -20 end puts -nonewline $::blob "12345678900987654321" close $::blob } do_ioerr_test incrblob_err-7 -cksum 1 -sqlprep { PRAGMA auto_vacuum = 1; |
︙ | ︙ |
Changes to test/insert4.test.
︙ | ︙ | |||
108 109 110 111 112 113 114 | # do_test insert4-2.4.1 { execsql { DELETE FROM t3; INSERT INTO t3 SELECT DISTINCT * FROM t2; SELECT * FROM t3; } | | | 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | # do_test insert4-2.4.1 { execsql { DELETE FROM t3; INSERT INTO t3 SELECT DISTINCT * FROM t2; SELECT * FROM t3; } } {9 1 1 9} xferopt_test insert4-2.4.2 0 do_test insert4-2.4.3 { catchsql { DELETE FROM t1; INSERT INTO t1 SELECT DISTINCT * FROM t2; } } {1 {constraint failed}} |
︙ | ︙ |
Changes to test/like.test.
︙ | ︙ | |||
66 67 68 69 70 71 72 73 | } {ABC abc} do_test like-1.4 { execsql { SELECT x FROM t1 WHERE x LIKE 'aBc' ORDER BY 1; } } {ABC abc} do_test like-1.5.1 { execsql { | > > > > < | | 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | } {ABC abc} do_test like-1.4 { execsql { SELECT x FROM t1 WHERE x LIKE 'aBc' ORDER BY 1; } } {ABC abc} do_test like-1.5.1 { # Use sqlite3_exec() to verify fix for ticket [25ee81271091] 2011-06-26 sqlite3_exec db {PRAGMA case_sensitive_like=on} } {0 {}} do_test like-1.5.2 { execsql { SELECT x FROM t1 WHERE x LIKE 'abc' ORDER BY 1; } } {abc} do_test like-1.5.3 { execsql { PRAGMA case_sensitive_like; -- no argument; does not change setting SELECT x FROM t1 WHERE x LIKE 'abc' ORDER BY 1; } } {abc} do_test like-1.6 { execsql { |
︙ | ︙ |
Changes to test/misc5.test.
︙ | ︙ | |||
501 502 503 504 505 506 507 | ) WHERE artist <> '' ) ) ) ORDER BY LOWER(artist) ASC; } | | | 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | ) WHERE artist <> '' ) ) ) ORDER BY LOWER(artist) ASC; } } {two} } # Ticket #1370. Do not overwrite small files (less than 1024 bytes) # when trying to open them as a database. # if {[permutation] == ""} { do_test misc5-4.1 { |
︙ | ︙ |
Changes to test/multiplex.test.
︙ | ︙ | |||
51 52 53 54 55 56 57 58 59 60 61 62 63 64 | list $msg } # This attempts to delete the base file and # and files with the chunk extension. proc multiplex_delete {name} { global g_max_chunks for {set i 0} {$i<$g_max_chunks} {incr i} { forcedelete [multiplex_name $name $i] forcedelete [multiplex_name $name-journal $i] forcedelete [multiplex_name $name-wal $i] } } | > | 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | list $msg } # This attempts to delete the base file and # and files with the chunk extension. proc multiplex_delete {name} { global g_max_chunks forcedelete $name for {set i 0} {$i<$g_max_chunks} {incr i} { forcedelete [multiplex_name $name $i] forcedelete [multiplex_name $name-journal $i] forcedelete [multiplex_name $name-wal $i] } } |
︙ | ︙ | |||
80 81 82 83 84 85 86 | do_test multiplex-1.7 { sqlite3_multiplex_initialize "" 1 } {SQLITE_OK} do_test multiplex-1.8 { sqlite3_multiplex_shutdown } {SQLITE_OK} do_test multiplex-1.9.1 { sqlite3_multiplex_initialize "" 1 } {SQLITE_OK} do_test multiplex-1.9.2 { sqlite3 db test.db } {} do_test multiplex-1.9.3 { multiplex_set db main 32768 16 } {SQLITE_OK} | | < | | < | | 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | do_test multiplex-1.7 { sqlite3_multiplex_initialize "" 1 } {SQLITE_OK} do_test multiplex-1.8 { sqlite3_multiplex_shutdown } {SQLITE_OK} do_test multiplex-1.9.1 { sqlite3_multiplex_initialize "" 1 } {SQLITE_OK} do_test multiplex-1.9.2 { sqlite3 db test.db } {} do_test multiplex-1.9.3 { multiplex_set db main 32768 16 } {SQLITE_OK} do_test multiplex-1.9.4 { multiplex_set db main 32768 -1 } {SQLITE_OK} do_test multiplex-1.9.6 { multiplex_set db main 31 16 } {SQLITE_OK} do_test multiplex-1.9.7 { multiplex_set db main 32768 100 } {SQLITE_OK} do_test multiplex-1.9.8 { multiplex_set db main 1073741824 1 } {SQLITE_OK} do_test multiplex-1.9.9 { db close } {} do_test multiplex-1.9.10 { sqlite3_multiplex_shutdown } {SQLITE_OK} do_test multiplex-1.10.1 { sqlite3_multiplex_initialize "" 1 } {SQLITE_OK} do_test multiplex-1.10.2 { sqlite3 db test.db } {} do_test multiplex-1.10.3 { lindex [ catchsql { SELECT multiplex_control(2, 32768); } ] 0 } {0} do_test multiplex-1.10.4 { lindex [ catchsql { SELECT multiplex_control(3, -1); } ] 0 } {0} do_test multiplex-1.10.6 { lindex [ catchsql { SELECT multiplex_control(2, 31); } ] 0 } {0} do_test multiplex-1.10.7 { lindex [ catchsql { SELECT multiplex_control(3, 100); } ] 0 } {0} do_test multiplex-1.10.8 { lindex [ catchsql { SELECT multiplex_control(2, 1073741824); } ] 0 } {0} do_test multiplex-1.10.9 { db close } {} do_test multiplex-1.10.10 { sqlite3_multiplex_shutdown } {SQLITE_OK} do_test multiplex-1.11.1 { sqlite3_multiplex_initialize "" 1 } {SQLITE_OK} do_test multiplex-1.11.2 { sqlite3 db test.db } {} do_test multiplex-1.11.3 { sqlite3_multiplex_control db main enable 0 } {SQLITE_OK} |
︙ | ︙ | |||
148 149 150 151 152 153 154 155 | # # multiplex-2.7.*: Disable/enable tests. # sqlite3_multiplex_initialize "" 1 multiplex_set db main 32768 16 do_test multiplex-2.1.2 { | > | | | | | | | | 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | # # multiplex-2.7.*: Disable/enable tests. # sqlite3_multiplex_initialize "" 1 multiplex_set db main 32768 16 file delete -force test.x do_test multiplex-2.1.2 { sqlite3 db test.x execsql { PRAGMA page_size=1024; PRAGMA auto_vacuum=OFF; PRAGMA journal_mode=DELETE; } execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, randomblob(1100)); INSERT INTO t1 VALUES(2, randomblob(1100)); } } {} do_test multiplex-2.1.3 { file size [multiplex_name test.x 0] } {4096} do_test multiplex-2.1.4 { execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) } } {} do_test multiplex-2.2.1 { execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) } } {} do_test multiplex-2.2.3 { file size [multiplex_name test.x 0] } {6144} do_test multiplex-2.3.1 { sqlite3 db2 test2.x db2 close } {} do_test multiplex-2.4.1 { sqlite3_multiplex_shutdown } {SQLITE_MISUSE} do_test multiplex-2.4.2 { execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) } } {} do_test multiplex-2.4.4 { file size [multiplex_name test.x 0] } {7168} do_test multiplex-2.4.99 { db close sqlite3_multiplex_shutdown } {SQLITE_OK} do_test multiplex-2.5.1 { multiplex_delete test.x sqlite3_multiplex_initialize "" 1 sqlite3 db test.x multiplex_set db main 4096 16 } {SQLITE_OK} do_test multiplex-2.5.2 { execsql { PRAGMA page_size = 1024; PRAGMA journal_mode = delete; |
︙ | ︙ | |||
