SQLite

Check-in [4cf23e9e86]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Changes to btree.c in support of coverage testing. (CVS 6913)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 4cf23e9e860bd6245344884ec84f487fdf36f86f
User & Date: drh 2009-07-21 11:52:35.000
Context
2009-07-21
15:33
Remove an assert() in btree.c which is no longer true due to changes in the error reporting behavior of ptrmapPut(). (CVS 6914) (check-in: 110998f18a user: drh tags: trunk)
11:52
Changes to btree.c in support of coverage testing. (CVS 6913) (check-in: 4cf23e9e86 user: drh tags: trunk)
2009-07-20
19:30
Reverse the order of two conditionals in a test in order to achieve coverage of them both. Also: clarifications to comments in btree.c. (CVS 6912) (check-in: a159e9d247 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.693 2009/07/20 19:30:01 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.694 2009/07/21 11:52:35 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

1124
1125
1126
1127
1128
1129
1130

1131
1132
1133
1134
1135
1136
1137
  
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );


  nFrag = data[hdr+7];
  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  top = get2byte(&data[hdr+5]);
  if( gap>top ) return SQLITE_CORRUPT_BKPT;
  testcase( gap+2==top );







>







1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
  
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
  assert( nByte<pPage->pBt->usableSize-8 );

  nFrag = data[hdr+7];
  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  top = get2byte(&data[hdr+5]);
  if( gap>top ) return SQLITE_CORRUPT_BKPT;
  testcase( gap+2==top );
1180
1181
1182
1183
1184
1185
1186
1187



1188
1189
1190

1191
1192
1193
1194
1195
1196
1197
    if( rc ) return rc;
    top = get2byte(&data[hdr+5]);
    assert( gap+nByte<=top );
  }


  /* Allocate memory from the gap in between the cell pointer array
  ** and the cell content area.



  */
  top -= nByte;
  put2byte(&data[hdr+5], top);

  *pIdx = top;
  return SQLITE_OK;
}

/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aDisk[start]







|
>
>
>



>







1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    if( rc ) return rc;
    top = get2byte(&data[hdr+5]);
    assert( gap+nByte<=top );
  }


  /* Allocate memory from the gap in between the cell pointer array
  ** and the cell content area.  The btreeInitPage() call has already
  ** validated the freelist.  Given that the freelist is valid, there
  ** is no way that the allocation can extend off the end of the page.
  ** The assert() below verifies the previous sentence.
  */
  top -= nByte;
  put2byte(&data[hdr+5], top);
  assert( top+nByte <= pPage->pBt->usableSize );
  *pIdx = top;
  return SQLITE_OK;
}

/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aDisk[start]
4956
4957
4958
4959
4960
4961
4962
4963

4964

4965
4966
4967
4968
4969
4970
4971
  if( pPage ){
    pPage->isInit = 0;
  }
  releasePage(pPage);
  releasePage(pTrunk);
  return rc;
}
static int freePage(MemPage *pPage){

  return freePage2(pPage->pBt, pPage, pPage->pgno);

}

/*
** Free any overflow pages associated with the given Cell.
*/
static int clearCell(MemPage *pPage, unsigned char *pCell){
  BtShared *pBt = pPage->pBt;







|
>
|
>







4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
  if( pPage ){
    pPage->isInit = 0;
  }
  releasePage(pPage);
  releasePage(pTrunk);
  return rc;
}
static void freePage(MemPage *pPage, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
  }
}

/*
** Free any overflow pages associated with the given Cell.
*/
static int clearCell(MemPage *pPage, unsigned char *pCell){
  BtShared *pBt = pPage->pBt;
5180
5181
5182
5183
5184
5185
5186

5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197

5198

5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
  int i;          /* Loop counter */
  int pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  int rc;         /* The return code */


  if( *pRC ) return;

  assert( idx>=0 && idx<pPage->nCell );
  assert( sz==cellSize(pPage, idx) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  data = pPage->aData;
  ptr = &data[pPage->cellOffset + 2*idx];
  pc = get2byte(ptr);
  if( (pc<pPage->hdrOffset+6+pPage->childPtrSize)

     || (pc+sz>pPage->pBt->usableSize) ){

    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
    ptr[0] = ptr[2];
    ptr[1] = ptr[3];
  }
  pPage->nCell--;
  put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
  pPage->nFree += 2;
}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**







