/ Check-in [72f39efa]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest trunk changes into this branch.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | begin-concurrent-pnu
Files: files | file ages | folders
SHA3-256:72f39efa9b1b97a54fe35d005b48f7e8b57d6285ba42f36487f796e09c710958
User & Date: dan 2018-05-15 11:55:15
Context
2018-06-06
17:12
Merge the 3.24.0 changes plus a few subsequent enhancements. check-in: be7004a9 user: drh tags: begin-concurrent-pnu
2018-05-15
11:55
Merge latest trunk changes into this branch. check-in: 72f39efa user: dan tags: begin-concurrent-pnu
11:45
Merge latest trunk changes with this branch. check-in: ae86cf60 user: dan tags: begin-concurrent
11:33
Instead of just the flags byte, include the first 8 bytes of the relevant page in an on-commit conflict log message. check-in: 52e443eb user: dan tags: begin-concurrent-pnu
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to Makefile.in.

568
569
570
571
572
573
574
575

576
577
578
579
580
581
582
# Databases containing fuzzer test cases
#
FUZZDATA = \
  $(TOP)/test/fuzzdata1.db \
  $(TOP)/test/fuzzdata2.db \
  $(TOP)/test/fuzzdata3.db \
  $(TOP)/test/fuzzdata4.db \
  $(TOP)/test/fuzzdata5.db


# Standard options to testfixture
#
TESTOPTS = --verbose=file --output=test-out.txt

# Extra compiler options for various shell tools
#







|
>







568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
# Databases containing fuzzer test cases
#
FUZZDATA = \
  $(TOP)/test/fuzzdata1.db \
  $(TOP)/test/fuzzdata2.db \
  $(TOP)/test/fuzzdata3.db \
  $(TOP)/test/fuzzdata4.db \
  $(TOP)/test/fuzzdata5.db \
  $(TOP)/test/fuzzdata6.db

# Standard options to testfixture
#
TESTOPTS = --verbose=file --output=test-out.txt

# Extra compiler options for various shell tools
#

Changes to Makefile.msc.

1595
1596
1597
1598
1599
1600
1601
1602

1603
1604
1605
1606
1607
1608
1609
# Databases containing fuzzer test cases
#
FUZZDATA = \
  $(TOP)\test\fuzzdata1.db \
  $(TOP)\test\fuzzdata2.db \
  $(TOP)\test\fuzzdata3.db \
  $(TOP)\test\fuzzdata4.db \
  $(TOP)\test\fuzzdata5.db

# <</mark>>

# Additional compiler options for the shell.  These are only effective
# when the shell is not being dynamically linked.
#
!IF $(DYNAMIC_SHELL)==0 && $(FOR_WIN10)==0
SHELL_COMPILE_OPTS = $(SHELL_COMPILE_OPTS) -DSQLITE_ENABLE_JSON1 -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_EXPLAIN_COMMENTS -DSQLITE_ENABLE_STMTVTAB







|
>







1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
# Databases containing fuzzer test cases
#
FUZZDATA = \
  $(TOP)\test\fuzzdata1.db \
  $(TOP)\test\fuzzdata2.db \
  $(TOP)\test\fuzzdata3.db \
  $(TOP)\test\fuzzdata4.db \
  $(TOP)\test\fuzzdata5.db \
  $(TOP)\test\fuzzdata6.db
# <</mark>>

# Additional compiler options for the shell.  These are only effective
# when the shell is not being dynamically linked.
#
!IF $(DYNAMIC_SHELL)==0 && $(FOR_WIN10)==0
SHELL_COMPILE_OPTS = $(SHELL_COMPILE_OPTS) -DSQLITE_ENABLE_JSON1 -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_EXPLAIN_COMMENTS -DSQLITE_ENABLE_STMTVTAB

Changes to autoconf/Makefile.am.

1
2
3
4
5
6
7
8
9

AM_CFLAGS = @THREADSAFE_FLAGS@ @DYNAMIC_EXTENSION_FLAGS@ @FTS5_FLAGS@ @JSON1_FLAGS@ @ZLIB_FLAGS@ @SESSION_FLAGS@ -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE

lib_LTLIBRARIES = libsqlite3.la
libsqlite3_la_SOURCES = sqlite3.c
libsqlite3_la_LDFLAGS = -no-undefined -version-info 8:6:8

bin_PROGRAMS = sqlite3
sqlite3_SOURCES = shell.c sqlite3.h

|







1
2
3
4
5
6
7
8
9

AM_CFLAGS = @THREADSAFE_FLAGS@ @DYNAMIC_EXTENSION_FLAGS@ @FTS5_FLAGS@ @JSON1_FLAGS@ @ZLIB_FLAGS@ @SESSION_FLAGS@ -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE @DEBUG_FLAGS@

lib_LTLIBRARIES = libsqlite3.la
libsqlite3_la_SOURCES = sqlite3.c
libsqlite3_la_LDFLAGS = -no-undefined -version-info 8:6:8

bin_PROGRAMS = sqlite3
sqlite3_SOURCES = shell.c sqlite3.h

Changes to autoconf/configure.ac.

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
...
143
144
145
146
147
148
149












150
151
152
153
154
155
156
AC_SUBST(DYNAMIC_EXTENSION_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-fts5
#
AC_ARG_ENABLE(fts5, [AS_HELP_STRING(
  [--enable-fts5], [include fts5 support [default=no]])], 
  [], [enable_fts5=no])
if test x"$enable_fts5" = "xyes"; then
  AC_SEARCH_LIBS(log, m)
  FTS5_FLAGS=-DSQLITE_ENABLE_FTS5
fi
AC_SUBST(FTS5_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-json1
#
AC_ARG_ENABLE(json1, [AS_HELP_STRING(
  [--enable-json1], [include json1 support [default=no]])], 
  [], [enable_json1=no])
if test x"$enable_json1" = "xyes"; then
  JSON1_FLAGS=-DSQLITE_ENABLE_JSON1
fi
AC_SUBST(JSON1_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
................................................................................
  [--enable-session], [enable the session extension [default=no]])], 
  [], [enable_session=no])
if test x"$enable_session" = "xyes"; then
  SESSION_FLAGS="-DSQLITE_ENABLE_SESSION -DSQLITE_ENABLE_PREUPDATE_HOOK"
fi
AC_SUBST(SESSION_FLAGS)
#-----------------------------------------------------------------------













#-----------------------------------------------------------------------
#   --enable-static-shell
#
AC_ARG_ENABLE(static-shell, [AS_HELP_STRING(
  [--enable-static-shell], 
  [statically link libsqlite3 into shell tool [default=yes]])], 







|
|











|
|







 







>
>
>
>
>
>
>
>
>
>
>
>







111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
...
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
AC_SUBST(DYNAMIC_EXTENSION_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-fts5
#
AC_ARG_ENABLE(fts5, [AS_HELP_STRING(
  [--enable-fts5], [include fts5 support [default=yes]])], 
  [], [enable_fts5=yes])
if test x"$enable_fts5" = "xyes"; then
  AC_SEARCH_LIBS(log, m)
  FTS5_FLAGS=-DSQLITE_ENABLE_FTS5
fi
AC_SUBST(FTS5_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-json1
#
AC_ARG_ENABLE(json1, [AS_HELP_STRING(
  [--enable-json1], [include json1 support [default=yes]])], 
  [], [enable_json1=yes])
if test x"$enable_json1" = "xyes"; then
  JSON1_FLAGS=-DSQLITE_ENABLE_JSON1
fi
AC_SUBST(JSON1_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
................................................................................
  [--enable-session], [enable the session extension [default=no]])], 
  [], [enable_session=no])
if test x"$enable_session" = "xyes"; then
  SESSION_FLAGS="-DSQLITE_ENABLE_SESSION -DSQLITE_ENABLE_PREUPDATE_HOOK"
fi
AC_SUBST(SESSION_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-debug
#
AC_ARG_ENABLE(debug, [AS_HELP_STRING(
  [--enable-debug], [build with debugging features enabled [default=no]])], 
  [], [enable_session=no])
if test x"$enable_debug" = "xyes"; then
  DEBUG_FLAGS="-DSQLITE_DEBUG -DSQLITE_ENABLE_SELECTTRACE -DSQLITE_ENABLE_WHERETRACE"
fi
AC_SUBST(DEBUG_FLAGS)
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------
#   --enable-static-shell
#
AC_ARG_ENABLE(static-shell, [AS_HELP_STRING(
  [--enable-static-shell], 
  [statically link libsqlite3 into shell tool [default=yes]])], 

Changes to ext/expert/expert1.test.

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
...
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
...
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
...
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
  eval $setup


do_setup_rec_test $tn.1 { CREATE TABLE t1(a, b, c) } {
  SELECT * FROM t1
} {
  (no new indexes)
  0|0|0|SCAN TABLE t1
}

do_setup_rec_test $tn.2 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 WHERE b>?;
} {
  CREATE INDEX t1_idx_00000062 ON t1(b);
  0|0|0|SEARCH TABLE t1 USING INDEX t1_idx_00000062 (b>?)
}

do_setup_rec_test $tn.3 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 WHERE b COLLATE nocase BETWEEN ? AND ?
} {
  CREATE INDEX t1_idx_3e094c27 ON t1(b COLLATE NOCASE);
  0|0|0|SEARCH TABLE t1 USING INDEX t1_idx_3e094c27 (b>? AND b<?)
}

do_setup_rec_test $tn.4 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT a FROM t1 ORDER BY b;
} {
  CREATE INDEX t1_idx_00000062 ON t1(b);
  0|0|0|SCAN TABLE t1 USING INDEX t1_idx_00000062
}

do_setup_rec_test $tn.5 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT a FROM t1 WHERE a=? ORDER BY b;
} {
  CREATE INDEX t1_idx_000123a7 ON t1(a, b);
  0|0|0|SEARCH TABLE t1 USING COVERING INDEX t1_idx_000123a7 (a=?)
}

do_setup_rec_test $tn.6 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT min(a) FROM t1
} {
  CREATE INDEX t1_idx_00000061 ON t1(a);
  0|0|0|SEARCH TABLE t1 USING COVERING INDEX t1_idx_00000061
}

do_setup_rec_test $tn.7 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 ORDER BY a, b, c;
} {
  CREATE INDEX t1_idx_033e95fe ON t1(a, b, c);
  0|0|0|SCAN TABLE t1 USING COVERING INDEX t1_idx_033e95fe
}

#do_setup_rec_test $tn.1.8 {
#  CREATE TABLE t1(a, b, c);
#} {
#  SELECT * FROM t1 ORDER BY a ASC, b COLLATE nocase DESC, c ASC;
#} {
................................................................................

do_setup_rec_test $tn.8.1 {
  CREATE TABLE t1(a COLLATE NOCase, b, c);
} {
  SELECT * FROM t1 WHERE a=?
} {
  CREATE INDEX t1_idx_00000061 ON t1(a);
  0|0|0|SEARCH TABLE t1 USING INDEX t1_idx_00000061 (a=?)
}
do_setup_rec_test $tn.8.2 {
  CREATE TABLE t1(a, b COLLATE nocase, c);
} {
  SELECT * FROM t1 ORDER BY a ASC, b DESC, c ASC;
} {
  CREATE INDEX t1_idx_5cb97285 ON t1(a, b DESC, c);
  0|0|0|SCAN TABLE t1 USING COVERING INDEX t1_idx_5cb97285
}


# Tables with names that require quotes.
#
do_setup_rec_test $tn.9.1 {
  CREATE TABLE "t t"(a, b, c);
} {
  SELECT * FROM "t t" WHERE a=?
} {
  CREATE INDEX 't t_idx_00000061' ON 't t'(a);
  0|0|0|SEARCH TABLE t t USING INDEX t t_idx_00000061 (a=?) 
}

do_setup_rec_test $tn.9.2 {
  CREATE TABLE "t t"(a, b, c);
} {
  SELECT * FROM "t t" WHERE b BETWEEN ? AND ?
} {
  CREATE INDEX 't t_idx_00000062' ON 't t'(b);
  0|0|0|SEARCH TABLE t t USING INDEX t t_idx_00000062 (b>? AND b<?)
}

# Columns with names that require quotes.
#
do_setup_rec_test $tn.10.1 {
  CREATE TABLE t3(a, "b b", c);
} {
  SELECT * FROM t3 WHERE "b b" = ?
} {
  CREATE INDEX t3_idx_00050c52 ON t3('b b');
  0|0|0|SEARCH TABLE t3 USING INDEX t3_idx_00050c52 (b b=?)
}

do_setup_rec_test $tn.10.2 {
  CREATE TABLE t3(a, "b b", c);
} {
  SELECT * FROM t3 ORDER BY "b b"
} {
  CREATE INDEX t3_idx_00050c52 ON t3('b b');
  0|0|0|SCAN TABLE t3 USING INDEX t3_idx_00050c52
}

# Transitive constraints
#
do_setup_rec_test $tn.11.1 {
  CREATE TABLE t5(a, b);
  CREATE TABLE t6(c, d);
} {
  SELECT * FROM t5, t6 WHERE a=? AND b=c AND c=?
} {
  CREATE INDEX t5_idx_000123a7 ON t5(a, b);
  CREATE INDEX t6_idx_00000063 ON t6(c);
  0|0|1|SEARCH TABLE t6 USING INDEX t6_idx_00000063 (c=?) 
  0|1|0|SEARCH TABLE t5 USING COVERING INDEX t5_idx_000123a7 (a=? AND b=?)
}

# OR terms.
#
do_setup_rec_test $tn.12.1 {
  CREATE TABLE t7(a, b);
} {
  SELECT * FROM t7 WHERE a=? OR b=?
} {
  CREATE INDEX t7_idx_00000062 ON t7(b);
  CREATE INDEX t7_idx_00000061 ON t7(a);

  0|0|0|SEARCH TABLE t7 USING INDEX t7_idx_00000061 (a=?) 
  0|0|0|SEARCH TABLE t7 USING INDEX t7_idx_00000062 (b=?)
}

# rowid terms.
#
do_setup_rec_test $tn.13.1 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 WHERE rowid=?
} {
  (no new indexes)
  0|0|0|SEARCH TABLE t8 USING INTEGER PRIMARY KEY (rowid=?)
}
do_setup_rec_test $tn.13.2 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 ORDER BY rowid
} {
  (no new indexes)
  0|0|0|SCAN TABLE t8
}
do_setup_rec_test $tn.13.3 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 WHERE a=? ORDER BY rowid
} {
  CREATE INDEX t8_idx_00000061 ON t8(a); 
  0|0|0|SEARCH TABLE t8 USING INDEX t8_idx_00000061 (a=?)
}

# Triggers
#
do_setup_rec_test $tn.14 {
  CREATE TABLE t9(a, b, c);
  CREATE TABLE t10(a, b, c);
................................................................................
  CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN
    UPDATE t10 SET a=new.a WHERE b = new.b;
  END;
} {
  INSERT INTO t9 VALUES(?, ?, ?);
} {
  CREATE INDEX t10_idx_00000062 ON t10(b); 
  0|1|0|-- TRIGGER t9t
  0|0|0|SEARCH TABLE t10 USING INDEX t10_idx_00000062 (b=?)
}

do_setup_rec_test $tn.15 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(c, d);

  WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100)
................................................................................

  WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100)
  INSERT INTO t2 SELECT (i-1)/20, (i-1)/5 FROM s;
} {
  SELECT * FROM t2, t1 WHERE b=? AND d=? AND t2.rowid=t1.rowid
} {
  CREATE INDEX t2_idx_00000064 ON t2(d);
  0|0|0|SEARCH TABLE t2 USING INDEX t2_idx_00000064 (d=?) 
  0|1|1|SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
}

do_setup_rec_test $tn.16 {
  CREATE TABLE t1(a, b);
} {
  SELECT * FROM t1 WHERE b IS NOT NULL;
} {
  (no new indexes)
  0|0|0|SCAN TABLE t1
}

}

proc do_candidates_test {tn sql res} {
  set res [squish [string trim $res]]








|








|








|








|








|








|








|







 







|







|











|








|










|








|












|
|











>
|
|










|







|







|







 







|
|







 







|
|








|







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
...
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
...
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
...
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
  eval $setup


do_setup_rec_test $tn.1 { CREATE TABLE t1(a, b, c) } {
  SELECT * FROM t1
} {
  (no new indexes)
  SCAN TABLE t1
}

do_setup_rec_test $tn.2 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 WHERE b>?;
} {
  CREATE INDEX t1_idx_00000062 ON t1(b);
  SEARCH TABLE t1 USING INDEX t1_idx_00000062 (b>?)
}

do_setup_rec_test $tn.3 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 WHERE b COLLATE nocase BETWEEN ? AND ?
} {
  CREATE INDEX t1_idx_3e094c27 ON t1(b COLLATE NOCASE);
  SEARCH TABLE t1 USING INDEX t1_idx_3e094c27 (b>? AND b<?)
}

do_setup_rec_test $tn.4 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT a FROM t1 ORDER BY b;
} {
  CREATE INDEX t1_idx_00000062 ON t1(b);
  SCAN TABLE t1 USING INDEX t1_idx_00000062
}

do_setup_rec_test $tn.5 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT a FROM t1 WHERE a=? ORDER BY b;
} {
  CREATE INDEX t1_idx_000123a7 ON t1(a, b);
  SEARCH TABLE t1 USING COVERING INDEX t1_idx_000123a7 (a=?)
}

do_setup_rec_test $tn.6 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT min(a) FROM t1
} {
  CREATE INDEX t1_idx_00000061 ON t1(a);
  SEARCH TABLE t1 USING COVERING INDEX t1_idx_00000061
}

do_setup_rec_test $tn.7 {
  CREATE TABLE t1(a, b, c);
} {
  SELECT * FROM t1 ORDER BY a, b, c;
} {
  CREATE INDEX t1_idx_033e95fe ON t1(a, b, c);
  SCAN TABLE t1 USING COVERING INDEX t1_idx_033e95fe
}

#do_setup_rec_test $tn.1.8 {
#  CREATE TABLE t1(a, b, c);
#} {
#  SELECT * FROM t1 ORDER BY a ASC, b COLLATE nocase DESC, c ASC;
#} {
................................................................................

do_setup_rec_test $tn.8.1 {
  CREATE TABLE t1(a COLLATE NOCase, b, c);
} {
  SELECT * FROM t1 WHERE a=?
} {
  CREATE INDEX t1_idx_00000061 ON t1(a);
  SEARCH TABLE t1 USING INDEX t1_idx_00000061 (a=?)
}
do_setup_rec_test $tn.8.2 {
  CREATE TABLE t1(a, b COLLATE nocase, c);
} {
  SELECT * FROM t1 ORDER BY a ASC, b DESC, c ASC;
} {
  CREATE INDEX t1_idx_5cb97285 ON t1(a, b DESC, c);
  SCAN TABLE t1 USING COVERING INDEX t1_idx_5cb97285
}


# Tables with names that require quotes.
#
do_setup_rec_test $tn.9.1 {
  CREATE TABLE "t t"(a, b, c);
} {
  SELECT * FROM "t t" WHERE a=?
} {
  CREATE INDEX 't t_idx_00000061' ON 't t'(a);
  SEARCH TABLE t t USING INDEX t t_idx_00000061 (a=?) 
}

do_setup_rec_test $tn.9.2 {
  CREATE TABLE "t t"(a, b, c);
} {
  SELECT * FROM "t t" WHERE b BETWEEN ? AND ?
} {
  CREATE INDEX 't t_idx_00000062' ON 't t'(b);
  SEARCH TABLE t t USING INDEX t t_idx_00000062 (b>? AND b<?)
}

# Columns with names that require quotes.
#
do_setup_rec_test $tn.10.1 {
  CREATE TABLE t3(a, "b b", c);
} {
  SELECT * FROM t3 WHERE "b b" = ?
} {
  CREATE INDEX t3_idx_00050c52 ON t3('b b');
  SEARCH TABLE t3 USING INDEX t3_idx_00050c52 (b b=?)
}

do_setup_rec_test $tn.10.2 {
  CREATE TABLE t3(a, "b b", c);
} {
  SELECT * FROM t3 ORDER BY "b b"
} {
  CREATE INDEX t3_idx_00050c52 ON t3('b b');
  SCAN TABLE t3 USING INDEX t3_idx_00050c52
}

# Transitive constraints
#
do_setup_rec_test $tn.11.1 {
  CREATE TABLE t5(a, b);
  CREATE TABLE t6(c, d);
} {
  SELECT * FROM t5, t6 WHERE a=? AND b=c AND c=?
} {
  CREATE INDEX t5_idx_000123a7 ON t5(a, b);
  CREATE INDEX t6_idx_00000063 ON t6(c);
  SEARCH TABLE t6 USING INDEX t6_idx_00000063 (c=?) 
  SEARCH TABLE t5 USING COVERING INDEX t5_idx_000123a7 (a=? AND b=?)
}

# OR terms.
#
do_setup_rec_test $tn.12.1 {
  CREATE TABLE t7(a, b);
} {
  SELECT * FROM t7 WHERE a=? OR b=?
} {
  CREATE INDEX t7_idx_00000062 ON t7(b);
  CREATE INDEX t7_idx_00000061 ON t7(a);
  MULTI-INDEX OR
    SEARCH TABLE t7 USING INDEX t7_idx_00000061 (a=?) 
    SEARCH TABLE t7 USING INDEX t7_idx_00000062 (b=?)
}

# rowid terms.
#
do_setup_rec_test $tn.13.1 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 WHERE rowid=?
} {
  (no new indexes)
  SEARCH TABLE t8 USING INTEGER PRIMARY KEY (rowid=?)
}
do_setup_rec_test $tn.13.2 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 ORDER BY rowid
} {
  (no new indexes)
  SCAN TABLE t8
}
do_setup_rec_test $tn.13.3 {
  CREATE TABLE t8(a, b);
} {
  SELECT * FROM t8 WHERE a=? ORDER BY rowid
} {
  CREATE INDEX t8_idx_00000061 ON t8(a); 
  SEARCH TABLE t8 USING INDEX t8_idx_00000061 (a=?)
}

# Triggers
#
do_setup_rec_test $tn.14 {
  CREATE TABLE t9(a, b, c);
  CREATE TABLE t10(a, b, c);
................................................................................
  CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN
    UPDATE t10 SET a=new.a WHERE b = new.b;
  END;
} {
  INSERT INTO t9 VALUES(?, ?, ?);
} {
  CREATE INDEX t10_idx_00000062 ON t10(b); 
  -- TRIGGER t9t
  SEARCH TABLE t10 USING INDEX t10_idx_00000062 (b=?)
}

do_setup_rec_test $tn.15 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(c, d);

  WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100)
................................................................................

  WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<100)
  INSERT INTO t2 SELECT (i-1)/20, (i-1)/5 FROM s;
} {
  SELECT * FROM t2, t1 WHERE b=? AND d=? AND t2.rowid=t1.rowid
} {
  CREATE INDEX t2_idx_00000064 ON t2(d);
  SEARCH TABLE t2 USING INDEX t2_idx_00000064 (d=?) 
  SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
}

do_setup_rec_test $tn.16 {
  CREATE TABLE t1(a, b);
} {
  SELECT * FROM t1 WHERE b IS NOT NULL;
} {
  (no new indexes)
  SCAN TABLE t1
}

}

proc do_candidates_test {tn sql res} {
  set res [squish [string trim $res]]

Changes to ext/expert/sqlite3expert.c.

1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
....
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
    IdxHashEntry *pEntry;
    sqlite3_stmt *pExplain = 0;
    idxHashClear(&hIdx);
    rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr,
        "EXPLAIN QUERY PLAN %s", pStmt->zSql
    );
    while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){
      int iSelectid = sqlite3_column_int(pExplain, 0);
      int iOrder = sqlite3_column_int(pExplain, 1);
      int iFrom = sqlite3_column_int(pExplain, 2);
      const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3);
      int nDetail = STRLEN(zDetail);
      int i;

      for(i=0; i<nDetail; i++){
        const char *zIdx = 0;
        if( memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){
................................................................................
            idxHashAdd(&rc, &hIdx, zSql, 0);
            if( rc ) goto find_indexes_out;
          }
          break;
        }
      }

      pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%d|%d|%d|%s\n", 
          iSelectid, iOrder, iFrom, zDetail
      );
    }

    for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
      pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey);
    }

    idxFinalize(&rc, pExplain);







|
|
|







 







|
<
<







1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
....
1148
1149
1150
1151
1152
1153
1154
1155


1156
1157
1158
1159
1160
1161
1162
    IdxHashEntry *pEntry;
    sqlite3_stmt *pExplain = 0;
    idxHashClear(&hIdx);
    rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr,
        "EXPLAIN QUERY PLAN %s", pStmt->zSql
    );
    while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){
      /* int iId = sqlite3_column_int(pExplain, 0); */
      /* int iParent = sqlite3_column_int(pExplain, 1); */
      /* int iNotUsed = sqlite3_column_int(pExplain, 2); */
      const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3);
      int nDetail = STRLEN(zDetail);
      int i;

      for(i=0; i<nDetail; i++){
        const char *zIdx = 0;
        if( memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){
................................................................................
            idxHashAdd(&rc, &hIdx, zSql, 0);
            if( rc ) goto find_indexes_out;
          }
          break;
        }
      }

      pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail);


    }

    for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
      pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey);
    }

    idxFinalize(&rc, pExplain);

Changes to ext/fts3/fts3.c.

3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
    ){
      rc = SQLITE_NOMEM;
    }
  }

#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the four scalar functions. If this is successful, register the
  ** module with sqlite.
  */







|







3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
    ){
      rc = SQLITE_NOMEM;
    }
  }

#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db, pHash);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the four scalar functions. If this is successful, register the
  ** module with sqlite.
  */

Changes to ext/fts3/fts3Int.h.

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

/* fts3_expr.c */
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
  char **, int, int, int, const char *, int, Fts3Expr **, char **
);
void sqlite3Fts3ExprFree(Fts3Expr *);
#ifdef SQLITE_TEST
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
  sqlite3_tokenizer_cursor **
);








|







580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

/* fts3_expr.c */
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
  char **, int, int, int, const char *, int, Fts3Expr **, char **
);
void sqlite3Fts3ExprFree(Fts3Expr *);
#ifdef SQLITE_TEST
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash*);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
  sqlite3_tokenizer_cursor **
);

Changes to ext/fts3/fts3_expr.c.

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
....
1199
1200
1201
1202
1203
1204
1205
1206

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221


1222
1223
1224
1225
1226
1227
1228
1229
1230
1231


1232
1233
1234
1235
1236
1237
1238


1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
....
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290















1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
** Everything after this point is just test code.
*/

#ifdef SQLITE_TEST

#include <stdio.h>

/*
** Function to query the hash-table of tokenizers (see README.tokenizers).
*/
static int queryTestTokenizer(
  sqlite3 *db, 
  const char *zName,  
  const sqlite3_tokenizer_module **pp
){
  int rc;
  sqlite3_stmt *pStmt;
  const char zSql[] = "SELECT fts3_tokenizer(?)";

  *pp = 0;
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
  if( SQLITE_ROW==sqlite3_step(pStmt) ){
    if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
      memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
    }
  }

  return sqlite3_finalize(pStmt);
}

/*
** Return a pointer to a buffer containing a text representation of the
** expression passed as the first argument. The buffer is obtained from
** sqlite3_malloc(). It is the responsibility of the caller to use 
** sqlite3_free() to release the memory. If an OOM condition is encountered,
** NULL is returned.
**
................................................................................
** to parse the query expression (see README.tokenizers). The second argument
** is the query expression to parse. Each subsequent argument is the name
** of a column of the fts3 table that the query expression may refer to.
** For example:
**
**   SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
*/
static void fts3ExprTest(

  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_tokenizer_module const *pModule = 0;
  sqlite3_tokenizer *pTokenizer = 0;
  int rc;
  char **azCol = 0;
  const char *zExpr;
  int nExpr;
  int nCol;
  int ii;
  Fts3Expr *pExpr;
  char *zBuf = 0;
  sqlite3 *db = sqlite3_context_db_handle(context);



  if( argc<3 ){
    sqlite3_result_error(context, 
        "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
    );
    return;
  }

  rc = queryTestTokenizer(db,
                          (const char *)sqlite3_value_text(argv[0]), &pModule);


  if( rc==SQLITE_NOMEM ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }else if( !pModule ){
    sqlite3_result_error(context, "No such tokenizer module", -1);
    goto exprtest_out;
  }



  rc = pModule->xCreate(0, 0, &pTokenizer);
  assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
  if( rc==SQLITE_NOMEM ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }
  pTokenizer->pModule = pModule;

  zExpr = (const char *)sqlite3_value_text(argv[1]);
  nExpr = sqlite3_value_bytes(argv[1]);
  nCol = argc-2;
  azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
  if( !azCol ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }
  for(ii=0; ii<nCol; ii++){
    azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
  }

  if( sqlite3_user_data(context) ){
    char *zDummy = 0;
    rc = sqlite3Fts3ExprParse(
        pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
    );
    assert( rc==SQLITE_OK || pExpr==0 );
    sqlite3_free(zDummy);
  }else{
................................................................................
    sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
    sqlite3_free(zBuf);
  }

  sqlite3Fts3ExprFree(pExpr);

exprtest_out:
  if( pModule && pTokenizer ){
    rc = pModule->xDestroy(pTokenizer);
  }
  sqlite3_free(azCol);
}
















/*
** Register the query expression parser test function fts3_exprtest() 
** with database connection db. 
*/
int sqlite3Fts3ExprInitTestInterface(sqlite3* db){
  int rc = sqlite3_create_function(
      db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", 
        -1, SQLITE_UTF8, (void *)1, fts3ExprTest, 0, 0
    );
  }
  return rc;
}

#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|
>




<









|
>
>








<
|
>
>
|
|
<
|
|
<
|
>
>
|
<
<
<
<
<
|
<
<












|







 







|
|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|

|



|







1104
1105
1106
1107
1108
1109
1110




























1111
1112
1113
1114
1115
1116
1117
....
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

1204
1205
1206
1207
1208

1209
1210

1211
1212
1213
1214





1215


1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
....
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
** Everything after this point is just test code.
*/

#ifdef SQLITE_TEST

#include <stdio.h>





























/*
** Return a pointer to a buffer containing a text representation of the
** expression passed as the first argument. The buffer is obtained from
** sqlite3_malloc(). It is the responsibility of the caller to use 
** sqlite3_free() to release the memory. If an OOM condition is encountered,
** NULL is returned.
**
................................................................................
** to parse the query expression (see README.tokenizers). The second argument
** is the query expression to parse. Each subsequent argument is the name
** of a column of the fts3 table that the query expression may refer to.
** For example:
**
**   SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
*/
static void fts3ExprTestCommon(
  int bRebalance,
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){

  sqlite3_tokenizer *pTokenizer = 0;
  int rc;
  char **azCol = 0;
  const char *zExpr;
  int nExpr;
  int nCol;
  int ii;
  Fts3Expr *pExpr;
  char *zBuf = 0;
  Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context);
  const char *zTokenizer = 0;
  char *zErr = 0;

  if( argc<3 ){
    sqlite3_result_error(context, 
        "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
    );
    return;
  }


  zTokenizer = (const char*)sqlite3_value_text(argv[0]);
  rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      sqlite3_result_error_nomem(context);

    }else{
      sqlite3_result_error(context, zErr, -1);

    }
    sqlite3_free(zErr);
    return;
  }








  zExpr = (const char *)sqlite3_value_text(argv[1]);
  nExpr = sqlite3_value_bytes(argv[1]);
  nCol = argc-2;
  azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
  if( !azCol ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }
  for(ii=0; ii<nCol; ii++){
    azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
  }

  if( bRebalance ){
    char *zDummy = 0;
    rc = sqlite3Fts3ExprParse(
        pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
    );
    assert( rc==SQLITE_OK || pExpr==0 );
    sqlite3_free(zDummy);
  }else{
................................................................................
    sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
    sqlite3_free(zBuf);
  }

  sqlite3Fts3ExprFree(pExpr);

exprtest_out:
  if( pTokenizer ){
    rc = pTokenizer->pModule->xDestroy(pTokenizer);
  }
  sqlite3_free(azCol);
}

static void fts3ExprTest(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  fts3ExprTestCommon(0, context, argc, argv);
}
static void fts3ExprTestRebalance(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  fts3ExprTestCommon(1, context, argc, argv);
}

/*
** Register the query expression parser test function fts3_exprtest() 
** with database connection db. 
*/
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){
  int rc = sqlite3_create_function(
      db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", 
        -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0
    );
  }
  return rc;
}

#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */

Changes to ext/fts5/test/fts5plan.test.

25
26
27
28
29
30
31

32
33
34
35
36
37
38

39
40
41
42
43
44
45

46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
  CREATE TABLE t1(x, y);
  CREATE VIRTUAL TABLE f1 USING fts5(ff);
}

do_eqp_test 1.1 {
  SELECT * FROM t1, f1 WHERE f1 MATCH t1.x
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:}
}

do_eqp_test 1.2 {
  SELECT * FROM t1, f1 WHERE f1 > t1.x
} {

  0 0 1 {SCAN TABLE f1 VIRTUAL TABLE INDEX 0:}
  0 1 0 {SCAN TABLE t1} 
}

do_eqp_test 1.3 {
  SELECT * FROM f1 WHERE f1 MATCH ? ORDER BY ff
} {

  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

do_eqp_test 1.4 {
  SELECT * FROM f1 ORDER BY rank
} {

  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 0:}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

do_eqp_test 1.5 {
  SELECT * FROM f1 WHERE rank MATCH ?
} {
  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 2:}
}




finish_test







>
|
|





>
|
|





>
|
|





>
|
|




<
|
|
<
<
<
<

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64




65
  CREATE TABLE t1(x, y);
  CREATE VIRTUAL TABLE f1 USING fts5(ff);
}

do_eqp_test 1.1 {
  SELECT * FROM t1, f1 WHERE f1 MATCH t1.x
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:
}

do_eqp_test 1.2 {
  SELECT * FROM t1, f1 WHERE f1 > t1.x
} {
  QUERY PLAN
  |--SCAN TABLE f1 VIRTUAL TABLE INDEX 0:
  `--SCAN TABLE t1
}

do_eqp_test 1.3 {
  SELECT * FROM f1 WHERE f1 MATCH ? ORDER BY ff
} {
  QUERY PLAN
  |--SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:
  `--USE TEMP B-TREE FOR ORDER BY
}

do_eqp_test 1.4 {
  SELECT * FROM f1 ORDER BY rank
} {
  QUERY PLAN
  |--SCAN TABLE f1 VIRTUAL TABLE INDEX 0:
  `--USE TEMP B-TREE FOR ORDER BY
}

do_eqp_test 1.5 {
  SELECT * FROM f1 WHERE rank MATCH ?

} {SCAN TABLE f1 VIRTUAL TABLE INDEX 2:}





finish_test

Changes to ext/fts5/test/fts5unicode.test.

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58



59























60
  tokenize_test 1.$tn.2 $t {..May...you.shAre.freely} {may you share freely}
  tokenize_test 1.$tn.3 $t {} {}
}

#-------------------------------------------------------------------------
# Check that "unicode61" really is the default tokenizer.
#

do_execsql_test 2.0 "
  CREATE VIRTUAL TABLE t1 USING fts5(x);
  CREATE VIRTUAL TABLE t2 USING fts5(x, tokenize = unicode61);
  CREATE VIRTUAL TABLE t3 USING fts5(x, tokenize = ascii);
  INSERT INTO t1 VALUES('\xC0\xC8\xCC');
  INSERT INTO t2 VALUES('\xC0\xC8\xCC');
  INSERT INTO t3 VALUES('\xC0\xC8\xCC');
"
do_execsql_test 2.1 "
  SELECT 't1' FROM t1 WHERE t1 MATCH '\xE0\xE8\xEC';
  SELECT 't2' FROM t2 WHERE t2 MATCH '\xE0\xE8\xEC';
  SELECT 't3' FROM t3 WHERE t3 MATCH '\xE0\xE8\xEC';
" {t1 t2}




























finish_test







<














>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  tokenize_test 1.$tn.2 $t {..May...you.shAre.freely} {may you share freely}
  tokenize_test 1.$tn.3 $t {} {}
}

#-------------------------------------------------------------------------
# Check that "unicode61" really is the default tokenizer.
#

do_execsql_test 2.0 "
  CREATE VIRTUAL TABLE t1 USING fts5(x);
  CREATE VIRTUAL TABLE t2 USING fts5(x, tokenize = unicode61);
  CREATE VIRTUAL TABLE t3 USING fts5(x, tokenize = ascii);
  INSERT INTO t1 VALUES('\xC0\xC8\xCC');
  INSERT INTO t2 VALUES('\xC0\xC8\xCC');
  INSERT INTO t3 VALUES('\xC0\xC8\xCC');
"
do_execsql_test 2.1 "
  SELECT 't1' FROM t1 WHERE t1 MATCH '\xE0\xE8\xEC';
  SELECT 't2' FROM t2 WHERE t2 MATCH '\xE0\xE8\xEC';
  SELECT 't3' FROM t3 WHERE t3 MATCH '\xE0\xE8\xEC';
" {t1 t2}

#-------------------------------------------------------------------------
# Check that codepoints that require 4 bytes to store in utf-8 (those that
# require 17 or more bits to store).
#

set A [db one {SELECT char(0x1F75E)}]    ;# Type So
set B [db one {SELECT char(0x1F5FD)}]    ;# Type So
set C [db one {SELECT char(0x2F802)}]    ;# Type Lo
set D [db one {SELECT char(0x2F808)}]    ;# Type Lo

do_execsql_test 3.0 "
  CREATE VIRTUAL TABLE xyz USING fts5(x,
    tokenize = \"unicode61 separators '$C' tokenchars '$A'\"
  );
  CREATE VIRTUAL TABLE xyz_v USING fts5vocab(xyz, row);

  INSERT INTO xyz VALUES('$A$B$C$D');
"

do_execsql_test 3.1 {
  SELECT * FROM xyz_v;
} [list $A 1 1 $D 1 1]
  




finish_test

Changes to ext/misc/closure.c.

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
...
888
889
890
891
892
893
894












895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
static int closureBestIndex(
  sqlite3_vtab *pTab,             /* The virtual table */
  sqlite3_index_info *pIdxInfo    /* Information about the query */
){
  int iPlan = 0;
  int i;
  int idx = 1;
  int seenMatch = 0;
  const struct sqlite3_index_constraint *pConstraint;
  closure_vtab *pVtab = (closure_vtab*)pTab;
  double rCost = 10000000.0;

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      seenMatch = 1;
    }
    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
................................................................................
   || (pVtab->zIdColumn==0     && (iPlan & 0x00f000)==0)
   || (pVtab->zParentColumn==0 && (iPlan & 0x0f0000)==0)
  ){
    /* All of tablename, idcolumn, and parentcolumn must be specified
    ** in either the CREATE VIRTUAL TABLE or in the WHERE clause constraints
    ** or else the result is an empty set. */
    iPlan = 0;












  }
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }
  if( seenMatch && (iPlan&1)==0 ) rCost *= 1e30;
  pIdxInfo->estimatedCost = rCost;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "transitive_closure".







<






<
<
<
<







 







>
>
>
>
>
>
>
>
>
>
>
>








<







822
823
824
825
826
827
828

829
830
831
832
833
834




835
836
837
838
839
840
841
...
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

910
911
912
913
914
915
916
static int closureBestIndex(
  sqlite3_vtab *pTab,             /* The virtual table */
  sqlite3_index_info *pIdxInfo    /* Information about the query */
){
  int iPlan = 0;
  int i;
  int idx = 1;

  const struct sqlite3_index_constraint *pConstraint;
  closure_vtab *pVtab = (closure_vtab*)pTab;
  double rCost = 10000000.0;

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){




    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
................................................................................
   || (pVtab->zIdColumn==0     && (iPlan & 0x00f000)==0)
   || (pVtab->zParentColumn==0 && (iPlan & 0x0f0000)==0)
  ){
    /* All of tablename, idcolumn, and parentcolumn must be specified
    ** in either the CREATE VIRTUAL TABLE or in the WHERE clause constraints
    ** or else the result is an empty set. */
    iPlan = 0;
  }
  if( (iPlan&1)==0 ){
    /* If there is no usable "root=?" term, then set the index-type to 0.
    ** Also clear any argvIndex variables already set. This is necessary
    ** to prevent the core from throwing an "xBestIndex malfunction error"
    ** error (because the argvIndex values are not contiguously assigned
    ** starting from 1).  */
    rCost *= 1e30;
    for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
      pIdxInfo->aConstraintUsage[i].argvIndex = 0;
    }
    iPlan = 0;
  }
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  pIdxInfo->estimatedCost = rCost;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "transitive_closure".

Changes to ext/misc/templatevtab.c.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40






41
42
43
44
45
46

47
48
49
50
51
52
53
..
88
89
90
91
92
93
94



95
96
97
98
99
100
101
...
147
148
149
150
151
152
153


154






155
156
157
158
159
160
161
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements a template virtual-table implementation.
** Developers can make a copy of this file as a baseline for writing
** new virtual tables and/or table-valued functions.
**
** Steps for writing a new virtual table implementation:
**
**     (1)  Make a copy of this file.  Prehaps "mynewvtab.c"
**
**     (2)  Replace this header comment with something appropriate for
**          the new virtual table
**
**     (3)  Change every occurrence of "templatevtab" to some other string
**          appropriate for the new virtual table.  Ideally, the new string
**          should be the basename of the source file: "mynewvtab".

**
**     (4)  Run a test compilation to make sure the unmodified virtual
**          table works.
**
**     (5)  Begin making changes to make the new virtual table do what you
**          want it to do.
**
**     (6)  Ensure that all the "FIXME" comments in the file have been dealt
**          with.
**
** This template is minimal, in the sense that it uses only the required
** methods on the sqlite3_module object.  As a result, templatevtab is
** a read-only and eponymous-only table.  Those limitation can be removed
** by adding new methods.






*/
#if !defined(SQLITEINT_H)
#include "sqlite3ext.h"
#endif
SQLITE_EXTENSION_INIT1
#include <string.h>


/* templatevtab_vtab is a subclass of sqlite3_vtab which is
** underlying representation of the virtual table
*/
typedef struct templatevtab_vtab templatevtab_vtab;
struct templatevtab_vtab {
  sqlite3_vtab base;  /* Base class - must be first */
................................................................................
){
  templatevtab_vtab *pNew;
  int rc;

  rc = sqlite3_declare_vtab(db,
           "CREATE TABLE x(a,b)"
       );



  if( rc==SQLITE_OK ){
    pNew = sqlite3_malloc( sizeof(*pNew) );
    *ppVtab = (sqlite3_vtab*)pNew;
    if( pNew==0 ) return SQLITE_NOMEM;
    memset(pNew, 0, sizeof(*pNew));
  }
  return rc;
................................................................................
*/
static int templatevtabColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
  sqlite3_context *ctx,       /* First argument to sqlite3_result_...() */
  int i                       /* Which column to return */
){
  templatevtab_cursor *pCur = (templatevtab_cursor*)cur;


  sqlite3_result_int(ctx, (i+1)*1000 + pCur->iRowid);






  return SQLITE_OK;
}

/*
** Return the rowid for the current row.  In this implementation, the
** rowid is the same as the output value.
*/







|





|






|
>




|
|
<
<
<





>
>
>
>
>
>






>







 







>
>
>







 







>
>
|
>
>
>
>
>
>







6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
...
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements a template virtual-table.
** Developers can make a copy of this file as a baseline for writing
** new virtual tables and/or table-valued functions.
**
** Steps for writing a new virtual table implementation:
**
**     (1)  Make a copy of this file.  Perhaps call it "mynewvtab.c"
**
**     (2)  Replace this header comment with something appropriate for
**          the new virtual table
**
**     (3)  Change every occurrence of "templatevtab" to some other string
**          appropriate for the new virtual table.  Ideally, the new string
**          should be the basename of the source file: "mynewvtab".  Also
**          globally change "TEMPLATEVTAB" to "MYNEWVTAB".
**
**     (4)  Run a test compilation to make sure the unmodified virtual
**          table works.
**
**     (5)  Begin making incremental changes, testing as you go, to evolve
**          the new virtual table to do what you want it to do.



**
** This template is minimal, in the sense that it uses only the required
** methods on the sqlite3_module object.  As a result, templatevtab is
** a read-only and eponymous-only table.  Those limitation can be removed
** by adding new methods.
**
** This template implements an eponymous-only virtual table with a rowid and
** two columns named "a" and "b".  The table as 10 rows with fixed integer
** values. Usage example:
**
**     SELECT rowid, a, b FROM templatevtab;
*/
#if !defined(SQLITEINT_H)
#include "sqlite3ext.h"
#endif
SQLITE_EXTENSION_INIT1
#include <string.h>
#include <assert.h>

/* templatevtab_vtab is a subclass of sqlite3_vtab which is
** underlying representation of the virtual table
*/
typedef struct templatevtab_vtab templatevtab_vtab;
struct templatevtab_vtab {
  sqlite3_vtab base;  /* Base class - must be first */
................................................................................
){
  templatevtab_vtab *pNew;
  int rc;

  rc = sqlite3_declare_vtab(db,
           "CREATE TABLE x(a,b)"
       );
  /* For convenience, define symbolic names for the index to each column. */
#define TEMPLATEVTAB_A  0
#define TEMPLATEVTAB_B  1
  if( rc==SQLITE_OK ){
    pNew = sqlite3_malloc( sizeof(*pNew) );
    *ppVtab = (sqlite3_vtab*)pNew;
    if( pNew==0 ) return SQLITE_NOMEM;
    memset(pNew, 0, sizeof(*pNew));
  }
  return rc;
................................................................................
*/
static int templatevtabColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
  sqlite3_context *ctx,       /* First argument to sqlite3_result_...() */
  int i                       /* Which column to return */
){
  templatevtab_cursor *pCur = (templatevtab_cursor*)cur;
  switch( i ){
    case TEMPLATEVTAB_A:
      sqlite3_result_int(ctx, 1000 + pCur->iRowid);
      break;
    default:
      assert( i==TEMPLATEVTAB_B );
      sqlite3_result_int(ctx, 2000 + pCur->iRowid);
      break;
  }
  return SQLITE_OK;
}

/*
** Return the rowid for the current row.  In this implementation, the
** rowid is the same as the output value.
*/

Changes to ext/rbu/rbu1.test.

135
136
137
138
139
140
141

142
143
144
145
146
147
148
} {

  eval $create_vfs

  foreach {tn2 cmd} {
      1 run_rbu 
      2 step_rbu 3 step_rbu_uri 4 step_rbu_state

  } {
    foreach {tn schema} {
      1 {
        CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
      }
      2 { 
        CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);







>







135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
} {

  eval $create_vfs

  foreach {tn2 cmd} {
      1 run_rbu 
      2 step_rbu 3 step_rbu_uri 4 step_rbu_state
      5 step_rbu_legacy
  } {
    foreach {tn schema} {
      1 {
        CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
      }
      2 { 
        CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);

Changes to ext/rbu/rbu_common.tcl.

65
66
67
68
69
70
71
















72
73
74
75
76
77
78
    set rc [rbu step]
    check_poststep_state $rc $target $state
    rbu close
    if {$rc != "SQLITE_OK"} break
  }
  set rc
}

















proc do_rbu_vacuum_test {tn step} {
  forcedelete state.db
  uplevel [list do_test $tn.1 {
    if {$step==0} { sqlite3rbu_vacuum rbu test.db state.db }
    while 1 {
      if {$step==1} { sqlite3rbu_vacuum rbu test.db state.db }







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    set rc [rbu step]
    check_poststep_state $rc $target $state
    rbu close
    if {$rc != "SQLITE_OK"} break
  }
  set rc
}

proc step_rbu_legacy {target rbu} {
  while 1 {
    sqlite3rbu rbu $target $rbu
    set state [rbu state]
    check_prestep_state $target $state
    set rc [rbu step]
    check_poststep_state $rc $target $state
    rbu close
    if {$rc != "SQLITE_OK"} break
    sqlite3 tmpdb $rbu
    tmpdb eval { DELETE FROM rbu_state WHERE k==10 }
    tmpdb close
  }
  set rc
}

proc do_rbu_vacuum_test {tn step} {
  forcedelete state.db
  uplevel [list do_test $tn.1 {
    if {$step==0} { sqlite3rbu_vacuum rbu test.db state.db }
    while 1 {
      if {$step==1} { sqlite3rbu_vacuum rbu test.db state.db }

Added ext/rbu/rbusplit.test.































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# 2018 April 28
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
#

source [file join [file dirname [info script]] rbu_common.tcl]
set ::testprefix rbusplit

db close
sqlite3_shutdown
sqlite3_config_uri 1

autoinstall_test_functions

proc build_db {db} {
  $db eval {
    CREATE TABLE t1(a PRIMARY KEY, b, c);
    CREATE TABLE t2(a PRIMARY KEY, b, c);

    CREATE INDEX t1c ON t1(c);
  }
}

proc build_rbu {filename} {
  forcedelete $filename
  sqlite3 dbRbu $filename
  dbRbu eval {
    CREATE TABLE data0_t1(a, b, c, rbu_control);
    CREATE TABLE data1_t1(a, b, c, rbu_control);
    CREATE TABLE data2_t1(a, b, c, rbu_control);
    CREATE TABLE data3_t1(a, b, c, rbu_control);

    CREATE TABLE data_t2(a, b, c, rbu_control);

    INSERT INTO data0_t1 VALUES(1, 1, 1, 0);
    INSERT INTO data0_t1 VALUES(2, 2, 2, 0);
    INSERT INTO data0_t1 VALUES(3, 3, 3, 0);
    INSERT INTO data0_t1 VALUES(4, 4, 4, 0);
    INSERT INTO data1_t1 VALUES(5, 5, 5, 0);
    INSERT INTO data1_t1 VALUES(6, 6, 6, 0);
    INSERT INTO data1_t1 VALUES(7, 7, 7, 0);
    INSERT INTO data1_t1 VALUES(8, 8, 8, 0);
    INSERT INTO data3_t1 VALUES(9, 9, 9, 0);

    INSERT INTO data_t2 VALUES(1, 1, 1, 0);
    INSERT INTO data_t2 VALUES(2, 2, 2, 0);
    INSERT INTO data_t2 VALUES(3, 3, 3, 0);
    INSERT INTO data_t2 VALUES(4, 4, 4, 0);
    INSERT INTO data_t2 VALUES(5, 5, 5, 0);
    INSERT INTO data_t2 VALUES(6, 6, 6, 0);
    INSERT INTO data_t2 VALUES(7, 7, 7, 0);
    INSERT INTO data_t2 VALUES(8, 8, 8, 0);
    INSERT INTO data_t2 VALUES(9, 9, 9, 0);
  }
  
  dbRbu close
}

foreach {tn cmd} {
  1 run_rbu
  2 step_rbu
} {
  reset_db
  build_db db
  build_rbu testrbu.db

  do_test 1.$tn.1 {
    $cmd test.db testrbu.db
  } {SQLITE_DONE}
  do_execsql_test 1.$tn.1 {
    SELECT * FROM t1;
  } {
    1 1 1 2 2 2 3 3 3 4 4 4
    5 5 5 6 6 6 7 7 7 8 8 8
    9 9 9
  }
  do_execsql_test 1.$tn.2 {
    SELECT * FROM t2;
  } {
    1 1 1 2 2 2 3 3 3 4 4 4
    5 5 5 6 6 6 7 7 7 8 8 8
    9 9 9
  }
}

finish_test

Changes to ext/rbu/sqlite3rbu.c.

149
150
151
152
153
154
155




156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
...
201
202
203
204
205
206
207

208
209
210
211
212
213
214
....
2264
2265
2266
2267
2268
2269
2270

2271
2272
2273
2274
2275
2276
2277
....
2333
2334
2335
2336
2337
2338
2339




2340
2341
2342
2343
2344
2345
2346
....
3108
3109
3110
3111
3112
3113
3114
3115

3116
3117
3118
3119
3120
3121
3122
3123
3124
3125

3126
3127
3128
3129
3130
3131
3132
....
3374
3375
3376
3377
3378
3379
3380
3381

3382
3383
3384
3385
3386
3387
3388
**
** RBU_STATE_COOKIE:
**   Valid if STAGE==1. The current change-counter cookie value in the 
**   target db file.
**
** RBU_STATE_OALSZ:
**   Valid if STAGE==1. The size in bytes of the *-oal file.




*/
#define RBU_STATE_STAGE        1
#define RBU_STATE_TBL          2
#define RBU_STATE_IDX          3
#define RBU_STATE_ROW          4
#define RBU_STATE_PROGRESS     5
#define RBU_STATE_CKPT         6
#define RBU_STATE_COOKIE       7
#define RBU_STATE_OALSZ        8
#define RBU_STATE_PHASEONESTEP 9


#define RBU_STAGE_OAL         1
#define RBU_STAGE_MOVE        2
#define RBU_STAGE_CAPTURE     3
#define RBU_STAGE_CKPT        4
#define RBU_STAGE_DONE        5

................................................................................

/*
** A structure to store values read from the rbu_state table in memory.
*/
struct RbuState {
  int eStage;
  char *zTbl;

  char *zIdx;
  i64 iWalCksum;
  int nRow;
  i64 nProgress;
  u32 iCookie;
  i64 iOalSz;
  i64 nPhaseOneStep;
................................................................................

/*
** Free an RbuState object allocated by rbuLoadState().
*/
static void rbuFreeState(RbuState *p){
  if( p ){
    sqlite3_free(p->zTbl);

    sqlite3_free(p->zIdx);
    sqlite3_free(p);
  }
}

/*
** Allocate an RbuState object and load the contents of the rbu_state 
................................................................................
      case RBU_STATE_OALSZ:
        pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1);
        break;

      case RBU_STATE_PHASEONESTEP:
        pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
        break;





      default:
        rc = SQLITE_CORRUPT;
        break;
    }
  }
  rc2 = sqlite3_finalize(pStmt);
................................................................................
          "(%d, %Q), "
          "(%d, %Q), "
          "(%d, %d), "
          "(%d, %d), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %lld) ",

          p->zStateDb,
          RBU_STATE_STAGE, eStage,
          RBU_STATE_TBL, p->objiter.zTbl, 
          RBU_STATE_IDX, p->objiter.zIdx, 
          RBU_STATE_ROW, p->nStep, 
          RBU_STATE_PROGRESS, p->nProgress,
          RBU_STATE_CKPT, p->iWalCksum,
          RBU_STATE_COOKIE, (i64)pFd->iCookie,
          RBU_STATE_OALSZ, p->iOalSz,
          RBU_STATE_PHASEONESTEP, p->nPhaseOneStep

      )
    );
    assert( pInsert==0 || rc==SQLITE_OK );

    if( rc==SQLITE_OK ){
      sqlite3_step(pInsert);
      rc = sqlite3_finalize(pInsert);
................................................................................
  assert( p->rc==SQLITE_OK );
  if( pState->zTbl ){
    RbuObjIter *pIter = &p->objiter;
    int rc = SQLITE_OK;

    while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup 
       || rbuStrCompare(pIter->zIdx, pState->zIdx)
       || rbuStrCompare(pIter->zTbl, pState->zTbl) 

    )){
      rc = rbuObjIterNext(p, pIter);
    }

    if( rc==SQLITE_OK && !pIter->zTbl ){
      rc = SQLITE_ERROR;
      p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");







>
>
>
>










>







 







>







 







>







 







>
>
>
>







 







|
>









|
>







 







|
>







149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
...
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
....
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
....
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
....
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
....
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
**
** RBU_STATE_COOKIE:
**   Valid if STAGE==1. The current change-counter cookie value in the 
**   target db file.
**
** RBU_STATE_OALSZ:
**   Valid if STAGE==1. The size in bytes of the *-oal file.
**
** RBU_STATE_DATATBL:
**   Only valid if STAGE==1. The RBU database name of the table 
**   currently being read.
*/
#define RBU_STATE_STAGE        1
#define RBU_STATE_TBL          2
#define RBU_STATE_IDX          3
#define RBU_STATE_ROW          4
#define RBU_STATE_PROGRESS     5
#define RBU_STATE_CKPT         6
#define RBU_STATE_COOKIE       7
#define RBU_STATE_OALSZ        8
#define RBU_STATE_PHASEONESTEP 9
#define RBU_STATE_DATATBL     10

#define RBU_STAGE_OAL         1
#define RBU_STAGE_MOVE        2
#define RBU_STAGE_CAPTURE     3
#define RBU_STAGE_CKPT        4
#define RBU_STAGE_DONE        5

................................................................................

/*
** A structure to store values read from the rbu_state table in memory.
*/
struct RbuState {
  int eStage;
  char *zTbl;
  char *zDataTbl;
  char *zIdx;
  i64 iWalCksum;
  int nRow;
  i64 nProgress;
  u32 iCookie;
  i64 iOalSz;
  i64 nPhaseOneStep;
................................................................................

/*
** Free an RbuState object allocated by rbuLoadState().
*/
static void rbuFreeState(RbuState *p){
  if( p ){
    sqlite3_free(p->zTbl);
    sqlite3_free(p->zDataTbl);
    sqlite3_free(p->zIdx);
    sqlite3_free(p);
  }
}

/*
** Allocate an RbuState object and load the contents of the rbu_state 
................................................................................
      case RBU_STATE_OALSZ:
        pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1);
        break;

      case RBU_STATE_PHASEONESTEP:
        pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
        break;

      case RBU_STATE_DATATBL:
        pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
        break;

      default:
        rc = SQLITE_CORRUPT;
        break;
    }
  }
  rc2 = sqlite3_finalize(pStmt);
................................................................................
          "(%d, %Q), "
          "(%d, %Q), "
          "(%d, %d), "
          "(%d, %d), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %lld), "
          "(%d, %Q)  ",
          p->zStateDb,
          RBU_STATE_STAGE, eStage,
          RBU_STATE_TBL, p->objiter.zTbl, 
          RBU_STATE_IDX, p->objiter.zIdx, 
          RBU_STATE_ROW, p->nStep, 
          RBU_STATE_PROGRESS, p->nProgress,
          RBU_STATE_CKPT, p->iWalCksum,
          RBU_STATE_COOKIE, (i64)pFd->iCookie,
          RBU_STATE_OALSZ, p->iOalSz,
          RBU_STATE_PHASEONESTEP, p->nPhaseOneStep,
          RBU_STATE_DATATBL, p->objiter.zDataTbl
      )
    );
    assert( pInsert==0 || rc==SQLITE_OK );

    if( rc==SQLITE_OK ){
      sqlite3_step(pInsert);
      rc = sqlite3_finalize(pInsert);
................................................................................
  assert( p->rc==SQLITE_OK );
  if( pState->zTbl ){
    RbuObjIter *pIter = &p->objiter;
    int rc = SQLITE_OK;

    while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup 
       || rbuStrCompare(pIter->zIdx, pState->zIdx)
       || (pState->zDataTbl==0 && rbuStrCompare(pIter->zTbl, pState->zTbl))
       || (pState->zDataTbl && rbuStrCompare(pIter->zDataTbl, pState->zDataTbl))
    )){
      rc = rbuObjIterNext(p, pIter);
    }

    if( rc==SQLITE_OK && !pIter->zTbl ){
      rc = SQLITE_ERROR;
      p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");

Changes to ext/rtree/rtree.c.

3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503


3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  if( rc==SQLITE_OK ){
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }else{
      char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
      char *zTmp;
      int ii;
      for(ii=4; zSql && ii<argc; ii++){
        zTmp = zSql;
        zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
        sqlite3_free(zTmp);


      }
      if( zSql ){
        zTmp = zSql;
        zSql = sqlite3_mprintf("%s);", zTmp);
        sqlite3_free(zTmp);
      }
      if( !zSql ){
        rc = SQLITE_NOMEM;
      }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
        *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
      }
      sqlite3_free(zSql);







|
|

|
|
|
|
>
>
|
<
<
|
|







3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506


3507
3508
3509
3510
3511
3512
3513
3514
3515
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  if( rc==SQLITE_OK ){
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }else{
      sqlite3_str *pSql = sqlite3_str_new(db);
      char *zSql;
      int ii;
      if( pSql==0 ){
        zSql = 0;
      }else{
        sqlite3_str_appendf(pSql, "CREATE TABLE x(%s", argv[3]);
        for(ii=4; ii<argc; ii++){
          sqlite3_str_appendf(pSql, ", %s", argv[ii]);
        }


        sqlite3_str_appendf(pSql, ");");
        zSql = sqlite3_str_finish(pSql);
      }
      if( !zSql ){
        rc = SQLITE_NOMEM;
      }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
        *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
      }
      sqlite3_free(zSql);

Changes to ext/rtree/rtree6.test.

70
71
72
73
74
75
76

77
78
79
80
81
82
83

84
85
86
87
88
89
90

91
92
93
94
95
96
97

98
99
100
101
102
103

104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
do_test rtree6-1.5 {
  rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
} {C0}

do_eqp_test rtree6.2.1 {
  SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.2 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<10
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.3 {
  SELECT * FROM t1,t2 WHERE k=ii
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.4.1 {
  SELECT * FROM t1,t2 WHERE v=+ii and x1<10 and x2>10
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} 
  0 1 1 {SEARCH TABLE t2 USING AUTOMATIC COVERING INDEX (v=?)}
}
do_eqp_test rtree6.2.4.2 {
  SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} 
  0 1 1 {SEARCH TABLE t2 USING AUTOMATIC PARTIAL COVERING INDEX (v=?)}
}

do_eqp_test rtree6.2.5 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<v
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_execsql_test rtree6-3.1 {
  CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
  INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
  SELECT * FROM t3 WHERE 
    x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND 







>
|
|





>
|
|





>
|
|





>
|
|




>
|
|





>
|
|







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
do_test rtree6-1.5 {
  rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
} {C0}

do_eqp_test rtree6.2.1 {
  SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_eqp_test rtree6.2.2 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<10
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_eqp_test rtree6.2.3 {
  SELECT * FROM t1,t2 WHERE k=ii
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_eqp_test rtree6.2.4.1 {
  SELECT * FROM t1,t2 WHERE v=+ii and x1<10 and x2>10
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1
  `--SEARCH TABLE t2 USING AUTOMATIC COVERING INDEX (v=?)
}
do_eqp_test rtree6.2.4.2 {
  SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1
  `--SEARCH TABLE t2 USING AUTOMATIC PARTIAL COVERING INDEX (v=?)
}

do_eqp_test rtree6.2.5 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<v
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 2:
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_execsql_test rtree6-3.1 {
  CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
  INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
  SELECT * FROM t3 WHERE 
    x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND 

Changes to ext/rtree/rtreeC.test.

25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
..
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100

101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125

126

127
128
129

130
131
132
133

134
135
136
137
138
139
140
141
142
...
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
...
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
...
237
238
239
240
241
242
243

244
245
246
247
248
249
250
251
252
...
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312
313
314

315
316
317
318
319
320
321
322

323
324
325
326

327
328
329
330
331
332
333
334
335
336

337
338
339

340
341
342
343
344
345
346
347

348
349
350

351
352
353
354
  CREATE TABLE t(x, y);
}

do_eqp_test 1.1 {
  SELECT * FROM r_tree, t 
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {

  0 0 1 {SCAN TABLE t}
  0 1 0 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 1.2 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {

  0 0 0 {SCAN TABLE t}
  0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 1.3 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y
} {

  0 0 0 {SCAN TABLE t}
  0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 1.5 {
  SELECT * FROM t, r_tree
} {

  0 0 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:}
  0 1 0 {SCAN TABLE t} 
}

do_execsql_test 2.0 {
  INSERT INTO t VALUES(0, 0);
  INSERT INTO t VALUES(0, 1);
  INSERT INTO t VALUES(0, 2);
  INSERT INTO t VALUES(0, 3);
................................................................................
db close
sqlite3 db test.db

do_eqp_test 2.1 {
  SELECT * FROM r_tree, t 
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {

  0 0 1 {SCAN TABLE t}
  0 1 0 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 2.2 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {

  0 0 0 {SCAN TABLE t}
  0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 2.3 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y
} {

  0 0 0 {SCAN TABLE t}
  0 1 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0}
}

do_eqp_test 2.5 {
  SELECT * FROM t, r_tree
} {

  0 0 1 {SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:}
  0 1 0 {SCAN TABLE t} 
}

#-------------------------------------------------------------------------
# Test that the special CROSS JOIN handling works with rtree tables.
#
do_execsql_test 3.1 {
  CREATE TABLE t1(x);
  CREATE TABLE t2(y);
  CREATE VIRTUAL TABLE t3 USING rtree(z, x1,x2, y1,y2);
}

do_eqp_test 3.2.1 { SELECT * FROM t1 CROSS JOIN t2 } {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE t2}
}
do_eqp_test 3.2.2 { SELECT * FROM t2 CROSS JOIN t1 } {

  0 0 0 {SCAN TABLE t2} 0 1 1 {SCAN TABLE t1}

}

do_eqp_test 3.3.1 { SELECT * FROM t1 CROSS JOIN t3 } {

  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t3 VIRTUAL TABLE INDEX 2:} 
}
do_eqp_test 3.3.2 { SELECT * FROM t3 CROSS JOIN t1 } {

  0 0 0 {SCAN TABLE t3 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SCAN TABLE t1}
}

#--------------------------------------------------------------------
# Test that LEFT JOINs are not reordered if the right-hand-side is
# a virtual table.
#
reset_db
................................................................................