238 239 240 241 242 243 244 | db eval {SELECT a,length(b) FROM t1 WHERE a=2} } {2 4000} do_test multiplex-2.5.8 { db eval {SELECT a,length(b) FROM t1 WHERE a=4} } {4 4000} | | | | 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | db eval {SELECT a,length(b) FROM t1 WHERE a=2} } {2 4000} do_test multiplex-2.5.8 { db eval {SELECT a,length(b) FROM t1 WHERE a=4} } {4 4000} do_test multiplex-2.5.9 { file size [multiplex_name test.x 0] } [list $g_chunk_size] do_test multiplex-2.5.10 { file size [multiplex_name test.x 1] } [list $g_chunk_size] do_test multiplex-2.5.99 { db close sqlite3_multiplex_shutdown } {SQLITE_OK} |
︙ | ︙ | |||
525 526 527 528 529 530 531 | do_faultsim_test multiplex-5.5 -prep { catch { sqlite3_multiplex_shutdown } } -body { sqlite3_multiplex_initialize "" 1 multiplex_set db main 32768 16 } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > | | | | | 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 | do_faultsim_test multiplex-5.5 -prep { catch { sqlite3_multiplex_shutdown } } -body { sqlite3_multiplex_initialize "" 1 multiplex_set db main 32768 16 } #------------------------------------------------------------------------- # Test that you can vacuum a multiplex'ed DB. ifcapable vacuum { sqlite3_multiplex_shutdown do_test multiplex-6.0.0 { multiplex_delete test.db multiplex_delete test.x sqlite3_multiplex_initialize "" 1 sqlite3 db test.x multiplex_set db main 4096 16 } {SQLITE_OK} do_test multiplex-6.1.0 { execsql { PRAGMA page_size=1024; PRAGMA journal_mode=DELETE; PRAGMA auto_vacuum=OFF; } execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, randomblob($g_chunk_size)); INSERT INTO t1 VALUES(2, randomblob($g_chunk_size)); } } {} do_test multiplex-6.2.1 { file size [multiplex_name test.x 0] } [list $g_chunk_size] do_test multiplex-6.2.2 { file size [multiplex_name test.x 1] } [list $g_chunk_size] do_test multiplex-6.3.0 { execsql { VACUUM } } {} do_test multiplex-6.99 { db close multiplex_delete test.x sqlite3_multiplex_shutdown } {SQLITE_OK} } catch { sqlite3_multiplex_shutdown } finish_test |
Changes to test/permutations.test.
︙ | ︙ | |||
771 772 773 774 775 776 777 778 779 780 781 782 783 784 | where6.test where7.test where8.test where9.test whereA.test whereB.test wherelimit.test select1.test select2.test select3.test select4.test select5.test select7.test select8.test selectA.test selectC.test } -dbconfig { optimization_control $::dbhandle all 0 } # End of tests ############################################################################# # run_tests NAME OPTIONS # # where available options are: | > > > > > > > > > | 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 | where6.test where7.test where8.test where9.test whereA.test whereB.test wherelimit.test select1.test select2.test select3.test select4.test select5.test select7.test select8.test selectA.test selectC.test } -dbconfig { optimization_control $::dbhandle all 0 } test_suite "prepare" -description { Run tests with the db connection using sqlite3_prepare() instead of _v2(). } -dbconfig { db_use_legacy_prepare $::dbhandle 1 #$::dbhandle cache size 0 } -files [ test_set $allquicktests -exclude *malloc* *ioerr* *fault* ] # End of tests ############################################################################# # run_tests NAME OPTIONS # # where available options are: |
︙ | ︙ |
Changes to test/releasetest.tcl.
