SQLite

Check-in [6232519899]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest trunk changes into this branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | exp-window-functions
Files: files | file ages | folders
SHA3-256: 6232519899efc568465d8fcc9fcd79d46a2ce4ec05109d26d5eb1ebd239cd596
User & Date: dan 2018-05-25 09:36:27.522
Context
2018-05-25
20:30
Fix "RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING" window frame processing. (check-in: b4e9c68669 user: dan tags: exp-window-functions)
09:36
Merge latest trunk changes into this branch. (check-in: 6232519899 user: dan tags: exp-window-functions)
09:29
Fixes for "ROWS BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING" and "ROWS BETWEEN <expr> FOLLOWING AND UNBOUNDED FOLLOWING" (check-in: 5ac44872fd user: dan tags: exp-window-functions)
2018-05-24
23:51
When doing a one-pass UPDATE or DELETE on virtual tables, close the cursor prior to running VUpdate. This allows one-pass to work on virtual tables that do not allow concurrent reads and writes. Enhance rtree to take advantage of this new capability. (check-in: b816023ce0 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/rtree/rtree.c.
129
130
131
132
133
134
135

136
137
138
139
140
141
142
  u8 nAux;                    /* # of auxiliary columns in %_rowid */
  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 
  u32 nBusy;                  /* Current number of users of this structure */
  i64 nRowEst;                /* Estimated number of rows in this table */
  u32 nCursor;                /* Number of open cursors */

  char *zReadAuxSql;          /* SQL for statement to read aux data */

  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
  */







>







129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  u8 nAux;                    /* # of auxiliary columns in %_rowid */
  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 
  u32 nBusy;                  /* Current number of users of this structure */
  i64 nRowEst;                /* Estimated number of rows in this table */
  u32 nCursor;                /* Number of open cursors */
  u32 nNodeRef;               /* Number RtreeNodes with positive nRef */
  char *zReadAuxSql;          /* SQL for statement to read aux data */

  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
  */
530
531
532
533
534
535
536

537
538
539
540
541
542
543
}

/*
** Increment the reference count of node p.
*/
static void nodeReference(RtreeNode *p){
  if( p ){

    p->nRef++;
  }
}

/*
** Clear the content of node p (set all bytes to 0x00).
*/







>







531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
}

/*
** Increment the reference count of node p.
*/
static void nodeReference(RtreeNode *p){
  if( p ){
    assert( p->nRef>0 );
    p->nRef++;
  }
}

/*
** Clear the content of node p (set all bytes to 0x00).
*/
597
598
599
600
601
602
603

604
605
606
607
608
609
610
static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
  RtreeNode *pNode;
  pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
  if( pNode ){
    memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
    pNode->zData = (u8 *)&pNode[1];
    pNode->nRef = 1;

    pNode->pParent = pParent;
    pNode->isDirty = 1;
    nodeReference(pParent);
  }
  return pNode;
}








>







599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
  RtreeNode *pNode;
  pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
  if( pNode ){
    memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
    pNode->zData = (u8 *)&pNode[1];
    pNode->nRef = 1;
    pRtree->nNodeRef++;
    pNode->pParent = pParent;
    pNode->isDirty = 1;
    nodeReference(pParent);
  }
  return pNode;
}

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
){
  int rc = SQLITE_OK;
  RtreeNode *pNode = 0;

  /* Check if the requested node is already in the hash table. If so,
  ** increase its reference count and return it.
  */
  if( (pNode = nodeHashLookup(pRtree, iNode)) ){
    assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
    if( pParent && !pNode->pParent ){
      nodeReference(pParent);
      pNode->pParent = pParent;
    }
    pNode->nRef++;
    *ppNode = pNode;
    return SQLITE_OK;
  }








|


|







633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
){
  int rc = SQLITE_OK;
  RtreeNode *pNode = 0;

  /* Check if the requested node is already in the hash table. If so,
  ** increase its reference count and return it.
  */
  if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){
    assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
    if( pParent && !pNode->pParent ){
      pParent->nRef++;
      pNode->pParent = pParent;
    }
    pNode->nRef++;
    *ppNode = pNode;
    return SQLITE_OK;
  }

672
673
674
675
676
677
678

679
680
681
682
683
684
685
    pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
    if( !pNode ){
      rc = SQLITE_NOMEM;
    }else{
      pNode->pParent = pParent;
      pNode->zData = (u8 *)&pNode[1];
      pNode->nRef = 1;

      pNode->iNode = iNode;
      pNode->isDirty = 0;
      pNode->pNext = 0;
      rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData,
                             pRtree->iNodeSize, 0);
      nodeReference(pParent);
    }







>







675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
    if( !pNode ){
      rc = SQLITE_NOMEM;
    }else{
      pNode->pParent = pParent;
      pNode->zData = (u8 *)&pNode[1];
      pNode->nRef = 1;
      pRtree->nNodeRef++;
      pNode->iNode = iNode;
      pNode->isDirty = 0;
      pNode->pNext = 0;
      rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData,
                             pRtree->iNodeSize, 0);
      nodeReference(pParent);
    }
712
713
714
715
716
717
718


719

720
721
722
723
724
725
726
    if( pNode!=0 ){
      nodeHashInsert(pRtree, pNode);
    }else{
      rc = SQLITE_CORRUPT_VTAB;
    }
    *ppNode = pNode;
  }else{


    sqlite3_free(pNode);

    *ppNode = 0;
  }

  return rc;
}

/*







>
>
|
>







716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    if( pNode!=0 ){
      nodeHashInsert(pRtree, pNode);
    }else{
      rc = SQLITE_CORRUPT_VTAB;
    }
    *ppNode = pNode;
  }else{
    if( pNode ){
      pRtree->nNodeRef--;
      sqlite3_free(pNode);
    }
    *ppNode = 0;
  }

  return rc;
}

/*
809
810
811
812
813
814
815

816
817

818
819
820
821
822
823
824
** Release a reference to a node. If the node is dirty and the reference
** count drops to zero, the node data is written to the database.
*/
static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
  int rc = SQLITE_OK;
  if( pNode ){
    assert( pNode->nRef>0 );

    pNode->nRef--;
    if( pNode->nRef==0 ){

      if( pNode->iNode==1 ){
        pRtree->iDepth = -1;
      }
      if( pNode->pParent ){
        rc = nodeRelease(pRtree, pNode->pParent);
      }
      if( rc==SQLITE_OK ){







>


>







816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
** Release a reference to a node. If the node is dirty and the reference
** count drops to zero, the node data is written to the database.
*/
static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
  int rc = SQLITE_OK;
  if( pNode ){
    assert( pNode->nRef>0 );
    assert( pRtree->nNodeRef>0 );
    pNode->nRef--;
    if( pNode->nRef==0 ){
      pRtree->nNodeRef--;
      if( pNode->iNode==1 ){
        pRtree->iDepth = -1;
      }
      if( pNode->pParent ){
        rc = nodeRelease(pRtree, pNode->pParent);
      }
      if( rc==SQLITE_OK ){
927
928
929
930
931
932
933
934
935