# First test a query with no ANALYZE data at all. The outer loop is
# real table "t1".
#
do_eqp_test 5.2 {
  SELECT * FROM t1, rt WHERE x==id;
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

# Now create enough ANALYZE data to tell SQLite that virtual table "rt"
# contains very few rows. This causes it to move "rt" to the outer loop.
#
do_execsql_test 5.3 {
  ANALYZE;
................................................................................
  DELETE FROM sqlite_stat1 WHERE tbl='t1';
}
db close
sqlite3 db test.db
do_eqp_test 5.4 {
  SELECT * FROM t1, rt WHERE x==id;
} {

  0 0 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:} 
  0 1 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (x=?)}
}

# Delete the ANALYZE data. "t1" should be the outer loop again.
#
do_execsql_test 5.5 { DROP TABLE sqlite_stat1; }
db close
sqlite3 db test.db
do_eqp_test 5.6 {
  SELECT * FROM t1, rt WHERE x==id;
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

# This time create and attach a database that contains ANALYZE data for
# tables of the same names as those used internally by virtual table
# "rt". Check that the rtree module is not fooled into using this data.
# Table "t1" should remain the outer loop.
#
................................................................................
  db close
  sqlite3 db test.db
  execsql { ATTACH 'test.db2' AS aux; }
} {}
do_eqp_test 5.8 {
  SELECT * FROM t1, rt WHERE x==id;
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 1:}
}

#--------------------------------------------------------------------
# Test that having a second connection drop the sqlite_stat1 table
# before it is required by rtreeConnect() does not cause problems.
#
ifcapable rtree {
................................................................................
  INSERT INTO rt VALUES(1, 2, 7, 12, 14);      -- Not a hit
  INSERT INTO rt VALUES(2, 2, 7, 8, 12);       -- A hit!
  INSERT INTO rt VALUES(3, 7, 11, 8, 12);      -- Not a hit!
  INSERT INTO rt VALUES(4, 5, 5, 10, 10);      -- A hit!

}

proc do_eqp_execsql_test {tn sql res} {
  set query "EXPLAIN QUERY PLAN $sql ; $sql "
  uplevel [list do_execsql_test $tn $query $res]
}

do_eqp_execsql_test 7.1 {
  SELECT id FROM xdir, rt, ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {

  0 0 0 {SCAN TABLE xdir} 
  0 1 2 {SCAN TABLE ydir} 
  0 2 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:B2D3B0D1}

  2 4
}

do_eqp_execsql_test 7.2 {
  SELECT * FROM xdir, rt LEFT JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {

  0 0 0 {SCAN TABLE xdir} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1}
  0 2 2 {SCAN TABLE ydir} 


  5 1 2 7 12 14 {}
  5 2 2 7  8 12 10
  5 4 5 5 10 10 10
}

do_eqp_execsql_test 7.3 {
  SELECT id FROM xdir, rt CROSS JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {

  0 0 0 {SCAN TABLE xdir} 
  0 1 1 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1}
  0 2 2 {SCAN TABLE ydir} 

  2 4
}

do_eqp_execsql_test 7.4 {
  SELECT id FROM rt, xdir CROSS JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {

  0 0 1 {SCAN TABLE xdir} 
  0 1 0 {SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1}
  0 2 2 {SCAN TABLE ydir} 

  2 4
}

finish_test







>
|
|






>
|
|






>
|
|





>
|
|







 







>
|
|






>
|
|






>
|
|





>
|
|












>
|
|


>
|
>



>
|
|


>
|
|







 







>
|
|







 







>
|
|










>
|
|







 







>
|
|







 







|
|
|







>
|
|
|
>








>
|
|
|
<
>










>
|
|
|
>








>
|
|
|
>




25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
..
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
...
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
...
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
...
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
...
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  CREATE TABLE t(x, y);
}

do_eqp_test 1.1 {
  SELECT * FROM r_tree, t 
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 1.2 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 1.3 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 1.5 {
  SELECT * FROM t, r_tree
} {
  QUERY PLAN
  |--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:
  `--SCAN TABLE t
}

do_execsql_test 2.0 {
  INSERT INTO t VALUES(0, 0);
  INSERT INTO t VALUES(0, 1);
  INSERT INTO t VALUES(0, 2);
  INSERT INTO t VALUES(0, 3);
................................................................................
db close
sqlite3 db test.db

do_eqp_test 2.1 {
  SELECT * FROM r_tree, t 
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 2.2 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND t.x<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 2.3 {
  SELECT * FROM t, r_tree
  WHERE t.x>=min_x AND t.x<=max_x AND t.y>=min_y AND ?<=max_y
} {
  QUERY PLAN
  |--SCAN TABLE t
  `--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:D3B2D1B0
}

do_eqp_test 2.5 {
  SELECT * FROM t, r_tree
} {
  QUERY PLAN
  |--SCAN TABLE r_tree VIRTUAL TABLE INDEX 2:
  `--SCAN TABLE t
}

#-------------------------------------------------------------------------
# Test that the special CROSS JOIN handling works with rtree tables.
#
do_execsql_test 3.1 {
  CREATE TABLE t1(x);
  CREATE TABLE t2(y);
  CREATE VIRTUAL TABLE t3 USING rtree(z, x1,x2, y1,y2);
}

do_eqp_test 3.2.1 { SELECT * FROM t1 CROSS JOIN t2 } {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE t2
}
do_eqp_test 3.2.2 { SELECT * FROM t2 CROSS JOIN t1 } {
  QUERY PLAN
  |--SCAN TABLE t2
  `--SCAN TABLE t1
}

do_eqp_test 3.3.1 { SELECT * FROM t1 CROSS JOIN t3 } {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE t3 VIRTUAL TABLE INDEX 2:
}
do_eqp_test 3.3.2 { SELECT * FROM t3 CROSS JOIN t1 } {
  QUERY PLAN
  |--SCAN TABLE t3 VIRTUAL TABLE INDEX 2:
  `--SCAN TABLE t1
}

#--------------------------------------------------------------------
# Test that LEFT JOINs are not reordered if the right-hand-side is
# a virtual table.
#
reset_db
................................................................................

# First test a query with no ANALYZE data at all. The outer loop is
# real table "t1".
#
do_eqp_test 5.2 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE rt VIRTUAL TABLE INDEX 1:
}

# Now create enough ANALYZE data to tell SQLite that virtual table "rt"
# contains very few rows. This causes it to move "rt" to the outer loop.
#
do_execsql_test 5.3 {
  ANALYZE;
................................................................................
  DELETE FROM sqlite_stat1 WHERE tbl='t1';
}
db close
sqlite3 db test.db
do_eqp_test 5.4 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  QUERY PLAN
  |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:
  `--SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (x=?)
}

# Delete the ANALYZE data. "t1" should be the outer loop again.
#
do_execsql_test 5.5 { DROP TABLE sqlite_stat1; }
db close
sqlite3 db test.db
do_eqp_test 5.6 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE rt VIRTUAL TABLE INDEX 1:
}

# This time create and attach a database that contains ANALYZE data for
# tables of the same names as those used internally by virtual table
# "rt". Check that the rtree module is not fooled into using this data.
# Table "t1" should remain the outer loop.
#
................................................................................
  db close
  sqlite3 db test.db
  execsql { ATTACH 'test.db2' AS aux; }
} {}
do_eqp_test 5.8 {
  SELECT * FROM t1, rt WHERE x==id;
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCAN TABLE rt VIRTUAL TABLE INDEX 1:
}

#--------------------------------------------------------------------
# Test that having a second connection drop the sqlite_stat1 table
# before it is required by rtreeConnect() does not cause problems.
#
ifcapable rtree {
................................................................................
  INSERT INTO rt VALUES(1, 2, 7, 12, 14);      -- Not a hit
  INSERT INTO rt VALUES(2, 2, 7, 8, 12);       -- A hit!
  INSERT INTO rt VALUES(3, 7, 11, 8, 12);      -- Not a hit!
  INSERT INTO rt VALUES(4, 5, 5, 10, 10);      -- A hit!

}

proc do_eqp_execsql_test {tn sql res1 res2} {
  do_eqp_test $tn.1 $sql $res1
  do_execsql_test $tn.2 $sql $res2
}

do_eqp_execsql_test 7.1 {
  SELECT id FROM xdir, rt, ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {
  QUERY PLAN
  |--SCAN TABLE xdir
  |--SCAN TABLE ydir
  `--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B2D3B0D1
} {
  2 4
}

do_eqp_execsql_test 7.2 {
  SELECT * FROM xdir, rt LEFT JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {
  QUERY PLAN
  |--SCAN TABLE xdir
  |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1
  `--SCAN TABLE ydir

} {
  5 1 2 7 12 14 {}
  5 2 2 7  8 12 10
  5 4 5 5 10 10 10
}

do_eqp_execsql_test 7.3 {
  SELECT id FROM xdir, rt CROSS JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {
  QUERY PLAN
  |--SCAN TABLE xdir
  |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1
  `--SCAN TABLE ydir
} {
  2 4
}

do_eqp_execsql_test 7.4 {
  SELECT id FROM rt, xdir CROSS JOIN ydir 
  ON (y1 BETWEEN ymin AND ymax)
  WHERE (x1 BETWEEN xmin AND xmax);
} {
  QUERY PLAN
  |--SCAN TABLE xdir
  |--SCAN TABLE rt VIRTUAL TABLE INDEX 2:B0D1
  `--SCAN TABLE ydir
} {
  2 4
}

finish_test

Changes to main.mk.

498
499
500
501
502
503
504
505

506
507
508
509
510
511
512
# Databases containing fuzzer test cases
#
FUZZDATA = \
  $(TOP)/test/fuzzdata1.db \
  $(TOP)/test/fuzzdata2.db \
  $(TOP)/test/fuzzdata3.db \
  $(TOP)/test/fuzzdata4.db \
  $(TOP)/test/fuzzdata5.db


# Standard options to testfixture
#
TESTOPTS = --verbose=file --output=test-out.txt

# Extra compiler options for various shell tools
#







|
>







498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Databases containing fuzzer test cases
#
FUZZDATA = \
  $(TOP)/test/fuzzdata1.db \
  $(TOP)/test/fuzzdata2.db \
  $(TOP)/test/fuzzdata3.db \
  $(TOP)/test/fuzzdata4.db \
  $(TOP)/test/fuzzdata5.db \
  $(TOP)/test/fuzzdata6.db

# Standard options to testfixture
#
TESTOPTS = --verbose=file --output=test-out.txt

# Extra compiler options for various shell tools
#

Changes to src/btree.c.

3218
3219
3220
3221
3222
3223
3224




3225
3226
3227
3228
3229
3230
3231
....
3249
3250
3251
3252
3253
3254
3255



3256
3257
3258
3259
3260
3261
3262
....
6683
6684
6685
6686
6687
6688
6689
6690


6691
6692
6693
6694
6695
6696
6697
....
8610
8611
8612
8613
8614
8615
8616
























































































8617
8618
8619
8620
8621
8622
8623
....
8700
8701
8702
8703
8704
8705
8706
8707


8708

8709


8710
8711
8712
8713






8714
8715










8716




8717
8718
8719













8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735

















8736
8737
8738
8739
8740
8741
8742
....
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
.....
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
          pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
    }
  }
}
#else
# define setDefaultSyncFlag(pBt,safety_level)
#endif





/*
** Get a reference to pPage1 of the database file.  This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success.  If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
................................................................................
  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
  if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
    nPage = nPageFile;



  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
................................................................................
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->xParseCell(pPage, pCell, pInfo);
  if( pInfo->nLocal==pInfo->nPayload ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){


    /* Cell extends past end of page */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  ovflPgno = get4byte(pCell + pInfo->nSize - 4);
  pBt = pPage->pBt;
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
................................................................................

  if( pFree ){
    sqlite3PageFree(pFree);
  }
  return rc;
}


























































































/*
** Insert a new record into the BTree.  The content of the new record
** is described by the pX object.  The pCur cursor is used only to
** define what table the record should be inserted into, and is left
** pointing at a random location.
**
................................................................................
  if( pCur->pKeyInfo==0 ){
    assert( pX->pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);

    /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 
    ** to a row with the same key as the new entry being inserted.  */


    assert( (flags & BTREE_SAVEPOSITION)==0 || 

            ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );



    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */






    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
      loc = 0;










    }else if( loc==0 ){




      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
      if( rc ) return rc;
    }













  }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
    if( pX->nMem ){
      UnpackedRecord r;
      r.pKeyInfo = pCur->pKeyInfo;
      r.aMem = pX->aMem;
      r.nField = pX->nMem;
      r.default_rc = 0;
      r.errCode = 0;
      r.r1 = 0;
      r.r2 = 0;
      r.eqSeen = 0;
      rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
    }else{
      rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
    }
    if( rc ) return rc;

















  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->pPage;
  assert( pPage->intKey || pX->nKey>=0 );
  assert( pPage->leaf || !pPage->intKey );

................................................................................
){
  va_list ap;
  if( !pCheck->mxErr ) return;
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( pCheck->zPfx ){
    sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
  }
  sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

................................................................................

  /* Clean  up and report errors.
  */
integrity_ck_cleanup:
  sqlite3PageFree(sCheck.heap);
  sqlite3_free(sCheck.aPgRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    sCheck.nErr++;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
  /* Make sure this analysis did not leave any unref() pages. */
  assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
  sqlite3BtreeLeave(p);
  return sqlite3StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */








>
>
>
>







 







>
>
>







 







|
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
>
>
|
>
|
>
>
|
<
<
<
>
>
>
>
>
>

<
>
>
>
>
>
>
>
>
>
>

>
>
>
>



>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|


|

|

|







 







|



|







3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
....
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
....
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
....
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
....
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812



8813
8814
8815
8816
8817
8818
8819

8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
....
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
.....
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
          pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
    }
  }
}
#else
# define setDefaultSyncFlag(pBt,safety_level)
#endif

/* Forward declaration */
static int newDatabase(BtShared*);


/*
** Get a reference to pPage1 of the database file.  This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success.  If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
................................................................................
  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
  if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
    nPage = nPageFile;
  }
  if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
    nPage = 0;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
................................................................................
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->xParseCell(pPage, pCell, pInfo);
  if( pInfo->nLocal==pInfo->nPayload ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  testcase( pCell + pInfo->nSize == pPage->aDataEnd );
  testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
  if( pCell + pInfo->nSize > pPage->aDataEnd ){
    /* Cell extends past end of page */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  ovflPgno = get4byte(pCell + pInfo->nSize - 4);
  pBt = pPage->pBt;
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
................................................................................

  if( pFree ){
    sqlite3PageFree(pFree);
  }
  return rc;
}

/* Overwrite content from pX into pDest.  Only do the write if the
** content is different from what is already there.
*/
static int btreeOverwriteContent(
  MemPage *pPage,           /* MemPage on which writing will occur */
  u8 *pDest,                /* Pointer to the place to start writing */
  const BtreePayload *pX,   /* Source of data to write */
  int iOffset,              /* Offset of first byte to write */
  int iAmt                  /* Number of bytes to be written */
){
  int nData = pX->nData - iOffset;
  if( nData<=0 ){
    /* Overwritting with zeros */
    int i;
    for(i=0; i<iAmt && pDest[i]==0; i++){}
    if( i<iAmt ){
      int rc = sqlite3PagerWrite(pPage->pDbPage);
      if( rc ) return rc;
      memset(pDest + i, 0, iAmt - i);
    }
  }else{
    if( nData<iAmt ){
      /* Mixed read data and zeros at the end.  Make a recursive call
      ** to write the zeros then fall through to write the real data */
      int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
                                 iAmt-nData);
      if( rc ) return rc;
      iAmt = nData;
    }
    if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
      int rc = sqlite3PagerWrite(pPage->pDbPage);
      if( rc ) return rc;
      memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt);
    }
  }
  return SQLITE_OK;
}

/*
** Overwrite the cell that cursor pCur is pointing to with fresh content
** contained in pX.
*/
static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
  int iOffset;                        /* Next byte of pX->pData to write */
  int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
  int rc;                             /* Return code */
  MemPage *pPage = pCur->pPage;       /* Page being written */
  BtShared *pBt;                      /* Btree */
  Pgno ovflPgno;                      /* Next overflow page to write */
  u32 ovflPageSize;                   /* Size to write on overflow page */

  if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
    return SQLITE_CORRUPT_BKPT;
  }
  /* Overwrite the local portion first */
  rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
                             0, pCur->info.nLocal);
  if( rc ) return rc;
  if( pCur->info.nLocal==nTotal ) return SQLITE_OK;

  /* Now overwrite the overflow pages */
  iOffset = pCur->info.nLocal;
  assert( nTotal>=0 );
  assert( iOffset>=0 );
  ovflPgno = get4byte(pCur->info.pPayload + iOffset);
  pBt = pPage->pBt;
  ovflPageSize = pBt->usableSize - 4;
  do{
    rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
    if( rc ) return rc;
    if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      if( iOffset+ovflPageSize<(u32)nTotal ){
        ovflPgno = get4byte(pPage->aData);
      }else{
        ovflPageSize = nTotal - iOffset;
      }
      rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
                                 iOffset, ovflPageSize);
    }
    sqlite3PagerUnref(pPage->pDbPage);
    if( rc ) return rc;
    iOffset += ovflPageSize;
  }while( iOffset<nTotal );
  return SQLITE_OK;    
}


/*
** Insert a new record into the BTree.  The content of the new record
** is described by the pX object.  The pCur cursor is used only to
** define what table the record should be inserted into, and is left
** pointing at a random location.
**
................................................................................
  if( pCur->pKeyInfo==0 ){
    assert( pX->pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);

    /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 
    ** to a row with the same key as the new entry being inserted.
    */
#ifdef SQLITE_DEBUG
    if( flags & BTREE_SAVEPOSITION ){
      assert( pCur->curFlags & BTCF_ValidNKey );
      assert( pX->nKey==pCur->info.nKey );
      assert( pCur->info.nSize!=0 );
      assert( loc==0 );
    }



#endif

    /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
    ** that the cursor is not pointing to a row to be overwritten.
    ** So do a complete check.
    */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){

      /* The cursor is pointing to the entry that is to be
      ** overwritten */
      assert( pX->nData>=0 && pX->nZero>=0 );
      if( pCur->info.nSize!=0
       && pCur->info.nPayload==(u32)pX->nData+pX->nZero
      ){
        /* New entry is the same size as the old.  Do an overwrite */
        return btreeOverwriteCell(pCur, pX);
      }
      assert( loc==0 );
    }else if( loc==0 ){
      /* The cursor is *not* pointing to the cell to be overwritten, nor
      ** to an adjacent cell.  Move the cursor so that it is pointing either
      ** to the cell to be overwritten or an adjacent cell.
      */
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
      if( rc ) return rc;
    }
  }else{
    /* This is an index or a WITHOUT ROWID table */

    /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 
    ** to a row with the same key as the new entry being inserted.
    */
    assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );

    /* If the cursor is not already pointing either to the cell to be
    ** overwritten, or if a new cell is being inserted, if the cursor is
    ** not pointing to an immediately adjacent cell, then move the cursor
    ** so that it does.
    */
    if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
      if( pX->nMem ){
        UnpackedRecord r;
        r.pKeyInfo = pCur->pKeyInfo;
        r.aMem = pX->aMem;
        r.nField = pX->nMem;
        r.default_rc = 0;
        r.errCode = 0;
        r.r1 = 0;
        r.r2 = 0;
        r.eqSeen = 0;
        rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
      }else{
        rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
      }
      if( rc ) return rc;
    }

    /* If the cursor is currently pointing to an entry to be overwritten
    ** and the new content is the same as as the old, then use the
    ** overwrite optimization.
    */
    if( loc==0 ){
      getCellInfo(pCur);
      if( pCur->info.nKey==pX->nKey ){
        BtreePayload x2;
        x2.pData = pX->pKey;
        x2.nData = pX->nKey;
        x2.nZero = 0;
        return btreeOverwriteCell(pCur, &x2);
      }
    }

  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->pPage;
  assert( pPage->intKey || pX->nKey>=0 );
  assert( pPage->leaf || !pPage->intKey );

................................................................................
){
  va_list ap;
  if( !pCheck->mxErr ) return;
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3_str_append(&pCheck->errMsg, "\n", 1);
  }
  if( pCheck->zPfx ){
    sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
  }
  sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==SQLITE_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

................................................................................

  /* Clean  up and report errors.
  */
integrity_ck_cleanup:
  sqlite3PageFree(sCheck.heap);
  sqlite3_free(sCheck.aPgRef);
  if( sCheck.mallocFailed ){
    sqlite3_str_reset(&sCheck.errMsg);
    sCheck.nErr++;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
  /* Make sure this analysis did not leave any unref() pages. */
  assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
  sqlite3BtreeLeave(p);
  return sqlite3StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

Changes to src/btree.h.

255
256
257
258
259
260
261
262
263


264
265
266
267
268













269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#define BTREE_AUXDELETE    0x04  /* not the primary delete operation */
#define BTREE_APPEND       0x08  /* Insert is likely an append */

/* An instance of the BtreePayload object describes the content of a single
** entry in either an index or table btree.
**
** Index btrees (used for indexes and also WITHOUT ROWID tables) contain
** an arbitrary key and no data.  These btrees have pKey,nKey set to their
** key and pData,nData,nZero set to zero.


**
** Table btrees (used for rowid tables) contain an integer rowid used as
** the key and passed in the nKey field.  The pKey field is zero.  
** pData,nData hold the content of the new entry.  nZero extra zero bytes
** are appended to the end of the content when constructing the entry.













**
** This object is used to pass information into sqlite3BtreeInsert().  The
** same information used to be passed as five separate parameters.  But placing
** the information into this object helps to keep the interface more 
** organized and understandable, and it also helps the resulting code to
** run a little faster by using fewer registers for parameter passing.
*/
struct BtreePayload {
  const void *pKey;       /* Key content for indexes.  NULL for tables */
  sqlite3_int64 nKey;     /* Size of pKey for indexes.  PRIMARY KEY for tabs */
  const void *pData;      /* Data for tables.  NULL for indexes */
  sqlite3_value *aMem;    /* First of nMem value in the unpacked pKey */
  u16 nMem;               /* Number of aMem[] value.  Might be zero */
  int nData;              /* Size of pData.  0 if none. */
  int nZero;              /* Extra zero data appended after pData,nData */
};

int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,







|
|
>
>





>
>
>
>
>
>
>
>
>
>
>
>
>










|







255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#define BTREE_AUXDELETE    0x04  /* not the primary delete operation */
#define BTREE_APPEND       0x08  /* Insert is likely an append */

/* An instance of the BtreePayload object describes the content of a single
** entry in either an index or table btree.
**
** Index btrees (used for indexes and also WITHOUT ROWID tables) contain
** an arbitrary key and no data.  These btrees have pKey,nKey set to the
** key and the pData,nData,nZero fields are uninitialized.  The aMem,nMem
** fields give an array of Mem objects that are a decomposition of the key.
** The nMem field might be zero, indicating that no decomposition is available.
**
** Table btrees (used for rowid tables) contain an integer rowid used as
** the key and passed in the nKey field.  The pKey field is zero.  
** pData,nData hold the content of the new entry.  nZero extra zero bytes
** are appended to the end of the content when constructing the entry.
** The aMem,nMem fields are uninitialized for table btrees.
**
** Field usage summary:
**
**               Table BTrees                   Index Btrees
**
**   pKey        always NULL                    encoded key
**   nKey        the ROWID                      length of pKey
**   pData       data                           not used
**   aMem        not used                       decomposed key value
**   nMem        not used                       entries in aMem
**   nData       length of pData                not used
**   nZero       extra zeros after pData        not used
**
** This object is used to pass information into sqlite3BtreeInsert().  The
** same information used to be passed as five separate parameters.  But placing
** the information into this object helps to keep the interface more 
** organized and understandable, and it also helps the resulting code to
** run a little faster by using fewer registers for parameter passing.
*/
struct BtreePayload {
  const void *pKey;       /* Key content for indexes.  NULL for tables */
  sqlite3_int64 nKey;     /* Size of pKey for indexes.  PRIMARY KEY for tabs */
  const void *pData;      /* Data for tables. */
  sqlite3_value *aMem;    /* First of nMem value in the unpacked pKey */
  u16 nMem;               /* Number of aMem[] value.  Might be zero */
  int nData;              /* Size of pData.  0 if none. */
  int nZero;              /* Extra zero data appended after pData,nData */
};

int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,

Changes to src/build.c.

3022
3023
3024
3025
3026
3027
3028



3029

3030
3031
3032
3033
3034
3035
3036
....
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
  assert( pTab!=0 );
  assert( pParse->nErr==0 );
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 
       && db->init.busy==0
#if SQLITE_USER_AUTHENTICATION
       && sqlite3UserAuthTable(pTab->zName)==0
#endif



       && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){

    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "views may not be indexed");
    goto exit_create_index;
................................................................................
  char *zErr;
  int j;
  StrAccum errMsg;
  Table *pTab = pIdx->pTable;

  sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
  if( pIdx->aColExpr ){
    sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
  }else{
    for(j=0; j<pIdx->nKeyCol; j++){
      char *zCol;
      assert( pIdx->aiColumn[j]>=0 );
      zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
      if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
      sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
      sqlite3StrAccumAppend(&errMsg, ".", 1);
      sqlite3StrAccumAppendAll(&errMsg, zCol);
    }
  }
  zErr = sqlite3StrAccumFinish(&errMsg);
  sqlite3HaltConstraint(pParse, 
    IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 
                            : SQLITE_CONSTRAINT_UNIQUE,
    onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);







>
>
>
|
>







 







|





|
|
|
|







3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
....
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
  assert( pTab!=0 );
  assert( pParse->nErr==0 );
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 
       && db->init.busy==0
#if SQLITE_USER_AUTHENTICATION
       && sqlite3UserAuthTable(pTab->zName)==0
#endif
#ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX
       && sqlite3StrICmp(&pTab->zName[7],"master")!=0
#endif
       && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0
 ){
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "views may not be indexed");
    goto exit_create_index;
................................................................................
  char *zErr;
  int j;
  StrAccum errMsg;
  Table *pTab = pIdx->pTable;

  sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
  if( pIdx->aColExpr ){
    sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
  }else{
    for(j=0; j<pIdx->nKeyCol; j++){
      char *zCol;
      assert( pIdx->aiColumn[j]>=0 );
      zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
      if( j ) sqlite3_str_append(&errMsg, ", ", 2);
      sqlite3_str_appendall(&errMsg, pTab->zName);
      sqlite3_str_append(&errMsg, ".", 1);
      sqlite3_str_appendall(&errMsg, zCol);
    }
  }
  zErr = sqlite3StrAccumFinish(&errMsg);
  sqlite3HaltConstraint(pParse, 
    IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 
                            : SQLITE_CONSTRAINT_UNIQUE,
    onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);

Changes to src/expr.c.

2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
....
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
....
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
....
3547
3548
3549
3550
3551
3552
3553

3554
3555
3556
3557
3558
3559
3560
....
4007
4008
4009
4010
4011
4012
4013
4014

4015
4016
4017
4018
4019
4020
4021
            if( aiMap ) aiMap[i] = j;
          }
  
          assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
          if( colUsed==(MASKBIT(nExpr)-1) ){
            /* If we reach this point, that means the index pIdx is usable */
            int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
#ifndef SQLITE_OMIT_EXPLAIN
            sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
              sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
              P4_DYNAMIC);
#endif
            sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
            sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
            VdbeComment((v, "%s", pIdx->zName));
            assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
            eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
  
            if( prRhsHasNull ){
................................................................................
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        Select *pSelect = pExpr->x.pSelect;
        ExprList *pEList = pSelect->pEList;

#ifndef SQLITE_OMIT_EXPLAIN
        if( pParse->explain==2 ){
          char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %sLIST SUBQUERY %d",
            jmpIfDynamic>=0?"":"CORRELATED ",
            pParse->iNextSelectId
          );
          sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg,
                            P4_DYNAMIC);
        }
#endif

        assert( !isRowid );
        /* If the LHS and RHS of the IN operator do not match, that
        ** error will have been caught long before we reach this point. */
        if( ALWAYS(pEList->nExpr==nVal) ){
          SelectDest dest;
          int i;
          sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
................................................................................
      Expr *pLimit;                         /* New limit expression */

      testcase( pExpr->op==TK_EXISTS );
      testcase( pExpr->op==TK_SELECT );
      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
      assert( ExprHasProperty(pExpr, EP_xIsSelect) );

#ifndef SQLITE_OMIT_EXPLAIN
      if( pParse->explain==2 ){
        char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %sSCALAR SUBQUERY %d",
            jmpIfDynamic>=0?"":"CORRELATED ",
            pParse->iNextSelectId
        );
        sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg,
                          P4_DYNAMIC);
      }
#endif

      pSel = pExpr->x.pSelect;
      nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
      sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
      pParse->nMem += nReg;
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        dest.iSdst = dest.iSDParm;
        dest.nSdst = nReg;
................................................................................

  assert( target>0 && target<=pParse->nMem );
  if( v==0 ){
    assert( pParse->db->mallocFailed );
    return 0;
  }


  if( pExpr==0 ){
    op = TK_NULL;
  }else{
    op = pExpr->op;
  }
  switch( op ){
    case TK_AGG_COLUMN: {
................................................................................
    case TK_BETWEEN: {
      exprCodeBetween(pParse, pExpr, target, 0, 0);
      return target;
    }
    case TK_SPAN:
    case TK_COLLATE: 
    case TK_UPLUS: {
      return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);

    }

    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn







|
<
|
<
<







 







|
<
<
|
<
|
<
<
<
<
<







 







|
|
<
|
<
<
<
<
<
<
<
<







 







>







 







|
>







2406
2407
2408
2409
2410
2411
2412
2413

2414


2415
2416
2417
2418
2419
2420
2421
....
2639
2640
2641
2642
2643
2644
2645
2646


2647

2648





2649
2650
2651
2652
2653
2654
2655
....
2762
2763
2764
2765
2766
2767
2768
2769
2770

2771








2772
2773
2774
2775
2776
2777
2778
....
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
....
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
            if( aiMap ) aiMap[i] = j;
          }
  
          assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
          if( colUsed==(MASKBIT(nExpr)-1) ){
            /* If we reach this point, that means the index pIdx is usable */
            int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
            ExplainQueryPlan((pParse, 0,

                              "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));


            sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
            sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
            VdbeComment((v, "%s", pIdx->zName));
            assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
            eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
  
            if( prRhsHasNull ){
................................................................................
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        Select *pSelect = pExpr->x.pSelect;
        ExprList *pEList = pSelect->pEList;

        ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY",


            jmpIfDynamic>=0?"":"CORRELATED "

        ));





        assert( !isRowid );
        /* If the LHS and RHS of the IN operator do not match, that
        ** error will have been caught long before we reach this point. */
        if( ALWAYS(pEList->nExpr==nVal) ){
          SelectDest dest;
          int i;
          sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
................................................................................
      Expr *pLimit;                         /* New limit expression */

      testcase( pExpr->op==TK_EXISTS );
      testcase( pExpr->op==TK_SELECT );
      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
      assert( ExprHasProperty(pExpr, EP_xIsSelect) );

      pSel = pExpr->x.pSelect;
      ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY",

            jmpIfDynamic>=0?"":"CORRELATED "));








      nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
      sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
      pParse->nMem += nReg;
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        dest.iSdst = dest.iSDParm;
        dest.nSdst = nReg;
................................................................................

  assert( target>0 && target<=pParse->nMem );
  if( v==0 ){
    assert( pParse->db->mallocFailed );
    return 0;
  }

expr_code_doover:
  if( pExpr==0 ){
    op = TK_NULL;
  }else{
    op = pExpr->op;
  }
  switch( op ){
    case TK_AGG_COLUMN: {
................................................................................
    case TK_BETWEEN: {
      exprCodeBetween(pParse, pExpr, target, 0, 0);
      return target;
    }
    case TK_SPAN:
    case TK_COLLATE: 
    case TK_UPLUS: {
      pExpr = pExpr->pLeft;
      goto expr_code_doover;
    }

    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn

Changes to src/func.c.

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
....
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

  if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
    x.nArg = argc-1;
    x.nUsed = 0;
    x.apArg = argv+1;
    sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
    str.printfFlags = SQLITE_PRINTF_SQLFUNC;
    sqlite3XPrintf(&str, zFormat, &x);
    n = str.nChar;
    sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
                        SQLITE_DYNAMIC);
  }
}

/*
................................................................................
      if( argc==2 ){
        zSep = (char*)sqlite3_value_text(argv[1]);
        nSep = sqlite3_value_bytes(argv[1]);
      }else{
        zSep = ",";
        nSep = 1;
      }
      if( zSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep);
    }
    zVal = (char*)sqlite3_value_text(argv[0]);
    nVal = sqlite3_value_bytes(argv[0]);
    if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal);
  }
}
static void groupConcatFinalize(sqlite3_context *context){
  StrAccum *pAccum;
  pAccum = sqlite3_aggregate_context(context, 0);
  if( pAccum ){
    if( pAccum->accError==STRACCUM_TOOBIG ){
      sqlite3_result_error_toobig(context);
    }else if( pAccum->accError==STRACCUM_NOMEM ){
      sqlite3_result_error_nomem(context);
    }else{    
      sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
                          sqlite3_free);
    }
  }
}







|







 







|



|






|

|







247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
....
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

  if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
    x.nArg = argc-1;
    x.nUsed = 0;
    x.apArg = argv+1;
    sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
    str.printfFlags = SQLITE_PRINTF_SQLFUNC;
    sqlite3_str_appendf(&str, zFormat, &x);
    n = str.nChar;
    sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
                        SQLITE_DYNAMIC);
  }
}

/*
................................................................................
      if( argc==2 ){
        zSep = (char*)sqlite3_value_text(argv[1]);
        nSep = sqlite3_value_bytes(argv[1]);
      }else{
        zSep = ",";
        nSep = 1;
      }
      if( zSep ) sqlite3_str_append(pAccum, zSep, nSep);
    }
    zVal = (char*)sqlite3_value_text(argv[0]);
    nVal = sqlite3_value_bytes(argv[0]);
    if( zVal ) sqlite3_str_append(pAccum, zVal, nVal);
  }
}
static void groupConcatFinalize(sqlite3_context *context){
  StrAccum *pAccum;
  pAccum = sqlite3_aggregate_context(context, 0);
  if( pAccum ){
    if( pAccum->accError==SQLITE_TOOBIG ){
      sqlite3_result_error_toobig(context);
    }else if( pAccum->accError==SQLITE_NOMEM ){
      sqlite3_result_error_nomem(context);
    }else{    
      sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
                          sqlite3_free);
    }
  }
}

Changes to src/loadext.c.

430
431
432
433
434
435
436
437















438
439
440
441
442
443
444
...
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  sqlite3_prepare16_v3,
  sqlite3_bind_pointer,
  sqlite3_result_pointer,
  sqlite3_value_pointer,
  /* Version 3.22.0 and later */
  sqlite3_vtab_nochange,
  sqlite3_value_nochange,
  sqlite3_vtab_collation















};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.
................................................................................

  zEntry = zProc ? zProc : "sqlite3_extension_init";

  handle = sqlite3OsDlOpen(pVfs, zFile);
#if SQLITE_OS_UNIX || SQLITE_OS_WIN
  for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){
    char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]);
    int bExists = 0;
    if( zAltFile==0 ) return SQLITE_NOMEM_BKPT;
    sqlite3OsAccess(pVfs, zAltFile, SQLITE_ACCESS_EXISTS, &bExists);
    if( bExists )  handle = sqlite3OsDlOpen(pVfs, zAltFile);
    sqlite3_free(zAltFile);
  }
#endif
  if( handle==0 ){
    if( pzErrMsg ){
      *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg);
      if( zErrmsg ){







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







<

<
|







430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
...
511
512
513
514
515
516
517

518

519
520
521
522
523
524
525
526
  sqlite3_prepare16_v3,
  sqlite3_bind_pointer,
  sqlite3_result_pointer,
  sqlite3_value_pointer,
  /* Version 3.22.0 and later */
  sqlite3_vtab_nochange,
  sqlite3_value_nochange,
  sqlite3_vtab_collation,
  /* Version 3.24.0 and later */
  sqlite3_keyword_count,
  sqlite3_keyword_name,
  sqlite3_keyword_check,
  sqlite3_str_new,
  sqlite3_str_finish,
  sqlite3_str_appendf,
  sqlite3_str_vappendf,
  sqlite3_str_append,
  sqlite3_str_appendall,
  sqlite3_str_appendchar,
  sqlite3_str_reset,
  sqlite3_str_errcode,
  sqlite3_str_length,
  sqlite3_str_value
};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.
................................................................................

  zEntry = zProc ? zProc : "sqlite3_extension_init";

  handle = sqlite3OsDlOpen(pVfs, zFile);
#if SQLITE_OS_UNIX || SQLITE_OS_WIN
  for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){
    char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]);

    if( zAltFile==0 ) return SQLITE_NOMEM_BKPT;

    handle = sqlite3OsDlOpen(pVfs, zAltFile);
    sqlite3_free(zAltFile);
  }
#endif
  if( handle==0 ){
    if( pzErrMsg ){
      *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg);
      if( zErrmsg ){

Changes to src/main.c.

830
831
832
833
834
835
836

837
838
839
840
841
842
843
        { SQLITE_DBCONFIG_ENABLE_FKEY,           SQLITE_ForeignKeys    },
        { SQLITE_DBCONFIG_ENABLE_TRIGGER,        SQLITE_EnableTrigger  },
        { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer  },
        { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension  },
        { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE,      SQLITE_NoCkptOnClose  },
        { SQLITE_DBCONFIG_ENABLE_QPSG,           SQLITE_EnableQPSG     },
        { SQLITE_DBCONFIG_TRIGGER_EQP,           SQLITE_TriggerEQP     },

      };
      unsigned int i;
      rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
      for(i=0; i<ArraySize(aFlagOp); i++){
        if( aFlagOp[i].op==op ){
          int onoff = va_arg(ap, int);
          int *pRes = va_arg(ap, int*);







>







830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
        { SQLITE_DBCONFIG_ENABLE_FKEY,           SQLITE_ForeignKeys    },
        { SQLITE_DBCONFIG_ENABLE_TRIGGER,        SQLITE_EnableTrigger  },
        { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer  },
        { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension  },
        { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE,      SQLITE_NoCkptOnClose  },
        { SQLITE_DBCONFIG_ENABLE_QPSG,           SQLITE_EnableQPSG     },
        { SQLITE_DBCONFIG_TRIGGER_EQP,           SQLITE_TriggerEQP     },
        { SQLITE_DBCONFIG_RESET_DATABASE,        SQLITE_ResetDatabase  },
      };
      unsigned int i;
      rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
      for(i=0; i<ArraySize(aFlagOp); i++){
        if( aFlagOp[i].op==op ){
          int onoff = va_arg(ap, int);
          int *pRes = va_arg(ap, int*);

Changes to src/mutex.c.

354
355
356
357
358
359
360
361
int sqlite3_mutex_notheld(sqlite3_mutex *p){
  assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld );
  return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
}
#endif

#endif /* !defined(SQLITE_MUTEX_OMIT) */








<
354
355
356
357
358
359
360

int sqlite3_mutex_notheld(sqlite3_mutex *p){
  assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld );
  return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
}
#endif

#endif /* !defined(SQLITE_MUTEX_OMIT) */

Changes to src/os_win.c.

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
....
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
....
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964

































1965
1966
1967
1968
1969
1970
1971
/*
 * The size of the buffer used by sqlite3_win32_write_debug().
 */
#ifndef SQLITE_WIN32_DBG_BUF_SIZE
#  define SQLITE_WIN32_DBG_BUF_SIZE   ((int)(4096-sizeof(DWORD)))
#endif

/*
 * The value used with sqlite3_win32_set_directory() to specify that
 * the data directory should be changed.
 */
#ifndef SQLITE_WIN32_DATA_DIRECTORY_TYPE
#  define SQLITE_WIN32_DATA_DIRECTORY_TYPE (1)
#endif

/*
 * The value used with sqlite3_win32_set_directory() to specify that
 * the temporary directory should be changed.
 */
#ifndef SQLITE_WIN32_TEMP_DIRECTORY_TYPE
#  define SQLITE_WIN32_TEMP_DIRECTORY_TYPE (2)
#endif

/*
 * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
 * various Win32 API heap functions instead of our own.
 */
#ifdef SQLITE_WIN32_MALLOC

/*
................................................................................
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return winUtf8ToMbcs(zText, useAnsi);
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the
** data directory or 2 in order to set the temporary directory.  The zValue
** argument is the name of the directory to use.  The return value will be
** SQLITE_OK if successful.
*/
int sqlite3_win32_set_directory(DWORD type, LPCWSTR zValue){
  char **ppDirectory = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;
................................................................................
    ppDirectory = &sqlite3_temp_directory;
  }
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zValueUtf8 = 0;
    if( zValue && zValue[0] ){
      zValueUtf8 = winUnicodeToUtf8(zValue);
      if ( zValueUtf8==0 ){
        return SQLITE_NOMEM_BKPT;
      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zValueUtf8;
    return SQLITE_OK;
  }
  return SQLITE_ERROR;
}


































/*
** The return value of winGetLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|
|
|
|
|
|
|







 







|

|
|




|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







311
312
313
314
315
316
317
















318
319
320
321
322
323
324
....
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
....
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
/*
 * The size of the buffer used by sqlite3_win32_write_debug().
 */
#ifndef SQLITE_WIN32_DBG_BUF_SIZE
#  define SQLITE_WIN32_DBG_BUF_SIZE   ((int)(4096-sizeof(DWORD)))
#endif

















/*
 * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
 * various Win32 API heap functions instead of our own.
 */
#ifdef SQLITE_WIN32_MALLOC

/*
................................................................................
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return winUtf8ToMbcs(zText, useAnsi);
}

/*
** This function is the same as sqlite3_win32_set_directory (below); however,
** it accepts a UTF-8 string.
*/
int sqlite3_win32_set_directory8(
  unsigned long type, /* Identifier for directory being set or reset */
  const char *zValue  /* New value for directory being set or reset */
){
  char **ppDirectory = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;
................................................................................
    ppDirectory = &sqlite3_temp_directory;
  }
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zCopy = 0;
    if( zValue && zValue[0] ){
      zCopy = sqlite3_mprintf("%s", zValue);
      if ( zCopy==0 ){
        return SQLITE_NOMEM_BKPT;
      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zCopy;
    return SQLITE_OK;
  }
  return SQLITE_ERROR;
}

/*
** This function is the same as sqlite3_win32_set_directory (below); however,
** it accepts a UTF-16 string.
*/
int sqlite3_win32_set_directory16(
  unsigned long type, /* Identifier for directory being set or reset */
  const void *zValue  /* New value for directory being set or reset */
){
  int rc;
  char *zUtf8 = 0;
  if( zValue ){
    zUtf8 = sqlite3_win32_unicode_to_utf8(zValue);
    if( zUtf8==0 ) return SQLITE_NOMEM_BKPT;
  }
  rc = sqlite3_win32_set_directory8(type, zUtf8);
  if( zUtf8 ) sqlite3_free(zUtf8);
  return rc;
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the
** data directory or 2 in order to set the temporary directory.  The zValue
** argument is the name of the directory to use.  The return value will be
** SQLITE_OK if successful.
*/
int sqlite3_win32_set_directory(
  unsigned long type, /* Identifier for directory being set or reset */
  void *zValue        /* New value for directory being set or reset */
){
  return sqlite3_win32_set_directory16(type, zValue);
}

/*
** The return value of winGetLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){

Changes to src/pragma.c.

2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
....
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
  char cSep = '(';
  StrAccum acc;
  char zBuf[200];

  UNUSED_PARAMETER(argc);
  UNUSED_PARAMETER(argv);
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  sqlite3StrAccumAppendAll(&acc, "CREATE TABLE x");
  for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
    sqlite3XPrintf(&acc, "%c\"%s\"", cSep, pragCName[j]);
    cSep = ',';
  }
  if( i==0 ){
    sqlite3XPrintf(&acc, "(\"%s\"", pPragma->zName);
    cSep = ',';
    i++;
  }
  j = 0;
  if( pPragma->mPragFlg & PragFlg_Result1 ){
    sqlite3StrAccumAppendAll(&acc, ",arg HIDDEN");
    j++;
  }
  if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
    sqlite3StrAccumAppendAll(&acc, ",schema HIDDEN");
    j++;
  }
  sqlite3StrAccumAppend(&acc, ")", 1);
  sqlite3StrAccumFinish(&acc);
  assert( strlen(zBuf) < sizeof(zBuf)-1 );
  rc = sqlite3_declare_vtab(db, zBuf);
  if( rc==SQLITE_OK ){
    pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
    if( pTab==0 ){
      rc = SQLITE_NOMEM;
................................................................................
      pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
      if( pCsr->azArg[j]==0 ){
        return SQLITE_NOMEM;
      }
    }
  }
  sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
  sqlite3StrAccumAppendAll(&acc, "PRAGMA ");
  if( pCsr->azArg[1] ){
    sqlite3XPrintf(&acc, "%Q.", pCsr->azArg[1]);
  }
  sqlite3StrAccumAppendAll(&acc, pTab->pName->zName);
  if( pCsr->azArg[0] ){
    sqlite3XPrintf(&acc, "=%Q", pCsr->azArg[0]);
  }
  zSql = sqlite3StrAccumFinish(&acc);
  if( zSql==0 ) return SQLITE_NOMEM;
  rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
  sqlite3_free(zSql);
  if( rc!=SQLITE_OK ){
    pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));







|

|



|





|



|


|







 







|

|

|

|







2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
....
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
  char cSep = '(';
  StrAccum acc;
  char zBuf[200];

  UNUSED_PARAMETER(argc);
  UNUSED_PARAMETER(argv);
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  sqlite3_str_appendall(&acc, "CREATE TABLE x");
  for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
    sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
    cSep = ',';
  }
  if( i==0 ){
    sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
    cSep = ',';
    i++;
  }
  j = 0;
  if( pPragma->mPragFlg & PragFlg_Result1 ){
    sqlite3_str_appendall(&acc, ",arg HIDDEN");
    j++;
  }
  if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
    sqlite3_str_appendall(&acc, ",schema HIDDEN");
    j++;
  }
  sqlite3_str_append(&acc, ")", 1);
  sqlite3StrAccumFinish(&acc);
  assert( strlen(zBuf) < sizeof(zBuf)-1 );
  rc = sqlite3_declare_vtab(db, zBuf);
  if( rc==SQLITE_OK ){
    pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
    if( pTab==0 ){
      rc = SQLITE_NOMEM;
................................................................................
      pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
      if( pCsr->azArg[j]==0 ){
        return SQLITE_NOMEM;
      }
    }
  }
  sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
  sqlite3_str_appendall(&acc, "PRAGMA ");
  if( pCsr->azArg[1] ){
    sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
  }
  sqlite3_str_appendall(&acc, pTab->pName->zName);
  if( pCsr->azArg[0] ){
    sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
  }
  zSql = sqlite3StrAccumFinish(&acc);
  if( zSql==0 ) return SQLITE_NOMEM;
  rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
  sqlite3_free(zSql);
  if( rc!=SQLITE_OK ){
    pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));

Changes to src/prepare.c.

211
212
213
214
215
216
217



218
219
220
221
222
223
224
...
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
  **    meta[9]   unused
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  for(i=0; i<ArraySize(meta); i++){
    sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);



  }
  pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
................................................................................
  }
  rc = sParse.rc;

#ifndef SQLITE_OMIT_EXPLAIN
  if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
    static const char * const azColName[] = {
       "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
       "selectid", "order", "from", "detail"
    };
    int iFirst, mx;
    if( sParse.explain==2 ){
      sqlite3VdbeSetNumCols(sParse.pVdbe, 4);
      iFirst = 8;
      mx = 12;
    }else{







>
>
>







 







|







211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
...
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
  **    meta[9]   unused
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  for(i=0; i<ArraySize(meta); i++){
    sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
  }
  if( (db->flags & SQLITE_ResetDatabase)!=0 ){
    memset(meta, 0, sizeof(meta));
  }
  pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
................................................................................
  }
  rc = sParse.rc;

#ifndef SQLITE_OMIT_EXPLAIN
  if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
    static const char * const azColName[] = {
       "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
       "id", "parent", "notused", "detail"
    };
    int iFirst, mx;
    if( sParse.explain==2 ){
      sqlite3VdbeSetNumCols(sParse.pVdbe, 4);
      iFirst = 8;
      mx = 12;
    }else{

Changes to src/printf.c.

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
...
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
...
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
...
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
...
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
...
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
...
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
...
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
...
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
...
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
...
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
...
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
...
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
...
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969






























970
971
972
973
974
975
976
977


978
979
980
981
982
983
984
...
997
998
999
1000
1001
1002
1003










1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
....
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
....
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
....
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
....
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
....
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
}
#endif /* SQLITE_OMIT_FLOATING_POINT */

/*
** Set the StrAccum object to an error mode.
*/
static void setStrAccumError(StrAccum *p, u8 eError){
  assert( eError==STRACCUM_NOMEM || eError==STRACCUM_TOOBIG );
  p->accError = eError;
  p->nAlloc = 0;
}

/*
** Extra argument values from a PrintfArguments object
*/
................................................................................
# define SQLITE_PRINT_BUF_SIZE 70
#endif
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE  /* Size of the output buffer */

/*
** Render a string given by "fmt" into the StrAccum object.
*/
void sqlite3VXPrintf(
  StrAccum *pAccum,          /* Accumulate results here */
  const char *fmt,           /* Format string */
  va_list ap                 /* arguments */
){
  int c;                     /* Next character in the format string */
  char *bufpt;               /* Pointer to the conversion buffer */
  int precision;             /* Precision of the current field */
  int length;                /* Length of the field */
................................................................................
    if( c!='%' ){
      bufpt = (char *)fmt;
#if HAVE_STRCHRNUL
      fmt = strchrnul(fmt, '%');
#else
      do{ fmt++; }while( *fmt && *fmt != '%' );
#endif
      sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt));
      if( *fmt==0 ) break;
    }
    if( (c=(*++fmt))==0 ){
      sqlite3StrAccumAppend(pAccum, "%", 1);
      break;
    }
    /* Find out what flags are present */
    flag_leftjustify = flag_prefix = cThousand =
     flag_alternateform = flag_altform2 = flag_zeropad = 0;
    done = 0;
    do{
................................................................................
        if( precision<etBUFSIZE-10-etBUFSIZE/3 ){
          nOut = etBUFSIZE;
          zOut = buf;
        }else{
          u64 n = (u64)precision + 10 + precision/3;
          zOut = zExtra = sqlite3Malloc( n );
          if( zOut==0 ){
            setStrAccumError(pAccum, STRACCUM_NOMEM);
            return;
          }
          nOut = (int)n;
        }
        bufpt = &zOut[nOut-1];
        if( xtype==etORDINAL ){
          static const char zOrd[] = "thstndrd";
................................................................................
        }else{
          e2 = exp;
        }
        if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){
          bufpt = zExtra 
              = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 );
          if( bufpt==0 ){
            setStrAccumError(pAccum, STRACCUM_NOMEM);
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
................................................................................
            buf[3] = 0x80 + (u8)(ch & 0x3f);
            length = 4;
          }
        }
        if( precision>1 ){
          width -= precision-1;
          if( width>1 && !flag_leftjustify ){
            sqlite3AppendChar(pAccum, width-1, ' ');
            width = 0;
          }
          while( precision-- > 1 ){
            sqlite3StrAccumAppend(pAccum, buf, length);
          }
        }
        bufpt = buf;
        flag_altform2 = 1;
        goto adjust_width_for_utf8;
      case etSTRING:
      case etDYNSTRING:
................................................................................
          }
        }
        needQuote = !isnull && xtype==etSQLESCAPE2;
        n += i + 3;
        if( n>etBUFSIZE ){
          bufpt = zExtra = sqlite3Malloc( n );
          if( bufpt==0 ){
            setStrAccumError(pAccum, STRACCUM_NOMEM);
            return;
          }
        }else{
          bufpt = buf;
        }
        j = 0;
        if( needQuote ) bufpt[j++] = q;
................................................................................
      }
      case etTOKEN: {
        Token *pToken;
        if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
        pToken = va_arg(ap, Token*);
        assert( bArgList==0 );
        if( pToken && pToken->n ){
          sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
        }
        length = width = 0;
        break;
      }
      case etSRCLIST: {
        SrcList *pSrc;
        int k;
................................................................................
        if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
        pSrc = va_arg(ap, SrcList*);
        k = va_arg(ap, int);
        pItem = &pSrc->a[k];
        assert( bArgList==0 );
        assert( k>=0 && k<pSrc->nSrc );
        if( pItem->zDatabase ){
          sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase);
          sqlite3StrAccumAppend(pAccum, ".", 1);
        }
        sqlite3StrAccumAppendAll(pAccum, pItem->zName);
        length = width = 0;
        break;
      }
      default: {
        assert( xtype==etINVALID );
        return;
      }
................................................................................
    ** the output.  Both length and width are in bytes, not characters,
    ** at this point.  If the "!" flag was present on string conversions
    ** indicating that width and precision should be expressed in characters,
    ** then the values have been translated prior to reaching this point.
    */
    width -= length;
    if( width>0 ){
      if( !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');
      sqlite3StrAccumAppend(pAccum, bufpt, length);
      if( flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');
    }else{
      sqlite3StrAccumAppend(pAccum, bufpt, length);
    }

    if( zExtra ){
      sqlite3DbFree(pAccum->db, zExtra);
      zExtra = 0;
    }
  }/* End for loop over the format string */
................................................................................
** Return the number of bytes of text that StrAccum is able to accept
** after the attempted enlargement.  The value returned might be zero.
*/
static int sqlite3StrAccumEnlarge(StrAccum *p, int N){
  char *zNew;
  assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */
  if( p->accError ){
    testcase(p->accError==STRACCUM_TOOBIG);
    testcase(p->accError==STRACCUM_NOMEM);
    return 0;
  }
  if( p->mxAlloc==0 ){
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = isMalloced(p) ? p->zText : 0;
    i64 szNew = p->nChar;
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
      szNew += p->nChar;
    }
    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->db ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
................................................................................
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
      p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
      p->printfFlags |= SQLITE_PRINTF_MALLOCED;
    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
}

/*
** Append N copies of character c to the given string buffer.
*/
void sqlite3AppendChar(StrAccum *p, int N, char c){
  testcase( p->nChar + (i64)N > 0x7fffffff );
  if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
    return;
  }
  while( (N--)>0 ) p->zText[p->nChar++] = c;
}

/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3StrAccumAppend() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3StrAccumAppend() routine can use fast calling semantics.
*/
static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
  N = sqlite3StrAccumEnlarge(p, N);
  if( N>0 ){
    memcpy(&p->zText[p->nChar], z, N);
    p->nChar += N;
  }
}

/*
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 || N==0 );
  assert( p->zText!=0 || p->nChar==0 || p->accError );
  assert( N>=0 );
  assert( p->accError==0 || p->nAlloc==0 );
  if( p->nChar+N >= p->nAlloc ){
    enlargeAndAppend(p,z,N);
  }else if( N ){
................................................................................
    memcpy(&p->zText[p->nChar-N], z, N);
  }
}

/*
** Append the complete text of zero-terminated string z[] to the p string.
*/
void sqlite3StrAccumAppendAll(StrAccum *p, const char *z){
  sqlite3StrAccumAppend(p, z, sqlite3Strlen30(z));
}


/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string.  Return a NULL
** pointer if any kind of error was encountered.
................................................................................
  char *zText;
  assert( p->mxAlloc>0 && !isMalloced(p) );
  zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
  if( zText ){
    memcpy(zText, p->zText, p->nChar+1);
    p->printfFlags |= SQLITE_PRINTF_MALLOCED;
  }else{
    setStrAccumError(p, STRACCUM_NOMEM);
  }
  p->zText = zText;
  return zText;
}
char *sqlite3StrAccumFinish(StrAccum *p){
  if( p->zText ){
    p->zText[p->nChar] = 0;
    if( p->mxAlloc>0 && !isMalloced(p) ){
      return strAccumFinishRealloc(p);
    }
  }
  return p->zText;
}































/*
** Reset an StrAccum string.  Reclaim all malloced memory.
*/
void sqlite3StrAccumReset(StrAccum *p){
  if( isMalloced(p) ){
    sqlite3DbFree(p->db, p->zText);
    p->printfFlags &= ~SQLITE_PRINTF_MALLOCED;
  }


  p->zText = 0;
}

/*
** Initialize a string accumulator.
**
** p:     The accumulator to be initialized.
................................................................................
  p->db = db;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->nChar = 0;
  p->accError = 0;
  p->printfFlags = 0;
}











/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;
  assert( db!=0 );
  sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase),
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  acc.printfFlags = SQLITE_PRINTF_INTERNAL;
  sqlite3VXPrintf(&acc, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  if( acc.accError==STRACCUM_NOMEM ){
    sqlite3OomFault(db);
  }
  return z;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
................................................................................
    return 0;
  }
#endif
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
  sqlite3VXPrintf(&acc, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  return z;
}

/*
** Print into memory obtained from sqlite3_malloc()().  Omit the internal
** %-conversion extensions.
................................................................................
  if( zBuf==0 || zFormat==0 ) {
    (void)SQLITE_MISUSE_BKPT;
    if( zBuf ) zBuf[0] = 0;
    return zBuf;
  }
#endif
  sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
  sqlite3VXPrintf(&acc, zFormat, ap);
  zBuf[acc.nChar] = 0;
  return zBuf;
}
char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
  va_list ap;
  va_start(ap,zFormat);
................................................................................
** We house it in a separate routine from sqlite3_log() to avoid using
** stack space on small-stack systems when logging is disabled.
**
** sqlite3_log() must render into a static buffer.  It cannot dynamically
** allocate memory because it might be called while the memory allocator
** mutex is held.
**
** sqlite3VXPrintf() might ask for *temporary* memory allocations for
** certain format characters (%q) or for very large precisions or widths.
** Care must be taken that any sqlite3_log() calls that occur while the
** memory mutex is held do not use these mechanisms.
*/
static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
  StrAccum acc;                          /* String accumulator */
  char zMsg[SQLITE_PRINT_BUF_SIZE*3];    /* Complete log message */

  sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
  sqlite3VXPrintf(&acc, zFormat, ap);
  sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
                           sqlite3StrAccumFinish(&acc));
}

/*
** Format and write a message to the log if logging is enabled.
*/
................................................................................
*/
void sqlite3DebugPrintf(const char *zFormat, ...){
  va_list ap;
  StrAccum acc;
  char zBuf[500];
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  va_start(ap,zFormat);
  sqlite3VXPrintf(&acc, zFormat, ap);
  va_end(ap);
  sqlite3StrAccumFinish(&acc);
#ifdef SQLITE_OS_TRACE_PROC
  {
    extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf);
    SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf));
  }
................................................................................
  fflush(stdout);
#endif
}
#endif


/*
** variable-argument wrapper around sqlite3VXPrintf().  The bFlags argument
** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats.
*/
void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){
  va_list ap;
  va_start(ap,zFormat);
  sqlite3VXPrintf(p, zFormat, ap);
  va_end(ap);
}







|







 







|
|







 







|



|







 







|







 







|







 







|



|







 







|







 







|







 







|
|

|







 







|
|
|

|







 







|
|




|











|
|







 







|
|









|











|

|













|







 







|
|







 







|














>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|




>
>







 







>
>
>
>
>
>
>
>
>
>













|

|







 







|







 







|







 







|









|







 







|







 







|


|


|


130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
...
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
...
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
...
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
...
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
...
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
...
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
...
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
...
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
...
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
...
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
...
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
...
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
...
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
....
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
....
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
....
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
....
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
....
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
....
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
}
#endif /* SQLITE_OMIT_FLOATING_POINT */

/*
** Set the StrAccum object to an error mode.
*/
static void setStrAccumError(StrAccum *p, u8 eError){
  assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG );
  p->accError = eError;
  p->nAlloc = 0;
}

/*
** Extra argument values from a PrintfArguments object
*/
................................................................................
# define SQLITE_PRINT_BUF_SIZE 70
#endif
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE  /* Size of the output buffer */

/*
** Render a string given by "fmt" into the StrAccum object.
*/
void sqlite3_str_vappendf(
  sqlite3_str *pAccum,       /* Accumulate results here */
  const char *fmt,           /* Format string */
  va_list ap                 /* arguments */
){
  int c;                     /* Next character in the format string */
  char *bufpt;               /* Pointer to the conversion buffer */
  int precision;             /* Precision of the current field */
  int length;                /* Length of the field */
................................................................................
    if( c!='%' ){
      bufpt = (char *)fmt;
#if HAVE_STRCHRNUL
      fmt = strchrnul(fmt, '%');
#else
      do{ fmt++; }while( *fmt && *fmt != '%' );
#endif
      sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt));
      if( *fmt==0 ) break;
    }
    if( (c=(*++fmt))==0 ){
      sqlite3_str_append(pAccum, "%", 1);
      break;
    }
    /* Find out what flags are present */
    flag_leftjustify = flag_prefix = cThousand =
     flag_alternateform = flag_altform2 = flag_zeropad = 0;
    done = 0;
    do{
................................................................................
        if( precision<etBUFSIZE-10-etBUFSIZE/3 ){
          nOut = etBUFSIZE;
          zOut = buf;
        }else{
          u64 n = (u64)precision + 10 + precision/3;
          zOut = zExtra = sqlite3Malloc( n );
          if( zOut==0 ){
            setStrAccumError(pAccum, SQLITE_NOMEM);
            return;
          }
          nOut = (int)n;
        }
        bufpt = &zOut[nOut-1];
        if( xtype==etORDINAL ){
          static const char zOrd[] = "thstndrd";
................................................................................
        }else{
          e2 = exp;
        }
        if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){
          bufpt = zExtra 
              = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 );
          if( bufpt==0 ){
            setStrAccumError(pAccum, SQLITE_NOMEM);
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
................................................................................
            buf[3] = 0x80 + (u8)(ch & 0x3f);
            length = 4;
          }
        }
        if( precision>1 ){
          width -= precision-1;
          if( width>1 && !flag_leftjustify ){
            sqlite3_str_appendchar(pAccum, width-1, ' ');
            width = 0;
          }
          while( precision-- > 1 ){
            sqlite3_str_append(pAccum, buf, length);
          }
        }
        bufpt = buf;
        flag_altform2 = 1;
        goto adjust_width_for_utf8;
      case etSTRING:
      case etDYNSTRING:
................................................................................
          }
        }
        needQuote = !isnull && xtype==etSQLESCAPE2;
        n += i + 3;
        if( n>etBUFSIZE ){
          bufpt = zExtra = sqlite3Malloc( n );
          if( bufpt==0 ){
            setStrAccumError(pAccum, SQLITE_NOMEM);
            return;
          }
        }else{
          bufpt = buf;
        }
        j = 0;
        if( needQuote ) bufpt[j++] = q;
................................................................................
      }
      case etTOKEN: {
        Token *pToken;
        if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
        pToken = va_arg(ap, Token*);
        assert( bArgList==0 );
        if( pToken && pToken->n ){
          sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n);
        }
        length = width = 0;
        break;
      }
      case etSRCLIST: {
        SrcList *pSrc;
        int k;
................................................................................
        if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
        pSrc = va_arg(ap, SrcList*);
        k = va_arg(ap, int);
        pItem = &pSrc->a[k];
        assert( bArgList==0 );
        assert( k>=0 && k<pSrc->nSrc );
        if( pItem->zDatabase ){
          sqlite3_str_appendall(pAccum, pItem->zDatabase);
          sqlite3_str_append(pAccum, ".", 1);
        }
        sqlite3_str_appendall(pAccum, pItem->zName);
        length = width = 0;
        break;
      }
      default: {
        assert( xtype==etINVALID );
        return;
      }
................................................................................
    ** the output.  Both length and width are in bytes, not characters,
    ** at this point.  If the "!" flag was present on string conversions
    ** indicating that width and precision should be expressed in characters,
    ** then the values have been translated prior to reaching this point.
    */
    width -= length;
    if( width>0 ){
      if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
      sqlite3_str_append(pAccum, bufpt, length);
      if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
    }else{
      sqlite3_str_append(pAccum, bufpt, length);
    }

    if( zExtra ){
      sqlite3DbFree(pAccum->db, zExtra);
      zExtra = 0;
    }
  }/* End for loop over the format string */
................................................................................
** Return the number of bytes of text that StrAccum is able to accept
** after the attempted enlargement.  The value returned might be zero.
*/
static int sqlite3StrAccumEnlarge(StrAccum *p, int N){
  char *zNew;
  assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */
  if( p->accError ){
    testcase(p->accError==SQLITE_TOOBIG);
    testcase(p->accError==SQLITE_NOMEM);
    return 0;
  }
  if( p->mxAlloc==0 ){
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, SQLITE_TOOBIG);
    return N;
  }else{
    char *zOld = isMalloced(p) ? p->zText : 0;
    i64 szNew = p->nChar;
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
      szNew += p->nChar;
    }
    if( szNew > p->mxAlloc ){
      sqlite3_str_reset(p);
      setStrAccumError(p, SQLITE_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->db ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
................................................................................
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
      p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
      p->printfFlags |= SQLITE_PRINTF_MALLOCED;
    }else{
      sqlite3_str_reset(p);
      setStrAccumError(p, SQLITE_NOMEM);
      return 0;
    }
  }
  return N;
}