︙ | ︙ | |||
151 152 153 154 155 156 157 158 159 160 | -DSQLITE_ENABLE_OVERSIZE_CELL_CHECK=1 -DSQLITE_MAX_ATTACHED=62 } } array set ::Platforms { Linux-x86_64 { "Secure-Delete" test "Unlock-Notify" "QUICKTEST_INCLUDE=notify2.test test" "Update-Delete-Limit" test | > < > | 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | -DSQLITE_ENABLE_OVERSIZE_CELL_CHECK=1 -DSQLITE_MAX_ATTACHED=62 } } array set ::Platforms { Linux-x86_64 { "Debug-One" "checksymbols test" "Secure-Delete" test "Unlock-Notify" "QUICKTEST_INCLUDE=notify2.test test" "Update-Delete-Limit" test "Extra-Robustness" test "Device-Two" test "Ftrapv" test "Default" "threadtest test" "Device-One" fulltest } Linux-i686 { "Unlock-Notify" "QUICKTEST_INCLUDE=notify2.test test" "Device-One" test "Device-Two" test "Default" "threadtest fulltest" } Darwin-i386 { "Locking-Style" test "OS-X" "threadtest fulltest" } } # End of configuration section. ######################################################################### ######################################################################### foreach {key value} [array get ::Platforms] { foreach {v t} $value { |
︙ | ︙ |
Changes to test/selectB.test.
︙ | ︙ | |||
351 352 353 354 355 356 357 | do_test selectB-$ii.19 { execsql { SELECT * FROM ( SELECT DISTINCT (a/10) FROM t1 UNION ALL SELECT DISTINCT(d%2) FROM t2 ) } | | | 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | do_test selectB-$ii.19 { execsql { SELECT * FROM ( SELECT DISTINCT (a/10) FROM t1 UNION ALL SELECT DISTINCT(d%2) FROM t2 ) } } {0 1 1 0} do_test selectB-$ii.20 { execsql { SELECT DISTINCT * FROM ( SELECT DISTINCT (a/10) FROM t1 UNION ALL SELECT DISTINCT(d%2) FROM t2 ) } |
︙ | ︙ |
Changes to test/sqllimits1.test.
︙ | ︙ | |||
315 316 317 318 319 320 321 | } {SQLITE_TOOBIG} do_test sqllimits1-5.14.4 { set np1 [expr {$SQLITE_LIMIT_LENGTH + 1}] set ::str1 [string repeat A $np1] catch {sqlite3_bind_text $::STMT 1 $::str1 -1} res set res } {SQLITE_TOOBIG} | > | | | | > > | | | | > | 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 | } {SQLITE_TOOBIG} do_test sqllimits1-5.14.4 { set np1 [expr {$SQLITE_LIMIT_LENGTH + 1}] set ::str1 [string repeat A $np1] catch {sqlite3_bind_text $::STMT 1 $::str1 -1} res set res } {SQLITE_TOOBIG} ifcapable utf16 { do_test sqllimits1-5.14.5 { catch {sqlite3_bind_text16 $::STMT 1 $::str1 -1} res set res } {SQLITE_TOOBIG} } do_test sqllimits1-5.14.6 { catch {sqlite3_bind_text $::STMT 1 $::str1 $np1} res set res } {SQLITE_TOOBIG} ifcapable utf16 { do_test sqllimits1-5.14.7 { catch {sqlite3_bind_text16 $::STMT 1 $::str1 $np1} res set res } {SQLITE_TOOBIG} } do_test sqllimits1-5.14.8 { set n [expr {$np1-1}] catch {sqlite3_bind_text $::STMT 1 $::str1 $n} res set res } {} do_test sqllimits1-5.14.9 { catch {sqlite3_bind_text16 $::STMT 1 $::str1 $n} res |
︙ | ︙ |
Changes to test/temptable.test.
︙ | ︙ | |||
288 289 290 291 292 293 294 295 296 297 298 299 300 301 | # but the permanent index should still be accessible and should still # be updated when its corresponding table changes. # do_test temptable-5.1 { execsql { CREATE TEMP TABLE mask(a,b,c) } db2 execsql { CREATE INDEX mask ON t2(x); SELECT * FROM t2; } } {3 4} #do_test temptable-5.2 { # catchsql { | > | 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | # but the permanent index should still be accessible and should still # be updated when its corresponding table changes. # do_test temptable-5.1 { execsql { CREATE TEMP TABLE mask(a,b,c) } db2 if {[permutation]=="prepare"} { db2 cache flush } execsql { CREATE INDEX mask ON t2(x); SELECT * FROM t2; } } {3 4} #do_test temptable-5.2 { # catchsql { |
︙ | ︙ |
Changes to test/tester.tcl.
