Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Add tests for incremental merge code. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | fts4-incr-merge |
Files: | files | file ages | folders |
SHA1: |
570473729d6561d81e6e5f8884fd1848 |
User & Date: | dan 2012-03-14 20:01:52.250 |
Context
2012-03-15
| ||
17:45 | Modify incremental merge code to merge nMin segments at a time. (check-in: cd34bc1af4 user: dan tags: fts4-incr-merge) | |
2012-03-14
| ||
20:01 | Add tests for incremental merge code. (check-in: 570473729d user: dan tags: fts4-incr-merge) | |
12:17 | Avoid allocating a large object on the stack in the incremental merge code. Use sqlite3_malloc() instead. (check-in: 36ae510de4 user: dan tags: fts4-incr-merge) | |
Changes
Changes to ext/fts3/fts3Int.h.
︙ | ︙ | |||
120 121 122 123 124 125 126 | ** false. */ #ifdef SQLITE_COVERAGE_TEST # define ALWAYS(x) (1) # define NEVER(X) (0) #else # define ALWAYS(x) (x) | | | 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | ** false. */ #ifdef SQLITE_COVERAGE_TEST # define ALWAYS(x) (1) # define NEVER(X) (0) #else # define ALWAYS(x) (x) # define NEVER(x) (x) #endif /* ** Internal types used by SQLite. */ typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */ typedef short int i16; /* 2-byte (or larger) signed integer */ |
︙ | ︙ |
Changes to ext/fts3/fts3_write.c.
︙ | ︙ | |||
3268 3269 3270 3271 3272 3273 3274 3275 | } typedef struct IncrmergeWriter IncrmergeWriter; typedef struct LayerWriter LayerWriter; typedef struct Blob Blob; typedef struct NodeReader NodeReader; struct Blob { | > > > > > > | | | | 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 | } typedef struct IncrmergeWriter IncrmergeWriter; typedef struct LayerWriter LayerWriter; typedef struct Blob Blob; typedef struct NodeReader NodeReader; /* ** An instance of the following structure is used as a dynamic buffer ** to build up nodes or other blobs of data in. ** ** The function blobGrowBuffer() is used to extend the allocation. */ struct Blob { char *a; /* Pointer to allocation */ int n; /* Number of valid bytes of data in a[] */ int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ }; struct LayerWriter { sqlite3_int64 iBlock; /* Current block id */ Blob key; /* Last key written to the current block */ Blob block; /* Current block image */ }; |
︙ | ︙ | |||
3401 3402 3403 3404 3405 3406 3407 | const char *zTerm, /* Term to write to internal node */ int nTerm /* Bytes at zTerm */ ){ sqlite3_int64 iPtr = pWriter->aLayer[0].iBlock; int iLayer; assert( nTerm>0 ); | | | 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 | const char *zTerm, /* Term to write to internal node */ int nTerm /* Bytes at zTerm */ ){ sqlite3_int64 iPtr = pWriter->aLayer[0].iBlock; int iLayer; assert( nTerm>0 ); for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){ sqlite3_int64 iNextPtr = 0; LayerWriter *pLayer = &pWriter->aLayer[iLayer]; int rc = SQLITE_OK; int nPrefix; int nSuffix; int nSpace; |
︙ | ︙ | |||
3561 3562 3563 3564 3565 3566 3567 | int i; /* Used to iterate through non-root layers */ int iRoot; LayerWriter *pRoot; int rc = *pRc; /* Find the root node */ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ | | > | | > > | 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 | int i; /* Used to iterate through non-root layers */ int iRoot; LayerWriter *pRoot; int rc = *pRc; /* Find the root node */ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ LayerWriter *pLayer = &pWriter->aLayer[iRoot]; if( pLayer->block.n>0 ) break; assert( *pRc || pLayer->block.nAlloc==0 ); assert( *pRc || pLayer->key.nAlloc==0 ); sqlite3_free(pLayer->block.a); sqlite3_free(pLayer->key.a); } /* Empty output segment. This is a no-op. */ if( iRoot<0 ) return; /* The entire output segment fits on the root node. This is not allowed. */ if( iRoot==0 ){ |