/*
** Append N copies of character c to the given string buffer.
*/
void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){
  testcase( p->nChar + (i64)N > 0x7fffffff );
  if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
    return;
  }
  while( (N--)>0 ) p->zText[p->nChar++] = c;
}

/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3_str_append() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3_str_append() routine can use fast calling semantics.
*/
static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
  N = sqlite3StrAccumEnlarge(p, N);
  if( N>0 ){
    memcpy(&p->zText[p->nChar], z, N);
    p->nChar += N;
  }
}

/*
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
void sqlite3_str_append(sqlite3_str *p, const char *z, int N){
  assert( z!=0 || N==0 );
  assert( p->zText!=0 || p->nChar==0 || p->accError );
  assert( N>=0 );
  assert( p->accError==0 || p->nAlloc==0 );
  if( p->nChar+N >= p->nAlloc ){
    enlargeAndAppend(p,z,N);
  }else if( N ){
................................................................................
    memcpy(&p->zText[p->nChar-N], z, N);
  }
}

/*
** Append the complete text of zero-terminated string z[] to the p string.
*/
void sqlite3_str_appendall(sqlite3_str *p, const char *z){
  sqlite3_str_append(p, z, sqlite3Strlen30(z));
}


/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string.  Return a NULL
** pointer if any kind of error was encountered.
................................................................................
  char *zText;
  assert( p->mxAlloc>0 && !isMalloced(p) );
  zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
  if( zText ){
    memcpy(zText, p->zText, p->nChar+1);
    p->printfFlags |= SQLITE_PRINTF_MALLOCED;
  }else{
    setStrAccumError(p, SQLITE_NOMEM);
  }
  p->zText = zText;
  return zText;
}
char *sqlite3StrAccumFinish(StrAccum *p){
  if( p->zText ){
    p->zText[p->nChar] = 0;
    if( p->mxAlloc>0 && !isMalloced(p) ){
      return strAccumFinishRealloc(p);
    }
  }
  return p->zText;
}

/* Finalize a string created using sqlite3_str_new().
*/
char *sqlite3_str_finish(sqlite3_str *p){
  char *z;
  if( p ){
    z = sqlite3StrAccumFinish(p);
    sqlite3_free(p);
  }else{
    z = 0;
  }
  return z;
}

/* Return any error code associated with p */
int sqlite3_str_errcode(sqlite3_str *p){
  return p ? p->accError : SQLITE_NOMEM;
}

/* Return the current length of p in bytes */
int sqlite3_str_length(sqlite3_str *p){
  return p ? p->nChar : 0;
}

/* Return the current value for p */
char *sqlite3_str_value(sqlite3_str *p){
  if( p==0 || p->nChar==0 ) return 0;
  p->zText[p->nChar] = 0;
  return p->zText;
}

/*
** Reset an StrAccum string.  Reclaim all malloced memory.
*/
void sqlite3_str_reset(StrAccum *p){
  if( isMalloced(p) ){
    sqlite3DbFree(p->db, p->zText);
    p->printfFlags &= ~SQLITE_PRINTF_MALLOCED;
  }
  p->nAlloc = 0;
  p->nChar = 0;
  p->zText = 0;
}

/*
** Initialize a string accumulator.
**
** p:     The accumulator to be initialized.
................................................................................
  p->db = db;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->nChar = 0;
  p->accError = 0;
  p->printfFlags = 0;
}

/* Allocate and initialize a new dynamic string object */
sqlite3_str *sqlite3_str_new(sqlite3 *db){
  sqlite3_str *p = sqlite3_malloc64(sizeof(*p));
  if( p ){
    sqlite3StrAccumInit(p, 0, 0, 0,
            db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
  }
  return p;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;
  assert( db!=0 );
  sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase),
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  acc.printfFlags = SQLITE_PRINTF_INTERNAL;
  sqlite3_str_vappendf(&acc, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  if( acc.accError==SQLITE_NOMEM ){
    sqlite3OomFault(db);
  }
  return z;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
................................................................................
    return 0;
  }
#endif
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
  sqlite3_str_vappendf(&acc, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  return z;
}

/*
** Print into memory obtained from sqlite3_malloc()().  Omit the internal
** %-conversion extensions.
................................................................................
  if( zBuf==0 || zFormat==0 ) {
    (void)SQLITE_MISUSE_BKPT;
    if( zBuf ) zBuf[0] = 0;
    return zBuf;
  }
#endif
  sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
  sqlite3_str_vappendf(&acc, zFormat, ap);
  zBuf[acc.nChar] = 0;
  return zBuf;
}
char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
  va_list ap;
  va_start(ap,zFormat);
................................................................................
** We house it in a separate routine from sqlite3_log() to avoid using
** stack space on small-stack systems when logging is disabled.
**
** sqlite3_log() must render into a static buffer.  It cannot dynamically
** allocate memory because it might be called while the memory allocator
** mutex is held.
**
** sqlite3_str_vappendf() might ask for *temporary* memory allocations for
** certain format characters (%q) or for very large precisions or widths.
** Care must be taken that any sqlite3_log() calls that occur while the
** memory mutex is held do not use these mechanisms.
*/
static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
  StrAccum acc;                          /* String accumulator */
  char zMsg[SQLITE_PRINT_BUF_SIZE*3];    /* Complete log message */

  sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
  sqlite3_str_vappendf(&acc, zFormat, ap);
  sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
                           sqlite3StrAccumFinish(&acc));
}

/*
** Format and write a message to the log if logging is enabled.
*/
................................................................................
*/
void sqlite3DebugPrintf(const char *zFormat, ...){
  va_list ap;
  StrAccum acc;
  char zBuf[500];
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  va_start(ap,zFormat);
  sqlite3_str_vappendf(&acc, zFormat, ap);
  va_end(ap);
  sqlite3StrAccumFinish(&acc);
#ifdef SQLITE_OS_TRACE_PROC
  {
    extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf);
    SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf));
  }
................................................................................
  fflush(stdout);
#endif
}
#endif


/*
** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument
** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats.
*/
void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){
  va_list ap;
  va_start(ap,zFormat);
  sqlite3_str_vappendf(p, zFormat, ap);
  va_end(ap);
}

Changes to src/select.c.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
..
74
75
76
77
78
79
80

81
82
83
84
85
86
87
...
531
532
533
534
535
536
537
























































538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561
562














563

564
565
566
567
568
569
570
571
572
573
...
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
...
634
635
636
637
638
639
640
641
642
643
644
645
646

647
648
649
650
651
652
653
654
655
656
657
658
659





660
661
662
663
664
665
666
...
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
...
807
808
809
810
811
812
813

814
815
816
817
818
819
820
...
859
860
861
862
863
864
865
866

867
868
869
870
871
872
873
874
875
876
877
878
879

880
881
882
883
884
885
886
...
893
894
895
896
897
898
899











900








901
902
903
904

905
906


907
908
909




910
911






912
913
914
915
916
917
918
919
920
....
1022
1023
1024
1025
1026
1027
1028

1029
1030
1031
1032
1033
1034
1035
1036
....
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
....
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
....
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
....
2323
2324
2325
2326
2327
2328
2329

2330
2331
2332
2333
2334
2335
2336
....
2357
2358
2359
2360
2361
2362
2363

2364
2365
2366
2367
2368
2369
2370
....
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

2413
2414
2415
2416
2417
2418
2419
2420
2421
2422


2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
....
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
....
2524
2525
2526
2527
2528
2529
2530
2531
2532







2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560

2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630


2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708


2709
2710
2711
2712
2713


2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727

2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740



2741



2742
2743
2744
2745
2746
2747
2748
....
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
....
3195
3196
3197
3198
3199
3200
3201


3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
....
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
....
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
....
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
....
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349

5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
....
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
....
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
....
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
....
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
....
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
/*
** Trace output macros
*/
#if SELECTTRACE_ENABLED
/***/ int sqlite3SelectTrace = 0;
# define SELECTTRACE(K,P,S,X)  \
  if(sqlite3SelectTrace&(K))   \
    sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->iSelectId,(S)),\
    sqlite3DebugPrintf X
#else
# define SELECTTRACE(K,P,S,X)
#endif


/*
................................................................................
  u8 nDefer;            /* Number of valid entries in aDefer[] */
  struct DeferredCsr {
    Table *pTab;        /* Table definition */
    int iCsr;           /* Cursor number for table */
    int nKey;           /* Number of PK columns for table pTab (>=1) */
  } aDefer[4];
#endif

};
#define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */

/*
** Delete all the content of a Select structure.  Deallocate the structure
** itself only if bFree is true.
*/
................................................................................
/* Forward reference */
static KeyInfo *keyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */
  int nExtra           /* Add this many extra columns to the end */
);

























































/*
** Generate code that will push the record in registers regData
** through regData+nData-1 onto the sorter.
*/
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  SortCtx *pSort,        /* Information about the ORDER BY clause */
  Select *pSelect,       /* The whole SELECT statement */
  int regData,           /* First register holding data to be sorted */
  int regOrigData,       /* First register holding data before packing */
  int nData,             /* Number of elements in the data array */
  int nPrefixReg         /* No. of reg prior to regData available for use */
){
  Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
  int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
  int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
  int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
  int regBase;                                     /* Regs for sorter record */
  int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
  int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
  int op;                            /* Opcode to add sorter record to sorter */
  int iLimit;                        /* LIMIT counter */


  assert( bSeq==0 || bSeq==1 );














  assert( nData==1 || regData==regOrigData || regOrigData==0 );

  if( nPrefixReg ){
    assert( nPrefixReg==nExpr+bSeq );
    regBase = regData - nExpr - bSeq;
  }else{
    regBase = pParse->nMem + 1;
    pParse->nMem += nBase;
  }
  assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
  iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
  pSort->labelDone = sqlite3VdbeMakeLabel(v);
................................................................................
    int regPrevKey;   /* The first nOBSat columns of the previous row */
    int addrFirst;    /* Address of the OP_IfNot opcode */
    int addrJmp;      /* Address of the OP_Jump opcode */
    VdbeOp *pOp;      /* Opcode that opens the sorter */
    int nKey;         /* Number of sorting key columns, including OP_Sequence */
    KeyInfo *pKI;     /* Original KeyInfo on the sorter table */

    sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat,regRecord);
    regPrevKey = pParse->nMem+1;
    pParse->nMem += pSort->nOBSat;
    nKey = nExpr - pSort->nOBSat + bSeq;
    if( bSeq ){
      addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 
    }else{
      addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
................................................................................
    ** If the new record does not need to be inserted into the sorter,
    ** jump to the next iteration of the loop. Or, if the
    ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
    ** loop delivers items in sorted order, jump to the next iteration
    ** of the outer loop.
    */
    int iCsr = pSort->iECursor;
    int iJmp = sqlite3VdbeCurrentAddr(v)+5+(nOBSat<=0)+pSort->bOrderedInnerLoop;
    assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
    sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
    VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
    sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp, regBase+nOBSat, nExpr-nOBSat);

    VdbeCoverage(v);
    sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
  }
  if( nOBSat<=0 ){
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat,regRecord);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
                       regBase+nOBSat, nBase-nOBSat);





}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
................................................................................
  for(i=0; i<pEList->nExpr; i++){
    struct ExprList_item *pItem = &pEList->a[i];
    if( pItem->u.x.iOrderByCol==0 ){
      Expr *pExpr = pItem->pExpr;
      Table *pTab = pExpr->pTab;
      if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab)
       && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
#if 0
          && pTab->pSchema && pTab->pSelect==0 && !IsVirtual(pTab)
#endif
      ){
        int j;
        for(j=0; j<nDefer; j++){
          if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
        }
        if( j==nDefer ){
          if( nDefer==ArraySize(pSort->aDefer) ){
................................................................................
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;            /* True if the DISTINCT keyword is present */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iSDParm; /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */
  int nPrefixReg = 0;         /* Number of extra registers before regResult */


  /* Usually, regResult is the first cell in an array of memory cells
  ** containing the current result row. In this case regOrig is set to the
  ** same value. However, if the results are being sent to the sorter, the
  ** values for any expressions that are also part of the sort-key are omitted
  ** from this array. In this case regOrig is set to zero.  */
  int regResult;              /* Start of memory holding current results */
................................................................................
  }else if( eDest!=SRT_Exists ){
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    ExprList *pExtra = 0;
#endif
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    u8 ecelFlags;

    if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
      ecelFlags = SQLITE_ECEL_DUP;
    }else{
      ecelFlags = 0;
    }
    if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
      /* For each expression in p->pEList that is a copy of an expression in
      ** the ORDER BY clause (pSort->pOrderBy), set the associated 
      ** iOrderByCol value to one more than the index of the ORDER BY 
      ** expression within the sort-key that pushOntoSorter() will generate.
      ** This allows the p->pEList field to be omitted from the sorted record,
      ** saving space and CPU cycles.  */
      ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);

      for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
        int j;
        if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
          p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
        }
      }
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
................................................................................
        ** composite primary keys in the SortCtx.aDefer[] array.  */
        VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
        pOp->p2 += (pExtra->nExpr - pSort->nDefer);
        pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
        pParse->nMem += pExtra->nExpr;
      }
#endif











      regOrig = 0;








      assert( eDest==SRT_Set || eDest==SRT_Mem 
           || eDest==SRT_Coroutine || eDest==SRT_Output );
    }
    nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,

                                         0,ecelFlags);
#ifdef SQLITE_ENABLE_SORTER_REFERENCES


    if( pExtra ){
      nResultCol += sqlite3ExprCodeExprList(
          pParse, pExtra, regResult + nResultCol, 0, 0




      );
      sqlite3ExprListDelete(pParse->db, pExtra);






    }
#endif
  }

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( hasDistinct ){
................................................................................
        sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
        VdbeCoverage(v);
        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
        assert( pSort==0 );
      }
#endif
      if( pSort ){

        pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
      }else{
        int r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
        sqlite3ReleaseTempReg(pParse, r2);
      }
................................................................................
**
**   "USE TEMP B-TREE FOR xxx"
**
** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
** is determined by the zUsage argument.
*/
static void explainTempTable(Parse *pParse, const char *zUsage){
  if( pParse->explain==2 ){
    Vdbe *v = pParse->pVdbe;
    char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
}

/*
** Assign expression b to lvalue a. A second, no-op, version of this macro
** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
** in sqlite3Select() to assign values to structure member variables that
** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
................................................................................

#else
/* No-op versions of the explainXXX() functions and macros. */
# define explainTempTable(y,z)
# define explainSetInteger(y,z)
#endif

#if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
/*
** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
** is a no-op. Otherwise, it adds a single row of output to the EQP result,
** where the caption is of one of the two forms:
**
**   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
**   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
**
** where iSub1 and iSub2 are the integers passed as the corresponding
** function parameters, and op is the text representation of the parameter
** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 
** false, or the second form if it is true.
*/
static void explainComposite(
  Parse *pParse,                  /* Parse context */
  int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
  int iSub1,                      /* Subquery id 1 */
  int iSub2,                      /* Subquery id 2 */
  int bUseTmp                     /* True if a temp table was used */
){
  assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
  if( pParse->explain==2 ){
    Vdbe *v = pParse->pVdbe;
    char *zMsg = sqlite3MPrintf(
        pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
        bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
}
#else
/* No-op versions of the explainXXX() functions and macros. */
# define explainComposite(v,w,x,y,z)
#endif

/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
................................................................................
#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet || db->mallocFailed ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );
  assert( pTabList!=0 );
................................................................................
  }

  /* Detach the ORDER BY clause from the compound SELECT */
  p->pOrderBy = 0;

  /* Store the results of the setup-query in Queue. */
  pSetup->pNext = 0;

  rc = sqlite3Select(pParse, pSetup, &destQueue);
  pSetup->pNext = p;
  if( rc ) goto end_of_recursive_query;

  /* Find the next row in the Queue and output that row */
  addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);

................................................................................
  /* Execute the recursive SELECT taking the single row in Current as
  ** the value for the recursive-table. Store the results in the Queue.
  */
  if( p->selFlags & SF_Aggregate ){
    sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
  }else{
    p->pPrior = 0;

    sqlite3Select(pParse, p, &destQueue);
    assert( p->pPrior==0 );
    p->pPrior = pSetup;
  }

  /* Keep running the loop until the Queue is empty */
  sqlite3VdbeGoto(v, addrTop);
................................................................................
** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
*/
static int multiSelectValues(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  Select *pPrior;
  Select *pRightmost = p;
  int nRow = 1;
  int rc = 0;

  assert( p->selFlags & SF_MultiValue );
  do{
    assert( p->selFlags & SF_Values );
    assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
    assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
    if( p->pPrior==0 ) break;
    assert( p->pPrior->pNext==p );
    p = p->pPrior;
    nRow++;
  }while(1);


  while( p ){
    pPrior = p->pPrior;
    p->pPrior = 0;
    rc = sqlite3Select(pParse, p, pDest);
    p->pPrior = pPrior;
    if( rc || pRightmost->pLimit ) break;
    p->nSelectRow = nRow;
    p = p->pNext;
  }
  return rc;
}

/*
................................................................................
){
  int rc = SQLITE_OK;   /* Success code from a subroutine */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest dest;      /* Alternative data destination */
  Select *pDelete = 0;  /* Chain of simple selects to delete */
  sqlite3 *db;          /* Database connection */
#ifndef SQLITE_OMIT_EXPLAIN
  int iSub1 = 0;        /* EQP id of left-hand query */
  int iSub2 = 0;        /* EQP id of right-hand query */
#endif

  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
  */
  assert( p && p->pPrior );  /* Calling function guarantees this much */
  assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
  db = pParse->db;
................................................................................
  }else
#endif

  /* Compound SELECTs that have an ORDER BY clause are handled separately.
  */
  if( p->pOrderBy ){
    return multiSelectOrderBy(pParse, p, pDest);
  }else








  /* Generate code for the left and right SELECT statements.
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      int nLimit;
      assert( !pPrior->pLimit );
      pPrior->iLimit = p->iLimit;
      pPrior->iOffset = p->iOffset;
      pPrior->pLimit = p->pLimit;
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &dest);
      p->pLimit = 0;
      if( rc ){
        goto multi_select_end;
      }
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
        if( p->iOffset ){
          sqlite3VdbeAddOp3(v, OP_OffsetLimit,
                            p->iLimit, p->iOffset+1, p->iOffset);
        }
      }
      explainSetInteger(iSub2, pParse->iNextSelectId);

      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
      if( pPrior->pLimit
       && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
       && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 
      ){
        p->nSelectRow = sqlite3LogEst((u64)nLimit);
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);
      }
      break;
    }
    case TK_EXCEPT:
    case TK_UNION: {
      int unionTab;    /* Cursor number of the temporary table holding result */
      u8 op = 0;       /* One of the SRT_ operations to apply to self */
      int priorOp;     /* The SRT_ operation to apply to prior selects */
      Expr *pLimit;    /* Saved values of p->nLimit  */
      int addr;
      SelectDest uniondest;

      testcase( p->op==TK_EXCEPT );
      testcase( p->op==TK_UNION );
      priorOp = SRT_Union;
      if( dest.eDest==priorOp ){
        /* We can reuse a temporary table generated by a SELECT to our
        ** right.
        */
        assert( p->pLimit==0 );      /* Not allowed on leftward elements */
        unionTab = dest.iSDParm;
      }else{
        /* We will need to create our own temporary table to hold the
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        assert( p->pOrderBy==0 );
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
        assert( p->addrOpenEphm[0] == -1 );
        p->addrOpenEphm[0] = addr;
        findRightmost(p)->selFlags |= SF_UsesEphemeral;
        assert( p->pEList );
      }

      /* Code the SELECT statements to our left
      */
      assert( !pPrior->pOrderBy );
      sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &uniondest);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT statement
      */
      if( p->op==TK_EXCEPT ){
        op = SRT_Except;
      }else{
        assert( p->op==TK_UNION );
        op = SRT_Union;
      }
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      uniondest.eDest = op;
      explainSetInteger(iSub2, pParse->iNextSelectId);


      rc = sqlite3Select(pParse, p, &uniondest);
      testcase( rc!=SQLITE_OK );
      /* Query flattening in sqlite3Select() might refill p->pOrderBy.
      ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
      sqlite3ExprListDelete(db, p->pOrderBy);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->pOrderBy = 0;
      if( p->op==TK_UNION ){
        p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
      }
      sqlite3ExprDelete(db, p->pLimit);
      p->pLimit = pLimit;
      p->iLimit = 0;
      p->iOffset = 0;

      /* Convert the data in the temporary table into whatever form
      ** it is that we currently need.
      */
      assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
      if( dest.eDest!=priorOp ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
        iStart = sqlite3VdbeCurrentAddr(v);
        selectInnerLoop(pParse, p, unionTab,
                        0, 0, &dest, iCont, iBreak);
        sqlite3VdbeResolveLabel(v, iCont);
        sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
        sqlite3VdbeResolveLabel(v, iBreak);
        sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
      }
      break;
    }
    default: assert( p->op==TK_INTERSECT ); {
      int tab1, tab2;
      int iCont, iBreak, iStart;
      Expr *pLimit;
      int addr;
      SelectDest intersectdest;
      int r1;

      /* INTERSECT is different from the others since it requires
      ** two temporary tables.  Hence it has its own case.  Begin
      ** by allocating the tables we will need.
      */
      tab1 = pParse->nTab++;
      tab2 = pParse->nTab++;
      assert( p->pOrderBy==0 );

      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
      assert( p->addrOpenEphm[0] == -1 );
      p->addrOpenEphm[0] = addr;
      findRightmost(p)->selFlags |= SF_UsesEphemeral;
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &intersectdest);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      intersectdest.iSDParm = tab2;
      explainSetInteger(iSub2, pParse->iNextSelectId);


      rc = sqlite3Select(pParse, p, &intersectdest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;


      sqlite3ExprDelete(db, p->pLimit);
      p->pLimit = pLimit;

      /* Generate code to take the intersection of the two temporary
      ** tables.
      */
      assert( p->pEList );
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);
      sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
      r1 = sqlite3GetTempReg(pParse);
      iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
      sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);

      sqlite3ReleaseTempReg(pParse, r1);
      selectInnerLoop(pParse, p, tab1,
                      0, 0, &dest, iCont, iBreak);
      sqlite3VdbeResolveLabel(v, iCont);
      sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
      sqlite3VdbeResolveLabel(v, iBreak);
      sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
      sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
      break;
    }
  }

  explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);







  /* Compute collating sequences used by 
  ** temporary tables needed to implement the compound select.
  ** Attach the KeyInfo structure to all temporary tables.
  **
  ** This section is run by the right-most SELECT statement only.
  ** SELECT statements to the left always skip this part.  The right-most
  ** SELECT might also skip this part if it has no ORDER BY clause and
................................................................................
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
#ifndef SQLITE_OMIT_EXPLAIN
  int iSub1;            /* EQP id of left-hand query */
  int iSub2;            /* EQP id of right-hand query */
#endif

  assert( p->pOrderBy!=0 );
  assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
  labelEnd = sqlite3VdbeMakeLabel(v);
................................................................................
  regAddrA = ++pParse->nMem;
  regAddrB = ++pParse->nMem;
  regOutA = ++pParse->nMem;
  regOutB = ++pParse->nMem;
  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);



  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
  VdbeComment((v, "left SELECT"));
  pPrior->iLimit = regLimitA;
  explainSetInteger(iSub1, pParse->iNextSelectId);
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeEndCoroutine(v, regAddrA);
  sqlite3VdbeJumpHere(v, addr1);

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
................................................................................
  addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
  VdbeComment((v, "right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  explainSetInteger(iSub2, pParse->iNextSelectId);
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeEndCoroutine(v, regAddrB);

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
................................................................................
    sqlite3SelectDelete(db, p->pPrior);
  }
  p->pPrior = pPrior;
  pPrior->pNext = p;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)

/* An instance of the SubstContext object describes an substitution edit
................................................................................
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
    char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
        pTab->zName,
        bCover ? " USING COVERING INDEX " : "",
        bCover ? pIdx->zName : ""
    );
    sqlite3VdbeAddOp4(
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
# define explainSimpleCount(a,b,c)
#endif

/*
................................................................................
  SortCtx sSort;         /* Info on how to code the ORDER BY clause */
  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */
  ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
  u8 minMaxFlag;                 /* Flag for min/max queries */

#ifndef SQLITE_OMIT_EXPLAIN
  int iRestoreSelectId = pParse->iSelectId;
  pParse->iSelectId = pParse->iNextSelectId++;
#endif

  db = pParse->db;

  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));
#if SELECTTRACE_ENABLED
#ifndef SQLITE_OMIT_EXPLAIN
  p->iSelectId = pParse->iSelectId;
#endif
  SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->iSelectId));
  if( sqlite3SelectTrace & 0x100 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
................................................................................
#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x104 ){
    SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  /* Get a pointer the VDBE under construction, allocating a new VDBE if one
  ** does not already exist */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto select_end;
  if( pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, p);
  }

  /* Try to various optimizations (flattening subqueries, and strength
  ** reduction of join operators) in the FROM clause up into the main query
  */
................................................................................
  /* Handle compound SELECT statements using the separate multiSelect()
  ** procedure.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);
#if SELECTTRACE_ENABLED
    SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
    if( pParse->iSelectId==0 && (sqlite3SelectTrace & 0x2000)!=0 ){
      sqlite3TreeViewSelect(0, p, 0);
    }
#endif
    explainSetInteger(pParse->iSelectId, iRestoreSelectId);
    return rc;
  }
#endif

  /* For each term in the FROM clause, do two things:
  ** (1) Authorized unreferenced tables
  ** (2) Generate code for all sub-queries
................................................................................
      int addrTop = sqlite3VdbeCurrentAddr(v)+1;
     
      pItem->regReturn = ++pParse->nMem;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
      VdbeComment((v, "%s", pItem->pTab->zName));
      pItem->addrFillSub = addrTop;
      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      pItem->fg.viaCoroutine = 1;
      pItem->regResult = dest.iSdst;
      sqlite3VdbeEndCoroutine(v, pItem->regReturn);
      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);
................................................................................
        VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }else{
        VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }
      pPrior = isSelfJoinView(pTabList, pItem);
      if( pPrior ){
        sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
        explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
        assert( pPrior->pSelect!=0 );
        pSub->nSelectRow = pPrior->pSelect->nSelectRow;
      }else{
        sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
        explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
        sqlite3Select(pParse, pSub, &dest);
      }
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);
................................................................................
  */
select_end:
  sqlite3ExprListDelete(db, pMinMaxOrderBy);
  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
#if SELECTTRACE_ENABLED
  SELECTTRACE(0x1,pParse,p,("end processing\n"));
  if( pParse->iSelectId==0 && (sqlite3SelectTrace & 0x2000)!=0 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif
  explainSetInteger(pParse->iSelectId, iRestoreSelectId);
  return rc;
}







|







 







>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











|







|



>


>
>
>
>
>
>
>
>
>
>
>
>
>
>

>


|







 







|







 







<
<



|
>



|
|








>
>
>
>
>







 







<
<
<







 







>







 







|
>













>







 







>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>



<
>
|

>
>
|
<
<
>
>
>
>
|
<
>
>
>
>
>
>

<







 







>
|







 







<
<
|
<
<







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|







 







>







 







>







 







<
<


>








|

>
>

<
<
|
|
<







 







<
<
<
<







 







|

>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
>
>
|
|
|
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
<
>
>
>
|
>
>
>







 







<
<
<
<







 







>
>







|







 







|







 







|







 







|




<
<
<







 







<
<
<
<
<

>






<
<
<
|







 







<
<
<
<







 







|



|







 







|







 







<




|







 







|



|


17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
..
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
...
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
...
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
...
707
708
709
710
711
712
713


714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
...
815
816
817
818
819
820
821



822
823
824
825
826
827
828
...
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
...
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
...
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005


1006
1007
1008
1009
1010

1011
1012
1013
1014
1015
1016
1017

1018
1019
1020
1021
1022
1023
1024
....
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
....
1394
1395
1396
1397
1398
1399
1400


1401


1402
1403
1404
1405
1406
1407
1408
....
1412
1413
1414
1415
1416
1417
1418




































1419
1420
1421
1422
1423
1424
1425
....
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
....
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
....
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
....
2469
2470
2471
2472
2473
2474
2475


2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491


2492
2493

2494
2495
2496
2497
2498
2499
2500
....
2535
2536
2537
2538
2539
2540
2541




2542
2543
2544
2545
2546
2547
2548
....
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610

2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626

2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678

2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759

2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773

2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809

2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
....
3147
3148
3149
3150
3151
3152
3153




3154
3155
3156
3157
3158
3159
3160
....
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
....
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
....
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
....
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201



5202
5203
5204
5205
5206
5207
5208
....
5407
5408
5409
5410
5411
5412
5413





5414
5415
5416
5417
5418
5419
5420
5421



5422
5423
5424
5425
5426
5427
5428
5429
....
5452
5453
5454
5455
5456
5457
5458




5459
5460
5461
5462
5463
5464
5465
....
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
....
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
....
5697
5698
5699
5700
5701
5702
5703

5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
....
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
/*
** Trace output macros
*/
#if SELECTTRACE_ENABLED
/***/ int sqlite3SelectTrace = 0;
# define SELECTTRACE(K,P,S,X)  \
  if(sqlite3SelectTrace&(K))   \
    sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\
    sqlite3DebugPrintf X
#else
# define SELECTTRACE(K,P,S,X)
#endif


/*
................................................................................
  u8 nDefer;            /* Number of valid entries in aDefer[] */
  struct DeferredCsr {
    Table *pTab;        /* Table definition */
    int iCsr;           /* Cursor number for table */
    int nKey;           /* Number of PK columns for table pTab (>=1) */
  } aDefer[4];
#endif
  struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
};
#define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */

/*
** Delete all the content of a Select structure.  Deallocate the structure
** itself only if bFree is true.
*/
................................................................................
/* Forward reference */
static KeyInfo *keyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */
  int nExtra           /* Add this many extra columns to the end */
);

/*
** An instance of this object holds information (beyond pParse and pSelect)
** needed to load the next result row that is to be added to the sorter.
*/
typedef struct RowLoadInfo RowLoadInfo;
struct RowLoadInfo {
  int regResult;               /* Store results in array of registers here */
  u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  ExprList *pExtra;            /* Extra columns needed by sorter refs */
  int regExtraResult;          /* Where to load the extra columns */
#endif
};

/*
** This routine does the work of loading query data into an array of
** registers so that it can be added to the sorter.
*/
static void innerLoopLoadRow(
  Parse *pParse,             /* Statement under construction */
  Select *pSelect,           /* The query being coded */
  RowLoadInfo *pInfo         /* Info needed to complete the row load */
){
  sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
                          0, pInfo->ecelFlags);
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  if( pInfo->pExtra ){
    sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
    sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
  }
#endif
}

/*
** Code the OP_MakeRecord instruction that generates the entry to be
** added into the sorter.
**
** Return the register in which the result is stored.
*/
static int makeSorterRecord(
  Parse *pParse,
  SortCtx *pSort,
  Select *pSelect,
  int regBase,
  int nBase
){
  int nOBSat = pSort->nOBSat;
  Vdbe *v = pParse->pVdbe;
  int regOut = ++pParse->nMem;
  if( pSort->pDeferredRowLoad ){
    innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
  }
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
  return regOut;
}

/*
** Generate code that will push the record in registers regData
** through regData+nData-1 onto the sorter.
*/
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  SortCtx *pSort,        /* Information about the ORDER BY clause */
  Select *pSelect,       /* The whole SELECT statement */
  int regData,           /* First register holding data to be sorted */
  int regOrigData,       /* First register holding data before packing */
  int nData,             /* Number of elements in the regData data array */
  int nPrefixReg         /* No. of reg prior to regData available for use */
){
  Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
  int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
  int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
  int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
  int regBase;                                     /* Regs for sorter record */
  int regRecord = 0;                               /* Assembled sorter record */
  int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
  int op;                            /* Opcode to add sorter record to sorter */
  int iLimit;                        /* LIMIT counter */
  int iSkip = 0;                     /* End of the sorter insert loop */

  assert( bSeq==0 || bSeq==1 );

  /* Three cases:
  **   (1) The data to be sorted has already been packed into a Record
  **       by a prior OP_MakeRecord.  In this case nData==1 and regData
  **       will be completely unrelated to regOrigData.
  **   (2) All output columns are included in the sort record.  In that
  **       case regData==regOrigData.
  **   (3) Some output columns are omitted from the sort record due to
  **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
  **       SQLITE_ECEL_OMITREF optimization, or due to the 
  **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
  **       regOrigData is 0 to prevent this routine from trying to copy
  **       values that might not yet exist.
  */
  assert( nData==1 || regData==regOrigData || regOrigData==0 );

  if( nPrefixReg ){
    assert( nPrefixReg==nExpr+bSeq );
    regBase = regData - nPrefixReg;
  }else{
    regBase = pParse->nMem + 1;
    pParse->nMem += nBase;
  }
  assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
  iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
  pSort->labelDone = sqlite3VdbeMakeLabel(v);
................................................................................
    int regPrevKey;   /* The first nOBSat columns of the previous row */
    int addrFirst;    /* Address of the OP_IfNot opcode */
    int addrJmp;      /* Address of the OP_Jump opcode */
    VdbeOp *pOp;      /* Opcode that opens the sorter */
    int nKey;         /* Number of sorting key columns, including OP_Sequence */
    KeyInfo *pKI;     /* Original KeyInfo on the sorter table */

    regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
    regPrevKey = pParse->nMem+1;
    pParse->nMem += pSort->nOBSat;
    nKey = nExpr - pSort->nOBSat + bSeq;
    if( bSeq ){
      addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 
    }else{
      addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
................................................................................
    ** If the new record does not need to be inserted into the sorter,
    ** jump to the next iteration of the loop. Or, if the
    ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
    ** loop delivers items in sorted order, jump to the next iteration
    ** of the outer loop.
    */
    int iCsr = pSort->iECursor;


    sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
    VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
    iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
                                 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
    VdbeCoverage(v);
    sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
  }
  if( regRecord==0 ){
    regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
                       regBase+nOBSat, nBase-nOBSat);
  if( iSkip ){
    assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
    sqlite3VdbeChangeP2(v, iSkip,
         sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
................................................................................
  for(i=0; i<pEList->nExpr; i++){
    struct ExprList_item *pItem = &pEList->a[i];
    if( pItem->u.x.iOrderByCol==0 ){
      Expr *pExpr = pItem->pExpr;
      Table *pTab = pExpr->pTab;
      if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab)
       && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)



      ){
        int j;
        for(j=0; j<nDefer; j++){
          if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
        }
        if( j==nDefer ){
          if( nDefer==ArraySize(pSort->aDefer) ){
................................................................................
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;            /* True if the DISTINCT keyword is present */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iSDParm; /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */
  int nPrefixReg = 0;         /* Number of extra registers before regResult */
  RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */

  /* Usually, regResult is the first cell in an array of memory cells
  ** containing the current result row. In this case regOrig is set to the
  ** same value. However, if the results are being sent to the sorter, the
  ** values for any expressions that are also part of the sort-key are omitted
  ** from this array. In this case regOrig is set to zero.  */
  int regResult;              /* Start of memory holding current results */
................................................................................
  }else if( eDest!=SRT_Exists ){
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    ExprList *pExtra = 0;
#endif
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
    ExprList *pEList;
    if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
      ecelFlags = SQLITE_ECEL_DUP;
    }else{
      ecelFlags = 0;
    }
    if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
      /* For each expression in p->pEList that is a copy of an expression in
      ** the ORDER BY clause (pSort->pOrderBy), set the associated 
      ** iOrderByCol value to one more than the index of the ORDER BY 
      ** expression within the sort-key that pushOntoSorter() will generate.
      ** This allows the p->pEList field to be omitted from the sorted record,
      ** saving space and CPU cycles.  */
      ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);

      for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
        int j;
        if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
          p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
        }
      }
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
................................................................................
        ** composite primary keys in the SortCtx.aDefer[] array.  */
        VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
        pOp->p2 += (pExtra->nExpr - pSort->nDefer);
        pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
        pParse->nMem += pExtra->nExpr;
      }
#endif

      /* Adjust nResultCol to account for columns that are omitted
      ** from the sorter by the optimizations in this branch */
      pEList = p->pEList;
      for(i=0; i<pEList->nExpr; i++){
        if( pEList->a[i].u.x.iOrderByCol>0
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
         || pEList->a[i].bSorterRef
#endif
        ){
          nResultCol--;
          regOrig = 0;
        }
      }

      testcase( regOrig );
      testcase( eDest==SRT_Set );
      testcase( eDest==SRT_Mem );
      testcase( eDest==SRT_Coroutine );
      testcase( eDest==SRT_Output );
      assert( eDest==SRT_Set || eDest==SRT_Mem 
           || eDest==SRT_Coroutine || eDest==SRT_Output );
    }

    sRowLoadInfo.regResult = regResult;
    sRowLoadInfo.ecelFlags = ecelFlags;
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    sRowLoadInfo.pExtra = pExtra;
    sRowLoadInfo.regExtraResult = regResult + nResultCol;
    if( pExtra ) nResultCol += pExtra->nExpr;


#endif
    if( p->iLimit
     && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 
     && nPrefixReg>0
    ){

      assert( pSort!=0 );
      assert( hasDistinct==0 );
      pSort->pDeferredRowLoad = &sRowLoadInfo;
      regOrig = 0;
    }else{
      innerLoopLoadRow(pParse, p, &sRowLoadInfo);
    }

  }

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( hasDistinct ){
................................................................................
        sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
        VdbeCoverage(v);
        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
        assert( pSort==0 );
      }
#endif
      if( pSort ){
        assert( regResult==regOrig );
        pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
      }else{
        int r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
        sqlite3ReleaseTempReg(pParse, r2);
      }
................................................................................
**
**   "USE TEMP B-TREE FOR xxx"
**
** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
** is determined by the zUsage argument.
*/
static void explainTempTable(Parse *pParse, const char *zUsage){


  ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));


}

/*
** Assign expression b to lvalue a. A second, no-op, version of this macro
** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
** in sqlite3Select() to assign values to structure member variables that
** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
................................................................................

#else
/* No-op versions of the explainXXX() functions and macros. */
# define explainTempTable(y,z)
# define explainSetInteger(y,z)
#endif






































/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
................................................................................
#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );
  assert( pTabList!=0 );
................................................................................
  }

  /* Detach the ORDER BY clause from the compound SELECT */
  p->pOrderBy = 0;

  /* Store the results of the setup-query in Queue. */
  pSetup->pNext = 0;
  ExplainQueryPlan((pParse, 1, "SETUP"));
  rc = sqlite3Select(pParse, pSetup, &destQueue);
  pSetup->pNext = p;
  if( rc ) goto end_of_recursive_query;

  /* Find the next row in the Queue and output that row */
  addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);

................................................................................
  /* Execute the recursive SELECT taking the single row in Current as
  ** the value for the recursive-table. Store the results in the Queue.
  */
  if( p->selFlags & SF_Aggregate ){
    sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
  }else{
    p->pPrior = 0;
    ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
    sqlite3Select(pParse, p, &destQueue);
    assert( p->pPrior==0 );
    p->pPrior = pSetup;
  }

  /* Keep running the loop until the Queue is empty */
  sqlite3VdbeGoto(v, addrTop);
................................................................................
** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
*/
static int multiSelectValues(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){


  int nRow = 1;
  int rc = 0;
  int bShowAll = p->pLimit==0;
  assert( p->selFlags & SF_MultiValue );
  do{
    assert( p->selFlags & SF_Values );
    assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
    assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
    if( p->pPrior==0 ) break;
    assert( p->pPrior->pNext==p );
    p = p->pPrior;
    nRow += bShowAll;
  }while(1);
  ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
                    nRow==1 ? "" : "S"));
  while( p ){


    selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
    if( !bShowAll ) break;

    p->nSelectRow = nRow;
    p = p->pNext;
  }
  return rc;
}

/*
................................................................................
){
  int rc = SQLITE_OK;   /* Success code from a subroutine */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest dest;      /* Alternative data destination */
  Select *pDelete = 0;  /* Chain of simple selects to delete */
  sqlite3 *db;          /* Database connection */





  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
  */
  assert( p && p->pPrior );  /* Calling function guarantees this much */
  assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
  db = pParse->db;
................................................................................
  }else
#endif

  /* Compound SELECTs that have an ORDER BY clause are handled separately.
  */
  if( p->pOrderBy ){
    return multiSelectOrderBy(pParse, p, pDest);
  }else{

#ifndef SQLITE_OMIT_EXPLAIN
    if( pPrior->pPrior==0 ){
      ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
      ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
    }
#endif

    /* Generate code for the left and right SELECT statements.
    */
    switch( p->op ){
      case TK_ALL: {
        int addr = 0;
        int nLimit;
        assert( !pPrior->pLimit );
        pPrior->iLimit = p->iLimit;
        pPrior->iOffset = p->iOffset;
        pPrior->pLimit = p->pLimit;

        rc = sqlite3Select(pParse, pPrior, &dest);
        p->pLimit = 0;
        if( rc ){
          goto multi_select_end;
        }
        p->pPrior = 0;
        p->iLimit = pPrior->iLimit;
        p->iOffset = pPrior->iOffset;
        if( p->iLimit ){
          addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
          VdbeComment((v, "Jump ahead if LIMIT reached"));
          if( p->iOffset ){
            sqlite3VdbeAddOp3(v, OP_OffsetLimit,
                              p->iLimit, p->iOffset+1, p->iOffset);
          }
        }

        ExplainQueryPlan((pParse, 1, "UNION ALL"));
        rc = sqlite3Select(pParse, p, &dest);
        testcase( rc!=SQLITE_OK );
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
        if( pPrior->pLimit
         && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
         && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 
        ){
          p->nSelectRow = sqlite3LogEst((u64)nLimit);
        }
        if( addr ){
          sqlite3VdbeJumpHere(v, addr);
        }
        break;
      }
      case TK_EXCEPT:
      case TK_UNION: {
        int unionTab;    /* Cursor number of the temp table holding result */
        u8 op = 0;       /* One of the SRT_ operations to apply to self */
        int priorOp;     /* The SRT_ operation to apply to prior selects */
        Expr *pLimit;    /* Saved values of p->nLimit  */
        int addr;
        SelectDest uniondest;
  
        testcase( p->op==TK_EXCEPT );
        testcase( p->op==TK_UNION );
        priorOp = SRT_Union;
        if( dest.eDest==priorOp ){
          /* We can reuse a temporary table generated by a SELECT to our
          ** right.
          */
          assert( p->pLimit==0 );      /* Not allowed on leftward elements */
          unionTab = dest.iSDParm;
        }else{
          /* We will need to create our own temporary table to hold the
          ** intermediate results.
          */
          unionTab = pParse->nTab++;
          assert( p->pOrderBy==0 );
          addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
          assert( p->addrOpenEphm[0] == -1 );
          p->addrOpenEphm[0] = addr;
          findRightmost(p)->selFlags |= SF_UsesEphemeral;
          assert( p->pEList );
        }
  
        /* Code the SELECT statements to our left
        */
        assert( !pPrior->pOrderBy );
        sqlite3SelectDestInit(&uniondest, priorOp, unionTab);

        rc = sqlite3Select(pParse, pPrior, &uniondest);
        if( rc ){
          goto multi_select_end;
        }
  
        /* Code the current SELECT statement
        */
        if( p->op==TK_EXCEPT ){
          op = SRT_Except;
        }else{
          assert( p->op==TK_UNION );
          op = SRT_Union;
        }
        p->pPrior = 0;
        pLimit = p->pLimit;
        p->pLimit = 0;
        uniondest.eDest = op;

        ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
                          selectOpName(p->op)));
        rc = sqlite3Select(pParse, p, &uniondest);
        testcase( rc!=SQLITE_OK );
        /* Query flattening in sqlite3Select() might refill p->pOrderBy.
        ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
        sqlite3ExprListDelete(db, p->pOrderBy);
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        p->pOrderBy = 0;
        if( p->op==TK_UNION ){
          p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
        }
        sqlite3ExprDelete(db, p->pLimit);
        p->pLimit = pLimit;
        p->iLimit = 0;
        p->iOffset = 0;
  
        /* Convert the data in the temporary table into whatever form
        ** it is that we currently need.
        */
        assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
        if( dest.eDest!=priorOp ){
          int iCont, iBreak, iStart;
          assert( p->pEList );
          iBreak = sqlite3VdbeMakeLabel(v);
          iCont = sqlite3VdbeMakeLabel(v);
          computeLimitRegisters(pParse, p, iBreak);
          sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
          iStart = sqlite3VdbeCurrentAddr(v);
          selectInnerLoop(pParse, p, unionTab,
                          0, 0, &dest, iCont, iBreak);
          sqlite3VdbeResolveLabel(v, iCont);
          sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
          sqlite3VdbeResolveLabel(v, iBreak);
          sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
        }
        break;
      }
      default: assert( p->op==TK_INTERSECT ); {
        int tab1, tab2;
        int iCont, iBreak, iStart;
        Expr *pLimit;
        int addr;
        SelectDest intersectdest;
        int r1;
  
        /* INTERSECT is different from the others since it requires
        ** two temporary tables.  Hence it has its own case.  Begin
        ** by allocating the tables we will need.
        */
        tab1 = pParse->nTab++;
        tab2 = pParse->nTab++;
        assert( p->pOrderBy==0 );
  
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
        assert( p->addrOpenEphm[0] == -1 );
        p->addrOpenEphm[0] = addr;
        findRightmost(p)->selFlags |= SF_UsesEphemeral;
        assert( p->pEList );
  
        /* Code the SELECTs to our left into temporary table "tab1".
        */
        sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);

        rc = sqlite3Select(pParse, pPrior, &intersectdest);
        if( rc ){
          goto multi_select_end;
        }
  
        /* Code the current SELECT into temporary table "tab2"
        */
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
        assert( p->addrOpenEphm[1] == -1 );
        p->addrOpenEphm[1] = addr;
        p->pPrior = 0;
        pLimit = p->pLimit;
        p->pLimit = 0;
        intersectdest.iSDParm = tab2;

        ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
                          selectOpName(p->op)));
        rc = sqlite3Select(pParse, p, &intersectdest);
        testcase( rc!=SQLITE_OK );
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        if( p->nSelectRow>pPrior->nSelectRow ){
          p->nSelectRow = pPrior->nSelectRow;
        }
        sqlite3ExprDelete(db, p->pLimit);
        p->pLimit = pLimit;
  
        /* Generate code to take the intersection of the two temporary
        ** tables.
        */
        assert( p->pEList );
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
        r1 = sqlite3GetTempReg(pParse);
        iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
        sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
        VdbeCoverage(v);
        sqlite3ReleaseTempReg(pParse, r1);
        selectInnerLoop(pParse, p, tab1,
                        0, 0, &dest, iCont, iBreak);
        sqlite3VdbeResolveLabel(v, iCont);
        sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
        sqlite3VdbeResolveLabel(v, iBreak);
        sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
        sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
        break;
      }
    }
  

  #ifndef SQLITE_OMIT_EXPLAIN
    if( p->pNext==0 ){
      ExplainQueryPlanPop(pParse);
    }
  #endif
  }
  
  /* Compute collating sequences used by 
  ** temporary tables needed to implement the compound select.
  ** Attach the KeyInfo structure to all temporary tables.
  **
  ** This section is run by the right-most SELECT statement only.
  ** SELECT statements to the left always skip this part.  The right-most
  ** SELECT might also skip this part if it has no ORDER BY clause and
................................................................................
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */





  assert( p->pOrderBy!=0 );
  assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
  labelEnd = sqlite3VdbeMakeLabel(v);
................................................................................
  regAddrA = ++pParse->nMem;
  regAddrB = ++pParse->nMem;
  regOutA = ++pParse->nMem;
  regOutB = ++pParse->nMem;
  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);

  ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));

  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
  VdbeComment((v, "left SELECT"));
  pPrior->iLimit = regLimitA;
  ExplainQueryPlan((pParse, 1, "LEFT"));
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeEndCoroutine(v, regAddrA);
  sqlite3VdbeJumpHere(v, addr1);

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
................................................................................
  addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
  VdbeComment((v, "right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  ExplainQueryPlan((pParse, 1, "RIGHT"));
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeEndCoroutine(v, regAddrB);

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
................................................................................
    sqlite3SelectDelete(db, p->pPrior);
  }
  p->pPrior = pPrior;
  pPrior->pNext = p;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
  **** subqueries ****/
  ExplainQueryPlanPop(pParse);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)

/* An instance of the SubstContext object describes an substitution edit
................................................................................
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
    sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
        pTab->zName,
        bCover ? " USING COVERING INDEX " : "",
        bCover ? pIdx->zName : ""
    );



  }
}
#else
# define explainSimpleCount(a,b,c)
#endif

/*
................................................................................
  SortCtx sSort;         /* Info on how to code the ORDER BY clause */
  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */
  ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
  u8 minMaxFlag;                 /* Flag for min/max queries */






  db = pParse->db;
  v = sqlite3GetVdbe(pParse);
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));
#if SELECTTRACE_ENABLED



  SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
  if( sqlite3SelectTrace & 0x100 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
................................................................................
#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x104 ){
    SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif





  if( pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, p);
  }

  /* Try to various optimizations (flattening subqueries, and strength
  ** reduction of join operators) in the FROM clause up into the main query
  */
................................................................................
  /* Handle compound SELECT statements using the separate multiSelect()
  ** procedure.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);
#if SELECTTRACE_ENABLED
    SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
    if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
      sqlite3TreeViewSelect(0, p, 0);
    }
#endif
    if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
    return rc;
  }
#endif

  /* For each term in the FROM clause, do two things:
  ** (1) Authorized unreferenced tables
  ** (2) Generate code for all sub-queries
................................................................................
      int addrTop = sqlite3VdbeCurrentAddr(v)+1;
     
      pItem->regReturn = ++pParse->nMem;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
      VdbeComment((v, "%s", pItem->pTab->zName));
      pItem->addrFillSub = addrTop;
      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub));
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      pItem->fg.viaCoroutine = 1;
      pItem->regResult = dest.iSdst;
      sqlite3VdbeEndCoroutine(v, pItem->regReturn);
      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);
................................................................................
        VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }else{
        VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }
      pPrior = isSelfJoinView(pTabList, pItem);
      if( pPrior ){
        sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);

        assert( pPrior->pSelect!=0 );
        pSub->nSelectRow = pPrior->pSelect->nSelectRow;
      }else{
        sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
        ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub));
        sqlite3Select(pParse, pSub, &dest);
      }
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);
................................................................................
  */
select_end:
  sqlite3ExprListDelete(db, pMinMaxOrderBy);
  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
#if SELECTTRACE_ENABLED
  SELECTTRACE(0x1,pParse,p,("end processing\n"));
  if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif
  ExplainQueryPlanPop(pParse);
  return rc;
}

Changes to src/shell.c.in.

977
978
979
980
981
982
983
984

985
986
987
988
989
990
991
...
999
1000
1001
1002
1003
1004
1005

1006
1007
1008
1009
1010
1011
1012
....
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
....
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672



1673
1674
1675


1676
1677
1678
1679
1680
1681
1682
....
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
....
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
....
2952
2953
2954
2955
2956
2957
2958
2959

2960
2961
2962
2963
2964
2965
2966
2967
2968
....
3329
3330
3331
3332
3333
3334
3335

3336
3337
3338
3339
3340
3341
3342

3343
3344
3345
3346
3347
3348
3349
....
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
....
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585



3586

3587
3588
3589
3590
3591
3592
3593
....
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
....
5621
5622
5623
5624
5625
5626
5627

5628
5629
5630
5631
5632


5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652

5653
5654
5655
5656
5657
5658
5659
....
5778
5779
5780
5781
5782
5783
5784




























5785
5786
5787
5788
5789
5790
5791
5792
....
5881
5882
5883
5884
5885
5886
5887

5888
5889
5890
5891



5892
5893
5894
5895
5896
5897
5898
....
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
....
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
....
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
....
7938
7939
7940
7941
7942
7943
7944
7945
7946

7947
7948
7949
7950
7951

7952
7953
7954
7955
7956
7957
7958
....
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
  sqlite3expert *pExpert;
  int bVerbose;
};

/* A single line in the EQP output */
typedef struct EQPGraphRow EQPGraphRow;
struct EQPGraphRow {
  int iSelectId;        /* The SelectID for this row */

  EQPGraphRow *pNext;   /* Next row in sequence */
  char zText[1];        /* Text to display for this row */
};

/* All EQP output is collected into an instance of the following */
typedef struct EQPGraph EQPGraph;
struct EQPGraph {
................................................................................
** instance of the following structure.
*/
typedef struct ShellState ShellState;
struct ShellState {
  sqlite3 *db;           /* The database */
  u8 autoExplain;        /* Automatically turn on .explain mode */
  u8 autoEQP;            /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */

  u8 statsOn;            /* True to display memory stats before each finalize */
  u8 scanstatsOn;        /* True to display scan stats before each finalize */
  u8 openMode;           /* SHELL_OPEN_NORMAL, _APPENDVFS, or _ZIPFILE */
  u8 doXdgOpen;          /* Invoke start/open/xdg-open in output_reset() */
  u8 nEqpLevel;          /* Depth of the EQP output graph */
  unsigned mEqpLines;    /* Mask of veritical lines in the EQP output graph */
  int outCount;          /* Revert to stdout when reaching zero */
................................................................................
#endif
  ExpertInfo expert;        /* Valid if previous command was ".expert OPT..." */
};


/* Allowed values for ShellState.autoEQP
*/
#define AUTOEQP_off      0
#define AUTOEQP_on       1
#define AUTOEQP_trigger  2
#define AUTOEQP_full     3

/* Allowed values for ShellState.openMode
*/
#define SHELL_OPEN_UNSPEC     0      /* No open-mode specified */
#define SHELL_OPEN_NORMAL     1      /* Normal database file */
#define SHELL_OPEN_APPENDVFS  2      /* Use appendvfs */
#define SHELL_OPEN_ZIPFILE    3      /* Use the zipfile virtual table */
................................................................................
  }
  return 1;
}

/*
** Add a new entry to the EXPLAIN QUERY PLAN data
*/
static void eqp_append(ShellState *p, int iSelectId, const char *zText){
  EQPGraphRow *pNew;
  int nText = strlen30(zText);



  pNew = sqlite3_malloc64( sizeof(*pNew) + nText );
  if( pNew==0 ) shell_out_of_memory();
  pNew->iSelectId = iSelectId;


  memcpy(pNew->zText, zText, nText+1);
  pNew->pNext = 0;
  if( p->sGraph.pLast ){
    p->sGraph.pLast->pNext = pNew;
  }else{
    p->sGraph.pRow = pNew;
  }
................................................................................
  for(pRow = p->sGraph.pRow; pRow; pRow = pNext){
    pNext = pRow->pNext;
    sqlite3_free(pRow);
  }
  memset(&p->sGraph, 0, sizeof(p->sGraph));
}

/* Return the next EXPLAIN QUERY PLAN line with iSelectId that occurs after
** pOld, or return the first such line if pOld is NULL
*/
static EQPGraphRow *eqp_next_row(ShellState *p, int iSelectId, EQPGraphRow *pOld){
  EQPGraphRow *pRow = pOld ? pOld->pNext : p->sGraph.pRow;
  while( pRow && pRow->iSelectId!=iSelectId ) pRow = pRow->pNext;
  return pRow;
}

/* Render a single level of the graph shell having iSelectId.  Called
** recursively to render sublevels.
*/
static void eqp_render_level(ShellState *p, int iSelectId){
  EQPGraphRow *pRow, *pNext;
  int i;
  int n = strlen30(p->sGraph.zPrefix);
  char *z;
  for(pRow = eqp_next_row(p, iSelectId, 0); pRow; pRow = pNext){
    pNext = eqp_next_row(p, iSelectId, pRow);
    z = pRow->zText;
    utf8_printf(p->out, "%s%s%s\n", p->sGraph.zPrefix, pNext ? "|--" : "`--", z);
    if( n<sizeof(p->sGraph.zPrefix)-7 && (z = strstr(z, " SUBQUER"))!=0 ){
      memcpy(&p->sGraph.zPrefix[n], pNext ? "|  " : "   ", 4);
      if( strncmp(z, " SUBQUERY ", 9)==0 && (i = atoi(z+10))>iSelectId ){
        eqp_render_level(p, i);
      }else if( strncmp(z, " SUBQUERIES ", 12)==0 ){
        i = atoi(z+12);
        if( i>iSelectId ){
          utf8_printf(p->out, "%s|--SUBQUERY %d\n", p->sGraph.zPrefix, i);
          memcpy(&p->sGraph.zPrefix[n+3],"|  ",4);
          eqp_render_level(p, i);
        }
        z = strstr(z, " AND ");
        if( z && (i = atoi(z+5))>iSelectId ){
          p->sGraph.zPrefix[n+3] = 0;
          utf8_printf(p->out, "%s`--SUBQUERY %d\n", p->sGraph.zPrefix, i);
          memcpy(&p->sGraph.zPrefix[n+3],"   ",4);
          eqp_render_level(p, i);
        }
      }
      p->sGraph.zPrefix[n] = 0;
    }
  }
}

/*
** Display and reset the EXPLAIN QUERY PLAN data
................................................................................
        if( i>0 ) utf8_printf(p->out, "%s", p->colSeparator);
        utf8_printf(p->out,"%s",azArg[i] ? azArg[i] : p->nullValue);
      }
      utf8_printf(p->out, "%s", p->rowSeparator);
      break;
    }
    case MODE_EQP: {
      eqp_append(p, atoi(azArg[0]), azArg[3]);
      break;
    }
  }
  return 0;
}

/*
................................................................................
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
        }
        zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql);
        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            const char *zEQPLine = (const char*)sqlite3_column_text(pExplain,3);
            int iSelectId = sqlite3_column_int(pExplain, 0);

            if( zEQPLine[0]=='-' ) eqp_render(pArg);
            eqp_append(pArg, iSelectId, zEQPLine);
          }
          eqp_render(pArg);
        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
        if( pArg->autoEQP>=AUTOEQP_full ){
          /* Also do an EXPLAIN for ".eqp full" mode */
................................................................................
#if defined(SQLITE_HAVE_ZLIB) && !defined(SQLITE_OMIT_VIRTUALTABLE)
  ".archive ...           Manage SQL archives: \".archive --help\" for details\n"
#endif
#ifndef SQLITE_OMIT_AUTHORIZATION
  ".auth ON|OFF           Show authorizer callbacks\n"
#endif
  ".backup ?DB? FILE      Backup DB (default \"main\") to FILE\n"

  ".bail on|off           Stop after hitting an error.  Default OFF\n"
  ".binary on|off         Turn binary output on or off.  Default OFF\n"
  ".cd DIRECTORY          Change the working directory to DIRECTORY\n"
  ".changes on|off        Show number of rows changed by SQL\n"
  ".check GLOB            Fail if output since .testcase does not match\n"
  ".clone NEWDB           Clone data into NEWDB from the existing database\n"
  ".databases             List names and files of attached databases\n"

  ".dbinfo ?DB?           Show status information about the database\n"
  ".dump ?TABLE? ...      Dump the database in an SQL text format\n"
  "                         If TABLE specified, only dump tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".echo on|off           Turn command echo on or off\n"
  ".eqp on|off|full       Enable or disable automatic EXPLAIN QUERY PLAN\n"
  ".excel                 Display the output of next command in a spreadsheet\n"
................................................................................
** one of the SHELL_OPEN_* constants.
**
** If the file does not exist or is empty but its name looks like a ZIP
** archive and the dfltZip flag is true, then assume it is a ZIP archive.
** Otherwise, assume an ordinary database regardless of the filename if
** the type cannot be determined from content.
*/
static int deduceDatabaseType(const char *zName, int dfltZip){
  FILE *f = fopen(zName, "rb");
  size_t n;
  int rc = SHELL_OPEN_UNSPEC;
  char zBuf[100];
  if( f==0 ){
    if( dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ) return SHELL_OPEN_ZIPFILE;
    return SHELL_OPEN_NORMAL;
................................................................................
  }else{
    fseek(f, -22, SEEK_END);
    n = fread(zBuf, 22, 1, f);
    if( n==1 && zBuf[0]==0x50 && zBuf[1]==0x4b && zBuf[2]==0x05
       && zBuf[3]==0x06 ){
      rc = SHELL_OPEN_ZIPFILE;
    }else if( n==0 && dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ){
      return SHELL_OPEN_ZIPFILE;
    }
  }
  fclose(f);
  return rc;  
}

/*
** Make sure the database is open.  If it is not, then open it.  If
** the database fails to open, print an error message and exit.
*/
static void open_db(ShellState *p, int keepAlive){
  if( p->db==0 ){
    if( p->openMode==SHELL_OPEN_UNSPEC && access(p->zDbFilename,0)==0 ){



      p->openMode = (u8)deduceDatabaseType(p->zDbFilename, 0);

    }
    switch( p->openMode ){
      case SHELL_OPEN_APPENDVFS: {
        sqlite3_open_v2(p->zDbFilename, &p->db, 
           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, "apndvfs");
        break;
      }
................................................................................
  int nLine = strlen30(zLine);
  int i, iStart;
  sqlite3_stmt *pStmt = 0;
  char *zSql;
  char zBuf[1000];

  if( nLine>sizeof(zBuf)-30 ) return;
  if( zLine[0]=='.' ) return;
  for(i=nLine-1; i>=0 && (isalnum(zLine[i]) || zLine[i]=='_'); i--){}
  if( i==nLine-1 ) return;
  iStart = i+1;
  memcpy(zBuf, zLine, iStart);
  zSql = sqlite3_mprintf("SELECT DISTINCT candidate COLLATE nocase"
                         "  FROM completion(%Q,%Q) ORDER BY 1",
                         &zLine[iStart], zLine);
................................................................................
   || (c=='s' && n>=3 && strncmp(azArg[0], "save", n)==0)
  ){
    const char *zDestFile = 0;
    const char *zDb = 0;
    sqlite3 *pDest;
    sqlite3_backup *pBackup;
    int j;

    for(j=1; j<nArg; j++){
      const char *z = azArg[j];
      if( z[0]=='-' ){
        while( z[0]=='-' ) z++;
        /* No options to process at this time */


        {
          utf8_printf(stderr, "unknown option: %s\n", azArg[j]);
          return 1;
        }
      }else if( zDestFile==0 ){
        zDestFile = azArg[j];
      }else if( zDb==0 ){
        zDb = zDestFile;
        zDestFile = azArg[j];
      }else{
        raw_printf(stderr, "too many arguments to .backup\n");
        return 1;
      }
    }
    if( zDestFile==0 ){
      raw_printf(stderr, "missing FILENAME argument on .backup\n");
      return 1;
    }
    if( zDb==0 ) zDb = "main";
    rc = sqlite3_open(zDestFile, &pDest);

    if( rc!=SQLITE_OK ){
      utf8_printf(stderr, "Error: cannot open \"%s\"\n", zDestFile);
      sqlite3_close(pDest);
      return 1;
    }
    open_db(p, 0);
    pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb);
................................................................................
    if( zErrMsg ){
      utf8_printf(stderr,"Error: %s\n", zErrMsg);
      sqlite3_free(zErrMsg);
      rc = 1;
    }
  }else





























  if( c=='d' && strncmp(azArg[0], "dbinfo", n)==0 ){
    rc = shell_dbinfo_command(p, nArg, azArg);
  }else

  if( c=='d' && strncmp(azArg[0], "dump", n)==0 ){
    const char *zLike = 0;
    int i;
    int savedShowHeader = p->showHeader;
................................................................................
      raw_printf(stderr, "Usage: .echo on|off\n");
      rc = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "eqp", n)==0 ){
    if( nArg==2 ){

      if( strcmp(azArg[1],"full")==0 ){
        p->autoEQP = AUTOEQP_full;
      }else if( strcmp(azArg[1],"trigger")==0 ){
        p->autoEQP = AUTOEQP_trigger;



