/ Check-in [73d0fc02]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge recent enhancements from trunk.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | bind-pointer
Files: files | file ages | folders
SHA3-256: 73d0fc027ddcc24e55cdc8c54443a96083cc9a29e57c0abe97e8586ff8a7f4c5
User & Date: drh 2017-07-07 14:26:43
Context
2017-07-13
17:34
Merge the latest changes from trunk. check-in: a54be6e0 user: drh tags: bind-pointer
2017-07-07
14:26
Merge recent enhancements from trunk. check-in: 73d0fc02 user: drh tags: bind-pointer
13:59
Exploit the fact that Expr.pRight and Expr.x are never used at the same time for a small performance gain. check-in: aacbb9a4 user: drh tags: trunk
2017-06-30
23:46
Update the carray() and remember() extension functions so that they user the new sqlite3_value_pointer() interface. check-in: a99fa94d user: drh tags: bind-pointer
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts3/fts3.c.

1702
1703
1704
1705
1706
1707
1708













1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
....
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
....
3298
3299
3300
3301
3302
3303
3304
3305





3306
3307
3308
3309
3310
3311
3312
      sqlite3_reset(pCsr->pStmt);
      pCsr->pStmt = 0;
    }
    pCsr->bSeekStmt = 0;
  }
  sqlite3_finalize(pCsr->pStmt);
}














/*
** Close the cursor.  For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  fts3CursorFinalizeStmt(pCsr);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3Fts3FreeDeferredTokens(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_free(pCsr);
  return SQLITE_OK;
}

/*
** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
................................................................................
  if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
  assert( iIdx==nVal );

  /* In case the cursor has been used before, clear it now. */
  fts3CursorFinalizeStmt(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

  /* Set the lower and upper bounds on docids to return */
  pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
  pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);

  if( idxStr ){
    pCsr->bDesc = (idxStr[0]=='D');
................................................................................
}

/* 
** This is the xEof method of the virtual table. SQLite calls this 
** routine to find out if it has reached the end of a result set.
*/
static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
  return ((Fts3Cursor *)pCursor)->isEof;





}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. fts3
** exposes %_content.docid as the rowid for the virtual table. The
** rowid should be written to *pRowid.







>
>
>
>
>
>
>
>
>
>
>
>
>








|
<
<
<
<







 







|
<
<
<
<







 







|
>
>
>
>
>







1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730




1731
1732
1733
1734
1735
1736
1737
....
3224
3225
3226
3227
3228
3229
3230
3231




3232
3233
3234
3235
3236
3237
3238
....
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
      sqlite3_reset(pCsr->pStmt);
      pCsr->pStmt = 0;
    }
    pCsr->bSeekStmt = 0;
  }
  sqlite3_finalize(pCsr->pStmt);
}

/*
** Free all resources currently held by the cursor passed as the only
** argument.
*/
static void fts3ClearCursor(Fts3Cursor *pCsr){
  fts3CursorFinalizeStmt(pCsr);
  sqlite3Fts3FreeDeferredTokens(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
}

/*
** Close the cursor.  For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  fts3ClearCursor(pCsr);




  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_free(pCsr);
  return SQLITE_OK;
}

/*
** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
................................................................................
  if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
  assert( iIdx==nVal );

  /* In case the cursor has been used before, clear it now. */
  fts3ClearCursor(pCsr);





  /* Set the lower and upper bounds on docids to return */
  pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
  pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);

  if( idxStr ){
    pCsr->bDesc = (idxStr[0]=='D');
................................................................................
}

/* 
** This is the xEof method of the virtual table. SQLite calls this 
** routine to find out if it has reached the end of a result set.
*/
static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
  Fts3Cursor *pCsr = (Fts3Cursor*)pCursor;
  if( pCsr->isEof ){
    fts3ClearCursor(pCsr);
    pCsr->isEof = 1;
  }
  return pCsr->isEof;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. fts3
** exposes %_content.docid as the rowid for the virtual table. The
** rowid should be written to *pRowid.

Changes to ext/lsm1/lsm-test/lsmtest.h.

228
229
230
231
232
233
234






235
236
237
238
239
240
241

char *testDatasourceName(const DatasourceDefn *);
Datasource *testDatasourceNew(const DatasourceDefn *);
void testDatasourceFree(Datasource *);
void testDatasourceEntry(Datasource *, int, void **, int *, void **, int *);
/* End of test_datasource.c interface.
*************************************************************************/







void testWriteDatasource(TestDb *, Datasource *, int, int *);
void testWriteDatasourceRange(TestDb *, Datasource *, int, int, int *);
void testDeleteDatasource(TestDb *, Datasource *, int, int *);
void testDeleteDatasourceRange(TestDb *, Datasource *, int, int, int *);









>
>
>
>
>
>







228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

char *testDatasourceName(const DatasourceDefn *);
Datasource *testDatasourceNew(const DatasourceDefn *);
void testDatasourceFree(Datasource *);
void testDatasourceEntry(Datasource *, int, void **, int *, void **, int *);
/* End of test_datasource.c interface.
*************************************************************************/
void testDatasourceFetch(
  TestDb *pDb,                    /* Database handle */
  Datasource *pData,
  int iKey,
  int *pRc                        /* IN/OUT: Error code */
);

void testWriteDatasource(TestDb *, Datasource *, int, int *);
void testWriteDatasourceRange(TestDb *, Datasource *, int, int, int *);
void testDeleteDatasource(TestDb *, Datasource *, int, int *);
void testDeleteDatasourceRange(TestDb *, Datasource *, int, int, int *);


Changes to ext/lsm1/lsm-test/lsmtest1.c.

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
...
246
247
248
249
250
251
252












253
254
255

256
257
258
259
260
261
262
...
273
274
275
276
277
278
279
280


281

282
283
284
285
286
287
288
...
295
296
297
298
299
300
301



302

303
304
305
306
307
308
309
...
335
336
337
338
339
340
341

342


343
344
345
346
347
348

349
350
351
352
353
354
355
...
392
393
394
395
396
397
398

399
400
401
402
403
404
405
...
433
434
435
436
437
438
439



440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
...
472
473
474
475
476
477
478

479


480
481
482
483
484
485

486
487
488
489
490
491
492
  int nIter;                      /* Total number of iterations to run */
};

/*
** Generate a unique name for the test case pTest with database system
** zSystem.
*/
static char *getName(const char *zSystem, Datatest1 *pTest){
  char *zRet;
  char *zData;
  zData = testDatasourceName(&pTest->defn);
  zRet = testMallocPrintf("data.%s.%s.%d.%d", 
      zSystem, zData, pTest->nRow, pTest->nVerify
  );
  testFree(zData);
  return zRet;
}

int testControlDb(TestDb **ppDb){
#ifdef HAVE_KYOTOCABINET
................................................................................
static void printScanCb(
    void *pCtx, void *pKey, int nKey, void *pVal, int nVal
){
  printf("%s\n", (char *)pKey);
  fflush(stdout);
}
#endif













static void doDataTest1(
  const char *zSystem,            /* Database system to test */

  Datatest1 *p,                   /* Structure containing test parameters */
  int *pRc                        /* OUT: Error code */
){
  int i;
  int iDot;
  int rc = LSM_OK;
  Datasource *pData;
................................................................................
    /* Insert some data */
    testWriteDatasourceRange(pDb, pData, i, p->nVerify, &rc);
    i += p->nVerify;

    /* Check that the db content is correct. */
    testDbContents(pDb, pData, p->nRow, 0, i-1, p->nTest, p->bTestScan, &rc);

    /* Close and reopen the database. */


    testReopen(&pDb, &rc);


    /* Check that the db content is still correct. */
    testDbContents(pDb, pData, p->nRow, 0, i-1, p->nTest, p->bTestScan, &rc);

    /* Update the progress dots... */
    testCaseProgress(i, p->nRow, testCaseNDot()/2, &iDot);
  }
................................................................................
    testDeleteDatasourceRange(pDb, pData, i, p->nVerify, &rc);
    i += p->nVerify;

    /* Check that the db content is correct. */
    testDbContents(pDb, pData, p->nRow, i, p->nRow-1,p->nTest,p->bTestScan,&rc);

    /* Close and reopen the database. */



    testReopen(&pDb, &rc);


    /* Check that the db content is still correct. */
    testDbContents(pDb, pData, p->nRow, i, p->nRow-1,p->nTest,p->bTestScan,&rc);

    /* Update the progress dots... */
    testCaseProgress(i, p->nRow, testCaseNDot()/2, &iDot);
  }
................................................................................
    { {DATA_SEQUENTIAL, 5,10,      1000,2000},     1000,  250, 1000, 1},
    { {DATA_SEQUENTIAL, 5,100,     10000,20000},    100,   25,  100, 1},
    { {DATA_RANDOM,     10,10,     100,100},     100000, 1000,  100, 0},
    { {DATA_SEQUENTIAL, 10,10,     100,100},     100000, 1000,  100, 0},
  };

  int i;




  for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
    char *zName = getName(zSystem, &aTest[i]);
    if( testCaseBegin(pRc, zPattern, "%s", zName) ){
      doDataTest1(zSystem, &aTest[i], pRc);
    }
    testFree(zName);

  }
}

void testCompareDb(
  Datasource *pData,
  int nData,
  int iSeed,
................................................................................
    testDatasourceEntry(pData, i, &pKey, &nKey, 0, 0);
    testFetchCompare(pControl, pDb, pKey, nKey, pRc);
  }
}

static void doDataTest2(
  const char *zSystem,            /* Database system to test */

  Datatest2 *p,                   /* Structure containing test parameters */
  int *pRc                        /* OUT: Error code */
){
  TestDb *pDb;
  TestDb *pControl;
  Datasource *pData;
  int i;
................................................................................
    testDatasourceEntry(pData, i+2000000, &pKey2, &nKey2, 0, 0);

    testDeleteRange(pDb, pKey1, nKey1, pKey2, nKey2, &rc);
    testDeleteRange(pControl, pKey1, nKey1, pKey2, nKey2, &rc);
    testFree(pKey1);

    testCompareDb(pData, nRange, i, pControl, pDb, &rc);



    testReopen(&pDb, &rc);

    testCompareDb(pData, nRange, i, pControl, pDb, &rc);

    /* Update the progress dots... */
    testCaseProgress(i, p->nIter, testCaseNDot(), &iDot);
  }

  testClose(&pDb);
  testClose(&pControl);
  testDatasourceFree(pData);
  testCaseFinish(rc);
  *pRc = rc;
}

static char *getName2(const char *zSystem, Datatest2 *pTest){
  char *zRet;
  char *zData;
  zData = testDatasourceName(&pTest->defn);
  zRet = testMallocPrintf("data2.%s.%s.%d.%d.%d", 
      zSystem, zData, pTest->nRange, pTest->nWrite, pTest->nIter
  );
  testFree(zData);
  return zRet;
}

void test_data_2(
  const char *zSystem,            /* Database system name */
................................................................................
    { {DATA_RANDOM,     20,25,     100,200},   10000,  10,     50   },
    { {DATA_RANDOM,     20,25,     100,200},   10000,  200,    50   },
    { {DATA_RANDOM,     20,25,     100,200},   100,    10,     1000 },
    { {DATA_RANDOM,     20,25,     100,200},   100,    200,    50   },
  };

  int i;




  for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
    char *zName = getName2(zSystem, &aTest[i]);
    if( testCaseBegin(pRc, zPattern, "%s", zName) ){
      doDataTest2(zSystem, &aTest[i], pRc);
    }
    testFree(zName);

  }
}

/*************************************************************************
** Test case data3.*
*/








|



|
|







 







>
>
>
>
>
>
>
>
>
>
>
>



>







 







|
>
>
|
>







 







>
>
>
|
>







 







>

>
>
|
|
|
|
|
|
>







 







>







 







>
>
>
|
>













|



|
|







 







>

>
>
|
|
|
|
|
|
>







77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
...
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
...
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
...
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
...
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
...
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
...
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
...
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
  int nIter;                      /* Total number of iterations to run */
};

/*
** Generate a unique name for the test case pTest with database system
** zSystem.
*/
static char *getName(const char *zSystem, int bRecover, Datatest1 *pTest){
  char *zRet;
  char *zData;
  zData = testDatasourceName(&pTest->defn);
  zRet = testMallocPrintf("data.%s.%s.rec=%d.%d.%d", 
      zSystem, zData, bRecover, pTest->nRow, pTest->nVerify
  );
  testFree(zData);
  return zRet;
}

int testControlDb(TestDb **ppDb){
#ifdef HAVE_KYOTOCABINET
................................................................................
static void printScanCb(
    void *pCtx, void *pKey, int nKey, void *pVal, int nVal
){
  printf("%s\n", (char *)pKey);
  fflush(stdout);
}
#endif

void testReopenRecover(TestDb **ppDb, int *pRc){
  if( *pRc==0 ){
    const char *zLib = tdb_library_name(*ppDb);
    const char *zDflt = tdb_default_db(zLib);
    testCopyLsmdb(zDflt, "bak.db");
    testClose(ppDb);
    testCopyLsmdb("bak.db", zDflt);
    *pRc = tdb_open(zLib, 0, 0, ppDb);
  }
}


static void doDataTest1(
  const char *zSystem,            /* Database system to test */
  int bRecover,
  Datatest1 *p,                   /* Structure containing test parameters */
  int *pRc                        /* OUT: Error code */
){
  int i;
  int iDot;
  int rc = LSM_OK;
  Datasource *pData;
................................................................................
    /* Insert some data */
    testWriteDatasourceRange(pDb, pData, i, p->nVerify, &rc);
    i += p->nVerify;

    /* Check that the db content is correct. */
    testDbContents(pDb, pData, p->nRow, 0, i-1, p->nTest, p->bTestScan, &rc);

    if( bRecover ){
      testReopenRecover(&pDb, &rc);
    }else{
      testReopen(&pDb, &rc);
    }

    /* Check that the db content is still correct. */
    testDbContents(pDb, pData, p->nRow, 0, i-1, p->nTest, p->bTestScan, &rc);

    /* Update the progress dots... */
    testCaseProgress(i, p->nRow, testCaseNDot()/2, &iDot);
  }
................................................................................
    testDeleteDatasourceRange(pDb, pData, i, p->nVerify, &rc);
    i += p->nVerify;

    /* Check that the db content is correct. */
    testDbContents(pDb, pData, p->nRow, i, p->nRow-1,p->nTest,p->bTestScan,&rc);

    /* Close and reopen the database. */
    if( bRecover ){
      testReopenRecover(&pDb, &rc);
    }else{
      testReopen(&pDb, &rc);
    }

    /* Check that the db content is still correct. */
    testDbContents(pDb, pData, p->nRow, i, p->nRow-1,p->nTest,p->bTestScan,&rc);

    /* Update the progress dots... */
    testCaseProgress(i, p->nRow, testCaseNDot()/2, &iDot);
  }
................................................................................
    { {DATA_SEQUENTIAL, 5,10,      1000,2000},     1000,  250, 1000, 1},
    { {DATA_SEQUENTIAL, 5,100,     10000,20000},    100,   25,  100, 1},
    { {DATA_RANDOM,     10,10,     100,100},     100000, 1000,  100, 0},
    { {DATA_SEQUENTIAL, 10,10,     100,100},     100000, 1000,  100, 0},
  };

  int i;
  int bRecover;

  for(bRecover=0; bRecover<2; bRecover++){
    if( bRecover==1 && memcmp(zSystem, "lsm", 3) ) break;
    for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
      char *zName = getName(zSystem, bRecover, &aTest[i]);
      if( testCaseBegin(pRc, zPattern, "%s", zName) ){
        doDataTest1(zSystem, bRecover, &aTest[i], pRc);
      }
      testFree(zName);
    }
  }
}

void testCompareDb(
  Datasource *pData,
  int nData,
  int iSeed,
................................................................................
    testDatasourceEntry(pData, i, &pKey, &nKey, 0, 0);
    testFetchCompare(pControl, pDb, pKey, nKey, pRc);
  }
}

static void doDataTest2(
  const char *zSystem,            /* Database system to test */
  int bRecover,
  Datatest2 *p,                   /* Structure containing test parameters */
  int *pRc                        /* OUT: Error code */
){
  TestDb *pDb;
  TestDb *pControl;
  Datasource *pData;
  int i;
................................................................................
    testDatasourceEntry(pData, i+2000000, &pKey2, &nKey2, 0, 0);

    testDeleteRange(pDb, pKey1, nKey1, pKey2, nKey2, &rc);
    testDeleteRange(pControl, pKey1, nKey1, pKey2, nKey2, &rc);
    testFree(pKey1);

    testCompareDb(pData, nRange, i, pControl, pDb, &rc);
    if( bRecover ){
      testReopenRecover(&pDb, &rc);
    }else{
      testReopen(&pDb, &rc);
    }
    testCompareDb(pData, nRange, i, pControl, pDb, &rc);

    /* Update the progress dots... */
    testCaseProgress(i, p->nIter, testCaseNDot(), &iDot);
  }

  testClose(&pDb);
  testClose(&pControl);
  testDatasourceFree(pData);
  testCaseFinish(rc);
  *pRc = rc;
}

static char *getName2(const char *zSystem, int bRecover, Datatest2 *pTest){
  char *zRet;
  char *zData;
  zData = testDatasourceName(&pTest->defn);
  zRet = testMallocPrintf("data2.%s.%s.rec=%d.%d.%d.%d", 
      zSystem, zData, bRecover, pTest->nRange, pTest->nWrite, pTest->nIter
  );
  testFree(zData);
  return zRet;
}

void test_data_2(
  const char *zSystem,            /* Database system name */
................................................................................
    { {DATA_RANDOM,     20,25,     100,200},   10000,  10,     50   },
    { {DATA_RANDOM,     20,25,     100,200},   10000,  200,    50   },
    { {DATA_RANDOM,     20,25,     100,200},   100,    10,     1000 },
    { {DATA_RANDOM,     20,25,     100,200},   100,    200,    50   },
  };

  int i;
  int bRecover;

  for(bRecover=0; bRecover<2; bRecover++){
    if( bRecover==1 && memcmp(zSystem, "lsm", 3) ) break;
    for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
      char *zName = getName2(zSystem, bRecover, &aTest[i]);
      if( testCaseBegin(pRc, zPattern, "%s", zName) ){
        doDataTest2(zSystem, bRecover, &aTest[i], pRc);
      }
      testFree(zName);
    }
  }
}

/*************************************************************************
** Test case data3.*
*/

Changes to ext/lsm1/lsm-test/lsmtest2.c.