>










|
>
|
>













|







5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
  int i;          /* Loop counter */
  int pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;

  assert( idx>=0 && idx<pPage->nCell );
  assert( sz==cellSize(pPage, idx) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  data = pPage->aData;
  ptr = &data[pPage->cellOffset + 2*idx];
  pc = get2byte(ptr);
  hdr = pPage->hdrOffset;
  testcase( pc==get2byte(&data[hdr+5]) );
  testcase( pc+sz==pPage->pBt->usableSize );
  if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
    ptr[0] = ptr[2];
    ptr[1] = ptr[3];
  }
  pPage->nCell--;
  put2byte(&data[hdr+3], pPage->nCell);
  pPage->nFree += 2;
}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
5277
5278
5279
5280
5281
5282
5283


5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
    data = pPage->aData;
    cellOffset = pPage->cellOffset;
    end = cellOffset + 2*pPage->nCell;
    ins = cellOffset + 2*i;
    rc = allocateSpace(pPage, sz, &idx);
    if( rc ){ *pRC = rc; return; }


    assert( idx>=end+2 );
    if( idx+sz > pPage->pBt->usableSize ){
      *pRC = SQLITE_CORRUPT_BKPT;
      return;
    }
    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){







>
>
|
|
<
<
<







5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297



5298
5299
5300
5301
5302
5303
5304
    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
    data = pPage->aData;
    cellOffset = pPage->cellOffset;
    end = cellOffset + 2*pPage->nCell;
    ins = cellOffset + 2*i;
    rc = allocateSpace(pPage, sz, &idx);
    if( rc ){ *pRC = rc; return; }
    /* The allocateSpace() routine guarantees the following two properties
    ** if it returns success */
    assert( idx >= end+2 );
    assert( idx+sz <= pPage->pBt->usableSize );



    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page.  This leaves the right side of the tree somewhat
** unbalanced.  But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up.  On average.
**
** pPage is the leaf page which is the right-most page in the tree.







|







5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying to balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page.  This leaves the right side of the tree somewhat
** unbalanced.  But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up.  On average.
**
** pPage is the leaf page which is the right-most page in the tree.
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
  int rc;                              /* Return Code */
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);








|







5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
  int rc;                              /* Return Code */
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  if( NEVER(pPage->nCell<=0) ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

5524
5525
5526
5527
5528
5529
5530
5531

5532
5533
5534
5535
5536
5537
5538
5539

5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557

5558
5559
5560
5561

5562
5563
5564
5565
5566
5567
5568
**
** Before returning, page pTo is reinitialized using btreeInitPage().
**
** The performance of this function is not critical. It is only used by 
** the balance_shallower() and balance_deeper() procedures, neither of
** which are called often under normal circumstances.
*/
static int copyNodeContent(MemPage *pFrom, MemPage *pTo){

  BtShared * const pBt = pFrom->pBt;
  u8 * const aFrom = pFrom->aData;
  u8 * const aTo = pTo->aData;
  int const iFromHdr = pFrom->hdrOffset;
  int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
  int rc = SQLITE_OK;
  int iData;


  assert( pFrom->isInit );
  assert( pFrom->nFree>=iToHdr );
  assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );

  /* Copy the b-tree node content from page pFrom to page pTo. */
  iData = get2byte(&aFrom[iFromHdr+5]);
  memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
  memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);

  /* Reinitialize page pTo so that the contents of the MemPage structure
  ** match the new data. The initialization of pTo "cannot" fail, as the
  ** data copied from pFrom is known to be valid.  */
  pTo->isInit = 0;
  TESTONLY(rc = ) btreeInitPage(pTo);
  assert( rc==SQLITE_OK );

  /* If this is an auto-vacuum database, update the pointer-map entries
  ** for any b-tree or overflow pages that pTo now contains the pointers to. */

  if( ISAUTOVACUUM ){
    rc = setChildPtrmaps(pTo);
  }
  return rc;

}

/*
** This routine redistributes cells on the iParentIdx'th child of pParent
** (hereafter "the page") and up to 2 siblings so that all pages have about the
** same amount of free space. Usually a single sibling on either side of the
** page are used in the balancing, though both siblings might come from one







|
>
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
<
>







5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572

5573
5574
5575
5576
5577
5578
5579
5580
**
** Before returning, page pTo is reinitialized using btreeInitPage().
**
** The performance of this function is not critical. It is only used by 
** the balance_shallower() and balance_deeper() procedures, neither of
** which are called often under normal circumstances.
*/
static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    BtShared * const pBt = pFrom->pBt;
    u8 * const aFrom = pFrom->aData;
    u8 * const aTo = pTo->aData;
    int const iFromHdr = pFrom->hdrOffset;
    int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
    TESTONLY(int rc;)
    int iData;
  
  
    assert( pFrom->isInit );
    assert( pFrom->nFree>=iToHdr );
    assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
  
    /* Copy the b-tree node content from page pFrom to page pTo. */
    iData = get2byte(&aFrom[iFromHdr+5]);
    memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
    memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
  