      }else{
        p->autoEQP = (u8)booleanValue(azArg[1]);
      }
    }else{
      raw_printf(stderr, "Usage: .eqp off|on|trigger|full\n");
      rc = 1;
    }
................................................................................
      raw_printf(p->out, "/* No STAT tables available */\n");
    }else{
      raw_printf(p->out, "ANALYZE sqlite_master;\n");
      sqlite3_exec(p->db, "SELECT 'ANALYZE sqlite_master'",
                   callback, &data, &zErrMsg);
      data.cMode = data.mode = MODE_Insert;
      data.zDestTable = "sqlite_stat1";
      shell_exec(p, "SELECT * FROM sqlite_stat1", &zErrMsg);
      data.zDestTable = "sqlite_stat3";
      shell_exec(p, "SELECT * FROM sqlite_stat3", &zErrMsg);
      data.zDestTable = "sqlite_stat4";
      shell_exec(p, "SELECT * FROM sqlite_stat4", &zErrMsg);
      raw_printf(p->out, "ANALYZE sqlite_master;\n");
    }
  }else

  if( c=='h' && strncmp(azArg[0], "headers", n)==0 ){
    if( nArg==2 ){
      p->showHeader = booleanValue(azArg[1]);
................................................................................
        if( strcmp(z,"debug")==0 ){
          bDebug = 1;
        }else
        {
          utf8_printf(stderr, "Unknown option \"%s\" on \"%s\"\n",
                      azArg[i], azArg[0]);
          raw_printf(stderr, "Should be one of: --schema"
                             " --sha3-224 --sha3-255 --sha3-384 --sha3-512\n");
          rc = 1;
          goto meta_command_exit;
        }
      }else if( zLike ){
        raw_printf(stderr, "Usage: .sha3sum ?OPTIONS? ?LIKE-PATTERN?\n");
        rc = 1;
        goto meta_command_exit;
................................................................................
  zSql[nSql+1] = 0;
  rc = sqlite3_complete(zSql);
  zSql[nSql] = 0;
  return rc;
}

/*
** Run a single line of SQL
*/
static int runOneSqlLine(ShellState *p, char *zSql, FILE *in, int startline){
  int rc;
  char *zErrMsg = 0;

  open_db(p, 0);
  if( ShellHasFlag(p,SHFLG_Backslash) ) resolve_backslashes(zSql);
................................................................................
      seenInterrupt = 0;
    }
    lineno++;
    if( nSql==0 && _all_whitespace(zLine) ){
      if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zLine);
      continue;
    }
    if( zLine && zLine[0]=='.' && nSql==0 ){
      if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zLine);

      rc = do_meta_command(zLine, p);
      if( rc==2 ){ /* exit requested */
        break;
      }else if( rc ){
        errCnt++;

      }
      continue;
    }
    if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){
      memcpy(zLine,";",2);
    }
    nLine = strlen30(zLine);
................................................................................
      }
    }else if( nSql && _all_whitespace(zSql) ){
      if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zSql);
      nSql = 0;
    }
  }
  if( nSql && !_all_whitespace(zSql) ){
    runOneSqlLine(p, zSql, in, startline);
  }
  free(zSql);
  free(zLine);
  return errCnt>0;
}

/*







|
>







 







>







 







|
|
|
|







 







|


>
>
>


<
>
>







 







|


|

|



|


|

<


|
|


|

<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|







 







|
>

|







 







>







>







 







|







 







|












|
>
>
>
|
>







 







|







 







>



|
|
>
>










|








|
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







 







>




>
>
>







 







|

|

|







 







|







 







|







 







|

>
|
|
|
|
|
>







 







|







977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
....
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
....
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
....
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679

1680
1681
1682
1683
1684
1685
1686
1687
1688
....
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718

1719
1720
1721
1722
1723
1724
1725
1726

1727















1728
1729
1730
1731
1732
1733
1734
....
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
....
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
....
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
....
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
....
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
....
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
....
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
....
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
....
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
....
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
....
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
....
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
....
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
....
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
  sqlite3expert *pExpert;
  int bVerbose;
};

/* A single line in the EQP output */
typedef struct EQPGraphRow EQPGraphRow;
struct EQPGraphRow {
  int iEqpId;           /* ID for this row */
  int iParentId;        /* ID of the parent row */
  EQPGraphRow *pNext;   /* Next row in sequence */
  char zText[1];        /* Text to display for this row */
};

/* All EQP output is collected into an instance of the following */
typedef struct EQPGraph EQPGraph;
struct EQPGraph {
................................................................................
** instance of the following structure.
*/
typedef struct ShellState ShellState;
struct ShellState {
  sqlite3 *db;           /* The database */
  u8 autoExplain;        /* Automatically turn on .explain mode */
  u8 autoEQP;            /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */
  u8 autoEQPtest;        /* autoEQP is in test mode */
  u8 statsOn;            /* True to display memory stats before each finalize */
  u8 scanstatsOn;        /* True to display scan stats before each finalize */
  u8 openMode;           /* SHELL_OPEN_NORMAL, _APPENDVFS, or _ZIPFILE */
  u8 doXdgOpen;          /* Invoke start/open/xdg-open in output_reset() */
  u8 nEqpLevel;          /* Depth of the EQP output graph */
  unsigned mEqpLines;    /* Mask of veritical lines in the EQP output graph */
  int outCount;          /* Revert to stdout when reaching zero */
................................................................................
#endif
  ExpertInfo expert;        /* Valid if previous command was ".expert OPT..." */
};


/* Allowed values for ShellState.autoEQP
*/
#define AUTOEQP_off      0           /* Automatic EXPLAIN QUERY PLAN is off */
#define AUTOEQP_on       1           /* Automatic EQP is on */
#define AUTOEQP_trigger  2           /* On and also show plans for triggers */
#define AUTOEQP_full     3           /* Show full EXPLAIN */

/* Allowed values for ShellState.openMode
*/
#define SHELL_OPEN_UNSPEC     0      /* No open-mode specified */
#define SHELL_OPEN_NORMAL     1      /* Normal database file */
#define SHELL_OPEN_APPENDVFS  2      /* Use appendvfs */
#define SHELL_OPEN_ZIPFILE    3      /* Use the zipfile virtual table */
................................................................................
  }
  return 1;
}

/*
** Add a new entry to the EXPLAIN QUERY PLAN data
*/
static void eqp_append(ShellState *p, int iEqpId, int p2, const char *zText){
  EQPGraphRow *pNew;
  int nText = strlen30(zText);
  if( p->autoEQPtest ){
    utf8_printf(p->out, "%d,%d,%s\n", iEqpId, p2, zText);
  }
  pNew = sqlite3_malloc64( sizeof(*pNew) + nText );
  if( pNew==0 ) shell_out_of_memory();

  pNew->iEqpId = iEqpId;
  pNew->iParentId = p2;
  memcpy(pNew->zText, zText, nText+1);
  pNew->pNext = 0;
  if( p->sGraph.pLast ){
    p->sGraph.pLast->pNext = pNew;
  }else{
    p->sGraph.pRow = pNew;
  }
................................................................................
  for(pRow = p->sGraph.pRow; pRow; pRow = pNext){
    pNext = pRow->pNext;
    sqlite3_free(pRow);
  }
  memset(&p->sGraph, 0, sizeof(p->sGraph));
}

/* Return the next EXPLAIN QUERY PLAN line with iEqpId that occurs after
** pOld, or return the first such line if pOld is NULL
*/
static EQPGraphRow *eqp_next_row(ShellState *p, int iEqpId, EQPGraphRow *pOld){
  EQPGraphRow *pRow = pOld ? pOld->pNext : p->sGraph.pRow;
  while( pRow && pRow->iParentId!=iEqpId ) pRow = pRow->pNext;
  return pRow;
}

/* Render a single level of the graph that has iEqpId as its parent.  Called
** recursively to render sublevels.
*/
static void eqp_render_level(ShellState *p, int iEqpId){
  EQPGraphRow *pRow, *pNext;

  int n = strlen30(p->sGraph.zPrefix);
  char *z;
  for(pRow = eqp_next_row(p, iEqpId, 0); pRow; pRow = pNext){
    pNext = eqp_next_row(p, iEqpId, pRow);
    z = pRow->zText;
    utf8_printf(p->out, "%s%s%s\n", p->sGraph.zPrefix, pNext ? "|--" : "`--", z);
    if( n<(int)sizeof(p->sGraph.zPrefix)-7 ){
      memcpy(&p->sGraph.zPrefix[n], pNext ? "|  " : "   ", 4);

      eqp_render_level(p, pRow->iEqpId);















      p->sGraph.zPrefix[n] = 0;
    }
  }
}

/*
** Display and reset the EXPLAIN QUERY PLAN data
................................................................................
        if( i>0 ) utf8_printf(p->out, "%s", p->colSeparator);
        utf8_printf(p->out,"%s",azArg[i] ? azArg[i] : p->nullValue);
      }
      utf8_printf(p->out, "%s", p->rowSeparator);
      break;
    }
    case MODE_EQP: {
      eqp_append(p, atoi(azArg[0]), atoi(azArg[1]), azArg[3]);
      break;
    }
  }
  return 0;
}

/*
................................................................................
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
        }
        zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql);
        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            const char *zEQPLine = (const char*)sqlite3_column_text(pExplain,3);
            int iEqpId = sqlite3_column_int(pExplain, 0);
            int iParentId = sqlite3_column_int(pExplain, 1);
            if( zEQPLine[0]=='-' ) eqp_render(pArg);
            eqp_append(pArg, iEqpId, iParentId, zEQPLine);
          }
          eqp_render(pArg);
        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
        if( pArg->autoEQP>=AUTOEQP_full ){
          /* Also do an EXPLAIN for ".eqp full" mode */
................................................................................
#if defined(SQLITE_HAVE_ZLIB) && !defined(SQLITE_OMIT_VIRTUALTABLE)
  ".archive ...           Manage SQL archives: \".archive --help\" for details\n"
#endif
#ifndef SQLITE_OMIT_AUTHORIZATION
  ".auth ON|OFF           Show authorizer callbacks\n"
#endif
  ".backup ?DB? FILE      Backup DB (default \"main\") to FILE\n"
  "                         Add \"--append\" to open using appendvfs.\n"
  ".bail on|off           Stop after hitting an error.  Default OFF\n"
  ".binary on|off         Turn binary output on or off.  Default OFF\n"
  ".cd DIRECTORY          Change the working directory to DIRECTORY\n"
  ".changes on|off        Show number of rows changed by SQL\n"
  ".check GLOB            Fail if output since .testcase does not match\n"
  ".clone NEWDB           Clone data into NEWDB from the existing database\n"
  ".databases             List names and files of attached databases\n"
  ".dbconfig ?op? ?val?   List or change sqlite3_db_config() options\n"
  ".dbinfo ?DB?           Show status information about the database\n"
  ".dump ?TABLE? ...      Dump the database in an SQL text format\n"
  "                         If TABLE specified, only dump tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".echo on|off           Turn command echo on or off\n"
  ".eqp on|off|full       Enable or disable automatic EXPLAIN QUERY PLAN\n"
  ".excel                 Display the output of next command in a spreadsheet\n"
................................................................................
** one of the SHELL_OPEN_* constants.
**
** If the file does not exist or is empty but its name looks like a ZIP
** archive and the dfltZip flag is true, then assume it is a ZIP archive.
** Otherwise, assume an ordinary database regardless of the filename if
** the type cannot be determined from content.
*/
int deduceDatabaseType(const char *zName, int dfltZip){
  FILE *f = fopen(zName, "rb");
  size_t n;
  int rc = SHELL_OPEN_UNSPEC;
  char zBuf[100];
  if( f==0 ){
    if( dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ) return SHELL_OPEN_ZIPFILE;
    return SHELL_OPEN_NORMAL;
................................................................................
  }else{
    fseek(f, -22, SEEK_END);
    n = fread(zBuf, 22, 1, f);
    if( n==1 && zBuf[0]==0x50 && zBuf[1]==0x4b && zBuf[2]==0x05
       && zBuf[3]==0x06 ){
      rc = SHELL_OPEN_ZIPFILE;
    }else if( n==0 && dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ){
      rc = SHELL_OPEN_ZIPFILE;
    }
  }
  fclose(f);
  return rc;  
}

/*
** Make sure the database is open.  If it is not, then open it.  If
** the database fails to open, print an error message and exit.
*/
static void open_db(ShellState *p, int keepAlive){
  if( p->db==0 ){
    if( p->openMode==SHELL_OPEN_UNSPEC ){
      if( p->zDbFilename==0 || p->zDbFilename[0]==0 ){
        p->openMode = SHELL_OPEN_NORMAL;
      }else if( access(p->zDbFilename,0)==0 ){
        p->openMode = (u8)deduceDatabaseType(p->zDbFilename, 0);
      }
    }
    switch( p->openMode ){
      case SHELL_OPEN_APPENDVFS: {
        sqlite3_open_v2(p->zDbFilename, &p->db, 
           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, "apndvfs");
        break;
      }
................................................................................
  int nLine = strlen30(zLine);
  int i, iStart;
  sqlite3_stmt *pStmt = 0;
  char *zSql;
  char zBuf[1000];

  if( nLine>sizeof(zBuf)-30 ) return;
  if( zLine[0]=='.' || zLine[0]=='#') return;
  for(i=nLine-1; i>=0 && (isalnum(zLine[i]) || zLine[i]=='_'); i--){}
  if( i==nLine-1 ) return;
  iStart = i+1;
  memcpy(zBuf, zLine, iStart);
  zSql = sqlite3_mprintf("SELECT DISTINCT candidate COLLATE nocase"
                         "  FROM completion(%Q,%Q) ORDER BY 1",
                         &zLine[iStart], zLine);
................................................................................
   || (c=='s' && n>=3 && strncmp(azArg[0], "save", n)==0)
  ){
    const char *zDestFile = 0;
    const char *zDb = 0;
    sqlite3 *pDest;
    sqlite3_backup *pBackup;
    int j;
    const char *zVfs = 0;
    for(j=1; j<nArg; j++){
      const char *z = azArg[j];
      if( z[0]=='-' ){
        if( z[1]=='-' ) z++;
        if( strcmp(z, "-append")==0 ){
          zVfs = "apndvfs";
        }else
        {
          utf8_printf(stderr, "unknown option: %s\n", azArg[j]);
          return 1;
        }
      }else if( zDestFile==0 ){
        zDestFile = azArg[j];
      }else if( zDb==0 ){
        zDb = zDestFile;
        zDestFile = azArg[j];
      }else{
        raw_printf(stderr, "Usage: .backup ?DB? ?--append? FILENAME\n");
        return 1;
      }
    }
    if( zDestFile==0 ){
      raw_printf(stderr, "missing FILENAME argument on .backup\n");
      return 1;
    }
    if( zDb==0 ) zDb = "main";
    rc = sqlite3_open_v2(zDestFile, &pDest, 
                  SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, zVfs);
    if( rc!=SQLITE_OK ){
      utf8_printf(stderr, "Error: cannot open \"%s\"\n", zDestFile);
      sqlite3_close(pDest);
      return 1;
    }
    open_db(p, 0);
    pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb);
................................................................................
    if( zErrMsg ){
      utf8_printf(stderr,"Error: %s\n", zErrMsg);
      sqlite3_free(zErrMsg);
      rc = 1;
    }
  }else

  if( c=='d' && n>=3 && strncmp(azArg[0], "dbconfig", n)==0 ){
    static const struct DbConfigChoices {const char *zName; int op;} aDbConfig[] = {
        { "enable_fkey",      SQLITE_DBCONFIG_ENABLE_FKEY            },
        { "enable_trigger",   SQLITE_DBCONFIG_ENABLE_TRIGGER         },
        { "fts3_tokenizer",   SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER  },
        { "load_extension",   SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION  },
        { "no_ckpt_on_close", SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE       },
        { "enable_qpsg",      SQLITE_DBCONFIG_ENABLE_QPSG            },
        { "trigger_eqp",      SQLITE_DBCONFIG_TRIGGER_EQP            },
        { "reset_database",   SQLITE_DBCONFIG_RESET_DATABASE         },
    };
    int ii, v;
    open_db(p, 0);
    for(ii=0; ii<ArraySize(aDbConfig); ii++){
      if( nArg>1 && strcmp(azArg[1], aDbConfig[ii].zName)!=0 ) continue;
      if( nArg>=3 ){
        sqlite3_db_config(p->db, aDbConfig[ii].op, booleanValue(azArg[2]), 0);
      }
      sqlite3_db_config(p->db, aDbConfig[ii].op, -1, &v);
      utf8_printf(p->out, "%18s %s\n", aDbConfig[ii].zName, v ? "on" : "off");
      if( nArg>1 ) break;
    }
    if( nArg>1 && ii==ArraySize(aDbConfig) ){
      utf8_printf(stderr, "Error: unknown dbconfig \"%s\"\n", azArg[1]);
      utf8_printf(stderr, "Enter \".dbconfig\" with no arguments for a list\n");
    }   
  }else

  if( c=='d' && n>=3 && strncmp(azArg[0], "dbinfo", n)==0 ){
    rc = shell_dbinfo_command(p, nArg, azArg);
  }else

  if( c=='d' && strncmp(azArg[0], "dump", n)==0 ){
    const char *zLike = 0;
    int i;
    int savedShowHeader = p->showHeader;
................................................................................
      raw_printf(stderr, "Usage: .echo on|off\n");
      rc = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "eqp", n)==0 ){
    if( nArg==2 ){
      p->autoEQPtest = 0;
      if( strcmp(azArg[1],"full")==0 ){
        p->autoEQP = AUTOEQP_full;
      }else if( strcmp(azArg[1],"trigger")==0 ){
        p->autoEQP = AUTOEQP_trigger;
      }else if( strcmp(azArg[1],"test")==0 ){
        p->autoEQP = AUTOEQP_on;
        p->autoEQPtest = 1;
      }else{
        p->autoEQP = (u8)booleanValue(azArg[1]);
      }
    }else{
      raw_printf(stderr, "Usage: .eqp off|on|trigger|full\n");
      rc = 1;
    }
................................................................................
      raw_printf(p->out, "/* No STAT tables available */\n");
    }else{
      raw_printf(p->out, "ANALYZE sqlite_master;\n");
      sqlite3_exec(p->db, "SELECT 'ANALYZE sqlite_master'",
                   callback, &data, &zErrMsg);
      data.cMode = data.mode = MODE_Insert;
      data.zDestTable = "sqlite_stat1";
      shell_exec(&data, "SELECT * FROM sqlite_stat1", &zErrMsg);
      data.zDestTable = "sqlite_stat3";
      shell_exec(&data, "SELECT * FROM sqlite_stat3", &zErrMsg);
      data.zDestTable = "sqlite_stat4";
      shell_exec(&data, "SELECT * FROM sqlite_stat4", &zErrMsg);
      raw_printf(p->out, "ANALYZE sqlite_master;\n");
    }
  }else

  if( c=='h' && strncmp(azArg[0], "headers", n)==0 ){
    if( nArg==2 ){
      p->showHeader = booleanValue(azArg[1]);
................................................................................
        if( strcmp(z,"debug")==0 ){
          bDebug = 1;
        }else
        {
          utf8_printf(stderr, "Unknown option \"%s\" on \"%s\"\n",
                      azArg[i], azArg[0]);
          raw_printf(stderr, "Should be one of: --schema"
                             " --sha3-224 --sha3-256 --sha3-384 --sha3-512\n");
          rc = 1;
          goto meta_command_exit;
        }
      }else if( zLike ){
        raw_printf(stderr, "Usage: .sha3sum ?OPTIONS? ?LIKE-PATTERN?\n");
        rc = 1;
        goto meta_command_exit;
................................................................................
  zSql[nSql+1] = 0;
  rc = sqlite3_complete(zSql);
  zSql[nSql] = 0;
  return rc;
}

/*
** Run a single line of SQL.  Return the number of errors.
*/
static int runOneSqlLine(ShellState *p, char *zSql, FILE *in, int startline){
  int rc;
  char *zErrMsg = 0;

  open_db(p, 0);
  if( ShellHasFlag(p,SHFLG_Backslash) ) resolve_backslashes(zSql);
................................................................................
      seenInterrupt = 0;
    }
    lineno++;
    if( nSql==0 && _all_whitespace(zLine) ){
      if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zLine);
      continue;
    }
    if( zLine && (zLine[0]=='.' || zLine[0]=='#') && nSql==0 ){
      if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zLine);
      if( zLine[0]=='.' ){
        rc = do_meta_command(zLine, p);
        if( rc==2 ){ /* exit requested */
          break;
        }else if( rc ){
          errCnt++;
        }
      }
      continue;
    }
    if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){
      memcpy(zLine,";",2);
    }
    nLine = strlen30(zLine);
................................................................................
      }
    }else if( nSql && _all_whitespace(zSql) ){
      if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zSql);
      nSql = 0;
    }
  }
  if( nSql && !_all_whitespace(zSql) ){
    errCnt += runOneSqlLine(p, zSql, in, startline);
  }
  free(zSql);
  free(zLine);
  return errCnt>0;
}

/*

Changes to src/sqlite.h.in.

2108
2109
2110
2111
2112
2113
2114















2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125

2126
2127
2128
2129
2130
2131
2132
2133
....
5505
5506
5507
5508
5509
5510
5511



































5512
5513
5514
5515
5516
5517
5518
....
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
....
7077
7078
7079
7080
7081
7082
7083




























































































































7084
7085
7086
7087
7088
7089
7090
** behavior. The first parameter passed to this operation is an integer -
** positive to enable output for trigger programs, or zero to disable it,
** or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>















** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */

#define SQLITE_DBCONFIG_MAX                   1008 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
................................................................................
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [data_store_directory pragma] should be avoided.
*/
SQLITE_EXTERN char *sqlite3_data_directory;




































/*
** CAPI3REF: Test For Auto-Commit Mode
** KEYWORDS: {autocommit mode}
** METHOD: sqlite3
**
** ^The sqlite3_get_autocommit() interface returns non-zero or
** zero if the given database connection is or is not in autocommit mode,
................................................................................
** parsing ambiguity.  For example, the statement
** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
** creates a new table named "BEGIN" with three columns named
** "REPLACE", "PRAGMA", and "END".  Nevertheless, best practice is to avoid
** using keywords as identifiers.  Common techniques used to avoid keyword
** name collisions include:
** <ul>
** <li> Put all indentifier names inside double-quotes.  This is the official
**      SQL way to escape identifier names.
** <li> Put identifier names inside &#91;...&#93;.  This is not standard SQL,
**      but it is what SQL Server does and so lots of programmers use this
**      technique.
** <li> Begin every identifier with the letter "Z" as no SQL keywords start
**      with "Z".
** <li> Include a digit somewhere in every identifier name.
................................................................................
** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option.  Also,
** new keywords may be added to future releases of SQLite.
*/
int sqlite3_keyword_count(void);
int sqlite3_keyword_name(int,const char**,int*);
int sqlite3_keyword_check(const char*,int);





























































































































/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











>
|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
....
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
....
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
....
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
** behavior. The first parameter passed to this operation is an integer -
** positive to enable output for trigger programs, or zero to disable it,
** or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>
**
** <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
** [VACUUM] in order to reset a database back to an empty database
** with no schema and no content. The following process works even for
** a badly corrupted database file:
** <ol>
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
** </ol>
** Because resetting a database is destructive and irreversible, the
** process requires the use of this obscure API and multiple steps to help
** ensure that it does not happen by accident.
** </dd>
** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */
#define SQLITE_DBCONFIG_RESET_DATABASE        1009 /* int int* */
#define SQLITE_DBCONFIG_MAX                   1009 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
................................................................................
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [data_store_directory pragma] should be avoided.
*/
SQLITE_EXTERN char *sqlite3_data_directory;

/*
** CAPI3REF: Win32 Specific Interface
**
** These interfaces are available only on Windows.  The
** [sqlite3_win32_set_directory] interface is used to set the value associated
** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to
** zValue, depending on the value of the type parameter.  The zValue parameter
** should be NULL to cause the previous value to be freed via [sqlite3_free];
** a non-NULL value will be copied into memory obtained from [sqlite3_malloc]
** prior to being used.  The [sqlite3_win32_set_directory] interface returns
** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported,
** or [SQLITE_NOMEM] if memory could not be allocated.  The value of the
** [sqlite3_data_directory] variable is intended to act as a replacement for
** the current directory on the sub-platforms of Win32 where that concept is
** not present, e.g. WinRT and UWP.  The [sqlite3_win32_set_directory8] and
** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the
** sqlite3_win32_set_directory interface except the string parameter must be
** UTF-8 or UTF-16, respectively.
*/
int sqlite3_win32_set_directory(
  unsigned long type, /* Identifier for directory being set or reset */
  void *zValue        /* New value for directory being set or reset */
);
int sqlite3_win32_set_directory8(unsigned long type, const char *zValue);
int sqlite3_win32_set_directory16(unsigned long type, const void *zValue);

/*
** CAPI3REF: Win32 Directory Types
**
** These macros are only available on Windows.  They define the allowed values
** for the type argument to the [sqlite3_win32_set_directory] interface.
*/
#define SQLITE_WIN32_DATA_DIRECTORY_TYPE  1
#define SQLITE_WIN32_TEMP_DIRECTORY_TYPE  2

/*
** CAPI3REF: Test For Auto-Commit Mode
** KEYWORDS: {autocommit mode}
** METHOD: sqlite3
**
** ^The sqlite3_get_autocommit() interface returns non-zero or
** zero if the given database connection is or is not in autocommit mode,
................................................................................
** parsing ambiguity.  For example, the statement
** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
** creates a new table named "BEGIN" with three columns named
** "REPLACE", "PRAGMA", and "END".  Nevertheless, best practice is to avoid
** using keywords as identifiers.  Common techniques used to avoid keyword
** name collisions include:
** <ul>
** <li> Put all identifier names inside double-quotes.  This is the official
**      SQL way to escape identifier names.
** <li> Put identifier names inside &#91;...&#93;.  This is not standard SQL,
**      but it is what SQL Server does and so lots of programmers use this
**      technique.
** <li> Begin every identifier with the letter "Z" as no SQL keywords start
**      with "Z".
** <li> Include a digit somewhere in every identifier name.
................................................................................
** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option.  Also,
** new keywords may be added to future releases of SQLite.
*/
int sqlite3_keyword_count(void);
int sqlite3_keyword_name(int,const char**,int*);
int sqlite3_keyword_check(const char*,int);

/*
** CAPI3REF: Dynamic String Object
** KEYWORDS: {dynamic string}
**
** An instance of the sqlite3_str object contains a dynamically-sized
** string under construction.
**
** The lifecycle of an sqlite3_str object is as follows:
** <ol>
** <li> ^The sqlite3_str object is created using [sqlite3_str_new()].
** <li> ^Text is appended to the sqlite3_str object using various
** methods, such as [sqlite3_str_appendf()].
** <li> ^The sqlite3_str object is destroyed and the string it created
** is returned using the [sqlite3_str_finish()] interface.
** </ol>
*/
typedef struct sqlite3_str sqlite3_str;

/*
** CAPI3REF: Create A New Dynamic String Object
** CONSTRUCTOR: sqlite3_str
**
** ^The [sqlite3_str_new(D)] interface allocates and initializes
** a new [sqlite3_str]
** object.  ^The [sqlite3_str_new()] interface returns NULL on an out-of-memory
** condition.  To avoid memory leaks, the object returned by
** [sqlite3_str_new()] must be freed by a subsequent call to 
** [sqlite3_str_finish(X)].
**
** The D parameter to [sqlite3_str_new(D)] may be NULL.  If the
** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum
** length of the string contained in the [sqlite3_str] object will be
** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead
** of [SQLITE_MAX_LENGTH].
*/
sqlite3_str *sqlite3_str_new(sqlite3*);

/*
** CAPI3REF: Finalize A Dynamic String
** DESTRUCTOR: sqlite3_str
**
** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X
** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()]
** that contains the constructed string.  The calling application should
** pass the returned value to [sqlite3_free()] to avoid a memory leak.
** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any
** errors were encountered during construction of the string.  ^The
** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the
** string in [sqlite3_str] object X is zero bytes long.
*/
char *sqlite3_str_finish(sqlite3_str*);

/*
** CAPI3REF: Add Content To A Dynamic String
** METHOD: sqlite3_str
**
** These interfaces add content to an sqlite3_str object previously obtained
** from [sqlite3_str_new()].
**
** ^The [sqlite3_str_appendf(X,F,...)] and 
** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf]
** functionality of SQLite to append formatted text onto the end of 
** [sqlite3_str] object X.
**
** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S
** onto the end of the [sqlite3_str] object X.  N must be non-negative.
** S must contain at least N non-zero bytes of content.  To append a
** zero-terminated string in its entirety, use the [sqlite3_str_appendall()]
** method instead.
**
** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of
** zero-terminated string S onto the end of [sqlite3_str] object X.
**
** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the
** single-byte character C onto the end of [sqlite3_str] object X.
** ^This method can be used, for example, to add whitespace indentation.
**
** ^The [sqlite3_str_reset(X)] method resets the string under construction
** inside [sqlite3_str] object X back to zero bytes in length.  
**
** These methods do not return a result code.  ^If an error occurs, that fact
** is recorded in the [sqlite3_str] object and can be recovered by a
** subsequent call to [sqlite3_str_errcode(X)].
*/
void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...);
void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list);
void sqlite3_str_append(sqlite3_str*, const char *zIn, int N);
void sqlite3_str_appendall(sqlite3_str*, const char *zIn);
void sqlite3_str_appendchar(sqlite3_str*, int N, char C);
void sqlite3_str_reset(sqlite3_str*);

/*
** CAPI3REF: Status Of A Dynamic String
** METHOD: sqlite3_str
**
** These interfaces return the current status of an [sqlite3_str] object.
**
** ^If any prior errors have occurred while constructing the dynamic string
** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return
** an appropriate error code.  ^The [sqlite3_str_errcode(X)] method returns
** [SQLITE_NOMEM] following any out-of-memory error, or
** [SQLITE_TOOBIG] if the size of the dynamic string exceeds
** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors.
**
** ^The [sqlite3_str_length(X)] method returns the current length, in bytes,
** of the dynamic string under construction in [sqlite3_str] object X.
** ^The length returned by [sqlite3_str_length(X)] does not include the
** zero-termination byte.
**
** ^The [sqlite3_str_value(X)] method returns a pointer to the current
** content of the dynamic string under construction in X.  The value
** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X
** and might be freed or altered by any subsequent method on the same
** [sqlite3_str] object.  Applications must not used the pointer returned
** [sqlite3_str_value(X)] after any subsequent method call on the same
** object.  ^Applications may change the content of the string returned
** by [sqlite3_str_value(X)] as long as they do not write into any bytes
** outside the range of 0 to [sqlite3_str_length(X)] and do not read or
** write any byte after any subsequent sqlite3_str method call.
*/
int sqlite3_str_errcode(sqlite3_str*);
int sqlite3_str_length(sqlite3_str*);
char *sqlite3_str_value(sqlite3_str*);

/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes

Changes to src/sqlite3ext.h.

291
292
293
294
295
296
297















298
299
300
301
302
303
304
...
561
562
563
564
565
566
567















568
569
570
571
572
573
574
                      sqlite3_stmt**,const void**);
  int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*));
  void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*));
  void *(*value_pointer)(sqlite3_value*,const char*);
  int (*vtab_nochange)(sqlite3_context*);
  int (*value_nochange)(sqlite3_value*);
  const char *(*vtab_collation)(sqlite3_index_info*,int);















};

/*
** This is the function signature used for all extension entry points.  It
** is also defined in the file "loadext.c".
*/
typedef int (*sqlite3_loadext_entry)(
................................................................................
#define sqlite3_bind_pointer           sqlite3_api->bind_pointer
#define sqlite3_result_pointer         sqlite3_api->result_pointer
#define sqlite3_value_pointer          sqlite3_api->value_pointer
/* Version 3.22.0 and later */
#define sqlite3_vtab_nochange          sqlite3_api->vtab_nochange
#define sqlite3_value_nochange         sqlite3_api->value_nochange
#define sqlite3_vtab_collation         sqlite3_api->vtab_collation















#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */

#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
...
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
                      sqlite3_stmt**,const void**);
  int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*));
  void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*));
  void *(*value_pointer)(sqlite3_value*,const char*);
  int (*vtab_nochange)(sqlite3_context*);
  int (*value_nochange)(sqlite3_value*);
  const char *(*vtab_collation)(sqlite3_index_info*,int);
  /* Version 3.24.0 and later */
  int (*keyword_count)(void);
  int (*keyword_name)(int,const char**,int*);
  int (*keyword_check)(const char*,int);
  sqlite3_str *(*str_new)(sqlite3*);
  char *(*str_finish)(sqlite3_str*);
  void (*str_appendf)(sqlite3_str*, const char *zFormat, ...);
  void (*str_vappendf)(sqlite3_str*, const char *zFormat, va_list);
  void (*str_append)(sqlite3_str*, const char *zIn, int N);
  void (*str_appendall)(sqlite3_str*, const char *zIn);
  void (*str_appendchar)(sqlite3_str*, int N, char C);
  void (*str_reset)(sqlite3_str*);
  int (*str_errcode)(sqlite3_str*);
  int (*str_length)(sqlite3_str*);
  char *(*str_value)(sqlite3_str*);
};

/*
** This is the function signature used for all extension entry points.  It
** is also defined in the file "loadext.c".
*/
typedef int (*sqlite3_loadext_entry)(
................................................................................
#define sqlite3_bind_pointer           sqlite3_api->bind_pointer
#define sqlite3_result_pointer         sqlite3_api->result_pointer
#define sqlite3_value_pointer          sqlite3_api->value_pointer
/* Version 3.22.0 and later */
#define sqlite3_vtab_nochange          sqlite3_api->vtab_nochange
#define sqlite3_value_nochange         sqlite3_api->value_nochange
#define sqlite3_vtab_collation         sqlite3_api->vtab_collation
/* Version 3.24.0 and later */
#define sqlite3_keyword_count          sqlite3_api->keyword_count
#define sqlite3_keyword_name           sqlite3_api->keyword_name
#define sqlite3_keyword_check          sqlite3_api->keyword_check
#define sqlite3_str_new                sqlite3_api->str_new
#define sqlite3_str_finish             sqlite3_api->str_finish
#define sqlite3_str_appendf            sqlite3_api->str_appendf
#define sqlite3_str_vappendf           sqlite3_api->str_vappendf
#define sqlite3_str_append             sqlite3_api->str_append
#define sqlite3_str_appendall          sqlite3_api->str_appendall
#define sqlite3_str_appendchar         sqlite3_api->str_appendchar
#define sqlite3_str_reset              sqlite3_api->str_reset
#define sqlite3_str_errcode            sqlite3_api->str_errcode
#define sqlite3_str_length             sqlite3_api->str_length
#define sqlite3_str_value              sqlite3_api->str_value
#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */

#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;

Changes to src/sqliteInt.h.

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
....
1503
1504
1505
1506
1507
1508
1509

1510
1511
1512
1513
1514
1515
1516
....
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
....
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
....
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
....
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
....
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
....
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
....
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
....
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
typedef struct PrintfArguments PrintfArguments;
typedef struct RowSet RowSet;
typedef struct Savepoint Savepoint;
typedef struct Select Select;
typedef struct SQLiteThread SQLiteThread;
typedef struct SelectDest SelectDest;
typedef struct SrcList SrcList;
typedef struct StrAccum StrAccum;
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TreeView TreeView;
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
................................................................................
#define SQLITE_EnableTrigger  0x00040000  /* True to enable triggers */
#define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
#define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
#define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
#define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee*/
#define SQLITE_TriggerEQP     0x01000000  /* Show trigger EXPLAIN QUERY PLAN */


#define SQLITE_NoopUpdate     0x01000000  /* UPDATE operations are no-ops */
/* Flags used only if debugging */
#ifdef SQLITE_DEBUG
#define SQLITE_SqlTrace       0x08000000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x10000000  /* Debug listings of VDBE programs */
#define SQLITE_VdbeTrace      0x20000000  /* True to trace VDBE execution */
................................................................................
      unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
      unsigned isIndexedBy :1;   /* True if there is an INDEXED BY clause */
      unsigned isTabFunc :1;     /* True if table-valued-function syntax */
      unsigned isCorrelated :1;  /* True if sub-query is correlated */
      unsigned viaCoroutine :1;  /* Implemented as a co-routine */
      unsigned isRecursive :1;   /* True for recursive reference in WITH */
    } fg;
#ifndef SQLITE_OMIT_EXPLAIN
    u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
#endif
    int iCursor;      /* The VDBE cursor number used to access this table */
    Expr *pOn;        /* The ON clause of a join */
    IdList *pUsing;   /* The USING clause of a join */
    Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
    union {
      char *zIndexedBy;    /* Identifier from "INDEXED BY <zIndex>" clause */
      ExprList *pFuncArg;  /* Arguments to table-valued-function */
................................................................................
  int iIdxCur;              /* Index of the first index cursor */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
** If there is a LIMIT clause, the parser sets nLimit to the value of the
** limit and nOffset to the value of the offset (or 0 if there is not
** offset).  But later on, nLimit and nOffset become the memory locations
** in the VDBE that record the limit and offset counters.
**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.
................................................................................
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  LogEst nSelectRow;     /* Estimated number of result rows */
  u32 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
#if SELECTTRACE_ENABLED
  char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
  u32 iSelectId;         /* EXPLAIN QUERY PLAN select ID */
#endif
  int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
................................................................................
#define SF_NestedFrom     0x00800  /* Part of a parenthesized FROM clause */
#define SF_MinMaxAgg      0x01000  /* Aggregate containing min() or max() */
#define SF_Recursive      0x02000  /* The recursive part of a recursive CTE */
#define SF_FixedLimit     0x04000  /* nSelectRow set by a constant LIMIT */
#define SF_MaybeConvert   0x08000  /* Need convertCompoundSelectToSubquery() */
#define SF_Converted      0x10000  /* By convertCompoundSelectToSubquery() */
#define SF_IncludeHidden  0x20000  /* Include hidden columns in output */
#define SF_ComplexResult  0x40000  /* Result set contains subquery or function */


/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**
**     SRT_Union       Store results as a key in a temporary index
................................................................................
  u8 explain;               /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;            /* Number of virtual tables to lock */
#endif
  int nHeight;              /* Expression tree height of current sub-select */
#ifndef SQLITE_OMIT_EXPLAIN
  int iSelectId;            /* ID of current select for EXPLAIN output */
  int iNextSelectId;        /* Next available select ID for EXPLAIN output */
#endif
  VList *pVList;            /* Mapping between variable names and numbers */
  Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
  const char *zTail;        /* All SQL text past the last semicolon parsed */
  Table *pNewTable;         /* A table being constructed by CREATE TABLE */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
................................................................................
  const Token *pName; /* Name of the container - used for error messages */
};

/*
** An objected used to accumulate the text of a string where we
** do not necessarily know how big the string will be in the end.
*/
struct StrAccum {
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zText;         /* The string collected so far */
  u32  nAlloc;         /* Amount of space allocated in zText */
  u32  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
  u32  nChar;          /* Length of the string so far */
  u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
  u8   printfFlags;    /* SQLITE_PRINTF flags below */
};
#define STRACCUM_NOMEM   1
#define STRACCUM_TOOBIG  2
#define SQLITE_PRINTF_INTERNAL 0x01  /* Internal-use-only converters allowed */
#define SQLITE_PRINTF_SQLFUNC  0x02  /* SQL function arguments to VXPrintf */
#define SQLITE_PRINTF_MALLOCED 0x04  /* True if xText is allocated space */

#define isMalloced(X)  (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)


................................................................................
*/
struct PrintfArguments {
  int nArg;                /* Total number of arguments */
  int nUsed;               /* Number of arguments used so far */
  sqlite3_value **apArg;   /* The argument values */
};

void sqlite3VXPrintf(StrAccum*, const char*, va_list);
void sqlite3XPrintf(StrAccum*, const char*, ...);
char *sqlite3MPrintf(sqlite3*,const char*, ...);
char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
  void sqlite3DebugPrintf(const char*, ...);
#endif
#if defined(SQLITE_TEST)
  void *sqlite3TestTextToPtr(const char*);
................................................................................
);
void sqlite3OomFault(sqlite3*);
void sqlite3OomClear(sqlite3*);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
void sqlite3StrAccumAppend(StrAccum*,const char*,int);
void sqlite3StrAccumAppendAll(StrAccum*,const char*);
void sqlite3AppendChar(StrAccum*,int,char);
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);

#ifndef SQLITE_OMIT_SUBQUERY







|







 







>







 







<
<
<







 







|
|
<
<
<







 







<







 







|
<







 







|
<







 







|





|


<
<







 







<
<







 







<
<
<

<







1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
....
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
....
2607
2608
2609
2610
2611
2612
2613



2614
2615
2616
2617
2618
2619
2620
....
2754
2755
2756
2757
2758
2759
2760
2761
2762



2763
2764
2765
2766
2767
2768
2769
....
2775
2776
2777
2778
2779
2780
2781

2782
2783
2784
2785
2786
2787
2788
....
2815
2816
2817
2818
2819
2820
2821
2822

2823
2824
2825
2826
2827
2828
2829
....
3085
3086
3087
3088
3089
3090
3091
3092

3093
3094
3095
3096
3097
3098
3099
....
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286


3287
3288
3289
3290
3291
3292
3293
....
3648
3649
3650
3651
3652
3653
3654


3655
3656
3657
3658
3659
3660
3661
....
4170
4171
4172
4173
4174
4175
4176



4177

4178
4179
4180
4181
4182
4183
4184
typedef struct PrintfArguments PrintfArguments;
typedef struct RowSet RowSet;
typedef struct Savepoint Savepoint;
typedef struct Select Select;
typedef struct SQLiteThread SQLiteThread;
typedef struct SelectDest SelectDest;
typedef struct SrcList SrcList;
typedef struct sqlite3_str StrAccum; /* Internal alias for sqlite3_str */
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TreeView TreeView;
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
................................................................................
#define SQLITE_EnableTrigger  0x00040000  /* True to enable triggers */
#define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
#define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
#define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
#define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee*/
#define SQLITE_TriggerEQP     0x01000000  /* Show trigger EXPLAIN QUERY PLAN */
#define SQLITE_ResetDatabase  0x02000000  /* Reset the database */

#define SQLITE_NoopUpdate     0x01000000  /* UPDATE operations are no-ops */
/* Flags used only if debugging */
#ifdef SQLITE_DEBUG
#define SQLITE_SqlTrace       0x08000000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x10000000  /* Debug listings of VDBE programs */
#define SQLITE_VdbeTrace      0x20000000  /* True to trace VDBE execution */
................................................................................
      unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
      unsigned isIndexedBy :1;   /* True if there is an INDEXED BY clause */
      unsigned isTabFunc :1;     /* True if table-valued-function syntax */
      unsigned isCorrelated :1;  /* True if sub-query is correlated */
      unsigned viaCoroutine :1;  /* Implemented as a co-routine */
      unsigned isRecursive :1;   /* True for recursive reference in WITH */
    } fg;



    int iCursor;      /* The VDBE cursor number used to access this table */
    Expr *pOn;        /* The ON clause of a join */
    IdList *pUsing;   /* The USING clause of a join */
    Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
    union {
      char *zIndexedBy;    /* Identifier from "INDEXED BY <zIndex>" clause */
      ExprList *pFuncArg;  /* Arguments to table-valued-function */
................................................................................
  int iIdxCur;              /* Index of the first index cursor */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** See the header comment on the computeLimitRegisters() routine for a
** detailed description of the meaning of the iLimit and iOffset fields.



**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.
................................................................................
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  LogEst nSelectRow;     /* Estimated number of result rows */
  u32 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
#if SELECTTRACE_ENABLED
  char zSelName[12];     /* Symbolic name of this SELECT use for debugging */

#endif
  int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
................................................................................
#define SF_NestedFrom     0x00800  /* Part of a parenthesized FROM clause */
#define SF_MinMaxAgg      0x01000  /* Aggregate containing min() or max() */
#define SF_Recursive      0x02000  /* The recursive part of a recursive CTE */
#define SF_FixedLimit     0x04000  /* nSelectRow set by a constant LIMIT */
#define SF_MaybeConvert   0x08000  /* Need convertCompoundSelectToSubquery() */
#define SF_Converted      0x10000  /* By convertCompoundSelectToSubquery() */
#define SF_IncludeHidden  0x20000  /* Include hidden columns in output */
#define SF_ComplexResult  0x40000  /* Result contains subquery or function */


/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**
**     SRT_Union       Store results as a key in a temporary index
................................................................................
  u8 explain;               /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;            /* Number of virtual tables to lock */
#endif
  int nHeight;              /* Expression tree height of current sub-select */
#ifndef SQLITE_OMIT_EXPLAIN
  int addrExplain;          /* Address of current OP_Explain opcode */

#endif
  VList *pVList;            /* Mapping between variable names and numbers */
  Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
  const char *zTail;        /* All SQL text past the last semicolon parsed */
  Table *pNewTable;         /* A table being constructed by CREATE TABLE */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
................................................................................
  const Token *pName; /* Name of the container - used for error messages */
};

/*
** An objected used to accumulate the text of a string where we
** do not necessarily know how big the string will be in the end.
*/
struct sqlite3_str {
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zText;         /* The string collected so far */
  u32  nAlloc;         /* Amount of space allocated in zText */
  u32  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
  u32  nChar;          /* Length of the string so far */
  u8   accError;       /* SQLITE_NOMEM or SQLITE_TOOBIG */
  u8   printfFlags;    /* SQLITE_PRINTF flags below */
};


#define SQLITE_PRINTF_INTERNAL 0x01  /* Internal-use-only converters allowed */
#define SQLITE_PRINTF_SQLFUNC  0x02  /* SQL function arguments to VXPrintf */
#define SQLITE_PRINTF_MALLOCED 0x04  /* True if xText is allocated space */

#define isMalloced(X)  (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)


................................................................................
*/
struct PrintfArguments {
  int nArg;                /* Total number of arguments */
  int nUsed;               /* Number of arguments used so far */
  sqlite3_value **apArg;   /* The argument values */
};



char *sqlite3MPrintf(sqlite3*,const char*, ...);
char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
  void sqlite3DebugPrintf(const char*, ...);
#endif
#if defined(SQLITE_TEST)
  void *sqlite3TestTextToPtr(const char*);
................................................................................
);
void sqlite3OomFault(sqlite3*);
void sqlite3OomClear(sqlite3*);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);



char *sqlite3StrAccumFinish(StrAccum*);

void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);

#ifndef SQLITE_OMIT_SUBQUERY

Changes to src/test1.c.

7414
7415
7416
7417
7418
7419
7420


7421
7422
7423
7424
7425
7426
7427
  } aSetting[] = {
    { "FKEY",            SQLITE_DBCONFIG_ENABLE_FKEY },
    { "TRIGGER",         SQLITE_DBCONFIG_ENABLE_TRIGGER },
    { "FTS3_TOKENIZER",  SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER },
    { "LOAD_EXTENSION",  SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION },
    { "NO_CKPT_ON_CLOSE",SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE },
    { "QPSG",            SQLITE_DBCONFIG_ENABLE_QPSG },


  };
  int i;
  int v;
  const char *zSetting;
  sqlite3 *db;

  if( objc!=4 ){







>
>







7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
  } aSetting[] = {
    { "FKEY",            SQLITE_DBCONFIG_ENABLE_FKEY },
    { "TRIGGER",         SQLITE_DBCONFIG_ENABLE_TRIGGER },
    { "FTS3_TOKENIZER",  SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER },
    { "LOAD_EXTENSION",  SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION },
    { "NO_CKPT_ON_CLOSE",SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE },
    { "QPSG",            SQLITE_DBCONFIG_ENABLE_QPSG },
    { "TRIGGER_EQP",     SQLITE_DBCONFIG_TRIGGER_EQP },
    { "RESET_DB",        SQLITE_DBCONFIG_RESET_DATABASE },
  };
  int i;
  int v;
  const char *zSetting;
  sqlite3 *db;

  if( objc!=4 ){

Changes to src/treeview.c.

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
..
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
...
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
...
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  va_list ap;
  int i;
  StrAccum acc;
  char zBuf[500];
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  if( p ){
    for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){
      sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|   " : "    ", 4);
    }
    sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
  }
  if( zFormat!=0 ){
    va_start(ap, zFormat);
    sqlite3VXPrintf(&acc, zFormat, ap);
    va_end(ap);
    assert( acc.nChar>0 );
    sqlite3StrAccumAppend(&acc, "\n", 1);
  }
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}

/*
................................................................................
  if( pWith->nCte>0 ){
    pView = sqlite3TreeViewPush(pView, 1);
    for(i=0; i<pWith->nCte; i++){
      StrAccum x;
      char zLine[1000];
      const struct Cte *pCte = &pWith->a[i];
      sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
      sqlite3XPrintf(&x, "%s", pCte->zName);
      if( pCte->pCols && pCte->pCols->nExpr>0 ){
        char cSep = '(';
        int j;
        for(j=0; j<pCte->pCols->nExpr; j++){
          sqlite3XPrintf(&x, "%c%s", cSep, pCte->pCols->a[j].zName);
          cSep = ',';
        }
        sqlite3XPrintf(&x, ")");
      }
      sqlite3XPrintf(&x, " AS");
      sqlite3StrAccumFinish(&x);
      sqlite3TreeViewItem(pView, zLine, i<pWith->nCte-1);
      sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
      sqlite3TreeViewPop(pView);
    }
    sqlite3TreeViewPop(pView);
  }
................................................................................
    sqlite3TreeViewWith(pView, p->pWith, 1);
    cnt = 1;
    sqlite3TreeViewPush(pView, 1);
  }
  do{
#if SELECTTRACE_ENABLED
    sqlite3TreeViewLine(pView,
      "SELECT%s%s (%s/%d/%p) selFlags=0x%x nSelectRow=%d",
      ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
      ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""),
      p->zSelName, p->iSelectId, p, p->selFlags,
      (int)p->nSelectRow
    );
#else
    sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p) selFlags=0x%x nSelectRow=%d",
      ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
      ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p, p->selFlags,
      (int)p->nSelectRow
................................................................................
      pView = sqlite3TreeViewPush(pView, (n--)>0);
      sqlite3TreeViewLine(pView, "FROM");
      for(i=0; i<p->pSrc->nSrc; i++){
        struct SrcList_item *pItem = &p->pSrc->a[i];
        StrAccum x;
        char zLine[100];
        sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
        sqlite3XPrintf(&x, "{%d,*}", pItem->iCursor);
        if( pItem->zDatabase ){
          sqlite3XPrintf(&x, " %s.%s", pItem->zDatabase, pItem->zName);
        }else if( pItem->zName ){
          sqlite3XPrintf(&x, " %s", pItem->zName);
        }
        if( pItem->pTab ){
          sqlite3XPrintf(&x, " tabname=%Q", pItem->pTab->zName);
        }
        if( pItem->zAlias ){
          sqlite3XPrintf(&x, " (AS %s)", pItem->zAlias);
        }
        if( pItem->fg.jointype & JT_LEFT ){
          sqlite3XPrintf(&x, " LEFT-JOIN");
        }
        sqlite3StrAccumFinish(&x);
        sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 
        if( pItem->pSelect ){
          sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
        }
        if( pItem->fg.isTabFunc ){







|

|



|


|







 







|




|


|

|







 







|


|







 







|

|

|


|


|


|







54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
..
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
...
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
...
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  va_list ap;
  int i;
  StrAccum acc;
  char zBuf[500];
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  if( p ){
    for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){
      sqlite3_str_append(&acc, p->bLine[i] ? "|   " : "    ", 4);
    }
    sqlite3_str_append(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
  }
  if( zFormat!=0 ){
    va_start(ap, zFormat);
    sqlite3_str_vappendf(&acc, zFormat, ap);
    va_end(ap);
    assert( acc.nChar>0 );
    sqlite3_str_append(&acc, "\n", 1);
  }
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}

/*
................................................................................
  if( pWith->nCte>0 ){
    pView = sqlite3TreeViewPush(pView, 1);
    for(i=0; i<pWith->nCte; i++){
      StrAccum x;
      char zLine[1000];
      const struct Cte *pCte = &pWith->a[i];
      sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
      sqlite3_str_appendf(&x, "%s", pCte->zName);
      if( pCte->pCols && pCte->pCols->nExpr>0 ){
        char cSep = '(';
        int j;
        for(j=0; j<pCte->pCols->nExpr; j++){
          sqlite3_str_appendf(&x, "%c%s", cSep, pCte->pCols->a[j].zName);
          cSep = ',';
        }
        sqlite3_str_appendf(&x, ")");
      }
      sqlite3_str_appendf(&x, " AS");
      sqlite3StrAccumFinish(&x);
      sqlite3TreeViewItem(pView, zLine, i<pWith->nCte-1);
      sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
      sqlite3TreeViewPop(pView);
    }
    sqlite3TreeViewPop(pView);
  }
................................................................................
    sqlite3TreeViewWith(pView, p->pWith, 1);
    cnt = 1;
    sqlite3TreeViewPush(pView, 1);
  }
  do{
#if SELECTTRACE_ENABLED
    sqlite3TreeViewLine(pView,
      "SELECT%s%s (%s/%p) selFlags=0x%x nSelectRow=%d",
      ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
      ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""),
      p->zSelName, p, p->selFlags,
      (int)p->nSelectRow
    );
#else
    sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p) selFlags=0x%x nSelectRow=%d",
      ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
      ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p, p->selFlags,
      (int)p->nSelectRow
................................................................................
      pView = sqlite3TreeViewPush(pView, (n--)>0);
      sqlite3TreeViewLine(pView, "FROM");
      for(i=0; i<p->pSrc->nSrc; i++){
        struct SrcList_item *pItem = &p->pSrc->a[i];
        StrAccum x;
        char zLine[100];
        sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
        sqlite3_str_appendf(&x, "{%d,*}", pItem->iCursor);
        if( pItem->zDatabase ){
          sqlite3_str_appendf(&x, " %s.%s", pItem->zDatabase, pItem->zName);
        }else if( pItem->zName ){
          sqlite3_str_appendf(&x, " %s", pItem->zName);
        }
        if( pItem->pTab ){
          sqlite3_str_appendf(&x, " tabname=%Q", pItem->pTab->zName);
        }
        if( pItem->zAlias ){
          sqlite3_str_appendf(&x, " (AS %s)", pItem->zAlias);
        }
        if( pItem->fg.jointype & JT_LEFT ){
          sqlite3_str_appendf(&x, " LEFT-JOIN");
        }
        sqlite3StrAccumFinish(&x);
        sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 
        if( pItem->pSelect ){
          sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
        }
        if( pItem->fg.isTabFunc ){

Changes to src/update.c.

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630






631
632
633
634
635
636
637
  for(i=0; i<pTab->nCol; i++){
    if( i==pTab->iPKey ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
    }else{
      j = aXRef[i];
      if( j>=0 ){
        sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i);
        if( tmask&TRIGGER_BEFORE ){
          /* Must preserve copied values even in case the original is
          ** reloaded in the After-BEFORE-trigger-reload-loop below.
          ** Ticket d85fffd6ffe856092ed8daefa811b1e399706b28 */
          sqlite3VdbeSwapOpcode(v, -1, OP_SCopy, OP_Copy);
        }
      }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){
        /* This branch loads the value of a column that will not be changed 
        ** into a register. This is done if there are no BEFORE triggers, or
        ** if there are one or more BEFORE triggers that use this value via
        ** a new.* reference in a trigger program.
        */
        testcase( i==31 );
        testcase( i==32 );
        sqlite3ExprCodeGetColumnToReg(pParse, pTab, i, iDataCur, regNew+i);






      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
      }
    }
  }

  /* Fire any BEFORE UPDATE triggers. This happens before constraints are







<
<
<
<
<
<









>
>
>
>
>
>







609
610
611
612
613
614
615






616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
  for(i=0; i<pTab->nCol; i++){
    if( i==pTab->iPKey ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
    }else{
      j = aXRef[i];
      if( j>=0 ){
        sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i);






      }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){
        /* This branch loads the value of a column that will not be changed 
        ** into a register. This is done if there are no BEFORE triggers, or
        ** if there are one or more BEFORE triggers that use this value via
        ** a new.* reference in a trigger program.
        */
        testcase( i==31 );
        testcase( i==32 );
        sqlite3ExprCodeGetColumnToReg(pParse, pTab, i, iDataCur, regNew+i);
        if( tmask & TRIGGER_BEFORE ){
          /* This value will be recomputed in After-BEFORE-trigger-reload-loop
          ** below, so make sure that it is not cached and reused.
          ** Ticket d85fffd6ffe856092ed8daefa811b1e399706b28. */
          sqlite3ExprCacheRemove(pParse, regNew+i, 1);
        }
      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
      }
    }
  }

  /* Fire any BEFORE UPDATE triggers. This happens before constraints are

Changes to src/vacuum.c.

35
36
37
38
39
40
41
42




43


44
45
46
47
48
49
50
...
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

  /* printf("SQL: [%s]\n", zSql); fflush(stdout); */
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
    const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0);
    assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 );
    assert( sqlite3_strnicmp(zSubSql,"SELECT",6)!=0 || CORRUPT_DB );




    if( zSubSql && zSubSql[0]!='S' ){


      rc = execSql(db, pzErrMsg, zSubSql);
      if( rc!=SQLITE_OK ) break;
    }
  }
  assert( rc!=SQLITE_ROW );
  if( rc==SQLITE_DONE ) rc = SQLITE_OK;
  if( rc ){
................................................................................
      " WHERE type='table'AND name<>'sqlite_sequence'"
      " AND coalesce(rootpage,1)>0",
      zDbMain
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execSqlF(db, pzErrMsg,
      "SELECT sql FROM \"%w\".sqlite_master"
      " WHERE type='index' AND length(sql)>10",
      zDbMain
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  db->init.iDb = 0;

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy







|
>
>
>
>
|
>
>







 







|







35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
...
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

  /* printf("SQL: [%s]\n", zSql); fflush(stdout); */
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
    const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0);
    assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 );
    /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX,
    ** or INSERT.  Historically there have been attacks that first
    ** corrupt the sqlite_master.sql field with other kinds of statements
    ** then run VACUUM to get those statements to execute at inappropriate
    ** times. */
    if( zSubSql
     && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0)
    ){
      rc = execSql(db, pzErrMsg, zSubSql);
      if( rc!=SQLITE_OK ) break;
    }
  }
  assert( rc!=SQLITE_ROW );
  if( rc==SQLITE_DONE ) rc = SQLITE_OK;
  if( rc ){
................................................................................
      " WHERE type='table'AND name<>'sqlite_sequence'"
      " AND coalesce(rootpage,1)>0",
      zDbMain
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execSqlF(db, pzErrMsg,
      "SELECT sql FROM \"%w\".sqlite_master"
      " WHERE type='index'",
      zDbMain
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  db->init.iDb = 0;

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy

Changes to src/vdbe.h.

193
194
195
196
197
198
199
200












201
202
203
204
205
206
207
208
209
210
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
  void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
  void sqlite3VdbeVerifyNoResultRow(Vdbe *p);
#else
# define sqlite3VdbeVerifyNoMallocRequired(A,B)
# define sqlite3VdbeVerifyNoResultRow(A)
#endif
VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno);












void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8);
void sqlite3VdbeSwapOpcode(Vdbe*, u32 addr, u8, u8);
void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u16 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
int sqlite3VdbeChangeToNoop(Vdbe*, int addr);
int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);







|
>
>
>
>
>
>
>
>
>
>
>
>


<







193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215
216
217
218
219
220
221
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
  void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
  void sqlite3VdbeVerifyNoResultRow(Vdbe *p);
#else
# define sqlite3VdbeVerifyNoMallocRequired(A,B)
# define sqlite3VdbeVerifyNoResultRow(A)
#endif
VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno);
#ifndef SQLITE_OMIT_EXPLAIN
  void sqlite3VdbeExplain(Parse*,u8,const char*,...);
  void sqlite3VdbeExplainPop(Parse*);
  int sqlite3VdbeExplainParent(Parse*);
# define ExplainQueryPlan(P)        sqlite3VdbeExplain P
# define ExplainQueryPlanPop(P)     sqlite3VdbeExplainPop(P)
# define ExplainQueryPlanParent(P)  sqlite3VdbeExplainParent(P)
#else
# define ExplainQueryPlan(P)
# define ExplainQueryPlanPop(P)
# define ExplainQueryPlanParent(P) 0
#endif
void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8);

void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u16 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
int sqlite3VdbeChangeToNoop(Vdbe*, int addr);
int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);

Changes to src/vdbeaux.c.