238
239
240
241
242
243
244

245
246
247
248
249
250
251
...
274
275
276
277
278
279
280

281
282
283
284
285
286
287
...
480
481
482
483
484
485
486
487
        *pRc = 1;
        test_failed();
      }
    }
  }
}


static void testCompareCksumBtdb(
  const char *zFile,              /* Path to LSM database */
  const char *zExpect1,           /* Expected checksum 1 */
  const char *zExpect2,           /* Expected checksum 2 (or NULL) */
  int *pRc                        /* IN/OUT: Test case error code */
){
  if( *pRc==0 ){
................................................................................
        }
        *pRc = 1;
        test_failed();
      }
    }
  }
}


/* Above this point are reusable test routines. Not clear that they
** should really be in this file.
*************************************************************************/

/*
** This test verifies that if a system crash occurs while doing merge work
................................................................................
    struct Test *p = &aTest[i];
    if( testCaseBegin(pRc, zPattern, "%s", p->zTest) ){
      p->x(p->bCompress, pRc);
      testCaseFinish(*pRc);
    }
  }
}








>







 







>







 







<
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
...
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
...
482
483
484
485
486
487
488

        *pRc = 1;
        test_failed();
      }
    }
  }
}

#if 0 /* not used */
static void testCompareCksumBtdb(
  const char *zFile,              /* Path to LSM database */
  const char *zExpect1,           /* Expected checksum 1 */
  const char *zExpect2,           /* Expected checksum 2 (or NULL) */
  int *pRc                        /* IN/OUT: Test case error code */
){
  if( *pRc==0 ){
................................................................................
        }
        *pRc = 1;
        test_failed();
      }
    }
  }
}
#endif /* not used */

/* Above this point are reusable test routines. Not clear that they
** should really be in this file.
*************************************************************************/

/*
** This test verifies that if a system crash occurs while doing merge work
................................................................................
    struct Test *p = &aTest[i];
    if( testCaseBegin(pRc, zPattern, "%s", p->zTest) ){
      p->x(p->bCompress, pRc);
      testCaseFinish(*pRc);
    }
  }
}

Changes to ext/lsm1/lsm-test/lsmtest9.c.

40
41
42
43
44
45
46

47
48
49
50
51
52
53
54

55


56
57
58
59
60
61
62
..
67
68
69
70
71
72
73

74
75
76
77
78
79
80
  lsm_db *db = 0;
  TestDb *pDb;
  TestDb *pControl;
  Datasource *pData;
  int i;
  int rc = 0;
  int iDot = 0;


  int nRecOn3 = (p->nRec / 3);
  int iData = 0;

  /* Start the test case, open a database and allocate the datasource. */
  rc = testControlDb(&pControl);
  pDb = testOpen(zSystem, 1, &rc);
  pData = testDatasourceNew(&p->defn);

  if( rc==0 ) db = tdb_lsm(pDb);



  testWriteDatasourceRange(pControl, pData, iData, nRecOn3*3, &rc);
  testWriteDatasourceRange(pDb,      pData, iData, nRecOn3*3, &rc);

  for(i=0; rc==0 && i<p->nRepeat; i++){

    testDeleteDatasourceRange(pControl, pData, iData, nRecOn3*2, &rc);
................................................................................
#if 0
      fprintf(stderr, "lsm_work() start...\n"); fflush(stderr);
#endif
      do {
        nDone = 0;
        rc = lsm_work(db, 1, (1<<30), &nDone);
      }while( rc==0 && nDone>0 );

#if 0 
      fprintf(stderr, "lsm_work() done...\n"); fflush(stderr);
#endif
    }

if( i+1<p->nRepeat ){
    iData += (nRecOn3*2);







>








>
|
>
>







 







>







40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
..
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  lsm_db *db = 0;
  TestDb *pDb;
  TestDb *pControl;
  Datasource *pData;
  int i;
  int rc = 0;
  int iDot = 0;
  int bMultiThreaded = 0;         /* True for MT LSM database */

  int nRecOn3 = (p->nRec / 3);
  int iData = 0;

  /* Start the test case, open a database and allocate the datasource. */
  rc = testControlDb(&pControl);
  pDb = testOpen(zSystem, 1, &rc);
  pData = testDatasourceNew(&p->defn);
  if( rc==0 ){
    db = tdb_lsm(pDb);
    bMultiThreaded = tdb_lsm_multithread(pDb);
  }

  testWriteDatasourceRange(pControl, pData, iData, nRecOn3*3, &rc);
  testWriteDatasourceRange(pDb,      pData, iData, nRecOn3*3, &rc);

  for(i=0; rc==0 && i<p->nRepeat; i++){

    testDeleteDatasourceRange(pControl, pData, iData, nRecOn3*2, &rc);
................................................................................
#if 0
      fprintf(stderr, "lsm_work() start...\n"); fflush(stderr);
#endif
      do {
        nDone = 0;
        rc = lsm_work(db, 1, (1<<30), &nDone);
      }while( rc==0 && nDone>0 );
      if( bMultiThreaded && rc==LSM_BUSY ) rc = LSM_OK;
#if 0 
      fprintf(stderr, "lsm_work() done...\n"); fflush(stderr);
#endif
    }

if( i+1<p->nRepeat ){
    iData += (nRecOn3*2);

Changes to ext/lsm1/lsm-test/lsmtest_main.c.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
...
111
112
113
114
115
116
117

118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
...
339
340
341
342
343
344
345

346
347
348
349
350
351
352
...
355
356
357
358
359
360
361

362
363
364
365
366
367
368
...
537
538
539
540
541
542
543

544
545
546
547
548
549
550
...
561
562
563
564
565
566
567

568
569
570
571
572
573
574
...
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
  return; 
}

#define testSetError(rc) testSetErrorFunc(rc, pRc, __FILE__, __LINE__)
static void testSetErrorFunc(int rc, int *pRc, const char *zFile, int iLine){
  if( rc ){
    *pRc = rc;
    printf("FAILED (%s:%d) rc=%d ", zFile, iLine, rc);
    test_failed();
  }
}

static int lsm_memcmp(u8 *a, u8 *b, int c){
  int i;
  for(i=0; i<c; i++){
................................................................................
void testCommit(TestDb *pDb, int iTrans, int *pRc){
  if( *pRc==0 ){
    int rc;
    rc = tdb_commit(pDb, iTrans);
    testSetError(rc);
  }
}

static void testRollback(TestDb *pDb, int iTrans, int *pRc){
  if( *pRc==0 ){
    int rc;
    rc = tdb_rollback(pDb, iTrans);
    testSetError(rc);
  }
}


void testWriteStr(
  TestDb *pDb,                    /* Database handle */
  const char *zKey,               /* Key to query database for */
  const char *zVal,               /* Value to write */
  int *pRc                        /* IN/OUT: Error code */
){
  int nVal = (zVal ? strlen(zVal) : 0);
  testWrite(pDb, (void *)zKey, strlen(zKey), (void *)zVal, nVal, pRc);
}


static void testDeleteStr(TestDb *pDb, const char *zKey, int *pRc){
  testDelete(pDb, (void *)zKey, strlen(zKey), pRc);
}

void testFetchStr(
  TestDb *pDb,                    /* Database handle */
  const char *zKey,               /* Key to query database for */
  const char *zVal,               /* Value to write */
  int *pRc                        /* IN/OUT: Error code */
){
  int nVal = (zVal ? strlen(zVal) : 0);
................................................................................
    zLib = tdb_library_name(*ppDb);
    testClose(ppDb);
    *pRc = tdb_open(zLib, 0, 0, ppDb);
  }
}



static void testSystemSelect(const char *zSys, int *piSel, int *pRc){
  if( *pRc==0 ){
    struct SysName { const char *zName; } *aName;
    int nSys;
    int i;

    for(nSys=0; tdb_system_name(nSys); nSys++);
................................................................................
      aName[i].zName = tdb_system_name(i);
    }

    *pRc = testArgSelect(aName, "db", zSys, piSel);
    free(aName);
  }
}


char *testMallocVPrintf(const char *zFormat, va_list ap){
  int nByte;
  va_list copy;
  char *zRet;

  __va_copy(copy, ap);
................................................................................
static void flushPrev(FILE *pOut){
  if( prev.nData ){
    fprintf(pOut, "w %s %lld %d %d\n", "d", prev.iOff, prev.nData, prev.nUs);
    prev.nData = 0;
  }
}


static void do_speed_write_hook2(
  void *pCtx,
  int bLog,
  i64 iOff,
  int nData,
  int nUs
){
................................................................................
    }else{
      prev.iOff = iOff;
      prev.nData = nData;
      prev.nUs = nUs;
    }
  }
}


#define ST_REPEAT  0
#define ST_WRITE   1
#define ST_PAUSE   2
#define ST_FETCH   3
#define ST_SCAN    4
#define ST_NSCAN   5
................................................................................
    if( i+1==nArg ){
      testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt);
      return 1;
    }
    if( aOpt[iSel].eVal>=0 ){
      aParam[aOpt[iSel].eVal] = atoi(azArg[i+1]);
    }else{
      int j;
      zSystem = azArg[i+1];
      bLsm = 0;
#if 0
      for(j=0; zSystem[j]; j++){
        if( zSystem[j]=='=' ) bLsm = 1;
      }
#endif







|







 







>







>











>



|







 







>







 







>







 







>







 







>







 







<







22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
...
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
...
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
...
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
...
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
...
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
...
665
666
667
668
669
670
671

672
673
674
675
676
677
678
  return; 
}

#define testSetError(rc) testSetErrorFunc(rc, pRc, __FILE__, __LINE__)
static void testSetErrorFunc(int rc, int *pRc, const char *zFile, int iLine){
  if( rc ){
    *pRc = rc;
    fprintf(stderr, "FAILED (%s:%d) rc=%d ", zFile, iLine, rc);
    test_failed();
  }
}

static int lsm_memcmp(u8 *a, u8 *b, int c){
  int i;
  for(i=0; i<c; i++){
................................................................................
void testCommit(TestDb *pDb, int iTrans, int *pRc){
  if( *pRc==0 ){
    int rc;
    rc = tdb_commit(pDb, iTrans);
    testSetError(rc);
  }
}
#if 0 /* unused */
static void testRollback(TestDb *pDb, int iTrans, int *pRc){
  if( *pRc==0 ){
    int rc;
    rc = tdb_rollback(pDb, iTrans);
    testSetError(rc);
  }
}
#endif

void testWriteStr(
  TestDb *pDb,                    /* Database handle */
  const char *zKey,               /* Key to query database for */
  const char *zVal,               /* Value to write */
  int *pRc                        /* IN/OUT: Error code */
){
  int nVal = (zVal ? strlen(zVal) : 0);
  testWrite(pDb, (void *)zKey, strlen(zKey), (void *)zVal, nVal, pRc);
}

#if 0 /* unused */
static void testDeleteStr(TestDb *pDb, const char *zKey, int *pRc){
  testDelete(pDb, (void *)zKey, strlen(zKey), pRc);
}
#endif
void testFetchStr(
  TestDb *pDb,                    /* Database handle */
  const char *zKey,               /* Key to query database for */
  const char *zVal,               /* Value to write */
  int *pRc                        /* IN/OUT: Error code */
){
  int nVal = (zVal ? strlen(zVal) : 0);
................................................................................
    zLib = tdb_library_name(*ppDb);
    testClose(ppDb);
    *pRc = tdb_open(zLib, 0, 0, ppDb);
  }
}


#if 0 /* unused */
static void testSystemSelect(const char *zSys, int *piSel, int *pRc){
  if( *pRc==0 ){
    struct SysName { const char *zName; } *aName;
    int nSys;
    int i;

    for(nSys=0; tdb_system_name(nSys); nSys++);
................................................................................
      aName[i].zName = tdb_system_name(i);
    }

    *pRc = testArgSelect(aName, "db", zSys, piSel);
    free(aName);
  }
}
#endif

char *testMallocVPrintf(const char *zFormat, va_list ap){
  int nByte;
  va_list copy;
  char *zRet;

  __va_copy(copy, ap);
................................................................................
static void flushPrev(FILE *pOut){
  if( prev.nData ){
    fprintf(pOut, "w %s %lld %d %d\n", "d", prev.iOff, prev.nData, prev.nUs);
    prev.nData = 0;
  }
}

#if 0 /* unused */
static void do_speed_write_hook2(
  void *pCtx,
  int bLog,
  i64 iOff,
  int nData,
  int nUs
){
................................................................................
    }else{
      prev.iOff = iOff;
      prev.nData = nData;
      prev.nUs = nUs;
    }
  }
}
#endif

#define ST_REPEAT  0
#define ST_WRITE   1
#define ST_PAUSE   2
#define ST_FETCH   3
#define ST_SCAN    4
#define ST_NSCAN   5
................................................................................
    if( i+1==nArg ){
      testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt);
      return 1;
    }
    if( aOpt[iSel].eVal>=0 ){
      aParam[aOpt[iSel].eVal] = atoi(azArg[i+1]);
    }else{

      zSystem = azArg[i+1];
      bLsm = 0;
#if 0
      for(j=0; zSystem[j]; j++){
        if( zSystem[j]=='=' ) bLsm = 1;
      }
#endif

Changes to ext/lsm1/lsm-test/lsmtest_mem.c.

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
...
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
  LsmMutex *p = (LsmMutex *)pTm->pMutex;
  pTm->xFree(p);
}
static void *tmLsmMalloc(int n){ return malloc(n); }
static void tmLsmFree(void *ptr){ free(ptr); }
static void *tmLsmRealloc(void *ptr, int n){ return realloc(ptr, n); }

static void *tmLsmEnvMalloc(lsm_env *p, int n){ 
  return tmMalloc((TmGlobal *)(p->pMemCtx), n); 
}
static void tmLsmEnvFree(lsm_env *p, void *ptr){ 
  tmFree((TmGlobal *)(p->pMemCtx), ptr); 
}
static void *tmLsmEnvRealloc(lsm_env *p, void *ptr, int n){ 
  return tmRealloc((TmGlobal *)(p->pMemCtx), ptr, n);
}

void testMallocInstall(lsm_env *pEnv){
  TmGlobal *pGlobal;
  LsmMutex *pMutex;
  assert( pEnv->pMemCtx==0 );
................................................................................
  pEnv->xFree = tmLsmEnvFree;
}

void testMallocUninstall(lsm_env *pEnv){
  TmGlobal *p = (TmGlobal *)pEnv->pMemCtx;
  pEnv->pMemCtx = 0;
  if( p ){
    pEnv->xMalloc = (void *(*)(lsm_env*, int))(p->xSaveMalloc);
    pEnv->xRealloc = (void *(*)(lsm_env*, void*, int))(p->xSaveRealloc);
    pEnv->xFree = (void (*)(lsm_env*, void*))(p->xSaveFree);
    p->xDelMutex(p);
    tmLsmFree(p);
  }
}

void testMallocCheck(
  lsm_env *pEnv,







|





|







 







|
|
|







322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
...
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
  LsmMutex *p = (LsmMutex *)pTm->pMutex;
  pTm->xFree(p);
}
static void *tmLsmMalloc(int n){ return malloc(n); }
static void tmLsmFree(void *ptr){ free(ptr); }
static void *tmLsmRealloc(void *ptr, int n){ return realloc(ptr, n); }

static void *tmLsmEnvMalloc(lsm_env *p, size_t n){ 
  return tmMalloc((TmGlobal *)(p->pMemCtx), n); 
}
static void tmLsmEnvFree(lsm_env *p, void *ptr){ 
  tmFree((TmGlobal *)(p->pMemCtx), ptr); 
}
static void *tmLsmEnvRealloc(lsm_env *p, void *ptr, size_t n){ 
  return tmRealloc((TmGlobal *)(p->pMemCtx), ptr, n);
}

void testMallocInstall(lsm_env *pEnv){
  TmGlobal *pGlobal;
  LsmMutex *pMutex;
  assert( pEnv->pMemCtx==0 );
................................................................................
  pEnv->xFree = tmLsmEnvFree;
}

void testMallocUninstall(lsm_env *pEnv){
  TmGlobal *p = (TmGlobal *)pEnv->pMemCtx;
  pEnv->pMemCtx = 0;
  if( p ){
    pEnv->xMalloc = p->xSaveMalloc;
    pEnv->xRealloc = p->xSaveRealloc;
    pEnv->xFree = p->xSaveFree;
    p->xDelMutex(p);
    tmLsmFree(p);
  }
}

void testMallocCheck(
  lsm_env *pEnv,

Changes to ext/lsm1/lsm-test/lsmtest_tdb.c.