︙ | ︙ | |||
3624 3625 3626 3627 3628 3629 3630 | res = memcmp(zLhs, zRhs, nCmp); if( res==0 ) res = nLhs - nRhs; return res; } | | < | | | | | | | | < | | | | 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 | res = memcmp(zLhs, zRhs, nCmp); if( res==0 ) res = nLhs - nRhs; return res; } static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ int bRes = 0; sqlite3_stmt *pCheck = 0; int rc; rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pCheck, 1, iEnd); if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; rc = sqlite3_reset(pCheck); } *pbRes = bRes; return rc; } /* ** */ static int fts3IncrmergeLoad( Fts3Table *p, /* Fts3 table handle */ |
︙ | ︙ | |||
3678 3679 3680 3681 3682 3683 3684 | nRoot = sqlite3_column_bytes(pSelect, 4); aRoot = sqlite3_column_blob(pSelect, 4); }else{ return sqlite3_reset(pSelect); } /* Check for the zero-length marker in the %_segments table */ | | | | < | < | | 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 | nRoot = sqlite3_column_bytes(pSelect, 4); aRoot = sqlite3_column_blob(pSelect, 4); }else{ return sqlite3_reset(pSelect); } /* Check for the zero-length marker in the %_segments table */ rc = fts3IsAppendable(p, iEnd, &bAppendable); /* Check that zKey/nKey is larger than the largest key the candidate */ if( rc==SQLITE_OK && bAppendable ){ char *aLeaf = 0; int nLeaf = 0; rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); if( rc==SQLITE_OK ){ NodeReader reader; for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); rc==SQLITE_OK && reader.aNode; rc = nodeReaderNext(&reader) ){ assert( reader.aNode ); } if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ bAppendable = 0; } nodeReaderRelease(&reader); } sqlite3_free(aLeaf); } if( rc==SQLITE_OK && bAppendable ){ /* It is possible to append to this segment. Set up the IncrmergeWriter ** object to do so. */ int i; int nHeight = (int)aRoot[0]; |
︙ | ︙ | |||
3862 3863 3864 3865 3866 3867 3868 | rc = sqlite3_reset(pFirstBlock); } if( rc!=SQLITE_OK ) return rc; /* Insert the marker in the %_segments table to make sure nobody tries ** to steal the space just allocated. This is also used to identify ** appendable segments. */ | < | < > | 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 | rc = sqlite3_reset(pFirstBlock); } if( rc!=SQLITE_OK ) return rc; /* Insert the marker in the %_segments table to make sure nobody tries ** to steal the space just allocated. This is also used to identify ** appendable segments. */ rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); if( rc!=SQLITE_OK ) return rc; pWriter->iAbsLevel = iAbsLevel; pWriter->nLeafEst = nLeafEst; pWriter->iIdx = iIdx; /* Set up the array of LayerWriter objects */ for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ |
︙ | ︙ | |||
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 | *piBlock = reader.iChild; bStarted = 1; } rc = fts3AppendToNode( pNew, &prev, reader.term.a, reader.term.n, reader.aDoclist, reader.nDoclist ); } if( bStarted==0 ){ fts3StartNode(pNew, (int)aNode[0], reader.iChild); *piBlock = reader.iChild; } assert( pNew->n<=pNew->nAlloc ); nodeReaderRelease(&reader); sqlite3_free(prev.a); return rc; } static int fts3TruncateSegment( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ int iIdx, /* Index within level of segment to modify */ const char *zTerm, /* Remove terms smaller than this */ int nTerm /* Number of bytes in buffer zTerm */ ){ | > | | > > > | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 | *piBlock = reader.iChild; bStarted = 1; } rc = fts3AppendToNode( pNew, &prev, reader.term.a, reader.term.n, reader.aDoclist, reader.nDoclist ); if( rc!