︙ | ︙ | |||
16 17 18 19 20 21 22 | #------------------------------------------------------------------------- # The commands provided by the code in this file to help with creating # test cases are as follows: # # Commands to manipulate the db and the file-system at a high level: # # copy_file FROM TO | | | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #------------------------------------------------------------------------- # The commands provided by the code in this file to help with creating # test cases are as follows: # # Commands to manipulate the db and the file-system at a high level: # # copy_file FROM TO # drop_all_tables ?DB? # forcedelete FILENAME # # Test the capability of the SQLite version built into the interpreter to # determine if a specific test can be run: # # ifcapable EXPR # |
︙ | ︙ |
Added test/tkt-54844eea3f.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | # 2011 July 8 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing that bug [54844eea3f] has been fixed. # set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix tkt-54844eea3f do_test 1.0 { execsql { CREATE TABLE t1(a INTEGER PRIMARY KEY); INSERT INTO t1 VALUES(1); INSERT INTO t1 VALUES(4); CREATE TABLE t2(b INTEGER PRIMARY KEY); INSERT INTO t2 VALUES(1); INSERT INTO t2 VALUES(2); INSERT INTO t2 SELECT b+2 FROM t2; INSERT INTO t2 SELECT b+4 FROM t2; INSERT INTO t2 SELECT b+8 FROM t2; INSERT INTO t2 SELECT b+16 FROM t2; CREATE TABLE t3(c INTEGER PRIMARY KEY); INSERT INTO t3 VALUES(1); INSERT INTO t3 VALUES(2); INSERT INTO t3 VALUES(3); } } {} do_test 1.1 { execsql { SELECT 'test-2', t3.c, ( SELECT count(*) FROM t1 JOIN (SELECT DISTINCT t3.c AS p FROM t2) AS x ON t1.a=x.p ) FROM t3; } } {test-2 1 1 test-2 2 0 test-2 3 0} do_test 1.2 { execsql { CREATE TABLE t4(a, b, c); INSERT INTO t4 VALUES('a', 1, 'one'); INSERT INTO t4 VALUES('a', 2, 'two'); INSERT INTO t4 VALUES('b', 1, 'three'); INSERT INTO t4 VALUES('b', 2, 'four'); SELECT ( SELECT c FROM ( SELECT * FROM t4 WHERE a=out.a ORDER BY b LIMIT 10 OFFSET 1 ) WHERE b=out.b ) FROM t4 AS out; } } {{} two {} four} finish_test |
Changes to test/triggerD.test.
︙ | ︙ | |||
10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #*********************************************************************** # # Verify that when columns named "rowid", "oid", and "_rowid_" appear # in a table as ordinary columns (not as the INTEGER PRIMARY KEY) then # the use of these columns in triggers will refer to the column and not # to the actual ROWID. Ticket [34d2ae1c6d08b5271ba5e5592936d4a1d913ffe3] # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable {!trigger} { finish_test return } | > > > > > > | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | #*********************************************************************** # # Verify that when columns named "rowid", "oid", and "_rowid_" appear # in a table as ordinary columns (not as the INTEGER PRIMARY KEY) then # the use of these columns in triggers will refer to the column and not # to the actual ROWID. Ticket [34d2ae1c6d08b5271ba5e5592936d4a1d913ffe3] # # Also, verify that triggers created like this: # # CREATE TRIGGER attached.trig AFTER INSERT ON attached.tab ... # # can be reparsed as a main database. Ticket [d6ddba6706353915ceedc56b4e3] # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable {!trigger} { finish_test return } |
︙ | ︙ | |||