740
741
742
743
744
745
746








747
748
749
750
751
752
753
#endif
};

const char *tdb_system_name(int i){
  if( i<0 || i>=ArraySize(aLib) ) return 0;
  return aLib[i].zName;
}









int tdb_open(const char *zLib, const char *zDb, int bClear, TestDb **ppDb){
  int i;
  int rc = 1;
  const char *zSpec = 0;

  int nLib = 0;







>
>
>
>
>
>
>
>







740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
#endif
};

const char *tdb_system_name(int i){
  if( i<0 || i>=ArraySize(aLib) ) return 0;
  return aLib[i].zName;
}

const char *tdb_default_db(const char *zSys){
  int i;
  for(i=0; i<ArraySize(aLib); i++){
    if( strcmp(aLib[i].zName, zSys)==0 ) return aLib[i].zDefaultDb;
  }
  return 0;
}

int tdb_open(const char *zLib, const char *zDb, int bClear, TestDb **ppDb){
  int i;
  int rc = 1;
  const char *zSpec = 0;

  int nLib = 0;

Changes to ext/lsm1/lsm-test/lsmtest_tdb.h.

121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137






138
139
140
141
142
143
144
  int bReverse,                   /* True to scan in reverse order */
  void *pKey1, int nKey1,         /* Start of search */
  void *pKey2, int nKey2,         /* End of search */
  void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal)
);

const char *tdb_system_name(int i);


int tdb_lsm_open(const char *zCfg, const char *zDb, int bClear, TestDb **ppDb);

/*
** If the TestDb handle passed as an argument is a wrapper around an LSM
** database, return the LSM handle. Otherwise, if the argument is some other
** database system, return NULL.
*/
lsm_db *tdb_lsm(TestDb *pDb);







/*
** Return a pointer to the lsm_env object used by all lsm database
** connections initialized as a copy of the object returned by 
** lsm_default_env(). It may be modified (e.g. to override functions)
** if the caller can guarantee that it is not already in use.
*/
lsm_env *tdb_lsm_env(void);







>










>
>
>
>
>
>







121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  int bReverse,                   /* True to scan in reverse order */
  void *pKey1, int nKey1,         /* Start of search */
  void *pKey2, int nKey2,         /* End of search */
  void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal)
);

const char *tdb_system_name(int i);
const char *tdb_default_db(const char *zSys);

int tdb_lsm_open(const char *zCfg, const char *zDb, int bClear, TestDb **ppDb);

/*
** If the TestDb handle passed as an argument is a wrapper around an LSM
** database, return the LSM handle. Otherwise, if the argument is some other
** database system, return NULL.
*/
lsm_db *tdb_lsm(TestDb *pDb);

/*
** Return true if the db passed as an argument is a multi-threaded LSM
** connection.
*/
int tdb_lsm_multithread(TestDb *pDb);

/*
** Return a pointer to the lsm_env object used by all lsm database
** connections initialized as a copy of the object returned by 
** lsm_default_env(). It may be modified (e.g. to override functions)
** if the caller can guarantee that it is not already in use.
*/
lsm_env *tdb_lsm_env(void);

Changes to ext/lsm1/lsm-test/lsmtest_tdb3.c.

1046
1047
1048
1049
1050
1051
1052








1053
1054
1055
1056
1057
1058
1059

lsm_db *tdb_lsm(TestDb *pDb){
  if( pDb->pMethods->xClose==test_lsm_close ){
    return ((LsmDb *)pDb)->db;
  }
  return 0;
}









void tdb_lsm_enable_log(TestDb *pDb, int bEnable){
  lsm_db *db = tdb_lsm(pDb);
  if( db ){
    lsm_config_log(db, (bEnable ? xLog : 0), (void *)"client");
  }
}







>
>
>
>
>
>
>
>







1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

lsm_db *tdb_lsm(TestDb *pDb){
  if( pDb->pMethods->xClose==test_lsm_close ){
    return ((LsmDb *)pDb)->db;
  }
  return 0;
}

int tdb_lsm_multithread(TestDb *pDb){
  int ret = 0;
  if( tdb_lsm(pDb) ){
    ret = ((LsmDb*)pDb)->eMode!=LSMTEST_MODE_SINGLETHREAD;
  }
  return ret;
}

void tdb_lsm_enable_log(TestDb *pDb, int bEnable){
  lsm_db *db = tdb_lsm(pDb);
  if( db ){
    lsm_config_log(db, (bEnable ? xLog : 0), (void *)"client");
  }
}

Changes to ext/lsm1/lsmInt.h.

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876




877
878
879
880
881
882
883
void lsmLogMessage(lsm_db *, int, const char *, ...);
int lsmInfoFreelist(lsm_db *pDb, char **pzOut);

/*
** Functions from file "lsm_log.c".
*/
int lsmLogBegin(lsm_db *pDb);
int lsmLogWrite(lsm_db *, void *, int, void *, int);
int lsmLogCommit(lsm_db *);
void lsmLogEnd(lsm_db *pDb, int bCommit);
void lsmLogTell(lsm_db *, LogMark *);
void lsmLogSeek(lsm_db *, LogMark *);
void lsmLogClose(lsm_db *);

int lsmLogRecover(lsm_db *);
int lsmInfoLogStructure(lsm_db *pDb, char **pzVal);






/**************************************************************************
** Functions from file "lsm_shared.c".
*/

int lsmDbDatabaseConnect(lsm_db*, const char *);
void lsmDbDatabaseRelease(lsm_db *);







|









>
>
>
>







860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
void lsmLogMessage(lsm_db *, int, const char *, ...);
int lsmInfoFreelist(lsm_db *pDb, char **pzOut);

/*
** Functions from file "lsm_log.c".
*/
int lsmLogBegin(lsm_db *pDb);
int lsmLogWrite(lsm_db *, int, void *, int, void *, int);
int lsmLogCommit(lsm_db *);
void lsmLogEnd(lsm_db *pDb, int bCommit);
void lsmLogTell(lsm_db *, LogMark *);
void lsmLogSeek(lsm_db *, LogMark *);
void lsmLogClose(lsm_db *);

int lsmLogRecover(lsm_db *);
int lsmInfoLogStructure(lsm_db *pDb, char **pzVal);

/* Valid values for the second argument to lsmLogWrite(). */
#define LSM_WRITE        0x06
#define LSM_DELETE       0x08
#define LSM_DRANGE       0x0A

/**************************************************************************
** Functions from file "lsm_shared.c".
*/

int lsmDbDatabaseConnect(lsm_db*, const char *);
void lsmDbDatabaseRelease(lsm_db *);

Changes to ext/lsm1/lsm_ckpt.c.

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

  assert( n<=LSM_META_RW_PAGE_SIZE );
  memcpy(pShm->aSnap2, p, n);
  lsmShmBarrier(pDb);
  memcpy(pShm->aSnap1, p, n);
  lsmFree(pDb->pEnv, p);

  assert( lsmFsIntegrityCheck(pDb) );
  return LSM_OK;
}

/*
** This function is used to determine the snapshot-id of the most recently
** checkpointed snapshot. Variable ShmHeader.iMetaPage indicates which of
** the two meta-pages said snapshot resides on (if any). 







|







1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

  assert( n<=LSM_META_RW_PAGE_SIZE );
  memcpy(pShm->aSnap2, p, n);
  lsmShmBarrier(pDb);
  memcpy(pShm->aSnap1, p, n);
  lsmFree(pDb->pEnv, p);

  /* assert( lsmFsIntegrityCheck(pDb) ); */
  return LSM_OK;
}

/*
** This function is used to determine the snapshot-id of the most recently
** checkpointed snapshot. Variable ShmHeader.iMetaPage indicates which of
** the two meta-pages said snapshot resides on (if any). 

Changes to ext/lsm1/lsm_log.c.

195
196
197
198
199
200
201

202
203



204
205
206
207
208
209
210
...
369
370
371
372
373
374
375

376
377
378
379
380
381
382
...
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
...
649
650
651
652
653
654
655

656
657
658
659
660
661
662
663






664
665
666
667
668
669
670
671
672
673
674
675
676
677
...
683
684
685
686
687
688
689
690

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
...
864
865
866
867
868
869
870
871
872
873
874
875
876



877
878
879
880
881
882
883
...
911
912
913
914
915
916
917

918
919
920
921
922
923
924
...
998
999
1000
1001
1002
1003
1004


1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

1023



1024
1025
1026
1027
1028
1029
1030
#define LSM_LOG_PAD1         0x01
#define LSM_LOG_PAD2         0x02
#define LSM_LOG_COMMIT       0x03
#define LSM_LOG_JUMP         0x04

#define LSM_LOG_WRITE        0x06
#define LSM_LOG_WRITE_CKSUM  0x07

#define LSM_LOG_DELETE       0x08
#define LSM_LOG_DELETE_CKSUM 0x09




/* Require a checksum every 32KB. */
#define LSM_CKSUM_MAXDATA (32*1024)

/* Do not wrap a log file smaller than this in bytes. */
#define LSM_MIN_LOGWRAP      (128*1024)

................................................................................
  rc = lsmFsOpenLog(pDb, 0);
  if( pDb->pLogWriter==0 ){
    pNew = lsmMallocZeroRc(pDb->pEnv, sizeof(LogWriter), &rc);
    if( pNew ){
      lsmStringInit(&pNew->buf, pDb->pEnv);
      rc = lsmStringExtend(&pNew->buf, 2);
    }

  }else{
    pNew = pDb->pLogWriter;
    assert( (u8 *)(&pNew[1])==(u8 *)(&((&pNew->buf)[1])) );
    memset(pNew, 0, ((u8 *)&pNew->buf) - (u8 *)pNew);
    pNew->buf.n = 0;
  }

................................................................................
    assert( pNew->jump.iStart>pNew->iOff );

    iRound = firstByteOnSector(pNew, pNew->jump.iStart);
    if( iRound>pNew->iOff ) pNew->jump.iStart = iRound;
    pNew->jump.iEnd = lastByteOnSector(pNew, pNew->jump.iEnd);
  }

  pDb->pLogWriter = pNew;
  return rc;
}

/*
** This function is called when a write-transaction is being closed.
** Parameter bCommit is true if the transaction is being committed,
** or false otherwise. The caller must hold the client-mutex to call
................................................................................

/*
** Append an LSM_LOG_WRITE (if nVal>=0) or LSM_LOG_DELETE (if nVal<0) 
** record to the database log.
*/
int lsmLogWrite(
  lsm_db *pDb,                    /* Database handle */

  void *pKey, int nKey,           /* Database key to write to log */
  void *pVal, int nVal            /* Database value (or nVal<0) to write */
){
  int rc = LSM_OK;
  LogWriter *pLog;                /* Log object to write to */
  int nReq;                       /* Bytes of space required in log */
  int bCksum = 0;                 /* True to embed a checksum in this record */







  if( pDb->bUseLog==0 ) return LSM_OK;
  pLog = pDb->pLogWriter;

  /* Determine how many bytes of space are required, assuming that a checksum
  ** will be embedded in this record (even though it may not be).  */
  nReq = 1 + lsmVarintLen32(nKey) + 8 + nKey;
  if( nVal>=0 ) nReq += lsmVarintLen32(nVal) + nVal;

  /* Jump over the jump region if required. Set bCksum to true to tell the
  ** code below to include a checksum in the record if either (a) writing
  ** this record would mean that more than LSM_CKSUM_MAXDATA bytes of data
  ** have been written to the log since the last checksum, or (b) the jump
  ** is taken.  */
  rc = jumpIfRequired(pDb, pLog, nReq, &bCksum);
................................................................................
  if( rc==LSM_OK ){
    u8 *a = (u8 *)&pLog->buf.z[pLog->buf.n];
    
    /* Write the record header - the type byte followed by either 1 (for
    ** DELETE) or 2 (for WRITE) varints.  */
    assert( LSM_LOG_WRITE_CKSUM == (LSM_LOG_WRITE | 0x0001) );
    assert( LSM_LOG_DELETE_CKSUM == (LSM_LOG_DELETE | 0x0001) );
    *(a++) = (nVal>=0 ? LSM_LOG_WRITE : LSM_LOG_DELETE) | (u8)bCksum;

    a += lsmVarintPut32(a, nKey);
    if( nVal>=0 ) a += lsmVarintPut32(a, nVal);

    if( bCksum ){
      pLog->buf.n = (a - (u8 *)pLog->buf.z);
      rc = logCksumAndFlush(pDb);
      a = (u8 *)&pLog->buf.z[pLog->buf.n];
    }

    memcpy(a, pKey, nKey);
    a += nKey;
    if( nVal>=0 ){
      memcpy(a, pVal, nVal);
      a += nVal;
    }
    pLog->buf.n = a - (u8 *)pLog->buf.z;
    assert( pLog->buf.n<=pLog->buf.nAlloc );
  }

................................................................................
    if( ppBlob && nReq==nBlob && nBlob<=nAvail ){
      *ppBlob = (u8 *)&p->buf.z[p->iBuf];
      p->iBuf += nBlob;
      nReq = 0;
    }else{
      int nCopy = LSM_MIN(nAvail, nReq);
      if( nBlob==nReq ){
        if( ppBlob ) *ppBlob = (u8 *)pBuf->z;
        pBuf->n = 0;
      }
      rc = lsmStringBinAppend(pBuf, (u8 *)&p->buf.z[p->iBuf], nCopy);
      nReq -= nCopy;
      p->iBuf += nCopy;



    }
  }

  *pRc = rc;
}

static void logReaderVarint(
................................................................................
    int nCksum = p->iBuf - p->iCksumBuf;

    /* Update in-memory (expected) checksums */
    assert( nCksum>=0 );
    logCksumUnaligned(&p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1);
    p->iCksumBuf = p->iBuf + 8;
    logReaderBlob(p, pBuf, 8, &pPtr, pRc);


    /* Read the checksums from the log file. Set *pbEof if they do not match. */
    if( pPtr ){
      cksum0 = lsmGetU32(pPtr);
      cksum1 = lsmGetU32(&pPtr[4]);
      *pbEof = (cksum0!=p->cksum0 || cksum1!=p->cksum1);
      p->iCksumBuf = p->iBuf;
................................................................................
          case LSM_LOG_PAD2: {
            int nPad;
            logReaderVarint(&reader, &buf1, &nPad, &rc);
            logReaderBlob(&reader, &buf1, nPad, 0, &rc);
            break;
          }



          case LSM_LOG_WRITE:
          case LSM_LOG_WRITE_CKSUM: {
            int nKey;
            int nVal;
            u8 *aVal;
            logReaderVarint(&reader, &buf1, &nKey, &rc);
            logReaderVarint(&reader, &buf2, &nVal, &rc);

            if( eType==LSM_LOG_WRITE_CKSUM ){
              logReaderCksum(&reader, &buf1, &bEof, &rc);
            }else{
              bEof = logRequireCksum(&reader, nKey+nVal);
            }
            if( bEof ) break;

            logReaderBlob(&reader, &buf1, nKey, 0, &rc);
            logReaderBlob(&reader, &buf2, nVal, &aVal, &rc);
            if( iPass==1 && rc==LSM_OK ){ 

              rc = lsmTreeInsert(pDb, (u8 *)buf1.z, nKey, aVal, nVal);



            }
            break;
          }

          case LSM_LOG_DELETE:
          case LSM_LOG_DELETE_CKSUM: {
            int nKey; u8 *aKey;







>


>
>
>







 







>







 







|







 







>








>
>
>
>
>
>






|







 







|
>

|









|







 







<





>
>
>







 







>







 







>
>








|









>
|
>
>
>







195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
...
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
...
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
...
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
...
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
...
877
878
879
880
881
882
883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
...
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
....
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
#define LSM_LOG_PAD1         0x01
#define LSM_LOG_PAD2         0x02
#define LSM_LOG_COMMIT       0x03
#define LSM_LOG_JUMP         0x04

#define LSM_LOG_WRITE        0x06
#define LSM_LOG_WRITE_CKSUM  0x07

#define LSM_LOG_DELETE       0x08
#define LSM_LOG_DELETE_CKSUM 0x09

#define LSM_LOG_DRANGE       0x0A
#define LSM_LOG_DRANGE_CKSUM 0x0B

/* Require a checksum every 32KB. */
#define LSM_CKSUM_MAXDATA (32*1024)

/* Do not wrap a log file smaller than this in bytes. */
#define LSM_MIN_LOGWRAP      (128*1024)

................................................................................
  rc = lsmFsOpenLog(pDb, 0);
  if( pDb->pLogWriter==0 ){
    pNew = lsmMallocZeroRc(pDb->pEnv, sizeof(LogWriter), &rc);
    if( pNew ){
      lsmStringInit(&pNew->buf, pDb->pEnv);
      rc = lsmStringExtend(&pNew->buf, 2);
    }
    pDb->pLogWriter = pNew;
  }else{
    pNew = pDb->pLogWriter;
    assert( (u8 *)(&pNew[1])==(u8 *)(&((&pNew->buf)[1])) );
    memset(pNew, 0, ((u8 *)&pNew->buf) - (u8 *)pNew);
    pNew->buf.n = 0;
  }

................................................................................
    assert( pNew->jump.iStart>pNew->iOff );

    iRound = firstByteOnSector(pNew, pNew->jump.iStart);
    if( iRound>pNew->iOff ) pNew->jump.iStart = iRound;
    pNew->jump.iEnd = lastByteOnSector(pNew, pNew->jump.iEnd);
  }

  assert( pDb->pLogWriter==pNew );
  return rc;
}

/*
** This function is called when a write-transaction is being closed.
** Parameter bCommit is true if the transaction is being committed,
** or false otherwise. The caller must hold the client-mutex to call
................................................................................