=SQLITE_OK ) break; } if( bStarted==0 ){ fts3StartNode(pNew, (int)aNode[0], reader.iChild); *piBlock = reader.iChild; } assert( pNew->n<=pNew->nAlloc ); nodeReaderRelease(&reader); sqlite3_free(prev.a); return rc; } static int fts3TruncateSegment( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ int iIdx, /* Index within level of segment to modify */ const char *zTerm, /* Remove terms smaller than this */ int nTerm /* Number of bytes in buffer zTerm */ ){ int rc = SQLITE_OK; /* Return code */ Blob root = {0,0,0}; /* New root page image */ Blob block = {0,0,0}; /* Buffer used for any other block */ sqlite3_int64 iBlock = 0; /* Block id */ sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ int rc2; /* sqlite3_reset() return code */ sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ assert( p->aStmt[SQL_SELECT_SEGDIR] ); pFetch = p->aStmt[SQL_SELECT_SEGDIR]; sqlite3_bind_int64(pFetch, 1, iAbsLevel); sqlite3_bind_int(pFetch, 2, iIdx); if( SQLITE_ROW==sqlite3_step(pFetch) ){ const char *aRoot = sqlite3_column_blob(pFetch, 4); int nRoot = sqlite3_column_bytes(pFetch, 4); iOldStart = sqlite3_column_int64(pFetch, 1); rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); } rc2 = sqlite3_reset(pFetch); if( rc==SQLITE_OK ) rc = rc2; while( rc==SQLITE_OK && iBlock ){ char *aBlock = 0; int nBlock = 0; iNewStart = iBlock; rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); if( rc==SQLITE_OK ){ rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); } if( rc==SQLITE_OK ){ rc = fts3WriteSegment(p, iNewStart, block.a, block.n); } sqlite3_free(aBlock); } /* Variable iNewStart now contains the first valid leaf node. */ if( rc==SQLITE_OK && iNewStart ){ sqlite3_stmt *pDel = 0; rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDel, 1, iOldStart); sqlite3_bind_int64(pDel, 2, iNewStart-1); sqlite3_step(pDel); rc = sqlite3_reset(pDel); } } if( rc==SQLITE_OK ){ sqlite3_stmt *pChomp = 0; rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pChomp, 1, iNewStart); sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); sqlite3_bind_int64(pChomp, 3, iAbsLevel); sqlite3_bind_int(pChomp, 4, iIdx); sqlite3_step(pChomp); rc = sqlite3_reset(pChomp); } } sqlite3_free(root.a); sqlite3_free(block.a); return rc; } |
︙ | ︙ | |||
4118 4119 4120 4121 4122 4123 4124 | int rc = SQLITE_OK; assert( pCsr->nSegment==2 ); assert( (pCsr->apSegment[0]->iIdx==0 && pCsr->apSegment[1]->iIdx==1) || (pCsr->apSegment[1]->iIdx==0 && pCsr->apSegment[0]->iIdx==1) ); | | | 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 | int rc = SQLITE_OK; assert( pCsr->nSegment==2 ); assert( (pCsr->apSegment[0]->iIdx==0 && pCsr->apSegment[1]->iIdx==1) || (pCsr->apSegment[1]->iIdx==0 && pCsr->apSegment[0]->iIdx==1) ); for(i=1; i>=0 && rc==SQLITE_OK; i--){ Fts3SegReader *pSeg = pCsr->apSegment[0]; if( pSeg->iIdx!=i ) pSeg = pCsr->apSegment[1]; assert( pSeg->iIdx==i ); if( pSeg->aNode==0 ){ /* Seg-reader is at EOF. Remove the entire input segment. */ rc = fts3DeleteSegment(p, pSeg); |
︙ | ︙ | |||
4145 4146 4147 4148 4149 4150 4151 | return rc; } /* ** Attempt an incremental merge that writes nMerge leaf pages. ** | | | | 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 | return rc; } /* ** Attempt an incremental merge that writes nMerge leaf pages. ** ** Incremental merges happen two segments at a time. The two ** segments to be merged are the two oldest segments (the ones with ** the smallest index) in the highest level that has at least ** nMin segments. Multiple segment pair merges might occur in ** an attempt to write the quota of nMerge leaf pages. */ static int fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ int rc = SQLITE_OK; /* Return code */ int nRem = nMerge; /* Number of leaf pages yet to be written */ assert( nMin>=2 ); |