936
937
938
939
940
941
942
** Decrement the r-tree reference count. When the reference count reaches
** zero the structure is deleted.
*/
static void rtreeRelease(Rtree *pRtree){
  pRtree->nBusy--;
  if( pRtree->nBusy==0 ){
    pRtree->inWrTrans = 0;
    pRtree->nCursor = 0;
    nodeBlobReset(pRtree);

    sqlite3_finalize(pRtree->pWriteNode);
    sqlite3_finalize(pRtree->pDeleteNode);
    sqlite3_finalize(pRtree->pReadRowid);
    sqlite3_finalize(pRtree->pWriteRowid);
    sqlite3_finalize(pRtree->pDeleteRowid);
    sqlite3_finalize(pRtree->pReadParent);
    sqlite3_finalize(pRtree->pWriteParent);







|

>







936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
** Decrement the r-tree reference count. When the reference count reaches
** zero the structure is deleted.
*/
static void rtreeRelease(Rtree *pRtree){
  pRtree->nBusy--;
  if( pRtree->nBusy==0 ){
    pRtree->inWrTrans = 0;
    assert( pRtree->nCursor==0 );
    nodeBlobReset(pRtree);
    assert( pRtree->nNodeRef==0 );
    sqlite3_finalize(pRtree->pWriteNode);
    sqlite3_finalize(pRtree->pDeleteNode);
    sqlite3_finalize(pRtree->pReadRowid);
    sqlite3_finalize(pRtree->pWriteRowid);
    sqlite3_finalize(pRtree->pDeleteRowid);
    sqlite3_finalize(pRtree->pReadParent);
    sqlite3_finalize(pRtree->pWriteParent);
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
      int ii;
      pNew = rtreeEnqueue(pCur, rScore, iLevel);
      if( pNew==0 ) return 0;
      ii = (int)(pNew - pCur->aPoint) + 1;
      if( ii<RTREE_CACHE_SZ ){
        assert( pCur->aNode[ii]==0 );
        pCur->aNode[ii] = pCur->aNode[0];
       }else{
        nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
      }
      pCur->aNode[0] = 0;
      *pNew = pCur->sPoint;
    }
    pCur->sPoint.rScore = rScore;
    pCur->sPoint.iLevel = iLevel;







|







1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
      int ii;
      pNew = rtreeEnqueue(pCur, rScore, iLevel);
      if( pNew==0 ) return 0;
      ii = (int)(pNew - pCur->aPoint) + 1;
      if( ii<RTREE_CACHE_SZ ){
        assert( pCur->aNode[ii]==0 );
        pCur->aNode[ii] = pCur->aNode[0];
      }else{
        nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
      }
      pCur->aNode[0] = 0;
      *pNew = pCur->sPoint;
    }
    pCur->sPoint.rScore = rScore;
    pCur->sPoint.iLevel = iLevel;
1890
1891
1892
1893
1894
1895
1896

1897
1898
1899
1900
1901
1902
1903
      ** and then a linear search of an R-Tree node. This should be 
      ** considered almost as quick as a direct rowid lookup (for which 
      ** sqlite uses an internal cost of 0.0). It is expected to return
      ** a single row.
      */ 
      pIdxInfo->estimatedCost = 30.0;
      pIdxInfo->estimatedRows = 1;

      return SQLITE_OK;
    }

    if( p->usable
    && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2)
        || p->op==SQLITE_INDEX_CONSTRAINT_MATCH)
    ){







>







1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
      ** and then a linear search of an R-Tree node. This should be 
      ** considered almost as quick as a direct rowid lookup (for which 
      ** sqlite uses an internal cost of 0.0). It is expected to return
      ** a single row.
      */ 
      pIdxInfo->estimatedCost = 30.0;
      pIdxInfo->estimatedRows = 1;
      pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
      return SQLITE_OK;
    }

    if( p->usable
    && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2)
        || p->op==SQLITE_INDEX_CONSTRAINT_MATCH)
    ){
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
    pLeft = nodeNew(pRtree, pNode);
    pRtree->iDepth++;
    pNode->isDirty = 1;
    writeInt16(pNode->zData, pRtree->iDepth);
  }else{
    pLeft = pNode;
    pRight = nodeNew(pRtree, pLeft->pParent);
    nodeReference(pLeft);
  }

  if( !pLeft || !pRight ){
    rc = SQLITE_NOMEM;
    goto splitnode_out;
  }








|







2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
    pLeft = nodeNew(pRtree, pNode);
    pRtree->iDepth++;
    pNode->isDirty = 1;
    writeInt16(pNode->zData, pRtree->iDepth);
  }else{
    pLeft = pNode;
    pRight = nodeNew(pRtree, pLeft->pParent);
    pLeft->nRef++;
  }

  if( !pLeft || !pRight ){
    rc = SQLITE_NOMEM;
    goto splitnode_out;
  }

2959
2960
2961
2962
2963
2964
2965

2966
2967
2968
2969
2970
2971
2972

  /* Re-insert the contents of any underfull nodes removed from the tree. */
  for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
    if( rc==SQLITE_OK ){
      rc = reinsertNodeContent(pRtree, pLeaf);
    }
    pRtree->pDeleted = pLeaf->pNext;

    sqlite3_free(pLeaf);
  }

  /* Release the reference to the root node. */
  if( rc==SQLITE_OK ){
    rc = nodeRelease(pRtree, pRoot);
  }else{







>







2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984

  /* Re-insert the contents of any underfull nodes removed from the tree. */
  for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
    if( rc==SQLITE_OK ){
      rc = reinsertNodeContent(pRtree, pLeaf);
    }
    pRtree->pDeleted = pLeaf->pNext;
    pRtree->nNodeRef--;
    sqlite3_free(pLeaf);
  }

  /* Release the reference to the root node. */
  if( rc==SQLITE_OK ){
    rc = nodeRelease(pRtree, pRoot);
  }else{
3063
3064
3065
3066
3067
3068
3069






3070
3071
3072
3073
3074
3075
3076
  sqlite_int64 *pRowid
){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_OK;
  RtreeCell cell;                 /* New cell to insert if nData>1 */
  int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */







  rtreeReference(pRtree);
  assert(nData>=1);

  cell.iRowid = 0;  /* Used only to suppress a compiler warning */

  /* Constraint handling. A write operation on an r-tree table may return
  ** SQLITE_CONSTRAINT for two reasons:







>
>
>
>
>
>







3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
  sqlite_int64 *pRowid
){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_OK;
  RtreeCell cell;                 /* New cell to insert if nData>1 */
  int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */

  if( pRtree->nNodeRef ){
    /* Unable to write to the btree while another cursor is reading from it,
    ** since the write might do a rebalance which would disrupt the read
    ** cursor. */
    return SQLITE_LOCKED_VTAB;
  }
  rtreeReference(pRtree);
  assert(nData>=1);

  cell.iRowid = 0;  /* Used only to suppress a compiler warning */

  /* Constraint handling. A write operation on an r-tree table may return
  ** SQLITE_CONSTRAINT for two reasons:
Changes to ext/rtree/rtree1.test.
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    ABORT    1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   1 0 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
    FAIL     1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
    REPLACE  1 0 {1 1 2 3 4   2 7 7 7 7   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
  }

  3    "UPDATE %CONF% t1 SET idx = 2 WHERE idx = 4" {
    ROLLBACK 1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   1 0 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    FAIL     1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    REPLACE  1 0 {1 1 2 3 4   2 4 5 6 7   3 3 4 5 6}
  }

  3    "UPDATE %CONF% t1 SET idx = ((idx+1)%5)+1 WHERE idx > 2" {
    ROLLBACK 1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   1 0 {1 1 2 3 4   2 2 3 4 5               4 4 5 6 7   5 3 4 5 6}
    FAIL     1 1 {1 1 2 3 4   2 2 3 4 5               4 4 5 6 7   5 3 4 5 6}







|
|
|
|
|







472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    ABORT    1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   1 0 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
    FAIL     1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
    REPLACE  1 0 {1 1 2 3 4   2 7 7 7 7   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
  }

  3    "UPDATE %CONF% t1 SET idx = 2 WHERE idx = 4" {
    ROLLBACK 0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   0 0 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    FAIL     0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    REPLACE  0 0 {1 1 2 3 4   2 4 5 6 7   3 3 4 5 6}
  }

  3    "UPDATE %CONF% t1 SET idx = ((idx+1)%5)+1 WHERE idx > 2" {
    ROLLBACK 1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   1 0 {1 1 2 3 4   2 2 3 4 5               4 4 5 6 7   5 3 4 5 6}
    FAIL     1 1 {1 1 2 3 4   2 2 3 4 5               4 4 5 6 7   5 3 4 5 6}
Changes to ext/rtree/rtree8.test.
34
35
36
37
38
39
40

41
42
43
44


45






46
47
48
49
50
51
52
do_test rtree8-1.1.1 {
  execsql { PRAGMA page_size = 512 }
  execsql { CREATE VIRTUAL TABLE t1 USING rtree_i32(id, x1, x2) }
  populate_t1 5
} {}
do_test rtree8-1.1.2 {
  set res [list]

  db eval { SELECT * FROM t1 } { 
    lappend res $x1 $x2
    if {$id==3} { db eval { DELETE FROM t1 WHERE id>3 } }
  }


  set res






} {1 3 2 4 3 5}
do_test rtree8-1.1.3 {
  execsql { SELECT * FROM t1 }
} {1 1 3 2 2 4 3 3 5}

# Many SELECTs on the same small table.
#







>
|
|
|
|
>
>
|
>
>
>
>
>
>







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
do_test rtree8-1.1.1 {
  execsql { PRAGMA page_size = 512 }
  execsql { CREATE VIRTUAL TABLE t1 USING rtree_i32(id, x1, x2) }
  populate_t1 5
} {}
do_test rtree8-1.1.2 {
  set res [list]
  set rc [catch {
    db eval { SELECT * FROM t1 } { 
      lappend res $x1 $x2
      if {$id==3} { db eval { DELETE FROM t1 WHERE id>3 } }
    }
  } msg];
  lappend rc $msg
  set rc
} {1 {database table is locked}}
do_test rtree8-1.1.2b {
  db eval { SELECT * FROM t1 ORDER BY +id } { 
    if {$id==3} { db eval { DELETE FROM t1 WHERE id>3 } }
  }
  db eval {SELECT x1, x2 FROM t1}
} {1 3 2 4 3 5}
do_test rtree8-1.1.3 {
  execsql { SELECT * FROM t1 }
} {1 1 3 2 2 4 3 3 5}

# Many SELECTs on the same small table.
#
165
166
167
168
169
170
171
172




173




















174
  execsql BEGIN
  for {set i 0} {$i < 200} {incr i} {
    execsql { DELETE FROM t2 WHERE id = $i }
  }
  execsql COMMIT
} {}
do_rtree_integrity_test rtree8-5.5 t2


























finish_test








>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
  execsql BEGIN
  for {set i 0} {$i < 200} {incr i} {
    execsql { DELETE FROM t2 WHERE id = $i }
  }
  execsql COMMIT
} {}
do_rtree_integrity_test rtree8-5.5 t2

# 2018-05-24
# The following script caused an assertion fault and/or segfault
# prior to the fix that prevents simultaneous reads and writes on
# the same rtree virtual table.
#
do_test rtree8-6.1 {
  db close
  sqlite3 db :memory:
  db eval {
    PRAGMA page_size=512;
    CREATE VIRTUAL TABLE t1 USING rtree(id,x1,x2,y1,y2);
    WITH RECURSIVE c(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM c WHERE x<49)
    INSERT INTO t1 SELECT x, x, x+1, x, x+1 FROM c;
  }
  set rc [catch {
    db eval {SELECT id FROM t1} x {
      db eval {DELETE FROM t1 WHERE id=$x(id)}
    }
  } msg]
  lappend rc $msg
} {1 {database table is locked}}




finish_test
Changes to src/delete.c.
549
550
551
552
553
554
555
556
557
558
559
560


561
562



563
564
565
566
567
568
569
    }  
  
    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB);
      sqlite3VdbeChangeP5(v, OE_Abort);
      assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE );
      sqlite3MayAbort(pParse);
      if( eOnePass==ONEPASS_SINGLE && sqlite3IsToplevel(pParse) ){


        pParse->isMultiWrite = 0;
      }



    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
          iKey, nKey, count, OE_Default, eOnePass, aiCurOnePass[1]);
    }







<
<


|
>
>
|
|
>
>
>







549
550
551
552
553
554
555


556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    }  
  
    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);


      assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE );
      sqlite3MayAbort(pParse);
      if( eOnePass==ONEPASS_SINGLE ){
        sqlite3VdbeAddOp1(v, OP_Close, iTabCur);
        if( sqlite3IsToplevel(pParse) ){
          pParse->isMultiWrite = 0;
        }
      }
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB);
      sqlite3VdbeChangeP5(v, OE_Abort);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
          iKey, nKey, count, OE_Default, eOnePass, aiCurOnePass[1]);
    }
Changes to src/insert.c.
222
223
224
225
226
227
228

229
230
231
232
233














234
235
236
237
238
239
240
*/
static int autoIncBegin(
  Parse *pParse,      /* Parsing context */
  int iDb,            /* Index of the database holding pTab */
  Table *pTab         /* The table we are writing to */
){
  int memId = 0;      /* Register holding maximum rowid */

  if( (pTab->tabFlags & TF_Autoincrement)!=0
   && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
  ){
    Parse *pToplevel = sqlite3ParseToplevel(pParse);
    AutoincInfo *pInfo;















    pInfo = pToplevel->pAinc;
    while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
    if( pInfo==0 ){
      pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
      if( pInfo==0 ) return 0;
      pInfo->pNext = pToplevel->pAinc;







