Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Split out some source code into new files: wherecode.c, whereexpr.c, and treeview.c. Other minor refactoring changes. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
50f336818c8509d8b8bde282e9399d2b |
User & Date: | drh 2015-06-08 17:40:30.804 |
Context
2015-06-08
| ||
17:42 | Fix typo in comment. No changes to code. (check-in: e49c291735 user: mistachkin tags: trunk) | |
17:40 | Split out some source code into new files: wherecode.c, whereexpr.c, and treeview.c. Other minor refactoring changes. (check-in: 50f336818c user: drh tags: trunk) | |
15:08 | Factor out the TreeView parse tree printing module into a separate file. (check-in: c32ce54ca4 user: drh tags: view-optimization) | |
2015-06-05
| ||
20:27 | Provide one final Select tree dump prior to WHERE clause analysis when ".selecttrace 0x400" tracing bit is set with SELECTTRACE_ENABLED. Analysis and debug changes only - normal builds are unaffected. (check-in: 283bf0b64d user: drh tags: trunk) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
177 178 179 180 181 182 183 | icu.lo insert.lo journal.lo legacy.lo loadext.lo \ main.lo malloc.lo mem0.lo mem1.lo mem2.lo mem3.lo mem5.lo \ memjournal.lo \ mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \ notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \ pager.lo parse.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \ random.lo resolve.lo rowset.lo rtree.lo select.lo status.lo \ | | | > | 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | icu.lo insert.lo journal.lo legacy.lo loadext.lo \ main.lo malloc.lo mem0.lo mem1.lo mem2.lo mem3.lo mem5.lo \ memjournal.lo \ mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \ notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \ pager.lo parse.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \ random.lo resolve.lo rowset.lo rtree.lo select.lo status.lo \ table.lo threads.lo tokenize.lo treeview.lo trigger.lo \ update.lo util.lo vacuum.lo \ vdbe.lo vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \ vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \ utf.lo vtab.lo # Object files for the amalgamation. # LIBOBJS1 = sqlite3.lo # Determine the real value of LIBOBJ based on the 'configure' script # |
︙ | ︙ | |||
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | $(TOP)/src/sqlite3ext.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/sqliteLimit.h \ $(TOP)/src/table.c \ $(TOP)/src/threads.c \ $(TOP)/src/tclsqlite.c \ $(TOP)/src/tokenize.c \ $(TOP)/src/trigger.c \ $(TOP)/src/utf.c \ $(TOP)/src/update.c \ $(TOP)/src/util.c \ $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/vxworks.h \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c \ $(TOP)/src/whereInt.h # Source code for extensions # SRC += \ $(TOP)/ext/fts1/fts1.c \ $(TOP)/ext/fts1/fts1.h \ | > > > | 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | $(TOP)/src/sqlite3ext.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/sqliteLimit.h \ $(TOP)/src/table.c \ $(TOP)/src/threads.c \ $(TOP)/src/tclsqlite.c \ $(TOP)/src/tokenize.c \ $(TOP)/src/treeview.c \ $(TOP)/src/trigger.c \ $(TOP)/src/utf.c \ $(TOP)/src/update.c \ $(TOP)/src/util.c \ $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/vxworks.h \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c \ $(TOP)/src/wherecode.c \ $(TOP)/src/whereexpr.c \ $(TOP)/src/whereInt.h # Source code for extensions # SRC += \ $(TOP)/ext/fts1/fts1.c \ $(TOP)/ext/fts1/fts1.h \ |
︙ | ︙ | |||
450 451 452 453 454 455 456 457 458 459 460 461 462 463 | $(TOP)/src/util.c \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/where.c \ parse.c \ $(TOP)/ext/fts3/fts3.c \ $(TOP)/ext/fts3/fts3_aux.c \ $(TOP)/ext/fts3/fts3_expr.c \ $(TOP)/ext/fts3/fts3_term.c \ $(TOP)/ext/fts3/fts3_tokenizer.c \ $(TOP)/ext/fts3/fts3_write.c \ | > > | 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | $(TOP)/src/util.c \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/where.c \ $(TOP)/src/wherecode.c \ $(TOP)/src/whereexpr.c \ parse.c \ $(TOP)/ext/fts3/fts3.c \ $(TOP)/ext/fts3/fts3_aux.c \ $(TOP)/ext/fts3/fts3_expr.c \ $(TOP)/ext/fts3/fts3_term.c \ $(TOP)/ext/fts3/fts3_tokenizer.c \ $(TOP)/ext/fts3/fts3_write.c \ |
︙ | ︙ | |||
797 798 799 800 801 802 803 804 805 806 807 808 809 810 | threads.lo: $(TOP)/src/threads.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/threads.c tokenize.lo: $(TOP)/src/tokenize.c keywordhash.h $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/tokenize.c trigger.lo: $(TOP)/src/trigger.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/trigger.c update.lo: $(TOP)/src/update.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/update.c utf.lo: $(TOP)/src/utf.c $(HDR) | > > > | 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 | threads.lo: $(TOP)/src/threads.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/threads.c tokenize.lo: $(TOP)/src/tokenize.c keywordhash.h $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/tokenize.c treeview.lo: $(TOP)/src/treeview.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/treeview.c trigger.lo: $(TOP)/src/trigger.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/trigger.c update.lo: $(TOP)/src/update.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/update.c utf.lo: $(TOP)/src/utf.c $(HDR) |
︙ | ︙ | |||
845 846 847 848 849 850 851 852 853 854 855 856 857 858 | walker.lo: $(TOP)/src/walker.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/walker.c where.lo: $(TOP)/src/where.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/where.c tclsqlite.lo: $(TOP)/src/tclsqlite.c $(HDR) $(LTCOMPILE) -DUSE_TCL_STUBS=1 -c $(TOP)/src/tclsqlite.c tclsqlite-shell.lo: $(TOP)/src/tclsqlite.c $(HDR) $(LTCOMPILE) -DTCLSH=1 -o $@ -c $(TOP)/src/tclsqlite.c tclsqlite-stubs.lo: $(TOP)/src/tclsqlite.c $(HDR) | > > > > > > | 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 | walker.lo: $(TOP)/src/walker.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/walker.c where.lo: $(TOP)/src/where.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/where.c wherecode.lo: $(TOP)/src/wherecode.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/wherecode.c whereexpr.lo: $(TOP)/src/whereexpr.c $(HDR) $(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/whereexpr.c tclsqlite.lo: $(TOP)/src/tclsqlite.c $(HDR) $(LTCOMPILE) -DUSE_TCL_STUBS=1 -c $(TOP)/src/tclsqlite.c tclsqlite-shell.lo: $(TOP)/src/tclsqlite.c $(HDR) $(LTCOMPILE) -DTCLSH=1 -o $@ -c $(TOP)/src/tclsqlite.c tclsqlite-stubs.lo: $(TOP)/src/tclsqlite.c $(HDR) |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
831 832 833 834 835 836 837 | icu.lo insert.lo journal.lo legacy.lo loadext.lo \ main.lo malloc.lo mem0.lo mem1.lo mem2.lo mem3.lo mem5.lo \ memjournal.lo \ mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \ notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \ pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \ random.lo resolve.lo rowset.lo rtree.lo select.lo status.lo \ | | | > | 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 | icu.lo insert.lo journal.lo legacy.lo loadext.lo \ main.lo malloc.lo mem0.lo mem1.lo mem2.lo mem3.lo mem5.lo \ memjournal.lo \ mutex.lo mutex_noop.lo mutex_unix.lo mutex_w32.lo \ notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \ pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \ random.lo resolve.lo rowset.lo rtree.lo select.lo status.lo \ table.lo threads.lo tokenize.lo treeview.lo trigger.lo \ update.lo util.lo vacuum.lo \ vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \ vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \ utf.lo vtab.lo # Object files for the amalgamation. # LIBOBJS1 = sqlite3.lo # Determine the real value of LIBOBJ based on the 'configure' script # |
︙ | ︙ | |||
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 | $(TOP)\src\sqlite3ext.h \ $(TOP)\src\sqliteInt.h \ $(TOP)\src\sqliteLimit.h \ $(TOP)\src\table.c \ $(TOP)\src\threads.c \ $(TOP)\src\tclsqlite.c \ $(TOP)\src\tokenize.c \ $(TOP)\src\trigger.c \ $(TOP)\src\utf.c \ $(TOP)\src\update.c \ $(TOP)\src\util.c \ $(TOP)\src\vacuum.c \ $(TOP)\src\vdbe.c \ $(TOP)\src\vdbe.h \ $(TOP)\src\vdbeapi.c \ $(TOP)\src\vdbeaux.c \ $(TOP)\src\vdbeblob.c \ $(TOP)\src\vdbemem.c \ $(TOP)\src\vdbesort.c \ $(TOP)\src\vdbetrace.c \ $(TOP)\src\vdbeInt.h \ $(TOP)\src\vtab.c \ $(TOP)\src\vxworks.h \ $(TOP)\src\wal.c \ $(TOP)\src\wal.h \ $(TOP)\src\walker.c \ $(TOP)\src\where.c \ $(TOP)\src\whereInt.h # Source code for extensions # SRC3 = \ $(TOP)\ext\fts1\fts1.c \ $(TOP)\ext\fts1\fts1.h \ | > > > | 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 | $(TOP)\src\sqlite3ext.h \ $(TOP)\src\sqliteInt.h \ $(TOP)\src\sqliteLimit.h \ $(TOP)\src\table.c \ $(TOP)\src\threads.c \ $(TOP)\src\tclsqlite.c \ $(TOP)\src\tokenize.c \ $(TOP)\src\treeview.c \ $(TOP)\src\trigger.c \ $(TOP)\src\utf.c \ $(TOP)\src\update.c \ $(TOP)\src\util.c \ $(TOP)\src\vacuum.c \ $(TOP)\src\vdbe.c \ $(TOP)\src\vdbe.h \ $(TOP)\src\vdbeapi.c \ $(TOP)\src\vdbeaux.c \ $(TOP)\src\vdbeblob.c \ $(TOP)\src\vdbemem.c \ $(TOP)\src\vdbesort.c \ $(TOP)\src\vdbetrace.c \ $(TOP)\src\vdbeInt.h \ $(TOP)\src\vtab.c \ $(TOP)\src\vxworks.h \ $(TOP)\src\wal.c \ $(TOP)\src\wal.h \ $(TOP)\src\walker.c \ $(TOP)\src\where.c \ $(TOP)\src\wherecode.c \ $(TOP)\src\whereexpr.c \ $(TOP)\src\whereInt.h # Source code for extensions # SRC3 = \ $(TOP)\ext\fts1\fts1.c \ $(TOP)\ext\fts1\fts1.h \ |
︙ | ︙ | |||
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 | $(TOP)\src\vdbeapi.c \ $(TOP)\src\vdbeaux.c \ $(TOP)\src\vdbe.c \ $(TOP)\src\vdbemem.c \ $(TOP)\src\vdbesort.c \ $(TOP)\src\vdbetrace.c \ $(TOP)\src\where.c \ parse.c \ $(TOP)\ext\fts3\fts3.c \ $(TOP)\ext\fts3\fts3_aux.c \ $(TOP)\ext\fts3\fts3_expr.c \ $(TOP)\ext\fts3\fts3_tokenizer.c \ $(TOP)\ext\fts3\fts3_tokenize_vtab.c \ $(TOP)\ext\fts3\fts3_unicode.c \ | > > | 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 | $(TOP)\src\vdbeapi.c \ $(TOP)\src\vdbeaux.c \ $(TOP)\src\vdbe.c \ $(TOP)\src\vdbemem.c \ $(TOP)\src\vdbesort.c \ $(TOP)\src\vdbetrace.c \ $(TOP)\src\where.c \ $(TOP)\src\wherecode.c \ $(TOP)\src\whereexpr.c \ parse.c \ $(TOP)\ext\fts3\fts3.c \ $(TOP)\ext\fts3\fts3_aux.c \ $(TOP)\ext\fts3\fts3_expr.c \ $(TOP)\ext\fts3\fts3_tokenizer.c \ $(TOP)\ext\fts3\fts3_tokenize_vtab.c \ $(TOP)\ext\fts3\fts3_unicode.c \ |
︙ | ︙ | |||
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 | threads.lo: $(TOP)\src\threads.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\threads.c tokenize.lo: $(TOP)\src\tokenize.c keywordhash.h $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\tokenize.c trigger.lo: $(TOP)\src\trigger.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\trigger.c update.lo: $(TOP)\src\update.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\update.c utf.lo: $(TOP)\src\utf.c $(HDR) | > > > | 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 | threads.lo: $(TOP)\src\threads.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\threads.c tokenize.lo: $(TOP)\src\tokenize.c keywordhash.h $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\tokenize.c treeview.lo: $(TOP)\src\treeview.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\treeview.c trigger.lo: $(TOP)\src\trigger.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\trigger.c update.lo: $(TOP)\src\update.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\update.c utf.lo: $(TOP)\src\utf.c $(HDR) |
︙ | ︙ | |||
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 | walker.lo: $(TOP)\src\walker.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\walker.c where.lo: $(TOP)\src\where.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\where.c tclsqlite.lo: $(TOP)\src\tclsqlite.c $(HDR) $(LTCOMPILE) $(NO_WARN) -DUSE_TCL_STUBS=1 -DBUILD_sqlite -I$(TCLINCDIR) -c $(TOP)\src\tclsqlite.c tclsqlite-shell.lo: $(TOP)\src\tclsqlite.c $(HDR) $(LTCOMPILE) $(NO_WARN) -DTCLSH=1 -DBUILD_sqlite -I$(TCLINCDIR) -c $(TOP)\src\tclsqlite.c tclsqlite3.exe: tclsqlite-shell.lo $(SQLITE3C) $(LIBRESOBJS) | > > > > > > | 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 | walker.lo: $(TOP)\src\walker.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\walker.c where.lo: $(TOP)\src\where.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\where.c wherecode.lo: $(TOP)\src\wherecode.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\wherecode.c whereexpr.lo: $(TOP)\src\whereexpr.c $(HDR) $(LTCOMPILE) $(CORE_COMPILE_OPTS) -c $(TOP)\src\whereexpr.c tclsqlite.lo: $(TOP)\src\tclsqlite.c $(HDR) $(LTCOMPILE) $(NO_WARN) -DUSE_TCL_STUBS=1 -DBUILD_sqlite -I$(TCLINCDIR) -c $(TOP)\src\tclsqlite.c tclsqlite-shell.lo: $(TOP)\src\tclsqlite.c $(HDR) $(LTCOMPILE) $(NO_WARN) -DTCLSH=1 -DBUILD_sqlite -I$(TCLINCDIR) -c $(TOP)\src\tclsqlite.c tclsqlite3.exe: tclsqlite-shell.lo $(SQLITE3C) $(LIBRESOBJS) |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
62 63 64 65 66 67 68 | icu.o insert.o journal.o legacy.o loadext.o \ main.o malloc.o mem0.o mem1.o mem2.o mem3.o mem5.o \ memjournal.o \ mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \ notify.o opcodes.o os.o os_unix.o os_win.o \ pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \ random.o resolve.o rowset.o rtree.o select.o sqlite3ota.o status.o \ | | | > | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | icu.o insert.o journal.o legacy.o loadext.o \ main.o malloc.o mem0.o mem1.o mem2.o mem3.o mem5.o \ memjournal.o \ mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \ notify.o opcodes.o os.o os_unix.o os_win.o \ pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \ random.o resolve.o rowset.o rtree.o select.o sqlite3ota.o status.o \ table.o threads.o tokenize.o treeview.o trigger.o \ update.o userauth.o util.o vacuum.o \ vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \ vdbetrace.o wal.o walker.o where.o wherecode.o whereexpr.o \ utf.o vtab.o # All of the source code files. # SRC = \ $(TOP)/src/alter.c \ |
︙ | ︙ | |||
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | $(TOP)/src/sqlite3ext.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/sqliteLimit.h \ $(TOP)/src/table.c \ $(TOP)/src/tclsqlite.c \ $(TOP)/src/threads.c \ $(TOP)/src/tokenize.c \ $(TOP)/src/trigger.c \ $(TOP)/src/utf.c \ $(TOP)/src/update.c \ $(TOP)/src/util.c \ $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/vxworks.h \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c \ $(TOP)/src/whereInt.h # Source code for extensions # SRC += \ $(TOP)/ext/fts1/fts1.c \ $(TOP)/ext/fts1/fts1.h \ | > > > | 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | $(TOP)/src/sqlite3ext.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/sqliteLimit.h \ $(TOP)/src/table.c \ $(TOP)/src/tclsqlite.c \ $(TOP)/src/threads.c \ $(TOP)/src/tokenize.c \ $(TOP)/src/treeview.c \ $(TOP)/src/trigger.c \ $(TOP)/src/utf.c \ $(TOP)/src/update.c \ $(TOP)/src/util.c \ $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/vxworks.h \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c \ $(TOP)/src/wherecode.c \ $(TOP)/src/whereexpr.c \ $(TOP)/src/whereInt.h # Source code for extensions # SRC += \ $(TOP)/ext/fts1/fts1.c \ $(TOP)/ext/fts1/fts1.h \ |
︙ | ︙ | |||
333 334 335 336 337 338 339 340 341 342 343 344 345 346 | $(TOP)/src/utf.c \ $(TOP)/src/util.c \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/where.c \ parse.c \ $(TOP)/ext/fts3/fts3.c \ $(TOP)/ext/fts3/fts3_aux.c \ $(TOP)/ext/fts3/fts3_expr.c \ $(TOP)/ext/fts3/fts3_tokenizer.c \ $(TOP)/ext/fts3/fts3_write.c \ $(TOP)/ext/async/sqlite3async.c | > > | 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | $(TOP)/src/utf.c \ $(TOP)/src/util.c \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/where.c \ $(TOP)/src/wherecode.c \ $(TOP)/src/whereexpr.c \ parse.c \ $(TOP)/ext/fts3/fts3.c \ $(TOP)/ext/fts3/fts3_aux.c \ $(TOP)/ext/fts3/fts3_expr.c \ $(TOP)/ext/fts3/fts3_tokenizer.c \ $(TOP)/ext/fts3/fts3_write.c \ $(TOP)/ext/async/sqlite3async.c |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
3307 3308 3309 3310 3311 3312 3313 | assert( pExpr->op!=TK_REGISTER ); sqlite3ExprCode(pParse, pExpr, target); iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); exprToRegister(pExpr, iMem); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 | assert( pExpr->op!=TK_REGISTER ); sqlite3ExprCode(pParse, pExpr, target); iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); exprToRegister(pExpr, iMem); } /* ** Generate code that pushes the value of every element of the given ** expression list into a sequence of registers beginning at target. ** ** Return the number of elements evaluated. ** ** The SQLITE_ECEL_DUP flag prevents the arguments from being |
︙ | ︙ |
Changes to src/printf.c.