/*
** Append an LSM_LOG_WRITE (if nVal>=0) or LSM_LOG_DELETE (if nVal<0) 
** record to the database log.
*/
int lsmLogWrite(
  lsm_db *pDb,                    /* Database handle */
  int eType,
  void *pKey, int nKey,           /* Database key to write to log */
  void *pVal, int nVal            /* Database value (or nVal<0) to write */
){
  int rc = LSM_OK;
  LogWriter *pLog;                /* Log object to write to */
  int nReq;                       /* Bytes of space required in log */
  int bCksum = 0;                 /* True to embed a checksum in this record */

  assert( eType==LSM_WRITE || eType==LSM_DELETE || eType==LSM_DRANGE );
  assert( LSM_LOG_WRITE==LSM_WRITE );
  assert( LSM_LOG_DELETE==LSM_DELETE );
  assert( LSM_LOG_DRANGE==LSM_DRANGE );
  assert( (eType==LSM_LOG_DELETE)==(nVal<0) );

  if( pDb->bUseLog==0 ) return LSM_OK;
  pLog = pDb->pLogWriter;

  /* Determine how many bytes of space are required, assuming that a checksum
  ** will be embedded in this record (even though it may not be).  */
  nReq = 1 + lsmVarintLen32(nKey) + 8 + nKey;
  if( eType!=LSM_LOG_DELETE ) nReq += lsmVarintLen32(nVal) + nVal;

  /* Jump over the jump region if required. Set bCksum to true to tell the
  ** code below to include a checksum in the record if either (a) writing
  ** this record would mean that more than LSM_CKSUM_MAXDATA bytes of data
  ** have been written to the log since the last checksum, or (b) the jump
  ** is taken.  */
  rc = jumpIfRequired(pDb, pLog, nReq, &bCksum);
................................................................................
  if( rc==LSM_OK ){
    u8 *a = (u8 *)&pLog->buf.z[pLog->buf.n];
    
    /* Write the record header - the type byte followed by either 1 (for
    ** DELETE) or 2 (for WRITE) varints.  */
    assert( LSM_LOG_WRITE_CKSUM == (LSM_LOG_WRITE | 0x0001) );
    assert( LSM_LOG_DELETE_CKSUM == (LSM_LOG_DELETE | 0x0001) );
    assert( LSM_LOG_DRANGE_CKSUM == (LSM_LOG_DRANGE | 0x0001) );
    *(a++) = (u8)eType | (u8)bCksum;
    a += lsmVarintPut32(a, nKey);
    if( eType!=LSM_LOG_DELETE ) a += lsmVarintPut32(a, nVal);

    if( bCksum ){
      pLog->buf.n = (a - (u8 *)pLog->buf.z);
      rc = logCksumAndFlush(pDb);
      a = (u8 *)&pLog->buf.z[pLog->buf.n];
    }

    memcpy(a, pKey, nKey);
    a += nKey;
    if( eType!=LSM_LOG_DELETE ){
      memcpy(a, pVal, nVal);
      a += nVal;
    }
    pLog->buf.n = a - (u8 *)pLog->buf.z;
    assert( pLog->buf.n<=pLog->buf.nAlloc );
  }

................................................................................
    if( ppBlob && nReq==nBlob && nBlob<=nAvail ){
      *ppBlob = (u8 *)&p->buf.z[p->iBuf];
      p->iBuf += nBlob;
      nReq = 0;
    }else{
      int nCopy = LSM_MIN(nAvail, nReq);
      if( nBlob==nReq ){

        pBuf->n = 0;
      }
      rc = lsmStringBinAppend(pBuf, (u8 *)&p->buf.z[p->iBuf], nCopy);
      nReq -= nCopy;
      p->iBuf += nCopy;
      if( nReq==0 && ppBlob ){
        *ppBlob = (u8*)pBuf->z;
      }
    }
  }

  *pRc = rc;
}

static void logReaderVarint(
................................................................................
    int nCksum = p->iBuf - p->iCksumBuf;

    /* Update in-memory (expected) checksums */
    assert( nCksum>=0 );
    logCksumUnaligned(&p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1);
    p->iCksumBuf = p->iBuf + 8;
    logReaderBlob(p, pBuf, 8, &pPtr, pRc);
    assert( pPtr || *pRc );

    /* Read the checksums from the log file. Set *pbEof if they do not match. */
    if( pPtr ){
      cksum0 = lsmGetU32(pPtr);
      cksum1 = lsmGetU32(&pPtr[4]);
      *pbEof = (cksum0!=p->cksum0 || cksum1!=p->cksum1);
      p->iCksumBuf = p->iBuf;
................................................................................
          case LSM_LOG_PAD2: {
            int nPad;
            logReaderVarint(&reader, &buf1, &nPad, &rc);
            logReaderBlob(&reader, &buf1, nPad, 0, &rc);
            break;
          }

          case LSM_LOG_DRANGE:
          case LSM_LOG_DRANGE_CKSUM:
          case LSM_LOG_WRITE:
          case LSM_LOG_WRITE_CKSUM: {
            int nKey;
            int nVal;
            u8 *aVal;
            logReaderVarint(&reader, &buf1, &nKey, &rc);
            logReaderVarint(&reader, &buf2, &nVal, &rc);

            if( eType==LSM_LOG_WRITE_CKSUM || eType==LSM_LOG_DRANGE_CKSUM ){
              logReaderCksum(&reader, &buf1, &bEof, &rc);
            }else{
              bEof = logRequireCksum(&reader, nKey+nVal);
            }
            if( bEof ) break;

            logReaderBlob(&reader, &buf1, nKey, 0, &rc);
            logReaderBlob(&reader, &buf2, nVal, &aVal, &rc);
            if( iPass==1 && rc==LSM_OK ){ 
              if( eType==LSM_LOG_WRITE || eType==LSM_LOG_WRITE_CKSUM ){
                rc = lsmTreeInsert(pDb, (u8 *)buf1.z, nKey, aVal, nVal);
              }else{
                rc = lsmTreeDelete(pDb, (u8 *)buf1.z, nKey, aVal, nVal);
              }
            }
            break;
          }

          case LSM_LOG_DELETE:
          case LSM_LOG_DELETE_CKSUM: {
            int nKey; u8 *aKey;

Changes to ext/lsm1/lsm_main.c.

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
...
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
...
919
920
921
922
923
924
925

926
927
928
929
930
931

932
933
934
935
936
937
938
      pDb->pClient = 0;

      assertRwclientLockValue(pDb);

      lsmDbDatabaseRelease(pDb);
      lsmLogClose(pDb);
      lsmFsClose(pDb->pFS);
      assert( pDb->mLock==0 );
      
      /* Invoke any destructors registered for the compression or 
      ** compression factory callbacks.  */
      if( pDb->factory.xFree ) pDb->factory.xFree(pDb->factory.pCtx);
      if( pDb->compress.xFree ) pDb->compress.xFree(pDb->compress.pCtx);

      lsmFree(pDb->pEnv, pDb->rollback.aArray);
................................................................................

  if( pDb->nTransOpen==0 ){
    bCommit = 1;
    rc = lsm_begin(pDb, 1);
  }

  if( rc==LSM_OK ){
    if( bDeleteRange==0 ){
      rc = lsmLogWrite(pDb, (void *)pKey, nKey, (void *)pVal, nVal);
    }else{
      /* TODO */
    }
  }

  lsmSortedSaveTreeCursors(pDb);

  if( rc==LSM_OK ){
    int pgsz = lsmFsPageSize(pDb->pFS);
    int nQuant = LSM_AUTOWORK_QUANT * pgsz;
................................................................................
  assert_db_state( pDb );

  /* A value less than zero means close the innermost nested transaction. */
  if( iLevel<0 ) iLevel = LSM_MAX(0, pDb->nTransOpen - 1);

  if( iLevel<pDb->nTransOpen ){
    if( iLevel==0 ){

      /* Commit the transaction to disk. */
      if( rc==LSM_OK ) rc = lsmLogCommit(pDb);
      if( rc==LSM_OK && pDb->eSafety==LSM_SAFETY_FULL ){
        rc = lsmFsSyncLog(pDb->pFS);
      }
      lsmFinishWriteTrans(pDb, (rc==LSM_OK));

    }
    pDb->nTransOpen = iLevel;
  }
  dbReleaseClientSnapshot(pDb);
  return rc;
}








|







 







|
|
<
<
<







 







>





|
>







222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
...
665
666
667
668
669
670
671
672
673



674
675
676
677
678
679
680
...
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
      pDb->pClient = 0;

      assertRwclientLockValue(pDb);

      lsmDbDatabaseRelease(pDb);
      lsmLogClose(pDb);
      lsmFsClose(pDb->pFS);
      /* assert( pDb->mLock==0 ); */
      
      /* Invoke any destructors registered for the compression or 
      ** compression factory callbacks.  */
      if( pDb->factory.xFree ) pDb->factory.xFree(pDb->factory.pCtx);
      if( pDb->compress.xFree ) pDb->compress.xFree(pDb->compress.pCtx);

      lsmFree(pDb->pEnv, pDb->rollback.aArray);
................................................................................

  if( pDb->nTransOpen==0 ){
    bCommit = 1;
    rc = lsm_begin(pDb, 1);
  }

  if( rc==LSM_OK ){
    int eType = (bDeleteRange ? LSM_DRANGE : (nVal>=0?LSM_WRITE:LSM_DELETE));
    rc = lsmLogWrite(pDb, eType, (void *)pKey, nKey, (void *)pVal, nVal);



  }

  lsmSortedSaveTreeCursors(pDb);

  if( rc==LSM_OK ){
    int pgsz = lsmFsPageSize(pDb->pFS);
    int nQuant = LSM_AUTOWORK_QUANT * pgsz;
................................................................................
  assert_db_state( pDb );

  /* A value less than zero means close the innermost nested transaction. */
  if( iLevel<0 ) iLevel = LSM_MAX(0, pDb->nTransOpen - 1);

  if( iLevel<pDb->nTransOpen ){
    if( iLevel==0 ){
      int rc2;
      /* Commit the transaction to disk. */
      if( rc==LSM_OK ) rc = lsmLogCommit(pDb);
      if( rc==LSM_OK && pDb->eSafety==LSM_SAFETY_FULL ){
        rc = lsmFsSyncLog(pDb->pFS);
      }
      rc2 = lsmFinishWriteTrans(pDb, (rc==LSM_OK));
      if( rc==LSM_OK ) rc = rc2;
    }
    pDb->nTransOpen = iLevel;
  }
  dbReleaseClientSnapshot(pDb);
  return rc;
}

Changes to ext/lsm1/lsm_sorted.c.

1948
1949
1950
1951
1952
1953
1954








1955


1956
1957
1958
1959
1960
1961
1962
....
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
....
5392
5393
5394
5395
5396
5397
5398

5399

5400
5401
5402
5403
5404
5405
5406
      /* If the segment-pointer has settled on a key that is smaller than
      ** the splitkey, invalidate the segment-pointer.  */
      if( pPtr->pPg ){
        res = sortedKeyCompare(pCsr->pDb->xCmp, 
            rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey, 
            pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
        );








        if( res<0 ) segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);


      }

      if( aPtr[i].pKey ) bHit = 1;
    }

    if( rc==LSM_OK && eSeek==LSM_SEEK_LE && bHit==0 ){
      rc = segmentPtrEnd(pCsr, &aPtr[0], 1);
................................................................................
  int iFPtr,                      /* Footer ptr for new pages */
  u8 *aWrite,                     /* Write data from this buffer */
  int nWrite                      /* Size of aWrite[] in bytes */
){
  int rc = LSM_OK;                /* Return code */
  int nRem = nWrite;              /* Number of bytes still to write */

  while( nRem>0 ){
    Merge *pMerge = pMW->pLevel->pMerge;
    int nCopy;                    /* Number of bytes to copy */
    u8 *aData;                    /* Pointer to buffer of current output page */
    int nData;                    /* Size of aData[] in bytes */
    int nRec;                     /* Number of records on current output page */
    int iOff;                     /* Offset in aData[] to write to */

................................................................................
    rc = doLsmWork(pDb, pDb->nMerge, nRemaining, 0);
    if( rc==LSM_BUSY ) rc = LSM_OK;

    if( bRestore && pDb->pCsr ){
      lsmMCursorFreeCache(pDb);
      lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
      pDb->pClient = 0;

      rc = lsmCheckpointLoad(pDb, 0);

      if( rc==LSM_OK ){
        rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot, &pDb->pClient);
      }
      if( rc==LSM_OK ){
        rc = lsmRestoreCursors(pDb);
      }
    }







>
>
>
>
>
>
>
>
|
>
>







 







|







 







>
|
>







1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
....
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
....
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
      /* If the segment-pointer has settled on a key that is smaller than
      ** the splitkey, invalidate the segment-pointer.  */
      if( pPtr->pPg ){
        res = sortedKeyCompare(pCsr->pDb->xCmp, 
            rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey, 
            pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
        );
        if( res<0 ){
          if( pPtr->eType & LSM_START_DELETE ){
            pPtr->eType &= ~LSM_INSERT;
            pPtr->pKey = pLvl->pSplitKey;
            pPtr->nKey = pLvl->nSplitKey;
            pPtr->pVal = 0;
            pPtr->nVal = 0;
          }else{
            segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
          }
        }
      }

      if( aPtr[i].pKey ) bHit = 1;
    }

    if( rc==LSM_OK && eSeek==LSM_SEEK_LE && bHit==0 ){
      rc = segmentPtrEnd(pCsr, &aPtr[0], 1);
................................................................................
  int iFPtr,                      /* Footer ptr for new pages */
  u8 *aWrite,                     /* Write data from this buffer */
  int nWrite                      /* Size of aWrite[] in bytes */
){
  int rc = LSM_OK;                /* Return code */
  int nRem = nWrite;              /* Number of bytes still to write */

  while( rc==LSM_OK && nRem>0 ){
    Merge *pMerge = pMW->pLevel->pMerge;
    int nCopy;                    /* Number of bytes to copy */
    u8 *aData;                    /* Pointer to buffer of current output page */
    int nData;                    /* Size of aData[] in bytes */
    int nRec;                     /* Number of records on current output page */
    int iOff;                     /* Offset in aData[] to write to */

................................................................................
    rc = doLsmWork(pDb, pDb->nMerge, nRemaining, 0);
    if( rc==LSM_BUSY ) rc = LSM_OK;

    if( bRestore && pDb->pCsr ){
      lsmMCursorFreeCache(pDb);
      lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
      pDb->pClient = 0;
      if( rc==LSM_OK ){
        rc = lsmCheckpointLoad(pDb, 0);
      }
      if( rc==LSM_OK ){
        rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot, &pDb->pClient);
      }
      if( rc==LSM_OK ){
        rc = lsmRestoreCursors(pDb);
      }
    }

Changes to ext/lsm1/lsm_str.c.