>





>
>
>
>
>
>
>
>
>
>
>
>
>
>







222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
*/
static int autoIncBegin(
  Parse *pParse,      /* Parsing context */
  int iDb,            /* Index of the database holding pTab */
  Table *pTab         /* The table we are writing to */
){
  int memId = 0;      /* Register holding maximum rowid */
  assert( pParse->db->aDb[iDb].pSchema!=0 );
  if( (pTab->tabFlags & TF_Autoincrement)!=0
   && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
  ){
    Parse *pToplevel = sqlite3ParseToplevel(pParse);
    AutoincInfo *pInfo;
    Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;

    /* Verify that the sqlite_sequence table exists and is an ordinary
    ** rowid table with exactly two columns.
    ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
    if( pSeqTab==0
     || !HasRowid(pSeqTab)
     || IsVirtual(pSeqTab)
     || pSeqTab->nCol!=2
    ){
      pParse->nErr++;
      pParse->rc = SQLITE_CORRUPT_SEQUENCE;
      return 0;
    }

    pInfo = pToplevel->pAinc;
    while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
    if( pInfo==0 ){
      pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
      if( pInfo==0 ) return 0;
      pInfo->pNext = pToplevel->pAinc;
Changes to src/sqlite.h.in.
500
501
502
503
504
505
506

507
508
509
510
511
512
513

514
515
516
517
518
519
520
#define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
#define SQLITE_IOERR_VNODE             (SQLITE_IOERR | (27<<8))
#define SQLITE_IOERR_AUTH              (SQLITE_IOERR | (28<<8))
#define SQLITE_IOERR_BEGIN_ATOMIC      (SQLITE_IOERR | (29<<8))
#define SQLITE_IOERR_COMMIT_ATOMIC     (SQLITE_IOERR | (30<<8))
#define SQLITE_IOERR_ROLLBACK_ATOMIC   (SQLITE_IOERR | (31<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))

#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))

#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_READONLY_ROLLBACK       (SQLITE_READONLY | (3<<8))
#define SQLITE_READONLY_DBMOVED        (SQLITE_READONLY | (4<<8))
#define SQLITE_READONLY_CANTINIT       (SQLITE_READONLY | (5<<8))
#define SQLITE_READONLY_DIRECTORY      (SQLITE_READONLY | (6<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))







>







>







500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
#define SQLITE_IOERR_VNODE             (SQLITE_IOERR | (27<<8))
#define SQLITE_IOERR_AUTH              (SQLITE_IOERR | (28<<8))
#define SQLITE_IOERR_BEGIN_ATOMIC      (SQLITE_IOERR | (29<<8))
#define SQLITE_IOERR_COMMIT_ATOMIC     (SQLITE_IOERR | (30<<8))
#define SQLITE_IOERR_ROLLBACK_ATOMIC   (SQLITE_IOERR | (31<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_LOCKED_VTAB             (SQLITE_LOCKED |  (2<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_CORRUPT_SEQUENCE        (SQLITE_CORRUPT | (2<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_READONLY_ROLLBACK       (SQLITE_READONLY | (3<<8))
#define SQLITE_READONLY_DBMOVED        (SQLITE_READONLY | (4<<8))
#define SQLITE_READONLY_CANTINIT       (SQLITE_READONLY | (5<<8))
#define SQLITE_READONLY_DIRECTORY      (SQLITE_READONLY | (6<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
/*
** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE
**
** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn]
** method of a [virtual table], then it returns true if and only if the
** column is being fetched as part of an UPDATE operation during which the
** column value will not change.  Applications might use this to substitute
** a lighter-weight value to return that the corresponding [xUpdate] method
** understands as a "no-change" value.
**
** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that
** the column is not changed by the UPDATE statement, they the xColumn
** method can optionally return without setting a result, without calling
** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces].
** In that case, [sqlite3_value_nochange(X)] will return true for the
** same column in the [xUpdate] method.
*/
int sqlite3_vtab_nochange(sqlite3_context*);








|
|


|







8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
/*
** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE
**
** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn]
** method of a [virtual table], then it returns true if and only if the
** column is being fetched as part of an UPDATE operation during which the
** column value will not change.  Applications might use this to substitute
** a return value that is less expensive to compute and that the corresponding
** [xUpdate] method understands as a "no-change" value.
**
** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that
** the column is not changed by the UPDATE statement, then the xColumn
** method can optionally return without setting a result, without calling
** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces].
** In that case, [sqlite3_value_nochange(X)] will return true for the
** same column in the [xUpdate] method.
*/
int sqlite3_vtab_nochange(sqlite3_context*);

Changes to src/test_malloc.c.
28
29
30
31
32
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48











49
50
51
52
53
54
55

56
57
58
59

60
61

62
63
64
65
66
67
68
** by malloc() fault simulation.
*/
static struct MemFault {
  int iCountdown;         /* Number of pending successes before a failure */
  int nRepeat;            /* Number of times to repeat the failure */
  int nBenign;            /* Number of benign failures seen since last config */
  int nFail;              /* Number of failures seen since last config */


  u8 enable;              /* True if enabled */
  int isInstalled;        /* True if the fault simulation layer is installed */
  int isBenignMode;       /* True if malloc failures are considered benign */
  sqlite3_mem_methods m;  /* 'Real' malloc implementation */
} memfault;

/*
** This routine exists as a place to set a breakpoint that will
** fire on any simulated malloc() failure.
*/
static void sqlite3Fault(void){
  static int cnt = 0;
  cnt++;
}












/*
** Check to see if a fault should be simulated.  Return true to simulate
** the fault.  Return false if the fault should not be simulated.
*/
static int faultsimStep(void){
  if( likely(!memfault.enable) ){

    return 0;
  }
  if( memfault.iCountdown>0 ){
    memfault.iCountdown--;

    return 0;
  }

  sqlite3Fault();
  memfault.nFail++;
  if( memfault.isBenignMode>0 ){
    memfault.nBenign++;
  }
  memfault.nRepeat--;
  if( memfault.nRepeat<=0 ){







>
>














>
>
>
>
>
>
>
>
>
>
>







>




>


>







28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
** by malloc() fault simulation.
*/
static struct MemFault {
  int iCountdown;         /* Number of pending successes before a failure */
  int nRepeat;            /* Number of times to repeat the failure */
  int nBenign;            /* Number of benign failures seen since last config */
  int nFail;              /* Number of failures seen since last config */
  int nOkBefore;          /* Successful allocations prior to the first fault */
  int nOkAfter;           /* Successful allocations after a fault */
  u8 enable;              /* True if enabled */
  int isInstalled;        /* True if the fault simulation layer is installed */
  int isBenignMode;       /* True if malloc failures are considered benign */
  sqlite3_mem_methods m;  /* 'Real' malloc implementation */
} memfault;