︙ | ︙ | |||
4174 4175 4176 4177 4178 4179 4180 | ** is set to the absolute level number of the level to merge from. */ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); sqlite3_bind_int(pFindLevel, 1, nMin); if( sqlite3_step(pFindLevel)!=SQLITE_ROW ){ return sqlite3_reset(pFindLevel); } iAbsLevel = sqlite3_column_int64(pFindLevel, 0); | | < > > | 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 | ** is set to the absolute level number of the level to merge from. */ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); sqlite3_bind_int(pFindLevel, 1, nMin); if( sqlite3_step(pFindLevel)!=SQLITE_ROW ){ return sqlite3_reset(pFindLevel); } iAbsLevel = sqlite3_column_int64(pFindLevel, 0); sqlite3_reset(pFindLevel); /* Allocate space for the cursor, filter and writer objects */ pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc); if( !pWriter ) return SQLITE_NOMEM; memset(pWriter, 0, nAlloc); pFilter = (Fts3SegFilter *)&pWriter[1]; pCsr = (Fts3MultiSegReader *)&pFilter[1]; /* Open a cursor to iterate through the contents of indexes 0 and 1 of ** the selected absolute level. */ pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; rc = fts3IncrmergeCsr(p, iAbsLevel, pCsr); if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter); } if( rc==SQLITE_OK ){ if( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr)) ){ rc = fts3IncrmergeWriter(p, iAbsLevel, pCsr->zTerm,pCsr->nTerm,pWriter); if( rc==SQLITE_OK ){ do { rc = fts3IncrmergeAppend(p, pWriter, pCsr); if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; |
︙ | ︙ | |||
4226 4227 4228 4229 4230 4231 4232 | ** ** INSERT INTO table(table) VALUES('merge=A,B'); ** ** A and B are integers that decode to be the number of leaf pages ** written for the merge, and the minimum number of segments on a level ** before it will be selected for a merge, respectively. */ | | > > > | 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 | ** ** INSERT INTO table(table) VALUES('merge=A,B'); ** ** A and B are integers that decode to be the number of leaf pages ** written for the merge, and the minimum number of segments on a level ** before it will be selected for a merge, respectively. */ static int fts3DoIncrmerge( Fts3Table *p, /* FTS3 table handle */ const char *zParam /* Nul-terminated string containing "A,B" */ ){ int rc; int nMin = (FTS3_MERGE_COUNT / 2); int nMerge = 0; const char *z = zParam; /* Read the first integer value */ for(z=zParam; z[0]>='0' && z[0]<='9'; z++){ |
︙ | ︙ | |||
4248 4249 4250 4251 4252 4253 4254 | nMin = 0; while( z[0]>='0' && z[0]<='9' ){ nMin = nMin * 10 + (z[0] - '0'); z++; } } | | | | | | > | 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 | nMin = 0; while( z[0]>='0' && z[0]<='9' ){ nMin = nMin * 10 + (z[0] - '0'); z++; } } if( z[0]!='\0' || nMin<2 ){ rc = SQLITE_ERROR; }else{ rc = fts3Incrmerge(p, nMerge, nMin); sqlite3Fts3SegmentsClose(p); } return rc; } /* ** Handle a 'special' INSERT of the form: ** ** "INSERT INTO tbl(tbl) VALUES(<expr>)" |
︙ | ︙ | |||
4472 4473 4474 4475 4476 4477 4478 | } /* ** This function does the work for the xUpdate method of FTS3 virtual ** tables. The schema of the virtual table being: ** ** CREATE TABLE <table name>( | | | 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 | } /* ** This function does the work for the xUpdate method of FTS3 virtual ** tables. The schema of the virtual table being: ** ** CREATE TABLE <table name>( ** <user columns>, ** <table name> HIDDEN, ** docid HIDDEN, ** <langid> HIDDEN ** ); ** ** */ |
︙ | ︙ |
Changes to test/fts3_common.tcl.