35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
  if( pStr->n + nNew >= pStr->nAlloc ){
    int nAlloc = pStr->n + nNew + 100;
    char *zNew = lsmRealloc(pStr->pEnv, pStr->z, nAlloc);
    if( zNew==0 ){
      lsmFree(pStr->pEnv, pStr->z);
      nAlloc = 0;
      pStr->n = -1;
      pStr->z = 0;
    }else{

      pStr->nAlloc = nAlloc;
      pStr->z = zNew;
    }
  }
  return (pStr->z ? LSM_OK : LSM_NOMEM_BKPT);
}

/*
** Clear an LsmString object, releasing any allocated memory that it holds.
** This also clears the error indication (if any).







<
<
>
|
|
<







35
36
37
38
39
40
41


42
43
44

45
46
47
48
49
50
51
  if( pStr->n + nNew >= pStr->nAlloc ){
    int nAlloc = pStr->n + nNew + 100;
    char *zNew = lsmRealloc(pStr->pEnv, pStr->z, nAlloc);
    if( zNew==0 ){
      lsmFree(pStr->pEnv, pStr->z);
      nAlloc = 0;
      pStr->n = -1;


    }
    pStr->nAlloc = nAlloc;
    pStr->z = zNew;

  }
  return (pStr->z ? LSM_OK : LSM_NOMEM_BKPT);
}

/*
** Clear an LsmString object, releasing any allocated memory that it holds.
** This also clears the error indication (if any).

Changes to ext/lsm1/lsm_tree.c.

1466
1467
1468
1469
1470
1471
1472

1473
1474
1475
1476
1477
1478
1479
....
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
....
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
    TreeKey *pRes;                /* Key at end of seek operation */
    treeCursorInit(pDb, 0, &csr);

    /* Seek to the leaf (or internal node) that the new key belongs on */
    rc = lsmTreeCursorSeek(&csr, pKey, nKey, &res);
    pRes = csrGetKey(&csr, &csr.blob, &rc);
    if( rc!=LSM_OK ) return rc;


    if( flags==LSM_START_DELETE ){
      /* When inserting a start-delete-range entry, if the key that
      ** occurs immediately before the new entry is already a START_DELETE,
      ** then the new entry is not required.  */
      if( (res<=0 && (pRes->flags & LSM_START_DELETE))
       || (res>0  && treePrevIsStartDelete(pDb, &csr))
................................................................................
  if( pCsr ){
    pCsr->iNode = -1;
    pCsr->pSave = 0;
  }
}

#ifndef NDEBUG
static int treeCsrCompare(TreeCursor *pCsr, void *pKey, int nKey){
  TreeKey *p;
  int cmp = 0;
  int rc = LSM_OK;
  assert( pCsr->iNode>=0 );
  p = csrGetKey(pCsr, &pCsr->blob, &rc);
  if( p ){
    cmp = treeKeycmp(TKV_KEY(p), p->nKey, pKey, nKey);
  }
  return cmp;
}
#endif

................................................................................
    pCsr->iNode = iNode;
    tblobFree(pDb, &b);
  }

  /* assert() that *pRes has been set properly */
#ifndef NDEBUG
  if( rc==LSM_OK && lsmTreeCursorValid(pCsr) ){
    int cmp = treeCsrCompare(pCsr, pKey, nKey);
    assert( *pRes==cmp || (*pRes ^ cmp)>0 );
  }
#endif

  return rc;
}

int lsmTreeCursorNext(TreeCursor *pCsr){







>







 







|


<

|







 







|
|







1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
....
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950

1951
1952
1953
1954
1955
1956
1957
1958
1959
....
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
    TreeKey *pRes;                /* Key at end of seek operation */
    treeCursorInit(pDb, 0, &csr);

    /* Seek to the leaf (or internal node) that the new key belongs on */
    rc = lsmTreeCursorSeek(&csr, pKey, nKey, &res);
    pRes = csrGetKey(&csr, &csr.blob, &rc);
    if( rc!=LSM_OK ) return rc;
    assert( pRes );

    if( flags==LSM_START_DELETE ){
      /* When inserting a start-delete-range entry, if the key that
      ** occurs immediately before the new entry is already a START_DELETE,
      ** then the new entry is not required.  */
      if( (res<=0 && (pRes->flags & LSM_START_DELETE))
       || (res>0  && treePrevIsStartDelete(pDb, &csr))
................................................................................
  if( pCsr ){
    pCsr->iNode = -1;
    pCsr->pSave = 0;
  }
}

#ifndef NDEBUG
static int treeCsrCompare(TreeCursor *pCsr, void *pKey, int nKey, int *pRc){
  TreeKey *p;
  int cmp = 0;

  assert( pCsr->iNode>=0 );
  p = csrGetKey(pCsr, &pCsr->blob, pRc);
  if( p ){
    cmp = treeKeycmp(TKV_KEY(p), p->nKey, pKey, nKey);
  }
  return cmp;
}
#endif

................................................................................
    pCsr->iNode = iNode;
    tblobFree(pDb, &b);
  }

  /* assert() that *pRes has been set properly */
#ifndef NDEBUG
  if( rc==LSM_OK && lsmTreeCursorValid(pCsr) ){
    int cmp = treeCsrCompare(pCsr, pKey, nKey, &rc);
    assert( rc!=LSM_OK || *pRes==cmp || (*pRes ^ cmp)>0 );
  }
#endif

  return rc;
}

int lsmTreeCursorNext(TreeCursor *pCsr){

Changes to ext/lsm1/lsm_vtab.c.

455
456
457
458
459
460
461



462
463
464
465
466
467
468
469
...
662
663
664
665
666
667
668
669


670
671
672
673
674
675
676
            int j;
            for(j=1; j<nVal; j++){
              x = (x<<8) | aVal[j];
            }
            if( aVal[0]==SQLITE_INTEGER ){
              sqlite3_result_int64(ctx, *(sqlite3_int64*)&x);
            }else{



              sqlite3_result_double(ctx, *(double*)&x);
            }
            break;
          }
          case SQLITE_TEXT: {
            sqlite3_result_text(ctx, (char*)&aVal[1], nVal-1, SQLITE_TRANSIENT);
            break;
          }
................................................................................
      case SQLITE_FLOAT: {
        sqlite3_uint64 x;
        unsigned char aVal[9];
        int i;
        if( eType==SQLITE_INTEGER ){
          *(sqlite3_int64*)&x = sqlite3_value_int64(pValue);
        }else{
          *(double*)&x = sqlite3_value_double(pValue);


        }
        for(i=8; x>0 && i>=1; i--){
          aVal[i] = x & 0xff;
          x >>= 8;
        }
        aVal[i] = eType;
        rc = lsm_insert(p->pDb, pKey, nKey, &aVal[i], 9-i);







>
>
>
|







 







|
>
>







455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
...
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
            int j;
            for(j=1; j<nVal; j++){
              x = (x<<8) | aVal[j];
            }
            if( aVal[0]==SQLITE_INTEGER ){
              sqlite3_result_int64(ctx, *(sqlite3_int64*)&x);
            }else{
              double r;
              assert( sizeof(r)==sizeof(x) );
              memcpy(&r, &x, sizeof(r));
              sqlite3_result_double(ctx, r);
            }
            break;
          }
          case SQLITE_TEXT: {
            sqlite3_result_text(ctx, (char*)&aVal[1], nVal-1, SQLITE_TRANSIENT);
            break;
          }
................................................................................
      case SQLITE_FLOAT: {
        sqlite3_uint64 x;
        unsigned char aVal[9];
        int i;
        if( eType==SQLITE_INTEGER ){
          *(sqlite3_int64*)&x = sqlite3_value_int64(pValue);
        }else{
          double r = sqlite3_value_double(pValue);
          assert( sizeof(r)==sizeof(x) );
          memcpy(&x, &r, sizeof(r));
        }
        for(i=8; x>0 && i>=1; i--){
          aVal[i] = x & 0xff;
          x >>= 8;
        }
        aVal[i] = eType;
        rc = lsm_insert(p->pDb, pKey, nKey, &aVal[i], 9-i);

Changes to ext/rtree/rtree.c.

3433
3434
3435
3436
3437
3438
3439




3440
3441
3442
3443
3444
3445
3446
    zSql = sqlite3_mprintf(
        "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
        pRtree->zDb, pRtree->zName
    );
    rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
    if( rc!=SQLITE_OK ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));




    }
  }

  sqlite3_free(zSql);
  return rc;
}








>
>
>
>







3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
    zSql = sqlite3_mprintf(
        "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
        pRtree->zDb, pRtree->zName
    );
    rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
    if( rc!=SQLITE_OK ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }else if( pRtree->iNodeSize<(512-64) ){
      rc = SQLITE_CORRUPT;
      *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"",
                               pRtree->zName);
    }
  }

  sqlite3_free(zSql);
  return rc;
}

Changes to ext/rtree/rtreeA.test.

211
212
213
214
215
216
217













218
219
220
do_execsql_test rtreeA-6.1.0 { 
  UPDATE t1_parent set parentnode = parentnode+1
} {}
do_corruption_tests rtreeA-6.1 {
  1   "DELETE FROM t1 WHERE rowid = 5"
  2   "UPDATE t1 SET x1=x1+1, x2=x2+1"
}















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>



211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
do_execsql_test rtreeA-6.1.0 { 
  UPDATE t1_parent set parentnode = parentnode+1
} {}
do_corruption_tests rtreeA-6.1 {
  1   "DELETE FROM t1 WHERE rowid = 5"
  2   "UPDATE t1 SET x1=x1+1, x2=x2+1"
}

#-------------------------------------------------------------------------
# Truncated blobs in the _node table.
#
create_t1
populate_t1
sqlite3 db test.db
do_execsql_test rtreeA-7.100 { 
  UPDATE t1_node SET data=x'' WHERE rowid=1;
} {}
do_catchsql_test rtreeA-7.110 {
  SELECT * FROM t1 WHERE x1>0 AND x1<100 AND x2>0 AND x2<100;
} {1 {undersize RTree blobs in "t1_node"}}


finish_test

Changes to main.mk.

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

# Standard options to testfixture
#
TESTOPTS = --verbose=file --output=test-out.txt

# Extra compiler options for various shell tools
#
SHELL_OPT = -DSQLITE_ENABLE_JSON1 -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_FTS5
SHELL_OPT += -DSQLITE_ENABLE_EXPLAIN_COMMENTS
SHELL_OPT += -DSQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
SHELL_OPT += -DSQLITE_ENABLE_STMTVTAB
FUZZERSHELL_OPT = -DSQLITE_ENABLE_JSON1
FUZZCHECK_OPT = -DSQLITE_ENABLE_JSON1 -DSQLITE_ENABLE_MEMSYS5
FUZZCHECK_OPT += -DSQLITE_MAX_MEMORY=50000000
DBFUZZ_OPT =







|







470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

# Standard options to testfixture
#
TESTOPTS = --verbose=file --output=test-out.txt

# Extra compiler options for various shell tools
#
SHELL_OPT += -DSQLITE_ENABLE_JSON1 -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_FTS5
SHELL_OPT += -DSQLITE_ENABLE_EXPLAIN_COMMENTS
SHELL_OPT += -DSQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
SHELL_OPT += -DSQLITE_ENABLE_STMTVTAB
FUZZERSHELL_OPT = -DSQLITE_ENABLE_JSON1
FUZZCHECK_OPT = -DSQLITE_ENABLE_JSON1 -DSQLITE_ENABLE_MEMSYS5
FUZZCHECK_OPT += -DSQLITE_MAX_MEMORY=50000000
DBFUZZ_OPT =

Changes to src/build.c.

3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780

3781
3782
3783
3784
3785
3786
3787
....
3962
3963
3964
3965
3966
3967
3968
3969


3970
3971
3972

3973
3974
3975


3976

3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
    return 0;
  }
  pItem = &pList->a[pList->nSrc-1];
  if( pDatabase && pDatabase->z==0 ){
    pDatabase = 0;
  }
  if( pDatabase ){
    Token *pTemp = pDatabase;
    pDatabase = pTable;
    pTable = pTemp;
  }
  pItem->zName = sqlite3NameFromToken(db, pTable);
  pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);

  return pList;
}

/*
** Assign VdbeCursor index numbers to all tables in a SrcList
*/
void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
................................................................................
      sqlite3VdbeUsesBtree(v, i);
    }
  }
  sqlite3VdbeAddOp0(v, OP_AutoCommit);
}

/*
** Generate VDBE code for a COMMIT statement.


*/
void sqlite3CommitTransaction(Parse *pParse){
  Vdbe *v;


  assert( pParse!=0 );
  assert( pParse->db!=0 );


  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){

    return;
  }
  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
  }
}

/*
** Generate VDBE code for a ROLLBACK statement.
*/
void sqlite3RollbackTransaction(Parse *pParse){
  Vdbe *v;

  assert( pParse!=0 );
  assert( pParse->db!=0 );
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
    return;
  }
  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
  }
}

/*
** This function is called by the parser when it parses a command to create,
** release or rollback an SQL savepoint. 
*/







|
|
|
<
|
|
>







 







|
>
>

|

>



>
>
|
>




<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|







3768
3769
3770
3771
3772
3773
3774
3775
3776
3777

3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
....
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986

















3987
3988
3989
3990
3991
3992
3993
3994
    return 0;
  }
  pItem = &pList->a[pList->nSrc-1];
  if( pDatabase && pDatabase->z==0 ){
    pDatabase = 0;
  }
  if( pDatabase ){
    pItem->zName = sqlite3NameFromToken(db, pDatabase);
    pItem->zDatabase = sqlite3NameFromToken(db, pTable);
  }else{

    pItem->zName = sqlite3NameFromToken(db, pTable);
    pItem->zDatabase = 0;
  }
  return pList;
}

/*
** Assign VdbeCursor index numbers to all tables in a SrcList
*/
void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
................................................................................
      sqlite3VdbeUsesBtree(v, i);
    }
  }
  sqlite3VdbeAddOp0(v, OP_AutoCommit);
}

/*
** Generate VDBE code for a COMMIT or ROLLBACK statement.
** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
** code is generated for a COMMIT.
*/
void sqlite3EndTransaction(Parse *pParse, int eType){
  Vdbe *v;
  int isRollback;

  assert( pParse!=0 );
  assert( pParse->db!=0 );
  assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
  isRollback = eType==TK_ROLLBACK;
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 
       isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
    return;
  }
  v = sqlite3GetVdbe(pParse);
  if( v ){

















    sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
  }
}

/*
** This function is called by the parser when it parses a command to create,
** release or rollback an SQL savepoint. 
*/

Changes to src/callback.c.