1 2 | /* ** The "printf" code that follows dates from the 1980's. It is in | | < < < | 1 2 3 4 5 6 7 8 9 10 | /* ** The "printf" code that follows dates from the 1980's. It is in ** the public domain. ** ************************************************************************** ** ** This file contains code for a set of "printf"-like routines. These ** routines format strings much like the printf() from the standard C ** library, though the implementation here has enhancements to support ** SQLlite. |
︙ | ︙ | |||
1054 1055 1056 1057 1058 1059 1060 | va_end(ap); sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } #endif | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 | va_end(ap); sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } #endif /* ** variable-argument wrapper around sqlite3VXPrintf(). */ void sqlite3XPrintf(StrAccum *p, u32 bFlags, const char *zFormat, ...){ va_list ap; va_start(ap,zFormat); sqlite3VXPrintf(p, bFlags, zFormat, ap); va_end(ap); } |
Changes to src/select.c.
︙ | ︙ | |||
17 18 19 20 21 22 23 | /* ** Trace output macros */ #if SELECTTRACE_ENABLED /***/ int sqlite3SelectTrace = 0; # define SELECTTRACE(K,P,S,X) \ if(sqlite3SelectTrace&(K)) \ | | > | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | /* ** Trace output macros */ #if SELECTTRACE_ENABLED /***/ int sqlite3SelectTrace = 0; # define SELECTTRACE(K,P,S,X) \ if(sqlite3SelectTrace&(K)) \ sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ (S)->zSelName,(S)),\ sqlite3DebugPrintf X #else # define SELECTTRACE(K,P,S,X) #endif /* |
︙ | ︙ | |||
770 771 772 773 774 775 776 | case WHERE_DISTINCT_UNIQUE: { sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); break; } default: { assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); | | > | 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | case WHERE_DISTINCT_UNIQUE: { sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); break; } default: { assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); break; } } if( pSort==0 ){ codeOffset(v, p->iOffset, iContinue); } } |
︙ | ︙ | |||
823 824 825 826 827 828 829 | if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; | | > | 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 | if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); assert( pSort==0 ); } #endif if( pSort ){ pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); }else{ |
︙ | ︙ | |||
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 | ** The declaration type for any expression other than a column is NULL. ** ** This routine has either 3 or 6 parameters depending on whether or not ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. */ #ifdef SQLITE_ENABLE_COLUMN_METADATA # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) static const char *columnTypeImpl( NameContext *pNC, Expr *pExpr, const char **pzOrigDb, const char **pzOrigTab, const char **pzOrigCol, u8 *pEstWidth ){ char const *zOrigDb = 0; char const *zOrigTab = 0; char const *zOrigCol = 0; | > > > > > > > > > < < < < < < < | < < < | 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 | ** The declaration type for any expression other than a column is NULL. ** ** This routine has either 3 or 6 parameters depending on whether or not ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. */ #ifdef SQLITE_ENABLE_COLUMN_METADATA # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) #endif static const char *columnTypeImpl( NameContext *pNC, Expr *pExpr, #ifdef SQLITE_ENABLE_COLUMN_METADATA const char **pzOrigDb, const char **pzOrigTab, const char **pzOrigCol, #endif u8 *pEstWidth ){ char const *zType = 0; int j; u8 estWidth = 1; #ifdef SQLITE_ENABLE_COLUMN_METADATA char const *zOrigDb = 0; char const *zOrigTab = 0; char const *zOrigCol = 0; #endif if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; switch( pExpr->op ){ case TK_AGG_COLUMN: case TK_COLUMN: { /* The expression is a column. Locate the table the column is being ** extracted from in NameContext.pSrcList. This table may be real |
︙ | ︙ | |||
1701 1702 1703 1704 1705 1706 1707 | if( db->mallocFailed ) return; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; a = pSelect->pEList->a; for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ p = a[i].pExpr; if( pCol->zType==0 ){ | | > | 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 | if( db->mallocFailed ) return; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; a = pSelect->pEList->a; for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ p = a[i].pExpr; if( pCol->zType==0 ){ pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); } szAll += pCol->szEst; pCol->affinity = sqlite3ExprAffinity(p); if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; pColl = sqlite3ExprCollSeq(pParse, p); if( pColl && pCol->zColl==0 ){ pCol->zColl = sqlite3DbStrDup(db, pColl->zName); |
︙ | ︙ | |||
3211 3212 3213 3214 3215 3216 3217 | ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidently carried the comment forward until 2014-09-15. Original | | | | 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 | ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidently carried the comment forward until 2014-09-15. Original ** text: "The subquery does not use aggregates or the outer query ** does not use LIMIT." ** ** (11) The subquery and the outer query do not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. ** ** (13) The subquery and outer query do not both use LIMIT. |
︙ | ︙ | |||
4810 4811 4812 4813 4814 4815 4816 | p->pOrderBy = 0; p->selFlags &= ~SF_Distinct; } sqlite3SelectPrep(pParse, p, 0); memset(&sSort, 0, sizeof(sSort)); sSort.pOrderBy = p->pOrderBy; pTabList = p->pSrc; | < > < < < < < < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 | p->pOrderBy = 0; p->selFlags &= ~SF_Distinct; } sqlite3SelectPrep(pParse, p, 0); memset(&sSort, 0, sizeof(sSort)); sSort.pOrderBy = p->pOrderBy; pTabList = p->pSrc; if( pParse->nErr || db->mallocFailed ){ goto select_end; } assert( p->pEList!=0 ); isAgg = (p->selFlags & SF_Aggregate)!=0; #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x100 ){ SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If writing to memory or generating a set ** only a single column may be output. */ #ifndef SQLITE_OMIT_SUBQUERY if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ goto select_end; } #endif /* Try to flatten subqueries in the FROM clause up into the main query */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ struct SrcList_item *pItem = &pTabList->a[i]; Select *pSub = pItem->pSelect; int isAggSub; if( pSub==0 ) continue; isAggSub = (pSub->selFlags & SF_Aggregate)!=0; if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ /* This subquery can be absorbed into its parent. */ if( isAggSub ){ isAgg = 1; p->selFlags |= SF_Aggregate; } i = -1; } pTabList = p->pSrc; if( db->mallocFailed ) goto select_end; if( !IgnorableOrderby(pDest) ){ sSort.pOrderBy = p->pOrderBy; } } #endif /* Get a pointer the VDBE under construction, allocating a new VDBE if one ** does not already exist */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto select_end; #ifndef SQLITE_OMIT_COMPOUND_SELECT /* Handle compound SELECT statements using the separate multiSelect() ** procedure. */ if( p->pPrior ){ rc = multiSelect(pParse, p, pDest); explainSetInteger(pParse->iSelectId, iRestoreSelectId); #if SELECTTRACE_ENABLED SELECTTRACE(1,pParse,p,("end compound-select processing\n")); pParse->nSelectIndent--; #endif return rc; } #endif /* Generate code for all sub-queries in the FROM clause */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) for(i=0; i<pTabList->nSrc; i++){ struct SrcList_item *pItem = &pTabList->a[i]; SelectDest dest; Select *pSub = pItem->pSelect; if( pSub==0 ) continue; /* Sometimes the code for a subquery will be generated more than ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, ** for example. In that case, do not regenerate the code to manifest ** a view or the co-routine to implement a view. The first instance ** is sufficient, though the subroutine to manifest the view does need |
︙ | ︙ | |||
4871 4872 4873 4874 4875 4876 4877 | ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); | | | | < < < < < < | | | | | | | | > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | < < < < < | > | > > < < < < < < < < < < < < < < < | < | | | | | | | > | 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 | ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( (pItem->jointype & JT_OUTER)==0 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) ){ #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x100 ){ SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif } /* Generate code to implement the subquery */ if( pTabList->nSrc==1 && (p->selFlags & SF_All)==0 && OptimizationEnabled(db, SQLITE_SubqCoroutine) ){ /* Implement a co-routine that will return a single row of the result ** set on each invocation. */ int addrTop = sqlite3VdbeCurrentAddr(v)+1; pItem->regReturn = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); VdbeComment((v, "%s", pItem->pTab->zName)); pItem->addrFillSub = addrTop; sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); pItem->viaCoroutine = 1; pItem->regResult = dest.iSdst; sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); sqlite3VdbeJumpHere(v, addrTop-1); sqlite3ClearTempRegCache(pParse); }else{ /* Generate a subroutine that will fill an ephemeral table with ** the content of this subquery. pItem->addrFillSub will point ** to the address of the generated subroutine. pItem->regReturn ** is a register allocated to hold the subroutine return address */ int topAddr; int onceAddr = 0; int retAddr; assert( pItem->addrFillSub==0 ); pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); pItem->addrFillSub = topAddr+1; if( pItem->isCorrelated==0 ){ /* If the subquery is not correlated and if we are not inside of ** a trigger, then we only need to compute the value of the subquery ** once. */ onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); }else{ VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); } sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); VdbeComment((v, "end %s", pItem->pTab->zName)); sqlite3VdbeChangeP1(v, topAddr, retAddr); sqlite3ClearTempRegCache(pParse); } if( db->mallocFailed ) goto select_end; pParse->nHeight -= sqlite3SelectExprHeight(p); } #endif /* Various elements of the SELECT copied into local variables for ** convenience */ pEList = p->pEList; pWhere = p->pWhere; pGroupBy = p->pGroupBy; pHaving = p->pHaving; sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x400 ){ SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and ** if the select-list is the same as the ORDER BY list, then this query ** can be rewritten as a GROUP BY. In other words, this: ** ** SELECT DISTINCT xyz FROM ... ORDER BY xyz ** ** is transformed to: ** ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz ** ** The second form is preferred as a single index (or temp-table) may be ** used for both the ORDER BY and DISTINCT processing. As originally ** written the query must use a temp-table for at least one of the ORDER ** BY and DISTINCT, and an index or separate temp-table for the other. */ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 ){ p->selFlags &= ~SF_Distinct; pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); /* Notice that even thought SF_Distinct has been cleared from p->selFlags, ** the sDistinct.isTnct is still set. Hence, isTnct represents the ** original setting of the SF_Distinct flag, not the current setting */ assert( sDistinct.isTnct ); } /* If there is an ORDER BY clause, then create an ephemeral index to ** do the sorting. But this sorting ephemeral index might end up ** being unused if the data can be extracted in pre-sorted order. ** If that is the case, then the OP_OpenEphemeral instruction will be ** changed to an OP_Noop once we figure out that the sorting index is ** not needed. The sSort.addrSortIndex variable is used to facilitate ** that change. */ if( sSort.pOrderBy ){ KeyInfo *pKeyInfo; pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); sSort.iECursor = pParse->nTab++; sSort.addrSortIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
︙ | ︙ | |||
5044 5045 5046 5047 5048 5049 5050 | p->nSelectRow = LARGEST_INT64; computeLimitRegisters(pParse, p, iEnd); if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; sSort.sortFlags |= SORTFLAG_UseSorter; } | | | | | | 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 | p->nSelectRow = LARGEST_INT64; computeLimitRegisters(pParse, p, iEnd); if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; sSort.sortFlags |= SORTFLAG_UseSorter; } /* Open an ephemeral index to use for the distinct set. */ if( p->selFlags & SF_Distinct ){ sDistinct.tabTnct = pParse->nTab++; sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sDistinct.tabTnct, 0, 0, (char*)keyInfoFromExprList(pParse, p->pEList,0,0), P4_KEYINFO); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; }else{ sDistinct.eTnctType = WHERE_DISTINCT_NOOP; } if( !isAgg && pGroupBy==0 ){ |