︙ | ︙ | |||
10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #*********************************************************************** # # This file contains common code used the fts3 tests. At one point # equivalent functionality was implemented in C code. But it is easier # to use Tcl. # #------------------------------------------------------------------------- # USAGE: fts3_integrity_check TBL # # This proc is used to verify that the full-text index is consistent with # the contents of the fts3 table. In other words, it checks that the # data in the %_contents table matches that in the %_segdir and %_segments # tables. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | #*********************************************************************** # # This file contains common code used the fts3 tests. At one point # equivalent functionality was implemented in C code. But it is easier # to use Tcl. # #------------------------------------------------------------------------- # USAGE: fts3_build_db_1 N # # Build a sample FTS table in the database opened by database connection # [db]. The name of the new table is "t1". # proc fts3_build_db_1 {n} { if {$n > 10000} {error "n must be <= 10000"} db eval { CREATE VIRTUAL TABLE t1 USING fts4(x, y) } set xwords [list zero one two three four five six seven eight nine ten] set ywords [list alpha beta gamma delta epsilon zeta eta theta iota kappa] for {set i 0} {$i < $n} {incr i} { set x "" set y "" set x [list] lappend x [lindex $xwords [expr ($i / 1000) % 10]] lappend x [lindex $xwords [expr ($i / 100) % 10]] lappend x [lindex $xwords [expr ($i / 10) % 10]] lappend x [lindex $xwords [expr ($i / 1) % 10]] set y [list] lappend y [lindex $ywords [expr ($i / 1000) % 10]] lappend y [lindex $ywords [expr ($i / 100) % 10]] lappend y [lindex $ywords [expr ($i / 10) % 10]] lappend y [lindex $ywords [expr ($i / 1) % 10]] db eval { INSERT INTO t1(docid, x, y) VALUES($i, $x, $y) } } } #------------------------------------------------------------------------- # USAGE: fts3_build_db_2 N # # Build a sample FTS table in the database opened by database connection # [db]. The name of the new table is "t2". # proc fts3_build_db_2 {n} { if {$n > 100000} {error "n must be <= 100000"} db eval { CREATE VIRTUAL TABLE t2 USING fts4 } set chars [list a b c d e f g h i j k l m n o p q r s t u v w x y z ""] for {set i 0} {$i < $n} {incr i} { set word "" set n [llength $chars] append word [lindex $chars [expr {($i / 1) % $n}]] append word [lindex $chars [expr {($i / $n) % $n}]] append word [lindex $chars [expr {($i / ($n*$n)) % $n}]] db eval { INSERT INTO t2(docid, content) VALUES($i, $word) } } } #------------------------------------------------------------------------- # USAGE: fts3_integrity_check TBL # # This proc is used to verify that the full-text index is consistent with # the contents of the fts3 table. In other words, it checks that the # data in the %_contents table matches that in the %_segdir and %_segments # tables. |
︙ | ︙ | |||
94 95 96 97 98 99 100 | set sql {SELECT fts3_tokenizer_test('simple', $c)} foreach {pos term dummy} [db one $sql] { if {![info exists C($iDoc,$iCol,$pos)]} { set es "Error at docid=$iDoc col=$iCol pos=$pos. Index is missing" lappend errors $es } else { | | | 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | set sql {SELECT fts3_tokenizer_test('simple', $c)} foreach {pos term dummy} [db one $sql] { if {![info exists C($iDoc,$iCol,$pos)]} { set es "Error at docid=$iDoc col=$iCol pos=$pos. Index is missing" lappend errors $es } else { if {[string compare $C($iDoc,$iCol,$pos) $term]} { set es "Error at docid=$iDoc col=$iCol pos=$pos. Index " append es "has \"$C($iDoc,$iCol,$pos)\", document has \"$term\"" lappend errors $es } unset C($iDoc,$iCol,$pos) } } |