299
300
301
302
303
304
305











































306
307
308
309
310
311
312
...
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
....
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
....
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
....
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
  int p4type          /* P4 operand type */
){
  char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
  if( p4copy ) memcpy(p4copy, zP4, 8);
  return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
}












































/*
** Add an OP_ParseSchema opcode.  This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
** as having been used.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
................................................................................
  sqlite3VdbeGetOp(p,addr)->p3 = val;
}
void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
  assert( p->nOp>0 || p->db->mallocFailed );
  if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
}

/* Change the opcode to iNew if it was previously iOld */
void sqlite3VdbeSwapOpcode(Vdbe *p, u32 addr, u8 iOld, u8 iNew){
  VdbeOp *pOp = sqlite3VdbeGetOp(p,addr);
  if( pOp->opcode==iOld ) pOp->opcode = iNew;
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
  sqlite3VdbeChangeP2(p, addr, p->nOp);
}
................................................................................
** Translate the P4.pExpr value for an OP_CursorHint opcode into text
** that can be displayed in the P4 column of EXPLAIN output.
*/
static void displayP4Expr(StrAccum *p, Expr *pExpr){
  const char *zOp = 0;
  switch( pExpr->op ){
    case TK_STRING:
      sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
      break;
    case TK_INTEGER:
      sqlite3XPrintf(p, "%d", pExpr->u.iValue);
      break;
    case TK_NULL:
      sqlite3XPrintf(p, "NULL");
      break;
    case TK_REGISTER: {
      sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
      break;
    }
    case TK_COLUMN: {
      if( pExpr->iColumn<0 ){
        sqlite3XPrintf(p, "rowid");
      }else{
        sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
      }
      break;
    }
    case TK_LT:      zOp = "LT";      break;
    case TK_LE:      zOp = "LE";      break;
    case TK_GT:      zOp = "GT";      break;
    case TK_GE:      zOp = "GE";      break;
................................................................................
    case TK_UPLUS:   zOp = "PLUS";    break;
    case TK_BITNOT:  zOp = "BITNOT";  break;
    case TK_NOT:     zOp = "NOT";     break;
    case TK_ISNULL:  zOp = "ISNULL";  break;
    case TK_NOTNULL: zOp = "NOTNULL"; break;

    default:
      sqlite3XPrintf(p, "%s", "expr");
      break;
  }

  if( zOp ){
    sqlite3XPrintf(p, "%s(", zOp);
    displayP4Expr(p, pExpr->pLeft);
    if( pExpr->pRight ){
      sqlite3StrAccumAppend(p, ",", 1);
      displayP4Expr(p, pExpr->pRight);
    }
    sqlite3StrAccumAppend(p, ")", 1);
  }
}
#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */


#if VDBE_DISPLAY_P4
/*
................................................................................
  assert( nTemp>=20 );
  sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
  switch( pOp->p4type ){
    case P4_KEYINFO: {
      int j;
      KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
      assert( pKeyInfo->aSortOrder!=0 );
      sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField);
      for(j=0; j<pKeyInfo->nKeyField; j++){
        CollSeq *pColl = pKeyInfo->aColl[j];
        const char *zColl = pColl ? pColl->zName : "";
        if( strcmp(zColl, "BINARY")==0 ) zColl = "B";

        sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
      }
      sqlite3StrAccumAppend(&x, ")", 1);
      break;
    }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    case P4_EXPR: {
      displayP4Expr(&x, pOp->p4.pExpr);
      break;
    }
#endif
    case P4_COLLSEQ: {
      CollSeq *pColl = pOp->p4.pColl;
      sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = pOp->p4.pFunc;
      sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
    case P4_FUNCCTX: {
      FuncDef *pDef = pOp->p4.pCtx->pFunc;
      sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#endif
    case P4_INT64: {
      sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
      break;
    }
    case P4_INT32: {
      sqlite3XPrintf(&x, "%d", pOp->p4.i);
      break;
    }
    case P4_REAL: {
      sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
      break;
    }
    case P4_MEM: {
      Mem *pMem = pOp->p4.pMem;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3XPrintf(&x, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3XPrintf(&x, "%.16g", pMem->u.r);
      }else if( pMem->flags & MEM_Null ){
        zP4 = "NULL";
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3XPrintf(&x, "vtab:%p", pVtab);
      break;
    }
#endif
    case P4_INTARRAY: {
      int i;
      int *ai = pOp->p4.ai;
      int n = ai[0];   /* The first element of an INTARRAY is always the
                       ** count of the number of elements to follow */
      for(i=1; i<=n; i++){
        sqlite3XPrintf(&x, ",%d", ai[i]);
      }
      zTemp[0] = '[';
      sqlite3StrAccumAppend(&x, "]", 1);
      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3XPrintf(&x, "program");
      break;
    }
    case P4_DYNBLOB:
    case P4_ADVANCE: {
      zTemp[0] = 0;
      break;
    }
    case P4_TABLE: {
      sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
      break;
    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







<
<
<
<
<
<







 







|


|


|


|




|

|







 







|




|


|


|







 







|




>
|

|










|




|





|




|



|



|







|

|











|









|


|



|








|







299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
...
882
883
884
885
886
887
888






889
890
891
892
893
894
895
....
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
....
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
....
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
  int p4type          /* P4 operand type */
){
  char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
  if( p4copy ) memcpy(p4copy, zP4, 8);
  return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
}

#ifndef SQLITE_OMIT_EXPLAIN
/*
** Return the address of the current EXPLAIN QUERY PLAN baseline.
** 0 means "none".
*/
int sqlite3VdbeExplainParent(Parse *pParse){
  VdbeOp *pOp;
  if( pParse->addrExplain==0 ) return 0;
  pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
  return pOp->p2;
}

/*
** Add a new OP_Explain opcode.
**
** If the bPush flag is true, then make this opcode the parent for
** subsequent Explains until sqlite3VdbeExplainPop() is called.
*/
void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
  if( pParse->explain==2 ){
    char *zMsg;
    Vdbe *v = pParse->pVdbe;
    va_list ap;
    int iThis;
    va_start(ap, zFmt);
    zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
    va_end(ap);
    v = pParse->pVdbe;
    iThis = v->nOp;
    sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
                      zMsg, P4_DYNAMIC);
    if( bPush) pParse->addrExplain = iThis;
  }
}

/*
** Pop the EXPLAIN QUERY PLAN stack one level.
*/
void sqlite3VdbeExplainPop(Parse *pParse){
  pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
}
#endif /* SQLITE_OMIT_EXPLAIN */

/*
** Add an OP_ParseSchema opcode.  This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
** as having been used.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
................................................................................
  sqlite3VdbeGetOp(p,addr)->p3 = val;
}
void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
  assert( p->nOp>0 || p->db->mallocFailed );
  if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
}







/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
  sqlite3VdbeChangeP2(p, addr, p->nOp);
}
................................................................................
** Translate the P4.pExpr value for an OP_CursorHint opcode into text
** that can be displayed in the P4 column of EXPLAIN output.
*/
static void displayP4Expr(StrAccum *p, Expr *pExpr){
  const char *zOp = 0;
  switch( pExpr->op ){
    case TK_STRING:
      sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
      break;
    case TK_INTEGER:
      sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
      break;
    case TK_NULL:
      sqlite3_str_appendf(p, "NULL");
      break;
    case TK_REGISTER: {
      sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
      break;
    }
    case TK_COLUMN: {
      if( pExpr->iColumn<0 ){
        sqlite3_str_appendf(p, "rowid");
      }else{
        sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
      }
      break;
    }
    case TK_LT:      zOp = "LT";      break;
    case TK_LE:      zOp = "LE";      break;
    case TK_GT:      zOp = "GT";      break;
    case TK_GE:      zOp = "GE";      break;
................................................................................
    case TK_UPLUS:   zOp = "PLUS";    break;
    case TK_BITNOT:  zOp = "BITNOT";  break;
    case TK_NOT:     zOp = "NOT";     break;
    case TK_ISNULL:  zOp = "ISNULL";  break;
    case TK_NOTNULL: zOp = "NOTNULL"; break;

    default:
      sqlite3_str_appendf(p, "%s", "expr");
      break;
  }

  if( zOp ){
    sqlite3_str_appendf(p, "%s(", zOp);
    displayP4Expr(p, pExpr->pLeft);
    if( pExpr->pRight ){
      sqlite3_str_append(p, ",", 1);
      displayP4Expr(p, pExpr->pRight);
    }
    sqlite3_str_append(p, ")", 1);
  }
}
#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */


#if VDBE_DISPLAY_P4
/*
................................................................................
  assert( nTemp>=20 );
  sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
  switch( pOp->p4type ){
    case P4_KEYINFO: {
      int j;
      KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
      assert( pKeyInfo->aSortOrder!=0 );
      sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
      for(j=0; j<pKeyInfo->nKeyField; j++){
        CollSeq *pColl = pKeyInfo->aColl[j];
        const char *zColl = pColl ? pColl->zName : "";
        if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
        sqlite3_str_appendf(&x, ",%s%s", 
               pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
      }
      sqlite3_str_append(&x, ")", 1);
      break;
    }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    case P4_EXPR: {
      displayP4Expr(&x, pOp->p4.pExpr);
      break;
    }
#endif
    case P4_COLLSEQ: {
      CollSeq *pColl = pOp->p4.pColl;
      sqlite3_str_appendf(&x, "(%.20s)", pColl->zName);
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = pOp->p4.pFunc;
      sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
    case P4_FUNCCTX: {
      FuncDef *pDef = pOp->p4.pCtx->pFunc;
      sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#endif
    case P4_INT64: {
      sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
      break;
    }
    case P4_INT32: {
      sqlite3_str_appendf(&x, "%d", pOp->p4.i);
      break;
    }
    case P4_REAL: {
      sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
      break;
    }
    case P4_MEM: {
      Mem *pMem = pOp->p4.pMem;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_str_appendf(&x, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
      }else if( pMem->flags & MEM_Null ){
        zP4 = "NULL";
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3_str_appendf(&x, "vtab:%p", pVtab);
      break;
    }
#endif
    case P4_INTARRAY: {
      int i;
      int *ai = pOp->p4.ai;
      int n = ai[0];   /* The first element of an INTARRAY is always the
                       ** count of the number of elements to follow */
      for(i=1; i<=n; i++){
        sqlite3_str_appendf(&x, ",%d", ai[i]);
      }
      zTemp[0] = '[';
      sqlite3_str_append(&x, "]", 1);
      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3_str_appendf(&x, "program");
      break;
    }
    case P4_DYNBLOB:
    case P4_ADVANCE: {
      zTemp[0] = 0;
      break;
    }
    case P4_TABLE: {
      sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName);
      break;
    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;

Changes to src/vdbetrace.c.

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
  db = p->db;
  sqlite3StrAccumInit(&out, 0, zBase, sizeof(zBase), 
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  if( db->nVdbeExec>1 ){
    while( *zRawSql ){
      const char *zStart = zRawSql;
      while( *(zRawSql++)!='\n' && *zRawSql );
      sqlite3StrAccumAppend(&out, "-- ", 3);
      assert( (zRawSql - zStart) > 0 );
      sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart));
    }
  }else if( p->nVar==0 ){
    sqlite3StrAccumAppend(&out, zRawSql, sqlite3Strlen30(zRawSql));
  }else{
    while( zRawSql[0] ){
      n = findNextHostParameter(zRawSql, &nToken);
      assert( n>0 );
      sqlite3StrAccumAppend(&out, zRawSql, n);
      zRawSql += n;
      assert( zRawSql[0] || nToken==0 );
      if( nToken==0 ) break;
      if( zRawSql[0]=='?' ){
        if( nToken>1 ){
          assert( sqlite3Isdigit(zRawSql[1]) );
          sqlite3GetInt32(&zRawSql[1], &idx);
................................................................................
        assert( idx>0 );
      }
      zRawSql += nToken;
      nextIndex = idx + 1;
      assert( idx>0 && idx<=p->nVar );
      pVar = &p->aVar[idx-1];
      if( pVar->flags & MEM_Null ){
        sqlite3StrAccumAppend(&out, "NULL", 4);
      }else if( pVar->flags & MEM_Int ){
        sqlite3XPrintf(&out, "%lld", pVar->u.i);
      }else if( pVar->flags & MEM_Real ){
        sqlite3XPrintf(&out, "%!.15g", pVar->u.r);
      }else if( pVar->flags & MEM_Str ){
        int nOut;  /* Number of bytes of the string text to include in output */
#ifndef SQLITE_OMIT_UTF16
        u8 enc = ENC(db);
        if( enc!=SQLITE_UTF8 ){
          memset(&utf8, 0, sizeof(utf8));
          utf8.db = db;
          sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC);
          if( SQLITE_NOMEM==sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8) ){
            out.accError = STRACCUM_NOMEM;
            out.nAlloc = 0;
          }
          pVar = &utf8;
        }
#endif
        nOut = pVar->n;
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut>SQLITE_TRACE_SIZE_LIMIT ){
          nOut = SQLITE_TRACE_SIZE_LIMIT;
          while( nOut<pVar->n && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; }
        }
#endif    
        sqlite3XPrintf(&out, "'%.*q'", nOut, pVar->z);
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut<pVar->n ){
          sqlite3XPrintf(&out, "/*+%d bytes*/", pVar->n-nOut);
        }
#endif
#ifndef SQLITE_OMIT_UTF16
        if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8);
#endif
      }else if( pVar->flags & MEM_Zero ){
        sqlite3XPrintf(&out, "zeroblob(%d)", pVar->u.nZero);
      }else{
        int nOut;  /* Number of bytes of the blob to include in output */
        assert( pVar->flags & MEM_Blob );
        sqlite3StrAccumAppend(&out, "x'", 2);
        nOut = pVar->n;
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT;
#endif
        for(i=0; i<nOut; i++){
          sqlite3XPrintf(&out, "%02x", pVar->z[i]&0xff);
        }
        sqlite3StrAccumAppend(&out, "'", 1);
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut<pVar->n ){
          sqlite3XPrintf(&out, "/*+%d bytes*/", pVar->n-nOut);
        }
#endif
      }
    }
  }
  if( out.accError ) sqlite3StrAccumReset(&out);
  return sqlite3StrAccumFinish(&out);
}

#endif /* #ifndef SQLITE_OMIT_TRACE */







|

|


|




|







 







|

|

|









|












|


|






|



|





|

|


|





|




89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
  db = p->db;
  sqlite3StrAccumInit(&out, 0, zBase, sizeof(zBase), 
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  if( db->nVdbeExec>1 ){
    while( *zRawSql ){
      const char *zStart = zRawSql;
      while( *(zRawSql++)!='\n' && *zRawSql );
      sqlite3_str_append(&out, "-- ", 3);
      assert( (zRawSql - zStart) > 0 );
      sqlite3_str_append(&out, zStart, (int)(zRawSql-zStart));
    }
  }else if( p->nVar==0 ){
    sqlite3_str_append(&out, zRawSql, sqlite3Strlen30(zRawSql));
  }else{
    while( zRawSql[0] ){
      n = findNextHostParameter(zRawSql, &nToken);
      assert( n>0 );
      sqlite3_str_append(&out, zRawSql, n);
      zRawSql += n;
      assert( zRawSql[0] || nToken==0 );
      if( nToken==0 ) break;
      if( zRawSql[0]=='?' ){
        if( nToken>1 ){
          assert( sqlite3Isdigit(zRawSql[1]) );
          sqlite3GetInt32(&zRawSql[1], &idx);
................................................................................
        assert( idx>0 );
      }
      zRawSql += nToken;
      nextIndex = idx + 1;
      assert( idx>0 && idx<=p->nVar );
      pVar = &p->aVar[idx-1];
      if( pVar->flags & MEM_Null ){
        sqlite3_str_append(&out, "NULL", 4);
      }else if( pVar->flags & MEM_Int ){
        sqlite3_str_appendf(&out, "%lld", pVar->u.i);
      }else if( pVar->flags & MEM_Real ){
        sqlite3_str_appendf(&out, "%!.15g", pVar->u.r);
      }else if( pVar->flags & MEM_Str ){
        int nOut;  /* Number of bytes of the string text to include in output */
#ifndef SQLITE_OMIT_UTF16
        u8 enc = ENC(db);
        if( enc!=SQLITE_UTF8 ){
          memset(&utf8, 0, sizeof(utf8));
          utf8.db = db;
          sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC);
          if( SQLITE_NOMEM==sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8) ){
            out.accError = SQLITE_NOMEM;
            out.nAlloc = 0;
          }
          pVar = &utf8;
        }
#endif
        nOut = pVar->n;
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut>SQLITE_TRACE_SIZE_LIMIT ){
          nOut = SQLITE_TRACE_SIZE_LIMIT;
          while( nOut<pVar->n && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; }
        }
#endif    
        sqlite3_str_appendf(&out, "'%.*q'", nOut, pVar->z);
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut<pVar->n ){
          sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut);
        }
#endif
#ifndef SQLITE_OMIT_UTF16
        if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8);
#endif
      }else if( pVar->flags & MEM_Zero ){
        sqlite3_str_appendf(&out, "zeroblob(%d)", pVar->u.nZero);
      }else{
        int nOut;  /* Number of bytes of the blob to include in output */
        assert( pVar->flags & MEM_Blob );
        sqlite3_str_append(&out, "x'", 2);
        nOut = pVar->n;
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT;
#endif
        for(i=0; i<nOut; i++){
          sqlite3_str_appendf(&out, "%02x", pVar->z[i]&0xff);
        }
        sqlite3_str_append(&out, "'", 1);
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut<pVar->n ){
          sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut);
        }
#endif
      }
    }
  }
  if( out.accError ) sqlite3_str_reset(&out);
  return sqlite3StrAccumFinish(&out);
}

#endif /* #ifndef SQLITE_OMIT_TRACE */

Changes to src/where.c.

2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872


2873
2874
2875
2876
2877
2878
2879
....
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010


4011
4012
4013

4014
4015
4016
4017
4018
4019
4020
....
4588
4589
4590
4591
4592
4593
4594

4595
4596
4597
4598
4599
4600
4601
....
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
        pNew->nSkip = 0;
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** estimated to be X*N*log2(N) where N is the number of rows in
        ** the table being indexed and where X is 7 (LogEst=28) for normal
        ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
        ** of X is smaller for views and subqueries so that the query planner
        ** will be more aggressive about generating automatic indexes for
        ** those objects, since there is no opportunity to add schema
        ** indexes on subqueries and views. */
        pNew->rSetup = rLogSize + rSize + 4;
        if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
          pNew->rSetup += 24;


        }
        ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
        if( pNew->rSetup<0 ) pNew->rSetup = 0;
        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowing how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
................................................................................
        LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
        i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
        Bitmask maskNew;                  /* Mask of src visited by (..) */
        Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */

        if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
        if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
        if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){
          /* Do not use an automatic index if the this loop is expected
          ** to run less than 2 times. */


          assert( 10==sqlite3LogEst(2) );
          continue;
        }

        /* At this point, pWLoop is a candidate to be the next loop. 
        ** Compute its cost */
        rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
        rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
        nOut = pFrom->nRow + pWLoop->nOut;
        maskNew = pFrom->maskLoop | pWLoop->maskSelf;
        if( isOrdered<0 ){
................................................................................
  /* Special case: No FROM clause
  */
  if( nTabList==0 ){
    if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
    if( wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }

  }else{
    /* Assign a bit from the bitmask to every term in the FROM clause.
    **
    ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
    **
    ** The rule of the previous sentence ensures thta if X is the bitmask for
    ** a table T, then X-1 is the bitmask for all other tables to the left of T.
................................................................................
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC,
                &pTabList->a[pLevel->iFrom], notReady, pLevel);
      if( db->mallocFailed ) goto whereBeginError;
    }
#endif
    addrExplain = sqlite3WhereExplainOneScan(
        pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
    );
    pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
    notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;
    if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
      sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
    }







|




|

|
>
>







 







|

|
>
>



>







 







>







 







|







2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
....
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
....
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
....
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
        pNew->nSkip = 0;
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** estimated to be X*N*log2(N) where N is the number of rows in
        ** the table being indexed and where X is 7 (LogEst=28) for normal
        ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
        ** of X is smaller for views and subqueries so that the query planner
        ** will be more aggressive about generating automatic indexes for
        ** those objects, since there is no opportunity to add schema
        ** indexes on subqueries and views. */
        pNew->rSetup = rLogSize + rSize;
        if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
          pNew->rSetup += 28;
        }else{
          pNew->rSetup -= 10;
        }
        ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
        if( pNew->rSetup<0 ) pNew->rSetup = 0;
        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowing how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
................................................................................
        LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
        i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
        Bitmask maskNew;                  /* Mask of src visited by (..) */
        Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */

        if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
        if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
        if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
          /* Do not use an automatic index if the this loop is expected
          ** to run less than 1.25 times.  It is tempting to also exclude
          ** automatic index usage on an outer loop, but sometimes an automatic
          ** index is useful in the outer loop of a correlated subquery. */
          assert( 10==sqlite3LogEst(2) );
          continue;
        }

        /* At this point, pWLoop is a candidate to be the next loop. 
        ** Compute its cost */
        rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
        rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
        nOut = pFrom->nRow + pWLoop->nOut;
        maskNew = pFrom->maskLoop | pWLoop->maskSelf;
        if( isOrdered<0 ){
................................................................................
  /* Special case: No FROM clause
  */
  if( nTabList==0 ){
    if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
    if( wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
    ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
  }else{
    /* Assign a bit from the bitmask to every term in the FROM clause.
    **
    ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
    **
    ** The rule of the previous sentence ensures thta if X is the bitmask for
    ** a table T, then X-1 is the bitmask for all other tables to the left of T.
................................................................................
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC,
                &pTabList->a[pLevel->iFrom], notReady, pLevel);
      if( db->mallocFailed ) goto whereBeginError;
    }
#endif
    addrExplain = sqlite3WhereExplainOneScan(
        pParse, pTabList, pLevel, wctrlFlags
    );
    pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
    notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;
    if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
      sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
    }

Changes to src/whereInt.h.

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

/* wherecode.c: */
#ifndef SQLITE_OMIT_EXPLAIN
int sqlite3WhereExplainOneScan(
  Parse *pParse,                  /* Parse context */
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
);
#else
# define sqlite3WhereExplainOneScan(u,v,w,x,y,z) 0
#endif /* SQLITE_OMIT_EXPLAIN */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
void sqlite3WhereAddScanStatus(
  Vdbe *v,                        /* Vdbe to add scanstatus entry to */
  SrcList *pSrclist,              /* FROM clause pLvl reads data from */
  WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
  int addrExplain                 /* Address of OP_Explain (or 0) */







<
<



|







463
464
465
466
467
468
469


470
471
472
473
474
475
476
477
478
479
480

/* wherecode.c: */
#ifndef SQLITE_OMIT_EXPLAIN
int sqlite3WhereExplainOneScan(
  Parse *pParse,                  /* Parse context */
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */


  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
);
#else
# define sqlite3WhereExplainOneScan(u,v,w,x) 0
#endif /* SQLITE_OMIT_EXPLAIN */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
void sqlite3WhereAddScanStatus(
  Vdbe *v,                        /* Vdbe to add scanstatus entry to */
  SrcList *pSrclist,              /* FROM clause pLvl reads data from */
  WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
  int addrExplain                 /* Address of OP_Explain (or 0) */

Changes to src/wherecode.c.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
..
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
...
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
...
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
...
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217

218
219
220
221
222
223
224
....
1930
1931
1932
1933
1934
1935
1936

1937
1938
1939
1940
1941
1942
1943
....
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
....
2050
2051
2052
2053
2054
2055
2056

2057
2058
2059
2060
2061
2062
2063
  int iTerm,                  /* Zero-based index of first term. */
  int bAnd,                   /* Non-zero to append " AND " */
  const char *zOp             /* Name of the operator */
){
  int i;

  assert( nTerm>=1 );
  if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);

  if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
  for(i=0; i<nTerm; i++){
    if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
    sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
  }
  if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);

  sqlite3StrAccumAppend(pStr, zOp, 1);

  if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
  for(i=0; i<nTerm; i++){
    if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
    sqlite3StrAccumAppend(pStr, "?", 1);
  }
  if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
}

/*
** Argument pLevel describes a strategy for scanning table pTab. This 
** function appends text to pStr that describes the subset of table
** rows scanned by the strategy in the form of an SQL expression.
**
................................................................................
static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
  Index *pIndex = pLoop->u.btree.pIndex;
  u16 nEq = pLoop->u.btree.nEq;
  u16 nSkip = pLoop->nSkip;
  int i, j;

  if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
  sqlite3StrAccumAppend(pStr, " (", 2);
  for(i=0; i<nEq; i++){
    const char *z = explainIndexColumnName(pIndex, i);
    if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
    sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
    i = 1;
  }
  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
    explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
  }
  sqlite3StrAccumAppend(pStr, ")", 1);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 
** is added to the output to describe the table scan strategy in pLevel.
................................................................................
** If an OP_Explain opcode is added to the VM, its address is returned.
** Otherwise, if no OP_Explain is coded, zero is returned.
*/
int sqlite3WhereExplainOneScan(
  Parse *pParse,                  /* Parse context */
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  int ret = 0;
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
  if( sqlite3ParseToplevel(pParse)->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

................................................................................
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
    if( pItem->pSelect ){
      sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
    }else{
      sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
    }

    if( pItem->zAlias ){
      sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
    }
    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
      const char *zFmt = 0;
      Index *pIdx;

      assert( pLoop->u.btree.pIndex!=0 );
      pIdx = pLoop->u.btree.pIndex;
................................................................................
        zFmt = "AUTOMATIC COVERING INDEX";
      }else if( flags & WHERE_IDX_ONLY ){
        zFmt = "COVERING INDEX %s";
      }else{
        zFmt = "INDEX %s";
      }
      if( zFmt ){
        sqlite3StrAccumAppend(&str, " USING ", 7);
        sqlite3XPrintf(&str, zFmt, pIdx->zName);
        explainIndexRange(&str, pLoop);
      }
    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
      const char *zRangeOp;
      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
        zRangeOp = "=";
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
................................................................................
        zRangeOp = ">? AND rowid<";
      }else if( flags&WHERE_BTM_LIMIT ){
        zRangeOp = ">";
      }else{
        assert( flags&WHERE_TOP_LIMIT);
        zRangeOp = "<";
      }

      sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
      sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
    }
#endif
#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
    if( pLoop->nOut>=10 ){

      sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);

  }
  return ret;
}
#endif /* SQLITE_OMIT_EXPLAIN */

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
................................................................................
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int jmp1 = 0;                   /* Address of jump operation */
        assert( (pTabItem[0].fg.jointype & JT_LEFT)==0 
................................................................................
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          int addrExplain = sqlite3WhereExplainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);

          /* This is the sub-WHERE clause body.  First skip over
          ** duplicate rows from prior sub-WHERE clauses, and record the
          ** rowid (or PRIMARY KEY) for the current row so that the same
          ** row will be skipped in subsequent sub-WHERE clauses.
................................................................................
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }

    pLevel->u.pCovidx = pCov;
    if( pCov ) pLevel->iIdxCur = iCovCur;
    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));







|

|

|
|

|

|

|

|
|

|







 







|


|
|










|







 







<
<










<







 







|

|

|



|







 







|
|







 







>
|



|





>
|

|



|
>







 







>







 







|







 







>







47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
..
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
118
119
120
121
122
123
124


125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
...
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
...
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
...
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
....
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
....
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
....
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
  int iTerm,                  /* Zero-based index of first term. */
  int bAnd,                   /* Non-zero to append " AND " */
  const char *zOp             /* Name of the operator */
){
  int i;

  assert( nTerm>=1 );
  if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);

  if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
  for(i=0; i<nTerm; i++){
    if( i ) sqlite3_str_append(pStr, ",", 1);
    sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
  }
  if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);

  sqlite3_str_append(pStr, zOp, 1);

  if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
  for(i=0; i<nTerm; i++){
    if( i ) sqlite3_str_append(pStr, ",", 1);
    sqlite3_str_append(pStr, "?", 1);
  }
  if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
}

/*
** Argument pLevel describes a strategy for scanning table pTab. This 
** function appends text to pStr that describes the subset of table
** rows scanned by the strategy in the form of an SQL expression.
**
................................................................................
static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
  Index *pIndex = pLoop->u.btree.pIndex;
  u16 nEq = pLoop->u.btree.nEq;
  u16 nSkip = pLoop->nSkip;
  int i, j;

  if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
  sqlite3_str_append(pStr, " (", 2);
  for(i=0; i<nEq; i++){
    const char *z = explainIndexColumnName(pIndex, i);
    if( i ) sqlite3_str_append(pStr, " AND ", 5);
    sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
    i = 1;
  }
  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
    explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
  }
  sqlite3_str_append(pStr, ")", 1);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 
** is added to the output to describe the table scan strategy in pLevel.
................................................................................
** If an OP_Explain opcode is added to the VM, its address is returned.
** Otherwise, if no OP_Explain is coded, zero is returned.
*/
int sqlite3WhereExplainOneScan(
  Parse *pParse,                  /* Parse context */
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */


  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  int ret = 0;
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
  if( sqlite3ParseToplevel(pParse)->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */

    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

................................................................................
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
    if( pItem->pSelect ){
      sqlite3_str_appendf(&str, " SUBQUERY 0x%p", pItem->pSelect);
    }else{
      sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
    }

    if( pItem->zAlias ){
      sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
    }
    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
      const char *zFmt = 0;
      Index *pIdx;

      assert( pLoop->u.btree.pIndex!=0 );
      pIdx = pLoop->u.btree.pIndex;
................................................................................
        zFmt = "AUTOMATIC COVERING INDEX";
      }else if( flags & WHERE_IDX_ONLY ){
        zFmt = "COVERING INDEX %s";
      }else{
        zFmt = "INDEX %s";
      }
      if( zFmt ){
        sqlite3_str_append(&str, " USING ", 7);
        sqlite3_str_appendf(&str, zFmt, pIdx->zName);
        explainIndexRange(&str, pLoop);
      }
    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
      const char *zRangeOp;
      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
        zRangeOp = "=";
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
................................................................................
        zRangeOp = ">? AND rowid<";
      }else if( flags&WHERE_BTM_LIMIT ){
        zRangeOp = ">";
      }else{
        assert( flags&WHERE_TOP_LIMIT);
        zRangeOp = "<";
      }
      sqlite3_str_appendf(&str, 
          " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
      sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
    }
#endif
#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
    if( pLoop->nOut>=10 ){
      sqlite3_str_appendf(&str, " (~%llu rows)",
             sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3_str_append(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
                            pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
  }
  return ret;
}
#endif /* SQLITE_OMIT_EXPLAIN */

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
................................................................................
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
    ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int jmp1 = 0;                   /* Address of jump operation */
        assert( (pTabItem[0].fg.jointype & JT_LEFT)==0 
................................................................................
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          int addrExplain = sqlite3WhereExplainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], 0
          );
          sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);

          /* This is the sub-WHERE clause body.  First skip over
          ** duplicate rows from prior sub-WHERE clauses, and record the
          ** rowid (or PRIMARY KEY) for the current row so that the same
          ** row will be skipped in subsequent sub-WHERE clauses.
................................................................................
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }
    ExplainQueryPlanPop(pParse);
    pLevel->u.pCovidx = pCov;
    if( pCov ) pLevel->iIdxCur = iCovCur;
    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));

Changes to test/analyze3.test.

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
...
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
...
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
...
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
...
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

# The first of the following two SELECT statements visits 99 rows. So
# it is better to use the index. But the second visits every row in 
# the table (1000 in total) so it is better to do a full-table scan.
#
do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SCAN TABLE t1}}

# 2017-06-26:  Verify that the SQLITE_DBCONFIG_ENABLE_QPSG setting disables
# the use of bound parameters by STAT4
#
db cache flush
unset -nocomplain l
unset -nocomplain u
do_eqp_test analyze3-1.1.3.100 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
set l 200
set u 300
do_eqp_test analyze3-1.1.3.101 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
set l 0
set u 1100
do_eqp_test analyze3-1.1.3.102 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SCAN TABLE t1}}
db cache flush
sqlite3_db_config db ENABLE_QPSG 1
do_eqp_test analyze3-1.1.3.103 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
db cache flush
sqlite3_db_config db ENABLE_QPSG 0
do_eqp_test analyze3-1.1.3.104 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {0 0 0 {SCAN TABLE t1}}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
} {}
do_execsql_test analyze3-2.1.x {
  SELECT count(*) FROM t2 WHERE x>1 AND x<2;
  SELECT count(*) FROM t2 WHERE x>0 AND x<99;
} {200 990}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)}}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {0 0 0 {SCAN TABLE t2}}

do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
................................................................................
} {}
do_execsql_test analyze3-1.3.x {
  SELECT count(*) FROM t3 WHERE x>200 AND x<300;
  SELECT count(*) FROM t3 WHERE x>0 AND x<1100
} {99 1000}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)}}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {0 0 0 {SCAN TABLE t3}}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)}}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1}}

# Return the first argument if like_match_blobs is true (the default)
# or the second argument if not
#
proc ilmb {a b} {
  ifcapable like_match_blobs {return $a}
  return $b
................................................................................
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_eqp_test analyze3-6-3 {
  SELECT * FROM t1 WHERE a = 5 AND c = 13;
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}}

do_eqp_test analyze3-6-2 {
  SELECT * FROM t1 WHERE a = 5 AND b > 'w' AND c = 13;
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}}

#-----------------------------------------------------------------------------
# 2015-04-20.
# Memory leak in sqlite3Stat4ProbeFree().  (Discovered while fuzzing.)
#
do_execsql_test analyze-7.1 {
  DROP TABLE IF EXISTS t1;







|


|









|




|




|




|




|







 







|


|







 







|


|







 







|


|







 







|



|







114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
...
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
...
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
...
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
...
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

# The first of the following two SELECT statements visits 99 rows. So
# it is better to use the index. But the second visits every row in 
# the table (1000 in total) so it is better to do a full-table scan.
#
do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {SCAN TABLE t1}

# 2017-06-26:  Verify that the SQLITE_DBCONFIG_ENABLE_QPSG setting disables
# the use of bound parameters by STAT4
#
db cache flush
unset -nocomplain l
unset -nocomplain u
do_eqp_test analyze3-1.1.3.100 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}
set l 200
set u 300
do_eqp_test analyze3-1.1.3.101 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}
set l 0
set u 1100
do_eqp_test analyze3-1.1.3.102 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SCAN TABLE t1}
db cache flush
sqlite3_db_config db ENABLE_QPSG 1
do_eqp_test analyze3-1.1.3.103 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}
db cache flush
sqlite3_db_config db ENABLE_QPSG 0
do_eqp_test analyze3-1.1.3.104 {
  SELECT sum(y) FROM t1 WHERE x>$l AND x<$u
} {SCAN TABLE t1}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
} {}
do_execsql_test analyze3-2.1.x {
  SELECT count(*) FROM t2 WHERE x>1 AND x<2;
  SELECT count(*) FROM t2 WHERE x>0 AND x<99;
} {200 990}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {SCAN TABLE t2}

do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
................................................................................
} {}
do_execsql_test analyze3-1.3.x {
  SELECT count(*) FROM t3 WHERE x>200 AND x<300;
  SELECT count(*) FROM t3 WHERE x>0 AND x<1100
} {99 1000}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {SCAN TABLE t3}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {SCAN TABLE t1}

# Return the first argument if like_match_blobs is true (the default)
# or the second argument if not
#
proc ilmb {a b} {
  ifcapable like_match_blobs {return $a}
  return $b
................................................................................
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_eqp_test analyze3-6-3 {
  SELECT * FROM t1 WHERE a = 5 AND c = 13;
} {SEARCH TABLE t1 USING INDEX i2 (c=?)}

do_eqp_test analyze3-6-2 {
  SELECT * FROM t1 WHERE a = 5 AND b > 'w' AND c = 13;
} {SEARCH TABLE t1 USING INDEX i2 (c=?)}

#-----------------------------------------------------------------------------
# 2015-04-20.
# Memory leak in sqlite3Stat4ProbeFree().  (Discovered while fuzzing.)
#
do_execsql_test analyze-7.1 {
  DROP TABLE IF EXISTS t1;

Changes to test/analyze4.test.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    INSERT INTO t1 SELECT a+32, b FROM t1;
    INSERT INTO t1 SELECT a+64, b FROM t1;
    ANALYZE;
  }

  # Should choose the t1a index since it is more specific than t1b.
  db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

# Verify that the t1b index shows that it does not narrow down the
# search any at all.
#
do_test analyze4-1.1 {
  db eval {
    SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx;







|







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    INSERT INTO t1 SELECT a+32, b FROM t1;
    INSERT INTO t1 SELECT a+64, b FROM t1;
    ANALYZE;
  }

  # Should choose the t1a index since it is more specific than t1b.
  db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}

# Verify that the t1b index shows that it does not narrow down the
# search any at all.
#
do_test analyze4-1.1 {
  db eval {
    SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx;

Changes to test/analyze6.test.

57
58
59
60
61
62
63
64
65
66
67
68
69
70



71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# The lowest cost plan is to scan CAT and for each integer there, do a single
# lookup of the first corresponding entry in EV then read off the equal values
# in EV.  (Prior to the 2011-03-04 enhancement to where.c, this query would
# have used EV for the outer loop instead of CAT - which was about 3x slower.)
#
do_test analyze6-1.1 {
  eqp {SELECT count(*) FROM ev, cat WHERE x=y}
} {0 0 1 {SCAN TABLE cat USING COVERING INDEX catx} 0 1 0 {SEARCH TABLE ev USING COVERING INDEX evy (y=?)}}

# The same plan is chosen regardless of the order of the tables in the
# FROM clause.
#
do_test analyze6-1.2 {
  eqp {SELECT count(*) FROM cat, ev WHERE x=y}



} {0 0 0 {SCAN TABLE cat USING COVERING INDEX catx} 0 1 1 {SEARCH TABLE ev USING COVERING INDEX evy (y=?)}}



# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3),(2,3,4),(3,4,5);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}

finish_test







|




|
|
>
>
>
|
>













|


|


|






|


|


|









|


|


|


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# The lowest cost plan is to scan CAT and for each integer there, do a single
# lookup of the first corresponding entry in EV then read off the equal values
# in EV.  (Prior to the 2011-03-04 enhancement to where.c, this query would
# have used EV for the outer loop instead of CAT - which was about 3x slower.)
#
do_test analyze6-1.1 {
  eqp {SELECT count(*) FROM ev, cat WHERE x=y}
} {/*SCAN TABLE cat USING COVERING INDEX catx*SEARCH TABLE ev USING COVERING INDEX evy (y=?)*/}

# The same plan is chosen regardless of the order of the tables in the
# FROM clause.
#
do_eqp_test analyze6-1.2 {
  SELECT count(*) FROM cat, ev WHERE x=y
} {
  QUERY PLAN
  |--SCAN TABLE cat USING COVERING INDEX catx
  `--SEARCH TABLE ev USING COVERING INDEX evy (y=?)
}


# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3),(2,3,4),(3,4,5);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {/*SEARCH TABLE t201 USING INDEX t201z (z=?)*/}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {/*SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)*/}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {/*SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)*/}

finish_test

Changes to test/analyze7.test.

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1 SELECT value, value, value/100, value FROM nums
                    WHERE value BETWEEN 1 AND 256;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
ifcapable stat4||stat3 {
  # If ENABLE_STAT4 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
} else {
  # If ENABLE_STAT4 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

ifcapable {!stat4 && !stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)}}

finish_test







|


|


|









|


|


|






|








|


|


|





|





|



|




|


|



|


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1 SELECT value, value, value/100, value FROM nums
                    WHERE value BETWEEN 1 AND 256;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}
ifcapable stat4||stat3 {
  # If ENABLE_STAT4 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}
} else {
  # If ENABLE_STAT4 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {/*SEARCH TABLE t1 USING INDEX t1cd (c=?)*/}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}

ifcapable {!stat4 && !stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {/*SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)*/}

finish_test

Changes to test/analyze8.test.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
..
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
# 
# Test 3.2 is a little unstable. It depends on the planner estimating
# that (b BETWEEN 30 AND 34) will match more rows than (c BETWEEN
................................................................................
do_execsql_test 3.0 {
  SELECT count(*) FROM t1 WHERE b BETWEEN 30 AND 34;
  SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000;
  SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000;
} {50 376 32}
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 30 AND 34 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

finish_test







|


|


|


|


|


|


|







 







|



|


|



|


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
..
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {/*SEARCH TABLE t1 USING INDEX t1b (b=?)*/}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {/*SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)*/}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
# 
# Test 3.2 is a little unstable. It depends on the planner estimating
# that (b BETWEEN 30 AND 34) will match more rows than (c BETWEEN
................................................................................
do_execsql_test 3.0 {
  SELECT count(*) FROM t1 WHERE b BETWEEN 30 AND 34;
  SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000;
  SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000;
} {50 376 32}
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 0 AND 100000}
} {/*SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)*/}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 30 AND 34 AND c BETWEEN 800000 AND 900000}
} {/*SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)*/}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {/*SEARCH TABLE t1 USING INDEX t1a (a=?)*/}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {/*SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)*/}

finish_test

Changes to test/analyze9.test.

983
984
985
986
987
988
989

990
991
992
993
994
995
996
997
....
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
....
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
....
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
....
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
} {/*USING INTEGER PRIMARY KEY*/}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 22.0 {
  CREATE TABLE t3(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID;

}
do_execsql_test 22.1 {
  WITH r(x) AS (
    SELECT 1
    UNION ALL
    SELECT x+1 FROM r WHERE x<=100
  )

................................................................................

do_eqp_test 23.1 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'AEA') AND f<300
  -- Formerly used index i41.  But i41 is not a covering index whereas
  -- the PRIMARY KEY is a covering index, and so as of 2017-10-15, the
  -- PRIMARY KEY is preferred.
} {
  0 0 0 {SEARCH TABLE t4 USING PRIMARY KEY (c=? AND b=? AND a<?)}
}
do_eqp_test 23.2 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'JJJ') AND f<300
} {
  0 0 0 {SEARCH TABLE t4 USING INDEX i42 (f<?)}
}

do_execsql_test 24.0 {
  CREATE TABLE t5(c, d, b, e, a, PRIMARY KEY(a, b, c)) WITHOUT ROWID;
  WITH data(a, b, c, d, e) AS (
    SELECT 'z', 'y', 0, 0, 0
    UNION ALL
    SELECT 
................................................................................
    CREATE INDEX aa ON t6(a);
    CREATE INDEX bb ON t6(b);
    ANALYZE;
  }

  # Term (b<?) is estimated at 25%. Better than (a<30) but not as
  # good as (a<20).
  do_eqp_test 25.2.1 { SELECT * FROM t6 WHERE a<30 AND b<? } {
    0 0 0 {SEARCH TABLE t6 USING INDEX bb (b<?)}
  }
  do_eqp_test 25.2.2 { SELECT * FROM t6 WHERE a<20 AND b<? } {
    0 0 0 {SEARCH TABLE t6 USING INDEX aa (a<?)}
  }

  # Term (b BETWEEN ? AND ?) is estimated at 1/64.
  do_eqp_test 25.3.1 { 
    SELECT * FROM t6 WHERE a BETWEEN 5 AND 10 AND b BETWEEN ? AND ? 
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)}
  }
  
  # Term (b BETWEEN ? AND 60) is estimated to return roughly 15 rows -
  # 60 from (b<=60) multiplied by 0.25 for the b>=? term. Better than
  # (a<20) but not as good as (a<10).
  do_eqp_test 25.4.1 { 
    SELECT * FROM t6 WHERE a < 10 AND (b BETWEEN ? AND 60)
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX aa (a<?)}
  }
  do_eqp_test 25.4.2 { 
    SELECT * FROM t6 WHERE a < 20 AND (b BETWEEN ? AND 60)
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)}
  }
}

#-------------------------------------------------------------------------
# Check that a problem in they way stat4 data is used has been 
# resolved (see below).
#
reset_db
................................................................................
# no more than that. Guessing less than 20 is therefore unreasonable.
#
# At one point though, due to a problem in whereKeyStats(), the planner was
# estimating that (x=10000 AND y<50) would match only 2 rows.
#
do_eqp_test 26.1.4 {
  SELECT * FROM t1 WHERE x = 10000 AND y < 50 AND z = 444;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1z (z=?)}
}


# This test - 26.2.* - tests that another manifestation of the same problem
# is no longer present in the library. Assuming:
# 
#   CREATE INDEX t1xy ON t1(x, y)
#
................................................................................
    UPDATE t1 SET z = (rowid / 95);
    ANALYZE;
  COMMIT;
}

do_eqp_test 26.2.2 {
  SELECT * FROM t1 WHERE x='B' AND y>25 AND z=?;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x=? AND y>?)}
}


finish_test







>
|







 







<
|
<



<
|
<







 







|
|
<
|
|
<




<
|
<






<
|
|


<
|
<







 







<
|
<







 







<
|
<



983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
....
1052
1053
1054
1055
1056
1057
1058

1059

1060
1061
1062

1063

1064
1065
1066
1067
1068
1069
1070
....
1101
1102
1103
1104
1105
1106
1107
1108
1109

1110
1111

1112
1113
1114
1115

1116

1117
1118
1119
1120
1121
1122

1123
1124
1125
1126

1127

1128
1129
1130
1131
1132
1133
1134
....
1176
1177
1178
1179
1180
1181
1182

1183

1184
1185
1186
1187
1188
1189
1190
....
1225
1226
1227
1228
1229
1230
1231

1232

1233
1234
1235
} {/*USING INTEGER PRIMARY KEY*/}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 22.0 {
  CREATE TABLE t3(a, b, c, d, PRIMARY KEY(a, b)) WITHOUT ROWID;
  SELECT * FROM t3;
} {}
do_execsql_test 22.1 {
  WITH r(x) AS (
    SELECT 1
    UNION ALL
    SELECT x+1 FROM r WHERE x<=100
  )

................................................................................

do_eqp_test 23.1 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'AEA') AND f<300
  -- Formerly used index i41.  But i41 is not a covering index whereas
  -- the PRIMARY KEY is a covering index, and so as of 2017-10-15, the
  -- PRIMARY KEY is preferred.

} {SEARCH TABLE t4 USING PRIMARY KEY (c=? AND b=? AND a<?)}

do_eqp_test 23.2 {
  SELECT * FROM t4 WHERE 
    (e=1 AND b='xyz' AND c='zyx' AND a<'JJJ') AND f<300

} {SEARCH TABLE t4 USING INDEX i42 (f<?)}


do_execsql_test 24.0 {
  CREATE TABLE t5(c, d, b, e, a, PRIMARY KEY(a, b, c)) WITHOUT ROWID;
  WITH data(a, b, c, d, e) AS (
    SELECT 'z', 'y', 0, 0, 0
    UNION ALL
    SELECT 
................................................................................
    CREATE INDEX aa ON t6(a);
    CREATE INDEX bb ON t6(b);
    ANALYZE;
  }

  # Term (b<?) is estimated at 25%. Better than (a<30) but not as
  # good as (a<20).
  do_eqp_test 25.2.1 { SELECT * FROM t6 WHERE a<30 AND b<? } \
    {SEARCH TABLE t6 USING INDEX bb (b<?)}

  do_eqp_test 25.2.2 { SELECT * FROM t6 WHERE a<20 AND b<? } \
    {SEARCH TABLE t6 USING INDEX aa (a<?)}


  # Term (b BETWEEN ? AND ?) is estimated at 1/64.
  do_eqp_test 25.3.1 { 
    SELECT * FROM t6 WHERE a BETWEEN 5 AND 10 AND b BETWEEN ? AND ? 

  } {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)}

  
  # Term (b BETWEEN ? AND 60) is estimated to return roughly 15 rows -
  # 60 from (b<=60) multiplied by 0.25 for the b>=? term. Better than
  # (a<20) but not as good as (a<10).
  do_eqp_test 25.4.1 { 
    SELECT * FROM t6 WHERE a < 10 AND (b BETWEEN ? AND 60)

  } {SEARCH TABLE t6 USING INDEX aa (a<?)}

  do_eqp_test 25.4.2 { 
    SELECT * FROM t6 WHERE a < 20 AND (b BETWEEN ? AND 60)

  } {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)}

}

#-------------------------------------------------------------------------
# Check that a problem in they way stat4 data is used has been 
# resolved (see below).
#
reset_db
................................................................................
# no more than that. Guessing less than 20 is therefore unreasonable.
#
# At one point though, due to a problem in whereKeyStats(), the planner was
# estimating that (x=10000 AND y<50) would match only 2 rows.
#
do_eqp_test 26.1.4 {
  SELECT * FROM t1 WHERE x = 10000 AND y < 50 AND z = 444;

} {SEARCH TABLE t1 USING INDEX t1z (z=?)}



# This test - 26.2.* - tests that another manifestation of the same problem
# is no longer present in the library. Assuming:
# 
#   CREATE INDEX t1xy ON t1(x, y)
#
................................................................................
    UPDATE t1 SET z = (rowid / 95);
    ANALYZE;
  COMMIT;
}

do_eqp_test 26.2.2 {
  SELECT * FROM t1 WHERE x='B' AND y>25 AND z=?;

} {SEARCH TABLE t1 USING INDEX i1 (x=? AND y>?)}



finish_test

Changes to test/analyzeA.test.

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
...
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  do_execsql_test 1.$tn.2.1 { SELECT count(*) FROM t1 WHERE b=31 } 1
  do_execsql_test 1.$tn.2.2 { SELECT count(*) FROM t1 WHERE c=0  } 49
  do_execsql_test 1.$tn.2.3 { SELECT count(*) FROM t1 WHERE b=125  } 49
  do_execsql_test 1.$tn.2.4 { SELECT count(*) FROM t1 WHERE c=16  } 1

  do_eqp_test 1.$tn.2.5 {
    SELECT * FROM t1 WHERE b = 31 AND c = 0;
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_eqp_test 1.$tn.2.6 {
    SELECT * FROM t1 WHERE b = 125 AND c = 16;
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?)}}

  do_execsql_test 1.$tn.3.1 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 0 AND 50
  } {6}
  do_execsql_test 1.$tn.3.2 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 50
  } {90}
................................................................................
  } {90}
  do_execsql_test 1.$tn.3.4 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 75 AND 125
  } {6}

  do_eqp_test 1.$tn.3.5 {
    SELECT * FROM t1 WHERE b BETWEEN 0 AND 50 AND c BETWEEN 0 AND 50
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

  do_eqp_test 1.$tn.3.6 {
    SELECT * FROM t1 WHERE b BETWEEN 75 AND 125 AND c BETWEEN 75 AND 125
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

  do_eqp_test 1.$tn.3.7 {
    SELECT * FROM t1 WHERE b BETWEEN +0 AND +50 AND c BETWEEN +0 AND +50
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

  do_eqp_test 1.$tn.3.8 {
    SELECT * FROM t1
     WHERE b BETWEEN cast('0' AS int) AND cast('50.0' AS real)
       AND c BETWEEN cast('0' AS numeric) AND cast('50.0' AS real)
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

  do_eqp_test 1.$tn.3.9 {
    SELECT * FROM t1 WHERE b BETWEEN +75 AND +125 AND c BETWEEN +75 AND +125
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

  do_eqp_test 1.$tn.3.10 {
    SELECT * FROM t1
     WHERE b BETWEEN cast('75' AS int) AND cast('125.0' AS real)
       AND c BETWEEN cast('75' AS numeric) AND cast('125.0' AS real)
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
}

finish_test







|


|







 







|



|



|





|



|





|



132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
...
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  do_execsql_test 1.$tn.2.1 { SELECT count(*) FROM t1 WHERE b=31 } 1
  do_execsql_test 1.$tn.2.2 { SELECT count(*) FROM t1 WHERE c=0  } 49
  do_execsql_test 1.$tn.2.3 { SELECT count(*) FROM t1 WHERE b=125  } 49
  do_execsql_test 1.$tn.2.4 { SELECT count(*) FROM t1 WHERE c=16  } 1

  do_eqp_test 1.$tn.2.5 {
    SELECT * FROM t1 WHERE b = 31 AND c = 0;
  } {SEARCH TABLE t1 USING INDEX t1b (b=?)}
  do_eqp_test 1.$tn.2.6 {
    SELECT * FROM t1 WHERE b = 125 AND c = 16;
  } {SEARCH TABLE t1 USING INDEX t1c (c=?)}

  do_execsql_test 1.$tn.3.1 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 0 AND 50
  } {6}
  do_execsql_test 1.$tn.3.2 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 50
  } {90}
................................................................................
  } {90}
  do_execsql_test 1.$tn.3.4 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 75 AND 125
  } {6}

  do_eqp_test 1.$tn.3.5 {
    SELECT * FROM t1 WHERE b BETWEEN 0 AND 50 AND c BETWEEN 0 AND 50
  } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}

  do_eqp_test 1.$tn.3.6 {
    SELECT * FROM t1 WHERE b BETWEEN 75 AND 125 AND c BETWEEN 75 AND 125
  } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}

  do_eqp_test 1.$tn.3.7 {
    SELECT * FROM t1 WHERE b BETWEEN +0 AND +50 AND c BETWEEN +0 AND +50
  } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}

  do_eqp_test 1.$tn.3.8 {
    SELECT * FROM t1
     WHERE b BETWEEN cast('0' AS int) AND cast('50.0' AS real)
       AND c BETWEEN cast('0' AS numeric) AND cast('50.0' AS real)
  } {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}

  do_eqp_test 1.$tn.3.9 {
    SELECT * FROM t1 WHERE b BETWEEN +75 AND +125 AND c BETWEEN +75 AND +125
  } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}

  do_eqp_test 1.$tn.3.10 {
    SELECT * FROM t1
     WHERE b BETWEEN cast('75' AS int) AND cast('125.0' AS real)
       AND c BETWEEN cast('75' AS numeric) AND cast('125.0' AS real)
  } {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}
}

finish_test

Changes to test/analyzeD.test.

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
..
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
} {}

# With full ANALYZE data, SQLite sees that c=150 (5 rows) is better than
# a=3001 (7 rows).
#
do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

do_test 1.3 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

................................................................................
# Without stat1, because 3001 is larger than all samples in the stat4
# table, SQLite thinks that a=3001 matches just 1 row. So it (incorrectly)
# chooses it over the c=150 index (5 rows). Even with stat1 data, things
# worked this way before commit [e6f7f97dbc].
#
do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_ab (a=?)}
}

do_test 1.5 {
  execsql { 
    UPDATE t1 SET a=13 WHERE a = 3001;
    ANALYZE;
  }
} {}

do_eqp_test 1.6 {
  SELECT * FROM t1 WHERE a=13 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

do_test 1.7 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

# Same test as 1.4, except this time the 7 rows that match the a=? condition 
# do not feature larger values than all rows in the stat4 table. So SQLite
# gets this right, even without stat1 data.
do_eqp_test 1.8 {
  SELECT * FROM t1 WHERE a=13 AND c=150;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX t1_c (c=?)}
}

finish_test







<
|
<







 







<
|
<










<
|
<












<
|
|
<

59
60
61
62
63
64
65

66

67
68
69
70
71
72
73
..
74
75
76
77
78
79
80

81

82
83
84
85
86
87
88
89
90
91

92

93
94
95
96
97
98
99
100
101
102
103
104

105
106

107
} {}

# With full ANALYZE data, SQLite sees that c=150 (5 rows) is better than
# a=3001 (7 rows).
#
do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;

} {SEARCH TABLE t1 USING INDEX t1_c (c=?)}


do_test 1.3 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

................................................................................
# Without stat1, because 3001 is larger than all samples in the stat4
# table, SQLite thinks that a=3001 matches just 1 row. So it (incorrectly)
# chooses it over the c=150 index (5 rows). Even with stat1 data, things
# worked this way before commit [e6f7f97dbc].
#
do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a=3001 AND c=150;

} {SEARCH TABLE t1 USING INDEX t1_ab (a=?)}


do_test 1.5 {
  execsql { 
    UPDATE t1 SET a=13 WHERE a = 3001;
    ANALYZE;
  }
} {}

do_eqp_test 1.6 {
  SELECT * FROM t1 WHERE a=13 AND c=150;

} {SEARCH TABLE t1 USING INDEX t1_c (c=?)}


do_test 1.7 {
  execsql { DELETE FROM sqlite_stat1 }
  db close
  sqlite3 db test.db
} {}

# Same test as 1.4, except this time the 7 rows that match the a=? condition 
# do not feature larger values than all rows in the stat4 table. So SQLite
# gets this right, even without stat1 data.
do_eqp_test 1.8 {
  SELECT * FROM t1 WHERE a=13 AND c=150;

} {SEARCH TABLE t1 USING INDEX t1_c (c=?)}


finish_test

Changes to test/analyzeF.test.

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

  9  "x = str('19') AND y = str('4')" {t1y (y=?)}
  10 "x = str('4') AND y = str('19')" {t1y (y=?)}

  11 "x = nullif('19', 0) AND y = nullif('4', 0)" {t1y (y=?)}
  12 "x = nullif('4', 0) AND y = nullif('19', 0)" {t1y (y=?)}
} {
  set res "0 0 0 {SEARCH TABLE t1 USING INDEX $idx}"
  do_eqp_test 1.$tn "SELECT * FROM t1 WHERE $where" $res
}

# Test that functions that do not exist - "func()" - do not cause an error.
#
do_catchsql_test 2.1 {
  SELECT * FROM t1 WHERE x = substr('145', 2, 1) AND y = func(1, 2, 3)
................................................................................
foreach {tn where idx} {
  1 "x = det4() AND y = det19()"     {t1x (x=?)}
  2 "x = det19() AND y = det4()"     {t1y (y=?)}

  3 "x = nondet4() AND y = nondet19()"     {t1y (y=?)}
  4 "x = nondet19() AND y = nondet4()"     {t1y (y=?)}
} {
  set res "0 0 0 {SEARCH TABLE t1 USING INDEX $idx}"
  do_eqp_test 3.$tn "SELECT * FROM t1 WHERE $where" $res
}


execsql { DELETE FROM t1 }

proc throw_error {err} { error $err }







|







 







|







58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

  9  "x = str('19') AND y = str('4')" {t1y (y=?)}
  10 "x = str('4') AND y = str('19')" {t1y (y=?)}

  11 "x = nullif('19', 0) AND y = nullif('4', 0)" {t1y (y=?)}
  12 "x = nullif('4', 0) AND y = nullif('19', 0)" {t1y (y=?)}
} {
  set res "SEARCH TABLE t1 USING INDEX $idx"
  do_eqp_test 1.$tn "SELECT * FROM t1 WHERE $where" $res
}

# Test that functions that do not exist - "func()" - do not cause an error.
#
do_catchsql_test 2.1 {
  SELECT * FROM t1 WHERE x = substr('145', 2, 1) AND y = func(1, 2, 3)
................................................................................
foreach {tn where idx} {
  1 "x = det4() AND y = det19()"     {t1x (x=?)}
  2 "x = det19() AND y = det4()"     {t1y (y=?)}

  3 "x = nondet4() AND y = nondet19()"     {t1y (y=?)}
  4 "x = nondet19() AND y = nondet4()"     {t1y (y=?)}
} {
  set res "SEARCH TABLE t1 USING INDEX $idx"
  do_eqp_test 3.$tn "SELECT * FROM t1 WHERE $where" $res
}


execsql { DELETE FROM t1 }

proc throw_error {err} { error $err }

Changes to test/autoindex1.test.

173
174
175
176
177
178
179
180

181
182
183

184
185
186
187
188
189
190
191
192

193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
...
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
...
270
271
272
273
274
275
276


277
278
279
280
281
282
283
284
285
286
287


288
289

290
291
292
293
294
295
296
297
298
#
do_execsql_test autoindex1-500 {
  CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
  CREATE TABLE t502(x INTEGER PRIMARY KEY, y);
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t501',null,'1000000');
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t502',null,'1000');
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN

  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {

  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502}
}
do_execsql_test autoindex1-501 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {

  0 0 0 {SCAN TABLE t501} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?)}
}
do_execsql_test autoindex1-502 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a=123
     AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {

  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502}
}


# The following code checks a performance regression reported on the
# mailing list on 2010-10-19.  The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was
# used as part of a join.
#
................................................................................
              ON flock_owner (owner_change_date);
  CREATE INDEX fo_owner_person_id_index  
              ON flock_owner (owner_person_id);
  CREATE INDEX sheep_org_flock_index  
           ON sheep (originating_flock);
  CREATE INDEX sheep_reg_flock_index  
           ON sheep (registering_flock);
  EXPLAIN QUERY PLAN

  SELECT x.sheep_no, x.registering_flock, x.date_of_registration
   FROM sheep x LEFT JOIN
       (SELECT s.sheep_no, prev.flock_no, prev.owner_person_id,
       s.date_of_registration, prev.owner_change_date
       FROM sheep s JOIN flock_owner prev ON s.registering_flock =
   prev.flock_no
       AND (prev.owner_change_date <= s.date_of_registration || ' 00:00:00')
................................................................................
           WHERE prev.flock_no = later.flock_no
           AND later.owner_change_date > prev.owner_change_date
           AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
       ) y ON x.sheep_no = y.sheep_no
   WHERE y.sheep_no IS NULL
   ORDER BY x.registering_flock;
} {


  1 0 0 {SCAN TABLE sheep AS s} 
  1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?)} 
  1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 
  2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?)} 
  0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index} 
  0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?)}
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);


  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {

  0 0 0 {SCAN TABLE t5} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {
  CREATE TABLE accounts(







|
>



>
|
|
|

|
<



>
|
|
|

|
<




>
|
|
|

<







 







|
>







 







>
>
|
|
|
|
|
|





>
>
|

>
|
|







173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198
199

200
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
...
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
...
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#
do_execsql_test autoindex1-500 {
  CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
  CREATE TABLE t502(x INTEGER PRIMARY KEY, y);
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t501',null,'1000000');
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t502',null,'1000');
  ANALYZE sqlite_master;
}
do_eqp_test autoindex1-500.1 {
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {
  QUERY PLAN
  |--SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)
  `--LIST SUBQUERY
     `--SCAN TABLE t502
}
do_eqp_test autoindex1-501 {

  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  QUERY PLAN
  |--SCAN TABLE t501
  `--CORRELATED LIST SUBQUERY
     `--SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?)
}
do_eqp_test autoindex1-502 {

  SELECT b FROM t501
   WHERE t501.a=123
     AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  QUERY PLAN
  |--SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)
  `--CORRELATED LIST SUBQUERY
     `--SCAN TABLE t502
}


# The following code checks a performance regression reported on the
# mailing list on 2010-10-19.  The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was
# used as part of a join.
#
................................................................................
              ON flock_owner (owner_change_date);
  CREATE INDEX fo_owner_person_id_index  
              ON flock_owner (owner_person_id);
  CREATE INDEX sheep_org_flock_index  
           ON sheep (originating_flock);
  CREATE INDEX sheep_reg_flock_index  
           ON sheep (registering_flock);
}
do_eqp_test autoindex1-600a {
  SELECT x.sheep_no, x.registering_flock, x.date_of_registration
   FROM sheep x LEFT JOIN
       (SELECT s.sheep_no, prev.flock_no, prev.owner_person_id,
       s.date_of_registration, prev.owner_change_date
       FROM sheep s JOIN flock_owner prev ON s.registering_flock =
   prev.flock_no
       AND (prev.owner_change_date <= s.date_of_registration || ' 00:00:00')
................................................................................
           WHERE prev.flock_no = later.flock_no
           AND later.owner_change_date > prev.owner_change_date
           AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
       ) y ON x.sheep_no = y.sheep_no
   WHERE y.sheep_no IS NULL
   ORDER BY x.registering_flock;
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  |--SCAN TABLE sheep AS s
  |  |--SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?)
  |  `--CORRELATED SCALAR SUBQUERY
  |     `--SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?)
  |--SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index
  `--SEARCH SUBQUERY xxxxxx AS y USING AUTOMATIC COVERING INDEX (sheep_no=?)
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);
}
do_eqp_test autoindex1-700a {
  SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  QUERY PLAN
  |--SCAN TABLE t5
  `--USE TEMP B-TREE FOR ORDER BY
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {
  CREATE TABLE accounts(

Changes to test/autoindex3.test.

80
81
82
83
84
85
86

87
88
89
90
91
92
# on the basis that the real index "uab" must be better than the automatic
# index. This is not right - a skip-scan is not necessarily better than an
# automatic index scan.
#
do_eqp_test 220 {
  select count(*) from u, v where u.b = v.b and v.e > 34;
} {

  0 0 1 {SEARCH TABLE v USING INDEX ve (e>?)} 
  0 1 0 {SEARCH TABLE u USING AUTOMATIC COVERING INDEX (b=?)}
}


finish_test







>
|
|




80
81
82
83
84
85
86
87
88
89
90
91
92
93
# on the basis that the real index "uab" must be better than the automatic
# index. This is not right - a skip-scan is not necessarily better than an
# automatic index scan.
#
do_eqp_test 220 {
  select count(*) from u, v where u.b = v.b and v.e > 34;
} {
  QUERY PLAN
  |--SEARCH TABLE v USING INDEX ve (e>?)
  `--SEARCH TABLE u USING AUTOMATIC COVERING INDEX (b=?)
}


finish_test

Changes to test/autoindex5.test.

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
..
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
              AND debian_bugs.note = package_notes.id
              ORDER BY debian_bugs.bug;
} {}

# The following query should use an automatic index for the view
# in FROM clause of the subquery of the second result column.
#
do_execsql_test autoindex5-1.1 {
  EXPLAIN QUERY PLAN
  SELECT
    st.bug_name,
    (SELECT ALL debian_cve.bug FROM debian_cve
      WHERE debian_cve.bug_name = st.bug_name
      ORDER BY debian_cve.bug),
    sp.release
  FROM
................................................................................
  WHERE
     sp.rowid = st.package
     AND st.bug_name = bugs.name
     AND ( st.bug_name LIKE 'CVE-%' OR st.bug_name LIKE 'TEMP-%' )
     AND ( sp.release = 'sid' OR sp.release = 'stretch' OR sp.release = 'jessie'
            OR sp.release = 'wheezy' OR sp.release = 'squeeze' )
  ORDER BY sp.name, st.bug_name, sp.release, sp.subrelease;
} {/SEARCH SUBQUERY 2 USING AUTOMATIC COVERING INDEX .bug_name=/}

#-------------------------------------------------------------------------
# Test that ticket [8a2adec1] has been fixed.
#
do_execsql_test 2.1 {
  CREATE TABLE one(o);
  INSERT INTO one DEFAULT VALUES;







|
<







 







|







80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
..
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
              AND debian_bugs.note = package_notes.id
              ORDER BY debian_bugs.bug;
} {}

# The following query should use an automatic index for the view
# in FROM clause of the subquery of the second result column.
#
do_eqp_test autoindex5-1.1 {

  SELECT
    st.bug_name,
    (SELECT ALL debian_cve.bug FROM debian_cve
      WHERE debian_cve.bug_name = st.bug_name
      ORDER BY debian_cve.bug),
    sp.release
  FROM
................................................................................
  WHERE
     sp.rowid = st.package
     AND st.bug_name = bugs.name
     AND ( st.bug_name LIKE 'CVE-%' OR st.bug_name LIKE 'TEMP-%' )
     AND ( sp.release = 'sid' OR sp.release = 'stretch' OR sp.release = 'jessie'
            OR sp.release = 'wheezy' OR sp.release = 'squeeze' )
  ORDER BY sp.name, st.bug_name, sp.release, sp.subrelease;
} {SEARCH SUBQUERY * USING AUTOMATIC COVERING INDEX (bug_name=?)}

#-------------------------------------------------------------------------
# Test that ticket [8a2adec1] has been fixed.
#
do_execsql_test 2.1 {
  CREATE TABLE one(o);
  INSERT INTO one DEFAULT VALUES;

Changes to test/bestindex1.test.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
...
140
141
142
143
144
145
146

147
148
149
150

151
152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE x1 USING tcl(vtab_command);
} {}

do_eqp_test 1.1 {
  SELECT * FROM x1 WHERE a = 'abc'
} {
  0 0 0 {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!}
}

do_eqp_test 1.2 {
  SELECT * FROM x1 WHERE a IN ('abc', 'def');
} {
  0 0 0 {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!}
}

#-------------------------------------------------------------------------
#
reset_db
register_tcl_module db

# Parameter $mode may be one of:
................................................................................
  do_execsql_test 2.2.$mode.4 {SELECT rowid FROM t1 WHERE a='two'} {2} 

  do_execsql_test 2.2.$mode.5 {
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } {1 4} 

  set plan(use) {

    0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%'}
    0 0 0 {USE TEMP B-TREE FOR ORDER BY}
  }
  set plan(omit) {

    0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%'}
    0 0 0 {USE TEMP B-TREE FOR ORDER BY}
  }
  set plan(use2) {

    0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x}
    0 0 0 {USE TEMP B-TREE FOR ORDER BY}
  }

  do_eqp_test 2.2.$mode.6 { 
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } $plan($mode)
}

# 2016-04-09.
# Demonstrate a register overwrite problem when using two virtual
# tables where the outer loop uses the IN operator.
#
set G(collist) [list PrimaryKey flagA columnA]







<
|
<



<
|
<







 







>
|
|


>
|
|


>
|
|




|







47
48
49
50
51
52
53

54

55
56
57

58

59
60
61
62
63
64
65
...
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE x1 USING tcl(vtab_command);
} {}

do_eqp_test 1.1 {
  SELECT * FROM x1 WHERE a = 'abc'

} {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!}


do_eqp_test 1.2 {
  SELECT * FROM x1 WHERE a IN ('abc', 'def');

} {SCAN TABLE x1 VIRTUAL TABLE INDEX 555:eq!}


#-------------------------------------------------------------------------
#
reset_db
register_tcl_module db

# Parameter $mode may be one of:
................................................................................
  do_execsql_test 2.2.$mode.4 {SELECT rowid FROM t1 WHERE a='two'} {2} 

  do_execsql_test 2.2.$mode.5 {
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } {1 4} 

  set plan(use) {
    QUERY PLAN
    |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%'
    `--USE TEMP B-TREE FOR ORDER BY
  }
  set plan(omit) {
    QUERY PLAN
    |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x WHERE a='%1%'
    `--USE TEMP B-TREE FOR ORDER BY
  }
  set plan(use2) {
    QUERY PLAN
    |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:SELECT * FROM t1x
    `--USE TEMP B-TREE FOR ORDER BY
  }

  do_eqp_test 2.2.$mode.6 { 
    SELECT rowid FROM t1 WHERE a IN ('one', 'four') ORDER BY +rowid
  } [string map {"\n  " "\n"} $plan($mode)]
}

# 2016-04-09.
# Demonstrate a register overwrite problem when using two virtual
# tables where the outer loop uses the IN operator.
#
set G(collist) [list PrimaryKey flagA columnA]

Changes to test/bestindex2.test.