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
...
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
...
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318
**
** If required, this routine calls the 'collation needed' callback to
** request a definition of the collating sequence. If this doesn't work, 
** an equivalent collating sequence that uses a text encoding different
** from the main database is substituted, if one is available.
*/
int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
  if( pColl ){
    const char *zName = pColl->zName;
    sqlite3 *db = pParse->db;
    CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName);
    if( !p ){
      return SQLITE_ERROR;
    }
    assert( p==pColl );
................................................................................
  const char *zName,    /* Name of the collating sequence */
  int create            /* Create a new entry if true */
){
  CollSeq *pColl;
  pColl = sqlite3HashFind(&db->aCollSeq, zName);

  if( 0==pColl && create ){
    int nName = sqlite3Strlen30(zName);
    pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1);
    if( pColl ){
      CollSeq *pDel = 0;
      pColl[0].zName = (char*)&pColl[3];
      pColl[0].enc = SQLITE_UTF8;
      pColl[1].zName = (char*)&pColl[3];
      pColl[1].enc = SQLITE_UTF16LE;
      pColl[2].zName = (char*)&pColl[3];
      pColl[2].enc = SQLITE_UTF16BE;
      memcpy(pColl[0].zName, zName, nName);
      pColl[0].zName[nName] = 0;
      pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, pColl);

      /* If a malloc() failure occurred in sqlite3HashInsert(), it will 
      ** return the pColl pointer to be deleted (because it wasn't added
      ** to the hash table).
      */
      assert( pDel==0 || pDel==pColl );
................................................................................
  int nDef            /* Length of the apDef[] list */
){
  int i;
  for(i=0; i<nDef; i++){
    FuncDef *pOther;
    const char *zName = aDef[i].zName;
    int nName = sqlite3Strlen30(zName);
    int h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % SQLITE_FUNC_HASH_SZ;

    pOther = functionSearch(h, zName);
    if( pOther ){
      assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] );
      aDef[i].pNext = pOther->pNext;
      pOther->pNext = &aDef[i];
    }else{
      aDef[i].pNext = 0;







|







 







|
|









<







 







|
>







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
...
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171
172
173
174
175
176
177
...
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
**
** If required, this routine calls the 'collation needed' callback to
** request a definition of the collating sequence. If this doesn't work, 
** an equivalent collating sequence that uses a text encoding different
** from the main database is substituted, if one is available.
*/
int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
  if( pColl && pColl->xCmp==0 ){
    const char *zName = pColl->zName;
    sqlite3 *db = pParse->db;
    CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName);
    if( !p ){
      return SQLITE_ERROR;
    }
    assert( p==pColl );
................................................................................
  const char *zName,    /* Name of the collating sequence */
  int create            /* Create a new entry if true */
){
  CollSeq *pColl;
  pColl = sqlite3HashFind(&db->aCollSeq, zName);

  if( 0==pColl && create ){
    int nName = sqlite3Strlen30(zName) + 1;
    pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName);
    if( pColl ){
      CollSeq *pDel = 0;
      pColl[0].zName = (char*)&pColl[3];
      pColl[0].enc = SQLITE_UTF8;
      pColl[1].zName = (char*)&pColl[3];
      pColl[1].enc = SQLITE_UTF16LE;
      pColl[2].zName = (char*)&pColl[3];
      pColl[2].enc = SQLITE_UTF16BE;
      memcpy(pColl[0].zName, zName, nName);

      pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, pColl);

      /* If a malloc() failure occurred in sqlite3HashInsert(), it will 
      ** return the pColl pointer to be deleted (because it wasn't added
      ** to the hash table).
      */
      assert( pDel==0 || pDel==pColl );
................................................................................
  int nDef            /* Length of the apDef[] list */
){
  int i;
  for(i=0; i<nDef; i++){
    FuncDef *pOther;
    const char *zName = aDef[i].zName;
    int nName = sqlite3Strlen30(zName);
    int h = (zName[0] + nName) % SQLITE_FUNC_HASH_SZ;
    assert( zName[0]>='a' && zName[0]<='z' );
    pOther = functionSearch(h, zName);
    if( pOther ){
      assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] );
      aDef[i].pNext = pOther->pNext;
      pOther->pNext = &aDef[i];
    }else{
      aDef[i].pNext = 0;

Changes to src/expr.c.

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
....
1021
1022
1023
1024
1025
1026
1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
  pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
  if( pNew ){
    memset(pNew, 0, sizeof(Expr));
    pNew->op = (u8)op;
    pNew->iAgg = -1;
    if( pToken ){
      if( nExtra==0 ){
        pNew->flags |= EP_IntValue;
        pNew->u.iValue = iValue;
      }else{
        pNew->u.zToken = (char*)&pNew[1];
        assert( pToken->z!=0 || pToken->n==0 );
        if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
        pNew->u.zToken[pToken->n] = 0;
        if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
................................................................................
    assert( p->x.pSelect==0 );
  }
#endif
  if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
    /* The Expr.x union is never used at the same time as Expr.pRight */
    assert( p->x.pList==0 || p->pRight==0 );
    if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);

    sqlite3ExprDelete(db, p->pRight);
    if( ExprHasProperty(p, EP_xIsSelect) ){
      sqlite3SelectDelete(db, p->x.pSelect);
    }else{
      sqlite3ExprListDelete(db, p->x.pList);
    }
  }
  if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
  if( !ExprHasProperty(p, EP_Static) ){







|







 







>
|
|







740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
....
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
  pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
  if( pNew ){
    memset(pNew, 0, sizeof(Expr));
    pNew->op = (u8)op;
    pNew->iAgg = -1;
    if( pToken ){
      if( nExtra==0 ){
        pNew->flags |= EP_IntValue|EP_Leaf;
        pNew->u.iValue = iValue;
      }else{
        pNew->u.zToken = (char*)&pNew[1];
        assert( pToken->z!=0 || pToken->n==0 );
        if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
        pNew->u.zToken[pToken->n] = 0;
        if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
................................................................................
    assert( p->x.pSelect==0 );
  }
#endif
  if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
    /* The Expr.x union is never used at the same time as Expr.pRight */
    assert( p->x.pList==0 || p->pRight==0 );
    if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
    if( p->pRight ){
      sqlite3ExprDeleteNN(db, p->pRight);
    }else if( ExprHasProperty(p, EP_xIsSelect) ){
      sqlite3SelectDelete(db, p->x.pSelect);
    }else{
      sqlite3ExprListDelete(db, p->x.pList);
    }
  }
  if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
  if( !ExprHasProperty(p, EP_Static) ){

Changes to src/func.c.

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
** Return the type of the argument.
*/
static void typeofFunc(
  sqlite3_context *context,
  int NotUsed,
  sqlite3_value **argv
){
  const char *z = 0;
  UNUSED_PARAMETER(NotUsed);
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE_INTEGER: z = "integer"; break;
    case SQLITE_TEXT:    z = "text";    break;
    case SQLITE_FLOAT:   z = "real";    break;
    case SQLITE_BLOB:    z = "blob";    break;
    default:             z = "null";    break;
  }
  sqlite3_result_text(context, z, -1, SQLITE_STATIC);
}


/*
** Implementation of the length() function
*/
static void lengthFunc(







|
|
|
|
|
|
|
|
|
|







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
** Return the type of the argument.
*/
static void typeofFunc(
  sqlite3_context *context,
  int NotUsed,
  sqlite3_value **argv
){
  static const char *azType[] = { "integer", "real", "text", "blob", "null" };
  int i = sqlite3_value_type(argv[0]) - 1;
  UNUSED_PARAMETER(NotUsed);
  assert( i>=0 && i<ArraySize(azType) );
  assert( SQLITE_INTEGER==1 );
  assert( SQLITE_FLOAT==2 );
  assert( SQLITE_TEXT==3 );
  assert( SQLITE_BLOB==4 );
  assert( SQLITE_NULL==5 );
  sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
}


/*
** Implementation of the length() function
*/
static void lengthFunc(

Changes to src/hash.c.

136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
...
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    next_elem = elem->next;
    insertElement(pH, &new_ht[h], elem);
  }
  return 1;
}

/* This function (for internal use only) locates an element in an
** hash table that matches the given key.  The hash for this key is
** also computed and returned in the *pH parameter.

*/
static HashElem *findElementWithHash(
  const Hash *pH,     /* The pH to be searched */
  const char *pKey,   /* The key we are searching for */
  unsigned int *pHash /* Write the hash value here */
){
  HashElem *elem;                /* Used to loop thru the element list */
  int count;                     /* Number of elements left to test */
  unsigned int h;                /* The computed hash */


  if( pH->ht ){   /*OPTIMIZATION-IF-TRUE*/
    struct _ht *pEntry;
    h = strHash(pKey) % pH->htsize;
    pEntry = &pH->ht[h];
    elem = pEntry->chain;
    count = pEntry->count;
  }else{
    h = 0;
    elem = pH->first;
    count = pH->count;
  }
  *pHash = h;
  while( count-- ){
    assert( elem!=0 );
    if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ 
      return elem;
    }
    elem = elem->next;
  }
  return 0;
}

/* Remove a single entry from the hash table given a pointer to that
** element and a hash on the element's key.
*/
static void removeElementGivenHash(
  Hash *pH,         /* The pH containing "elem" */
................................................................................
}

/* Attempt to locate an element of the hash table pH with a key
** that matches pKey.  Return the data for this element if it is
** found, or NULL if there is no match.
*/
void *sqlite3HashFind(const Hash *pH, const char *pKey){
  HashElem *elem;    /* The element that matches key */
  unsigned int h;    /* A hash on key */

  assert( pH!=0 );
  assert( pKey!=0 );
  elem = findElementWithHash(pH, pKey, &h);
  return elem ? elem->data : 0;
}

/* Insert an element into the hash table pH.  The key is pKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created and NULL is returned.
................................................................................
  unsigned int h;       /* the hash of the key modulo hash table size */
  HashElem *elem;       /* Used to loop thru the element list */
  HashElem *new_elem;   /* New element added to the pH */

  assert( pH!=0 );
  assert( pKey!=0 );
  elem = findElementWithHash(pH,pKey,&h);
  if( elem ){
    void *old_data = elem->data;
    if( data==0 ){
      removeElementGivenHash(pH,elem,h);
    }else{
      elem->data = data;
      elem->pKey = pKey;
    }







|
|
>









>












|







|







 







<
<
<


|
<







 







|







136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
...
211
212
213
214
215
216
217



218
219
220

221
222
223
224
225
226
227
...
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    next_elem = elem->next;
    insertElement(pH, &new_ht[h], elem);
  }
  return 1;
}

/* This function (for internal use only) locates an element in an
** hash table that matches the given key.  If no element is found,
** a pointer to a static null element with HashElem.data==0 is returned.
** If pH is not NULL, then the hash for this key is written to *pH.
*/
static HashElem *findElementWithHash(
  const Hash *pH,     /* The pH to be searched */
  const char *pKey,   /* The key we are searching for */
  unsigned int *pHash /* Write the hash value here */
){
  HashElem *elem;                /* Used to loop thru the element list */
  int count;                     /* Number of elements left to test */
  unsigned int h;                /* The computed hash */
  static HashElem nullElement = { 0, 0, 0, 0 };

  if( pH->ht ){   /*OPTIMIZATION-IF-TRUE*/
    struct _ht *pEntry;
    h = strHash(pKey) % pH->htsize;
    pEntry = &pH->ht[h];
    elem = pEntry->chain;
    count = pEntry->count;
  }else{
    h = 0;
    elem = pH->first;
    count = pH->count;
  }
  if( pHash ) *pHash = h;
  while( count-- ){
    assert( elem!=0 );
    if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ 
      return elem;
    }
    elem = elem->next;
  }
  return &nullElement;
}

/* Remove a single entry from the hash table given a pointer to that
** element and a hash on the element's key.
*/
static void removeElementGivenHash(
  Hash *pH,         /* The pH containing "elem" */
................................................................................
}

/* Attempt to locate an element of the hash table pH with a key
** that matches pKey.  Return the data for this element if it is
** found, or NULL if there is no match.
*/
void *sqlite3HashFind(const Hash *pH, const char *pKey){



  assert( pH!=0 );
  assert( pKey!=0 );
  return findElementWithHash(pH, pKey, 0)->data;

}

/* Insert an element into the hash table pH.  The key is pKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created and NULL is returned.
................................................................................
  unsigned int h;       /* the hash of the key modulo hash table size */
  HashElem *elem;       /* Used to loop thru the element list */
  HashElem *new_elem;   /* New element added to the pH */

  assert( pH!=0 );
  assert( pKey!=0 );
  elem = findElementWithHash(pH,pKey,&h);
  if( elem->data ){
    void *old_data = elem->data;
    if( data==0 ){
      removeElementGivenHash(pH,elem,h);
    }else{
      elem->data = data;
      elem->pKey = pKey;
    }

Changes to src/parse.y.

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
trans_opt ::= TRANSACTION.
trans_opt ::= TRANSACTION nm.
%type transtype {int}
transtype(A) ::= .             {A = TK_DEFERRED;}
transtype(A) ::= DEFERRED(X).  {A = @X; /*A-overwrites-X*/}
transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
cmd ::= COMMIT trans_opt.      {sqlite3CommitTransaction(pParse);}
cmd ::= END trans_opt.         {sqlite3CommitTransaction(pParse);}
cmd ::= ROLLBACK trans_opt.    {sqlite3RollbackTransaction(pParse);}

savepoint_opt ::= SAVEPOINT.
savepoint_opt ::= .
cmd ::= SAVEPOINT nm(X). {
  sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
}
cmd ::= RELEASE savepoint_opt nm(X). {







|
|
<







136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
trans_opt ::= TRANSACTION.
trans_opt ::= TRANSACTION nm.
%type transtype {int}
transtype(A) ::= .             {A = TK_DEFERRED;}
transtype(A) ::= DEFERRED(X).  {A = @X; /*A-overwrites-X*/}
transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
cmd ::= COMMIT|END(X) trans_opt.   {sqlite3EndTransaction(pParse,@X);}
cmd ::= ROLLBACK(X) trans_opt.     {sqlite3EndTransaction(pParse,@X);}


savepoint_opt ::= SAVEPOINT.
savepoint_opt ::= .
cmd ::= SAVEPOINT nm(X). {
  sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
}
cmd ::= RELEASE savepoint_opt nm(X). {

Changes to src/resolve.c.

474
475
476
477
478
479
480

481
482
483
484
485
486
487
  /* Clean up and return
  */
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);

lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    if( !ExprHasProperty(pExpr, EP_Alias) ){
      sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    }
    /* Increment the nRef value on all name contexts from TopNC up to







>







474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
  /* Clean up and return
  */
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
  ExprSetProperty(pExpr, EP_Leaf);
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    if( !ExprHasProperty(pExpr, EP_Alias) ){
      sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    }
    /* Increment the nRef value on all name contexts from TopNC up to

Changes to src/select.c.

5013
5014
5015
5016
5017
5018
5019


















































































5020
5021
5022
5023
5024
5025
5026
....
5324
5325
5326
5327
5328
5329
5330










5331
5332
5333
5334
5335
5336
5337
      continue;
    }
    return pItem;
  }
  return 0;
}



















































































/*
** Generate code for the SELECT statement given in the p argument.  
**
** The results are returned according to the SelectDest structure.
** See comments in sqliteInt.h for further information.
**
** This routine returns the number of errors.  If any errors are
................................................................................

#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x400 ){
    SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif











  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>







5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
....
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
      continue;
    }
    return pItem;
  }
  return 0;
}

#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
/*
** Attempt to transform a query of the form
**
**    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
**
** Into this:
**
**    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
**
** The transformation only works if all of the following are true:
**
**   *  The subquery is a UNION ALL of two or more terms
**   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
**   *  The outer query is a simple count(*)
**
** Return TRUE if the optimization is undertaken.
*/
static int countOfViewOptimization(Parse *pParse, Select *p){
  Select *pSub, *pPrior;
  Expr *pExpr;
  Expr *pCount;
  sqlite3 *db;
  if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate query */
  if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
  pExpr = p->pEList->a[0].pExpr;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
  if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Must be count() */
  if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
  if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in the FROM clause */
  pSub = p->pSrc->a[0].pSelect;
  if( pSub==0 ) return 0;                           /* The FROM is a subquery */
  if( pSub->pPrior==0 ) return 0;                   /* Must be a compound subquery */
  do{
    if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
    if( pSub->pWhere ) return 0;                      /* No WHERE clause */
    if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
    pSub = pSub->pPrior;                              /* Repeat over compound terms */
  }while( pSub );

  /* If we reach this point, that means it is OK to perform the transformation */

  db = pParse->db;
  pCount = pExpr;
  pExpr = 0;
  pSub = p->pSrc->a[0].pSelect;
  p->pSrc->a[0].pSelect = 0;
  sqlite3SrcListDelete(db, p->pSrc);
  p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
  while( pSub ){
    Expr *pTerm;
    pPrior = pSub->pPrior;
    pSub->pPrior = 0;
    pSub->pNext = 0;
    pSub->selFlags |= SF_Aggregate;
    pSub->selFlags &= ~SF_Compound;
    pSub->nSelectRow = 0;
    sqlite3ExprListDelete(db, pSub->pEList);
    pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
    pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
    pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
    sqlite3PExprAddSelect(pParse, pTerm, pSub);
    if( pExpr==0 ){
      pExpr = pTerm;
    }else{
      pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
    }
    pSub = pPrior;
  }
  p->pEList->a[0].pExpr = pExpr;
  p->selFlags &= ~SF_Aggregate;

#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x400 ){
    SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif
  return 1;
}
#endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */

/*
** Generate code for the SELECT statement given in the p argument.  
**
** The results are returned according to the SelectDest structure.
** See comments in sqliteInt.h for further information.
**
** This routine returns the number of errors.  If any errors are
................................................................................

#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x400 ){
    SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
  if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
   && countOfViewOptimization(pParse, p)
  ){
    if( db->mallocFailed ) goto select_end;
    pEList = p->pEList;
    pTabList = p->pSrc;
  }
#endif

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **

Changes to src/sqlite.h.in.