︙ | ︙ | |||
5129 5130 5131 5132 5133 5134 5135 | pItem->u.x.iAlias = 0; } if( p->nSelectRow>100 ) p->nSelectRow = 100; }else{ p->nSelectRow = 1; } | < | | 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 | pItem->u.x.iAlias = 0; } if( p->nSelectRow>100 ) p->nSelectRow = 100; }else{ p->nSelectRow = 1; } /* If there is both a GROUP BY and an ORDER BY clause and they are ** identical, then it may be possible to disable the ORDER BY clause ** on the grounds that the GROUP BY will cause elements to come out ** in the correct order. It also may not - the GROUP BY might use a ** database index that causes rows to be grouped together as required ** but not actually sorted. Either way, record the fact that the ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp ** variable. */ if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ orderByGrp = 1; } |
︙ | ︙ | |||
5311 5312 5313 5314 5315 5316 5317 | ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); sqlite3ExprCacheClear(pParse); if( groupBySort ){ | | > | 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 | ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); sqlite3ExprCacheClear(pParse); if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut, sortPTab); } for(j=0; j<pGroupBy->nExpr; j++){ if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); }else{ sAggInfo.directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); |
︙ | ︙ | |||
5383 5384 5385 5386 5387 5388 5389 | */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); | | > | 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 | */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); VdbeComment((v, "Groupby result generator entry point")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); finalizeAggFunctions(pParse, &sAggInfo); sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, p->pEList, -1, &sSort, &sDistinct, pDest, addrOutputRow+1, addrSetAbort); |
︙ | ︙ | |||
5547 5548 5549 5550 5551 5552 5553 | explainTempTable(pParse, "DISTINCT"); } /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ | > | | 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 | explainTempTable(pParse, "DISTINCT"); } /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); |
︙ | ︙ | |||
5579 5580 5581 5582 5583 5584 5585 | sqlite3DbFree(db, sAggInfo.aFunc); #if SELECTTRACE_ENABLED SELECTTRACE(1,pParse,p,("end processing\n")); pParse->nSelectIndent--; #endif return rc; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 5600 5601 5602 5603 5604 5605 5606 | sqlite3DbFree(db, sAggInfo.aFunc); #if SELECTTRACE_ENABLED SELECTTRACE(1,pParse,p,("end processing\n")); pParse->nSelectIndent--; #endif return rc; } |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
3166 3167 3168 3169 3170 3171 3172 | void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) void *sqlite3TestTextToPtr(const char*); #endif #if defined(SQLITE_DEBUG) | < < < < | 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 | void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) void *sqlite3TestTextToPtr(const char*); #endif #if defined(SQLITE_DEBUG) void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); void sqlite3TreeViewSelect(TreeView*, const Select*, u8); #endif void sqlite3SetString(char **, sqlite3*, const char*); |
︙ | ︙ |
Added src/treeview.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains C code to implement the TreeView debugging routines. ** These routines print a parse tree to standard output for debugging and ** analysis. ** ** The interfaces in this file is only available when compiling ** with SQLITE_DEBUG. */ #include "sqliteInt.h" #ifdef SQLITE_DEBUG /* ** Add a new subitem to the tree. The moreToFollow flag indicates that this ** is not the last item in the tree. */ static TreeView *sqlite3TreeViewPush(TreeView *p, u8 moreToFollow){ if( p==0 ){ p = sqlite3_malloc64( sizeof(*p) ); if( p==0 ) return 0; memset(p, 0, sizeof(*p)); }else{ p->iLevel++; } assert( moreToFollow==0 || moreToFollow==1 ); if( p->iLevel<sizeof(p->bLine) ) p->bLine[p->iLevel] = moreToFollow; return p; } /* ** Finished with one layer of the tree */ static void sqlite3TreeViewPop(TreeView *p){ if( p==0 ) return; p->iLevel--; if( p->iLevel<0 ) sqlite3_free(p); } /* ** Generate a single line of output for the tree, with a prefix that contains ** all the appropriate tree lines */ static void sqlite3TreeViewLine(TreeView *p, const char *zFormat, ...){ va_list ap; int i; StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); if( p ){ for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){ sqlite3StrAccumAppend(&acc, p->bLine[i] ? "| " : " ", 4); } sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4); } va_start(ap, zFormat); sqlite3VXPrintf(&acc, 0, zFormat, ap); va_end(ap); if( zBuf[acc.nChar-1]!='\n' ) sqlite3StrAccumAppend(&acc, "\n", 1); sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } /* ** Shorthand for starting a new tree item that consists of a single label */ static void sqlite3TreeViewItem(TreeView *p, const char *zLabel,u8 moreFollows){ p = sqlite3TreeViewPush(p, moreFollows); sqlite3TreeViewLine(p, "%s", zLabel); } /* ** Generate a human-readable description of a the Select object. */ void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ int n = 0; pView = sqlite3TreeViewPush(pView, moreToFollow); sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p) selFlags=0x%x", ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p, p->selFlags ); if( p->pSrc && p->pSrc->nSrc ) n++; if( p->pWhere ) n++; if( p->pGroupBy ) n++; if( p->pHaving ) n++; if( p->pOrderBy ) n++; if( p->pLimit ) n++; if( p->pOffset ) n++; if( p->pPrior ) n++; sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); if( p->pSrc && p->pSrc->nSrc ){ int i; pView = sqlite3TreeViewPush(pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; StrAccum x; char zLine[100]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); if( pItem->zDatabase ){ sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); }else if( pItem->zName ){ sqlite3XPrintf(&x, 0, " %s", pItem->zName); } if( pItem->pTab ){ sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); } if( pItem->zAlias ){ sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); } if( pItem->jointype & JT_LEFT ){ sqlite3XPrintf(&x, 0, " LEFT-JOIN"); } sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); if( pItem->pSelect ){ sqlite3TreeViewSelect(pView, pItem->pSelect, 0); } sqlite3TreeViewPop(pView); } sqlite3TreeViewPop(pView); } if( p->pWhere ){ sqlite3TreeViewItem(pView, "WHERE", (n--)>0); sqlite3TreeViewExpr(pView, p->pWhere, 0); sqlite3TreeViewPop(pView); } if( p->pGroupBy ){ sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); } if( p->pHaving ){ sqlite3TreeViewItem(pView, "HAVING", (n--)>0); sqlite3TreeViewExpr(pView, p->pHaving, 0); sqlite3TreeViewPop(pView); } if( p->pOrderBy ){ sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); } if( p->pLimit ){ sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); sqlite3TreeViewExpr(pView, p->pLimit, 0); sqlite3TreeViewPop(pView); } if( p->pOffset ){ sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); sqlite3TreeViewExpr(pView, p->pOffset, 0); sqlite3TreeViewPop(pView); } if( p->pPrior ){ const char *zOp = "UNION"; switch( p->op ){ case TK_ALL: zOp = "UNION ALL"; break; case TK_INTERSECT: zOp = "INTERSECT"; break; case TK_EXCEPT: zOp = "EXCEPT"; break; } sqlite3TreeViewItem(pView, zOp, (n--)>0); sqlite3TreeViewSelect(pView, p->pPrior, 0); sqlite3TreeViewPop(pView); } sqlite3TreeViewPop(pView); } /* ** Generate a human-readable explanation of an expression tree. */ void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ const char *zBinOp = 0; /* Binary operator */ const char *zUniOp = 0; /* Unary operator */ pView = sqlite3TreeViewPush(pView, moreToFollow); if( pExpr==0 ){ sqlite3TreeViewLine(pView, "nil"); sqlite3TreeViewPop(pView); return; } switch( pExpr->op ){ case TK_AGG_COLUMN: { sqlite3TreeViewLine(pView, "AGG{%d:%d}", pExpr->iTable, pExpr->iColumn); break; } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn); }else{ sqlite3TreeViewLine(pView, "{%d:%d}", pExpr->iTable, pExpr->iColumn); } break; } case TK_INTEGER: { if( pExpr->flags & EP_IntValue ){ sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); }else{ sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); } break; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); break; } #endif case TK_STRING: { sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); break; } case TK_NULL: { sqlite3TreeViewLine(pView,"NULL"); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); break; } #endif case TK_VARIABLE: { sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", pExpr->u.zToken, pExpr->iColumn); break; } case TK_REGISTER: { sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); break; } case TK_AS: { sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_ID: { sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: zBinOp = "LT"; break; case TK_LE: zBinOp = "LE"; break; case TK_GT: zBinOp = "GT"; break; case TK_GE: zBinOp = "GE"; break; case TK_NE: zBinOp = "NE"; break; case TK_EQ: zBinOp = "EQ"; break; case TK_IS: zBinOp = "IS"; break; case TK_ISNOT: zBinOp = "ISNOT"; break; case TK_AND: zBinOp = "AND"; break; case TK_OR: zBinOp = "OR"; break; case TK_PLUS: zBinOp = "ADD"; break; case TK_STAR: zBinOp = "MUL"; break; case TK_MINUS: zBinOp = "SUB"; break; case TK_REM: zBinOp = "REM"; break; case TK_BITAND: zBinOp = "BITAND"; break; case TK_BITOR: zBinOp = "BITOR"; break; case TK_SLASH: zBinOp = "DIV"; break; case TK_LSHIFT: zBinOp = "LSHIFT"; break; case TK_RSHIFT: zBinOp = "RSHIFT"; break; case TK_CONCAT: zBinOp = "CONCAT"; break; case TK_DOT: zBinOp = "DOT"; break; case TK_UMINUS: zUniOp = "UMINUS"; break; case TK_UPLUS: zUniOp = "UPLUS"; break; case TK_BITNOT: zUniOp = "BITNOT"; break; case TK_NOT: zUniOp = "NOT"; break; case TK_ISNULL: zUniOp = "ISNULL"; break; case TK_NOTNULL: zUniOp = "NOTNULL"; break; case TK_COLLATE: { sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_AGG_FUNCTION: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; }else{ pFarg = pExpr->x.pList; } if( pExpr->op==TK_AGG_FUNCTION ){ sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q", pExpr->op2, pExpr->u.zToken); }else{ sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken); } if( pFarg ){ sqlite3TreeViewExprList(pView, pFarg, 0, 0); } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: { sqlite3TreeViewLine(pView, "EXISTS-expr"); sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); break; } case TK_SELECT: { sqlite3TreeViewLine(pView, "SELECT-expr"); sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); break; } case TK_IN: { sqlite3TreeViewLine(pView, "IN"); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); }else{ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); } break; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { Expr *pX = pExpr->pLeft; Expr *pY = pExpr->x.pList->a[0].pExpr; Expr *pZ = pExpr->x.pList->a[1].pExpr; sqlite3TreeViewLine(pView, "BETWEEN"); sqlite3TreeViewExpr(pView, pX, 1); sqlite3TreeViewExpr(pView, pY, 1); sqlite3TreeViewExpr(pView, pZ, 0); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. */ sqlite3TreeViewLine(pView, "%s(%d)", pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); break; } case TK_CASE: { sqlite3TreeViewLine(pView, "CASE"); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { const char *zType = "unk"; switch( pExpr->affinity ){ case OE_Rollback: zType = "rollback"; break; case OE_Abort: zType = "abort"; break; case OE_Fail: zType = "fail"; break; case OE_Ignore: zType = "ignore"; break; } sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); break; } #endif default: { sqlite3TreeViewLine(pView, "op=%d", pExpr->op); break; } } if( zBinOp ){ sqlite3TreeViewLine(pView, "%s", zBinOp); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); sqlite3TreeViewExpr(pView, pExpr->pRight, 0); }else if( zUniOp ){ sqlite3TreeViewLine(pView, "%s", zUniOp); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); } sqlite3TreeViewPop(pView); } /* ** Generate a human-readable explanation of an expression list. */ void sqlite3TreeViewExprList( TreeView *pView, const ExprList *pList, u8 moreToFollow, const char *zLabel ){ int i; pView = sqlite3TreeViewPush(pView, moreToFollow); if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; if( pList==0 ){ sqlite3TreeViewLine(pView, "%s (empty)", zLabel); }else{ sqlite3TreeViewLine(pView, "%s", zLabel); for(i=0; i<pList->nExpr; i++){ sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1); } } sqlite3TreeViewPop(pView); } #endif /* SQLITE_DEBUG */ |
Changes to src/where.c.