/*
** This routine exists as a place to set a breakpoint that will
** fire on any simulated malloc() failure.
*/
static void sqlite3Fault(void){
  static int cnt = 0;
  cnt++;
}

/*
** This routine exists as a place to set a breakpoint that will
** fire the first time any malloc() fails on a single test case.
** The sqlite3Fault() routine above runs on every malloc() failure.
** This routine only runs on the first such failure.
*/
static void sqlite3FirstFault(void){
  static int cnt2 = 0;
  cnt2++;
}

/*
** Check to see if a fault should be simulated.  Return true to simulate
** the fault.  Return false if the fault should not be simulated.
*/
static int faultsimStep(void){
  if( likely(!memfault.enable) ){
    memfault.nOkAfter++;
    return 0;
  }
  if( memfault.iCountdown>0 ){
    memfault.iCountdown--;
    memfault.nOkBefore++;
    return 0;
  }
  if( memfault.nFail==0 ) sqlite3FirstFault();
  sqlite3Fault();
  memfault.nFail++;
  if( memfault.isBenignMode>0 ){
    memfault.nBenign++;
  }
  memfault.nRepeat--;
  if( memfault.nRepeat<=0 ){
129
130
131
132
133
134
135


136
137
138
139
140
141
142
** to succeed again.
*/
static void faultsimConfig(int nDelay, int nRepeat){
  memfault.iCountdown = nDelay;
  memfault.nRepeat = nRepeat;
  memfault.nBenign = 0;
  memfault.nFail = 0;


  memfault.enable = nDelay>=0;

  /* Sometimes, when running multi-threaded tests, the isBenignMode 
  ** variable is not properly incremented/decremented so that it is
  ** 0 when not inside a benign malloc block. This doesn't affect
  ** the multi-threaded tests, as they do not use this system. But
  ** it does affect OOM tests run later in the same process. So







>
>







145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
** to succeed again.
*/
static void faultsimConfig(int nDelay, int nRepeat){
  memfault.iCountdown = nDelay;
  memfault.nRepeat = nRepeat;
  memfault.nBenign = 0;
  memfault.nFail = 0;
  memfault.nOkBefore = 0;
  memfault.nOkAfter = 0;
  memfault.enable = nDelay>=0;

  /* Sometimes, when running multi-threaded tests, the isBenignMode 
  ** variable is not properly incremented/decremented so that it is
  ** 0 when not inside a benign malloc block. This doesn't affect
  ** the multi-threaded tests, as they do not use this system. But
  ** it does affect OOM tests run later in the same process. So
Changes to src/update.c.
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
  WhereInfo *pWInfo;
  int nArg = 2 + pTab->nCol;      /* Number of arguments to VUpdate */
  int regArg;                     /* First register in VUpdate arg array */
  int regRec;                     /* Register in which to assemble record */
  int regRowid;                   /* Register for ephem table rowid */
  int iCsr = pSrc->a[0].iCursor;  /* Cursor used for virtual table scan */
  int aDummy[2];                  /* Unused arg for sqlite3WhereOkOnePass() */
  int bOnePass;                   /* True to use onepass strategy */
  int addr;                       /* Address of OP_OpenEphemeral */

  /* Allocate nArg registers in which to gather the arguments for VUpdate. Then
  ** create and open the ephemeral table in which the records created from
  ** these arguments will be temporarily stored. */
  assert( v );
  ephemTab = pParse->nTab++;







|







841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
  WhereInfo *pWInfo;
  int nArg = 2 + pTab->nCol;      /* Number of arguments to VUpdate */
  int regArg;                     /* First register in VUpdate arg array */
  int regRec;                     /* Register in which to assemble record */
  int regRowid;                   /* Register for ephem table rowid */
  int iCsr = pSrc->a[0].iCursor;  /* Cursor used for virtual table scan */
  int aDummy[2];                  /* Unused arg for sqlite3WhereOkOnePass() */
  int eOnePass;                   /* True to use onepass strategy */
  int addr;                       /* Address of OP_OpenEphemeral */

  /* Allocate nArg registers in which to gather the arguments for VUpdate. Then
  ** create and open the ephemeral table in which the records created from
  ** these arguments will be temporarily stored. */
  assert( v );
  ephemTab = pParse->nTab++;
886
887
888
889
890
891
892
893
894



895
896
897
898

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    assert( pPk!=0 );
    assert( pPk->nKeyCol==1 );
    iPk = pPk->aiColumn[0];
    sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, iPk, regArg);
    sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1);
  }

  bOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy);




  if( bOnePass ){
    /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded
    ** above. */
    sqlite3VdbeChangeToNoop(v, addr);

  }else{
    /* Create a record from the argument register contents and insert it into
    ** the ephemeral table. */
    sqlite3MultiWrite(pParse);
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec);
#ifdef SQLITE_DEBUG
    /* Signal an assert() within OP_MakeRecord that it is allowed to
    ** accept no-change records with serial_type 10 */
    sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
#endif
    sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, ephemTab, regRec, regRowid);
  }


  if( bOnePass==0 ){
    /* End the virtual table scan */
    sqlite3WhereEnd(pWInfo);

    /* Begin scannning through the ephemeral table. */
    addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v);

    /* Extract arguments from the current row of the ephemeral table and 
    ** invoke the VUpdate method.  */
    for(i=0; i<nArg; i++){
      sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i, regArg+i);
    }
  }
  sqlite3VtabMakeWritable(pParse, pTab);
  sqlite3VdbeAddOp4(v, OP_VUpdate, 0, nArg, regArg, pVTab, P4_VTAB);
  sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
  sqlite3MayAbort(pParse);

  /* End of the ephemeral table scan. Or, if using the onepass strategy,
  ** jump to here if the scan visited zero rows. */
  if( bOnePass==0 ){
    sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v);
    sqlite3VdbeJumpHere(v, addr);
    sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
  }else{
    sqlite3WhereEnd(pWInfo);
  }
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */







|

>
>
>
|



>















|



















|








886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
    assert( pPk!=0 );
    assert( pPk->nKeyCol==1 );
    iPk = pPk->aiColumn[0];
    sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, iPk, regArg);
    sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1);
  }

  eOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy);

  /* There is no ONEPASS_MULTI on virtual tables */
  assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE );

  if( eOnePass ){
    /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded
    ** above. */
    sqlite3VdbeChangeToNoop(v, addr);
    sqlite3VdbeAddOp1(v, OP_Close, iCsr);
  }else{
    /* Create a record from the argument register contents and insert it into
    ** the ephemeral table. */
    sqlite3MultiWrite(pParse);
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec);
#ifdef SQLITE_DEBUG
    /* Signal an assert() within OP_MakeRecord that it is allowed to
    ** accept no-change records with serial_type 10 */
    sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
#endif
    sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, ephemTab, regRec, regRowid);
  }


  if( eOnePass==ONEPASS_OFF ){
    /* End the virtual table scan */
    sqlite3WhereEnd(pWInfo);