4273
4274
4275
4276
4277
4278
4279






















4280
4281
4282
4283
4284
4285
4286
....
4295
4296
4297
4298
4299
4300
4301






4302
4303
4304
4305
4306
4307
4308



4309
4310




4311
4312
4313
4314
4315
4316
4317
....
4341
4342
4343
4344
4345
4346
4347




4348
4349

4350
4351
4352
4353
4354
4355
4356
4357
....
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439

4440

4441
4442
4443
4444
4445
4446
4447
4448
....
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677



















4678
4679
4680
4681
4682



4683
4684
4685


4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
....
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743


4744
4745
4746
4747
4748
4749
4750
#endif
#define SQLITE3_TEXT     3

/*
** CAPI3REF: Result Values From A Query
** KEYWORDS: {column access functions}
** METHOD: sqlite3_stmt






















**
** ^These routines return information about a single column of the current
** result row of a query.  ^In every case the first argument is a pointer
** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
** that was returned from [sqlite3_prepare_v3()] or one of its variants)
** and the second argument is the index of the column for which information
** should be returned. ^The leftmost column of the result set has the index 0.
................................................................................
** If any of these routines are called after [sqlite3_reset()] or
** [sqlite3_finalize()] or after [sqlite3_step()] has returned
** something other than [SQLITE_ROW], the results are undefined.
** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
** are called from a different thread while any of these routines
** are pending, then the results are undefined.
**






** ^The sqlite3_column_type() routine returns the
** [SQLITE_INTEGER | datatype code] for the initial data type
** of the result column.  ^The returned value is one of [SQLITE_INTEGER],
** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].  The value
** returned by sqlite3_column_type() is only meaningful if no type
** conversions have occurred as described below.  After a type conversion,
** the value returned by sqlite3_column_type() is undefined.  Future



** versions of SQLite may change the behavior of sqlite3_column_type()
** following a type conversion.




**
** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
** routine returns the number of bytes in that BLOB or string.
** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
** the string to UTF-8 and then returns the number of bytes.
** ^If the result is a numeric value then sqlite3_column_bytes() uses
** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
................................................................................
** [unprotected sqlite3_value] object.  In a multithreaded environment,
** an unprotected sqlite3_value object may only be used safely with
** [sqlite3_bind_value()] and [sqlite3_result_value()].
** If the [unprotected sqlite3_value] object returned by
** [sqlite3_column_value()] is used in any other way, including calls
** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
** or [sqlite3_value_bytes()], the behavior is not threadsafe.




**
** These routines attempt to convert the value where appropriate.  ^For

** example, if the internal representation is FLOAT and a text result
** is requested, [sqlite3_snprintf()] is used internally to perform the
** conversion automatically.  ^(The following table details the conversions
** that are applied:
**
** <blockquote>
** <table border="1">
** <tr><th> Internal<br>Type <th> Requested<br>Type <th>  Conversion
................................................................................
** to sqlite3_column_text() or sqlite3_column_blob() with calls to
** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
** with calls to sqlite3_column_bytes().
**
** ^The pointers returned are valid until a type conversion occurs as
** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
** [sqlite3_finalize()] is called.  ^The memory space used to hold strings
** and BLOBs is freed automatically.  Do <em>not</em> pass the pointers returned
** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
** [sqlite3_free()].
**
** ^(If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned.  The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer.  Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].)^
*/
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
double sqlite3_column_double(sqlite3_stmt*, int iCol);
int sqlite3_column_int(sqlite3_stmt*, int iCol);
sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);

int sqlite3_column_type(sqlite3_stmt*, int iCol);

sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);

/*
** CAPI3REF: Destroy A Prepared Statement Object
** DESTRUCTOR: sqlite3_stmt
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
** ^If the most recent evaluation of the statement encountered no errors
................................................................................
                      void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Values
** METHOD: sqlite3_value
**
** The C-language implementation of SQL functions and aggregates uses
** this set of interface routines to access the parameter values on
** the function or aggregate.  



















**
** The xFunc (for scalar functions) or xStep (for aggregates) parameters
** to [sqlite3_create_function()] and [sqlite3_create_function16()]
** define callbacks that implement the SQL functions and aggregates.
** The 3rd parameter to these callbacks is an array of pointers to



** [protected sqlite3_value] objects.  There is one [sqlite3_value] object for
** each parameter to the SQL function.  These routines are used to
** extract values from the [sqlite3_value] objects.


**
** These routines work only with [protected sqlite3_value] objects.
** Any attempt to use these routines on an [unprotected sqlite3_value]
** object results in undefined behavior.
**
** ^These routines work just like the corresponding [column access functions]
** except that these routines take a single [protected sqlite3_value] object
** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
**
** ^The sqlite3_value_text16() interface extracts a UTF-16 string
** in the native byte-order of the host machine.  ^The
................................................................................
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
*/
const void *sqlite3_value_blob(sqlite3_value*);
int sqlite3_value_bytes(sqlite3_value*);
int sqlite3_value_bytes16(sqlite3_value*);
double sqlite3_value_double(sqlite3_value*);
int sqlite3_value_int(sqlite3_value*);
sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
void *sqlite3_value_pointer(sqlite3_value*);


int sqlite3_value_type(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Finding The Subtype Of SQL Values
** METHOD: sqlite3_value
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>



|
|
|
|
>
>
>


>
>
>
>







 







>
>
>
>

<
>
|







 







|










<
<





>
|
>
|







 







|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

<
<
<
<
>
>
>
|
<
<
>
>



|







 







<
<








>
>







4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
....
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
....
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387

4388
4389
4390
4391
4392
4393
4394
4395
4396
....
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471


4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
....
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736




4737
4738
4739
4740


4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
....
4784
4785
4786
4787
4788
4789
4790


4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
#endif
#define SQLITE3_TEXT     3

/*
** CAPI3REF: Result Values From A Query
** KEYWORDS: {column access functions}
** METHOD: sqlite3_stmt
**
** <b>Summary:</b>
** <blockquote><table border=0 cellpadding=0 cellspacing=0>
** <tr><td><b>sqlite3_column_blob</b><td>&rarr;<td>BLOB result
** <tr><td><b>sqlite3_column_double</b><td>&rarr;<td>REAL result
** <tr><td><b>sqlite3_column_int</b><td>&rarr;<td>32-bit INTEGER result
** <tr><td><b>sqlite3_column_int64</b><td>&rarr;<td>64-bit INTEGER result
** <tr><td><b>sqlite3_column_text</b><td>&rarr;<td>UTF-8 TEXT result
** <tr><td><b>sqlite3_column_text16</b><td>&rarr;<td>UTF-16 TEXT result
** <tr><td><b>sqlite3_column_value</b><td>&rarr;<td>The result as an 
** [sqlite3_value|unprotected sqlite3_value] object.
** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
** <tr><td><b>sqlite3_column_bytes</b><td>&rarr;<td>Size of a BLOB
** or a UTF-8 TEXT result in bytes
** <tr><td><b>sqlite3_column_bytes16&nbsp;&nbsp;</b>
** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
** TEXT in bytes
** <tr><td><b>sqlite3_column_type</b><td>&rarr;<td>Default
** datatype of the result
** </table></blockquote>
**
** <b>Details:</b>
**
** ^These routines return information about a single column of the current
** result row of a query.  ^In every case the first argument is a pointer
** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
** that was returned from [sqlite3_prepare_v3()] or one of its variants)
** and the second argument is the index of the column for which information
** should be returned. ^The leftmost column of the result set has the index 0.
................................................................................
** If any of these routines are called after [sqlite3_reset()] or
** [sqlite3_finalize()] or after [sqlite3_step()] has returned
** something other than [SQLITE_ROW], the results are undefined.
** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
** are called from a different thread while any of these routines
** are pending, then the results are undefined.
**
** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16)
** each return the value of a result column in a specific data format.  If
** the result column is not initially in the requested format (for example,
** if the query returns an integer but the sqlite3_column_text() interface
** is used to extract the value) then an automatic type conversion is performed.
**
** ^The sqlite3_column_type() routine returns the
** [SQLITE_INTEGER | datatype code] for the initial data type
** of the result column.  ^The returned value is one of [SQLITE_INTEGER],
** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].
** The return value of sqlite3_column_type() can be used to decide which
** of the first six interface should be used to extract the column value.
** The value returned by sqlite3_column_type() is only meaningful if no
** automatic type conversions have occurred for the value in question.  
** After a type conversion, the result of calling sqlite3_column_type()
** is undefined, though harmless.  Future
** versions of SQLite may change the behavior of sqlite3_column_type()
** following a type conversion.
**
** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes()
** or sqlite3_column_bytes16() interfaces can be used to determine the size
** of that BLOB or string.
**
** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
** routine returns the number of bytes in that BLOB or string.
** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
** the string to UTF-8 and then returns the number of bytes.
** ^If the result is a numeric value then sqlite3_column_bytes() uses
** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
................................................................................
** [unprotected sqlite3_value] object.  In a multithreaded environment,
** an unprotected sqlite3_value object may only be used safely with
** [sqlite3_bind_value()] and [sqlite3_result_value()].
** If the [unprotected sqlite3_value] object returned by
** [sqlite3_column_value()] is used in any other way, including calls
** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
** or [sqlite3_value_bytes()], the behavior is not threadsafe.
** Hence, the sqlite3_column_value() interface
** is normally only useful within the implementation of 
** [application-defined SQL functions] or [virtual tables], not within
** top-level application code.
**

** The these routines may attempt to convert the datatype of the result.
** ^For example, if the internal representation is FLOAT and a text result
** is requested, [sqlite3_snprintf()] is used internally to perform the
** conversion automatically.  ^(The following table details the conversions
** that are applied:
**
** <blockquote>
** <table border="1">
** <tr><th> Internal<br>Type <th> Requested<br>Type <th>  Conversion
................................................................................
** to sqlite3_column_text() or sqlite3_column_blob() with calls to
** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
** with calls to sqlite3_column_bytes().
**
** ^The pointers returned are valid until a type conversion occurs as
** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
** [sqlite3_finalize()] is called.  ^The memory space used to hold strings
** and BLOBs is freed automatically.  Do not pass the pointers returned
** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
** [sqlite3_free()].
**
** ^(If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned.  The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer.  Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].)^
*/
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);


double sqlite3_column_double(sqlite3_stmt*, int iCol);
int sqlite3_column_int(sqlite3_stmt*, int iCol);
sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
int sqlite3_column_type(sqlite3_stmt*, int iCol);

/*
** CAPI3REF: Destroy A Prepared Statement Object
** DESTRUCTOR: sqlite3_stmt
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
** ^If the most recent evaluation of the statement encountered no errors
................................................................................
                      void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Values
** METHOD: sqlite3_value
**
** <b>Summary:</b>
** <blockquote><table border=0 cellpadding=0 cellspacing=0>
** <tr><td><b>sqlite3_value_blob</b><td>&rarr;<td>BLOB value
** <tr><td><b>sqlite3_value_double</b><td>&rarr;<td>REAL value
** <tr><td><b>sqlite3_value_int</b><td>&rarr;<td>32-bit INTEGER value
** <tr><td><b>sqlite3_value_int64</b><td>&rarr;<td>64-bit INTEGER value
** <tr><td><b>sqlite3_value_text</b><td>&rarr;<td>UTF-8 TEXT value
** <tr><td><b>sqlite3_value_text16</b><td>&rarr;<td>UTF-16 TEXT value in
** the native byteorder
** <tr><td><b>sqlite3_value_text16be</b><td>&rarr;<td>UTF-16be TEXT value
** <tr><td><b>sqlite3_value_text16le</b><td>&rarr;<td>UTF-16le TEXT value
** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
** <tr><td><b>sqlite3_value_bytes</b><td>&rarr;<td>Size of a BLOB
** or a UTF-8 TEXT in bytes
** <tr><td><b>sqlite3_value_bytes16&nbsp;&nbsp;</b>
** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
** TEXT in bytes
** <tr><td><b>sqlite3_value_type</b><td>&rarr;<td>Default
** datatype of the value
** <tr><td><b>sqlite3_value_numeric_type&nbsp;&nbsp;</b>
** <td>&rarr;&nbsp;&nbsp;<td>Best numeric datatype of the value
** </table></blockquote>
**




** <b>Details:</b>
**
** This routine extract type, size, and content information from
** [protected sqlite3_value] objects.  Protected sqlite3_value objects


** are used to pass parameter information into implementation of
** [application-defined SQL functions] and [virtual tables].
**
** These routines work only with [protected sqlite3_value] objects.
** Any attempt to use these routines on an [unprotected sqlite3_value]
** is not threadsafe.
**
** ^These routines work just like the corresponding [column access functions]
** except that these routines take a single [protected sqlite3_value] object
** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
**
** ^The sqlite3_value_text16() interface extracts a UTF-16 string
** in the native byte-order of the host machine.  ^The
................................................................................
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
*/
const void *sqlite3_value_blob(sqlite3_value*);


double sqlite3_value_double(sqlite3_value*);
int sqlite3_value_int(sqlite3_value*);
sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
void *sqlite3_value_pointer(sqlite3_value*);
int sqlite3_value_bytes(sqlite3_value*);
int sqlite3_value_bytes16(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Finding The Subtype Of SQL Values
** METHOD: sqlite3_value
**

Changes to src/sqliteInt.h.

1505
1506
1507
1508
1509
1510
1511

1512
1513
1514
1515
1516
1517
1518
....
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */

#define SQLITE_CursorHints    0x2000   /* Add OP_CursorHint opcodes */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
................................................................................
void sqlite3PrngSaveState(void);
void sqlite3PrngRestoreState(void);
#endif
void sqlite3RollbackAll(sqlite3*,int);
void sqlite3CodeVerifySchema(Parse*, int);
void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
void sqlite3BeginTransaction(Parse*, int);
void sqlite3CommitTransaction(Parse*);
void sqlite3RollbackTransaction(Parse*);
void sqlite3Savepoint(Parse*, int, Token*);
void sqlite3CloseSavepoints(sqlite3 *);
void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
int sqlite3ExprIsConstant(Expr*);
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*, u8);
int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*);







>







 







|
<







1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
....
3800
3801
3802
3803
3804
3805
3806
3807

3808
3809
3810
3811
3812
3813
3814
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
#define SQLITE_CountOfView    0x1000   /* The count-of-view optimization */
#define SQLITE_CursorHints    0x2000   /* Add OP_CursorHint opcodes */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
................................................................................
void sqlite3PrngSaveState(void);
void sqlite3PrngRestoreState(void);
#endif
void sqlite3RollbackAll(sqlite3*,int);
void sqlite3CodeVerifySchema(Parse*, int);
void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
void sqlite3BeginTransaction(Parse*, int);
void sqlite3EndTransaction(Parse*,int);

void sqlite3Savepoint(Parse*, int, Token*);
void sqlite3CloseSavepoints(sqlite3 *);
void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
int sqlite3ExprIsConstant(Expr*);
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*, u8);
int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*);

Changes to src/walker.c.

37
38
39
40
41
42
43

44
45
46
47


48
49
50
51
52

53
54
55
56
57
58
59
...
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
...
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
** and WRC_Continue to continue.
*/
static SQLITE_NOINLINE int walkExpr(Walker *pWalker, Expr *pExpr){
  int rc;
  testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
  testcase( ExprHasProperty(pExpr, EP_Reduced) );
  rc = pWalker->xExprCallback(pWalker, pExpr);

  if( rc || ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){
    return rc & WRC_Abort;
  }
  if( pExpr->pLeft && walkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;


  if( pExpr->pRight && walkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
  if( ExprHasProperty(pExpr, EP_xIsSelect) ){
    if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
  }else if( pExpr->x.pList ){
    if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;

  }
  return WRC_Continue;
}
int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
  return pExpr ? walkExpr(pWalker,pExpr) : WRC_Continue;
}

................................................................................
  SrcList *pSrc;
  int i;
  struct SrcList_item *pItem;

  pSrc = p->pSrc;
  if( ALWAYS(pSrc) ){
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      if( sqlite3WalkSelect(pWalker, pItem->pSelect) ){
        return WRC_Abort;
      }
      if( pItem->fg.isTabFunc
       && sqlite3WalkExprList(pWalker, pItem->u1.pFuncArg)
      ){
        return WRC_Abort;
      }
................................................................................
** there is an abort request.
**
** If the Walker does not have an xSelectCallback() then this routine
** is a no-op returning WRC_Continue.
*/
int sqlite3WalkSelect(Walker *pWalker, Select *p){
  int rc;

  if( p==0 || pWalker->xSelectCallback==0 ) return WRC_Continue;
  do{
    rc = pWalker->xSelectCallback(pWalker, p);
    if( rc ) return rc & WRC_Abort;
    if( sqlite3WalkSelectExpr(pWalker, p)
     || sqlite3WalkSelectFrom(pWalker, p)
    ){
      return WRC_Abort;







>
|
<
<
|
>
>
|
|
|
|
|
>







 







|







 







>
|







37
38
39
40
41
42
43
44
45


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
...
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
** and WRC_Continue to continue.
*/
static SQLITE_NOINLINE int walkExpr(Walker *pWalker, Expr *pExpr){
  int rc;
  testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
  testcase( ExprHasProperty(pExpr, EP_Reduced) );
  rc = pWalker->xExprCallback(pWalker, pExpr);
  if( rc ) return rc & WRC_Abort;
  if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){


    if( pExpr->pLeft && walkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
    assert( pExpr->x.pList==0 || pExpr->pRight==0 );
    if( pExpr->pRight ){
      if( walkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
    }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
    }else if( pExpr->x.pList ){
      if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
    }
  }
  return WRC_Continue;
}
int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
  return pExpr ? walkExpr(pWalker,pExpr) : WRC_Continue;
}

................................................................................
  SrcList *pSrc;
  int i;
  struct SrcList_item *pItem;

  pSrc = p->pSrc;
  if( ALWAYS(pSrc) ){
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      if( pItem->pSelect && sqlite3WalkSelect(pWalker, pItem->pSelect) ){
        return WRC_Abort;
      }
      if( pItem->fg.isTabFunc
       && sqlite3WalkExprList(pWalker, pItem->u1.pFuncArg)
      ){
        return WRC_Abort;
      }
................................................................................
** there is an abort request.
**
** If the Walker does not have an xSelectCallback() then this routine
** is a no-op returning WRC_Continue.
*/
int sqlite3WalkSelect(Walker *pWalker, Select *p){
  int rc;
  if( p==0 ) return WRC_Continue;
  if( pWalker->xSelectCallback==0 ) return WRC_Continue;
  do{
    rc = pWalker->xSelectCallback(pWalker, p);
    if( rc ) return rc & WRC_Abort;
    if( sqlite3WalkSelectExpr(pWalker, p)
     || sqlite3WalkSelectFrom(pWalker, p)
    ){
      return WRC_Abort;

Changes to src/where.c.