166 167 168 169 170 171 172 173 174 | END; INSERT INTO main.t300 VALUES(3); INSERT INTO temp.t300 VALUES(4); SELECT * FROM t301; } } {10003 20004} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | END; INSERT INTO main.t300 VALUES(3); INSERT INTO temp.t300 VALUES(4); SELECT * FROM t301; } } {10003 20004} ############################################################################# # # Ticket [d6ddba6706353915ceedc56b4e3e72ecb4d77ba4] # # The following syntax really should not be allowed: # # CREATE TRIGGER xyz.trig BEFORE UPDATE ON xyz.tab BEGIN ... # # But a long-standing bug does allow it. And the "xyz.tab" slips into # the sqlite_master table. We cannot fix the bug simply by disallowing # "xyz.tab" since that could break legacy applications. We have to # fix the system so that the "xyz." on "xyz.tab" is ignored. # Verify that this is the case. # do_test triggerD-4.1 { db close file delete -force test.db test2.db sqlite3 db test.db db eval { CREATE TABLE t1(x); ATTACH 'test2.db' AS db2; CREATE TABLE db2.t2(y); CREATE TABLE db2.log(z); CREATE TRIGGER db2.trig AFTER INSERT ON db2.t2 BEGIN INSERT INTO log(z) VALUES(new.y); END; INSERT INTO t2 VALUES(123); SELECT * FROM log; } } {123} do_test triggerD-4.2 { sqlite3 db2 test2.db db2 eval { INSERT INTO t2 VALUES(234); SELECT * FROM log; } } {123 234} db2 close finish_test |
Added test/vtabF.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | # 2011 Aug 1 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # This file checks to make sure IS NOT NULL constraints work on # virtual tables. # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !vtab||!schema_pragmas { finish_test ; return } # Register the echo module register_echo_module [sqlite3_connection_pointer db] do_test vtabE-1.1 { execsql { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); CREATE INDEX i2 ON t1(b); INSERT INTO t1 VALUES(10,110); INSERT INTO t1 VALUES(11,111); INSERT INTO t1 SELECT a+2, b+2 FROM t1; INSERT INTO t1 SELECT null, b+4 FROM t1; INSERT INTO t1 SELECT null, b+8 FROM t1; INSERT INTO t1 SELECT null, b+16 FROM t1; ANALYZE; CREATE VIRTUAL TABLE tv1 USING echo(t1); SELECT b FROM t1 WHERE a IS NOT NULL; } } {110 111 112 113} do_test vtabE-1.2 { execsql {SELECT b FROM tv1 WHERE a IS NOT NULL} } {110 111 112 113} finish_test |
Changes to test/wal3.test.
︙ | ︙ | |||
721 722 723 724 725 726 727 | # # This test case verifies that if an exclusive lock cannot be obtained # on any aReadMark[] slot (because there are already several readers), # the client takes a shared-lock on a slot without modifying the value # and continues. # set nConn 50 | | | 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 | # # This test case verifies that if an exclusive lock cannot be obtained # on any aReadMark[] slot (because there are already several readers), # the client takes a shared-lock on a slot without modifying the value # and continues. # set nConn 50 if { [string match *BSD $tcl_platform(os)] } { set nConn 25 } do_test wal3-9.0 { file delete -force test.db test.db-journal test.db wal sqlite3 db test.db execsql { PRAGMA page_size = 1024; PRAGMA journal_mode = WAL; CREATE TABLE whoami(x); |
︙ | ︙ | |||
798 799 800 801 802 803 804 | do_test wal3-10.$tn.2 { sql2 {PRAGMA integrity_check} } {ok} } finish_test | < | 798 799 800 801 802 803 804 | do_test wal3-10.$tn.2 { sql2 {PRAGMA integrity_check} } {ok} } finish_test |
Changes to test/wal5.test.