︙ | ︙ |
Changes to test/fts4merge.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } #------------------------------------------------------------------------- # Test cases 1.* # do_test 1.0 { fts3_build_db_1 1004 } {} do_test 1.1 { fts3_integrity_check t1 } {ok} do_execsql_test 1.1 { SELECT level, group_concat(idx, ' ') FROM t1_segdir GROUP BY level |
︙ | ︙ | |||
94 95 96 97 98 99 100 | } { 0 {0 1 2 3} 1 {0 1 2 3} 2 {0 1 2 3} 3 {0 1 2} } | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | } { 0 {0 1 2 3} 1 {0 1 2 3} 2 {0 1 2 3} 3 {0 1 2} } #------------------------------------------------------------------------- # Test cases 2.* test that errors in the xxx part of the 'merge=xxx' are # handled correctly. # do_execsql_test 2.0 { CREATE VIRTUAL TABLE t2 USING fts4 } foreach {tn arg} { 1 {merge=abc} 2 {merge=%%%} 3 {merge=,} 4 {merge=5,} 5 {merge=6,%} 6 {merge=6,six} 7 {merge=6,1} 8 {merge=6,0} } { do_catchsql_test 2.$tn { INSERT INTO t2(t2) VALUES($arg); } {1 {SQL logic error or missing database}} } #------------------------------------------------------------------------- # Test cases 3.* # do_test 3.0 { reset_db execsql { PRAGMA page_size = 512 } fts3_build_db_2 30040 } {} do_test 3.1 { fts3_integrity_check t2 } {ok} do_execsql_test 3.2 { SELECT level, group_concat(idx, ' ') FROM t2_segdir GROUP BY level } { 0 {0 1 2 3 4 5 6 7} 1 {0 1 2 3 4} 2 {0 1 2 3 4} 3 {0 1 2 3 4 5 6} } do_execsql_test 3.3 { INSERT INTO t2(t2) VALUES('merge=1000000,2'); SELECT level, group_concat(idx, ' ') FROM t2_segdir GROUP BY level } { 0 {0 1} 1 {0 1} 2 0 3 {0 1} 4 {0 1} 5 0 } finish_test |
Added test/fts4merge2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/fts3_common.tcl source $testdir/malloc_common.tcl set ::testprefix fts4merge2 # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } do_test 1.0 { fts3_build_db_1 1000 faultsim_save_and_close } {} do_faultsim_test 1.1 -faults oom-* -prep { faultsim_restore_and_reopen } -body { execsql { INSERT INTO t1(t1) VALUES('merge=32,4') } } -test { faultsim_test_result {0 {}} } do_faultsim_test 1.2 -faults oom-t* -prep { if {$iFail<100} {set iFail 803} faultsim_restore_and_reopen } -body { execsql { INSERT INTO t1(t1) VALUES('merge=1,2') } execsql { INSERT INTO t1(t1) VALUES('merge=1,2') } } -test { faultsim_test_result {0 {}} } finish_test |
Changes to test/permutations.test.
︙ | ︙ | |||
180 181 182 183 184 185 186 | fts3defer.test fts3defer2.test fts3e.test fts3expr.test fts3expr2.test fts3near.test fts3query.test fts3shared.test fts3snippet.test fts3sort.test fts3fault.test fts3malloc.test fts3matchinfo.test fts3aux1.test fts3comp1.test fts3auto.test fts4aa.test fts4content.test fts3conf.test fts3prefix.test fts3fault2.test fts3corrupt.test | | | 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | fts3defer.test fts3defer2.test fts3e.test fts3expr.test fts3expr2.test fts3near.test fts3query.test fts3shared.test fts3snippet.test fts3sort.test fts3fault.test fts3malloc.test fts3matchinfo.test fts3aux1.test fts3comp1.test fts3auto.test fts4aa.test fts4content.test fts3conf.test fts3prefix.test fts3fault2.test fts3corrupt.test fts3corrupt2.test fts3first.test fts4langid.test fts4merge.test } lappend ::testsuitelist xxx #------------------------------------------------------------------------- # Define the coverage related test suites: # |
︙ | ︙ |