4545
4546
4547
4548
4549
4550
4551


4552
4553
4554


4555
4556
4557
4558
4559
4560
4561
  ** WHERE_OR_SUBCLAUSE flag is set.
  */
  for(ii=0; ii<pTabList->nSrc; ii++){
    createMask(pMaskSet, pTabList->a[ii].iCursor);
    sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
  }
#ifdef SQLITE_DEBUG


  for(ii=0; ii<pTabList->nSrc; ii++){
    Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
    assert( m==MASKBIT(ii) );


  }
#endif

  /* Analyze all of the subexpressions. */
  sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
  if( db->mallocFailed ) goto whereBeginError;








>
>
|
|
|
>
>







4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
  ** WHERE_OR_SUBCLAUSE flag is set.
  */
  for(ii=0; ii<pTabList->nSrc; ii++){
    createMask(pMaskSet, pTabList->a[ii].iCursor);
    sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
  }
#ifdef SQLITE_DEBUG
  {
    Bitmask mx = 0;
    for(ii=0; ii<pTabList->nSrc; ii++){
      Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
      assert( m>=mx );
      mx = m;
    }
  }
#endif

  /* Analyze all of the subexpressions. */
  sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
  if( db->mallocFailed ) goto whereBeginError;

Changes to tool/lempar.c.

335
336
337
338
339
340
341

342

343
344
345
346
347
348
349
#endif
#ifndef YYNOERRORRECOVERY
  pParser->yyerrcnt = -1;
#endif
  pParser->yytos = pParser->yystack;
  pParser->yystack[0].stateno = 0;
  pParser->yystack[0].major = 0;

  pParser->yystackEnd = &pParser->yystack[YYSTACKDEPTH-1];

}

#ifndef Parse_ENGINEALWAYSONSTACK
/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.







>

>







335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#endif
#ifndef YYNOERRORRECOVERY
  pParser->yyerrcnt = -1;
#endif
  pParser->yytos = pParser->yystack;
  pParser->yystack[0].stateno = 0;
  pParser->yystack[0].major = 0;
#if YYSTACKDEPTH>0
  pParser->yystackEnd = &pParser->yystack[YYSTACKDEPTH-1];
#endif
}

#ifndef Parse_ENGINEALWAYSONSTACK
/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.

Changes to tool/mkkeywordhash.c.

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
...
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

510
511
512
513
514
515
516
517
518
519
520
521



522
523
524
525
526
527
528
529
530
531
532
533

534
535
536
537
538
539
540
541
542
543
544
545


546
547
548
549
550
551
552
553
554
555
556
557

558
559
560
561
562
563
564
565
566
567
568
569
570




571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
*/
int main(int argc, char **argv){
  int i, j, k, h;
  int bestSize, bestCount;
  int count;
  int nChar;
  int totalLen = 0;
  int aHash[1000];  /* 1000 is much bigger than nKeyword */
  char zText[2000];

  /* Remove entries from the list of keywords that have mask==0 */
  for(i=j=0; i<nKeyword; i++){
    if( aKeywordTable[i].mask==0 ) continue;
    if( j<i ){
      aKeywordTable[j] = aKeywordTable[i];
    }
................................................................................
  qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare3);

  /* Figure out how big to make the hash table in order to minimize the
  ** number of collisions */
  bestSize = nKeyword;
  bestCount = nKeyword*nKeyword;
  for(i=nKeyword/2; i<=2*nKeyword; i++){
    for(j=0; j<i; j++) aHash[j] = 0;
    for(j=0; j<nKeyword; j++){
      h = aKeywordTable[j].hash % i;
      aHash[h] *= 2;
      aHash[h]++;
    }
    for(j=count=0; j<i; j++) count += aHash[j];
    if( count<bestCount ){
      bestCount = count;
      bestSize = i;
    }
  }

  /* Compute the hash */
  for(i=0; i<bestSize; i++) aHash[i] = 0;
  for(i=0; i<nKeyword; i++){
    h = aKeywordTable[i].hash % bestSize;
    aKeywordTable[i].iNext = aHash[h];
    aHash[h] = i+1;
  }

  /* Begin generating code */
  printf("%s", zHdr);
  printf("/* Hash score: %d */\n", bestCount);
  printf("static int keywordCode(const char *z, int n, int *pType){\n");
  printf("  /* zText[] encodes %d bytes of keywords in %d bytes */\n",
          totalLen + nKeyword, nChar+1 );
  for(i=j=k=0; i<nKeyword; i++){
    Keyword *p = &aKeywordTable[i];
    if( p->substrId ) continue;
    memcpy(&zText[k], p->zName, p->len);
    k += p->len;
    if( j+p->len>70 ){
      printf("%*s */\n", 74-j, "");
      j = 0;
    }
    if( j==0 ){
      printf("  /*   ");
      j = 8;
    }
    printf("%s", p->zName);
    j += p->len;
  }
  if( j>0 ){
    printf("%*s */\n", 74-j, "");
  }
  printf("  static const char zText[%d] = {\n", nChar);
  zText[nChar] = 0;
  for(i=j=0; i<k; i++){
    if( j==0 ){
      printf("    ");
    }
    if( zText[i]==0 ){
      printf("0");
    }else{
      printf("'%c',", zText[i]);
    }
    j += 4;
    if( j>68 ){
      printf("\n");
      j = 0;
    }
  }
  if( j>0 ) printf("\n");
  printf("  };\n");


  printf("  static const unsigned char aHash[%d] = {\n", bestSize);
  for(i=j=0; i<bestSize; i++){
    if( j==0 ) printf("    ");
    printf(" %3d,", aHash[i]);
    j++;
    if( j>12 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s  };\n", j==0 ? "" : "\n");    




  printf("  static const unsigned char aNext[%d] = {\n", nKeyword);
  for(i=j=0; i<nKeyword; i++){
    if( j==0 ) printf("    ");
    printf(" %3d,", aKeywordTable[i].iNext);
    j++;
    if( j>12 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s  };\n", j==0 ? "" : "\n");    


  printf("  static const unsigned char aLen[%d] = {\n", nKeyword);
  for(i=j=0; i<nKeyword; i++){
    if( j==0 ) printf("    ");
    printf(" %3d,", aKeywordTable[i].len+aKeywordTable[i].prefix);
    j++;
    if( j>12 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s  };\n", j==0 ? "" : "\n");    



  printf("  static const unsigned short int aOffset[%d] = {\n", nKeyword);
  for(i=j=0; i<nKeyword; i++){
    if( j==0 ) printf("    ");
    printf(" %3d,", aKeywordTable[i].offset);
    j++;
    if( j>12 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s  };\n", j==0 ? "" : "\n");


  printf("  static const unsigned char aCode[%d] = {\n", nKeyword);
  for(i=j=0; i<nKeyword; i++){
    char *zToken = aKeywordTable[i].zTokenType;
    if( j==0 ) printf("    ");
    printf("%s,%*s", zToken, (int)(14-strlen(zToken)), "");
    j++;
    if( j>=5 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s  };\n", j==0 ? "" : "\n");





  printf("  int i, j;\n");
  printf("  const char *zKW;\n");
  printf("  if( n>=2 ){\n");
  printf("    i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n) %% %d;\n",
          bestSize);
  printf("    for(i=((int)aHash[i])-1; i>=0; i=((int)aNext[i])-1){\n");
  printf("      if( aLen[i]!=n ) continue;\n");
  printf("      j = 0;\n");
  printf("      zKW = &zText[aOffset[i]];\n");
  printf("#ifdef SQLITE_ASCII\n");
  printf("      while( j<n && (z[j]&~0x20)==zKW[j] ){ j++; }\n");
  printf("#endif\n");
  printf("#ifdef SQLITE_EBCDIC\n");
  printf("      while( j<n && toupper(z[j])==zKW[j] ){ j++; }\n");
  printf("#endif\n");
  printf("      if( j<n ) continue;\n");
  for(i=0; i<nKeyword; i++){
    printf("      testcase( i==%d ); /* %s */\n",
           i, aKeywordTable[i].zOrigName);
  }
  printf("      *pType = aCode[i];\n");
  printf("      break;\n");
  printf("    }\n");
  printf("  }\n");
  printf("  return n;\n");
  printf("}\n");
  printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n");
  printf("  int id = TK_ID;\n");







|
|







 







|


|
|

|







|


|
|





<
|




|






|








|
|


|

|


|








|

>
|

|
|






|

>
>
>
|

|







|

>
|

|







|

>
>
|

|







|

>
|


|







|
<
>
>
>
>





|
|

|











|







332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
...
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
*/
int main(int argc, char **argv){
  int i, j, k, h;
  int bestSize, bestCount;
  int count;
  int nChar;
  int totalLen = 0;
  int aKWHash[1000];  /* 1000 is much bigger than nKeyword */
  char zKWText[2000];

  /* Remove entries from the list of keywords that have mask==0 */
  for(i=j=0; i<nKeyword; i++){
    if( aKeywordTable[i].mask==0 ) continue;
    if( j<i ){
      aKeywordTable[j] = aKeywordTable[i];
    }
................................................................................
  qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare3);

  /* Figure out how big to make the hash table in order to minimize the
  ** number of collisions */
  bestSize = nKeyword;
  bestCount = nKeyword*nKeyword;
  for(i=nKeyword/2; i<=2*nKeyword; i++){
    for(j=0; j<i; j++) aKWHash[j] = 0;
    for(j=0; j<nKeyword; j++){
      h = aKeywordTable[j].hash % i;
      aKWHash[h] *= 2;
      aKWHash[h]++;
    }
    for(j=count=0; j<i; j++) count += aKWHash[j];
    if( count<bestCount ){
      bestCount = count;
      bestSize = i;
    }
  }

  /* Compute the hash */
  for(i=0; i<bestSize; i++) aKWHash[i] = 0;
  for(i=0; i<nKeyword; i++){
    h = aKeywordTable[i].hash % bestSize;
    aKeywordTable[i].iNext = aKWHash[h];
    aKWHash[h] = i+1;
  }

  /* Begin generating code */
  printf("%s", zHdr);
  printf("/* Hash score: %d */\n", bestCount);

  printf("/* zKWText[] encodes %d bytes of keyword text in %d bytes */\n",
          totalLen + nKeyword, nChar+1 );
  for(i=j=k=0; i<nKeyword; i++){
    Keyword *p = &aKeywordTable[i];
    if( p->substrId ) continue;
    memcpy(&zKWText[k], p->zName, p->len);
    k += p->len;
    if( j+p->len>70 ){
      printf("%*s */\n", 74-j, "");
      j = 0;
    }
    if( j==0 ){
      printf("/*   ");
      j = 8;
    }
    printf("%s", p->zName);
    j += p->len;
  }
  if( j>0 ){
    printf("%*s */\n", 74-j, "");
  }
  printf("static const char zKWText[%d] = {\n", nChar);
  zKWText[nChar] = 0;
  for(i=j=0; i<k; i++){
    if( j==0 ){
      printf("  ");
    }
    if( zKWText[i]==0 ){
      printf("0");
    }else{
      printf("'%c',", zKWText[i]);
    }
    j += 4;
    if( j>68 ){
      printf("\n");
      j = 0;
    }
  }
  if( j>0 ) printf("\n");
  printf("};\n");

  printf("/* aKWHash[i] is the hash value for the i-th keyword */\n");
  printf("static const unsigned char aKWHash[%d] = {\n", bestSize);
  for(i=j=0; i<bestSize; i++){
    if( j==0 ) printf("  ");
    printf(" %3d,", aKWHash[i]);
    j++;
    if( j>12 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s};\n", j==0 ? "" : "\n");    

  printf("/* aKWNext[] forms the hash collision chain.  If aKWHash[i]==0\n");
  printf("** then the i-th keyword has no more hash collisions.  Otherwise,\n");
  printf("** the next keyword with the same hash is aKWHash[i]-1. */\n");
  printf("static const unsigned char aKWNext[%d] = {\n", nKeyword);
  for(i=j=0; i<nKeyword; i++){
    if( j==0 ) printf("  ");
    printf(" %3d,", aKeywordTable[i].iNext);
    j++;
    if( j>12 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s};\n", j==0 ? "" : "\n");    

  printf("/* aKWLen[i] is the length (in bytes) of the i-th keyword */\n");
  printf("static const unsigned char aKWLen[%d] = {\n", nKeyword);
  for(i=j=0; i<nKeyword; i++){
    if( j==0 ) printf("  ");
    printf(" %3d,", aKeywordTable[i].len+aKeywordTable[i].prefix);
    j++;
    if( j>12 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s};\n", j==0 ? "" : "\n");    

  printf("/* aKWOffset[i] is the index into zKWText[] of the start of\n");
  printf("** the text for the i-th keyword. */\n");
  printf("static const unsigned short int aKWOffset[%d] = {\n", nKeyword);
  for(i=j=0; i<nKeyword; i++){
    if( j==0 ) printf("  ");
    printf(" %3d,", aKeywordTable[i].offset);
    j++;
    if( j>12 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s};\n", j==0 ? "" : "\n");

  printf("/* aKWCode[i] is the parser symbol code for the i-th keyword */\n");
  printf("static const unsigned char aKWCode[%d] = {\n", nKeyword);
  for(i=j=0; i<nKeyword; i++){
    char *zToken = aKeywordTable[i].zTokenType;
    if( j==0 ) printf("  ");
    printf("%s,%*s", zToken, (int)(14-strlen(zToken)), "");
    j++;
    if( j>=5 ){
      printf("\n");
      j = 0;
    }
  }
  printf("%s};\n", j==0 ? "" : "\n");

  printf("/* Check to see if z[0..n-1] is a keyword. If it is, write the\n");
  printf("** parser symbol code for that keyword into *pType.  Always\n");
  printf("** return the integer n (the length of the token). */\n");
  printf("static int keywordCode(const char *z, int n, int *pType){\n");
  printf("  int i, j;\n");
  printf("  const char *zKW;\n");
  printf("  if( n>=2 ){\n");
  printf("    i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n) %% %d;\n",
          bestSize);
  printf("    for(i=((int)aKWHash[i])-1; i>=0; i=((int)aKWNext[i])-1){\n");
  printf("      if( aKWLen[i]!=n ) continue;\n");
  printf("      j = 0;\n");
  printf("      zKW = &zKWText[aKWOffset[i]];\n");
  printf("#ifdef SQLITE_ASCII\n");
  printf("      while( j<n && (z[j]&~0x20)==zKW[j] ){ j++; }\n");
  printf("#endif\n");
  printf("#ifdef SQLITE_EBCDIC\n");
  printf("      while( j<n && toupper(z[j])==zKW[j] ){ j++; }\n");
  printf("#endif\n");
  printf("      if( j<n ) continue;\n");
  for(i=0; i<nKeyword; i++){
    printf("      testcase( i==%d ); /* %s */\n",
           i, aKeywordTable[i].zOrigName);
  }
  printf("      *pType = aKWCode[i];\n");
  printf("      break;\n");
  printf("    }\n");
  printf("  }\n");
  printf("  return n;\n");
  printf("}\n");
  printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n");
  printf("  int id = TK_ID;\n");