    /* Begin scannning through the ephemeral table. */
    addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v);

    /* Extract arguments from the current row of the ephemeral table and 
    ** invoke the VUpdate method.  */
    for(i=0; i<nArg; i++){
      sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i, regArg+i);
    }
  }
  sqlite3VtabMakeWritable(pParse, pTab);
  sqlite3VdbeAddOp4(v, OP_VUpdate, 0, nArg, regArg, pVTab, P4_VTAB);
  sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
  sqlite3MayAbort(pParse);

  /* End of the ephemeral table scan. Or, if using the onepass strategy,
  ** jump to here if the scan visited zero rows. */
  if( eOnePass==ONEPASS_OFF ){
    sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v);
    sqlite3VdbeJumpHere(v, addr);
    sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
  }else{
    sqlite3WhereEnd(pWInfo);
  }
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
Changes to src/vdbe.c.
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294

4295
4296
4297
4298
4299
4300
4301
  VdbeFrame *pFrame;     /* Root frame of VDBE */

  v = 0;
  res = 0;
  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  if( !pC->isTable ){
    rc = SQLITE_CORRUPT_BKPT;
    goto abort_due_to_error;
  }
  assert( pC!=0 );

  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  {
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one







<
<
<
<

>







4283
4284
4285
4286
4287
4288
4289




4290
4291
4292
4293
4294
4295
4296
4297
4298
  VdbeFrame *pFrame;     /* Root frame of VDBE */

  v = 0;
  res = 0;
  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];




  assert( pC!=0 );
  assert( pC->isTable );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  {
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
**
** Store in register P3 the value of the P2-th column of
** the current row of the virtual-table of cursor P1.
**
** If the VColumn opcode is being used to fetch the value of
** an unchanging column during an UPDATE operation, then the P5
** value is 1.  Otherwise, P5 is 0.  The P5 value is returned
** by sqlite3_vtab_nochange() routine can can be used
** by virtual table implementations to return special "no-change"
** marks which can be more efficient, depending on the virtual table.
*/
case OP_VColumn: {
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;







|







6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
**
** Store in register P3 the value of the P2-th column of
** the current row of the virtual-table of cursor P1.
**
** If the VColumn opcode is being used to fetch the value of
** an unchanging column during an UPDATE operation, then the P5
** value is 1.  Otherwise, P5 is 0.  The P5 value is returned
** by sqlite3_vtab_nochange() routine and can be used
** by virtual table implementations to return special "no-change"
** marks which can be more efficient, depending on the virtual table.
*/
case OP_VColumn: {
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
Changes to test/autoinc.test.
679
680
681
682
683
684
685



























































































































































686
687
#
do_execsql_test autoinc-11.1 {
  CREATE TABLE t11(a INTEGER PRIMARY KEY AUTOINCREMENT,b UNIQUE);
  INSERT INTO t11(a,b) VALUES(2,3),(5,6),(4,3),(1,2)
    ON CONFLICT(b) DO UPDATE SET a=a+1000;
  SELECT seq FROM sqlite_sequence WHERE name='t11';
} {5}




























































































































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#
do_execsql_test autoinc-11.1 {
  CREATE TABLE t11(a INTEGER PRIMARY KEY AUTOINCREMENT,b UNIQUE);
  INSERT INTO t11(a,b) VALUES(2,3),(5,6),(4,3),(1,2)
    ON CONFLICT(b) DO UPDATE SET a=a+1000;
  SELECT seq FROM sqlite_sequence WHERE name='t11';
} {5}

# 2018-05-23 ticket d8dc2b3a58cd5dc2918a1d4acbba4676a23ada4c
# Does not crash if the sqlite_sequence table schema is missing
# or corrupt.
#
do_test autoinc-12.1 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    CREATE TABLE fake_sequence(name TEXT PRIMARY KEY,seq) WITHOUT ROWID;
    PRAGMA writable_schema=on;
    UPDATE sqlite_master SET
     sql=replace(sql,'fake_','sqlite_'),
     name='sqlite_sequence',
     tbl_name='sqlite_sequence'
     WHERE name='fake_sequence';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
    INSERT INTO t1(b) VALUES('one');
  }} msg]
  lappend res $msg
} {1 {database disk image is malformed}}
do_test autoinc-12.2 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
   CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
   INSERT INTO t1(b) VALUES('one');
   PRAGMA writable_schema=on;
   UPDATE sqlite_master SET
     sql=replace(sql,'sqlite_','x_'),
     name='x_sequence',
     tbl_name='x_sequence'
    WHERE name='sqlite_sequence';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two');
  }} msg]
  lappend res $msg
} {1 {database disk image is malformed}}
do_test autoinc-12.3 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
   CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
   INSERT INTO t1(b) VALUES('one');
   PRAGMA writable_schema=on;
   UPDATE sqlite_master SET
     sql='CREATE VIRTUAL TABLE sqlite_sequence USING sqlite_dbpage'
    WHERE name='sqlite_sequence';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two');
  }} msg]
  lappend res $msg
} {1 {database disk image is malformed}}
do_test autoinc-12.4 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
    INSERT INTO t1(b) VALUES('one');
    CREATE TABLE fake(name TEXT PRIMARY KEY,seq) WITHOUT ROWID;
  }
  set root1 [db one {SELECT rootpage FROM sqlite_master
                     WHERE name='sqlite_sequence'}]
  set root2 [db one {SELECT rootpage FROM sqlite_master
                     WHERE name='fake'}]
  db eval {
   PRAGMA writable_schema=on;
   UPDATE sqlite_master SET rootpage=$root2
    WHERE name='sqlite_sequence';
   UPDATE sqlite_master SET rootpage=$root1
    WHERE name='fake';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two');
  }} msg]
  lappend res $msg
} {1 {database disk image is malformed}}
breakpoint
do_test autoinc-12.5 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
    INSERT INTO t1(b) VALUES('one');
    PRAGMA writable_schema=on;
    UPDATE sqlite_master SET
       sql='CREATE TABLE sqlite_sequence(x)'
      WHERE name='sqlite_sequence';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two');
  }} msg]
  lappend res $msg
} {1 {database disk image is malformed}}
do_test autoinc-12.6 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
    INSERT INTO t1(b) VALUES('one');
    PRAGMA writable_schema=on;
    UPDATE sqlite_master SET
       sql='CREATE TABLE sqlite_sequence(x,y INTEGER PRIMARY KEY)'
      WHERE name='sqlite_sequence';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two'),('three'),('four');
    INSERT INTO t1(b) VALUES('five');
    PRAGMA integrity_check;
  }} msg]
  lappend res $msg
} {0 ok}
do_test autoinc-12.7 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
    INSERT INTO t1(b) VALUES('one');
    PRAGMA writable_schema=on;
    UPDATE sqlite_master SET
       sql='CREATE TABLE sqlite_sequence(y INTEGER PRIMARY KEY,x)'
      WHERE name='sqlite_sequence';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two'),('three'),('four');
    INSERT INTO t1(b) VALUES('five');
    PRAGMA integrity_check;
  }} msg]
  lappend res $msg
} {0 ok}