︙ | ︙ | |||
14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". */ #include "sqliteInt.h" #include "whereInt.h" /* ** Return the estimated number of output rows from a WHERE clause */ u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ return sqlite3LogEstToInt(pWInfo->nRowOut); } | > > > > > > > > > | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". */ #include "sqliteInt.h" #include "whereInt.h" /* Forward declaration of methods */ static int whereLoopResize(sqlite3*, WhereLoop*, int); /* Test variable that can be set to enable WHERE tracing */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) /***/ int sqlite3WhereTrace = 0; #endif /* ** Return the estimated number of output rows from a WHERE clause */ u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ return sqlite3LogEstToInt(pWInfo->nRowOut); } |
︙ | ︙ | |||
123 124 125 126 127 128 129 130 | whereOrInsert_done: p->prereq = prereq; p->rRun = rRun; if( p->nOut>nOut ) p->nOut = nOut; return 1; } /* | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | whereOrInsert_done: p->prereq = prereq; p->rRun = rRun; if( p->nOut>nOut ) p->nOut = nOut; return 1; } /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ int i; assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); for(i=0; i<pMaskSet->n; i++){ if( pMaskSet->ix[i]==iCursor ){ return MASKBIT(i); } } |
︙ | ︙ | |||
295 296 297 298 299 300 301 | ** array will never overflow. */ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); pMaskSet->ix[pMaskSet->n++] = iCursor; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | ** array will never overflow. */ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); pMaskSet->ix[pMaskSet->n++] = iCursor; } /* ** Advance to the next WhereTerm that matches according to the criteria ** established when the pScan object was initialized by whereScanInit(). ** Return NULL if there are no more matching WhereTerms. */ static WhereTerm *whereScanNext(WhereScan *pScan){ int iCur; /* The cursor on the LHS of the term */ |
︙ | ︙ | |||
580 581 582 583 584 585 586 | ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" ** then try for the one with no dependencies on <expr> - in other words where ** <expr> is a constant expression of some kind. Only return entries of ** the form "X <op> Y" where Y is a column in another table if no terms of ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS ** exist, try to return a term that does not use WO_EQUIV. */ | | | 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" ** then try for the one with no dependencies on <expr> - in other words where ** <expr> is a constant expression of some kind. Only return entries of ** the form "X <op> Y" where Y is a column in another table if no terms of ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS ** exist, try to return a term that does not use WO_EQUIV. */ WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ |
︙ | ︙ | |||
607 608 609 610 611 612 613 | if( pResult==0 ) pResult = p; } p = whereScanNext(&scan); } return pResult; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | if( pResult==0 ) pResult = p; } p = whereScanNext(&scan); } return pResult; } /* ** This function searches pList for an entry that matches the iCol-th column ** of index pIdx. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. */ |
︙ | ︙ | |||
1585 1586 1587 1588 1589 1590 1591 | return -1; } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. ** | | | | 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | return -1; } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. ** ** A DISTINCT list is redundant if any subset of the columns in the ** DISTINCT list are collectively unique and individually non-null. */ static int isDistinctRedundant( Parse *pParse, /* Parsing context */ SrcList *pTabList, /* The FROM clause */ WhereClause *pWC, /* The WHERE clause */ ExprList *pDistinct /* The result set that needs to be DISTINCT */ ){ |
︙ | ︙ | |||
1632 1633 1634 1635 1636 1637 1638 | ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !IsUniqueIndex(pIdx) ) continue; for(i=0; i<pIdx->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; | | | 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 | ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !IsUniqueIndex(pIdx) ) continue; for(i=0; i<pIdx->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; if( 0==sqlite3WhereFindTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ break; } } } if( i==pIdx->nKeyCol ){ |
︙ | ︙ | |||
2754 2755 2756 2757 2758 2759 2760 | WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); } assert( pBuilder->nRecValid==nRecValid ); return rc; } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 | WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); } assert( pBuilder->nRecValid==nRecValid ); return rc; } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ #ifdef WHERETRACE_ENABLED /* ** Print the content of a WhereTerm object */ static void whereTermPrint(WhereTerm *pTerm, int iTerm){ if( pTerm==0 ){ |
︙ | ︙ | |||
4401 4402 4403 4404 4405 4406 4407 | int i; for(i=0; i<pWInfo->nLevel; i++){ WhereLevel *pLevel = &pWInfo->a[i]; if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ sqlite3DbFree(db, pLevel->u.in.aInLoop); } } | | | 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 | int i; for(i=0; i<pWInfo->nLevel; i++){ WhereLevel *pLevel = &pWInfo->a[i]; if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ sqlite3DbFree(db, pLevel->u.in.aInLoop); } } sqlite3WhereClauseClear(&pWInfo->sWC); while( pWInfo->pLoops ){ WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } sqlite3DbFree(db, pWInfo); } |
︙ | ︙ | |||
5661 5662 5663 5664 5665 5666 5667 | WhereLoop *pNew; /* Loop over the tables in the join, from left to right */ pNew = pBuilder->pNew; whereLoopInit(pNew); for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ pNew->iTab = iTab; | | | 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 | WhereLoop *pNew; /* Loop over the tables in the join, from left to right */ pNew = pBuilder->pNew; whereLoopInit(pNew); for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ pNew->iTab = iTab; pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){ mExtra = mPrior; } priorJoinType = pItem->jointype; if( IsVirtual(pItem->pTab) ){ rc = whereLoopAddVirtual(pBuilder, mExtra); }else{ |
︙ | ︙ | |||
5782 5783 5784 5785 5786 5787 5788 | ** loops. */ for(i=0; i<nOrderBy; i++){ if( MASKBIT(i) & obSat ) continue; pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); if( pOBExpr->op!=TK_COLUMN ) continue; if( pOBExpr->iTable!=iCur ) continue; | | | 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 | ** loops. */ for(i=0; i<nOrderBy; i++){ if( MASKBIT(i) & obSat ) continue; pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); if( pOBExpr->op!=TK_COLUMN ) continue; if( pOBExpr->iTable!=iCur ) continue; pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, ~ready, WO_EQ|WO_ISNULL|WO_IS, 0); if( pTerm==0 ) continue; if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ const char *z1, *z2; pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); if( !pColl ) pColl = db->pDfltColl; z1 = pColl->zName; |
︙ | ︙ | |||
5919 5920 5921 5922 5923 5924 5925 | if( isOrderDistinct ){ orderDistinctMask |= pLoop->maskSelf; for(i=0; i<nOrderBy; i++){ Expr *p; Bitmask mTerm; if( MASKBIT(i) & obSat ) continue; p = pOrderBy->a[i].pExpr; | | | 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 | if( isOrderDistinct ){ orderDistinctMask |= pLoop->maskSelf; for(i=0; i<nOrderBy; i++){ Expr *p; Bitmask mTerm; if( MASKBIT(i) & obSat ) continue; p = pOrderBy->a[i].pExpr; mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; if( (mTerm&~orderDistinctMask)==0 ){ obSat |= MASKBIT(i); } } } } /* End the loop over all WhereLoops from outer-most down to inner-most */ |
︙ | ︙ | |||
6398 6399 6400 6401 6402 6403 6404 | if( IsVirtual(pTab) ) return 0; if( pItem->zIndexedBy ) return 0; iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pLoop->nSkip = 0; | | | | | 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 | if( IsVirtual(pTab) ) return 0; if( pItem->zIndexedBy ) return 0; iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pLoop->nSkip = 0; pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); if( pTerm ){ testcase( pTerm->eOperator & WO_IS ); pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; pLoop->aLTerm[0] = pTerm; pLoop->nLTerm = 1; pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int opMask; assert( pLoop->aLTermSpace==pLoop->aLTerm ); if( !IsUniqueIndex(pIdx) || pIdx->pPartIdxWhere!=0 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) ) continue; opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; for(j=0; j<pIdx->nKeyCol; j++){ pTerm = sqlite3WhereFindTerm(pWC, iCur, pIdx->aiColumn[j], 0, opMask, pIdx); if( pTerm==0 ) break; testcase( pTerm->eOperator & WO_IS ); pLoop->aLTerm[j] = pTerm; } if( j!=pIdx->nKeyCol ) continue; pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ pLoop->wsFlags |= WHERE_IDX_ONLY; } pLoop->nLTerm = j; pLoop->u.btree.nEq = j; pLoop->u.btree.pIndex = pIdx; /* TUNING: Cost of a unique index lookup is 15 */ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ break; } } if( pLoop->wsFlags ){ pLoop->nOut = (LogEst)1; pWInfo->a[0].pWLoop = pLoop; pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); pWInfo->a[0].iTabCur = iCur; pWInfo->nRowOut = 1; if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } #ifdef SQLITE_DEBUG |
︙ | ︙ | |||
6632 6633 6634 6635 6636 6637 6638 | sWLB.pNew->cId = '*'; #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); | | | | 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 | sWLB.pNew->cId = '*'; #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); /* Special case: a WHERE clause that is constant. Evaluate the ** expression and either jump over all of the code or fall thru. */ for(ii=0; ii<sWLB.pWC->nTerm; ii++){ if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, |
︙ | ︙ | |||
6678 6679 6680 6681 6682 6683 6684 | for(ii=0; ii<pTabList->nSrc; ii++){ createMask(pMaskSet, pTabList->a[ii].iCursor); } #ifndef NDEBUG { Bitmask toTheLeft = 0; for(ii=0; ii<pTabList->nSrc; ii++){ | | | < < < < | | < < < | < | | | | | | 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 | for(ii=0; ii<pTabList->nSrc; ii++){ createMask(pMaskSet, pTabList->a[ii].iCursor); } #ifndef NDEBUG { Bitmask toTheLeft = 0; for(ii=0; ii<pTabList->nSrc; ii++){ Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); assert( (m-1)==toTheLeft ); toTheLeft |= m; } } #endif /* Analyze all of the subexpressions. */ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); if( db->mallocFailed ) goto whereBeginError; if( wctrlFlags & WHERE_WANT_DISTINCT ){ if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ /* The DISTINCT marking is pointless. Ignore it. */ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; }else if( pOrderBy==0 ){ /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; pWInfo->pOrderBy = pResultSet; } } /* Construct the WhereLoop objects */ WHERETRACE(0xffff,("*** Optimizer Start ***\n")); #if defined(WHERETRACE_ENABLED) if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ int i; for(i=0; i<sWLB.pWC->nTerm; i++){ whereTermPrint(&sWLB.pWC->a[i], i); } } #endif if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ rc = whereLoopAddAll(&sWLB); if( rc ) goto whereBeginError; #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ WhereLoop *p; int i; static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ p->cId = zLabel[i%sizeof(zLabel)]; whereLoopPrint(p, sWLB.pWC); } } #endif wherePathSolver(pWInfo, 0); if( db->mallocFailed ) goto whereBeginError; if( pWInfo->pOrderBy ){ wherePathSolver(pWInfo, pWInfo->nRowOut+1); if( db->mallocFailed ) goto whereBeginError; } } if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ pWInfo->revMask = (Bitmask)(-1); } if( pParse->nErr || NEVER(db->mallocFailed) ){ goto whereBeginError; } #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace ){ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); if( pWInfo->nOBSat>0 ){ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); } switch( pWInfo->eDistinct ){ case WHERE_DISTINCT_UNIQUE: { |
︙ | ︙ | |||
6780 6781 6782 6783 6784 6785 6786 | } #endif /* Attempt to omit tables from the join that do not effect the result */ if( pWInfo->nLevel>=2 && pResultSet!=0 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) ){ | | | > > | 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 | } #endif /* Attempt to omit tables from the join that do not effect the result */ if( pWInfo->nLevel>=2 && pResultSet!=0 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) ){ Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); if( sWLB.pOrderBy ){ tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); } while( pWInfo->nLevel>=2 ){ WhereTerm *pTerm, *pEnd; pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 && (pLoop->wsFlags & WHERE_ONEROW)==0 ){ |
︙ | ︙ | |||
6812 6813 6814 6815 6816 6817 6818 | } WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** The one-pass algorithm only works if the WHERE clause constrains | | < | 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 | } WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** The one-pass algorithm only works if the WHERE clause constrains ** the statement to update or delete a single row. */ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ pWInfo->okOnePass = 1; if( HasRowid(pTabList->a[0].pTab) ){ pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; } } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ Table *pTab; /* Table to open */ int iDb; /* Index of database containing table/index */ struct SrcList_item *pTabItem; pTabItem = &pTabList->a[pLevel->iFrom]; pTab = pTabItem->pTab; |
︙ | ︙ | |||
6915 6916 6917 6918 6919 6920 6921 | ){ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ } VdbeComment((v, "%s", pIx->zName)); } } if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); | < | 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 | ){ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ } VdbeComment((v, "%s", pIx->zName)); } } if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if( db->mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. |
︙ | ︙ | |||
6937 6938 6939 6940 6941 6942 6943 | #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if( db->mallocFailed ) goto whereBeginError; } #endif | | | | | 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 | #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if( db->mallocFailed ) goto whereBeginError; } #endif addrExplain = sqlite3WhereExplainOneScan( pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags ); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); pWInfo->iContinue = pLevel->addrCont; if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); } } /* Done. */ VdbeModuleComment((v, "Begin WHERE-core")); return pWInfo; |
︙ | ︙ |
Changes to src/whereInt.h.
︙ | ︙ | |||
15 16 17 18 19 20 21 | ** a separate source file for easier editing. */ /* ** Trace output macros */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) | | | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ** a separate source file for easier editing. */ /* ** Trace output macros */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) /***/ int sqlite3WhereTrace; #endif #if defined(SQLITE_DEBUG) \ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE)) # define WHERETRACE(K,X) if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X # define WHERETRACE_ENABLED 1 #else # define WHERETRACE(K,X) |
︙ | ︙ | |||
157 158 159 160 161 162 163 | */ #define N_OR_COST 3 struct WhereOrSet { u16 n; /* Number of valid a[] entries */ WhereOrCost a[N_OR_COST]; /* Set of best costs */ }; | < < < < | 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | */ #define N_OR_COST 3 struct WhereOrSet { u16 n; /* Number of valid a[] entries */ WhereOrCost a[N_OR_COST]; /* Set of best costs */ }; /* ** Each instance of this object holds a sequence of WhereLoop objects ** that implement some or all of a query plan. ** ** Think of each WhereLoop object as a node in a graph with arcs ** showing dependencies and costs for travelling between nodes. (That is ** not a completely accurate description because WhereLoop costs are a |
︙ | ︙ | |||
368 369 370 371 372 373 374 375 376 377 378 379 380 381 | ** no gaps. */ struct WhereMaskSet { int n; /* Number of assigned cursor values */ int ix[BMS]; /* Cursor assigned to each bit */ }; /* ** This object is a convenience wrapper holding all information needed ** to construct WhereLoop objects for a particular query. */ struct WhereLoopBuilder { WhereInfo *pWInfo; /* Information about this WHERE */ WhereClause *pWC; /* WHERE clause terms */ | > > > > > | 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | ** no gaps. */ struct WhereMaskSet { int n; /* Number of assigned cursor values */ int ix[BMS]; /* Cursor assigned to each bit */ }; /* ** Initialize a WhereMaskSet object */ #define initMaskSet(P) (P)->n=0 /* ** This object is a convenience wrapper holding all information needed ** to construct WhereLoop objects for a particular query. */ struct WhereLoopBuilder { WhereInfo *pWInfo; /* Information about this WHERE */ WhereClause *pWC; /* WHERE clause terms */ |
︙ | ︙ | |||