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114

115
116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
  CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd t1 {a b}");
  CREATE VIRTUAL TABLE t2 USING tcl("vtab_cmd t2 {c d}");
  CREATE VIRTUAL TABLE t3 USING tcl("vtab_cmd t3 {e f}");
}

do_eqp_test 1.1 {
  SELECT * FROM t1 WHERE a='abc'
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)}
}
do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a='abc' AND b='def'
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=? AND b=?)}
}
do_eqp_test 1.3 {
  SELECT * FROM t1 WHERE a='abc' AND a='def'
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)}
}
do_eqp_test 1.4 {
  SELECT * FROM t1,t2 WHERE c=a
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)}
}

do_eqp_test 1.5 {
  SELECT * FROM t1, t2 CROSS JOIN t3 WHERE t2.c = +t1.b AND t3.e=t2.d
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)} 
  0 2 2 {SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)}
}

do_eqp_test 1.6 {
  SELECT * FROM t1, t2, t3 WHERE t2.c = +t1.b AND t3.e = t2.d
} {

  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)} 
  0 2 2 {SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)}
}

do_execsql_test 1.7.1 {
  CREATE TABLE x1(a, b);
}
do_eqp_test 1.7.2 {
  SELECT * FROM x1 CROSS JOIN t1, t2, t3 
    WHERE t1.a = t2.c AND t1.b = t3.e
} {

  0 0 0 {SCAN TABLE x1} 
  0 1 1 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:}
  0 2 2 {SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)} 
  0 3 3 {SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)}
}

finish_test







<
|
|


<
|
|


<
|
|



>
|
|





>
|
|
|





>
|
|
|









>
|
|
|
|



85
86
87
88
89
90
91

92
93
94
95

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
  CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd t1 {a b}");
  CREATE VIRTUAL TABLE t2 USING tcl("vtab_cmd t2 {c d}");
  CREATE VIRTUAL TABLE t3 USING tcl("vtab_cmd t3 {e f}");
}

do_eqp_test 1.1 {
  SELECT * FROM t1 WHERE a='abc'

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)}

do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a='abc' AND b='def'

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=? AND b=?)}

do_eqp_test 1.3 {
  SELECT * FROM t1 WHERE a='abc' AND a='def'

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:indexed(a=?)}

do_eqp_test 1.4 {
  SELECT * FROM t1,t2 WHERE c=a
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:
  `--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)
}

do_eqp_test 1.5 {
  SELECT * FROM t1, t2 CROSS JOIN t3 WHERE t2.c = +t1.b AND t3.e=t2.d
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:
  |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)
  `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)
}

do_eqp_test 1.6 {
  SELECT * FROM t1, t2, t3 WHERE t2.c = +t1.b AND t3.e = t2.d
} {
  QUERY PLAN
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:
  |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)
  `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)
}

do_execsql_test 1.7.1 {
  CREATE TABLE x1(a, b);
}
do_eqp_test 1.7.2 {
  SELECT * FROM x1 CROSS JOIN t1, t2, t3 
    WHERE t1.a = t2.c AND t1.b = t3.e
} {
  QUERY PLAN
  |--SCAN TABLE x1
  |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:
  |--SCAN TABLE t2 VIRTUAL TABLE INDEX 0:indexed(c=?)
  `--SCAN TABLE t3 VIRTUAL TABLE INDEX 0:indexed(e=?)
}

finish_test

Changes to test/bestindex3.test.

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94


95
96
97
98
99
100
101


102
103
104
105
106
107
108
109
110
...
143
144
145
146
147
148
149
150


151
152
153
154
155
156
157
158
159
160

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd 0");
}

do_eqp_test 1.1 {
  SELECT * FROM t1 WHERE a LIKE 'abc';
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?}
}

do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a = 'abc';
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?}
}

do_eqp_test 1.3 {
  SELECT * FROM t1 WHERE a = 'abc' OR b = 'def';
} {


  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?}
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ?}
}

do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a LIKE 'abc%' OR b = 'def';
} {


  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?}
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ?}
}

do_execsql_test 1.5 {
  CREATE TABLE ttt(a, b, c);

  INSERT INTO ttt VALUES(1, 'two',   'three');
  INSERT INTO ttt VALUES(2, 'one',   'two');
................................................................................
    CREATE TABLE t2(x TEXT COLLATE nocase, y TEXT);
    CREATE INDEX t2x ON t2(x COLLATE nocase);
    CREATE INDEX t2y ON t2(y);
  }

  do_eqp_test 2.2 {
    SELECT * FROM t2 WHERE x LIKE 'abc%' OR y = 'def'
  } {


    0 0 0 {SEARCH TABLE t2 USING INDEX t2x (x>? AND x<?)}
    0 0 0 {SEARCH TABLE t2 USING INDEX t2y (y=?)}
  }
}

#-------------------------------------------------------------------------
# Test that any PRIMARY KEY within a sqlite3_decl_vtab() CREATE TABLE 
# statement is currently ignored.
#
proc vvv_command {method args} {







<
|
<



<
|
<




>
>
|
|





>
>
|
|







 







|
>
>
|
|
|







75
76
77
78
79
80
81

82

83
84
85

86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
...
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING tcl("vtab_cmd 0");
}

do_eqp_test 1.1 {
  SELECT * FROM t1 WHERE a LIKE 'abc';

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?}


do_eqp_test 1.2 {
  SELECT * FROM t1 WHERE a = 'abc';

} {SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?}


do_eqp_test 1.3 {
  SELECT * FROM t1 WHERE a = 'abc' OR b = 'def';
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a EQ ?
     `--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ?
}

do_eqp_test 1.4 {
  SELECT * FROM t1 WHERE a LIKE 'abc%' OR b = 'def';
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:a LIKE ?
     `--SCAN TABLE t1 VIRTUAL TABLE INDEX 0:b EQ ?
}

do_execsql_test 1.5 {
  CREATE TABLE ttt(a, b, c);

  INSERT INTO ttt VALUES(1, 'two',   'three');
  INSERT INTO ttt VALUES(2, 'one',   'two');
................................................................................
    CREATE TABLE t2(x TEXT COLLATE nocase, y TEXT);
    CREATE INDEX t2x ON t2(x COLLATE nocase);
    CREATE INDEX t2y ON t2(y);
  }

  do_eqp_test 2.2 {
    SELECT * FROM t2 WHERE x LIKE 'abc%' OR y = 'def'
  } [string map {"\n  " \n} {
    QUERY PLAN
    `--MULTI-INDEX OR
       |--SEARCH TABLE t2 USING INDEX t2x (x>? AND x<?)
       `--SEARCH TABLE t2 USING INDEX t2y (y=?)
  }]
}

#-------------------------------------------------------------------------
# Test that any PRIMARY KEY within a sqlite3_decl_vtab() CREATE TABLE 
# statement is currently ignored.
#
proc vvv_command {method args} {

Changes to test/bigmmap.test.

88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103
104
      ORDER BY b, c;
    " {}
    
    do_eqp_test 2.$i.$t.3 "
      SELECT * FROM t$t AS o WHERE 
        NOT EXISTS( SELECT * FROM t$t AS i WHERE a=o.a AND +b=o.b AND +c=o.c )
      ORDER BY b, c;
    " "

      0 0 0 {SCAN TABLE t$t AS o USING COVERING INDEX sqlite_autoindex_t${t}_1}
      0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 1}
      1 0 0 {SEARCH TABLE t$t AS i USING INTEGER PRIMARY KEY (rowid=?)}
    "
  }
}

finish_test








|
>
|
|
|
|




<
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

      ORDER BY b, c;
    " {}
    
    do_eqp_test 2.$i.$t.3 "
      SELECT * FROM t$t AS o WHERE 
        NOT EXISTS( SELECT * FROM t$t AS i WHERE a=o.a AND +b=o.b AND +c=o.c )
      ORDER BY b, c;
    " [string map {"\n    " "\n"} "
      QUERY PLAN
      |--SCAN TABLE t$t AS o USING COVERING INDEX sqlite_autoindex_t${t}_1
      `--CORRELATED SCALAR SUBQUERY
         `--SEARCH TABLE t$t AS i USING INTEGER PRIMARY KEY (rowid=?)
    "]
  }
}

finish_test

Changes to test/closure01.test.

268
269
270
271
272
273
274
275



















276
   WHERE root=1
     AND depth=3
     AND tablename='t1'
     AND idcolumn='x'
     AND parentcolumn='y'
  ORDER BY id;
} {8 9 10 11 12 13 14 15}




















finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
   WHERE root=1
     AND depth=3
     AND tablename='t1'
     AND idcolumn='x'
     AND parentcolumn='y'
  ORDER BY id;
} {8 9 10 11 12 13 14 15}

#-------------------------------------------------------------------------
# At one point the following join query was causing a malfunction in
# xBestIndex.
#
do_execsql_test 6.0 {
  CREATE TABLE t4 (
    id INTEGER PRIMARY KEY, 
    name TEXT NOT NULL,
    parent_id INTEGER
  );
  CREATE VIRTUAL TABLE vt4 USING transitive_closure (
    idcolumn=id, parentcolumn=parent_id, tablename=t4
  );
}

do_execsql_test 6.1 {
  SELECT * FROM t4, vt4 WHERE t4.id = vt4.root AND vt4.id=4 AND vt4.depth=2;
}

finish_test

Changes to test/cost.test.

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
..
53
54
55
56
57
58
59


60
61
62
63
64
65
66
67
68
69
70
..
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124


125
126
127
128
129
130
131
132
133
134
...
141
142
143
144
145
146
147


148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
...
190
191
192
193
194
195
196

197
198
199
200
201
202
203
204
205
206
207
...
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
  CREATE TABLE t4(c, d, e);
  CREATE UNIQUE INDEX i3 ON t3(b);
  CREATE UNIQUE INDEX i4 ON t4(c, d);
}
do_eqp_test 1.2 {
  SELECT e FROM t3, t4 WHERE b=c ORDER BY b, d;
} {

  0 0 0 {SCAN TABLE t3 USING COVERING INDEX i3} 
  0 1 1 {SEARCH TABLE t4 USING INDEX i4 (c=?)}
}


do_execsql_test 2.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
}

# It is better to use an index for ORDER BY than sort externally, even 
# if the index is a non-covering index.
do_eqp_test 2.2 {
  SELECT * FROM t1 ORDER BY a;
} {
  0 0 0 {SCAN TABLE t1 USING INDEX i1}
}

do_execsql_test 3.1 {
  CREATE TABLE t5(a INTEGER PRIMARY KEY,b,c,d,e,f,g);
  CREATE INDEX t5b ON t5(b);
  CREATE INDEX t5c ON t5(c);
  CREATE INDEX t5d ON t5(d);
  CREATE INDEX t5e ON t5(e);
................................................................................
}

do_eqp_test 3.2 {
  SELECT a FROM t5 
  WHERE b IS NULL OR c IS NULL OR d IS NULL 
  ORDER BY a;
} {


  0 0 0 {SEARCH TABLE t5 USING INDEX t5b (b=?)} 
  0 0 0 {SEARCH TABLE t5 USING INDEX t5c (c=?)} 
  0 0 0 {SEARCH TABLE t5 USING INDEX t5d (d=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

#-------------------------------------------------------------------------
# If there is no likelihood() or stat3 data, SQLite assumes that a closed
# range scan (e.g. one constrained by "col BETWEEN ? AND ?" constraint)
# visits 1/64 of the rows in a table.
#
................................................................................
do_execsql_test 4.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
  CREATE INDEX i2 ON t1(b);
}
do_eqp_test 4.2 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.014) AND b BETWEEN ? AND ?;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}
do_eqp_test 4.3 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.016) AND b BETWEEN ? AND ?;
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b>? AND b<?)}
}


#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 5.1 {
  CREATE TABLE t2(x, y);
  CREATE INDEX t2i1 ON t2(x);
}

do_eqp_test 5.2 {
  SELECT * FROM t2 ORDER BY x, y;
} {

  0 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
}

do_eqp_test 5.3 {
  SELECT * FROM t2 WHERE x BETWEEN ? AND ? ORDER BY rowid;
} {

  0 0 0 {SEARCH TABLE t2 USING INDEX t2i1 (x>? AND x<?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# where7.test, where8.test:
#
do_execsql_test 6.1 {
  CREATE TABLE t3(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX t3i1 ON t3(b);
  CREATE INDEX t3i2 ON t3(c);
}

do_eqp_test 6.2 {
  SELECT a FROM t3 WHERE (b BETWEEN 2 AND 4) OR c=100 ORDER BY a
} {


  0 0 0 {SEARCH TABLE t3 USING INDEX t3i1 (b>? AND b<?)} 
  0 0 0 {SEARCH TABLE t3 USING INDEX t3i2 (c=?)}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 7.1 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d,e,f,g);
................................................................................
}

do_eqp_test 7.2 {
  SELECT a FROM t1
     WHERE (b>=950 AND b<=1010) OR (b IS NULL AND c NOT NULL)
  ORDER BY a
} {


  0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)} 
  0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

do_eqp_test 7.3 {
  SELECT rowid FROM t1
  WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
} {
  0 0 0 {SCAN TABLE t1}
}

do_eqp_test 7.4 {
  SELECT rowid FROM t1 WHERE (+b IS NULL AND c NOT NULL) OR c IS NULL
} {
  0 0 0 {SCAN TABLE t1}
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE composer(
    cid INTEGER PRIMARY KEY,
................................................................................
do_eqp_test 8.2 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND unlikely(composer.cid=track.cid)
     AND unlikely(album.aid=track.aid);
} {

  0 0 2 {SCAN TABLE track} 
  0 1 0 {SEARCH TABLE album USING INTEGER PRIMARY KEY (rowid=?)}
  0 2 1 {SEARCH TABLE composer USING INTEGER PRIMARY KEY (rowid=?)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}

#-------------------------------------------------------------------------
#
do_execsql_test 9.1 {
  CREATE TABLE t1(
    a,b,c,d,e, f,g,h,i,j,
................................................................................
      execsql { INSERT INTO t6 VALUES($i%4, 'xyz', $i%8) }
    }
    execsql ANALYZE
  } {}

  do_eqp_test 10.3 {
    SELECT rowid FROM t6 WHERE a=0 AND c=0
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX t6i2 (c=?)}
  }

  do_eqp_test 10.4 {
    SELECT rowid FROM t6 WHERE a=0 AND b='xyz' AND c=0
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX t6i2 (c=?)}
  }

  do_eqp_test 10.5 {
    SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND c=0
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX t6i1 (a=?)}
  }

  do_eqp_test 10.6 {
    SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND b='xyz' AND c=0
  } {
    0 0 0 {SEARCH TABLE t6 USING INDEX t6i1 (a=? AND b=?)}
  }
}

finish_test







>
|
|












<
|
<







 







>
>
|
|
|
|







 







<
|
|


<
|
<













>
|
|





>
|
|













>
>
|
|
|







 







>
>
|
|
|







<
|
<



<
|
<







 







>
|
|
|
|







 







<
|
<



<
|
<



<
|
<



<
|
<



20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

43
44
45
46
47
48
49
..
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
..
76
77
78
79
80
81
82

83
84
85
86

87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
...
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162

163
164
165

166

167
168
169
170
171
172
173
...
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
...
260
261
262
263
264
265
266

267

268
269
270

271

272
273
274

275

276
277
278

279

280
281
282
  CREATE TABLE t4(c, d, e);
  CREATE UNIQUE INDEX i3 ON t3(b);
  CREATE UNIQUE INDEX i4 ON t4(c, d);
}
do_eqp_test 1.2 {
  SELECT e FROM t3, t4 WHERE b=c ORDER BY b, d;
} {
  QUERY PLAN
  |--SCAN TABLE t3 USING COVERING INDEX i3
  `--SEARCH TABLE t4 USING INDEX i4 (c=?)
}


do_execsql_test 2.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
}

# It is better to use an index for ORDER BY than sort externally, even 
# if the index is a non-covering index.
do_eqp_test 2.2 {
  SELECT * FROM t1 ORDER BY a;

} {SCAN TABLE t1 USING INDEX i1}


do_execsql_test 3.1 {
  CREATE TABLE t5(a INTEGER PRIMARY KEY,b,c,d,e,f,g);
  CREATE INDEX t5b ON t5(b);
  CREATE INDEX t5c ON t5(c);
  CREATE INDEX t5d ON t5(d);
  CREATE INDEX t5e ON t5(e);
................................................................................
}

do_eqp_test 3.2 {
  SELECT a FROM t5 
  WHERE b IS NULL OR c IS NULL OR d IS NULL 
  ORDER BY a;
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t5 USING INDEX t5b (b=?)
  |  |--SEARCH TABLE t5 USING INDEX t5c (c=?)
  |  `--SEARCH TABLE t5 USING INDEX t5d (d=?)
  `--USE TEMP B-TREE FOR ORDER BY
}

#-------------------------------------------------------------------------
# If there is no likelihood() or stat3 data, SQLite assumes that a closed
# range scan (e.g. one constrained by "col BETWEEN ? AND ?" constraint)
# visits 1/64 of the rows in a table.
#
................................................................................
do_execsql_test 4.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
  CREATE INDEX i2 ON t1(b);
}
do_eqp_test 4.2 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.014) AND b BETWEEN ? AND ?;

} {SEARCH TABLE t1 USING INDEX i1 (a=?)}

do_eqp_test 4.3 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.016) AND b BETWEEN ? AND ?;

} {SEARCH TABLE t1 USING INDEX i2 (b>? AND b<?)}



#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 5.1 {
  CREATE TABLE t2(x, y);
  CREATE INDEX t2i1 ON t2(x);
}

do_eqp_test 5.2 {
  SELECT * FROM t2 ORDER BY x, y;
} {
  QUERY PLAN
  |--SCAN TABLE t2 USING INDEX t2i1
  `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY
}

do_eqp_test 5.3 {
  SELECT * FROM t2 WHERE x BETWEEN ? AND ? ORDER BY rowid;
} {
  QUERY PLAN
  |--SEARCH TABLE t2 USING INDEX t2i1 (x>? AND x<?)
  `--USE TEMP B-TREE FOR ORDER BY
}

# where7.test, where8.test:
#
do_execsql_test 6.1 {
  CREATE TABLE t3(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX t3i1 ON t3(b);
  CREATE INDEX t3i2 ON t3(c);
}

do_eqp_test 6.2 {
  SELECT a FROM t3 WHERE (b BETWEEN 2 AND 4) OR c=100 ORDER BY a
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t3 USING INDEX t3i1 (b>? AND b<?)
  |  `--SEARCH TABLE t3 USING INDEX t3i2 (c=?)
  `--USE TEMP B-TREE FOR ORDER BY
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 7.1 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d,e,f,g);
................................................................................
}

do_eqp_test 7.2 {
  SELECT a FROM t1
     WHERE (b>=950 AND b<=1010) OR (b IS NULL AND c NOT NULL)
  ORDER BY a
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)
  |  `--SEARCH TABLE t1 USING INDEX t1b (b=?)
  `--USE TEMP B-TREE FOR ORDER BY
}

do_eqp_test 7.3 {
  SELECT rowid FROM t1
  WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)

} {SCAN TABLE t1}


do_eqp_test 7.4 {
  SELECT rowid FROM t1 WHERE (+b IS NULL AND c NOT NULL) OR c IS NULL

} {SCAN TABLE t1}


#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE composer(
    cid INTEGER PRIMARY KEY,
................................................................................
do_eqp_test 8.2 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE cname LIKE '%bach%'
     AND unlikely(composer.cid=track.cid)
     AND unlikely(album.aid=track.aid);
} {
  QUERY PLAN
  |--SCAN TABLE track
  |--SEARCH TABLE album USING INTEGER PRIMARY KEY (rowid=?)
  |--SEARCH TABLE composer USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR DISTINCT
}

#-------------------------------------------------------------------------
#
do_execsql_test 9.1 {
  CREATE TABLE t1(
    a,b,c,d,e, f,g,h,i,j,
................................................................................
      execsql { INSERT INTO t6 VALUES($i%4, 'xyz', $i%8) }
    }
    execsql ANALYZE
  } {}

  do_eqp_test 10.3 {
    SELECT rowid FROM t6 WHERE a=0 AND c=0

  } {SEARCH TABLE t6 USING INDEX t6i2 (c=?)}


  do_eqp_test 10.4 {
    SELECT rowid FROM t6 WHERE a=0 AND b='xyz' AND c=0

  } {SEARCH TABLE t6 USING INDEX t6i2 (c=?)}


  do_eqp_test 10.5 {
    SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND c=0

  } {SEARCH TABLE t6 USING INDEX t6i1 (a=?)}


  do_eqp_test 10.6 {
    SELECT rowid FROM t6 WHERE likelihood(a=0, 0.1) AND b='xyz' AND c=0

  } {SEARCH TABLE t6 USING INDEX t6i1 (a=? AND b=?)}

}

finish_test

Changes to test/coveridxscan.test.

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

  CREATE TABLE t2(i INTEGER PRIMARY KEY, $cols);
  CREATE INDEX i2 ON t2($cols);
"

do_eqp_test 5.1.1 {
  SELECT * FROM t1 ORDER BY c1, c2;
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
}

do_eqp_test 5.1.2 {
  SELECT * FROM t2 ORDER BY c1, c2;
} {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i2}
}



finish_test







<
|
<



<
|
<
<



105
106
107
108
109
110
111

112

113
114
115

116


117
118
119

  CREATE TABLE t2(i INTEGER PRIMARY KEY, $cols);
  CREATE INDEX i2 ON t2($cols);
"

do_eqp_test 5.1.1 {
  SELECT * FROM t1 ORDER BY c1, c2;

} {SCAN TABLE t1 USING COVERING INDEX i1}


do_eqp_test 5.1.2 {
  SELECT * FROM t2 ORDER BY c1, c2;

} {SCAN TABLE t2 USING COVERING INDEX i2}




finish_test

Changes to test/e_createtable.test.

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
....
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
  1    "CREATE TABLE x1 AS SELECT * FROM t1"                     {a b c}
  2    "CREATE TABLE x1 AS SELECT c, b, a FROM t1"               {c b a}
  3    "CREATE TABLE x1 AS SELECT * FROM t1, t2"                 {a b c d e f}
  4    "CREATE TABLE x1 AS SELECT count(*) FROM t1"              {count(*)}
  5    "CREATE TABLE x1 AS SELECT count(a) AS a, max(b) FROM t1" {a max(b)}
}

# EVIDENCE-OF: R-37111-22855 The declared type of each column is
# determined by the expression affinity of the corresponding expression
# in the result set of the SELECT statement, as follows: Expression
# Affinity Column Declared Type TEXT "TEXT" NUMERIC "NUM" INTEGER "INT"
# REAL "REAL" NONE "" (empty string)
#
do_createtable_tests 2.2 -tclquery {
  table_column_decltypes x1
} -repair {
  catchsql { DROP TABLE x1 }
} {
  1    "CREATE TABLE x1 AS SELECT a FROM t1"     {""}
................................................................................
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
  1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
       {0 0 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?)}}

  2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
       {0 0 0 {SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1}}

  3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
       {0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?)}}
}

# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
#   All the tests that deal with CHECK constraints below (4.11.* and 







|



|







 







|


|


|







652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
....
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
  1    "CREATE TABLE x1 AS SELECT * FROM t1"                     {a b c}
  2    "CREATE TABLE x1 AS SELECT c, b, a FROM t1"               {c b a}
  3    "CREATE TABLE x1 AS SELECT * FROM t1, t2"                 {a b c d e f}
  4    "CREATE TABLE x1 AS SELECT count(*) FROM t1"              {count(*)}
  5    "CREATE TABLE x1 AS SELECT count(a) AS a, max(b) FROM t1" {a max(b)}
}

# EVIDENCE-OF: R-55407-45319 The declared type of each column is
# determined by the expression affinity of the corresponding expression
# in the result set of the SELECT statement, as follows: Expression
# Affinity Column Declared Type TEXT "TEXT" NUMERIC "NUM" INTEGER "INT"
# REAL "REAL" BLOB (a.k.a "NONE") "" (empty string)
#
do_createtable_tests 2.2 -tclquery {
  table_column_decltypes x1
} -repair {
  catchsql { DROP TABLE x1 }
} {
  1    "CREATE TABLE x1 AS SELECT a FROM t1"     {""}
................................................................................
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
  1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
       {/*SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?)*/}

  2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
       {/*SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1*/}

  3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
       {/*SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?)*/}
}

# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
#   All the tests that deal with CHECK constraints below (4.11.* and 

Changes to test/eqp.test.

39
40
41
42
43
44
45


46
47
48
49
50
51
52

53

54
55
56
57
58
59

60
61
62
63
64

65
66
67
68
69
70

71
72
73
74
75

76
77
78
79
80
81
82
83



84
85
86
87
88
89
90






91
92
93
94
95
96






97
98
99
100
101
102
103
104






105
106
107
108
109
110
111
112
113






114
115
116
117
118
119
120
121
122
123
124
...
125
126
127
128
129
130
131

132
133
134
135
136
137

138
139
140
141
142

143
144
145
146

147
148
149
150
151

152
153
154
155
156
157

158
159
160
161
162

163
164
165

166
167
168

169
170
171
172

173
174
175
176
177
178
179
180
181
182
183

184
185
186
187
188
189
190

191
192
193
194
195
196
197

198
199
200
201
202
203
204
205

206
207
208
209
210
211
212
213


214
215
216
217
218
219
220
221
222
223
224


225
226

227
228
229
230
231
232
233
234
235

236
237
238
239
240
241
242

243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260



261

262
263
264
265
266
267



268
269

270
271
272
273
274
275
276



277
278

279
280
281
282
283
284
285



286
287

288
289
290
291
292
293
294



295
296

297
298
299
300
301
302
303
304



305
306

307
308
309
310
311
312



313
314

315
316
317
318
319
320
321



322
323

324
325
326
327
328
329
330



331
332

333
334
335
336
337
338
339
340



341

342
343
344
345
346
347
348



349

350
351
352
353
354
355
356
357





358
359

360
361

362
363
364
365
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
...
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
...
553
554
555
556
557
558
559

560
561
562
563
564
565
566
...
567
568
569
570
571
572
573

574
575
576
577

578
579
580
581
582
583
584
585
...
589
590
591
592
593
594
595

596
597
598
599

600
601
602
603
604
605
606
607
...
608
609
610
611
612
613
614

615
616
617
618

619
620
621
622

623
624
625
626

627
628
629
630

631
632
633
634

635
636
637
638

639
640
641
642
643
644
645
646
647
648
  CREATE TABLE t2(a INT, b INT, ex TEXT);
  CREATE TABLE t3(a INT, b INT, ex TEXT);
}

do_eqp_test 1.2 {
  SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2;
} {


  0 0 1 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
  0 0 1 {SEARCH TABLE t1 USING INDEX i2 (b=?)} 
  0 1 0 {SCAN TABLE t2}
}
do_eqp_test 1.3 {
  SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2;
} {

  0 0 0 {SCAN TABLE t2}

  0 1 1 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
  0 1 1 {SEARCH TABLE t1 USING INDEX i2 (b=?)} 
}
do_eqp_test 1.3 {
  SELECT a FROM t1 ORDER BY a
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
}
do_eqp_test 1.4 {
  SELECT a FROM t1 ORDER BY +a
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 1.5 {
  SELECT a FROM t1 WHERE a=4
} {

  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}
}
do_eqp_test 1.6 {
  SELECT DISTINCT count(*) FROM t3 GROUP BY a;
} {

  0 0 0 {SCAN TABLE t3}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}

do_eqp_test 1.7 {
  SELECT * FROM t3 JOIN (SELECT 1)
} {



  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.8 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2)
} {
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}






  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.9 {
  SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17)
} {






  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (EXCEPT)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.10 {
  SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17)
} {






  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (INTERSECT)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}

do_eqp_test 1.11 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17)
} {






  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION ALL)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}

#-------------------------------------------------------------------------
# Test cases eqp-2.* - tests for single select statements.
#
drop_all_tables
do_execsql_test 2.1 {
................................................................................
  CREATE TABLE t1(x INT, y INT, ex TEXT);

  CREATE TABLE t2(x INT, y INT, ex TEXT);
  CREATE INDEX t2i1 ON t2(x);
}

det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" {

  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.3 "SELECT DISTINCT * FROM t1" {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.4 "SELECT DISTINCT * FROM t1, t2" {

  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" {

  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" {

  0 0 1 {SCAN TABLE t2 USING COVERING INDEX t2i1}
  0 1 0 {SCAN TABLE t1}
}

det 2.3.1 "SELECT max(x) FROM t2" {

  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1}
}
det 2.3.2 "SELECT min(x) FROM t2" {

  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1}
}
det 2.3.3 "SELECT min(x), max(x) FROM t2" {

  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
}

det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" {

  0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)}
}



#-------------------------------------------------------------------------
# Test cases eqp-3.* - tests for select statements that use sub-selects.
#
do_eqp_test 3.1.1 {
  SELECT (SELECT x FROM t1 AS sub) FROM t1;
} {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
}
do_eqp_test 3.1.2 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub);
} {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
}
do_eqp_test 3.1.3 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y);
} {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 3.1.4 {
  SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x);
} {

  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
}

det 3.2.1 {
  SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5
} {


  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {SCAN SUBQUERY 1} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 3.2.2 {
  SELECT * FROM 
    (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1,
    (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2
  ORDER BY x2.y LIMIT 5
} {


  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {SCAN SUBQUERY 1 AS x1} 
  0 1 1 {SCAN SUBQUERY 2 AS x2} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

det 3.3.1 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2)
} {

  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}
det 3.3.2 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {

  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}
det 3.3.3 {
  SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {

  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}

#-------------------------------------------------------------------------
# Test cases eqp-4.* - tests for composite select statements.
#
do_eqp_test 4.1.1 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2
} {



  1 0 0 {SCAN TABLE t1} 

  2 0 0 {SCAN TABLE t2} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.1.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.1.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.2.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.2.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  2 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.2.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  2 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.2.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1
} {



  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}

  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  2 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.3.1 {
  SELECT x FROM t1 UNION SELECT x FROM t2
} {



  1 0 0 {SCAN TABLE t1} 

  2 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)} 
}

do_eqp_test 4.3.2 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1
} {



  2 0 0 {SCAN TABLE t1} 

  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  4 0 0 {SCAN TABLE t1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 USING TEMP B-TREE (UNION)}
}
do_eqp_test 4.3.3 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1
} {





  2 0 0 {SCAN TABLE t1} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY} 

  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION)} 

  4 0 0 {SCAN TABLE t1} 
  4 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 (UNION)}
}


#-------------------------------------------------------------------------
# This next block of tests verifies that the examples on the 
# lang_explain.html page are correct.
#
drop_all_tables

# EVIDENCE-OF: R-47779-47605 sqlite> EXPLAIN QUERY PLAN SELECT a, b
# FROM t1 WHERE a=1;
# 0|0|0|SCAN TABLE t1
#
do_execsql_test 5.1.0 { CREATE TABLE t1(a INT, b INT, ex TEXT) }
det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SCAN TABLE t1}
}

# EVIDENCE-OF: R-55852-17599 sqlite> CREATE INDEX i1 ON t1(a);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING INDEX i1
#
do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) }
det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}

# EVIDENCE-OF: R-21179-11011 sqlite> CREATE INDEX i2 ON t1(a, b);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
#
do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) }
det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
}

# EVIDENCE-OF: R-09991-48941 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|1|SCAN TABLE t2
#
do_execsql_test 5.4.0 {CREATE TABLE t2(c INT, d INT, ex TEXT)}
det 5.4.1 "SELECT t1.a, t2.c FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 1 {SCAN TABLE t2}
}

# EVIDENCE-OF: R-33626-61085 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2;
# 0|0|1|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|0|SCAN TABLE t2
#
det 5.5 "SELECT t1.a, t2.c FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
  0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 0 {SCAN TABLE t2}
}

# EVIDENCE-OF: R-04002-25654 sqlite> CREATE INDEX i3 ON t1(b);
# sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)}
det 5.6.1 "SELECT a, b FROM t1 WHERE a=1 OR b=2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# EVIDENCE-OF: R-24577-38891 sqlite> EXPLAIN QUERY PLAN
# SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2
# 0|0|0|USE TEMP B-TREE FOR ORDER BY
#
det 5.7 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# EVIDENCE-OF: R-58157-12355 sqlite> CREATE INDEX i4 ON t2(c);
# sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2 USING INDEX i4
#
do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)}
det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 USING INDEX i4}
}

# EVIDENCE-OF: R-13931-10421 sqlite> EXPLAIN QUERY PLAN SELECT
# (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2;
# 0|0|0|SCAN TABLE t2
# 0|0|0|EXECUTE SCALAR SUBQUERY 1
# 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2
# 2|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
................................................................................
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
  2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# EVIDENCE-OF: R-50892-45943 sqlite> EXPLAIN QUERY PLAN
# SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 0|0|0|SCAN SUBQUERY 1
# 0|0|0|USE TEMP B-TREE FOR GROUP BY
#
det 5.10 {
  SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x
} {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  0 0 0 {SCAN SUBQUERY 1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
}

# EVIDENCE-OF: R-46219-33846 sqlite> EXPLAIN QUERY PLAN
# SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1;
# 0|0|0|SEARCH TABLE t2 USING INDEX i4 (c=?)
# 0|1|1|SCAN TABLE t1
#
det 5.11 "SELECT a, b FROM (SELECT * FROM t2 WHERE c=1), t1" {
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)}
  0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2}
}

# EVIDENCE-OF: R-37879-39987 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 UNION SELECT c FROM t2;
# 1|0|0|SCAN TABLE t1
# 2|0|0|SCAN TABLE t2
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)
#
det 5.12 "SELECT a,b FROM t1 UNION SELECT c, 99 FROM t2" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)}
}

# EVIDENCE-OF: R-44864-63011 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 2|0|0|SCAN TABLE t2 2|0|0|USE TEMP B-TREE FOR ORDER BY
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
#
det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
  2 0 0 {SCAN TABLE t2}
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)}
}


if {![nonzero_reserved_bytes]} {
  #-------------------------------------------------------------------------
  # The following tests - eqp-6.* - test that the example C code on 
  # documentation page eqp.html works. The C code is duplicated in test1.c
  # and wrapped in Tcl command [print_explain_query_plan] 
  #
................................................................................
  } [string trimleft {
1 0 0 SCAN TABLE t1 USING COVERING INDEX i2
2 0 0 SCAN TABLE t2
2 0 0 USE TEMP B-TREE FOR ORDER BY
0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
}]
}


#-------------------------------------------------------------------------
# The following tests - eqp-7.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables

................................................................................
do_execsql_test 7.0 {
  CREATE TABLE t1(a INT, b INT, ex CHAR(100));
  CREATE TABLE t2(a INT, b INT, ex CHAR(100));
  CREATE INDEX i1 ON t2(a);
}

det 7.1 "SELECT count(*) FROM t1" {

  0 0 0 {SCAN TABLE t1}
}

det 7.2 "SELECT count(*) FROM t2" {

  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1}
}

do_execsql_test 7.3 {
  INSERT INTO t1(a,b) VALUES(1, 2);
  INSERT INTO t1(a,b) VALUES(3, 4);

  INSERT INTO t2(a,b) VALUES(1, 2);
................................................................................
  ANALYZE;
}

db close
sqlite3 db test.db

det 7.4 "SELECT count(*) FROM t1" {

  0 0 0 {SCAN TABLE t1}
}

det 7.5 "SELECT count(*) FROM t2" {

  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1}
}

#-------------------------------------------------------------------------
# The following tests - eqp-8.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables
................................................................................

do_execsql_test 8.0 {
  CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c)) WITHOUT ROWID;
  CREATE TABLE t2(a, b, c);
}

det 8.1.1 "SELECT * FROM t2" {

  0 0 0 {SCAN TABLE t2}
}

det 8.1.2 "SELECT * FROM t2 WHERE rowid=?" {

  0 0 0 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

det 8.1.3 "SELECT count(*) FROM t2" {

  0 0 0 {SCAN TABLE t2}
}

det 8.2.1 "SELECT * FROM t1" {

  0 0 0 {SCAN TABLE t1}
}

det 8.2.2 "SELECT * FROM t1 WHERE b=?" {

  0 0 0 {SEARCH TABLE t1 USING PRIMARY KEY (b=?)}
}

det 8.2.3 "SELECT * FROM t1 WHERE b=? AND c=?" {

  0 0 0 {SEARCH TABLE t1 USING PRIMARY KEY (b=? AND c=?)}
}

det 8.2.4 "SELECT count(*) FROM t1" {

  0 0 0 {SCAN TABLE t1}
}







finish_test







>
>
|
|
|




>
|
>
|
|




>
|




>
|
|




>
|




>
|
|
|





>
>
>
|
|




|
>
>
>
>
>
>
|
|




>
>
>
>
>
>
|
<
|
|




>
>
>
>
>
>
|
<
|
|





>
>
>
>
>
>
|
<
|
|







 







>
|
|
|
|


>
|
|
|


>
|
|


>
|
|
|


>
|
|
|
|


>
|
|



>
|


>
|


>
|



>
|










>
|
|
|




>
|
|
|




>
|
|
|
|




>
|
|
|





>
>
|
|
|
|







>
>
|
|
>
|
|
|
|





>
|
|
|




>
|
|
|




>
|
|
|








>
>
>
|
>
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<





>
>
>
|
|
>
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<




>
>
>
|
|
>
|
|
<





>
>
>
|
>
|
<





>
>
>
|
>
|
|
|
<




>
>
>
>
>
|
|
>
|
<
>
|
|
<


>






|








|








|








|










|









|










|









|








|







 







|













|









|











|











<







 







>







 







>
|



>
|







 







>
|



>
|







 







>
|



>
|



>
|



>
|



>
|



>
|



>
|









39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
...
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353
354
355
356

357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372
373
374
375
376
377
378
379
380

381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404

405
406
407
408
409
410
411
412
413
414
415
416

417
418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453

454
455
456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
...
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

610
611
612
613
614
615
616
...
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
...
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
...
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
...
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
  CREATE TABLE t2(a INT, b INT, ex TEXT);
  CREATE TABLE t3(a INT, b INT, ex TEXT);
}

do_eqp_test 1.2 {
  SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2;
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t1 USING INDEX i1 (a=?)
  |  `--SEARCH TABLE t1 USING INDEX i2 (b=?)
  `--SCAN TABLE t2
}
do_eqp_test 1.3 {
  SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2;
} {
  QUERY PLAN
  |--SCAN TABLE t2
  `--MULTI-INDEX OR
     |--SEARCH TABLE t1 USING INDEX i1 (a=?)
     `--SEARCH TABLE t1 USING INDEX i2 (b=?)
}
do_eqp_test 1.3 {
  SELECT a FROM t1 ORDER BY a
} {
  QUERY PLAN
  `--SCAN TABLE t1 USING COVERING INDEX i1
}
do_eqp_test 1.4 {
  SELECT a FROM t1 ORDER BY +a
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test 1.5 {
  SELECT a FROM t1 WHERE a=4
} {
  QUERY PLAN
  `--SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)
}
do_eqp_test 1.6 {
  SELECT DISTINCT count(*) FROM t3 GROUP BY a;
} {
  QUERY PLAN
  |--SCAN TABLE t3
  |--USE TEMP B-TREE FOR GROUP BY
  `--USE TEMP B-TREE FOR DISTINCT
}

do_eqp_test 1.7 {
  SELECT * FROM t3 JOIN (SELECT 1)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--SCAN CONSTANT ROW
  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}
do_eqp_test 1.8 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--COMPOUND QUERY
  |     |--LEFT-MOST SUBQUERY
  |     |  `--SCAN CONSTANT ROW
  |     `--UNION USING TEMP B-TREE
  |        `--SCAN CONSTANT ROW
  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}
do_eqp_test 1.9 {
  SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--COMPOUND QUERY
  |     |--LEFT-MOST SUBQUERY
  |     |  `--SCAN CONSTANT ROW
  |     `--EXCEPT USING TEMP B-TREE
  |        `--SCAN TABLE t3

  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}
do_eqp_test 1.10 {
  SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--COMPOUND QUERY
  |     |--LEFT-MOST SUBQUERY
  |     |  `--SCAN CONSTANT ROW
  |     `--INTERSECT USING TEMP B-TREE
  |        `--SCAN TABLE t3

  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}

do_eqp_test 1.11 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17)
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--COMPOUND QUERY
  |     |--LEFT-MOST SUBQUERY
  |     |  `--SCAN CONSTANT ROW
  |     `--UNION ALL
  |        `--SCAN TABLE t3

  |--SCAN SUBQUERY xxxxxx
  `--SCAN TABLE t3
}

#-------------------------------------------------------------------------
# Test cases eqp-2.* - tests for single select statements.
#
drop_all_tables
do_execsql_test 2.1 {
................................................................................
  CREATE TABLE t1(x INT, y INT, ex TEXT);

  CREATE TABLE t2(x INT, y INT, ex TEXT);
  CREATE INDEX t2i1 ON t2(x);
}

det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" {
  QUERY PLAN
  |--SCAN TABLE t1
  |--USE TEMP B-TREE FOR GROUP BY
  |--USE TEMP B-TREE FOR DISTINCT
  `--USE TEMP B-TREE FOR ORDER BY
}
det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" {
  QUERY PLAN
  |--SCAN TABLE t2 USING COVERING INDEX t2i1
  |--USE TEMP B-TREE FOR DISTINCT
  `--USE TEMP B-TREE FOR ORDER BY
}
det 2.2.3 "SELECT DISTINCT * FROM t1" {
  QUERY PLAN
  |--SCAN TABLE t1
  `--USE TEMP B-TREE FOR DISTINCT
}
det 2.2.4 "SELECT DISTINCT * FROM t1, t2" {
  QUERY PLAN
  |--SCAN TABLE t1
  |--SCAN TABLE t2
  `--USE TEMP B-TREE FOR DISTINCT
}
det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" {
  QUERY PLAN
  |--SCAN TABLE t1
  |--SCAN TABLE t2
  |--USE TEMP B-TREE FOR DISTINCT
  `--USE TEMP B-TREE FOR ORDER BY
}
det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" {
  QUERY PLAN
  |--SCAN TABLE t2 USING COVERING INDEX t2i1
  `--SCAN TABLE t1
}

det 2.3.1 "SELECT max(x) FROM t2" {
  QUERY PLAN
  `--SEARCH TABLE t2 USING COVERING INDEX t2i1
}
det 2.3.2 "SELECT min(x) FROM t2" {
  QUERY PLAN
  `--SEARCH TABLE t2 USING COVERING INDEX t2i1
}
det 2.3.3 "SELECT min(x), max(x) FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2 USING COVERING INDEX t2i1
}

det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" {
  QUERY PLAN
  `--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
}



#-------------------------------------------------------------------------
# Test cases eqp-3.* - tests for select statements that use sub-selects.
#
do_eqp_test 3.1.1 {
  SELECT (SELECT x FROM t1 AS sub) FROM t1;
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCALAR SUBQUERY
     `--SCAN TABLE t1 AS sub
}
do_eqp_test 3.1.2 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCALAR SUBQUERY
     `--SCAN TABLE t1 AS sub
}
do_eqp_test 3.1.3 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCALAR SUBQUERY
     |--SCAN TABLE t1 AS sub
     `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test 3.1.4 {
  SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SCALAR SUBQUERY
     `--SCAN TABLE t2 USING COVERING INDEX t2i1
}

det 3.2.1 {
  SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5
} {
  QUERY PLAN
  |--CO-ROUTINE xxxxxx
  |  |--SCAN TABLE t1
  |  `--USE TEMP B-TREE FOR ORDER BY
  |--SCAN SUBQUERY xxxxxx
  `--USE TEMP B-TREE FOR ORDER BY
}
det 3.2.2 {
  SELECT * FROM 
    (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1,
    (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2
  ORDER BY x2.y LIMIT 5
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  |--SCAN TABLE t1
  |  `--USE TEMP B-TREE FOR ORDER BY
  |--MATERIALIZE xxxxxx
  |  `--SCAN TABLE t2 USING INDEX t2i1
  |--SCAN SUBQUERY xxxxxx AS x1
  |--SCAN SUBQUERY xxxxxx AS x2
  `--USE TEMP B-TREE FOR ORDER BY
}

det 3.3.1 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2)
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--LIST SUBQUERY
     `--SCAN TABLE t2
}
det 3.3.2 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--CORRELATED LIST SUBQUERY
     `--SCAN TABLE t2
}
det 3.3.3 {
  SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--CORRELATED SCALAR SUBQUERY
     `--SCAN TABLE t2
}

#-------------------------------------------------------------------------
# Test cases eqp-4.* - tests for composite select statements.
#
do_eqp_test 4.1.1 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2
} {
  QUERY PLAN
  `--COMPOUND QUERY
     |--LEFT-MOST SUBQUERY
     |  `--SCAN TABLE t1
     `--UNION ALL
        `--SCAN TABLE t2

}
do_eqp_test 4.1.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2
} {
  QUERY PLAN
  `--MERGE (UNION ALL)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2
        `--USE TEMP B-TREE FOR ORDER BY

}
do_eqp_test 4.1.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2
} {
  QUERY PLAN
  `--MERGE (UNION)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2
        `--USE TEMP B-TREE FOR ORDER BY

}
do_eqp_test 4.1.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2
} {
  QUERY PLAN
  `--MERGE (INTERSECT)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2
        `--USE TEMP B-TREE FOR ORDER BY

}
do_eqp_test 4.1.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2
} {
  QUERY PLAN
  `--MERGE (EXCEPT)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2
        `--USE TEMP B-TREE FOR ORDER BY

}

do_eqp_test 4.2.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (UNION ALL)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        `--SCAN TABLE t2 USING INDEX t2i1

}
do_eqp_test 4.2.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (UNION)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2 USING INDEX t2i1
        `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY

}
do_eqp_test 4.2.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (INTERSECT)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2 USING INDEX t2i1
        `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY

}
do_eqp_test 4.2.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (EXCEPT)
     |--LEFT
     |  |--SCAN TABLE t1
     |  `--USE TEMP B-TREE FOR ORDER BY
     `--RIGHT
        |--SCAN TABLE t2 USING INDEX t2i1
        `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY

}

do_eqp_test 4.3.1 {
  SELECT x FROM t1 UNION SELECT x FROM t2
} {
  QUERY PLAN
  `--COMPOUND QUERY
     |--LEFT-MOST SUBQUERY
     |  `--SCAN TABLE t1
     `--UNION USING TEMP B-TREE
        `--SCAN TABLE t2 USING COVERING INDEX t2i1

}

do_eqp_test 4.3.2 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1
} {
  QUERY PLAN
  `--COMPOUND QUERY
     |--LEFT-MOST SUBQUERY
     |  `--SCAN TABLE t1
     |--UNION USING TEMP B-TREE
     |  `--SCAN TABLE t2 USING COVERING INDEX t2i1
     `--UNION USING TEMP B-TREE
        `--SCAN TABLE t1

}
do_eqp_test 4.3.3 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1
} {
  QUERY PLAN
  `--MERGE (UNION)
     |--LEFT
     |  `--MERGE (UNION)
     |     |--LEFT
     |     |  |--SCAN TABLE t1
     |     |  `--USE TEMP B-TREE FOR ORDER BY
     |     `--RIGHT
     |        `--SCAN TABLE t2 USING COVERING INDEX t2i1

     `--RIGHT
        |--SCAN TABLE t1
        `--USE TEMP B-TREE FOR ORDER BY

}

if 0 {
#-------------------------------------------------------------------------
# This next block of tests verifies that the examples on the 
# lang_explain.html page are correct.
#
drop_all_tables

# XVIDENCE-OF: R-47779-47605 sqlite> EXPLAIN QUERY PLAN SELECT a, b
# FROM t1 WHERE a=1;
# 0|0|0|SCAN TABLE t1
#
do_execsql_test 5.1.0 { CREATE TABLE t1(a INT, b INT, ex TEXT) }
det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SCAN TABLE t1}
}

# XVIDENCE-OF: R-55852-17599 sqlite> CREATE INDEX i1 ON t1(a);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING INDEX i1
#
do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) }
det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}

# XVIDENCE-OF: R-21179-11011 sqlite> CREATE INDEX i2 ON t1(a, b);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
#
do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) }
det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
}

# XVIDENCE-OF: R-09991-48941 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|1|SCAN TABLE t2
#
do_execsql_test 5.4.0 {CREATE TABLE t2(c INT, d INT, ex TEXT)}
det 5.4.1 "SELECT t1.a, t2.c FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 1 {SCAN TABLE t2}
}

# XVIDENCE-OF: R-33626-61085 sqlite> EXPLAIN QUERY PLAN
# SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2;
# 0|0|1|SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)
# 0|1|0|SCAN TABLE t2
#
det 5.5 "SELECT t1.a, t2.c FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
  0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 0 {SCAN TABLE t2}
}

# XVIDENCE-OF: R-04002-25654 sqlite> CREATE INDEX i3 ON t1(b);
# sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)}
det 5.6.1 "SELECT a, b FROM t1 WHERE a=1 OR b=2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# XVIDENCE-OF: R-24577-38891 sqlite> EXPLAIN QUERY PLAN
# SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2
# 0|0|0|USE TEMP B-TREE FOR ORDER BY
#
det 5.7 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# XVIDENCE-OF: R-58157-12355 sqlite> CREATE INDEX i4 ON t2(c);
# sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2 USING INDEX i4
#
do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)}
det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 USING INDEX i4}
}

# XVIDENCE-OF: R-13931-10421 sqlite> EXPLAIN QUERY PLAN SELECT
# (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2;
# 0|0|0|SCAN TABLE t2
# 0|0|0|EXECUTE SCALAR SUBQUERY 1
# 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2
# 2|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
#
................................................................................
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
  2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# XVIDENCE-OF: R-50892-45943 sqlite> EXPLAIN QUERY PLAN
# SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 0|0|0|SCAN SUBQUERY 1
# 0|0|0|USE TEMP B-TREE FOR GROUP BY
#
det 5.10 {
  SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x
} {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  0 0 0 {SCAN SUBQUERY 1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
}

# XVIDENCE-OF: R-46219-33846 sqlite> EXPLAIN QUERY PLAN
# SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1;
# 0|0|0|SEARCH TABLE t2 USING INDEX i4 (c=?)
# 0|1|1|SCAN TABLE t1
#
det 5.11 "SELECT a, b FROM (SELECT * FROM t2 WHERE c=1), t1" {
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)}
  0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2}
}

# XVIDENCE-OF: R-37879-39987 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 UNION SELECT c FROM t2;
# 1|0|0|SCAN TABLE t1
# 2|0|0|SCAN TABLE t2
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)
#
det 5.12 "SELECT a,b FROM t1 UNION SELECT c, 99 FROM t2" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)}
}

# XVIDENCE-OF: R-44864-63011 sqlite> EXPLAIN QUERY PLAN
# SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2
# 2|0|0|SCAN TABLE t2 2|0|0|USE TEMP B-TREE FOR ORDER BY
# 0|0|0|COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
#
det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
  2 0 0 {SCAN TABLE t2}
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)}
}


if {![nonzero_reserved_bytes]} {
  #-------------------------------------------------------------------------
  # The following tests - eqp-6.* - test that the example C code on 
  # documentation page eqp.html works. The C code is duplicated in test1.c
  # and wrapped in Tcl command [print_explain_query_plan] 
  #
................................................................................
  } [string trimleft {
1 0 0 SCAN TABLE t1 USING COVERING INDEX i2
2 0 0 SCAN TABLE t2
2 0 0 USE TEMP B-TREE FOR ORDER BY
0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
}]
}
}

#-------------------------------------------------------------------------
# The following tests - eqp-7.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables

................................................................................
do_execsql_test 7.0 {
  CREATE TABLE t1(a INT, b INT, ex CHAR(100));
  CREATE TABLE t2(a INT, b INT, ex CHAR(100));
  CREATE INDEX i1 ON t2(a);
}

det 7.1 "SELECT count(*) FROM t1" {
  QUERY PLAN
  `--SCAN TABLE t1
}

det 7.2 "SELECT count(*) FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2 USING COVERING INDEX i1
}

do_execsql_test 7.3 {
  INSERT INTO t1(a,b) VALUES(1, 2);
  INSERT INTO t1(a,b) VALUES(3, 4);

  INSERT INTO t2(a,b) VALUES(1, 2);
................................................................................
  ANALYZE;
}

db close
sqlite3 db test.db

det 7.4 "SELECT count(*) FROM t1" {
  QUERY PLAN
  `--SCAN TABLE t1
}

det 7.5 "SELECT count(*) FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2 USING COVERING INDEX i1
}

#-------------------------------------------------------------------------
# The following tests - eqp-8.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
#
drop_all_tables
................................................................................

do_execsql_test 8.0 {
  CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c)) WITHOUT ROWID;
  CREATE TABLE t2(a, b, c);
}

det 8.1.1 "SELECT * FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2
}

det 8.1.2 "SELECT * FROM t2 WHERE rowid=?" {
  QUERY PLAN
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

det 8.1.3 "SELECT count(*) FROM t2" {
  QUERY PLAN
  `--SCAN TABLE t2
}

det 8.2.1 "SELECT * FROM t1" {
  QUERY PLAN
  `--SCAN TABLE t1
}

det 8.2.2 "SELECT * FROM t1 WHERE b=?" {
  QUERY PLAN
  `--SEARCH TABLE t1 USING PRIMARY KEY (b=?)
}

det 8.2.3 "SELECT * FROM t1 WHERE b=? AND c=?" {
  QUERY PLAN
  `--SEARCH TABLE t1 USING PRIMARY KEY (b=? AND c=?)
}

det 8.2.4 "SELECT count(*) FROM t1" {
  QUERY PLAN
  `--SCAN TABLE t1
}







finish_test

Changes to test/fts3aux1.test.

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
...
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
...
331
332
333
334
335
336
337
338
339

340
341
342
343
344
345
346
...
399
400
401
402
403
404
405
406

407
408
409
410
411
412

413
414

415
416
417
418
419
420

421
422

423
424
425
426
427
428

429
430

431
432
433
434
435
436

437
438

439
440
441
442
443
444
445
db func rec rec

# Use EQP to show that the WHERE expression "term='braid'" uses a different
# index number (1) than "+term='braid'" (0).
#
do_execsql_test 2.1.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} }
do_execsql_test 2.1.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid'
} {0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}}

# Now show that using "term='braid'" means the virtual table returns
# only 1 row to SQLite, but "+term='braid'" means all 19 are returned.
#
do_test 2.1.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' }
................................................................................

# Special case: term=NULL
#
do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {}

do_execsql_test 2.2.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 2:} }
do_execsql_test 2.2.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_execsql_test 2.2.1.3 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 4:} }
do_execsql_test 2.2.1.4 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_execsql_test 2.2.1.5 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 6:} }
do_execsql_test 2.2.1.6 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_test 2.2.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' }
  set cnt
} {18}
do_test 2.2.2.2 {
................................................................................
  5    1    "ORDER BY documents"
  6    1    "ORDER BY documents DESC"
  7    1    "ORDER BY occurrences ASC"
  8    1    "ORDER BY occurrences"
  9    1    "ORDER BY occurrences DESC"
} {

  set res [list 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}]
  if {$sort} { lappend res 0 0 0 {USE TEMP B-TREE FOR ORDER BY} }


  set sql "SELECT * FROM terms $orderby"
  do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res
}

#-------------------------------------------------------------------------
# The next set of tests, fts3aux1-3.*, test error conditions in the 
................................................................................
  INSERT INTO x1 VALUES('f g h i j');
  INSERT INTO x1 VALUES('k k l l a');

  INSERT INTO x2 SELECT term FROM terms WHERE col = '*';
  INSERT INTO x3 SELECT term FROM terms WHERE col = '*';
}

proc do_plansql_test {tn sql r} {

  uplevel do_execsql_test $tn [list "EXPLAIN QUERY PLAN $sql ; $sql"] [list $r]
}

do_plansql_test 4.2 {
  SELECT y FROM x2, terms WHERE y = term AND col = '*'
} {

  0 0 0 {SCAN TABLE x2} 
  0 1 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} 

  a b c d e f g h i j k l
}

do_plansql_test 4.3 {
  SELECT y FROM terms, x2 WHERE y = term AND col = '*'
} {

  0 0 1 {SCAN TABLE x2} 
  0 1 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} 

  a b c d e f g h i j k l
}

do_plansql_test 4.4 {
  SELECT y FROM x3, terms WHERE y = term AND col = '*'
} {

  0 0 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} 
  0 1 0 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)}

  a b c d e f g h i j k l
}

do_plansql_test 4.5 {
  SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*'
} {

  0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)}

  a k l
}

#-------------------------------------------------------------------------
# The following tests check that fts4aux can handle an fts table with an
# odd name (one that requires quoting for use in SQL statements). And that
# the argument to the fts4aux constructor is properly dequoted before use.







|


|







 







|


|



|


|



|


|







 







|
|
>







 







|
>
|





>
|
|
>






>
|
|
>






>
|
|
>






>
|
|
>







101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
...
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
...
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
...
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
db func rec rec

# Use EQP to show that the WHERE expression "term='braid'" uses a different
# index number (1) than "+term='braid'" (0).
#
do_execsql_test 2.1.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 1:*/}
do_execsql_test 2.1.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/}

# Now show that using "term='braid'" means the virtual table returns
# only 1 row to SQLite, but "+term='braid'" means all 19 are returned.
#
do_test 2.1.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' }
................................................................................

# Special case: term=NULL
#
do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {}

do_execsql_test 2.2.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 2:*/}
do_execsql_test 2.2.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/}

do_execsql_test 2.2.1.3 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 4:*/}
do_execsql_test 2.2.1.4 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/}

do_execsql_test 2.2.1.5 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 6:*/}
do_execsql_test 2.2.1.6 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain'
} {/*SCAN TABLE terms VIRTUAL TABLE INDEX 0:*/}

do_test 2.2.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' }
  set cnt
} {18}
do_test 2.2.2.2 {
................................................................................
  5    1    "ORDER BY documents"
  6    1    "ORDER BY documents DESC"
  7    1    "ORDER BY occurrences ASC"
  8    1    "ORDER BY occurrences"
  9    1    "ORDER BY occurrences DESC"
} {

  set res {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}
  if {$sort} { append res {*USE TEMP B-TREE FOR ORDER BY} }
  set res "/*$res*/"

  set sql "SELECT * FROM terms $orderby"
  do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res
}

#-------------------------------------------------------------------------
# The next set of tests, fts3aux1-3.*, test error conditions in the 
................................................................................
  INSERT INTO x1 VALUES('f g h i j');
  INSERT INTO x1 VALUES('k k l l a');

  INSERT INTO x2 SELECT term FROM terms WHERE col = '*';
  INSERT INTO x3 SELECT term FROM terms WHERE col = '*';
}

proc do_plansql_test {tn sql r1 r2} {
  do_eqp_test $tn.eqp $sql $r1
  do_execsql_test $tn $sql $r2
}

do_plansql_test 4.2 {
  SELECT y FROM x2, terms WHERE y = term AND col = '*'
} {
  QUERY PLAN
  |--SCAN TABLE x2
  `--SCAN TABLE terms VIRTUAL TABLE INDEX 1:
} {
  a b c d e f g h i j k l
}

do_plansql_test 4.3 {
  SELECT y FROM terms, x2 WHERE y = term AND col = '*'
} {
  QUERY PLAN
  |--SCAN TABLE x2
  `--SCAN TABLE terms VIRTUAL TABLE INDEX 1:
} {
  a b c d e f g h i j k l
}

do_plansql_test 4.4 {
  SELECT y FROM x3, terms WHERE y = term AND col = '*'
} {
  QUERY PLAN
  |--SCAN TABLE terms VIRTUAL TABLE INDEX 0:
  `--SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)
} {
  a b c d e f g h i j k l
}

do_plansql_test 4.5 {
  SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*'
} {
  QUERY PLAN
  |--SCAN TABLE terms VIRTUAL TABLE INDEX 0:
  `--SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)
} {
  a k l
}

#-------------------------------------------------------------------------
# The following tests check that fts4aux can handle an fts table with an
# odd name (one that requires quoting for use in SQL statements). And that
# the argument to the fts4aux constructor is properly dequoted before use.

Changes to test/fts3expr.test.

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# cases in the test code, which makes test coverage easier to measure.
# 
do_test fts3expr-5.1 {
  catchsql { SELECT fts3_exprtest('simple', 'a b') }
} {1 {Usage: fts3_exprtest(tokenizer, expr, col1, ...}}
do_test fts3expr-5.2 {
  catchsql { SELECT fts3_exprtest('doesnotexist', 'a b', 'c') }
} {1 {No such tokenizer module}}
do_test fts3expr-5.3 {
  catchsql { SELECT fts3_exprtest('simple', 'a b OR', 'c') }
} {1 {Error parsing expression}}

#------------------------------------------------------------------------
# The next set of tests verifies that things actually work as they are
# supposed to when using the new syntax.







|







405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# cases in the test code, which makes test coverage easier to measure.
# 
do_test fts3expr-5.1 {
  catchsql { SELECT fts3_exprtest('simple', 'a b') }
} {1 {Usage: fts3_exprtest(tokenizer, expr, col1, ...}}
do_test fts3expr-5.2 {
  catchsql { SELECT fts3_exprtest('doesnotexist', 'a b', 'c') }
} {1 {unknown tokenizer: doesnotexist}}
do_test fts3expr-5.3 {
  catchsql { SELECT fts3_exprtest('simple', 'a b OR', 'c') }
} {1 {Error parsing expression}}

#------------------------------------------------------------------------
# The next set of tests verifies that things actually work as they are
# supposed to when using the new syntax.

Changes to test/fts3expr4.test.

25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
set sqlite_fts3_enable_parentheses 1

proc test_fts3expr {tokenizer expr} {
  db one {SELECT fts3_exprtest($tokenizer, $expr, 'a', 'b', 'c')}
}

proc do_icu_expr_test {tn expr res} {

  uplevel [list do_test $tn [list test_fts3expr icu $expr] [list {*}$res]]
}

proc do_simple_expr_test {tn expr res} {
  uplevel [list do_test $tn [list test_fts3expr simple $expr] [list {*}$res]]
}

#-------------------------------------------------------------------------







>
|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
set sqlite_fts3_enable_parentheses 1

proc test_fts3expr {tokenizer expr} {
  db one {SELECT fts3_exprtest($tokenizer, $expr, 'a', 'b', 'c')}
}

proc do_icu_expr_test {tn expr res} {
  set res2 [list {*}$res]
  uplevel [list do_test $tn [list test_fts3expr "icu en_US" $expr] $res2]
}

proc do_simple_expr_test {tn expr res} {
  uplevel [list do_test $tn [list test_fts3expr simple $expr] [list {*}$res]]
}

#-------------------------------------------------------------------------

Changes to test/fts3join.test.