︙ | ︙ | |||
249 250 251 252 253 254 255 | do_test 2.3.$tn.5 { sql1 { INSERT INTO t2 VALUES(3, 4) } } {} do_test 2.3.$tn.6 { file_page_counts } [ list 1 [wal_frames db 4 3] 1 [wal_frames db 4 3] ] do_test 2.3.$tn.7 { code1 { do_wal_checkpoint db -mode full } } [ list 1 [wal_frames db 4 3] [wal_frames db 3 2] ] | < < < < | < < < < < | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | do_test 2.3.$tn.5 { sql1 { INSERT INTO t2 VALUES(3, 4) } } {} do_test 2.3.$tn.6 { file_page_counts } [ list 1 [wal_frames db 4 3] 1 [wal_frames db 4 3] ] do_test 2.3.$tn.7 { code1 { do_wal_checkpoint db -mode full } } [ list 1 [wal_frames db 4 3] [wal_frames db 3 2] ] do_test 2.3.$tn.8 { file_page_counts } {2 7 2 7} } # Check that checkpoints block on the correct locks. And respond correctly # if they cannot obtain those locks. There are three locks that a checkpoint # may block on (in the following order): # # 1. The writer lock: FULL and RESTART checkpoints block until any writer |
︙ | ︙ | |||
373 374 375 376 377 378 379 | do_test 3.$tn.6 { code3 { do_wal_checkpoint db3 } } {0 0 0} } } finish_test | < | 364 365 366 367 368 369 370 | do_test 3.$tn.6 { code3 { do_wal_checkpoint db3 } } {0 0 0} } } finish_test |
Changes to test/wal6.test.
︙ | ︙ | |||
41 42 43 44 45 46 47 | CREATE TABLE t1(a INTEGER PRIMARY KEY, b); INSERT INTO t1 VALUES(1,2); SELECT * FROM t1; } } {1 2} # Under Windows, you'll get an error trying to delete | | < < < < < < < < | | 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | CREATE TABLE t1(a INTEGER PRIMARY KEY, b); INSERT INTO t1 VALUES(1,2); SELECT * FROM t1; } } {1 2} # Under Windows, you'll get an error trying to delete # a file this is already opened. Close the first connection # so the other tests work. if {$tcl_platform(platform)=="windows"} { if {$jmode=="persist" || $jmode=="truncate"} { db close } } do_test wal6-1.2.$jmode { sqlite3 db2 test.db execsql { PRAGMA journal_mode=WAL; |
︙ | ︙ | |||
85 86 87 88 89 90 91 | db close db2 close forcedelete test.db } finish_test | < | 77 78 79 80 81 82 83 | db close db2 close forcedelete test.db } finish_test |
Added test/walpersist.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | # 2011 July 26 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file contains tests for using WAL with persistent WAL file mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl set ::testprefix walpersist do_test walpersist-1.0 { db eval { PRAGMA journal_mode=WAL; CREATE TABLE t1(a); INSERT INTO t1 VALUES(randomblob(5000)); } file exists test.db-wal } {1} do_test walpersist-1.1 { file exists test.db-shm } {1} do_test walpersist-1.2 { db close list [file exists test.db] [file exists test.db-wal] [file exists test.db-shm] } {1 0 0} do_test walpersist-1.3 { sqlite3 db test.db db eval {SELECT length(a) FROM t1} } {5000} do_test walpersist-1.4 { list [file exists test.db] [file exists test.db-wal] [file exists test.db-shm] } {1 1 1} do_test walpersist-1.5 { file_control_persist_wal db -1 } {0 0} do_test walpersist-1.6 { file_control_persist_wal db 1 } {0 1} do_test walpersist-1.7 { file_control_persist_wal db -1 } {0 1} do_test walpersist-1.8 { file_control_persist_wal db 0 } {0 0} do_test walpersist-1.9 { file_control_persist_wal db -1 } {0 0} do_test walpersist-1.10 { file_control_persist_wal db 1 } {0 1} do_test walpersist-1.11 { db close list [file exists test.db] [file exists test.db-wal] [file exists test.db-shm] } {1 1 1} finish_test |
Added test/win32lock.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | # 2011 July 11 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is recovery from transient manditory locks # that sometimes appear on database files due to anti-virus software. # if {$tcl_platform(platform)!