418 419 420 421 422 423 424 425 426 427 428 429 430 431 | int iBreak; /* Jump here to break out of the loop */ int savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ int aiCurOnePass[2]; /* OP_OpenWrite cursors for the ONEPASS opt */ WhereMaskSet sMaskSet; /* Map cursor numbers to bitmasks */ WhereClause sWC; /* Decomposition of the WHERE clause */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; /* ** Bitmasks for the operators on WhereTerm objects. These are all ** operators that are of interest to the query planner. An ** OR-ed combination of these values can be used when searching for ** particular WhereTerms within a WhereClause. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 | int iBreak; /* Jump here to break out of the loop */ int savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ int aiCurOnePass[2]; /* OP_OpenWrite cursors for the ONEPASS opt */ WhereMaskSet sMaskSet; /* Map cursor numbers to bitmasks */ WhereClause sWC; /* Decomposition of the WHERE clause */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; /* ** Private interfaces - callable only by other where.c routines. ** ** where.c: */ Bitmask sqlite3WhereGetMask(WhereMaskSet*,int); WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ); /* wherecode.c: */ #ifndef SQLITE_OMIT_EXPLAIN int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ int iLevel, /* Value for "level" column of output */ int iFrom, /* Value for "from" column of output */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ); #else # define sqlite3WhereExplainOneScan(u,v,w,x,y,z) 0 #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ); #else # define sqlite3WhereAddScanStatus(a, b, c, d) ((void)d) #endif Bitmask sqlite3WhereCodeOneLoopStart( WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ Bitmask notReady /* Which tables are currently available */ ); /* whereexpr.c: */ void sqlite3WhereClauseInit(WhereClause*,WhereInfo*); void sqlite3WhereClauseClear(WhereClause*); void sqlite3WhereSplit(WhereClause*,Expr*,u8); Bitmask sqlite3WhereExprUsage(WhereMaskSet*, Expr*); Bitmask sqlite3WhereExprListUsage(WhereMaskSet*, ExprList*); void sqlite3WhereExprAnalyze(SrcList*, WhereClause*); /* ** Bitmasks for the operators on WhereTerm objects. These are all ** operators that are of interest to the query planner. An ** OR-ed combination of these values can be used when searching for ** particular WhereTerms within a WhereClause. */ |
︙ | ︙ |
Added src/wherecode.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 | /* ** 2015-06-06 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was split off from where.c on 2015-06-06 in order to reduce the ** size of where.c and make it easier to edit. This file contains the routines ** that actually generate the bulk of the WHERE loop code. The original where.c ** file retains the code that does query planning and analysis. */ #include "sqliteInt.h" #include "whereInt.h" #ifndef SQLITE_OMIT_EXPLAIN /* ** This routine is a helper for explainIndexRange() below ** ** pStr holds the text of an expression that we are building up one term ** at a time. This routine adds a new term to the end of the expression. ** Terms are separated by AND so add the "AND" text for second and subsequent ** terms only. */ static void explainAppendTerm( StrAccum *pStr, /* The text expression being built */ int iTerm, /* Index of this term. First is zero */ const char *zColumn, /* Name of the column */ const char *zOp /* Name of the operator */ ){ if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); sqlite3StrAccumAppendAll(pStr, zColumn); sqlite3StrAccumAppend(pStr, zOp, 1); sqlite3StrAccumAppend(pStr, "?", 1); } /* ** Argument pLevel describes a strategy for scanning table pTab. This ** function appends text to pStr that describes the subset of table ** rows scanned by the strategy in the form of an SQL expression. ** ** For example, if the query: ** ** SELECT * FROM t1 WHERE a=1 AND b>2; ** ** is run and there is an index on (a, b), then this function returns a ** string similar to: ** ** "a=? AND b>?" */ static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->nSkip; int i, j; Column *aCol = pTab->aCol; i16 *aiColumn = pIndex->aiColumn; if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; sqlite3StrAccumAppend(pStr, " (", 2); for(i=0; i<nEq; i++){ char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; if( i>=nSkip ){ explainAppendTerm(pStr, i, z, "="); }else{ if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); sqlite3XPrintf(pStr, 0, "ANY(%s)", z); } } j = i; if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(pStr, i++, z, ">"); } if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(pStr, i, z, "<"); } sqlite3StrAccumAppend(pStr, ")", 1); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode ** is added to the output to describe the table scan strategy in pLevel. ** ** If an OP_Explain opcode is added to the VM, its address is returned. ** Otherwise, if no OP_Explain is coded, zero is returned. */ int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ int iLevel, /* Value for "level" column of output */ int iFrom, /* Value for "from" column of output */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ){ int ret = 0; #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( pParse->explain==2 ) #endif { struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ int iId = pParse->iSelectId; /* Select id (left-most output column) */ int isSearch; /* True for a SEARCH. False for SCAN. */ WhereLoop *pLoop; /* The controlling WhereLoop object */ u32 flags; /* Flags that describe this loop */ char *zMsg; /* Text to add to EQP output */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ pLoop = pLevel->pWLoop; flags = pLoop->wsFlags; if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); if( pItem->pSelect ){ sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); }else{ sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); } if( pItem->zAlias ){ sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); } if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ const char *zFmt = 0; Index *pIdx; assert( pLoop->u.btree.pIndex!=0 ); pIdx = pLoop->u.btree.pIndex; assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ if( isSearch ){ zFmt = "PRIMARY KEY"; } }else if( flags & WHERE_PARTIALIDX ){ zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; }else if( flags & WHERE_AUTO_INDEX ){ zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } if( zFmt ){ sqlite3StrAccumAppend(&str, " USING ", 7); sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); explainIndexRange(&str, pLoop, pItem->pTab); } }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ const char *zRange; if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ zRange = "(rowid=?)"; }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ zRange = "(rowid>? AND rowid<?)"; }else if( flags&WHERE_BTM_LIMIT ){ zRange = "(rowid>?)"; }else{ assert( flags&WHERE_TOP_LIMIT); zRange = "(rowid<?)"; } sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); sqlite3StrAccumAppendAll(&str, zRange); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); } #endif #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS if( pLoop->nOut>=10 ){ sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3StrAccumAppend(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); } return ret; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Configure the VM passed as the first argument with an ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to ** implement level pLvl. Argument pSrclist is a pointer to the FROM ** clause that the scan reads data from. ** ** If argument addrExplain is not 0, it must be the address of an ** OP_Explain instruction that describes the same loop. */ void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ){ const char *zObj = 0; WhereLoop *pLoop = pLvl->pWLoop; if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ zObj = pLoop->u.btree.pIndex->zName; }else{ zObj = pSrclist->a[pLvl->iFrom].zName; } sqlite3VdbeScanStatus( v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj ); } #endif /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON ** or USING clause of that join. ** ** Consider the term t2.z='ok' in the following queries: ** ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get ** the wrong answer. See ticket #813. ** ** If all the children of a term are disabled, then that term is also ** automatically disabled. In this way, terms get disabled if derived ** virtual terms are tested first. For example: ** ** x GLOB 'abc*' AND x>='abc' AND x<'acd' ** \___________/ \______/ \_____/ ** parent child1 child2 ** ** Only the parent term was in the original WHERE clause. The child1 ** and child2 terms were added by the LIKE optimization. If both of ** the virtual child terms are valid, then testing of the parent can be ** skipped. ** ** Usually the parent term is marked as TERM_CODED. But if the parent ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. ** The TERM_LIKECOND marking indicates that the term should be coded inside ** a conditional such that is only evaluated on the second pass of a ** LIKE-optimization loop, when scanning BLOBs instead of strings. */ static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ int nLoop = 0; while( pTerm && (pTerm->wtFlags & TERM_CODED)==0 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) && (pLevel->notReady & pTerm->prereqAll)==0 ){ if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ pTerm->wtFlags |= TERM_LIKECOND; }else{ pTerm->wtFlags |= TERM_CODED; } if( pTerm->iParent<0 ) break; pTerm = &pTerm->pWC->a[pTerm->iParent]; pTerm->nChild--; if( pTerm->nChild!=0 ) break; nLoop++; } } /* ** Code an OP_Affinity opcode to apply the column affinity string zAff ** to the n registers starting at base. ** ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the ** beginning and end of zAff are ignored. If all entries in zAff are ** SQLITE_AFF_BLOB, then no code gets generated. ** ** This routine makes its own copy of zAff so that the caller is free ** to modify zAff after this routine returns. */ static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ Vdbe *v = pParse->pVdbe; if( zAff==0 ){ assert( pParse->db->mallocFailed ); return; } assert( v!=0 ); /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning ** and end of the affinity string. */ while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ n--; base++; zAff++; } while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ n--; } /* Code the OP_Affinity opcode if there is anything left to do. */ if( n>0 ){ sqlite3VdbeAddOp2(v, OP_Affinity, base, n); sqlite3VdbeChangeP4(v, -1, zAff, n); sqlite3ExprCacheAffinityChange(pParse, base, n); } } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. ** ** The current value for the constraint is left in register iReg. ** ** For a constraint of the form X=expr, the expression is evaluated and its ** result is left on the stack. For constraints of the form X IN (...) ** this routine sets up a loop that will iterate over all values of X. */ static int codeEqualityTerm( Parse *pParse, /* The parsing context */ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ WhereLevel *pLevel, /* The level of the FROM clause we are working on */ int iEq, /* Index of the equality term within this level */ int bRev, /* True for reverse-order IN operations */ int iTarget /* Attempt to leave results in this register */ ){ Expr *pX = pTerm->pExpr; Vdbe *v = pParse->pVdbe; int iReg; /* Register holding results */ assert( iTarget>0 ); if( pX->op==TK_EQ || pX->op==TK_IS ){ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); }else if( pX->op==TK_ISNULL ){ iReg = iTarget; sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); #ifndef SQLITE_OMIT_SUBQUERY }else{ int eType; int iTab; struct InLoop *pIn; WhereLoop *pLoop = pLevel->pWLoop; if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 && pLoop->u.btree.pIndex->aSortOrder[iEq] ){ testcase( iEq==0 ); testcase( bRev ); bRev = !bRev; } assert( pX->op==TK_IN ); iReg = iTarget; eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); VdbeCoverageIf(v, bRev); VdbeCoverageIf(v, !bRev); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); pLoop->wsFlags |= WHERE_IN_ABLE; if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); } pLevel->u.in.nIn++; pLevel->u.in.aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); pIn = pLevel->u.in.aInLoop; if( pIn ){ pIn += pLevel->u.in.nIn - 1; pIn->iCur = iTab; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); }else{ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); } pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); }else{ pLevel->u.in.nIn = 0; } #endif } disableTerm(pLevel, pTerm); return iReg; } /* ** Generate code that will evaluate all == and IN constraints for an ** index scan. ** ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 ** The index has as many as three equality constraints, but in this ** example, the third "c" value is an inequality. So only two ** constraints are coded. This routine will generate code to evaluate ** a==5 and b IN (1,2,3). The current values for a and b will be stored ** in consecutive registers and the index of the first register is returned. ** ** In the example above nEq==2. But this subroutine works for any value ** of nEq including 0. If nEq==0, this routine is nearly a no-op. ** The only thing it does is allocate the pLevel->iMem memory cell and ** compute the affinity string. ** ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that ** occurs after the nEq quality constraints. ** ** This routine allocates a range of nEq+nExtraReg memory cells and returns ** the index of the first memory cell in that range. The code that ** calls this routine will use that memory range to store keys for ** start and termination conditions of the loop. ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. ** ** Before returning, *pzAff is set to point to a buffer containing a ** copy of the column affinity string of the index allocated using ** sqlite3DbMalloc(). Except, entries in the copy of the string associated ** with equality constraints that use BLOB or NONE affinity are set to ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: ** ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; ** ** In the example above, the index on t1(a) has TEXT affinity. But since ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_BLOB. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ int bRev, /* Reverse the order of IN operators */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ u16 nEq; /* The number of == or IN constraints to code */ u16 nSkip; /* Number of left-most columns to skip */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ WhereTerm *pTerm; /* A single constraint term */ WhereLoop *pLoop; /* The WhereLoop object */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ pLoop = pLevel->pWLoop; assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); nEq = pLoop->u.btree.nEq; nSkip = pLoop->nSkip; pIdx = pLoop->u.btree.pIndex; assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = pLoop->u.btree.nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); if( !zAff ){ pParse->db->mallocFailed = 1; } if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); j = sqlite3VdbeAddOp0(v, OP_Goto); pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), iIdxCur, 0, regBase, nSkip); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); sqlite3VdbeJumpHere(v, j); for(j=0; j<nSkip; j++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); assert( pIdx->aiColumn[j]>=0 ); VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); } } /* Evaluate the equality constraints */ assert( zAff==0 || (int)strlen(zAff)>=nEq ); for(j=nSkip; j<nEq; j++){ int r1; pTerm = pLoop->aLTerm[j]; assert( pTerm!=0 ); /* The following testcase is true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ Expr *pRight = pTerm->pExpr->pRight; if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); VdbeCoverage(v); } if( zAff ){ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ zAff[j] = SQLITE_AFF_BLOB; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ zAff[j] = SQLITE_AFF_BLOB; } } } } *pzAff = zAff; return regBase; } /* ** If the most recently coded instruction is a constant range contraint ** that originated from the LIKE optimization, then change the P3 to be ** pLoop->iLikeRepCntr and set P5. ** ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range ** expression: "x>='ABC' AND x<'abd'". But this requires that the range ** scan loop run twice, once for strings and a second time for BLOBs. ** The OP_String opcodes on the second pass convert the upper and lower ** bound string contants to blobs. This routine makes the necessary changes ** to the OP_String opcodes for that to happen. */ static void whereLikeOptimizationStringFixup( Vdbe *v, /* prepared statement under construction */ WhereLevel *pLevel, /* The loop that contains the LIKE operator */ WhereTerm *pTerm /* The upper or lower bound just coded */ ){ if( pTerm->wtFlags & TERM_LIKEOPT ){ VdbeOp *pOp; assert( pLevel->iLikeRepCntr>0 ); pOp = sqlite3VdbeGetOp(v, -1); assert( pOp!=0 ); assert( pOp->opcode==OP_String8 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); pOp->p3 = pLevel->iLikeRepCntr; pOp->p5 = 1; } } /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ Bitmask sqlite3WhereCodeOneLoopStart( WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ Bitmask notReady /* Which tables are currently available */ ){ int j, k; /* Loop counters */ int iCur; /* The VDBE cursor for the table */ int addrNxt; /* Where to jump to continue with the next IN case */ int omitTable; /* True if we use the index only */ int bRev; /* True if we need to scan in reverse order */ WhereLevel *pLevel; /* The where level to be coded */ WhereLoop *pLoop; /* The WhereLoop object being coded */ WhereClause *pWC; /* Decomposition of the entire WHERE clause */ WhereTerm *pTerm; /* A WHERE clause term */ Parse *pParse; /* Parsing context */ sqlite3 *db; /* Database connection */ Vdbe *v; /* The prepared stmt under constructions */ struct SrcList_item *pTabItem; /* FROM clause term being coded */ int addrBrk; /* Jump here to break out of the loop */ int addrCont; /* Jump here to continue with next cycle */ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ int iReleaseReg = 0; /* Temp register to free before returning */ pParse = pWInfo->pParse; v = pParse->pVdbe; pWC = &pWInfo->sWC; db = pParse->db; pLevel = &pWInfo->a[iLevel]; pLoop = pLevel->pWLoop; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; iCur = pTabItem->iCursor; pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); bRev = (pWInfo->revMask>>iLevel)&1; omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); /* Create labels for the "break" and "continue" instructions ** for the current loop. Jump to addrBrk to break out of a loop. ** Jump to cont to go immediately to the next iteration of the ** loop. ** ** When there is an IN operator, we also have a "addrNxt" label that ** means to continue with the next IN value combination. When ** there are no IN operators in the constraints, the "addrNxt" label ** is the same as "addrBrk". */ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); /* If this is the right table of a LEFT OUTER JOIN, allocate and ** initialize a memory cell that records if this table matches any ** row of the left table of the join. */ if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ pLevel->iLeftJoin = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); VdbeComment((v, "init LEFT JOIN no-match flag")); } /* Special case of a FROM clause subquery implemented as a co-routine */ if( pTabItem->viaCoroutine ){ int regYield = pTabItem->regReturn; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); VdbeCoverage(v); VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ /* Case 1: The table is a virtual-table. Use the VFilter and VNext ** to access the data. */ int iReg; /* P3 Value for OP_VFilter */ int addrNotFound; int nConstraint = pLoop->nLTerm; sqlite3ExprCachePush(pParse); iReg = sqlite3GetTempRange(pParse, nConstraint+2); addrNotFound = pLevel->addrBrk; for(j=0; j<nConstraint; j++){ int iTarget = iReg+j+2; pTerm = pLoop->aLTerm[j]; if( pTerm==0 ) continue; if( pTerm->eOperator & WO_IN ){ codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); addrNotFound = pLevel->addrNxt; }else{ sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); VdbeCoverage(v); pLoop->u.vtab.needFree = 0; for(j=0; j<nConstraint && j<16; j++){ if( (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->op = OP_VNext; pLevel->p1 = iCur; pLevel->p2 = sqlite3VdbeCurrentAddr(v); sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); sqlite3ExprCachePop(pParse); }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 ){ /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( pLoop->u.btree.nEq==1 ); pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( omitTable==0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); iReleaseReg = ++pParse->nMem; iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); VdbeCoverage(v); sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); VdbeComment((v, "pk")); pLevel->op = OP_Noop; }else if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 ){ /* Case 3: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; int memEndValue = 0; WhereTerm *pStart, *pEnd; assert( omitTable==0 ); j = 0; pStart = pEnd = 0; if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; assert( pStart!