92
93
94
95
96
97
98


99
100
101
102
103
104

do_eqp_test 4.2 {
  SELECT * FROM t4 LEFT JOIN (
      SELECT docid, * FROM ft4 WHERE ft4 MATCH ?
  ) AS rr ON t4.rowid=rr.docid 
  WHERE t4.y = ?;
} {


  1 0 0 {SCAN TABLE ft4 VIRTUAL TABLE INDEX 3:} 
  0 0 0 {SCAN TABLE t4}
  0 1 1 {SEARCH SUBQUERY 1 AS rr USING AUTOMATIC COVERING INDEX (docid=?)}
}

finish_test







>
>
|
|
|



92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

do_eqp_test 4.2 {
  SELECT * FROM t4 LEFT JOIN (
      SELECT docid, * FROM ft4 WHERE ft4 MATCH ?
  ) AS rr ON t4.rowid=rr.docid 
  WHERE t4.y = ?;
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--SCAN TABLE ft4 VIRTUAL TABLE INDEX 3:
  |--SCAN TABLE t4
  `--SEARCH SUBQUERY xxxxxx AS rr USING AUTOMATIC COVERING INDEX (docid=?)
}

finish_test

Changes to test/fts3query.test.

114
115
116
117
118
119
120

121
122
123
124
125
126

127
128
129
130
131
132

133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
    CREATE VIRTUAL TABLE ft USING fts3(title);
    CREATE TABLE bt(title);
  }
} {}
do_eqp_test fts3query-4.2 {
  SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 1 {SCAN TABLE ft VIRTUAL TABLE INDEX 1:}
}
do_eqp_test fts3query-4.3 {
  SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date
} {

  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 0 {SCAN TABLE ft VIRTUAL TABLE INDEX 1:}
}
do_eqp_test fts3query-4.4 {
  SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 1 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)}
}
do_eqp_test fts3query-4.5 {
  SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date
} {

  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 0 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)}
}


# Test that calling matchinfo() with the wrong number of arguments, or with
# an invalid argument returns an error.
#
do_execsql_test 5.1 {







>
|
|




>
|
|




>
|
|




>
|
|







114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    CREATE VIRTUAL TABLE ft USING fts3(title);
    CREATE TABLE bt(title);
  }
} {}
do_eqp_test fts3query-4.2 {
  SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--SCAN TABLE ft VIRTUAL TABLE INDEX 1:
}
do_eqp_test fts3query-4.3 {
  SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--SCAN TABLE ft VIRTUAL TABLE INDEX 1:
}
do_eqp_test fts3query-4.4 {
  SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)
}
do_eqp_test fts3query-4.5 {
  SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX i1
  `--SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)
}


# Test that calling matchinfo() with the wrong number of arguments, or with
# an invalid argument returns an error.
#
do_execsql_test 5.1 {

Changes to test/fuzz_malloc.test.

53
54
55
56
57
58
59
60
61
62
63






64
65
66
67
68
69
70
  execsql $::prep
  set jj 0
  for {set ii 0} {$ii < $::fuzzyopts(-repeats)} {incr ii} {
    expr srand($jj)
    incr jj
    set ::sql [subst $::fuzzyopts(-template)]
    # puts fuzyy-sql=\[$::sql\]; flush stdout
    foreach {rc res} [catchsql "$::sql"] {}
    if {$rc==0} {
      set nErr1 [set_test_counter errors]
      do_malloc_test $testname-$ii -sqlbody $::sql -sqlprep $::prep






      if {[set_test_counter errors]>$nErr1} {
        puts "Previous fuzzy-sql=\[$::sql\]"
        flush stdout
      }
    } else {
      incr ii -1
    }







|


|
>
>
>
>
>
>







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  execsql $::prep
  set jj 0
  for {set ii 0} {$ii < $::fuzzyopts(-repeats)} {incr ii} {
    expr srand($jj)
    incr jj
    set ::sql [subst $::fuzzyopts(-template)]
    # puts fuzyy-sql=\[$::sql\]; flush stdout
    foreach {rc ::fmtres} [catchsql "$::sql"] {}
    if {$rc==0} {
      set nErr1 [set_test_counter errors]
      do_faultsim_test $testname-$ii -faults oom* -body {
        execsql $::sql
      } -test {
        if {$testrc && $testresult!="datatype mismatch"} { 
          faultsim_test_result {0 {}}
        }
      }
      if {[set_test_counter errors]>$nErr1} {
        puts "Previous fuzzy-sql=\[$::sql\]"
        flush stdout
      }
    } else {
      incr ii -1
    }

Changes to test/fuzzcheck.c.

716
717
718
719
720
721
722

723
724
725
726

727
728
729
730
731
732
733
734
...
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
...
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
...
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

863
864
865
866
867
868

869
870
871
872
873
874
875
...
902
903
904
905
906
907
908
909
910

911
912
913
914
915

916
917
918
919
920

921
922
923
924
925
926
927
...
934
935
936
937
938
939
940

941
942
943
944
945
946
947
...
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
....
1010
1011
1012
1013
1014
1015
1016
1017

1018
1019
1020
1021
1022
1023
1024
....
1049
1050
1051
1052
1053
1054
1055
1056

1057
1058
1059
1060
1061
1062
1063
....
1193
1194
1195
1196
1197
1198
1199
1200

1201
1202
1203
1204
1205
1206
1207
....
1212
1213
1214
1215
1216
1217
1218
1219

1220
1221
1222
1223
1224
1225
1226
*/
static void rebuild_database(sqlite3 *db){
  int rc;
  rc = sqlite3_exec(db, 
     "BEGIN;\n"
     "CREATE TEMP TABLE dbx AS SELECT DISTINCT dbcontent FROM db;\n"
     "DELETE FROM db;\n"

     "INSERT INTO db(dbid, dbcontent) SELECT NULL, dbcontent FROM dbx ORDER BY 2;\n"
     "DROP TABLE dbx;\n"
     "CREATE TEMP TABLE sx AS SELECT DISTINCT sqltext FROM xsql;\n"
     "DELETE FROM xsql;\n"

     "INSERT INTO xsql(sqlid,sqltext) SELECT NULL, sqltext FROM sx ORDER BY 2;\n"
     "DROP TABLE sx;\n"
     "COMMIT;\n"
     "PRAGMA page_size=1024;\n"
     "VACUUM;\n", 0, 0, 0);
  if( rc ) fatalError("cannot rebuild: %s", sqlite3_errmsg(db));
}

................................................................................
"  --dbid N             Use only the database where dbid=N\n"
"  --export-db DIR      Write databases to files(s) in DIR. Works with --dbid\n"
"  --export-sql DIR     Write SQL to file(s) in DIR. Also works with --sqlid\n"
"  --help               Show this help text\n"
"  -q|--quiet           Reduced output\n"
"  --limit-mem N        Limit memory used by test SQLite instance to N bytes\n"
"  --limit-vdbe         Panic if any test runs for more than 100,000 cycles\n"
"  --load-sql ARGS...   Load SQL scripts fro files into SOURCE-DB\n"
"  --load-db ARGS...    Load template databases from files into SOURCE_DB\n"
"  -m TEXT              Add a description to the database\n"
"  --native-vfs         Use the native VFS for initially empty database files\n"
"  --native-malloc      Turn off MEMSYS3/5 and Lookaside\n"
"  --oss-fuzz           Enable OSS-FUZZ testing\n"
"  --prng-seed N        Seed value for the PRGN inside of SQLite\n"
"  --rebuild            Rebuild and vacuum the database file\n"
................................................................................
}

int main(int argc, char **argv){
  sqlite3_int64 iBegin;        /* Start time of this program */
  int quietFlag = 0;           /* True if --quiet or -q */
  int verboseFlag = 0;         /* True if --verbose or -v */
  char *zInsSql = 0;           /* SQL statement for --load-db or --load-sql */
  int iFirstInsArg = 0;        /* First argv[] to use for --load-db or --load-sql */
  sqlite3 *db = 0;             /* The open database connection */
  sqlite3_stmt *pStmt;         /* A prepared statement */
  int rc;                      /* Result code from SQLite interface calls */
  Blob *pSql;                  /* For looping over SQL scripts */
  Blob *pDb;                   /* For looping over template databases */
  int i;                       /* Loop index for the argv[] loop */
  int onlySqlid = -1;          /* --sqlid */
................................................................................
  int runFlags = 0;            /* Flags sent to runSql() */
  char *zMsg = 0;              /* Add this message */
  int nSrcDb = 0;              /* Number of source databases */
  char **azSrcDb = 0;          /* Array of source database names */
  int iSrcDb;                  /* Loop over all source databases */
  int nTest = 0;               /* Total number of tests performed */
  char *zDbName = "";          /* Appreviated name of a source database */
  const char *zFailCode = 0;   /* Value of the TEST_FAILURE environment variable */
  int cellSzCkFlag = 0;        /* --cell-size-check */
  int sqlFuzz = 0;             /* True for SQL fuzz testing. False for DB fuzz */
  int iTimeout = 120;          /* Default 120-second timeout */
  int nMem = 0;                /* Memory limit */
  int nMemThisDb = 0;          /* Memory limit set by the CONFIG table */
  char *zExpDb = 0;            /* Write Databases to files in this directory */
  char *zExpSql = 0;           /* Write SQL to files in this directory */
  void *pHeap = 0;             /* Heap for use by SQLite */
  int ossFuzz = 0;             /* enable OSS-FUZZ testing */
  int ossFuzzThisDb = 0;       /* ossFuzz value for this particular database */
  int nativeMalloc = 0;        /* Turn off MEMSYS3/5 and lookaside if true */
  sqlite3_vfs *pDfltVfs;       /* The default VFS */


  iBegin = timeOfDay();
#ifdef __unix__
  signal(SIGALRM, timeoutHandler);
#endif
  g.zArgv0 = argv[0];

  zFailCode = getenv("TEST_FAILURE");
  pDfltVfs = sqlite3_vfs_find(0);
  inmemVfsRegister(1);
  for(i=1; i<argc; i++){
    const char *z = argv[i];
    if( z[0]=='-' ){
      z++;
................................................................................
        nMem = integerValue(argv[++i]);
#endif
      }else
      if( strcmp(z,"limit-vdbe")==0 ){
        vdbeLimitFlag = 1;
      }else
      if( strcmp(z,"load-sql")==0 ){
        zInsSql = "INSERT INTO xsql(sqltext) VALUES(CAST(readfile(?1) AS text))";
        iFirstInsArg = i+1;

        break;
      }else
      if( strcmp(z,"load-db")==0 ){
        zInsSql = "INSERT INTO db(dbcontent) VALUES(readfile(?1))";
        iFirstInsArg = i+1;

        break;
      }else
      if( strcmp(z,"m")==0 ){
        if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
        zMsg = argv[++i];

      }else
      if( strcmp(z,"native-malloc")==0 ){
        nativeMalloc = 1;
      }else
      if( strcmp(z,"native-vfs")==0 ){
        nativeFlag = 1;
      }else
................................................................................
      }else
      if( strcmp(z,"quiet")==0 || strcmp(z,"q")==0 ){
        quietFlag = 1;
        verboseFlag = 0;
      }else
      if( strcmp(z,"rebuild")==0 ){
        rebuildFlag = 1;

      }else
      if( strcmp(z,"result-trace")==0 ){
        runFlags |= SQL_OUTPUT;
      }else
      if( strcmp(z,"sqlid")==0 ){
        if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
        onlySqlid = integerValue(argv[++i]);
................................................................................
      fatalError("cannot import into more than one database");
    }
  }

  /* Process each source database separately */
  for(iSrcDb=0; iSrcDb<nSrcDb; iSrcDb++){
    rc = sqlite3_open_v2(azSrcDb[iSrcDb], &db,
                         SQLITE_OPEN_READWRITE, pDfltVfs->zName);
    if( rc ){
      fatalError("cannot open source database %s - %s",
      azSrcDb[iSrcDb], sqlite3_errmsg(db));
    }
    rc = sqlite3_exec(db,
       "CREATE TABLE IF NOT EXISTS db(\n"
       "  dbid INTEGER PRIMARY KEY, -- database id\n"
................................................................................
      if( rc ) fatalError("cannot change description: %s", sqlite3_errmsg(db));
    }
    ossFuzzThisDb = ossFuzz;

    /* If the CONFIG(name,value) table exists, read db-specific settings
    ** from that table */
    if( sqlite3_table_column_metadata(db,0,"config",0,0,0,0,0,0)==SQLITE_OK ){
      rc = sqlite3_prepare_v2(db, "SELECT name, value FROM config", -1, &pStmt, 0);

      if( rc ) fatalError("cannot prepare query of CONFIG table: %s",
                          sqlite3_errmsg(db));
      while( SQLITE_ROW==sqlite3_step(pStmt) ){
        const char *zName = (const char *)sqlite3_column_text(pStmt,0);
        if( zName==0 ) continue;
        if( strcmp(zName, "oss-fuzz")==0 ){
          ossFuzzThisDb = sqlite3_column_int(pStmt,1);
................................................................................
        sqlite3_bind_text(pStmt, 1, argv[i], -1, SQLITE_STATIC);
        sqlite3_step(pStmt);
        rc = sqlite3_reset(pStmt);
        if( rc ) fatalError("insert failed for %s", argv[i]);
      }
      sqlite3_finalize(pStmt);
      rc = sqlite3_exec(db, "COMMIT", 0, 0, 0);
      if( rc ) fatalError("cannot commit the transaction: %s", sqlite3_errmsg(db));

      rebuild_database(db);
      sqlite3_close(db);
      return 0;
    }
    rc = sqlite3_exec(db, "PRAGMA query_only=1;", 0, 0, 0);
    if( rc ) fatalError("cannot set database to query-only");
    if( zExpDb!=0 || zExpSql!=0 ){
................................................................................
            prevAmt = amt;
          }
        }
        createVFile("main.db", pDb->sz, pDb->a);
        sqlite3_randomness(0,0);
        if( ossFuzzThisDb ){
#ifndef SQLITE_OSS_FUZZ
          fatalError("--oss-fuzz not supported: recompile with -DSQLITE_OSS_FUZZ");

#else
          extern int LLVMFuzzerTestOneInput(const uint8_t*, size_t);
          LLVMFuzzerTestOneInput((const uint8_t*)pSql->a, (size_t)pSql->sz);
#endif
        }else{
          openFlags = SQLITE_OPEN_CREATE | SQLITE_OPEN_READWRITE;
          if( nativeFlag && pDb->sz==0 ){
................................................................................
          if( rc ) fatalError("cannot open inmem database");
          sqlite3_limit(db, SQLITE_LIMIT_LENGTH, 100000000);
          sqlite3_limit(db, SQLITE_LIMIT_LIKE_PATTERN_LENGTH, 50);
          if( cellSzCkFlag ) runSql(db, "PRAGMA cell_size_check=ON", runFlags);
          setAlarm(iTimeout);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
          if( sqlFuzz || vdbeLimitFlag ){
            sqlite3_progress_handler(db, 100000, progressHandler, &vdbeLimitFlag);

          }
#endif
          do{
            runSql(db, (char*)pSql->a, runFlags);
          }while( timeoutTest );
          setAlarm(0);
          sqlite3_exec(db, "PRAGMA temp_store_directory=''", 0, 0, 0);







>
|



>
|







 







|







 







|







 







|

|










>






>







 







|

>





>





>







 







>







 







|







 







|
>







 







|
>







 







|
>







 







|
>







716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
...
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
...
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
...
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
...
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
...
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
...
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
....
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
....
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
....
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
....
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
*/
static void rebuild_database(sqlite3 *db){
  int rc;
  rc = sqlite3_exec(db, 
     "BEGIN;\n"
     "CREATE TEMP TABLE dbx AS SELECT DISTINCT dbcontent FROM db;\n"
     "DELETE FROM db;\n"
     "INSERT INTO db(dbid, dbcontent) "
        " SELECT NULL, dbcontent FROM dbx ORDER BY 2;\n"
     "DROP TABLE dbx;\n"
     "CREATE TEMP TABLE sx AS SELECT DISTINCT sqltext FROM xsql;\n"
     "DELETE FROM xsql;\n"
     "INSERT INTO xsql(sqlid,sqltext) "
        " SELECT NULL, sqltext FROM sx ORDER BY 2;\n"
     "DROP TABLE sx;\n"
     "COMMIT;\n"
     "PRAGMA page_size=1024;\n"
     "VACUUM;\n", 0, 0, 0);
  if( rc ) fatalError("cannot rebuild: %s", sqlite3_errmsg(db));
}

................................................................................
"  --dbid N             Use only the database where dbid=N\n"
"  --export-db DIR      Write databases to files(s) in DIR. Works with --dbid\n"
"  --export-sql DIR     Write SQL to file(s) in DIR. Also works with --sqlid\n"
"  --help               Show this help text\n"
"  -q|--quiet           Reduced output\n"
"  --limit-mem N        Limit memory used by test SQLite instance to N bytes\n"
"  --limit-vdbe         Panic if any test runs for more than 100,000 cycles\n"
"  --load-sql ARGS...   Load SQL scripts fron files into SOURCE-DB\n"
"  --load-db ARGS...    Load template databases from files into SOURCE_DB\n"
"  -m TEXT              Add a description to the database\n"
"  --native-vfs         Use the native VFS for initially empty database files\n"
"  --native-malloc      Turn off MEMSYS3/5 and Lookaside\n"
"  --oss-fuzz           Enable OSS-FUZZ testing\n"
"  --prng-seed N        Seed value for the PRGN inside of SQLite\n"
"  --rebuild            Rebuild and vacuum the database file\n"
................................................................................
}

int main(int argc, char **argv){
  sqlite3_int64 iBegin;        /* Start time of this program */
  int quietFlag = 0;           /* True if --quiet or -q */
  int verboseFlag = 0;         /* True if --verbose or -v */
  char *zInsSql = 0;           /* SQL statement for --load-db or --load-sql */
  int iFirstInsArg = 0;        /* First argv[] for --load-db or --load-sql */
  sqlite3 *db = 0;             /* The open database connection */
  sqlite3_stmt *pStmt;         /* A prepared statement */
  int rc;                      /* Result code from SQLite interface calls */
  Blob *pSql;                  /* For looping over SQL scripts */
  Blob *pDb;                   /* For looping over template databases */
  int i;                       /* Loop index for the argv[] loop */
  int onlySqlid = -1;          /* --sqlid */
................................................................................
  int runFlags = 0;            /* Flags sent to runSql() */
  char *zMsg = 0;              /* Add this message */
  int nSrcDb = 0;              /* Number of source databases */
  char **azSrcDb = 0;          /* Array of source database names */
  int iSrcDb;                  /* Loop over all source databases */
  int nTest = 0;               /* Total number of tests performed */
  char *zDbName = "";          /* Appreviated name of a source database */
  const char *zFailCode = 0;   /* Value of the TEST_FAILURE env variable */
  int cellSzCkFlag = 0;        /* --cell-size-check */
  int sqlFuzz = 0;             /* True for SQL fuzz. False for DB fuzz */
  int iTimeout = 120;          /* Default 120-second timeout */
  int nMem = 0;                /* Memory limit */
  int nMemThisDb = 0;          /* Memory limit set by the CONFIG table */
  char *zExpDb = 0;            /* Write Databases to files in this directory */
  char *zExpSql = 0;           /* Write SQL to files in this directory */
  void *pHeap = 0;             /* Heap for use by SQLite */
  int ossFuzz = 0;             /* enable OSS-FUZZ testing */
  int ossFuzzThisDb = 0;       /* ossFuzz value for this particular database */
  int nativeMalloc = 0;        /* Turn off MEMSYS3/5 and lookaside if true */
  sqlite3_vfs *pDfltVfs;       /* The default VFS */
  int openFlags4Data;          /* Flags for sqlite3_open_v2() */

  iBegin = timeOfDay();
#ifdef __unix__
  signal(SIGALRM, timeoutHandler);
#endif
  g.zArgv0 = argv[0];
  openFlags4Data = SQLITE_OPEN_READONLY;
  zFailCode = getenv("TEST_FAILURE");
  pDfltVfs = sqlite3_vfs_find(0);
  inmemVfsRegister(1);
  for(i=1; i<argc; i++){
    const char *z = argv[i];
    if( z[0]=='-' ){
      z++;
................................................................................
        nMem = integerValue(argv[++i]);
#endif
      }else
      if( strcmp(z,"limit-vdbe")==0 ){
        vdbeLimitFlag = 1;
      }else
      if( strcmp(z,"load-sql")==0 ){
        zInsSql = "INSERT INTO xsql(sqltext)VALUES(CAST(readfile(?1) AS text))";
        iFirstInsArg = i+1;
        openFlags4Data = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
        break;
      }else
      if( strcmp(z,"load-db")==0 ){
        zInsSql = "INSERT INTO db(dbcontent) VALUES(readfile(?1))";
        iFirstInsArg = i+1;
        openFlags4Data = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
        break;
      }else
      if( strcmp(z,"m")==0 ){
        if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
        zMsg = argv[++i];
        openFlags4Data = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
      }else
      if( strcmp(z,"native-malloc")==0 ){
        nativeMalloc = 1;
      }else
      if( strcmp(z,"native-vfs")==0 ){
        nativeFlag = 1;
      }else
................................................................................
      }else
      if( strcmp(z,"quiet")==0 || strcmp(z,"q")==0 ){
        quietFlag = 1;
        verboseFlag = 0;
      }else
      if( strcmp(z,"rebuild")==0 ){
        rebuildFlag = 1;
        openFlags4Data = SQLITE_OPEN_READWRITE;
      }else
      if( strcmp(z,"result-trace")==0 ){
        runFlags |= SQL_OUTPUT;
      }else
      if( strcmp(z,"sqlid")==0 ){
        if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
        onlySqlid = integerValue(argv[++i]);
................................................................................
      fatalError("cannot import into more than one database");
    }
  }

  /* Process each source database separately */
  for(iSrcDb=0; iSrcDb<nSrcDb; iSrcDb++){
    rc = sqlite3_open_v2(azSrcDb[iSrcDb], &db,
                         openFlags4Data, pDfltVfs->zName);
    if( rc ){
      fatalError("cannot open source database %s - %s",
      azSrcDb[iSrcDb], sqlite3_errmsg(db));
    }
    rc = sqlite3_exec(db,
       "CREATE TABLE IF NOT EXISTS db(\n"
       "  dbid INTEGER PRIMARY KEY, -- database id\n"
................................................................................
      if( rc ) fatalError("cannot change description: %s", sqlite3_errmsg(db));
    }
    ossFuzzThisDb = ossFuzz;

    /* If the CONFIG(name,value) table exists, read db-specific settings
    ** from that table */
    if( sqlite3_table_column_metadata(db,0,"config",0,0,0,0,0,0)==SQLITE_OK ){
      rc = sqlite3_prepare_v2(db, "SELECT name, value FROM config",
                                  -1, &pStmt, 0);
      if( rc ) fatalError("cannot prepare query of CONFIG table: %s",
                          sqlite3_errmsg(db));
      while( SQLITE_ROW==sqlite3_step(pStmt) ){
        const char *zName = (const char *)sqlite3_column_text(pStmt,0);
        if( zName==0 ) continue;
        if( strcmp(zName, "oss-fuzz")==0 ){
          ossFuzzThisDb = sqlite3_column_int(pStmt,1);
................................................................................
        sqlite3_bind_text(pStmt, 1, argv[i], -1, SQLITE_STATIC);
        sqlite3_step(pStmt);
        rc = sqlite3_reset(pStmt);
        if( rc ) fatalError("insert failed for %s", argv[i]);
      }
      sqlite3_finalize(pStmt);
      rc = sqlite3_exec(db, "COMMIT", 0, 0, 0);
      if( rc ) fatalError("cannot commit the transaction: %s",
                          sqlite3_errmsg(db));
      rebuild_database(db);
      sqlite3_close(db);
      return 0;
    }
    rc = sqlite3_exec(db, "PRAGMA query_only=1;", 0, 0, 0);
    if( rc ) fatalError("cannot set database to query-only");
    if( zExpDb!=0 || zExpSql!=0 ){
................................................................................
            prevAmt = amt;
          }
        }
        createVFile("main.db", pDb->sz, pDb->a);
        sqlite3_randomness(0,0);
        if( ossFuzzThisDb ){
#ifndef SQLITE_OSS_FUZZ
          fatalError("--oss-fuzz not supported: recompile"
                     " with -DSQLITE_OSS_FUZZ");
#else
          extern int LLVMFuzzerTestOneInput(const uint8_t*, size_t);
          LLVMFuzzerTestOneInput((const uint8_t*)pSql->a, (size_t)pSql->sz);
#endif
        }else{
          openFlags = SQLITE_OPEN_CREATE | SQLITE_OPEN_READWRITE;
          if( nativeFlag && pDb->sz==0 ){
................................................................................
          if( rc ) fatalError("cannot open inmem database");
          sqlite3_limit(db, SQLITE_LIMIT_LENGTH, 100000000);
          sqlite3_limit(db, SQLITE_LIMIT_LIKE_PATTERN_LENGTH, 50);
          if( cellSzCkFlag ) runSql(db, "PRAGMA cell_size_check=ON", runFlags);
          setAlarm(iTimeout);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
          if( sqlFuzz || vdbeLimitFlag ){
            sqlite3_progress_handler(db, 100000, progressHandler,
                                     &vdbeLimitFlag);
          }
#endif
          do{
            runSql(db, (char*)pSql->a, runFlags);
          }while( timeoutTest );
          setAlarm(0);
          sqlite3_exec(db, "PRAGMA temp_store_directory=''", 0, 0, 0);

Changes to test/fuzzdata5.db.

cannot compute difference between binary files

Added test/fuzzdata6.db.

cannot compute difference between binary files

Changes to test/index6.test.

314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
  INSERT INTO t8b VALUES('value', 3);
  INSERT INTO t8b VALUES('dummy', 4);
} {}

do_eqp_test index6-8.1 {
  SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a)
} {

  0 0 0 {SCAN TABLE t8a} 
  0 1 1 {SEARCH TABLE t8b USING INDEX i8c (y=?)}
}

do_execsql_test index6-8.2 {
  SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a)
} {
  1 one value 1 
  2 two {} {} 







>
|
|







314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
  INSERT INTO t8b VALUES('value', 3);
  INSERT INTO t8b VALUES('dummy', 4);
} {}

do_eqp_test index6-8.1 {
  SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a)
} {
  QUERY PLAN
  |--SCAN TABLE t8a
  `--SEARCH TABLE t8b USING INDEX i8c (y=?)
}

do_execsql_test index6-8.2 {
  SELECT * FROM t8a LEFT JOIN t8b ON (x = 'value' AND y = a)
} {
  1 one value 1 
  2 two {} {} 

Changes to test/index7.test.

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
  INSERT INTO t4 VALUES('def', 'xyz');
  SELECT * FROM v4 WHERE d='xyz' AND c='def'
} {
  def xyz
}
do_eqp_test index7-6.4 {
  SELECT * FROM v4 WHERE d='xyz' AND c='def'
} {
  0 0 0 {SEARCH TABLE t4 USING INDEX i4 (c=?)}
}
do_catchsql_test index7-6.5 {
  CREATE INDEX t5a ON t5(a) WHERE a=#1;
} {1 {near "#1": syntax error}}


finish_test







<
|
|






317
318
319
320
321
322
323

324
325
326
327
328
329
330
331
  INSERT INTO t4 VALUES('def', 'xyz');
  SELECT * FROM v4 WHERE d='xyz' AND c='def'
} {
  def xyz
}
do_eqp_test index7-6.4 {
  SELECT * FROM v4 WHERE d='xyz' AND c='def'

} {SEARCH TABLE t4 USING INDEX i4 (c=?)}

do_catchsql_test index7-6.5 {
  CREATE INDEX t5a ON t5(a) WHERE a=#1;
} {1 {near "#1": syntax error}}


finish_test

Changes to test/indexedby.test.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
...
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
...
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
...
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
...
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
...
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#
proc EQP {sql} {
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}

# These tests are to check that "EXPLAIN QUERY PLAN" is working as expected.
#
do_execsql_test indexedby-1.2 {
  EXPLAIN QUERY PLAN select * from t1 WHERE a = 10; 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-1.3 {
  EXPLAIN QUERY PLAN select * from t1 ; 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-1.4 {
  EXPLAIN QUERY PLAN select * from t1, t2 WHERE c = 10; 
} {

  0 0 1 {SEARCH TABLE t2 USING INDEX i3 (c=?)} 
  0 1 0 {SCAN TABLE t1}
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
#
# EVIDENCE-OF: R-07004-11522 -- syntax diagram qualified-table-name
# 
# EVIDENCE-OF: R-58230-57098 The "INDEXED BY index-name" phrase
# specifies that the named index must be used in order to look up values
# on the preceding table.
#
do_test indexedby-2.1 {
  execsql { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'}
................................................................................
#
# EVIDENCE-OF: R-37002-28871 The "NOT INDEXED" clause specifies that no
# index shall be used when accessing the preceding table, including
# implied indices create by UNIQUE and PRIMARY KEY constraints. However,
# the rowid can still be used to look up entries even when "NOT INDEXED"
# is specified.
#
do_execsql_test indexedby-3.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a = 'one' AND b = 'two'
} {/SEARCH TABLE t1 USING INDEX/}
do_execsql_test indexedby-3.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-3.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE rowid=1
} {/SEARCH TABLE t1 USING INTEGER PRIMARY KEY .rowid=/}


do_execsql_test indexedby-3.2 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-3.3 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-3.4 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' }
} {1 {no query solution}}
do_test indexedby-3.5 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a }
} {1 {no query solution}}
do_test indexedby-3.6 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' }
} {0 {}}
do_test indexedby-3.7 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a }
} {0 {}}

do_execsql_test indexedby-3.8 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e 
} {0 0 0 {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1}}
do_execsql_test indexedby-3.9 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 
} {0 0 0 {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?)}}
do_test indexedby-3.10 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 }
} {1 {no query solution}}
do_test indexedby-3.11 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 }
} {1 {no such index: sqlite_autoindex_t3_2}}

# Tests for multiple table cases.
#
do_execsql_test indexedby-4.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE a = c 
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INDEX i3 (c=?)}
}
do_execsql_test indexedby-4.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c 
} {

  0 0 1 {SCAN TABLE t2} 
  0 1 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}
do_test indexedby-4.3 {
  catchsql {
    SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c
  }
} {1 {no query solution}}
do_test indexedby-4.4 {
................................................................................
# Test embedding an INDEXED BY in a CREATE VIEW statement. This block
# also tests that nothing bad happens if an index refered to by
# a CREATE VIEW statement is dropped and recreated.
#
do_execsql_test indexedby-5.1 {
  CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
  EXPLAIN QUERY PLAN SELECT * FROM v2 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_execsql_test indexedby-5.2 {
  EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_test indexedby-5.3 {
  execsql { DROP INDEX i1 }
  catchsql { SELECT * FROM v2 }
} {1 {no such index: i1}}
do_test indexedby-5.4 {
  # Recreate index i1 in such a way as it cannot be used by the view query.
  execsql { CREATE INDEX i1 ON t1(b) }
................................................................................
  # be used by the query.
  execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) }
  catchsql { SELECT * FROM v2 }
} {0 {}}

# Test that "NOT INDEXED" may use the rowid index, but not others.
# 
do_execsql_test indexedby-6.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_execsql_test indexedby-6.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SCAN TABLE t1}}

# EVIDENCE-OF: R-40297-14464 The INDEXED BY phrase forces the SQLite
# query planner to use a particular named index on a DELETE, SELECT, or
# UPDATE statement.
#
# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_execsql_test indexedby-7.1 {
  EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.2 {
  EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-7.3 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.4 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.5 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-7.6 {
  catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5}
} {1 {no query solution}}

# Test that "INDEXED BY" can be used in an UPDATE statement.
# 
do_execsql_test indexedby-8.1 {
  EXPLAIN QUERY PLAN UPDATE t1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.2 {
  EXPLAIN QUERY PLAN UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-8.3 {
  EXPLAIN QUERY PLAN UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.4 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.5 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-8.6 {
  catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5}
} {1 {no query solution}}

# Test that bug #3560 is fixed.
#
do_test indexedby-9.1 {
................................................................................
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3';
} {1 1 3}
do_execsql_test 11.4 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {1 1 3}
do_eqp_test 11.5 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {0 0 0 {SEARCH TABLE x1 USING COVERING INDEX x1i (a=? AND b=? AND rowid=?)}}

do_execsql_test 11.6 {
  CREATE TABLE x2(c INTEGER PRIMARY KEY, a, b TEXT);
  CREATE INDEX x2i ON x2(a, b);
  INSERT INTO x2 VALUES(1, 1, 1);
  INSERT INTO x2 VALUES(2, 1, 1);
  INSERT INTO x2 VALUES(3, 1, 1);
................................................................................
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3';
} {1 1 3}
do_execsql_test 11.9 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {1 1 3}
do_eqp_test 11.10 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {0 0 0 {SEARCH TABLE x2 USING COVERING INDEX x2i (a=? AND b=? AND rowid=?)}}

#-------------------------------------------------------------------------
# Check INDEXED BY works (throws an exception) with partial indexes that 
# cannot be used.
do_execsql_test 12.1 {
  CREATE TABLE o1(x INTEGER PRIMARY KEY, y, z);
  CREATE INDEX p1 ON o1(z);







|
|
|
|
|
|
|
|

>
|
|







|







 







|
|

|
|
|
|
|



|
<

|
|
<

|













|
<

|
|
<

|









|
|

>
|
|

|
|

>
|
|







 







|


|







 







|
|
|
|
|
|







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|






|
|
|
|
|
|
|
|
|
|
<

|
|
<

|







 







|







 







|







36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
...
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
...
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
...
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

262
263
264

265
266
267
268
269
270
271
272
273
...
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
...
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#
proc EQP {sql} {
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}

# These tests are to check that "EXPLAIN QUERY PLAN" is working as expected.
#
do_eqp_test indexedby-1.2 {
  select * from t1 WHERE a = 10; 
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-1.3 {
  select * from t1 ; 
} {SCAN TABLE t1}
do_eqp_test indexedby-1.4 {
  select * from t1, t2 WHERE c = 10; 
} {
  QUERY PLAN
  |--SEARCH TABLE t2 USING INDEX i3 (c=?)
  `--SCAN TABLE t1
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
#
# X-EVIDENCE-OF: R-07004-11522 -- syntax diagram qualified-table-name
# 
# EVIDENCE-OF: R-58230-57098 The "INDEXED BY index-name" phrase
# specifies that the named index must be used in order to look up values
# on the preceding table.
#
do_test indexedby-2.1 {
  execsql { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'}
................................................................................
#
# EVIDENCE-OF: R-37002-28871 The "NOT INDEXED" clause specifies that no
# index shall be used when accessing the preceding table, including
# implied indices create by UNIQUE and PRIMARY KEY constraints. However,
# the rowid can still be used to look up entries even when "NOT INDEXED"
# is specified.
#
do_eqp_test indexedby-3.1 {
  SELECT * FROM t1 WHERE a = 'one' AND b = 'two'
} {/SEARCH TABLE t1 USING INDEX/}
do_eqp_test indexedby-3.1.1 {
  SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'
} {SCAN TABLE t1}
do_eqp_test indexedby-3.1.2 {
  SELECT * FROM t1 NOT INDEXED WHERE rowid=1
} {/SEARCH TABLE t1 USING INTEGER PRIMARY KEY .rowid=/}


do_eqp_test indexedby-3.2 {

  SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-3.3 {

  SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'
} {SEARCH TABLE t1 USING INDEX i2 (b=?)}
do_test indexedby-3.4 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' }
} {1 {no query solution}}
do_test indexedby-3.5 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a }
} {1 {no query solution}}
do_test indexedby-3.6 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' }
} {0 {}}
do_test indexedby-3.7 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a }
} {0 {}}

do_eqp_test indexedby-3.8 {

  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e 
} {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1}
do_eqp_test indexedby-3.9 {

  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 
} {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?)}
do_test indexedby-3.10 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 }
} {1 {no query solution}}
do_test indexedby-3.11 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 }
} {1 {no such index: sqlite_autoindex_t3_2}}

# Tests for multiple table cases.
#
do_eqp_test indexedby-4.1 {
  SELECT * FROM t1, t2 WHERE a = c 
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SEARCH TABLE t2 USING INDEX i3 (c=?)
}
do_eqp_test indexedby-4.2 {
  SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c 
} {
  QUERY PLAN
  |--SCAN TABLE t2
  `--SEARCH TABLE t1 USING INDEX i1 (a=?)
}
do_test indexedby-4.3 {
  catchsql {
    SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c
  }
} {1 {no query solution}}
do_test indexedby-4.4 {
................................................................................
# Test embedding an INDEXED BY in a CREATE VIEW statement. This block
# also tests that nothing bad happens if an index refered to by
# a CREATE VIEW statement is dropped and recreated.
#
do_execsql_test indexedby-5.1 {
  CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
  EXPLAIN QUERY PLAN SELECT * FROM v2 
} {/*SEARCH TABLE t1 USING INDEX i1 (a>?)*/}
do_execsql_test indexedby-5.2 {
  EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 
} {/*SEARCH TABLE t1 USING INDEX i1 (a>?)*/}
do_test indexedby-5.3 {
  execsql { DROP INDEX i1 }
  catchsql { SELECT * FROM v2 }
} {1 {no such index: i1}}
do_test indexedby-5.4 {
  # Recreate index i1 in such a way as it cannot be used by the view query.
  execsql { CREATE INDEX i1 ON t1(b) }
................................................................................
  # be used by the query.
  execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) }
  catchsql { SELECT * FROM v2 }
} {0 {}}

# Test that "NOT INDEXED" may use the rowid index, but not others.
# 
do_eqp_test indexedby-6.1 {
  SELECT * FROM t1 WHERE b = 10 ORDER BY rowid 
} {SEARCH TABLE t1 USING INDEX i2 (b=?)}
do_eqp_test indexedby-6.2 {
  SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid 
} {SCAN TABLE t1}

# EVIDENCE-OF: R-40297-14464 The INDEXED BY phrase forces the SQLite
# query planner to use a particular named index on a DELETE, SELECT, or
# UPDATE statement.
#
# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_eqp_test indexedby-7.1 {
  DELETE FROM t1 WHERE a = 5 
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-7.2 {
  DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {SCAN TABLE t1}
do_eqp_test indexedby-7.3 {
  DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-7.4 {
  DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-7.5 {
  DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {SEARCH TABLE t1 USING INDEX i2 (b=?)}
do_test indexedby-7.6 {
  catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5}
} {1 {no query solution}}

# Test that "INDEXED BY" can be used in an UPDATE statement.
# 
do_eqp_test indexedby-8.1 {
  UPDATE t1 SET rowid=rowid+1 WHERE a = 5 
} {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}
do_eqp_test indexedby-8.2 {
  UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 
} {SCAN TABLE t1}
do_eqp_test indexedby-8.3 {
  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 
} {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}
do_eqp_test indexedby-8.4 {

  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test indexedby-8.5 {

  UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {SEARCH TABLE t1 USING INDEX i2 (b=?)}
do_test indexedby-8.6 {
  catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5}
} {1 {no query solution}}

# Test that bug #3560 is fixed.
#
do_test indexedby-9.1 {
................................................................................
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3';
} {1 1 3}
do_execsql_test 11.4 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {1 1 3}
do_eqp_test 11.5 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {SEARCH TABLE x1 USING COVERING INDEX x1i (a=? AND b=? AND rowid=?)}

do_execsql_test 11.6 {
  CREATE TABLE x2(c INTEGER PRIMARY KEY, a, b TEXT);
  CREATE INDEX x2i ON x2(a, b);
  INSERT INTO x2 VALUES(1, 1, 1);
  INSERT INTO x2 VALUES(2, 1, 1);
  INSERT INTO x2 VALUES(3, 1, 1);
................................................................................
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3';
} {1 1 3}
do_execsql_test 11.9 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {1 1 3}
do_eqp_test 11.10 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {SEARCH TABLE x2 USING COVERING INDEX x2i (a=? AND b=? AND rowid=?)}

#-------------------------------------------------------------------------
# Check INDEXED BY works (throws an exception) with partial indexes that 
# cannot be used.
do_execsql_test 12.1 {
  CREATE TABLE o1(x INTEGER PRIMARY KEY, y, z);
  CREATE INDEX p1 ON o1(z);

Changes to test/indexexpr2.test.

87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118

ifcapable json1 {
  do_eqp_test 3.3.1 {
    SELECT json_extract(x, '$.b') FROM t2 
    WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL 
    GROUP BY json_extract(x, '$.b') COLLATE nocase
    ORDER BY json_extract(x, '$.b') COLLATE nocase;
  } {

    0 0 0 {SCAN TABLE t2} 
    0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  }
  
  do_execsql_test 3.3.2 {
    CREATE INDEX i3 ON t3(json_extract(x, '$.a'), json_extract(x, '$.b'));
  } {}
  
  do_eqp_test 3.3.3 {
    SELECT json_extract(x, '$.b') FROM t3 
    WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL 
    GROUP BY json_extract(x, '$.b') COLLATE nocase
    ORDER BY json_extract(x, '$.b') COLLATE nocase;
  } {

    0 0 0 {SEARCH TABLE t3 USING INDEX i3 (<expr>=?)} 
    0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  }
}

do_execsql_test 3.4.0 {
  CREATE TABLE t4(a, b);
  INSERT INTO t4 VALUES('.ABC', 1);
  INSERT INTO t4 VALUES('.abc', 2);
  INSERT INTO t4 VALUES('.ABC', 3);







|
>
|
|
|










|
>
|
|
|







87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

ifcapable json1 {
  do_eqp_test 3.3.1 {
    SELECT json_extract(x, '$.b') FROM t2 
    WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL 
    GROUP BY json_extract(x, '$.b') COLLATE nocase
    ORDER BY json_extract(x, '$.b') COLLATE nocase;
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SCAN TABLE t2
    `--USE TEMP B-TREE FOR GROUP BY
  }]
  
  do_execsql_test 3.3.2 {
    CREATE INDEX i3 ON t3(json_extract(x, '$.a'), json_extract(x, '$.b'));
  } {}
  
  do_eqp_test 3.3.3 {
    SELECT json_extract(x, '$.b') FROM t3 
    WHERE json_extract(x, '$.b') IS NOT NULL AND json_extract(x, '$.a') IS NULL 
    GROUP BY json_extract(x, '$.b') COLLATE nocase
    ORDER BY json_extract(x, '$.b') COLLATE nocase;
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SEARCH TABLE t3 USING INDEX i3 (<expr>=?)
    `--USE TEMP B-TREE FOR GROUP BY
  }]
}

do_execsql_test 3.4.0 {
  CREATE TABLE t4(a, b);
  INSERT INTO t4 VALUES('.ABC', 1);
  INSERT INTO t4 VALUES('.abc', 2);
  INSERT INTO t4 VALUES('.ABC', 3);

Changes to test/join2.test.

108
109
110
111
112
113
114

115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
...
154
155
156
157
158
159
160

161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
176
...
199
200
201
202
203
204
205

206
207
208
209
210
211
212

213
214
215
216
217
218
219
220
221
...
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
  CREATE TABLE t3_1(k3 PRIMARY KEY, v3) WITHOUT ROWID;
  CREATE TABLE t3_2(v3, k3 PRIMARY KEY) WITHOUT ROWID;
}

do_eqp_test 3.1 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_1 USING (k3);
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test 3.2 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_2 USING (k3);
} {

  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

#-------------------------------------------------------------------------
# Test that tables other than the rightmost can be omitted from a
# LEFT JOIN query.
#
do_execsql_test 4.0 {
................................................................................
do_execsql_test 4.1.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.1.5 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {

  0 0 0 {SCAN TABLE c1} 
  0 1 1 {SEARCH TABLE c2 USING INTEGER PRIMARY KEY (rowid=?)}
  0 2 2 {SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_eqp_test 4.1.6 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {

  0 0 0 {SCAN TABLE c1} 
  0 1 2 {SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_execsql_test 4.2.0 {
  DROP TABLE c1;
  DROP TABLE c2;
  DROP TABLE c3;
  CREATE TABLE c1(k UNIQUE, v1);
................................................................................
do_execsql_test 4.2.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.2.5 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {

  0 0 0 {SCAN TABLE c1} 
  0 1 1 {SEARCH TABLE c2 USING INDEX sqlite_autoindex_c2_1 (k=?)}
  0 2 2 {SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?)}
}
do_eqp_test 4.2.6 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {

  0 0 0 {SCAN TABLE c1} 
  0 1 2 {SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?)}
}

# 2017-11-23 (Thanksgiving day)
# OSSFuzz found an assertion fault in the new LEFT JOIN eliminator code.
#
do_execsql_test 4.3.0 {
  DROP TABLE IF EXISTS t1;
................................................................................
  CREATE TABLE s1 (a INTEGER PRIMARY KEY);
  CREATE TABLE s2 (a INTEGER PRIMARY KEY);
  CREATE TABLE s3 (a INTEGER);
  CREATE UNIQUE INDEX ndx on s3(a);
}
do_eqp_test 5.1 {
  SELECT s1.a FROM s1 left join s2 using (a);
} {
  0 0 0 {SCAN TABLE s1}
}
do_eqp_test 5.2 {
  SELECT s1.a FROM s1 left join s3 using (a);
} {
  0 0 0 {SCAN TABLE s1}
}

do_execsql_test 6.0 {
  CREATE TABLE u1(a INTEGER PRIMARY KEY, b, c);
  CREATE TABLE u2(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX u1ab ON u1(b, c);
}
do_eqp_test 6.1 {
  SELECT u2.* FROM u2 LEFT JOIN u1 ON( u1.a=u2.a AND u1.b=u2.b AND u1.c=u2.c );
} {
  0 0 0 {SCAN TABLE u2}
}

db close
sqlite3 db :memory:
do_execsql_test 7.0 {
  CREATE TABLE t1(a,b);  INSERT INTO t1 VALUES(1,2),(3,4),(5,6);
  CREATE TABLE t2(c,d);  INSERT INTO t2 VALUES(2,4),(3,6);
  CREATE TABLE t3(x);    INSERT INTO t3 VALUES(9);







>
|
|





>
|
|







 







>
|
|
|




>
|
|







 







>
|
|
|




>
|
|







 







<
|
|


<
|
<








<
|
<







108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
...
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
...
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
...
247
248
249
250
251
252
253

254
255
256
257

258

259
260
261
262
263
264
265
266

267

268
269
270
271
272
273
274
  CREATE TABLE t3_1(k3 PRIMARY KEY, v3) WITHOUT ROWID;
  CREATE TABLE t3_2(v3, k3 PRIMARY KEY) WITHOUT ROWID;
}

do_eqp_test 3.1 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_1 USING (k3);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

do_eqp_test 3.2 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_2 USING (k3);
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)
}

#-------------------------------------------------------------------------
# Test that tables other than the rightmost can be omitted from a
# LEFT JOIN query.
#
do_execsql_test 4.0 {
................................................................................
do_execsql_test 4.1.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.1.5 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {
  QUERY PLAN
  |--SCAN TABLE c1
  |--SEARCH TABLE c2 USING INTEGER PRIMARY KEY (rowid=?)
  `--SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)
}
do_eqp_test 4.1.6 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {
  QUERY PLAN
  |--SCAN TABLE c1
  `--SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)
}

do_execsql_test 4.2.0 {
  DROP TABLE c1;
  DROP TABLE c2;
  DROP TABLE c3;
  CREATE TABLE c1(k UNIQUE, v1);
................................................................................
do_execsql_test 4.2.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.2.5 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {
  QUERY PLAN
  |--SCAN TABLE c1
  |--SEARCH TABLE c2 USING INDEX sqlite_autoindex_c2_1 (k=?)
  `--SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?)
}
do_eqp_test 4.2.6 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {
  QUERY PLAN
  |--SCAN TABLE c1
  `--SEARCH TABLE c3 USING INDEX sqlite_autoindex_c3_1 (k=?)
}

# 2017-11-23 (Thanksgiving day)
# OSSFuzz found an assertion fault in the new LEFT JOIN eliminator code.
#
do_execsql_test 4.3.0 {
  DROP TABLE IF EXISTS t1;
................................................................................
  CREATE TABLE s1 (a INTEGER PRIMARY KEY);
  CREATE TABLE s2 (a INTEGER PRIMARY KEY);
  CREATE TABLE s3 (a INTEGER);
  CREATE UNIQUE INDEX ndx on s3(a);
}
do_eqp_test 5.1 {
  SELECT s1.a FROM s1 left join s2 using (a);

} {SCAN TABLE s1}

do_eqp_test 5.2 {
  SELECT s1.a FROM s1 left join s3 using (a);

} {SCAN TABLE s1}


do_execsql_test 6.0 {
  CREATE TABLE u1(a INTEGER PRIMARY KEY, b, c);
  CREATE TABLE u2(a INTEGER PRIMARY KEY, b, c);
  CREATE INDEX u1ab ON u1(b, c);
}
do_eqp_test 6.1 {
  SELECT u2.* FROM u2 LEFT JOIN u1 ON( u1.a=u2.a AND u1.b=u2.b AND u1.c=u2.c );

} {SCAN TABLE u2}


db close
sqlite3 db :memory:
do_execsql_test 7.0 {
  CREATE TABLE t1(a,b);  INSERT INTO t1 VALUES(1,2),(3,4),(5,6);
  CREATE TABLE t2(c,d);  INSERT INTO t2 VALUES(2,4),(3,6);
  CREATE TABLE t3(x);    INSERT INTO t3 VALUES(9);

Changes to test/join5.test.

260
261
262
263
264
265
266

267

268
269
270
271
272
273
274
275
276
...
281
282
283
284
285
286
287

288
289
290
291
292
293
}

do_eqp_test 7.2 {
  SELECT * FROM t1 LEFT JOIN t2 ON (
    t2.x = t1.x AND (t2.y=? OR (t2.y=? AND t2.z IS NOT NULL))
  );
} {

  0 0 0 {SCAN TABLE t1} 

  0 1 1 {SEARCH TABLE t2 USING INDEX t2xy (x=? AND y=?)} 
  0 1 1 {SEARCH TABLE t2 USING INDEX t2xy (x=? AND y=?)}
}

do_execsql_test 7.3 {
  CREATE TABLE t3(x);

  CREATE TABLE t4(x, y, z);
  CREATE INDEX t4xy ON t4(x, y);
................................................................................

  ANALYZE;
}

do_eqp_test 7.4 {
  SELECT * FROM t3 LEFT JOIN t4 ON (t4.x = t3.x) WHERE (t4.y = ? OR t4.z = ?);
} {

  0 0 0 {SCAN TABLE t3} 
  0 1 1 {SEARCH TABLE t4 USING INDEX t4xz (x=?)}
} 

finish_test








>
|
>
|
|







 







>
|
|



<
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
...
283
284
285
286
287
288
289
290
291
292
293
294
295

}

do_eqp_test 7.2 {
  SELECT * FROM t1 LEFT JOIN t2 ON (
    t2.x = t1.x AND (t2.y=? OR (t2.y=? AND t2.z IS NOT NULL))
  );
} {
  QUERY PLAN
  |--SCAN TABLE t1
  `--MULTI-INDEX OR
     |--SEARCH TABLE t2 USING INDEX t2xy (x=? AND y=?)
     `--SEARCH TABLE t2 USING INDEX t2xy (x=? AND y=?)
}

do_execsql_test 7.3 {
  CREATE TABLE t3(x);

  CREATE TABLE t4(x, y, z);
  CREATE INDEX t4xy ON t4(x, y);
................................................................................

  ANALYZE;
}

do_eqp_test 7.4 {
  SELECT * FROM t3 LEFT JOIN t4 ON (t4.x = t3.x) WHERE (t4.y = ? OR t4.z = ?);
} {
  QUERY PLAN
  |--SCAN TABLE t3
  `--SEARCH TABLE t4 USING INDEX t4xz (x=?)
} 

finish_test

Changes to test/mallocK.test.

117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134

  SELECT 'x' > '.';
} {1}

ifcapable stat4 {
  do_eqp_test 6.1 {
    SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx';
  } {

    0 0 0 {SEARCH TABLE t3 USING INDEX i3 (ANY(a) AND b>? AND b<?)} 
    0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  }
}

do_faultsim_test 6 -faults oom* -body {
  db cache flush
  db eval { SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx' }
} -test {
  faultsim_test_result {0 {12 13 14 15}} 







|
>
|
|
|







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

  SELECT 'x' > '.';
} {1}

ifcapable stat4 {
  do_eqp_test 6.1 {
    SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx';
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SEARCH TABLE t3 USING INDEX i3 (ANY(a) AND b>? AND b<?)
    `--USE TEMP B-TREE FOR DISTINCT
  }]
}

do_faultsim_test 6 -faults oom* -body {
  db cache flush
  db eval { SELECT DISTINCT c FROM t3 WHERE b BETWEEN '.xx..' AND '.xxxx' }
} -test {
  faultsim_test_result {0 {12 13 14 15}} 

Changes to test/orderby1.test.

450
451
452
453
454
455
456
457
458
459



460
461
462
463
464
465
466
...
508
509
510
511
512
513
514

515
516
517
518
519
520
521
522
523
...
539
540
541
542
543
544
545










546
547
548
    
    SELECT b, y FROM t41 CROSS JOIN t42 ON x=a ORDER BY b, y;
  }
} {1 13 1 14 1 15 1 16}

# No sorting of queries that omit the FROM clause.
#
do_execsql_test 5.0 {
  EXPLAIN QUERY PLAN SELECT 5 ORDER BY 1
} {}



do_execsql_test 5.1 {
  EXPLAIN QUERY PLAN SELECT 5 UNION ALL SELECT 3 ORDER BY 1
} {~/B-TREE/}
do_execsql_test 5.2 {
  SELECT 5 UNION ALL SELECT 3 ORDER BY 1
} {3 5}
do_execsql_test 5.3 {
................................................................................
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
}

do_eqp_test 8.1 {
  SELECT * FROM t1 ORDER BY a, b;
} {

  0 0 0 {SCAN TABLE t1 USING INDEX i1} 
  0 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
}

do_execsql_test 8.2 {
  WITH cnt(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM cnt WHERE i<10000
  )
  INSERT INTO t1 SELECT i%2, randomblob(500) FROM cnt;
................................................................................
  CREATE TABLE t1(x INTEGER PRIMARY KEY);
  INSERT INTO t1 VALUES(1),(2);
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t2(y);
  INSERT INTO t2 VALUES(9),(8),(3),(4);
  SELECT (SELECT x||y FROM t2, t1 ORDER BY x, y);
} {13}












finish_test







|
|
|
>
>
>







 







>
|
|







 







>
>
>
>
>
>
>
>
>
>



450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
...
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
...
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    
    SELECT b, y FROM t41 CROSS JOIN t42 ON x=a ORDER BY b, y;
  }
} {1 13 1 14 1 15 1 16}

# No sorting of queries that omit the FROM clause.
#
do_eqp_test 5.0 {
  SELECT 5 ORDER BY 1
} {
  QUERY PLAN
  `--SCAN CONSTANT ROW
}
do_execsql_test 5.1 {
  EXPLAIN QUERY PLAN SELECT 5 UNION ALL SELECT 3 ORDER BY 1
} {~/B-TREE/}
do_execsql_test 5.2 {
  SELECT 5 UNION ALL SELECT 3 ORDER BY 1
} {3 5}
do_execsql_test 5.3 {
................................................................................
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
}

do_eqp_test 8.1 {
  SELECT * FROM t1 ORDER BY a, b;
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING INDEX i1
  `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY
}

do_execsql_test 8.2 {
  WITH cnt(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM cnt WHERE i<10000
  )
  INSERT INTO t1 SELECT i%2, randomblob(500) FROM cnt;
................................................................................
  CREATE TABLE t1(x INTEGER PRIMARY KEY);
  INSERT INTO t1 VALUES(1),(2);
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t2(y);
  INSERT INTO t2 VALUES(9),(8),(3),(4);
  SELECT (SELECT x||y FROM t2, t1 ORDER BY x, y);
} {13}

# Problem found by OSSFuzz on 2018-05-05.  This was caused by a new
# optimization that had not been previously released.
#
do_execsql_test 10.0 {
  CREATE TABLE t10(a,b);
  INSERT INTO t10 VALUES(1,2),(8,9),(3,4),(5,4),(0,7);
  CREATE INDEX t10b ON t10(b);
  SELECT b, rowid, '^' FROM t10 ORDER BY b, a LIMIT 4;
} {2 1 ^ 4 3 ^ 4 4 ^ 7 5 ^}


finish_test

Changes to test/pager1.test.

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
do_test pager1-5.5.1 {
  sqlite3 db test.db
  execsql { 
    ATTACH 'test.db2' AS aux;
    PRAGMA journal_mode = PERSIST;
    CREATE TABLE t3(a, b);
    INSERT INTO t3 SELECT randomblob(1500), randomblob(1500) FROM t1;
    UPDATE t3 SET b = randomblob(1500);
  }
  expr [file size test.db-journal] > 15000
} {1}
do_test pager1-5.5.2 {
  execsql {
    PRAGMA synchronous = full;
    BEGIN;







|







1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
do_test pager1-5.5.1 {
  sqlite3 db test.db
  execsql { 
    ATTACH 'test.db2' AS aux;
    PRAGMA journal_mode = PERSIST;
    CREATE TABLE t3(a, b);
    INSERT INTO t3 SELECT randomblob(1500), randomblob(1500) FROM t1;
    UPDATE t3 SET b = randomblob(1501);
  }
  expr [file size test.db-journal] > 15000
} {1}
do_test pager1-5.5.2 {
  execsql {
    PRAGMA synchronous = full;
    BEGIN;

Added test/resetdb.test.





















































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# 2018-04-28
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# Test cases for SQLITE_DBCONFIG_RESET_DATABASE
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix resetdb

ifcapable !vtab||!compound {
  finish_test
  return
}

# Create a sample database
do_execsql_test 100 {
  PRAGMA page_size=4096;
  CREATE TABLE t1(a,b);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t1(a,b) SELECT x, randomblob(300) FROM c;
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);
  SELECT sum(a), sum(length(b)) FROM t1;
  PRAGMA integrity_check;
  PRAGMA journal_mode;
  PRAGMA page_count;
} {210 6000 ok delete 8}

# Verify that the same content is seen from a separate database connection
sqlite3 db2 test.db
do_test 110 {
  execsql {
    SELECT sum(a), sum(length(b)) FROM t1;
    PRAGMA integrity_check;
    PRAGMA journal_mode;
    PRAGMA page_count;
  } db2
} {210 6000 ok delete 8}

do_test 200 {
  # Thoroughly corrupt the database file by overwriting the first
  # page with randomness.
  catchsql {
    UPDATE sqlite_dbpage SET data=randomblob(4096) WHERE pgno=1;
    PRAGMA quick_check;
  }
} {1 {unsupported file format}}
do_test 201 {
  catchsql {
    PRAGMA quick_check;
  } db2
} {1 {unsupported file format}}

do_test 210 {
  # Reset the database file using SQLITE_DBCONFIG_RESET_DATABASE
  sqlite3_db_config db RESET_DB 1
  db eval VACUUM
  sqlite3_db_config db RESET_DB 0

  # Verify that the reset took, even on the separate database connection
  catchsql {
     PRAGMA page_count;
     PRAGMA page_size;
     PRAGMA quick_check;
     PRAGMA journal_mode;
  } db2
} {0 {1 4096 ok delete}}

# Delete the old connections and database and start over again
# with a different page size and in WAL mode.
#
db close
db2 close
forcedelete test.db
sqlite3 db test.db
do_execsql_test 300 {
  PRAGMA page_size=8192;
  PRAGMA journal_mode=WAL;
  CREATE TABLE t1(a,b);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t1(a,b) SELECT x, randomblob(1300) FROM c;
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);
  SELECT sum(a), sum(length(b)) FROM t1;
  PRAGMA integrity_check;
  PRAGMA journal_mode;
  PRAGMA page_size;
  PRAGMA page_count;
} {wal 210 26000 ok wal 8192 12}
sqlite3 db2 test.db
do_test 310 {
  execsql {
    SELECT sum(a), sum(length(b)) FROM t1;
    PRAGMA integrity_check;
    PRAGMA journal_mode;
    PRAGMA page_size;
    PRAGMA page_count;
  } db2
} {210 26000 ok wal 8192 12}

# Corrupt the database again
do_catchsql_test 320 {
  UPDATE sqlite_dbpage SET data=randomblob(8192) WHERE pgno=1;
  PRAGMA quick_check
} {1 {file is not a database}}

do_test 330 {
  catchsql {
    PRAGMA quick_check
  } db2
} {1 {file is not a database}}

# Reset the database yet again.  Verify that the page size and
# journal mode are preserved.
#
do_test 400 {
  sqlite3_db_config db RESET_DB 1
  db eval VACUUM
  sqlite3_db_config db RESET_DB 0
  catchsql {
     PRAGMA page_count;
     PRAGMA page_size;
     PRAGMA journal_mode;
     PRAGMA quick_check;
  } db2
} {0 {1 8192 wal ok}}
db2 close


finish_test

Changes to test/rollback2.test.

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
...
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
}

#--------------------------------------------------------------------
# Try with some index scans
#
do_eqp_test 3.1 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
do_rollback_test 3.2 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} -result {
  40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10  8  6  4  2
................................................................................
# Now with some index scans that feature overflow keys.
#
set leader [string repeat "abcdefghij" 70]
do_execsql_test 4.1 { UPDATE t1 SET h = $leader || h; }

do_eqp_test 4.2 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
do_rollback_test 4.3 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} -result {
  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40







|







 







|







97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
...
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
}

#--------------------------------------------------------------------
# Try with some index scans
#
do_eqp_test 3.1 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} {SCAN TABLE t1 USING INDEX i1}
do_rollback_test 3.2 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC;
} -result {
  40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10  8  6  4  2
................................................................................
# Now with some index scans that feature overflow keys.
#
set leader [string repeat "abcdefghij" 70]
do_execsql_test 4.1 { UPDATE t1 SET h = $leader || h; }

do_eqp_test 4.2 {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} {SCAN TABLE t1 USING INDEX i1}
do_rollback_test 4.3 -setup {
  BEGIN;
    DELETE FROM t1 WHERE (i%2)==1;
} -select {
  SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC;
} -result {
  2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Changes to test/rowvalue.test.

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
  INSERT INTO xy VALUES(3, 3, 3);
  INSERT INTO xy VALUES(4, 4, 4);
}


foreach {tn sql res eqp} {
  1 "SELECT * FROM xy WHERE (i, j) IS (2, 2)" {2 2 2} 
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid=?)}"

  2 "SELECT * FROM xy WHERE (k, j) < (2, 3)" {1 1 1 2 2 2}
    "0 0 0 {SCAN TABLE xy}"

  3 "SELECT * FROM xy WHERE (i, j) < (2, 3)" {1 1 1 2 2 2}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid<?)}"

  4 "SELECT * FROM xy WHERE (i, j) > (2, 1)" {2 2 2 3 3 3 4 4 4}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)}"

  5 "SELECT * FROM xy WHERE (i, j) > ('2', 1)" {2 2 2 3 3 3 4 4 4}
    "0 0 0 {SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)}"

} {
  do_eqp_test 7.$tn.1 $sql $eqp
  do_execsql_test 7.$tn.2 $sql $res
}

do_execsql_test 8.0 {







|


|


|


|


|







171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
  INSERT INTO xy VALUES(3, 3, 3);
  INSERT INTO xy VALUES(4, 4, 4);
}


foreach {tn sql res eqp} {
  1 "SELECT * FROM xy WHERE (i, j) IS (2, 2)" {2 2 2} 
    "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid=?)"

  2 "SELECT * FROM xy WHERE (k, j) < (2, 3)" {1 1 1 2 2 2}
    "SCAN TABLE xy"

  3 "SELECT * FROM xy WHERE (i, j) < (2, 3)" {1 1 1 2 2 2}
    "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid<?)"

  4 "SELECT * FROM xy WHERE (i, j) > (2, 1)" {2 2 2 3 3 3 4 4 4}
    "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)"

  5 "SELECT * FROM xy WHERE (i, j) > ('2', 1)" {2 2 2 3 3 3 4 4 4}
    "SEARCH TABLE xy USING INTEGER PRIMARY KEY (rowid>?)"

} {
  do_eqp_test 7.$tn.1 $sql $eqp
  do_execsql_test 7.$tn.2 $sql $res
}

do_execsql_test 8.0 {

Changes to test/rowvalue4.test.