finish_test
Changes to test/speedtest1.c.
1243
1244
1245
1246
1247
1248
1249

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
** A testset for the R-Tree virtual table
*/
void testset_rtree(int p1, int p2){
  unsigned i, n;
  unsigned mxCoord;
  unsigned x0, x1, y0, y1, z0, z1;
  unsigned iStep;

  int *aCheck = sqlite3_malloc( sizeof(int)*g.szTest*500 );

  mxCoord = 15000;
  n = g.szTest*500;
  speedtest1_begin_test(100, "%d INSERTs into an r-tree", n);
  speedtest1_exec("BEGIN");
  speedtest1_exec("CREATE VIRTUAL TABLE rt1 USING rtree(id,x0,x1,y0,y1,z0,z1)");
  speedtest1_prepare("INSERT INTO rt1(id,x0,x1,y0,y1,z0,z1)"
                     "VALUES(?1,?2,?3,?4,?5,?6,?7)");
  for(i=1; i<=n; i++){
    twoCoords(p1, p2, mxCoord, &x0, &x1);







>



|







1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
** A testset for the R-Tree virtual table
*/
void testset_rtree(int p1, int p2){
  unsigned i, n;
  unsigned mxCoord;
  unsigned x0, x1, y0, y1, z0, z1;
  unsigned iStep;
  unsigned mxRowid;
  int *aCheck = sqlite3_malloc( sizeof(int)*g.szTest*500 );

  mxCoord = 15000;
  mxRowid = n = g.szTest*500;
  speedtest1_begin_test(100, "%d INSERTs into an r-tree", n);
  speedtest1_exec("BEGIN");
  speedtest1_exec("CREATE VIRTUAL TABLE rt1 USING rtree(id,x0,x1,y0,y1,z0,z1)");
  speedtest1_prepare("INSERT INTO rt1(id,x0,x1,y0,y1,z0,z1)"
                     "VALUES(?1,?2,?3,?4,?5,?6,?7)");
  for(i=1; i<=n; i++){
    twoCoords(p1, p2, mxCoord, &x0, &x1);
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
  speedtest1_end_test();

  speedtest1_begin_test(101, "Copy from rtree to a regular table");
  speedtest1_exec("CREATE TABLE t1(id INTEGER PRIMARY KEY,x0,x1,y0,y1,z0,z1)");
  speedtest1_exec("INSERT INTO t1 SELECT * FROM rt1");
  speedtest1_end_test();

  n = g.szTest*100;
  speedtest1_begin_test(110, "%d one-dimensional intersect slice queries", n);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE x0>=?1 AND x1<=?2");
  iStep = mxCoord/n;
  for(i=0; i<n; i++){
    sqlite3_bind_int(g.pStmt, 1, i*iStep);
    sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
    speedtest1_run();
    aCheck[i] = atoi(g.zResult);
  }
  speedtest1_end_test();

  if( g.bVerify ){
    n = g.szTest*100;
    speedtest1_begin_test(111, "Verify result from 1-D intersect slice queries");
    speedtest1_prepare("SELECT count(*) FROM t1 WHERE x0>=?1 AND x1<=?2");
    iStep = mxCoord/n;
    for(i=0; i<n; i++){
      sqlite3_bind_int(g.pStmt, 1, i*iStep);
      sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
      speedtest1_run();
      if( aCheck[i]!=atoi(g.zResult) ){
        fatal_error("Count disagree step %d: %d..%d.  %d vs %d",
                    i, i*iStep, (i+1)*iStep, aCheck[i], atoi(g.zResult));
      }
    }
    speedtest1_end_test();
  }
  
  n = g.szTest*100;
  speedtest1_begin_test(120, "%d one-dimensional overlap slice queries", n);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE y1>=?1 AND y0<=?2");
  iStep = mxCoord/n;
  for(i=0; i<n; i++){
    sqlite3_bind_int(g.pStmt, 1, i*iStep);
    sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
    speedtest1_run();
    aCheck[i] = atoi(g.zResult);
  }
  speedtest1_end_test();

  if( g.bVerify ){
    n = g.szTest*100;
    speedtest1_begin_test(121, "Verify result from 1-D overlap slice queries");
    speedtest1_prepare("SELECT count(*) FROM t1 WHERE y1>=?1 AND y0<=?2");
    iStep = mxCoord/n;
    for(i=0; i<n; i++){
      sqlite3_bind_int(g.pStmt, 1, i*iStep);
      sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
      speedtest1_run();
      if( aCheck[i]!=atoi(g.zResult) ){
        fatal_error("Count disagree step %d: %d..%d.  %d vs %d",
                    i, i*iStep, (i+1)*iStep, aCheck[i], atoi(g.zResult));
      }
    }
    speedtest1_end_test();
  }
  

  n = g.szTest*100;
  speedtest1_begin_test(125, "%d custom geometry callback queries", n);
  sqlite3_rtree_geometry_callback(g.db, "xslice", xsliceGeometryCallback, 0);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE id MATCH xslice(?1,?2)");
  iStep = mxCoord/n;
  for(i=0; i<n; i++){
    sqlite3_bind_int(g.pStmt, 1, i*iStep);
    sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);







|












|















|












|
















|







1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
  speedtest1_end_test();

  speedtest1_begin_test(101, "Copy from rtree to a regular table");
  speedtest1_exec("CREATE TABLE t1(id INTEGER PRIMARY KEY,x0,x1,y0,y1,z0,z1)");
  speedtest1_exec("INSERT INTO t1 SELECT * FROM rt1");
  speedtest1_end_test();

  n = g.szTest*200;
  speedtest1_begin_test(110, "%d one-dimensional intersect slice queries", n);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE x0>=?1 AND x1<=?2");
  iStep = mxCoord/n;
  for(i=0; i<n; i++){
    sqlite3_bind_int(g.pStmt, 1, i*iStep);
    sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
    speedtest1_run();
    aCheck[i] = atoi(g.zResult);
  }
  speedtest1_end_test();

  if( g.bVerify ){
    n = g.szTest*200;
    speedtest1_begin_test(111, "Verify result from 1-D intersect slice queries");
    speedtest1_prepare("SELECT count(*) FROM t1 WHERE x0>=?1 AND x1<=?2");
    iStep = mxCoord/n;
    for(i=0; i<n; i++){
      sqlite3_bind_int(g.pStmt, 1, i*iStep);
      sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
      speedtest1_run();
      if( aCheck[i]!=atoi(g.zResult) ){
        fatal_error("Count disagree step %d: %d..%d.  %d vs %d",
                    i, i*iStep, (i+1)*iStep, aCheck[i], atoi(g.zResult));
      }
    }
    speedtest1_end_test();
  }
  