=0 || pEnd!=0 ); if( bRev ){ pTerm = pStart; pStart = pEnd; pEnd = pTerm; } if( pStart ){ Expr *pX; /* The expression that defines the start bound */ int r1, rTemp; /* Registers for holding the start boundary */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ const u8 aMoveOp[] = { /* TK_GT */ OP_SeekGT, /* TK_LE */ OP_SeekLE, /* TK_LT */ OP_SeekLT, /* TK_GE */ OP_SeekGE }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ assert( (pStart->wtFlags & TERM_VNULL)==0 ); testcase( pStart->wtFlags & TERM_VIRTUAL ); pX = pStart->pExpr; assert( pX!=0 ); testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); VdbeComment((v, "pk")); VdbeCoverageIf(v, pX->op==TK_GT); VdbeCoverageIf(v, pX->op==TK_LE); VdbeCoverageIf(v, pX->op==TK_LT); VdbeCoverageIf(v, pX->op==TK_GE); sqlite3ExprCacheAffinityChange(pParse, r1, 1); sqlite3ReleaseTempReg(pParse, rTemp); disableTerm(pLevel, pStart); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( (pEnd->wtFlags & TERM_VNULL)==0 ); testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ testcase( pEnd->wtFlags & TERM_VIRTUAL ); memEndValue = ++pParse->nMem; sqlite3ExprCode(pParse, pX->pRight, memEndValue); if( pX->op==TK_LT || pX->op==TK_GT ){ testOp = bRev ? OP_Le : OP_Ge; }else{ testOp = bRev ? OP_Lt : OP_Gt; } disableTerm(pLevel, pEnd); } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; assert( pLevel->p5==0 ); if( testOp!=OP_Noop ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); VdbeCoverageIf(v, testOp==OP_Le); VdbeCoverageIf(v, testOp==OP_Lt); VdbeCoverageIf(v, testOp==OP_Ge); VdbeCoverageIf(v, testOp==OP_Gt); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); } }else if( pLoop->wsFlags & WHERE_INDEXED ){ /* Case 4: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N ** left-most columns of the index. It may also contain ** inequality constraints (>, <, >= or <=) on the indexed ** column that immediately follows the N equalities. Only ** the right-most column can be an inequality - the rest must ** use the "==" and "IN" operators. For example, if the ** index is on (x,y,z), then the following clauses are all ** optimized: ** ** x=5 ** x=5 AND y=10 ** x=5 AND y<10 ** x=5 AND y>5 AND y<10 ** x=5 AND y=5 AND z<=10 ** ** The z<10 term of the following cannot be used, only ** the x=5 term: ** ** x=5 AND z<10 ** ** N may be zero if there are inequality constraints. ** If there are no inequality constraints, then N is at ** least one. ** ** This case is also used when there are no WHERE clause ** constraints but an index is selected anyway, in order ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ int regBase; /* Base register holding constraint values */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char cEndAff = 0; /* Affinity for end of range constraint */ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=pLoop->nSkip ); /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ assert( pWInfo->pOrderBy==0 || pWInfo->pOrderBy->nExpr==1 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 && pWInfo->nOBSat>0 && (pIdx->nKeyCol>nEq) ){ assert( pLoop->nSkip==0 ); bSeekPastNull = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ j = nEq; if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; /* Like optimization range constraints always occur in pairs */ assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ assert( pRangeStart!=0 ); /* LIKE opt constraints */ assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ pLevel->iLikeRepCntr = ++pParse->nMem; testcase( bRev ); testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); sqlite3VdbeAddOp2(v, OP_Integer, bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC), pLevel->iLikeRepCntr); VdbeComment((v, "LIKE loop counter")); pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); } if( pRangeStart==0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ bSeekPastNull = 1; } } assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); if( zStartAff ) cEndAff = zStartAff[nEq]; addrNxt = pLevel->addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) || (bRev && pIdx->nKeyCol==nEq) ){ SWAP(WhereTerm *, pRangeEnd, pRangeStart); SWAP(u8, bSeekPastNull, bStopAtNull); } testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); if( (pRangeStart->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zStartAff ){ if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){ /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_BLOB. */ zStartAff[nEq] = SQLITE_AFF_BLOB; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ zStartAff[nEq] = SQLITE_AFF_BLOB; } } nConstraint++; testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); }else if( bSeekPastNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; assert( op!=0 ); sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); VdbeCoverage(v); VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) ){ codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); } nConstraint++; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); }else if( bStopAtNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); endEq = 0; nConstraint++; } sqlite3DbFree(db, zStartAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ if( nConstraint ){ op = aEndOp[bRev*2 + endEq]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); } /* Seek the table cursor, if required */ disableTerm(pLevel, pRangeStart); disableTerm(pLevel, pRangeEnd); if( omitTable ){ /* pIdx is a covering index. No need to access the main table. */ }else if( HasRowid(pIdx->pTable) ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ }else if( iCur!=iIdxCur ){ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); for(j=0; j<pPk->nKeyCol; j++){ k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); } sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, iRowidReg, pPk->nKeyCol); VdbeCoverage(v); } /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ if( pLoop->wsFlags & WHERE_ONEROW ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; }else{ pLevel->op = OP_Next; } pLevel->p1 = iIdxCur; pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; }else{ assert( pLevel->p5==0 ); } }else #ifndef SQLITE_OMIT_OR_OPTIMIZATION if( pLoop->wsFlags & WHERE_MULTI_OR ){ /* Case 5: Two or more separately indexed terms connected by OR ** ** Example: ** ** CREATE TABLE t1(a,b,c,d); ** CREATE INDEX i1 ON t1(a); ** CREATE INDEX i2 ON t1(b); ** CREATE INDEX i3 ON t1(c); ** ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) ** ** In the example, there are three indexed terms connected by OR. ** The top of the loop looks like this: ** ** Null 1 # Zero the rowset in reg 1 ** ** Then, for each indexed term, the following. The arguments to ** RowSetTest are such that the rowid of the current row is inserted ** into the RowSet. If it is already present, control skips the ** Gosub opcode and jumps straight to the code generated by WhereEnd(). ** ** sqlite3WhereBegin(<term>) ** RowSetTest # Insert rowid into rowset ** Gosub 2 A ** sqlite3WhereEnd() ** ** Following the above, code to terminate the loop. Label A, the target ** of the Gosub above, jumps to the instruction right after the Goto. ** ** Null 1 # Zero the rowset in reg 1 ** Goto B # The loop is finished. ** ** A: <loop body> # Return data, whatever. ** ** Return 2 # Jump back to the Gosub ** ** B: <after the loop> ** ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then ** use an ephemeral index instead of a RowSet to record the primary ** keys of the rows we have already seen. ** */ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ SrcList *pOrTab; /* Shortened table list or OR-clause generation */ Index *pCov = 0; /* Potential covering index (or NULL) */ int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ int regRowset = 0; /* Register for RowSet object */ int regRowid = 0; /* Register holding rowid */ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; /* Loop counter */ u16 wctrlFlags; /* Flags for sub-WHERE clause */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ Table *pTab = pTabItem->pTab; pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->eOperator & WO_OR ); assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); pOrWc = &pTerm->u.pOrInfo->wc; pLevel->op = OP_Return; pLevel->p1 = regReturn; /* Set up a new SrcList in pOrTab containing the table being scanned ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). */ if( pWInfo->nLevel>1 ){ int nNotReady; /* The number of notReady tables */ struct SrcList_item *origSrc; /* Original list of tables */ nNotReady = pWInfo->nLevel - iLevel - 1; pOrTab = sqlite3StackAllocRaw(db, sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); if( pOrTab==0 ) return notReady; pOrTab->nAlloc = (u8)(nNotReady + 1); pOrTab->nSrc = pOrTab->nAlloc; memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); origSrc = pWInfo->pTabList->a; for(k=1; k<=nNotReady; k++){ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); } }else{ pOrTab = pWInfo->pTabList; } /* Initialize the rowset register to contain NULL. An SQL NULL is ** equivalent to an empty rowset. Or, create an ephemeral index ** capable of holding primary keys in the case of a WITHOUT ROWID. ** ** Also initialize regReturn to contain the address of the instruction ** immediately following the OP_Return at the bottom of the loop. This ** is required in a few obscure LEFT JOIN cases where control jumps ** over the top of the loop into the body of it. In this case the ** correct response for the end-of-loop code (the OP_Return) is to ** fall through to the next instruction, just as an OP_Next does if ** called on an uninitialized cursor. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ if( HasRowid(pTab) ){ regRowset = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); regRowset = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } regRowid = ++pParse->nMem; } iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y ** Then for every term xN, evaluate as the subexpression: xN AND z ** That way, terms in y that are factored into the disjunction will ** be picked up by the recursive calls to sqlite3WhereBegin() below. ** ** Actually, each subexpression is converted to "xN AND w" where w is ** the "interesting" terms of z - terms that did not originate in the ** ON or USING clause of a LEFT JOIN, and terms that are usable as ** indices. ** ** This optimization also only applies if the (x1 OR x2 OR ...) term ** is not contained in the ON clause of a LEFT JOIN. ** See ticket http://www.sqlite.org/src/info/f2369304e4 */ if( pWC->nTerm>1 ){ int iTerm; for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ Expr *pExpr = pWC->a[iTerm].pExpr; if( &pWC->a[iTerm] == pTerm ) continue; if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue; if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); pExpr = sqlite3ExprDup(db, pExpr, 0); pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); } if( pAndExpr ){ pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); } } /* Run a separate WHERE clause for each term of the OR clause. After ** eliminating duplicates from other WHERE clauses, the action for each ** sub-WHERE clause is to to invoke the main loop body as a subroutine. */ wctrlFlags = WHERE_OMIT_OPEN_CLOSE | WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY | WHERE_NO_AUTOINDEX; for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ int j1 = 0; /* Address of jump operation */ if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ pAndExpr->pLeft = pOrExpr; pOrExpr = pAndExpr; } /* Loop through table entries that match term pOrTerm. */ WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, wctrlFlags, iCovCur); assert( pSubWInfo || pParse->nErr || db->mallocFailed ); if( pSubWInfo ){ WhereLoop *pSubLoop; int addrExplain = sqlite3WhereExplainOneScan( pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 ); sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); /* This is the sub-WHERE clause body. First skip over ** duplicate rows from prior sub-WHERE clauses, and record the ** rowid (or PRIMARY KEY) for the current row so that the same ** row will be skipped in subsequent sub-WHERE clauses. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int r; int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); if( HasRowid(pTab) ){ r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); VdbeCoverage(v); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); int nPk = pPk->nKeyCol; int iPk; /* Read the PK into an array of temp registers. */ r = sqlite3GetTempRange(pParse, nPk); for(iPk=0; iPk<nPk; iPk++){ int iCol = pPk->aiColumn[iPk]; sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); } /* Check if the temp table already contains this key. If so, ** the row has already been included in the result set and ** can be ignored (by jumping past the Gosub below). Otherwise, ** insert the key into the temp table and proceed with processing ** the row. ** ** Use some of the same optimizations as OP_RowSetTest: If iSet ** is zero, assume that the key cannot already be present in ** the temp table. And if iSet is -1, assume that there is no ** need to insert the key into the temp table, as it will never ** be tested for. */ if( iSet ){ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); VdbeCoverage(v); } if( iSet>=0 ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } /* Release the array of temp registers */ sqlite3ReleaseTempRange(pParse, r, nPk); } } /* Invoke the main loop body as a subroutine */ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* Jump here (skipping the main loop body subroutine) if the ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ if( j1 ) sqlite3VdbeJumpHere(v, j1); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. */ if( pSubWInfo->untestedTerms ) untestedTerms = 1; /* If all of the OR-connected terms are optimized using the same ** index, and the index is opened using the same cursor number ** by each call to sqlite3WhereBegin() made by this loop, it may ** be possible to use that index as a covering index. ** ** If the call to sqlite3WhereBegin() above resulted in a scan that ** uses an index, and this is either the first OR-connected term ** processed or the index is the same as that used by all previous ** terms, set pCov to the candidate covering index. Otherwise, set ** pCov to NULL to indicate that no candidate covering index will ** be available. */ pSubLoop = pSubWInfo->a[0].pWLoop; assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) ){ assert( pSubWInfo->a[0].iIdxCur==iCovCur ); pCov = pSubLoop->u.btree.pIndex; wctrlFlags |= WHERE_REOPEN_IDX; }else{ pCov = 0; } /* Finish the loop through table entries that match term pOrTerm. */ sqlite3WhereEnd(pSubWInfo); } } } pLevel->u.pCovidx = pCov; if( pCov ) pLevel->iIdxCur = iCovCur; if( pAndExpr ){ pAndExpr->pLeft = 0; sqlite3ExprDelete(db, pAndExpr); } sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); sqlite3VdbeResolveLabel(v, iLoopBody); if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); if( !untestedTerms ) disableTerm(pLevel, pTerm); }else #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ { /* Case 6: There is no usable index. We must do a complete ** scan of the entire table. */ static const u8 aStep[] = { OP_Next, OP_Prev }; static const u8 aStart[] = { OP_Rewind, OP_Last }; assert( bRev==0 || bRev==1 ); if( pTabItem->isRecursive ){ /* Tables marked isRecursive have only a single row that is stored in ** a pseudo-cursor. No need to Rewind or Next such cursors. */ pLevel->op = OP_Noop; }else{ pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); #endif /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; int skipLikeAddr = 0; testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ continue; } if( pTerm->wtFlags & TERM_LIKECOND ){ assert( pLevel->iLikeRepCntr>0 ); skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr); VdbeCoverage(v); } sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); pTerm->wtFlags |= TERM_CODED; } /* Insert code to test for implied constraints based on transitivity ** of the "==" operator. ** ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" ** and we are coding the t1 loop and the t2 loop has not yet coded, ** then we cannot use the "t1.a=t2.b" constraint, but we can code ** the implied "t1.a=123" constraint. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE, *pEAlt; WhereTerm *pAlt; if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; if( pTerm->leftCursor!=iCur ) continue; if( pLevel->iLeftJoin ) continue; pE = pTerm->pExpr; assert( !ExprHasProperty(pE, EP_FromJoin) ); assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN|WO_IS, 0); if( pAlt==0 ) continue; if( pAlt->wtFlags & (TERM_CODED) ) continue; testcase( pAlt->eOperator & WO_EQ ); testcase( pAlt->eOperator & WO_IS ); testcase( pAlt->eOperator & WO_IN ); VdbeModuleComment((v, "begin transitive constraint")); pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); if( pEAlt ){ *pEAlt = *pAlt->pExpr; pEAlt->pLeft = pE->pLeft; sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); sqlite3StackFree(db, pEAlt); } } /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if( pLevel->iLeftJoin ){ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); VdbeComment((v, "record LEFT JOIN hit")); sqlite3ExprCacheClear(pParse); for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ assert( pWInfo->untestedTerms ); continue; } assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } return pLevel->notReady; } |