="windows"} return set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix win32lock db close sqlite3_shutdown test_sqlite3_log xLog proc xLog {error_code msg} { lappend ::log $msg } sqlite3 db test.db do_test win32lock-1.1 { db eval { PRAGMA cache_size=10; CREATE TABLE t1(x,y); INSERT INTO t1 VALUES(1,randomblob(100000)); INSERT INTO t1 VALUES(2,randomblob(50000)); INSERT INTO t1 VALUES(3,randomblob(25000)); INSERT INTO t1 VALUES(4,randomblob(12500)); SELECT x, length(y) FROM t1 ORDER BY rowid; } } {1 100000 2 50000 3 25000 4 12500} unset -nocomplain delay1 rc msg set delay1 50 set rc 0 set old_pending_byte [sqlite3_test_control_pending_byte 0x40000000] while {1} { sqlite3_sleep 10 lock_win32_file test.db 0 $::delay1 set rc [catch {db eval {SELECT x, length(y) FROM t1 ORDER BY rowid}} msg] if {$rc} { do_test win32lock-1.2-$delay1-fin { set ::msg } {disk I/O error} break } else { do_test win32lock-1.2-$delay1 { set ::msg } {1 100000 2 50000 3 25000 4 12500} if {[info exists ::log] && $::log!=""} { do_test win32lock-1.2-$delay1-log1 { regsub {\d+} $::log # x set x } {{delayed #ms for lock/sharing conflict}} } incr delay1 50 } set ::log {} } do_test win32lock-2.0 { file_control_win32_av_retry db -1 -1 } {0 10 25} do_test win32lock-2.1 { file_control_win32_av_retry db 1 1 } {0 1 1} set delay1 50 while {1} { sqlite3_sleep 10 lock_win32_file test.db 0 $::delay1 set rc [catch {db eval {SELECT x, length(y) FROM t1 ORDER BY rowid}} msg] if {$rc} { do_test win32lock-2.2-$delay1-fin { set ::msg } {disk I/O error} break } else { do_test win32lock-2.2-$delay1 { set ::msg } {1 100000 2 50000 3 25000 4 12500} if {$::log!=""} { do_test win32lock-2.2-$delay1-log1 { regsub {\d+} $::log # x set x } {{delayed #ms for lock/sharing conflict}} } incr delay1 50 } set ::log {} } file_control_win32_av_retry db 10 25 sqlite3_test_control_pending_byte $old_pending_byte sqlite3_shutdown test_sqlite3_log sqlite3_initialize finish_test |
Changes to tool/symbols.sh.
︙ | ︙ | |||
8 9 10 11 12 13 14 | echo '****** Exported symbols from a build including RTREE, FTS4 & ICU ******' gcc -c -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \ -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \ -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \ -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \ -DSQLITE_ENABLE_ICU \ sqlite3.c | | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | echo '****** Exported symbols from a build including RTREE, FTS4 & ICU ******' gcc -c -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \ -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \ -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \ -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \ -DSQLITE_ENABLE_ICU \ sqlite3.c nm sqlite3.o | grep ' [TD] ' | sort -k 3 echo '****** Surplus symbols from a build including RTREE, FTS4 & ICU ******' nm sqlite3.o | grep ' [TD] ' | grep -v ' .*sqlite3_' echo '****** Dependencies of the core. No extensions. No OS interface *******' gcc -c -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \ -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \ -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \ -DSQLITE_OS_OTHER -DSQLITE_THREADSAFE=0 \ sqlite3.c |
︙ | ︙ |
Changes to tool/warnings.sh.
1 2 3 4 5 6 7 8 9 10 | #/bin/sh # # Run this script in a directory with a working makefile to check for # compiler warnings in SQLite. # make sqlite3.c echo '********** No optimizations. Includes FTS4 and RTREE *********' gcc -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \ -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \ sqlite3.c | > > > > | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | #/bin/sh # # Run this script in a directory with a working makefile to check for # compiler warnings in SQLite. # make sqlite3.c echo '********** No optimizations. Includes FTS4 and RTREE *********' gcc -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \ -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \ sqlite3.c echo '********** No optimizations. ENABLE_STAT2. THREADSAFE=0 *******' gcc -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \ -ansi -DSQLITE_ENABLE_STAT2 -DSQLITE_THREADSAFE=0 \ sqlite3.c echo '********** Optimized -O3. Includes FTS4 and RTREE ************' gcc -O3 -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \ -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \ sqlite3.c |