  n = g.szTest*200;
  speedtest1_begin_test(120, "%d one-dimensional overlap slice queries", n);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE y1>=?1 AND y0<=?2");
  iStep = mxCoord/n;
  for(i=0; i<n; i++){
    sqlite3_bind_int(g.pStmt, 1, i*iStep);
    sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
    speedtest1_run();
    aCheck[i] = atoi(g.zResult);
  }
  speedtest1_end_test();

  if( g.bVerify ){
    n = g.szTest*200;
    speedtest1_begin_test(121, "Verify result from 1-D overlap slice queries");
    speedtest1_prepare("SELECT count(*) FROM t1 WHERE y1>=?1 AND y0<=?2");
    iStep = mxCoord/n;
    for(i=0; i<n; i++){
      sqlite3_bind_int(g.pStmt, 1, i*iStep);
      sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
      speedtest1_run();
      if( aCheck[i]!=atoi(g.zResult) ){
        fatal_error("Count disagree step %d: %d..%d.  %d vs %d",
                    i, i*iStep, (i+1)*iStep, aCheck[i], atoi(g.zResult));
      }
    }
    speedtest1_end_test();
  }
  

  n = g.szTest*200;
  speedtest1_begin_test(125, "%d custom geometry callback queries", n);
  sqlite3_rtree_geometry_callback(g.db, "xslice", xsliceGeometryCallback, 0);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE id MATCH xslice(?1,?2)");
  iStep = mxCoord/n;
  for(i=0; i<n; i++){
    sqlite3_bind_int(g.pStmt, 1, i*iStep);
    sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep);
1369
1370
1371
1372
1373
1374
1375














































1376
1377
1378
1379
1380
1381
1382
  speedtest1_begin_test(140, "%d rowid queries", n);
  speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1");
  for(i=1; i<=n; i++){
    sqlite3_bind_int(g.pStmt, 1, i);
    speedtest1_run();
  }
  speedtest1_end_test();














































}
#endif /* SQLITE_ENABLE_RTREE */

/*
** A testset that does key/value storage on tables with many columns.
** This is the kind of workload generated by ORMs such as CoreData.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
  speedtest1_begin_test(140, "%d rowid queries", n);
  speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1");
  for(i=1; i<=n; i++){
    sqlite3_bind_int(g.pStmt, 1, i);
    speedtest1_run();
  }
  speedtest1_end_test();

  n = g.szTest*50;
  speedtest1_begin_test(150, "%d UPDATEs using rowid", n);
  speedtest1_prepare("UPDATE rt1 SET x0=x0+100, x1=x1+100 WHERE id=?1");
  for(i=1; i<=n; i++){
    sqlite3_bind_int(g.pStmt, 1, (i*251)%mxRowid + 1);
    speedtest1_run();
  }
  speedtest1_end_test();

  n = g.szTest*5;
  speedtest1_begin_test(155, "%d UPDATEs using one-dimensional overlap", n);
  speedtest1_prepare("UPDATE rt1 SET x0=x0-100, x1=x1-100"
                     " WHERE y1>=?1 AND y0<=?1+5");
  iStep = mxCoord/n;
  for(i=0; i<n; i++){
    sqlite3_bind_int(g.pStmt, 1, i*iStep);
    speedtest1_run();
    aCheck[i] = atoi(g.zResult);
  }
  speedtest1_end_test();

  n = g.szTest*50;
  speedtest1_begin_test(160, "%d DELETEs using rowid", n);
  speedtest1_prepare("DELETE FROM rt1 WHERE id=?1");
  for(i=1; i<=n; i++){
    sqlite3_bind_int(g.pStmt, 1, (i*257)%mxRowid + 1);
    speedtest1_run();
  }
  speedtest1_end_test();


  n = g.szTest*5;
  speedtest1_begin_test(165, "%d DELETEs using one-dimensional overlap", n);
  speedtest1_prepare("DELETE FROM rt1 WHERE y1>=?1 AND y0<=?1+5");
  iStep = mxCoord/n;
  for(i=0; i<n; i++){
    sqlite3_bind_int(g.pStmt, 1, i*iStep);
    speedtest1_run();
    aCheck[i] = atoi(g.zResult);
  }
  speedtest1_end_test();

  speedtest1_begin_test(170, "Restore deleted entries using INSERT OR IGNORE");
  speedtest1_exec("INSERT OR IGNORE INTO rt1 SELECT * FROM t1");
  speedtest1_end_test();
}
#endif /* SQLITE_ENABLE_RTREE */

/*
** A testset that does key/value storage on tables with many columns.
** This is the kind of workload generated by ORMs such as CoreData.
*/
Changes to tool/speed-check.sh.
37
38
39
40
41
42
43

44
45



46
47
48
49
50
51
52
LEAN_OPTS="$LEAN_OPTS -DSQLITE_OMIT_SHARED_CACHE"
LEAN_OPTS="$LEAN_OPTS -DSQLITE_USE_ALLOCA"
BASELINE="trunk"
doExplain=0
doCachegrind=1
doVdbeProfile=0
doWal=1

while test "$1" != ""; do
  case $1 in



    --reprepare)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS $1"
        ;;
    --autovacuum)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS $1"
        ;;
    --utf16be)







>


>
>
>







37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
LEAN_OPTS="$LEAN_OPTS -DSQLITE_OMIT_SHARED_CACHE"
LEAN_OPTS="$LEAN_OPTS -DSQLITE_USE_ALLOCA"
BASELINE="trunk"
doExplain=0
doCachegrind=1
doVdbeProfile=0
doWal=1
doDiff=1
while test "$1" != ""; do
  case $1 in
    --nodiff)
	doDiff=0
        ;;
    --reprepare)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS $1"
        ;;
    --autovacuum)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS $1"
        ;;
    --utf16be)
175
176
177
178
179
180
181
182
183
184
if test $doExplain -eq 1; then
  ./speedtest1 --explain $SPEEDTEST_OPTS | ./sqlite3 >explain-$NAME.txt
fi
if test $doVdbeProfile -eq 1; then
  tclsh ../sqlite/tool/vdbe_profile.tcl >vdbeprofile-$NAME.txt
  open vdbeprofile-$NAME.txt
fi
if test "$NAME" != "$BASELINE" -a $doVdbeProfile -ne 1; then
  fossil test-diff --tk -c 20 cout-$BASELINE.txt cout-$NAME.txt
fi







|


179
180
181
182
183
184
185
186
187
188
if test $doExplain -eq 1; then
  ./speedtest1 --explain $SPEEDTEST_OPTS | ./sqlite3 >explain-$NAME.txt
fi
if test $doVdbeProfile -eq 1; then
  tclsh ../sqlite/tool/vdbe_profile.tcl >vdbeprofile-$NAME.txt
  open vdbeprofile-$NAME.txt
fi
if test "$NAME" != "$BASELINE" -a $doVdbeProfile -ne 1 -a $doDiff -ne 0; then
  fossil test-diff --tk -c 20 cout-$BASELINE.txt cout-$NAME.txt
fi