Added src/whereexpr.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 | /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was originally part of where.c but was split out to improve ** readability and editabiliity. This file contains utility routines for ** analyzing Expr objects in the WHERE clause. */ #include "sqliteInt.h" #include "whereInt.h" /* Forward declarations */ static void exprAnalyze(SrcList*, WhereClause*, int); /* ** Deallocate all memory associated with a WhereOrInfo object. */ static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ sqlite3WhereClauseClear(&p->wc); sqlite3DbFree(db, p); } /* ** Deallocate all memory associated with a WhereAndInfo object. */ static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ sqlite3WhereClauseClear(&p->wc); sqlite3DbFree(db, p); } /* ** Add a single new WhereTerm entry to the WhereClause object pWC. ** The new WhereTerm object is constructed from Expr p and with wtFlags. ** The index in pWC->a[] of the new WhereTerm is returned on success. ** 0 is returned if the new WhereTerm could not be added due to a memory ** allocation error. The memory allocation failure will be recorded in ** the db->mallocFailed flag so that higher-level functions can detect it. ** ** This routine will increase the size of the pWC->a[] array as necessary. ** ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility ** for freeing the expression p is assumed by the WhereClause object pWC. ** This is true even if this routine fails to allocate a new WhereTerm. ** ** WARNING: This routine might reallocate the space used to store ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ WhereTerm *pTerm; int idx; testcase( wtFlags & TERM_VIRTUAL ); if( pWC->nTerm>=pWC->nSlot ){ WhereTerm *pOld = pWC->a; sqlite3 *db = pWC->pWInfo->pParse->db; pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); if( pWC->a==0 ){ if( wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, p); } pWC->a = pOld; return 0; } memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); if( pOld!=pWC->aStatic ){ sqlite3DbFree(db, pOld); } pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm)); } pTerm = &pWC->a[idx = pWC->nTerm++]; if( p && ExprHasProperty(p, EP_Unlikely) ){ pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; }else{ pTerm->truthProb = 1; } pTerm->pExpr = sqlite3ExprSkipCollate(p); pTerm->wtFlags = wtFlags; pTerm->pWC = pWC; pTerm->iParent = -1; return idx; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" */ static int allowedOp(int op){ assert( TK_GT>TK_EQ && TK_GT<TK_GE ); assert( TK_LT>TK_EQ && TK_LT<TK_GE ); assert( TK_LE>TK_EQ && TK_LE<TK_GE ); assert( TK_GE==TK_EQ+4 ); return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; } /* ** Commute a comparison operator. Expressions of the form "X op Y" ** are converted into "Y op X". ** ** If left/right precedence rules come into play when determining the ** collating sequence, then COLLATE operators are adjusted to ensure ** that the collating sequence does not change. For example: ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on ** the left hand side of a comparison overrides any collation sequence ** attached to the right. For the same reason the EP_Collate flag ** is not commuted. */ static void exprCommute(Parse *pParse, Expr *pExpr){ u16 expRight = (pExpr->pRight->flags & EP_Collate); u16 expLeft = (pExpr->pLeft->flags & EP_Collate); assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); if( expRight==expLeft ){ /* Either X and Y both have COLLATE operator or neither do */ if( expRight ){ /* Both X and Y have COLLATE operators. Make sure X is always ** used by clearing the EP_Collate flag from Y. */ pExpr->pRight->flags &= ~EP_Collate; }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ /* Neither X nor Y have COLLATE operators, but X has a non-default ** collating sequence. So add the EP_Collate marker on X to cause ** it to be searched first. */ pExpr->pLeft->flags |= EP_Collate; } } SWAP(Expr*,pExpr->pRight,pExpr->pLeft); if( pExpr->op>=TK_GT ){ assert( TK_LT==TK_GT+2 ); assert( TK_GE==TK_LE+2 ); assert( TK_GT>TK_EQ ); assert( TK_GT<TK_LE ); assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; } } /* ** Translate from TK_xx operator to WO_xx bitmask. */ static u16 operatorMask(int op){ u16 c; assert( allowedOp(op) ); if( op==TK_IN ){ c = WO_IN; }else if( op==TK_ISNULL ){ c = WO_ISNULL; }else if( op==TK_IS ){ c = WO_IS; }else{ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); c = (u16)(WO_EQ<<(op-TK_EQ)); } assert( op!=TK_ISNULL || c==WO_ISNULL ); assert( op!=TK_IN || c==WO_IN ); assert( op!=TK_EQ || c==WO_EQ ); assert( op!=TK_LT || c==WO_LT ); assert( op!=TK_LE || c==WO_LE ); assert( op!=TK_GT || c==WO_GT ); assert( op!=TK_GE || c==WO_GE ); assert( op!=TK_IS || c==WO_IS ); return c; } #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* ** Check to see if the given expression is a LIKE or GLOB operator that ** can be optimized using inequality constraints. Return TRUE if it is ** so and false if not. ** ** In order for the operator to be optimizible, the RHS must be a string ** literal that does not begin with a wildcard. The LHS must be a column ** that may only be NULL, a string, or a BLOB, never a number. (This means ** that virtual tables cannot participate in the LIKE optimization.) The ** collating sequence for the column on the LHS must be appropriate for ** the operator. */ static int isLikeOrGlob( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* Test this expression */ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ int *pisComplete, /* True if the only wildcard is % in the last character */ int *pnoCase /* True if uppercase is equivalent to lowercase */ ){ const char *z = 0; /* String on RHS of LIKE operator */ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ ExprList *pList; /* List of operands to the LIKE operator */ int c; /* One character in z[] */ int cnt; /* Number of non-wildcard prefix characters */ char wc[3]; /* Wildcard characters */ sqlite3 *db = pParse->db; /* Database connection */ sqlite3_value *pVal = 0; int op; /* Opcode of pRight */ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ return 0; } #ifdef SQLITE_EBCDIC if( *pnoCase ) return 0; #endif pList = pExpr->x.pList; pLeft = pList->a[1].pExpr; if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT || IsVirtual(pLeft->pTab) /* Value might be numeric */ ){ /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must ** be the name of an indexed column with TEXT affinity. */ return 0; } assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); op = pRight->op; if( op==TK_VARIABLE ){ Vdbe *pReprepare = pParse->pReprepare; int iCol = pRight->iColumn; pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ z = (char *)sqlite3_value_text(pVal); } sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); }else if( op==TK_STRING ){ z = pRight->u.zToken; } if( z ){ cnt = 0; while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } if( cnt!=0 && 255!=(u8)z[cnt-1] ){ Expr *pPrefix; *pisComplete = c==wc[0] && z[cnt+1]==0; pPrefix = sqlite3Expr(db, TK_STRING, z); if( pPrefix ) pPrefix->u.zToken[cnt] = 0; *ppPrefix = pPrefix; if( op==TK_VARIABLE ){ Vdbe *v = pParse->pVdbe; sqlite3VdbeSetVarmask(v, pRight->iColumn); if( *pisComplete && pRight->u.zToken[1] ){ /* If the rhs of the LIKE expression is a variable, and the current ** value of the variable means there is no need to invoke the LIKE ** function, then no OP_Variable will be added to the program. ** This causes problems for the sqlite3_bind_parameter_name() ** API. To work around them, add a dummy OP_Variable here. */ int r1 = sqlite3GetTempReg(pParse); sqlite3ExprCodeTarget(pParse, pRight, r1); sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); sqlite3ReleaseTempReg(pParse, r1); } } }else{ z = 0; } } sqlite3ValueFree(pVal); return (z!=0); } #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Check to see if the given expression is of the form ** ** column MATCH expr ** ** If it is then return TRUE. If not, return FALSE. */ static int isMatchOfColumn( Expr *pExpr /* Test this expression */ ){ ExprList *pList; if( pExpr->op!=TK_FUNCTION ){ return 0; } if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ return 0; } pList = pExpr->x.pList; if( pList->nExpr!=2 ){ return 0; } if( pList->a[1].pExpr->op != TK_COLUMN ){ return 0; } return 1; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** If the pBase expression originated in the ON or USING clause of ** a join, then transfer the appropriate markings over to derived. */ static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ if( pDerived ){ pDerived->flags |= pBase->flags & EP_FromJoin; pDerived->iRightJoinTable = pBase->iRightJoinTable; } } /* ** Mark term iChild as being a child of term iParent */ static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ pWC->a[iChild].iParent = iParent; pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; pWC->a[iParent].nChild++; } /* ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not ** a conjunction, then return just pTerm when N==0. If N is exceeds ** the number of available subterms, return NULL. */ static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ if( pTerm->eOperator!=WO_AND ){ return N==0 ? pTerm : 0; } if( N<pTerm->u.pAndInfo->wc.nTerm ){ return &pTerm->u.pAndInfo->wc.a[N]; } return 0; } /* ** Subterms pOne and pTwo are contained within WHERE clause pWC. The ** two subterms are in disjunction - they are OR-ed together. ** ** If these two terms are both of the form: "A op B" with the same ** A and B values but different operators and if the operators are ** compatible (if one is = and the other is <, for example) then ** add a new virtual AND term to pWC that is the combination of the ** two. ** ** Some examples: ** ** x<y OR x=y --> x<=y ** x=y OR x=y --> x=y ** x<=y OR x<y --> x<=y ** ** The following is NOT generated: ** ** x<y OR x>y --> x!=y */ static void whereCombineDisjuncts( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* The complete WHERE clause */ WhereTerm *pOne, /* First disjunct */ WhereTerm *pTwo /* Second disjunct */ ){ u16 eOp = pOne->eOperator | pTwo->eOperator; sqlite3 *db; /* Database connection (for malloc) */ Expr *pNew; /* New virtual expression */ int op; /* Operator for the combined expression */ int idxNew; /* Index in pWC of the next virtual term */ if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; /* If we reach this point, it means the two subterms can be combined */ if( (eOp & (eOp-1))!=0 ){ if( eOp & (WO_LT|WO_LE) ){ eOp = WO_LE; }else{ assert( eOp & (WO_GT|WO_GE) ); eOp = WO_GE; } } db = pWC->pWInfo->pParse->db; pNew = sqlite3ExprDup(db, pOne->pExpr, 0); if( pNew==0 ) return; for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } pNew->op = op; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); exprAnalyze(pSrc, pWC, idxNew); } #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Analyze a term that consists of two or more OR-connected ** subterms. So in: ** ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) ** ^^^^^^^^^^^^^^^^^^^^ ** ** This routine analyzes terms such as the middle term in the above example. ** A WhereOrTerm object is computed and attached to the term under ** analysis, regardless of the outcome of the analysis. Hence: ** ** WhereTerm.wtFlags |= TERM_ORINFO ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object ** ** The term being analyzed must have two or more of OR-connected subterms. ** A single subterm might be a set of AND-connected sub-subterms. ** Examples of terms under analysis: ** ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 ** (B) x=expr1 OR expr2=x OR x=expr3 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) ** (F) x>A OR (x=A AND y>=B) ** ** CASE 1: ** ** If all subterms are of the form T.C=expr for some single column of C and ** a single table T (as shown in example B above) then create a new virtual ** term that is an equivalent IN expression. In other words, if the term ** being analyzed is: ** ** x = expr1 OR expr2 = x OR x = expr3 ** ** then create a new virtual term like this: ** ** x IN (expr1,expr2,expr3) ** ** CASE 2: ** ** If there are exactly two disjuncts and one side has x>A and the other side ** has x=A (for the same x and A) then add a new virtual conjunct term to the ** WHERE clause of the form "x>=A". Example: ** ** x>A OR (x=A AND y>B) adds: x>=A ** ** The added conjunct can sometimes be helpful in query planning. ** ** CASE 3: ** ** If all subterms are indexable by a single table T, then set ** ** WhereTerm.eOperator = WO_OR ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T ** ** A subterm is "indexable" if it is of the form ** "T.C <op> <expr>" where C is any column of table T and ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". ** A subterm is also indexable if it is an AND of two or more ** subsubterms at least one of which is indexable. Indexable AND ** subterms have their eOperator set to WO_AND and they have ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. ** ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is decided elsewhere. This analysis only looks at whether subterms ** appropriate for indexing exist. ** ** All examples A through E above satisfy case 3. But if a term ** also satisfies case 1 (such as B) we know that the optimizer will ** always prefer case 1, so in that case we pretend that case 3 is not ** satisfied. ** ** It might be the case that multiple tables are indexable. For example, ** (E) above is indexable on tables P, Q, and R. ** ** Terms that satisfy case 3 are candidates for lookup by using ** separate indices to find rowids for each subterm and composing ** the union of all rowids using a RowSet object. This is similar ** to "bitmap indices" in other database engines. ** ** OTHERWISE: ** ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to ** zero. This term is not useful for search. */ static void exprAnalyzeOrTerm( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the complete WHERE clause */ int idxTerm /* Index of the OR-term to be analyzed */ ){ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ Parse *pParse = pWInfo->pParse; /* Parser context */ sqlite3 *db = pParse->db; /* Database connection */ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ Expr *pExpr = pTerm->pExpr; /* The expression of the term */ int i; /* Loop counters */ WhereClause *pOrWc; /* Breakup of pTerm into subterms */ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ Bitmask chngToIN; /* Tables that might satisfy case 1 */ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ /* ** Break the OR clause into its separate subterms. The subterms are ** stored in a WhereClause structure containing within the WhereOrInfo ** object that is attached to the original OR clause term. */ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); assert( pExpr->op==TK_OR ); pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); if( pOrInfo==0 ) return; pTerm->wtFlags |= TERM_ORINFO; pOrWc = &pOrInfo->wc; sqlite3WhereClauseInit(pOrWc, pWInfo); sqlite3WhereSplit(pOrWc, pExpr, TK_OR); sqlite3WhereExprAnalyze(pSrc, pOrWc); if( db->mallocFailed ) return; assert( pOrWc->nTerm>=2 ); /* ** Compute the set of tables that might satisfy cases 1 or 3. */ indexable = ~(Bitmask)0; chngToIN = ~(Bitmask)0; for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ WhereAndInfo *pAndInfo; assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); chngToIN = 0; pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); if( pAndInfo ){ WhereClause *pAndWC; WhereTerm *pAndTerm; int j; Bitmask b = 0; pOrTerm->u.pAndInfo = pAndInfo; pOrTerm->wtFlags |= TERM_ANDINFO; pOrTerm->eOperator = WO_AND; pAndWC = &pAndInfo->wc; sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); sqlite3WhereExprAnalyze(pSrc, pAndWC); pAndWC->pOuter = pWC; testcase( db->mallocFailed ); if( !db->mallocFailed ){ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ assert( pAndTerm->pExpr ); if( allowedOp(pAndTerm->pExpr->op) ){ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); } } } indexable &= b; } }else if( pOrTerm->wtFlags & TERM_COPIED ){ /* Skip this term for now. We revisit it when we process the ** corresponding TERM_VIRTUAL term */ }else{ Bitmask b; b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); if( pOrTerm->wtFlags & TERM_VIRTUAL ){ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); } indexable &= b; if( (pOrTerm->eOperator & WO_EQ)==0 ){ chngToIN = 0; }else{ chngToIN &= b; } } } /* ** Record the set of tables that satisfy case 3. The set might be ** empty. */ pOrInfo->indexable = indexable; pTerm->eOperator = indexable==0 ? 