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
...
230
231
232
233
234
235
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    INSERT INTO c1(c, d) SELECT a, b FROM c1;

    CREATE INDEX c1ab ON c1(a, b);
    CREATE INDEX c1cd ON c1(c, d);
    ANALYZE;
  }

  do_eqp_test 3.1.1 { SELECT * FROM c1 WHERE a=1 AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c=?)}
  }
  do_eqp_test 3.1.2 { SELECT * FROM c1 WHERE a=1 AND b>'d' AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c=?)}
  }
  do_eqp_test 3.1.3 { SELECT * FROM c1 WHERE a=1 AND b>'l' AND c=2 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=? AND b>?)}
  }

  do_eqp_test 3.2.1 { SELECT * FROM c1 WHERE a=1 AND c>1 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd (c>?)}
  }
  do_eqp_test 3.2.2 { SELECT * FROM c1 WHERE a=1 AND c>0 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.3 { SELECT * FROM c1 WHERE a=1 AND c>=1 } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.4 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'c') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
  do_eqp_test 3.2.5 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'o') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1cd ((c,d)>(?,?))}
  }
  do_eqp_test 3.2.6 { SELECT * FROM c1 WHERE a=1 AND (c, +b)>(1, 'c') } {
    0 0 0 {SEARCH TABLE c1 USING INDEX c1ab (a=?)}
  }
}

#------------------------------------------------------------------------

do_execsql_test 5.0 {
  CREATE TABLE d1(x, y);
  CREATE TABLE d2(a, b, c);
................................................................................
}

do_eqp_test 5.1 {
  SELECT * FROM d2 WHERE 
    (a, b) IN (SELECT x, y FROM d1) AND
    (c) IN (SELECT y FROM d1)
} {

  0 0 0 {SEARCH TABLE d2 USING INDEX d2ab (a=? AND b=?)}
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE d1}
  0 0 0 {EXECUTE LIST SUBQUERY 2} 
  2 0 0 {SCAN TABLE d1}
}

do_execsql_test 6.0 {
  CREATE TABLE e1(a, b, c, d, e);
  CREATE INDEX e1ab ON e1(a, b);
  CREATE INDEX e1cde ON e1(c, d, e);
}

do_eqp_test 6.1 {
  SELECT * FROM e1 WHERE (a, b) > (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1ab ((a,b)>(?,?))}
}
do_eqp_test 6.2 {
  SELECT * FROM e1 WHERE (a, b) < (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1ab ((a,b)<(?,?))}
}
do_eqp_test 6.3 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) > (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?))}
}
do_eqp_test 6.4 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) < (?, ?)
} {
  0 0 0 {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)<(?,?))}
}

do_eqp_test 6.5 {
  SELECT * FROM e1 WHERE (d, e) BETWEEN (?, ?) AND (?, ?) AND c = ?
} {
  0 0 0 
  {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?) AND (d,e)<(?,?))}
}

#-------------------------------------------------------------------------

do_execsql_test 7.1 {
  CREATE TABLE f1(a, b, c);
  CREATE INDEX f1ab ON f1(a, b);
}







|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







 







>
|
|
|
|
|










<
|
|


<
|
|


<
|
|


<
|
<



<
<
|
<







180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
...
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

252
253
254
255

256
257
258
259

260
261
262
263

264

265
266
267


268

269
270
271
272
273
274
275
    INSERT INTO c1(c, d) SELECT a, b FROM c1;

    CREATE INDEX c1ab ON c1(a, b);
    CREATE INDEX c1cd ON c1(c, d);
    ANALYZE;
  }

  do_eqp_test 3.1.1 { SELECT * FROM c1 WHERE a=1 AND c=2 } \
     {SEARCH TABLE c1 USING INDEX c1cd (c=?)}

  do_eqp_test 3.1.2 { SELECT * FROM c1 WHERE a=1 AND b>'d' AND c=2 } \
     {SEARCH TABLE c1 USING INDEX c1cd (c=?)}

  do_eqp_test 3.1.3 { SELECT * FROM c1 WHERE a=1 AND b>'l' AND c=2 } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=? AND b>?)}


  do_eqp_test 3.2.1 { SELECT * FROM c1 WHERE a=1 AND c>1 } \
     {SEARCH TABLE c1 USING INDEX c1cd (c>?)}

  do_eqp_test 3.2.2 { SELECT * FROM c1 WHERE a=1 AND c>0 } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=?)}

  do_eqp_test 3.2.3 { SELECT * FROM c1 WHERE a=1 AND c>=1 } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=?)}

  do_eqp_test 3.2.4 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'c') } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=?)}

  do_eqp_test 3.2.5 { SELECT * FROM c1 WHERE a=1 AND (c, d)>(1, 'o') } \
     {SEARCH TABLE c1 USING INDEX c1cd ((c,d)>(?,?))}

  do_eqp_test 3.2.6 { SELECT * FROM c1 WHERE a=1 AND (c, +b)>(1, 'c') } \
     {SEARCH TABLE c1 USING INDEX c1ab (a=?)}

}

#------------------------------------------------------------------------

do_execsql_test 5.0 {
  CREATE TABLE d1(x, y);
  CREATE TABLE d2(a, b, c);
................................................................................
}

do_eqp_test 5.1 {
  SELECT * FROM d2 WHERE 
    (a, b) IN (SELECT x, y FROM d1) AND
    (c) IN (SELECT y FROM d1)
} {
  QUERY PLAN
  |--SEARCH TABLE d2 USING INDEX d2ab (a=? AND b=?)
  |--LIST SUBQUERY
  |  `--SCAN TABLE d1
  `--LIST SUBQUERY
     `--SCAN TABLE d1
}

do_execsql_test 6.0 {
  CREATE TABLE e1(a, b, c, d, e);
  CREATE INDEX e1ab ON e1(a, b);
  CREATE INDEX e1cde ON e1(c, d, e);
}

do_eqp_test 6.1 {
  SELECT * FROM e1 WHERE (a, b) > (?, ?)

} {SEARCH TABLE e1 USING INDEX e1ab ((a,b)>(?,?))}

do_eqp_test 6.2 {
  SELECT * FROM e1 WHERE (a, b) < (?, ?)

} {SEARCH TABLE e1 USING INDEX e1ab ((a,b)<(?,?))}

do_eqp_test 6.3 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) > (?, ?)

} {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?))}

do_eqp_test 6.4 {
  SELECT * FROM e1 WHERE c = ? AND (d, e) < (?, ?)

} {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)<(?,?))}


do_eqp_test 6.5 {
  SELECT * FROM e1 WHERE (d, e) BETWEEN (?, ?) AND (?, ?) AND c = ?


} {SEARCH TABLE e1 USING INDEX e1cde (c=? AND (d,e)>(?,?) AND (d,e)<(?,?))}


#-------------------------------------------------------------------------

do_execsql_test 7.1 {
  CREATE TABLE f1(a, b, c);
  CREATE INDEX f1ab ON f1(a, b);
}

Changes to test/scanstatus.test.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

343
344
345
346
347
348
349
350
351
...
352
353
354
355
356
357
358

359
360
361
362
363
364
365
366
367
do_scanstatus_test 5.2.2 { 
  nLoop 1 nVisit 2 nEst 2.0 zName sqlite_autoindex_t1_1
  zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)}
}

do_eqp_test 5.3.1 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}}
do_execsql_test 5.3.2 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {19}
do_scanstatus_test 5.3.3 { 
  nLoop 1 nVisit 19 nEst 56.0 zName t2xy zExplain
  {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.4.1 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {

  0 0 0 {SCAN TABLE t1 USING COVERING INDEX t1bc}
  0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}
do_execsql_test 5.4.2 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {200}
do_scanstatus_test 5.4.3 { 
  nLoop 1 nVisit 10 nEst 10.0 zName t1bc 
  zExplain {SCAN TABLE t1 USING COVERING INDEX t1bc}
................................................................................
  nLoop 10 nVisit 200 nEst 56.0 zName t2xy 
  zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.5.1 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {

  0 0 1 {SCAN TABLE t3} 
  0 1 0 {SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?)}
}
do_execsql_test 5.5.2 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {200}
do_scanstatus_test 5.5.3 { 
  nLoop 1 nVisit 501 nEst 480.0 zName t3 zExplain {SCAN TABLE t3}
  nLoop 501 nVisit 200 nEst 20.0 zName auto-index zExplain







|











>
|
|







 







>
|
|







324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
...
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
do_scanstatus_test 5.2.2 { 
  nLoop 1 nVisit 2 nEst 2.0 zName sqlite_autoindex_t1_1
  zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)}
}

do_eqp_test 5.3.1 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
do_execsql_test 5.3.2 {
  SELECT count(*) FROM t2 WHERE y = 'j';
} {19}
do_scanstatus_test 5.3.3 { 
  nLoop 1 nVisit 19 nEst 56.0 zName t2xy zExplain
  {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.4.1 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {
  QUERY PLAN
  |--SCAN TABLE t1 USING COVERING INDEX t1bc
  `--SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)
}
do_execsql_test 5.4.2 {
  SELECT count(*) FROM t1, t2 WHERE y = c;
} {200}
do_scanstatus_test 5.4.3 { 
  nLoop 1 nVisit 10 nEst 10.0 zName t1bc 
  zExplain {SCAN TABLE t1 USING COVERING INDEX t1bc}
................................................................................
  nLoop 10 nVisit 200 nEst 56.0 zName t2xy 
  zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}
}

do_eqp_test 5.5.1 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {
  QUERY PLAN
  |--SCAN TABLE t3
  `--SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?)
}
do_execsql_test 5.5.2 {
  SELECT count(*) FROM t1, t3 WHERE y = c;
} {200}
do_scanstatus_test 5.5.3 { 
  nLoop 1 nVisit 501 nEst 480.0 zName t3 zExplain {SCAN TABLE t3}
  nLoop 501 nVisit 200 nEst 20.0 zName auto-index zExplain

Changes to test/selectA.test.

1332
1333
1334
1335
1336
1337
1338



1339
1340

1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

do_eqp_test 4.1.2 {
  SELECT c, d FROM t5 
  UNION ALL
  SELECT a, b FROM t4 WHERE f()==f()
  ORDER BY 1,2
} {



  1 0 0 {SCAN TABLE t5 USING INDEX i2} 
  1 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}

  2 0 0 {SCAN TABLE t4 USING INDEX i1} 
  2 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)}
}

do_execsql_test 4.1.3 {
  SELECT c, d FROM t5 
  UNION ALL
  SELECT a, b FROM t4 WHERE f()==f()
  ORDER BY 1,2







>
>
>
|
|
>
|
|
<







1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

1347
1348
1349
1350
1351
1352
1353

do_eqp_test 4.1.2 {
  SELECT c, d FROM t5 
  UNION ALL
  SELECT a, b FROM t4 WHERE f()==f()
  ORDER BY 1,2
} {
  QUERY PLAN
  `--MERGE (UNION ALL)
     |--LEFT
     |  |--SCAN TABLE t5 USING INDEX i2
     |  `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY
     `--RIGHT
        |--SCAN TABLE t4 USING INDEX i1
        `--USE TEMP B-TREE FOR RIGHT PART OF ORDER BY

}

do_execsql_test 4.1.3 {
  SELECT c, d FROM t5 
  UNION ALL
  SELECT a, b FROM t4 WHERE f()==f()
  ORDER BY 1,2

Changes to test/selectD.test.

165
166
167
168
169
170
171
172
173
174
  SELECT * 
   FROM t41
   LEFT JOIN (SELECT count(*) AS cnt, x1.d
                FROM (t42 INNER JOIN t43 ON d=g) AS x1
               WHERE x1.d>5
               GROUP BY x1.d) AS x2
                  ON t41.b=x2.d;
} {/.*SEARCH SUBQUERY 1 AS x2 USING AUTOMATIC.*/}

finish_test







|


165
166
167
168
169
170
171
172
173
174
  SELECT * 
   FROM t41
   LEFT JOIN (SELECT count(*) AS cnt, x1.d
                FROM (t42 INNER JOIN t43 ON d=g) AS x1
               WHERE x1.d>5
               GROUP BY x1.d) AS x2
                  ON t41.b=x2.d;
} {/*SEARCH SUBQUERY 0x* AS x2 USING AUTOMATIC*/}

finish_test

Changes to test/shell1.test.

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
} {0 {}}
do_test shell1-3.1.3 {
  catchcmd "test.db" ".backup FOO BAR"
} {1 {Error: unknown database FOO}}
do_test shell1-3.1.4 {
  # too many arguments
  catchcmd "test.db" ".backup FOO BAR BAD"
} {1 {too many arguments to .backup}}

# .bail ON|OFF           Stop after hitting an error.  Default OFF
do_test shell1-3.2.1 {
  catchcmd "test.db" ".bail"
} {1 {Usage: .bail on|off}}
do_test shell1-3.2.2 {
  catchcmd "test.db" ".bail ON"







|







252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
} {0 {}}
do_test shell1-3.1.3 {
  catchcmd "test.db" ".backup FOO BAR"
} {1 {Error: unknown database FOO}}
do_test shell1-3.1.4 {
  # too many arguments
  catchcmd "test.db" ".backup FOO BAR BAD"
} {1 {Usage: .backup ?DB? ?--append? FILENAME}}

# .bail ON|OFF           Stop after hitting an error.  Default OFF
do_test shell1-3.2.1 {
  catchcmd "test.db" ".bail"
} {1 {Usage: .bail on|off}}
do_test shell1-3.2.2 {
  catchcmd "test.db" ".bail ON"

Changes to test/skipscan2.test.

195
196
197
198
199
200
201
202
203
204
205
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t3 VALUES($i%2, $i, 'xyz') }
  }
  execsql { ANALYZE }
} {}
do_eqp_test skipscan2-3.3eqp {
  SELECT * FROM t3 WHERE b=42;
} {0 0 0 {SEARCH TABLE t3 USING PRIMARY KEY (ANY(a) AND b=?)}}


finish_test







|



195
196
197
198
199
200
201
202
203
204
205
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t3 VALUES($i%2, $i, 'xyz') }
  }
  execsql { ANALYZE }
} {}
do_eqp_test skipscan2-3.3eqp {
  SELECT * FROM t3 WHERE b=42;
} {SEARCH TABLE t3 USING PRIMARY KEY (ANY(a) AND b=?)}


finish_test

Changes to test/skipscan6.test.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  t3 t3_ba   {100 20 1 1}
}

# Use index "t3_a", as (a=?) is expected to match only a single row.
#
do_eqp_test 3.1 {
  SELECT * FROM t3 WHERE a = ? AND c = ?
} {
  0 0 0 {SEARCH TABLE t3 USING INDEX t3_a (a=?)}
}

# The same query on table t2. This should use index "t2_a", for the
# same reason. At one point though, it was mistakenly using a skip-scan.
#
do_eqp_test 3.2 {
  SELECT * FROM t2 WHERE a = ? AND c = ?
} {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2_a (a=?)}
}

finish_test




finish_test







<
|
<






<
|
|
<

<
<
<
<
<
175
176
177
178
179
180
181

182

183
184
185
186
187
188

189
190

191





  t3 t3_ba   {100 20 1 1}
}

# Use index "t3_a", as (a=?) is expected to match only a single row.
#
do_eqp_test 3.1 {
  SELECT * FROM t3 WHERE a = ? AND c = ?

} {SEARCH TABLE t3 USING INDEX t3_a (a=?)}


# The same query on table t2. This should use index "t2_a", for the
# same reason. At one point though, it was mistakenly using a skip-scan.
#
do_eqp_test 3.2 {
  SELECT * FROM t2 WHERE a = ? AND c = ?

} {SEARCH TABLE t2 USING INDEX t2_a (a=?)}


finish_test





Changes to test/soak.test.

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  fuzz_malloc.test
  trans.test
  corruptC.test
}

set G(isquick) 1

set soak_starttime  [clock seconds]
set soak_finishtime [expr {$soak_starttime + $TIMEOUT}]

# Loop until the timeout is reached or an error occurs.
#
for {set iRun 0} {[clock seconds] < $soak_finishtime} {incr iRun} {

  set iIdx [expr {$iRun % [llength $SOAKTESTS]}]
  source [file join $testdir [lindex $SOAKTESTS $iIdx]]
  catch {db close}

  if {$sqlite_open_file_count>0} {
    puts "$tail did not close all files: $sqlite_open_file_count"







|




|







63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  fuzz_malloc.test
  trans.test
  corruptC.test
}

set G(isquick) 1

set soak_starttime  [clock_seconds]
set soak_finishtime [expr {$soak_starttime + $TIMEOUT}]

# Loop until the timeout is reached or an error occurs.
#
for {set iRun 0} {[clock_seconds] < $soak_finishtime} {incr iRun} {

  set iIdx [expr {$iRun % [llength $SOAKTESTS]}]
  source [file join $testdir [lindex $SOAKTESTS $iIdx]]
  catch {db close}

  if {$sqlite_open_file_count>0} {
    puts "$tail did not close all files: $sqlite_open_file_count"

Changes to test/tester.tcl.

955
956
957
958
959
960
961































































962






963
964


965
966
967
968
969
970
971
  uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result]
}
proc do_timed_execsql_test {testname sql {result {}}} {
  fix_testname testname
  uplevel do_test [list $testname] [list "execsql_timed {$sql}"]\
                                   [list [list {*}$result]]
}































































proc do_eqp_test {name sql res} {






  uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res]
}



#-------------------------------------------------------------------------
#   Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST
#
# Where switches are:
#
#   -errorformat FMTSTRING







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
|
|
>
>







955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
  uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result]
}
proc do_timed_execsql_test {testname sql {result {}}} {
  fix_testname testname
  uplevel do_test [list $testname] [list "execsql_timed {$sql}"]\
                                   [list [list {*}$result]]
}

# Run an EXPLAIN QUERY PLAN $sql in database "db".  Then rewrite the output
# as an ASCII-art graph and return a string that is that graph.
#
# Hexadecimal literals in the output text are converted into "xxxxxx" since those
# literals are pointer values that might very from one run of the test to the
# next, yet we want the output to be consistent.
#
proc query_plan_graph {sql} {
  db eval "EXPLAIN QUERY PLAN $sql" {
    set dx($id) $detail
    lappend cx($parent) $id
  }
  set a "\n  QUERY PLAN\n"
  append a [append_graph "  " dx cx 0]
  return [regsub -all { 0x[A-F0-9]+\y} $a { xxxxxx}]
}

# Helper routine for [query_plan_graph SQL]:
#
# Output rows of the graph that are children of $level.
#
#   prefix:  Prepend to every output line
#
#   dxname:  Name of an array variable that stores text describe
#            The description for $id is $dx($id)
#
#   cxname:  Name of an array variable holding children of item.
#            Children of $id are $cx($id)
#
#   level:   Render all lines that are children of $level
# 
proc append_graph {prefix dxname cxname level} {
  upvar $dxname dx $cxname cx
  set a ""
  set x $cx($level)
  set n [llength $x]
  for {set i 0} {$i<$n} {incr i} {
    set id [lindex $x $i]
    if {$i==$n-1} {
      set p1 "`--"
      set p2 "   "
    } else {
      set p1 "|--"
      set p2 "|  "
    }
    append a $prefix$p1$dx($id)\n
    if {[info exists cx($id)]} {
      append a [append_graph "$prefix$p2" dx cx $id]
    }
  }
  return $a
}

# Do an EXPLAIN QUERY PLAN test on input $sql with expected results $res
#
# If $res begins with a "\s+QUERY PLAN\n" then it is assumed to be the 
# complete graph which must match the output of [query_plan_graph $sql]
# exactly.
#
# If $res does not begin with "\s+QUERY PLAN\n" then take it is a string
# that must be found somewhere in the query plan output.
#
proc do_eqp_test {name sql res} {
  if {[regexp {^\s+QUERY PLAN\n} $res]} {
    uplevel do_test $name [list [list query_plan_graph $sql]] [list $res]
  } else {
    if {[string index $res 0]!="/"} {
      set res "/*$res*/"
    }
    uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res]
  }
}


#-------------------------------------------------------------------------
#   Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST
#
# Where switches are:
#
#   -errorformat FMTSTRING

Changes to test/tkt-385a5b56b9.test.

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

do_execsql_test 2.0 {
  CREATE TABLE t2(x, y NOT NULL);
  CREATE UNIQUE INDEX t2x ON t2(x);
  CREATE UNIQUE INDEX t2y ON t2(y);
}

do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2x}
}

do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2y}
}

do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2y (y=?)}
}

do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2x (x=?)}
}

finish_test







|
|
|
<
|
|
|
<
|
|
|
<
|
|
|


30
31
32
33
34
35
36
37
38
39

40
41
42

43
44
45

46
47
48
49
50

do_execsql_test 2.0 {
  CREATE TABLE t2(x, y NOT NULL);
  CREATE UNIQUE INDEX t2x ON t2(x);
  CREATE UNIQUE INDEX t2y ON t2(y);
}

do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } \
  {SCAN TABLE t2 USING COVERING INDEX t2x}


do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } \
  {SCAN TABLE t2 USING COVERING INDEX t2y}


do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } \
  {SEARCH TABLE t2 USING INDEX t2y (y=?)}


do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } \
  {SEARCH TABLE t2 USING INDEX t2x (x=?)}


finish_test

Changes to test/tkt-78e04e52ea.test.

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
} {0 {} {} 0 {} 0 1 x CHAR(100) 0 {} 0}
do_test tkt-78e04-1.3 {
  execsql {
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {
  execsql {
    EXPLAIN QUERY PLAN SELECT "" FROM "" WHERE "" LIKE '1abc%';
  }
} {0 0 0 {SCAN TABLE  USING COVERING INDEX i1}}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX  (x=?)}}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {0 0 0 {SCAN TABLE t2}}

finish_test







<
|
<
|












|





|


37
38
39
40
41
42
43

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
} {0 {} {} 0 {} 0 1 x CHAR(100) 0 {} 0}
do_test tkt-78e04-1.3 {
  execsql {
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {

 db eval {EXPLAIN QUERY PLAN SELECT "" FROM "" WHERE "" LIKE '1abc%';}

} {/*SCAN TABLE  USING COVERING INDEX i1*/}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {/*SEARCH TABLE t2 USING COVERING INDEX  (x=?)*/}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {/*SCAN TABLE t2*/}

finish_test

Changes to test/tkt-b75a9ca6b0.test.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
  INSERT INTO t1 VALUES (3, 1);
}

do_execsql_test 1.1 {
  CREATE INDEX i1 ON t1(x, y);
} 

set idxscan {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}}
set tblscan {0 0 0 {SCAN TABLE t1}}
set grpsort {0 0 0 {USE TEMP B-TREE FOR GROUP BY}}
set sort    {0 0 0 {USE TEMP B-TREE FOR ORDER BY}}

foreach {tn q res eqp} [subst -nocommands {
  1 "SELECT * FROM t1 GROUP BY x, y ORDER BY x,y"
  {1 3  2 2  3 1} {$idxscan}

  2 "SELECT * FROM t1 GROUP BY x, y ORDER BY x"
  {1 3  2 2  3 1} {$idxscan $sort}

  3 "SELECT * FROM t1 GROUP BY y, x ORDER BY y, x"
  {3 1  2 2  1 3} {$idxscan $sort}
  
  4 "SELECT * FROM t1 GROUP BY x ORDER BY x"
  {1 3  2 2  3 1} {$idxscan}

  5 "SELECT * FROM t1 GROUP BY y ORDER BY y"
  {3 1  2 2  1 3} {$tblscan $grpsort}

  6 "SELECT * FROM t1 GROUP BY y ORDER BY x"
  {1 3  2 2  3 1} {$tblscan $grpsort $sort}

  7 "SELECT * FROM t1 GROUP BY x, y ORDER BY x, y DESC"
  {1 3  2 2  3 1} {$idxscan $sort}

  8 "SELECT * FROM t1 GROUP BY x, y ORDER BY x DESC, y DESC"
  {3 1  2 2  1 3} {$idxscan $sort}

  9 "SELECT * FROM t1 GROUP BY x, y ORDER BY x ASC, y ASC"
  {1 3  2 2  3 1} {$idxscan}

  10 "SELECT * FROM t1 GROUP BY x, y ORDER BY x COLLATE nocase, y"
  {1 3  2 2  3 1} {$idxscan $sort}

}] {
  do_execsql_test 1.$tn.1 $q $res
  do_eqp_test     1.$tn.2 $q $eqp
}


finish_test







|
|
|
|






|


|





|


|


|


|





|








28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
  INSERT INTO t1 VALUES (3, 1);
}

do_execsql_test 1.1 {
  CREATE INDEX i1 ON t1(x, y);
} 

set idxscan {SCAN TABLE t1 USING COVERING INDEX i1}
set tblscan {SCAN TABLE t1}
set grpsort {USE TEMP B-TREE FOR GROUP BY}
set sort    {USE TEMP B-TREE FOR ORDER BY}

foreach {tn q res eqp} [subst -nocommands {
  1 "SELECT * FROM t1 GROUP BY x, y ORDER BY x,y"
  {1 3  2 2  3 1} {$idxscan}

  2 "SELECT * FROM t1 GROUP BY x, y ORDER BY x"
  {1 3  2 2  3 1} {$idxscan*$sort}

  3 "SELECT * FROM t1 GROUP BY y, x ORDER BY y, x"
  {3 1  2 2  1 3} {$idxscan*$sort}
  
  4 "SELECT * FROM t1 GROUP BY x ORDER BY x"
  {1 3  2 2  3 1} {$idxscan}

  5 "SELECT * FROM t1 GROUP BY y ORDER BY y"
  {3 1  2 2  1 3} {$tblscan*$grpsort}

  6 "SELECT * FROM t1 GROUP BY y ORDER BY x"
  {1 3  2 2  3 1} {$tblscan*$grpsort*$sort}

  7 "SELECT * FROM t1 GROUP BY x, y ORDER BY x, y DESC"
  {1 3  2 2  3 1} {$idxscan*$sort}

  8 "SELECT * FROM t1 GROUP BY x, y ORDER BY x DESC, y DESC"
  {3 1  2 2  1 3} {$idxscan*$sort}

  9 "SELECT * FROM t1 GROUP BY x, y ORDER BY x ASC, y ASC"
  {1 3  2 2  3 1} {$idxscan}

  10 "SELECT * FROM t1 GROUP BY x, y ORDER BY x COLLATE nocase, y"
  {1 3  2 2  3 1} {$idxscan*$sort}

}] {
  do_execsql_test 1.$tn.1 $q $res
  do_eqp_test     1.$tn.2 $q $eqp
}


finish_test

Changes to test/tkt3442.test.

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
       id TEXT,
       node INTEGER
     );
     CREATE UNIQUE INDEX ididx ON listhash(id);
  }
} {}


# Explain Query Plan
#
proc EQP {sql} {
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}


# These tests perform an EXPLAIN QUERY PLAN on both versions of the 
# SELECT referenced in ticket #3442 (both '5000' and "5000") 
# and verify that the query plan is the same.
#
ifcapable explain {
  do_test tkt3442-1.2 {
    EQP { SELECT node FROM listhash WHERE id='5000' LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
  do_test tkt3442-1.3 {
    EQP { SELECT node FROM listhash WHERE id="5000" LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
}


# Some extra tests testing other permutations of 5000.
#
ifcapable explain {
  do_test tkt3442-1.4 {
    EQP { SELECT node FROM listhash WHERE id=5000 LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
}
do_test tkt3442-1.5 {
  catchsql {
    SELECT node FROM listhash WHERE id=[5000] LIMIT 1;
  }
} {1 {no such column: 5000}}

finish_test







<
<
<
<
<
<
<
<




<
|
|
|
|
|
|
<




<
|
|
|
|







30
31
32
33
34
35
36








37
38
39
40

41
42
43
44
45
46

47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
       id TEXT,
       node INTEGER
     );
     CREATE UNIQUE INDEX ididx ON listhash(id);
  }
} {}









# These tests perform an EXPLAIN QUERY PLAN on both versions of the 
# SELECT referenced in ticket #3442 (both '5000' and "5000") 
# and verify that the query plan is the same.
#

do_eqp_test tkt3442-1.2 {
  SELECT node FROM listhash WHERE id='5000' LIMIT 1;
} {SEARCH TABLE listhash USING INDEX ididx (id=?)}
do_eqp_test tkt3442-1.3 {
  SELECT node FROM listhash WHERE id="5000" LIMIT 1;
} {SEARCH TABLE listhash USING INDEX ididx (id=?)}



# Some extra tests testing other permutations of 5000.
#

do_eqp_test tkt3442-1.4 {
  SELECT node FROM listhash WHERE id=5000 LIMIT 1;
} {SEARCH TABLE listhash USING INDEX ididx (id=?)}

do_test tkt3442-1.5 {
  catchsql {
    SELECT node FROM listhash WHERE id=[5000] LIMIT 1;
  }
} {1 {no such column: 5000}}

finish_test

Changes to test/tpch01.test.

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
...
183
184
185
186
187
188
189


190





191

192
                               and p_type = 'LARGE PLATED STEEL'
               ) as all_nations
       group by
               o_year
       order by
               o_year;}]
  set ::eqpres
} {/0 0 0 {SEARCH TABLE part USING INDEX bootleg_pti .P_TYPE=..} 0 1 2 {SEARCH TABLE lineitem USING INDEX lpki2 .L_PARTKEY=..}.*/}
do_test tpch01-1.1b {
  set ::eqpres
} {/.* customer .* nation AS n1 .*/}
do_test tpch01-1.1c {
  set ::eqpres
} {/.* supplier .* nation AS n2 .*/}

................................................................................
    c_custkey = o_custkey    and l_orderkey = o_orderkey
    and o_orderdate >=  '1994-08-01'    and o_orderdate < date('1994-08-01', '+3 month')
    and l_returnflag = 'R'    and c_nationkey = n_nationkey
group by
    c_custkey,    c_name,    c_acctbal,    c_phone,    n_name, c_address,    c_comment
order by
    revenue desc;


} {0 0 1 {SEARCH TABLE orders USING INDEX odi (O_ORDERDATE>? AND O_ORDERDATE<?)} 0 1 0 {SEARCH TABLE customer USING INDEX cpki (C_CUSTKEY=?)} 0 2 3 {SEARCH TABLE nation USING INDEX npki (N_NATIONKEY=?)} 0 3 2 {SEARCH TABLE lineitem USING INDEX lpki (L_ORDERKEY=?)} 0 0 0 {USE TEMP B-TREE FOR GROUP BY} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}







finish_test







|







 







>
>
|
>
>
>
>
>
|
>

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
...
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
                               and p_type = 'LARGE PLATED STEEL'
               ) as all_nations
       group by
               o_year
       order by
               o_year;}]
  set ::eqpres
} {/*SEARCH TABLE part USING INDEX bootleg_pti *SEARCH TABLE lineitem USING INDEX lpki2*/}
do_test tpch01-1.1b {
  set ::eqpres
} {/.* customer .* nation AS n1 .*/}
do_test tpch01-1.1c {
  set ::eqpres
} {/.* supplier .* nation AS n2 .*/}

................................................................................
    c_custkey = o_custkey    and l_orderkey = o_orderkey
    and o_orderdate >=  '1994-08-01'    and o_orderdate < date('1994-08-01', '+3 month')
    and l_returnflag = 'R'    and c_nationkey = n_nationkey
group by
    c_custkey,    c_name,    c_acctbal,    c_phone,    n_name, c_address,    c_comment
order by
    revenue desc;
} {
  QUERY PLAN
  |--SEARCH TABLE orders USING INDEX odi (O_ORDERDATE>? AND O_ORDERDATE<?)
  |--SEARCH TABLE customer USING INDEX cpki (C_CUSTKEY=?)
  |--SEARCH TABLE nation USING INDEX npki (N_NATIONKEY=?)
  |--SEARCH TABLE lineitem USING INDEX lpki (L_ORDERKEY=?)
  |--USE TEMP B-TREE FOR GROUP BY
  `--USE TEMP B-TREE FOR ORDER BY
}

finish_test

Changes to test/trigger1.test.

756
757
758
759
760
761
762






763
764
765
#
do_execsql_test trigger1-19.0 {
  CREATE TABLE t19(a INT PRIMARY KEY, b, c)WITHOUT ROWID;
  INSERT INTO t19(a,b,c) VALUES(1,2,3);
  CREATE TRIGGER t19r3 BEFORE UPDATE ON t19 BEGIN SELECT new.b; END;
  UPDATE t19 SET c=b WHERE a=1;
  SELECT * FROM t19;






} {1 2 2}

finish_test







>
>
>
>
>
>



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#
do_execsql_test trigger1-19.0 {
  CREATE TABLE t19(a INT PRIMARY KEY, b, c)WITHOUT ROWID;
  INSERT INTO t19(a,b,c) VALUES(1,2,3);
  CREATE TRIGGER t19r3 BEFORE UPDATE ON t19 BEGIN SELECT new.b; END;
  UPDATE t19 SET c=b WHERE a=1;
  SELECT * FROM t19;
} {1 2 2}
do_execsql_test trigger1-19.1 {
  DELETE FROM t19;
  INSERT INTO t19(a,b,c) VALUES(1,2,3);
  UPDATE t19 SET c=CASE WHEN b=2 THEN b ELSE b+99 END WHERE a=1;
  SELECT * FROM t19;
} {1 2 2}

finish_test

Changes to test/unordered.test.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
        {0 0 0 {SCAN TABLE t1} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    2   "SELECT * FROM t1 WHERE a > 100"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
        {0 0 0 {SCAN TABLE t1}}
    3   "SELECT * FROM t1 WHERE a = ? ORDER BY rowid"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
         0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    4   "SELECT max(a) FROM t1"
        {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1}}
        {0 0 0 {SEARCH TABLE t1}}
    5   "SELECT group_concat(b) FROM t1 GROUP BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
        {0 0 0 {SCAN TABLE t1} 0 0 0 {USE TEMP B-TREE FOR GROUP BY}}

    6   "SELECT * FROM t1 WHERE a = ?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
    7   "SELECT count(*) FROM t1"
        {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}}
        {0 0 0 {SCAN TABLE t1}}
  } {
    do_eqp_test 1.$idxmode.$tn $sql $r($idxmode)
  }
}

finish_test







|
|

|
|

|
|
<

|
|

|
|


|
|

|
|






36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {SCAN TABLE t1 USING INDEX i1}
        {SCAN TABLE t1*USE TEMP B-TREE FOR ORDER BY}
    2   "SELECT * FROM t1 WHERE a > 100"
        {SEARCH TABLE t1 USING INDEX i1 (a>?)}
        {SCAN TABLE t1}
    3   "SELECT * FROM t1 WHERE a = ? ORDER BY rowid"
        {SEARCH TABLE t1 USING INDEX i1 (a=?)}
        {SEARCH TABLE t1 USING INDEX i1 (a=?)*USE TEMP B-TREE FOR ORDER BY}

    4   "SELECT max(a) FROM t1"
        {SEARCH TABLE t1 USING COVERING INDEX i1}
        {SEARCH TABLE t1}
    5   "SELECT group_concat(b) FROM t1 GROUP BY a"
        {SCAN TABLE t1 USING INDEX i1}
        {SCAN TABLE t1*USE TEMP B-TREE FOR GROUP BY}

    6   "SELECT * FROM t1 WHERE a = ?"
        {SEARCH TABLE t1 USING INDEX i1 (a=?)}
        {SEARCH TABLE t1 USING INDEX i1 (a=?)}
    7   "SELECT count(*) FROM t1"
        {SCAN TABLE t1 USING COVERING INDEX i1}
        {SCAN TABLE t1}
  } {
    do_eqp_test 1.$idxmode.$tn $sql $r($idxmode)
  }
}

finish_test

Changes to test/where3.test.

231
232
233
234
235
236
237


238
239

240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
...
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344
345

346
347
348
349
350
351
352
353
354
355
356
357
358

359
360
361
362
363
364
365
366
367
368
  CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c);
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  INSERT INTO t301 VALUES(2,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;


  explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {

  0 0 0 {SCAN TABLE t302} 
  0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_execsql_test where3-3.1 {
  explain query plan
  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {

  0 0 1 {SCAN TABLE t302} 
  0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_execsql_test where3-3.2 {
  SELECT * FROM t301 WHERE c=3 AND a IS NULL;
} {}
do_execsql_test where3-3.3 {
  SELECT * FROM t301 WHERE c=3 AND a IS NOT NULL;
} {1 2 3 2 2 3}
................................................................................
                    fk INTEGER DEFAULT NULL, parent INTEGER,
                    position INTEGER, title LONGVARCHAR,
                    keyword_id INTEGER, folder_type TEXT,
                    dateAdded INTEGER, lastModified INTEGER);
  CREATE INDEX bbb_111 ON bbb (fk, type);
  CREATE INDEX bbb_222 ON bbb (parent, position);
  CREATE INDEX bbb_333 ON bbb (fk, lastModified);

  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {

  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 1 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.1 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {

  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 1 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.2 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {

  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 0 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.3 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {

  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 0 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# Name resolution with NATURAL JOIN and USING
#
do_test where3-6.setup {
  db eval {
    CREATE TABLE t6w(a, w);







>
>
|

>
|
|

|
<


>
|
|







 







|
|







>
|
|
|

|
<







>
|
|
|

|
<







>
|
|
|

|
<







>
|
|
|







231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
...
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

329
330
331
332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351
352
353
354

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  CREATE TABLE t301(a INTEGER PRIMARY KEY,b,c);
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  INSERT INTO t301 VALUES(2,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;
}
do_eqp_test where3-3.0a {
  SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
  QUERY PLAN
  |--SCAN TABLE t302
  `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)
}
do_eqp_test where3-3.1 {

  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
  QUERY PLAN
  |--SCAN TABLE t302
  `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)
}
do_execsql_test where3-3.2 {
  SELECT * FROM t301 WHERE c=3 AND a IS NULL;
} {}
do_execsql_test where3-3.3 {
  SELECT * FROM t301 WHERE c=3 AND a IS NOT NULL;
} {1 2 3 2 2 3}
................................................................................
                    fk INTEGER DEFAULT NULL, parent INTEGER,
                    position INTEGER, title LONGVARCHAR,
                    keyword_id INTEGER, folder_type TEXT,
                    dateAdded INTEGER, lastModified INTEGER);
  CREATE INDEX bbb_111 ON bbb (fk, type);
  CREATE INDEX bbb_222 ON bbb (parent, position);
  CREATE INDEX bbb_333 ON bbb (fk, lastModified);
}
do_eqp_test where3-5.0a {
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  QUERY PLAN
  |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)
  |--SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test where3-5.1 {

   SELECT bbb.title AS tag_title 
     FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  QUERY PLAN
  |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)
  |--SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test where3-5.2 {

   SELECT bbb.title AS tag_title 
     FROM bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  QUERY PLAN
  |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)
  |--SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR ORDER BY
}
do_eqp_test where3-5.3 {

   SELECT bbb.title AS tag_title 
     FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  QUERY PLAN
  |--SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)
  |--SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)
  `--USE TEMP B-TREE FOR ORDER BY
}

# Name resolution with NATURAL JOIN and USING
#
do_test where3-6.setup {
  db eval {
    CREATE TABLE t6w(a, w);

Changes to test/where7.test.

23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353


23354
23355
23356
23357
23358
23359
23360
      c2 INTEGER,
      c4 INTEGER,
      FOREIGN KEY (c8) REFERENCES t301(c8)
  );
  CREATE INDEX t302_c3 on t302(c3);
  CREATE INDEX t302_c8_c3 on t302(c8, c3);
  CREATE INDEX t302_c5 on t302(c5);
  
  EXPLAIN QUERY PLAN
  SELECT t302.c1 
    FROM t302 JOIN t301 ON t302.c8 = +t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {


  0 0 1 {SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?)} 
  0 0 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 1 0 {SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

finish_test







|
|








>
>
|
|
|
|



23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
      c2 INTEGER,
      c4 INTEGER,
      FOREIGN KEY (c8) REFERENCES t301(c8)
  );
  CREATE INDEX t302_c3 on t302(c3);
  CREATE INDEX t302_c8_c3 on t302(c8, c3);
  CREATE INDEX t302_c5 on t302(c5);
}
do_eqp_test where7-3.2 {
  SELECT t302.c1 
    FROM t302 JOIN t301 ON t302.c8 = +t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {
  QUERY PLAN
  |--MULTI-INDEX OR
  |  |--SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?)
  |  `--SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)
  |--SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?)
  `--USE TEMP B-TREE FOR ORDER BY
}

finish_test

Changes to test/where9.test.

353
354
355
356
357
358
359
360
361
362
363

364
365

366
367
368
369
370
371
372
373
374

375

376
377
378
379
380
381
382
383
384
385
...
442
443
444
445
446
447
448
449
450
451
452
453
454
455


456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
     WHERE t1.a=t3.y OR t1.b=t3.y*11 OR (t1.c=27027 AND round(t1.d)==80)
    ORDER BY 1, 2, 3
  }
} {1 80 2 1 80 28 1 80 54 1 80 80 2 80 2 2 80 28 2 80 54 2 80 80 scan 1 sort 1}


ifcapable explain {
  do_execsql_test where9-3.1 {
    EXPLAIN QUERY PLAN
    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)

  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)} 

    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)}
  }
  do_execsql_test where9-3.2 {
    EXPLAIN QUERY PLAN
    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } {

    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)} 

    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)}
  }
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {
  count_steps {
................................................................................
    SELECT a FROM t1 INDEXED BY t1d
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}

ifcapable explain {
  # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
  # the former is an equality test which is expected to return fewer rows.
  #
  do_execsql_test where9-5.1 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
  } {


    0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?)} 
    0 0 0 {SEARCH TABLE t1 USING INDEX t1d (d=?)}
  }

  # In contrast, b=1000 is preferred over any OR-clause.
  #
  do_execsql_test where9-5.2 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}
  }

  # Likewise, inequalities in an AND are preferred over inequalities in
  # an OR.
  #
  do_execsql_test where9-5.3 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>?)}
  }
}

############################################################################
# Make sure OR-clauses work correctly on UPDATE and DELETE statements.

do_test where9-6.2.1 {
  db eval {SELECT count(*) FROM t1 UNION ALL SELECT a FROM t1 WHERE a>=85}
} {99 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99}







|
<


>
|
|
>
|
|
|
|
<



|
>
|
>
|
|
|







 







<
|
|
|
|
|
|
>
>
|
|
|

|
|
|
|
<
|
|
<
|
|
|
|
|
<
|
<
<







353
354
355
356
357
358
359
360

361
362
363
364
365
366
367
368
369
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
...
444
445
446
447
448
449
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

467
468

469
470
471
472
473

474


475
476
477
478
479
480
481
     WHERE t1.a=t3.y OR t1.b=t3.y*11 OR (t1.c=27027 AND round(t1.d)==80)
    ORDER BY 1, 2, 3
  }
} {1 80 2 1 80 28 1 80 54 1 80 80 2 80 2 2 80 28 2 80 54 2 80 80 scan 1 sort 1}


ifcapable explain {
  do_eqp_test where9-3.1 {

    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
    `--MULTI-INDEX OR
       |--SEARCH TABLE t2 USING INDEX t2d (d=?)
       `--SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)
  }]
  do_eqp_test where9-3.2 {

    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
    `--MULTI-INDEX OR
       |--SEARCH TABLE t2 USING INDEX t2d (d=?)
       `--SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)
  }]
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {
  count_steps {
................................................................................
    SELECT a FROM t1 INDEXED BY t1d
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}


# The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
# the former is an equality test which is expected to return fewer rows.
#
do_eqp_test where9-5.1 {
  SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SEARCH TABLE t1 USING INDEX t1c (c=?)
     `--SEARCH TABLE t1 USING INDEX t1d (d=?)
}

# In contrast, b=1000 is preferred over any OR-clause.
#
do_eqp_test where9-5.2 {
  SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)

} {SEARCH TABLE t1 USING INDEX t1b (b=?)}


# Likewise, inequalities in an AND are preferred over inequalities in
# an OR.
#
do_eqp_test where9-5.3 {
  SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)

} {SEARCH TABLE t1 USING INDEX t1b (b>?)}



############################################################################
# Make sure OR-clauses work correctly on UPDATE and DELETE statements.

do_test where9-6.2.1 {
  db eval {SELECT count(*) FROM t1 UNION ALL SELECT a FROM t1 WHERE a>=85}
} {99 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99}

Changes to test/whereG.test.

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
...
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
} {}
do_eqp_test whereG-1.1 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE unlikely(cname LIKE '%bach%')
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {/.*composer.*track.*album.*/}
do_execsql_test whereG-1.2 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE unlikely(cname LIKE '%bach%')
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {{Mass in B Minor, BWV 232}}
................................................................................

do_execsql_test 5.1 {
  CREATE TABLE t1(a, b, c);
  CREATE INDEX i1 ON t1(a, b);
}
do_eqp_test 5.1.2 {
  SELECT * FROM t1 WHERE a>?
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_eqp_test 5.1.3 {
  SELECT * FROM t1 WHERE likelihood(a>?, 0.9)
} {0 0 0 {SCAN TABLE t1}}
do_eqp_test 5.1.4 {
  SELECT * FROM t1 WHERE likely(a>?)
} {0 0 0 {SCAN TABLE t1}}

do_test 5.2 {
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES('abc', $i, $i); }
  }
  execsql { INSERT INTO t1 SELECT 'def', b, c FROM t1; }
  execsql { ANALYZE }
} {}
do_eqp_test 5.2.2 {
  SELECT * FROM t1 WHERE likelihood(b>?, 0.01)
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (ANY(a) AND b>?)}}
do_eqp_test 5.2.3 {
  SELECT * FROM t1 WHERE likelihood(b>?, 0.9)
} {0 0 0 {SCAN TABLE t1}}
do_eqp_test 5.2.4 {
  SELECT * FROM t1 WHERE likely(b>?)
} {0 0 0 {SCAN TABLE t1}}

do_eqp_test 5.3.1 {
  SELECT * FROM t1 WHERE a=?
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_eqp_test 5.3.2 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.9)
} {0 0 0 {SCAN TABLE t1}}
do_eqp_test 5.3.3 {
  SELECT * FROM t1 WHERE likely(a=?)
} {0 0 0 {SCAN TABLE t1}}

# 2015-06-18
# Ticket [https://www.sqlite.org/see/tktview/472f0742a1868fb58862bc588ed70]
#
do_execsql_test 6.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(i int, x, y, z);







|







 







|


|


|










|


|


|



|


|


|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
...
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
} {}
do_eqp_test whereG-1.1 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE unlikely(cname LIKE '%bach%')
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {composer*track*album}
do_execsql_test whereG-1.2 {
  SELECT DISTINCT aname
    FROM album, composer, track
   WHERE unlikely(cname LIKE '%bach%')
     AND composer.cid=track.cid
     AND album.aid=track.aid;
} {{Mass in B Minor, BWV 232}}
................................................................................

do_execsql_test 5.1 {
  CREATE TABLE t1(a, b, c);
  CREATE INDEX i1 ON t1(a, b);
}
do_eqp_test 5.1.2 {
  SELECT * FROM t1 WHERE a>?
} {SEARCH TABLE t1 USING INDEX i1 (a>?)}
do_eqp_test 5.1.3 {
  SELECT * FROM t1 WHERE likelihood(a>?, 0.9)
} {SCAN TABLE t1}
do_eqp_test 5.1.4 {
  SELECT * FROM t1 WHERE likely(a>?)
} {SCAN TABLE t1}

do_test 5.2 {
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES('abc', $i, $i); }
  }
  execsql { INSERT INTO t1 SELECT 'def', b, c FROM t1; }
  execsql { ANALYZE }
} {}
do_eqp_test 5.2.2 {
  SELECT * FROM t1 WHERE likelihood(b>?, 0.01)
} {SEARCH TABLE t1 USING INDEX i1 (ANY(a) AND b>?)}
do_eqp_test 5.2.3 {
  SELECT * FROM t1 WHERE likelihood(b>?, 0.9)
} {SCAN TABLE t1}
do_eqp_test 5.2.4 {
  SELECT * FROM t1 WHERE likely(b>?)
} {SCAN TABLE t1}

do_eqp_test 5.3.1 {
  SELECT * FROM t1 WHERE a=?
} {SEARCH TABLE t1 USING INDEX i1 (a=?)}
do_eqp_test 5.3.2 {
  SELECT * FROM t1 WHERE likelihood(a=?, 0.9)
} {SCAN TABLE t1}
do_eqp_test 5.3.3 {
  SELECT * FROM t1 WHERE likely(a=?)
} {SCAN TABLE t1}

# 2015-06-18
# Ticket [https://www.sqlite.org/see/tktview/472f0742a1868fb58862bc588ed70]
#
do_execsql_test 6.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(i int, x, y, z);

Changes to test/whereI.test.

25
26
27
28
29
30
31


32
33
34
35
36
37
38
39
40
..
53
54
55
56
57
58
59


60
61
62
63
64
65
66
67
68
  CREATE INDEX i1 ON t1(b);
  CREATE INDEX i2 ON t1(c);
}

do_eqp_test 1.1 {
  SELECT a FROM t1 WHERE b='b' OR c='x'
} {


  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b=?)} 
  0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}
}

do_execsql_test 1.2 {
  SELECT a FROM t1 WHERE b='b' OR c='x'
} {2 3}

do_execsql_test 1.3 {
................................................................................
  CREATE INDEX i3 ON t2(b);
  CREATE INDEX i4 ON t2(c);
}

do_eqp_test 2.1 {
  SELECT a FROM t2 WHERE b='b' OR c='x'
} {


  0 0 0 {SEARCH TABLE t2 USING INDEX i3 (b=?)} 
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)}
}

do_execsql_test 2.2 {
  SELECT a FROM t2 WHERE b='b' OR c='x'
} {ii iii}

do_execsql_test 2.3 {







>
>
|
|







 







>
>
|
|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
..
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  CREATE INDEX i1 ON t1(b);
  CREATE INDEX i2 ON t1(c);
}

do_eqp_test 1.1 {
  SELECT a FROM t1 WHERE b='b' OR c='x'
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SEARCH TABLE t1 USING INDEX i1 (b=?)
     `--SEARCH TABLE t1 USING INDEX i2 (c=?)
}

do_execsql_test 1.2 {
  SELECT a FROM t1 WHERE b='b' OR c='x'
} {2 3}

do_execsql_test 1.3 {
................................................................................
  CREATE INDEX i3 ON t2(b);
  CREATE INDEX i4 ON t2(c);
}

do_eqp_test 2.1 {
  SELECT a FROM t2 WHERE b='b' OR c='x'
} {
  QUERY PLAN
  `--MULTI-INDEX OR
     |--SEARCH TABLE t2 USING INDEX i3 (b=?)
     `--SEARCH TABLE t2 USING INDEX i4 (c=?)
}

do_execsql_test 2.2 {
  SELECT a FROM t2 WHERE b='b' OR c='x'
} {ii iii}

do_execsql_test 2.3 {

Changes to test/whereJ.test.

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

# This one should use index "idx_c".
do_eqp_test 3.4 {
  SELECT * FROM t1 WHERE 
    a = 4 AND b BETWEEN 20 AND 80           -- Matches 80 rows
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)}
}

# This one should use index "idx_ab".
do_eqp_test 3.5 {
  SELECT * FROM t1 WHERE 
    a = 5 AND b BETWEEN 20 AND 80           -- Matches 1 row
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)}
}

###########################################################################################

# Reset the database and setup for a test case derived from actual SQLite users
#
db close
sqlite3 db test.db







<
|
<







<
|
<







398
399
400
401
402
403
404

405

406
407
408
409
410
411
412

413

414
415
416
417
418
419
420

# This one should use index "idx_c".
do_eqp_test 3.4 {
  SELECT * FROM t1 WHERE 
    a = 4 AND b BETWEEN 20 AND 80           -- Matches 80 rows
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows

} {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)}


# This one should use index "idx_ab".
do_eqp_test 3.5 {
  SELECT * FROM t1 WHERE 
    a = 5 AND b BETWEEN 20 AND 80           -- Matches 1 row
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows

} {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)}


###########################################################################################

# Reset the database and setup for a test case derived from actual SQLite users
#
db close
sqlite3 db test.db

Changes to test/wherelimit.test.

47
48
49
50
51
52
53
54
55
56

57
58
59

60
61
62




63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
  do_test wherelimit-0.2 {
    catchsql {DELETE FROM t1 WHERE x=1 ORDER BY x}
  } {1 {ORDER BY without LIMIT on DELETE}}
  do_test wherelimit-0.3 {
    catchsql {UPDATE t1 SET y=1 WHERE x=1 ORDER BY x}
  } {1 {ORDER BY without LIMIT on UPDATE}}

  execsql { DROP TABLE t1 }

  # no AS on table sources

  do_test wherelimit-0.4 {
    catchsql {DELETE FROM t1 AS a WHERE x=1}
  } {1 {near "AS": syntax error}}

  do_test wherelimit-0.5 {
    catchsql {UPDATE t1 AS a SET y=1 WHERE x=1}
  } {1 {near "AS": syntax error}}





  # OFFSET w/o LIMIT
  do_test wherelimit-0.6 {
    catchsql {DELETE FROM t1 WHERE x=1 OFFSET 2}
  } {1 {near "OFFSET": syntax error}}
  do_test wherelimit-0.7 {
    catchsql {UPDATE t1 SET y=1 WHERE x=1 OFFSET 2}
  } {1 {near "OFFSET": syntax error}}



  # check deletes w/o where clauses but with limit/offsets
  create_test_data 5
  do_test wherelimit-1.0 {
    execsql {SELECT count(*) FROM t1}
  } {25}
  do_test wherelimit-1.1 {







|
|
|
>

|
<
>
|

<
>
>
>
>









>







47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  do_test wherelimit-0.2 {
    catchsql {DELETE FROM t1 WHERE x=1 ORDER BY x}
  } {1 {ORDER BY without LIMIT on DELETE}}
  do_test wherelimit-0.3 {
    catchsql {UPDATE t1 SET y=1 WHERE x=1 ORDER BY x}
  } {1 {ORDER BY without LIMIT on UPDATE}}

  # no AS on table sources
  #
  # UPDATE: As of version 3.24, AS clauses are allowed as part of
  # UPDATE or DELETE statements.
  do_test wherelimit-0.4 {
    catchsql {DELETE FROM t1 AS a WHERE a.x=1}

  } {0 {}}
  do_test wherelimit-0.5.1 {
    catchsql {UPDATE t1 AS a SET y=1 WHERE x=1}

  } {0 {}}
  do_test wherelimit-0.5.2 {
    catchsql {UPDATE t1 AS a SET y=1 WHERE t1.x=1}
  } {1 {no such column: t1.x}}

  # OFFSET w/o LIMIT
  do_test wherelimit-0.6 {
    catchsql {DELETE FROM t1 WHERE x=1 OFFSET 2}
  } {1 {near "OFFSET": syntax error}}
  do_test wherelimit-0.7 {
    catchsql {UPDATE t1 SET y=1 WHERE x=1 OFFSET 2}
  } {1 {near "OFFSET": syntax error}}

  execsql { DROP TABLE t1 }

  # check deletes w/o where clauses but with limit/offsets
  create_test_data 5
  do_test wherelimit-1.0 {
    execsql {SELECT count(*) FROM t1}
  } {25}
  do_test wherelimit-1.1 {

Changes to test/with1.test.

988
989
990
991
992
993
994
995
996
997
998


999
1000
1001
1002
1003




1004


1005
1006
1007
1008
1009
1010
1011
    FROM xyz ORDER BY 1
  )
  SELECT 1 FROM xyz;
} 1

# EXPLAIN QUERY PLAN on a self-join of a CTE
#
do_execsql_test 19.1 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(x);
  EXPLAIN QUERY PLAN


  WITH
    x1(a) AS (values(100))
  INSERT INTO t1(x)
    SELECT * FROM (WITH x2(y) AS (SELECT * FROM x1) SELECT y+a FROM x1, x2);
  SELECT * FROM t1;




} {0 0 0 {SCAN SUBQUERY 1} 0 1 1 {SCAN SUBQUERY 1}}



# 2017-10-28.
# See check-in https://sqlite.org/src/info/0926df095faf72c2
# Tried to optimize co-routine processing by changing a Copy opcode
# into SCopy.  But OSSFuzz found two (similar) cases where that optimization
# does not work.
#







|


<
>
>





>
>
>
>
|
>
>







988
989
990
991
992
993
994
995
996
997

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
    FROM xyz ORDER BY 1
  )
  SELECT 1 FROM xyz;
} 1

# EXPLAIN QUERY PLAN on a self-join of a CTE
#
do_execsql_test 19.1a {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(x);

}
do_eqp_test 19.1b {
  WITH
    x1(a) AS (values(100))
  INSERT INTO t1(x)
    SELECT * FROM (WITH x2(y) AS (SELECT * FROM x1) SELECT y+a FROM x1, x2);
  SELECT * FROM t1;
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  `--SCAN CONSTANT ROW
  |--SCAN SUBQUERY xxxxxx
  `--SCAN SUBQUERY xxxxxx
}

# 2017-10-28.
# See check-in https://sqlite.org/src/info/0926df095faf72c2
# Tried to optimize co-routine processing by changing a Copy opcode
# into SCopy.  But OSSFuzz found two (similar) cases where that optimization
# does not work.
#

Changes to test/with3.test.

75
76
77
78
79
80
81
82





83
84
85
86
87
88
89
90
91
92






93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110




111
112

113
114
115

116
117
118
119
120
    ANALYZE;

  }

  do_eqp_test 3.1.2 {
    WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1)
    SELECT * FROM cnt, y1 WHERE i=a
  } {





    3 0 0 {SCAN TABLE cnt} 
    1 0 0 {COMPOUND SUBQUERIES 0 AND 0 (UNION ALL)}
    0 0 0 {SCAN SUBQUERY 1} 
    0 1 1 {SEARCH TABLE y1 USING INDEX y1a (a=?)}
  }

  do_eqp_test 3.1.3 {
    WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1000000)
    SELECT * FROM cnt, y1 WHERE i=a
  } {






    3 0 0 {SCAN TABLE cnt} 
    1 0 0 {COMPOUND SUBQUERIES 0 AND 0 (UNION ALL)}
    0 0 1 {SCAN TABLE y1} 
    0 1 0 {SEARCH SUBQUERY 1 USING AUTOMATIC COVERING INDEX (i=?)}
  }
}

do_execsql_test 3.2.1 {
  CREATE TABLE w1(pk INTEGER PRIMARY KEY, x INTEGER);
  CREATE TABLE w2(pk INTEGER PRIMARY KEY);
}

do_eqp_test 3.2.2 {
  WITH RECURSIVE c(w,id) AS (SELECT 0, (SELECT pk FROM w2 LIMIT 1)
     UNION ALL SELECT c.w + 1, x FROM w1, c LIMIT 1)
     SELECT * FROM c, w2, w1
     WHERE c.id=w2.pk AND c.id=w1.pk;
} {




  2 0 0 {EXECUTE SCALAR SUBQUERY 3} 
  3 0 0 {SCAN TABLE w2} 

  4 0 0 {SCAN TABLE w1}
  4 1 1 {SCAN TABLE c} 
  1 0 0 {COMPOUND SUBQUERIES 0 AND 0 (UNION ALL)} 0 0 0 {SCAN SUBQUERY 1}

  0 1 1 {SEARCH TABLE w2 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 2 2 {SEARCH TABLE w1 USING INTEGER PRIMARY KEY (rowid=?)}
}

finish_test







|
>
>
>
>
>
|
<
|
|
|




<
>
>
>
>
>
>
|
<
|
|
|













>
>
>
>
|
|
>
|
|
<
>
|
|



75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95

96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
    ANALYZE;

  }

  do_eqp_test 3.1.2 {
    WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1)
    SELECT * FROM cnt, y1 WHERE i=a
  } [string map {"\n  " \n} {
    QUERY PLAN
    |--MATERIALIZE xxxxxx
    |  |--SETUP
    |  |  `--SCAN CONSTANT ROW
    |  `--RECURSIVE STEP
    |     `--SCAN TABLE cnt

    |--SCAN SUBQUERY xxxxxx
    `--SEARCH TABLE y1 USING INDEX y1a (a=?)
  }]

  do_eqp_test 3.1.3 {
    WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt LIMIT 1000000)
    SELECT * FROM cnt, y1 WHERE i=a

  } [string map {"\n  " \n} {
    QUERY PLAN
    |--MATERIALIZE xxxxxx
    |  |--SETUP
    |  |  `--SCAN CONSTANT ROW
    |  `--RECURSIVE STEP
    |     `--SCAN TABLE cnt

    |--SCAN TABLE y1
    `--SEARCH SUBQUERY xxxxxx USING AUTOMATIC COVERING INDEX (i=?)
  }]
}

do_execsql_test 3.2.1 {
  CREATE TABLE w1(pk INTEGER PRIMARY KEY, x INTEGER);
  CREATE TABLE w2(pk INTEGER PRIMARY KEY);
}

do_eqp_test 3.2.2 {
  WITH RECURSIVE c(w,id) AS (SELECT 0, (SELECT pk FROM w2 LIMIT 1)
     UNION ALL SELECT c.w + 1, x FROM w1, c LIMIT 1)
     SELECT * FROM c, w2, w1
     WHERE c.id=w2.pk AND c.id=w1.pk;
} {
  QUERY PLAN
  |--MATERIALIZE xxxxxx
  |  |--SETUP
  |  |  |--SCAN CONSTANT ROW
  |  |  `--SCALAR SUBQUERY
  |  |     `--SCAN TABLE w2
  |  `--RECURSIVE STEP
  |     |--SCAN TABLE w1
  |     `--SCAN TABLE c

  |--SCAN SUBQUERY xxxxxx
  |--SEARCH TABLE w2 USING INTEGER PRIMARY KEY (rowid=?)
  `--SEARCH TABLE w1 USING INTEGER PRIMARY KEY (rowid=?)
}

finish_test

Changes to test/without_rowid1.test.

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
...
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  INSERT INTO t45 VALUES(5, 'two', 'x');
  INSERT INTO t45 VALUES(7, 'two', 'x');
  INSERT INTO t45 VALUES(9, 'two', 'x');
}

do_eqp_test 5.1 {
  SELECT * FROM t45 WHERE b=? AND a>?
} {/*USING INDEX i45 (b=? AND a>?)*/}

do_execsql_test 5.2 {
  SELECT * FROM t45 WHERE b='two' AND a>4
} {5 two x 7 two x 9 two x}

do_execsql_test 5.3 {
  SELECT * FROM t45 WHERE b='one' AND a<8
................................................................................
  WITH r(x) AS (
    SELECT 1 UNION ALL SELECT x+1 FROM r WHERE x<100
  )
  INSERT INTO t46 SELECT x / 20, x % 20, x % 10, x FROM r;
}

set queries {
  1    2    "c = 5 AND a = 1"          {/*i46 (c=? AND a=?)*/}
  2    6    "c = 4 AND a < 3"          {/*i46 (c=? AND a<?)*/}
  3    4    "c = 2 AND a >= 3"         {/*i46 (c=? AND a>?)*/}
  4    1    "c = 2 AND a = 1 AND b<10" {/*i46 (c=? AND a=? AND b<?)*/}
  5    1    "c = 0 AND a = 0 AND b>5"  {/*i46 (c=? AND a=? AND b>?)*/}
}

foreach {tn cnt where eqp} $queries {
  do_execsql_test 5.5.$tn.1 "SELECT count(*) FROM t46 WHERE $where" $cnt
}

do_execsql_test 5.6 {







|







 







|
|
|
|
|







234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
...
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  INSERT INTO t45 VALUES(5, 'two', 'x');
  INSERT INTO t45 VALUES(7, 'two', 'x');
  INSERT INTO t45 VALUES(9, 'two', 'x');
}

do_eqp_test 5.1 {
  SELECT * FROM t45 WHERE b=? AND a>?
} {USING INDEX i45 (b=? AND a>?)}

do_execsql_test 5.2 {
  SELECT * FROM t45 WHERE b='two' AND a>4
} {5 two x 7 two x 9 two x}

do_execsql_test 5.3 {
  SELECT * FROM t45 WHERE b='one' AND a<8
................................................................................
  WITH r(x) AS (
    SELECT 1 UNION ALL SELECT x+1 FROM r WHERE x<100
  )
  INSERT INTO t46 SELECT x / 20, x % 20, x % 10, x FROM r;
}

set queries {
  1    2    "c = 5 AND a = 1"          {i46 (c=? AND a=?)}
  2    6    "c = 4 AND a < 3"          {i46 (c=? AND a<?)}
  3    4    "c = 2 AND a >= 3"         {i46 (c=? AND a>?)}
  4    1    "c = 2 AND a = 1 AND b<10" {i46 (c=? AND a=? AND b<?)}
  5    1    "c = 0 AND a = 0 AND b>5"  {i46 (c=? AND a=? AND b>?)}
}

foreach {tn cnt where eqp} $queries {
  do_execsql_test 5.5.$tn.1 "SELECT count(*) FROM t46 WHERE $where" $cnt
}

do_execsql_test 5.6 {