0 : WO_OR; /* For a two-way OR, attempt to implementation case 2. */ if( indexable && pOrWc->nTerm==2 ){ int iOne = 0; WhereTerm *pOne; while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ int iTwo = 0; WhereTerm *pTwo; while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); } } } /* ** chngToIN holds a set of tables that *might* satisfy case 1. But ** we have to do some additional checking to see if case 1 really ** is satisfied. ** ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means ** that there is no possibility of transforming the OR clause into an ** IN operator because one or more terms in the OR clause contain ** something other than == on a column in the single table. The 1-bit ** case means that every term of the OR clause is of the form ** "table.column=expr" for some single table. The one bit that is set ** will correspond to the common table. We still need to check to make ** sure the same column is used on all terms. The 2-bit case is when ** the all terms are of the form "table1.column=table2.column". It ** might be possible to form an IN operator with either table1.column ** or table2.column as the LHS if either is common to every term of ** the OR clause. ** ** Note that terms of the form "table.column1=table.column2" (the ** same table on both sizes of the ==) cannot be optimized. */ if( chngToIN ){ int okToChngToIN = 0; /* True if the conversion to IN is valid */ int iColumn = -1; /* Column index on lhs of IN operator */ int iCursor = -1; /* Table cursor common to all terms */ int j = 0; /* Loop counter */ /* Search for a table and column that appears on one side or the ** other of the == operator in every subterm. That table and column ** will be recorded in iCursor and iColumn. There might not be any ** such table and column. Set okToChngToIN if an appropriate table ** and column is found but leave okToChngToIN false if not found. */ for(j=0; j<2 && !okToChngToIN; j++){ pOrTerm = pOrWc->a; for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ assert( pOrTerm->eOperator & WO_EQ ); pOrTerm->wtFlags &= ~TERM_OR_OK; if( pOrTerm->leftCursor==iCursor ){ /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceded ** or follwed by an inverted copy (t2.b==t1.a). Skip this term ** and use its inversion. */ testcase( pOrTerm->wtFlags & TERM_COPIED ); testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); continue; } iColumn = pOrTerm->u.leftColumn; iCursor = pOrTerm->leftCursor; break; } if( i<0 ){ /* No candidate table+column was found. This can only occur ** on the second iteration */ assert( j==1 ); assert( IsPowerOfTwo(chngToIN) ); assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); break; } testcase( j==1 ); /* We have found a candidate table and column. Check to see if that ** table and column is common to every term in the OR clause */ okToChngToIN = 1; for(; i>=0 && okToChngToIN; i--, pOrTerm++){ assert( pOrTerm->eOperator & WO_EQ ); if( pOrTerm->leftCursor!=iCursor ){ pOrTerm->wtFlags &= ~TERM_OR_OK; }else if( pOrTerm->u.leftColumn!=iColumn ){ okToChngToIN = 0; }else{ int affLeft, affRight; /* If the right-hand side is also a column, then the affinities ** of both right and left sides must be such that no type ** conversions are required on the right. (Ticket #2249) */ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); if( affRight!=0 && affRight!=affLeft ){ okToChngToIN = 0; }else{ pOrTerm->wtFlags |= TERM_OR_OK; } } } } /* At this point, okToChngToIN is true if original pTerm satisfies ** case 1. In that case, construct a new virtual term that is ** pTerm converted into an IN operator. */ if( okToChngToIN ){ Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; assert( pOrTerm->eOperator & WO_EQ ); assert( pOrTerm->leftCursor==iCursor ); assert( pOrTerm->u.leftColumn==iColumn ); pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); pLeft = pOrTerm->pExpr->pLeft; } assert( pLeft!=0 ); pDup = sqlite3ExprDup(db, pLeft, 0); pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); if( pNew ){ int idxNew; transferJoinMarkings(pNew, pExpr); assert( !ExprHasProperty(pNew, EP_xIsSelect) ); pNew->x.pList = pList; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); }else{ sqlite3ExprListDelete(db, pList); } pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ } } } #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ /* ** We already know that pExpr is a binary operator where both operands are ** column references. This routine checks to see if pExpr is an equivalence ** relation: ** 1. The SQLITE_Transitive optimization must be enabled ** 2. Must be either an == or an IS operator ** 3. Not originating in the ON clause of an OUTER JOIN ** 4. The affinities of A and B must be compatible ** 5a. Both operands use the same collating sequence OR ** 5b. The overall collating sequence is BINARY ** If this routine returns TRUE, that means that the RHS can be substituted ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. ** This is an optimization. No harm comes from returning 0. But if 1 is ** returned when it should not be, then incorrect answers might result. */ static int termIsEquivalence(Parse *pParse, Expr *pExpr){ char aff1, aff2; CollSeq *pColl; const char *zColl1, *zColl2; if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; aff1 = sqlite3ExprAffinity(pExpr->pLeft); aff2 = sqlite3ExprAffinity(pExpr->pRight); if( aff1!=aff2 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) ){ return 0; } pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); /* Since pLeft and pRight are both a column references, their collating ** sequence should always be defined. */ zColl1 = ALWAYS(pColl) ? pColl->zName : 0; pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); zColl2 = ALWAYS(pColl) ? pColl->zName : 0; return sqlite3StrICmp(zColl1, zColl2)==0; } /* ** Recursively walk the expressions of a SELECT statement and generate ** a bitmask indicating which tables are used in that expression ** tree. */ static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ Bitmask mask = 0; while( pS ){ SrcList *pSrc = pS->pSrc; mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); if( ALWAYS(pSrc!=0) ){ int i; for(i=0; i<pSrc->nSrc; i++){ mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); } } pS = pS->pPrior; } return mask; } /* ** The input to this routine is an WhereTerm structure with only the ** "pExpr" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the WhereTerm ** structure. ** ** If the expression is of the form "<expr> <op> X" it gets commuted ** to the standard form of "X <op> <expr>". ** ** If the expression is of the form "X <op> Y" where both X and Y are ** columns, then the original expression is unchanged and a new virtual ** term of the form "Y <op> X" is added to the WHERE clause and ** analyzed separately. The original term is marked with TERM_COPIED ** and the new term is marked with TERM_DYNAMIC (because it's pExpr ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it ** is a commuted copy of a prior term.) The original term has nChild=1 ** and the copy has idxParent set to the index of the original term. */ static void exprAnalyze( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the WHERE clause */ int idxTerm /* Index of the term to be analyzed */ ){ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ WhereTerm *pTerm; /* The term to be analyzed */ WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequesites of pExpr */ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ int noCase = 0; /* uppercase equivalent to lowercase */ int op; /* Top-level operator. pExpr->op */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection */ if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = &pWInfo->sMaskSet; pExpr = pTerm->pExpr; assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); op = pExpr->op; if( op==TK_IN ){ assert( pExpr->pRight==0 ); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); }else{ pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); } }else if( op==TK_ISNULL ){ pTerm->prereqRight = 0; }else{ pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); } prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); if( ExprHasProperty(pExpr, EP_FromJoin) ){ Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); prereqAll |= x; extraRight = x-1; /* ON clause terms may not be used with an index ** on left table of a LEFT JOIN. Ticket #3015 */ } pTerm->prereqAll = prereqAll; pTerm->leftCursor = -1; pTerm->iParent = -1; pTerm->eOperator = 0; if( allowedOp(op) ){ Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; if( pLeft->op==TK_COLUMN ){ pTerm->leftCursor = pLeft->iTable; pTerm->u.leftColumn = pLeft->iColumn; pTerm->eOperator = operatorMask(op) & opMask; } if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; if( pRight && pRight->op==TK_COLUMN ){ WhereTerm *pNew; Expr *pDup; u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ if( pTerm->leftCursor>=0 ){ int idxNew; pDup = sqlite3ExprDup(db, pExpr, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); return; } idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); if( idxNew==0 ) return; pNew = &pWC->a[idxNew]; markTermAsChild(pWC, idxNew, idxTerm); if( op==TK_IS ) pNew->wtFlags |= TERM_IS; pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; if( termIsEquivalence(pParse, pDup) ){ pTerm->eOperator |= WO_EQUIV; eExtraOp = WO_EQUIV; } }else{ pDup = pExpr; pNew = pTerm; } exprCommute(pParse, pDup); pLeft = sqlite3ExprSkipCollate(pDup->pLeft); pNew->leftCursor = pLeft->iTable; pNew->u.leftColumn = pLeft->iColumn; testcase( (prereqLeft | extraRight) != prereqLeft ); pNew->prereqRight = prereqLeft | extraRight; pNew->prereqAll = prereqAll; pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; } } #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION /* If a term is the BETWEEN operator, create two new virtual terms ** that define the range that the BETWEEN implements. For example: ** ** a BETWEEN b AND c ** ** is converted into: ** ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) ** ** The two new terms are added onto the end of the WhereClause object. ** The new terms are "dynamic" and are children of the original BETWEEN ** term. That means that if the BETWEEN term is coded, the children are ** skipped. Or, if the children are satisfied by an index, the original ** BETWEEN term is skipped. */ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ ExprList *pList = pExpr->x.pList; int i; static const u8 ops[] = {TK_GE, TK_LE}; assert( pList!=0 ); assert( pList->nExpr==2 ); for(i=0; i<2; i++){ Expr *pNewExpr; int idxNew; pNewExpr = sqlite3PExpr(pParse, ops[i], sqlite3ExprDup(db, pExpr->pLeft, 0), sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); transferJoinMarkings(pNewExpr, pExpr); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); } } #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* Analyze a term that is composed of two or more subterms connected by ** an OR operator. */ else if( pExpr->op==TK_OR ){ assert( pWC->op==TK_AND ); exprAnalyzeOrTerm(pSrc, pWC, idxTerm); pTerm = &pWC->a[idxTerm]; } #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* Add constraints to reduce the search space on a LIKE or GLOB ** operator. ** ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints ** ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' ** ** The last character of the prefix "abc" is incremented to form the ** termination condition "abd". If case is not significant (the default ** for LIKE) then the lower-bound is made all uppercase and the upper- ** bound is made all lowercase so that the bounds also work when comparing ** BLOBs. */ if( pWC->op==TK_AND && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) ){ Expr *pLeft; /* LHS of LIKE/GLOB operator */ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr *pNewExpr1; Expr *pNewExpr2; int idxNew1; int idxNew2; const char *zCollSeqName; /* Name of collating sequence */ const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; pLeft = pExpr->x.pList->a[1].pExpr; pStr2 = sqlite3ExprDup(db, pStr1, 0); /* Convert the lower bound to upper-case and the upper bound to ** lower-case (upper-case is less than lower-case in ASCII) so that ** the range constraints also work for BLOBs */ if( noCase && !pParse->db->mallocFailed ){ int i; char c; pTerm->wtFlags |= TERM_LIKE; for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ pStr1->u.zToken[i] = sqlite3Toupper(c); pStr2->u.zToken[i] = sqlite3Tolower(c); } } if( !db->mallocFailed ){ u8 c, *pC; /* Last character before the first wildcard */ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; c = *pC; if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ if( c=='A'-1 ) isComplete = 0; c = sqlite3UpperToLower[c]; } *pC = c + 1; } zCollSeqName = noCase ? "NOCASE" : "BINARY"; pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), pStr1, 0); transferJoinMarkings(pNewExpr1, pExpr); idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); testcase( idxNew1==0 ); exprAnalyze(pSrc, pWC, idxNew1); pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), pStr2, 0); transferJoinMarkings(pNewExpr2, pExpr); idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ markTermAsChild(pWC, idxNew1, idxTerm); markTermAsChild(pWC, idxNew2, idxTerm); } } #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Add a WO_MATCH auxiliary term to the constraint set if the ** current expression is of the form: column MATCH expr. ** This information is used by the xBestIndex methods of ** virtual tables. The native query optimizer does not attempt ** to do anything with MATCH functions. */ if( isMatchOfColumn(pExpr) ){ int idxNew; Expr *pRight, *pLeft; WhereTerm *pNewTerm; Bitmask prereqColumn, prereqExpr; pRight = pExpr->x.pList->a[0].pExpr; pLeft = pExpr->x.pList->a[1].pExpr; prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); if( (prereqExpr & prereqColumn)==0 ){ Expr *pNewExpr; pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 0, sqlite3ExprDup(db, pRight, 0), 0); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = prereqExpr; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_MATCH; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* When sqlite_stat3 histogram data is available an operator of the ** form "x IS NOT NULL" can sometimes be evaluated more efficiently ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a ** virtual term of that form. ** ** Note that the virtual term must be tagged with TERM_VNULL. */ if( pExpr->op==TK_NOTNULL && pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 && OptimizationEnabled(db, SQLITE_Stat34) ){ Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; pNewExpr = sqlite3PExpr(pParse, TK_GT, sqlite3ExprDup(db, pLeft, 0), sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); if( idxNew ){ pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = 0; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_GT; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /*************************************************************************** ** Routines with file scope above. Interface to the rest of the where.c ** subsystem follows. ***************************************************************************/ /* ** This routine identifies subexpressions in the WHERE clause where ** each subexpression is separated by the AND operator or some other ** operator specified in the op parameter. The WhereClause structure ** is filled with pointers to subexpressions. For example: ** ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) ** \________/ \_______________/ \________________/ ** slot[0] slot[1] slot[2] ** ** The original WHERE clause in pExpr is unaltered. All this routine ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ Expr *pE2 = sqlite3ExprSkipCollate(pExpr); pWC->op = op; if( pE2==0 ) return; if( pE2->op!=op ){ whereClauseInsert(pWC, pExpr, 0); }else{ sqlite3WhereSplit(pWC, pE2->pLeft, op); sqlite3WhereSplit(pWC, pE2->pRight, op); } } /* ** Initialize a preallocated WhereClause structure. */ void sqlite3WhereClauseInit( WhereClause *pWC, /* The WhereClause to be initialized */ WhereInfo *pWInfo /* The WHERE processing context */ ){ pWC->pWInfo = pWInfo; pWC->pOuter = 0; pWC->nTerm = 0; pWC->nSlot = ArraySize(pWC->aStatic); pWC->a = pWC->aStatic; } /* ** Deallocate a WhereClause structure. The WhereClause structure ** itself is not freed. This routine is the inverse of sqlite3WhereClauseInit(). */ void sqlite3WhereClauseClear(WhereClause *pWC){ int i; WhereTerm *a; sqlite3 *db = pWC->pWInfo->pParse->db; for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ if( a->wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, a->pExpr); } if( a->wtFlags & TERM_ORINFO ){ whereOrInfoDelete(db, a->u.pOrInfo); }else if( a->wtFlags & TERM_ANDINFO ){ whereAndInfoDelete(db, a->u.pAndInfo); } } if( pWC->a!=pWC->aStatic ){ sqlite3DbFree(db, pWC->a); } } /* ** These routines walk (recursively) an expression tree and generate ** a bitmask indicating which tables are used in that expression ** tree. */ Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ Bitmask mask = 0; if( p==0 ) return 0; if( p->op==TK_COLUMN ){ mask = sqlite3WhereGetMask(pMaskSet, p->iTable); return mask; } mask = sqlite3WhereExprUsage(pMaskSet, p->pRight); mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); if( ExprHasProperty(p, EP_xIsSelect) ){ mask |= exprSelectUsage(pMaskSet, p->x.pSelect); }else{ mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); } return mask; } Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ int i; Bitmask mask = 0; if( pList ){ for(i=0; i<pList->nExpr; i++){ mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); } } return mask; } /* ** Call exprAnalyze on all terms in a WHERE clause. ** ** Note that exprAnalyze() might add new virtual terms onto the ** end of the WHERE clause. We do not want to analyze these new ** virtual terms, so start analyzing at the end and work forward ** so that the added virtual terms are never processed. */ void sqlite3WhereExprAnalyze( SrcList *pTabList, /* the FROM clause */ WhereClause *pWC /* the WHERE clause to be analyzed */ ){ int i; for(i=pWC->nTerm-1; i>=0; i--){ exprAnalyze(pTabList, pWC, i); } } |
Changes to tool/mksqlite3c.tcl.
︙ | ︙ | |||
285 286 287 288 289 290 291 292 293 294 295 296 297 298 | mem5.c mutex.c mutex_noop.c mutex_unix.c mutex_w32.c malloc.c printf.c random.c threads.c utf.c util.c hash.c opcodes.c | > | 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | mem5.c mutex.c mutex_noop.c mutex_unix.c mutex_w32.c malloc.c printf.c treeview.c random.c threads.c utf.c util.c hash.c opcodes.c |
︙ | ︙ | |||
339 340 341 342 343 344 345 346 347 348 349 350 351 352 | prepare.c select.c table.c trigger.c update.c vacuum.c vtab.c where.c parse.c tokenize.c complete.c | > > | 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | prepare.c select.c table.c trigger.c update.c vacuum.c vtab.c wherecode.c whereexpr.c where.c parse.c tokenize.c complete.c |
︙ | ︙ |