    /* Reinitialize page pTo so that the contents of the MemPage structure
    ** match the new data. The initialization of pTo "cannot" fail, as the
    ** data copied from pFrom is known to be valid.  */
    pTo->isInit = 0;
    TESTONLY(rc = ) btreeInitPage(pTo);
    assert( rc==SQLITE_OK );
  
    /* If this is an auto-vacuum database, update the pointer-map entries
    ** for any b-tree or overflow pages that pTo now contains the pointers to.
    */
    if( ISAUTOVACUUM ){
      *pRC = setChildPtrmaps(pTo);
    }

  }
}

/*
** This routine redistributes cells on the iParentIdx'th child of pParent
** (hereafter "the page") and up to 2 siblings so that all pages have about the
** same amount of free space. Usually a single sibling on either side of the
** page are used in the balancing, though both siblings might come from one
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
      }
    }
  }

  /* Free any old pages that were not reused as new pages.
  */
  while( i<nOld ){
    rc = freePage(apOld[i]);
    if( rc ) goto balance_cleanup;
    releasePage(apOld[i]);
    apOld[i] = 0;
    i++;
  }

  /*







|







5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
      }
    }
  }

  /* Free any old pages that were not reused as new pages.
  */
  while( i<nOld ){
    freePage(apOld[i], &rc);
    if( rc ) goto balance_cleanup;
    releasePage(apOld[i]);
    apOld[i] = 0;
    i++;
  }

  /*
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
    ** (it must be, as it was just reconstructed using assemblePage()). This
    ** is important if the parent page happens to be page 1 of the database
    ** image.  */
    assert( nNew==1 );
    assert( apNew[0]->nFree == 
        (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 
    );
    if( SQLITE_OK==(rc = copyNodeContent(apNew[0], pParent)) ){
      rc = freePage(apNew[0]);
    }
  }else if( ISAUTOVACUUM ){
    /* Fix the pointer-map entries for all the cells that were shifted around. 
    ** There are several different types of pointer-map entries that need to
    ** be dealt with by this routine. Some of these have been set already, but
    ** many have not. The following is a summary:
    **
    **   1) The entries associated with new sibling pages that were not







|
|
<







6083
6084
6085
6086
6087
6088
6089
6090
6091

6092
6093
6094
6095
6096
6097
6098
    ** (it must be, as it was just reconstructed using assemblePage()). This
    ** is important if the parent page happens to be page 1 of the database
    ** image.  */
    assert( nNew==1 );
    assert( apNew[0]->nFree == 
        (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 
    );
    copyNodeContent(apNew[0], pParent, &rc);
    freePage(apNew[0], &rc);

  }else if( ISAUTOVACUUM ){
    /* Fix the pointer-map entries for all the cells that were shifted around. 
    ** There are several different types of pointer-map entries that need to
    ** be dealt with by this routine. Some of these have been set already, but
    ** many have not. The following is a summary:
    **
    **   1) The entries associated with new sibling pages that were not
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
    MemPage *pNew = apNew[0];
    MemPage *pOld = apCopy[0];
    int nOverflow = pOld->nOverflow;
    int iNextOld = pOld->nCell + nOverflow;
    int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
    j = 0;                             /* Current 'old' sibling page */
    k = 0;                             /* Current 'new' sibling page */
    for(i=0; i<nCell && rc==SQLITE_OK; i++){
      int isDivider = 0;
      while( i==iNextOld ){
        /* Cell i is the cell immediately following the last cell on old
        ** sibling page j. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i was a divider cell. */
        pOld = apCopy[++j];
        iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;







|







6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
    MemPage *pNew = apNew[0];
    MemPage *pOld = apCopy[0];
    int nOverflow = pOld->nOverflow;
    int iNextOld = pOld->nCell + nOverflow;
    int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
    j = 0;                             /* Current 'old' sibling page */
    k = 0;                             /* Current 'new' sibling page */
    for(i=0; i<nCell; i++){
      int isDivider = 0;
      while( i==iNextOld ){
        /* Cell i is the cell immediately following the last cell on old
        ** sibling page j. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i was a divider cell. */
        pOld = apCopy[++j];
        iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
  /* Make pRoot, the root page of the b-tree, writable. Allocate a new 
  ** page that will become the new right-child of pPage. Copy the contents
  ** of the node stored on pRoot into the new child page.
  */
  rc = sqlite3PagerWrite(pRoot->pDbPage);
  if( rc==SQLITE_OK ){
    rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
    if( rc==SQLITE_OK ){
      rc = copyNodeContent(pRoot, pChild);
      if( ISAUTOVACUUM ){
        ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
      }
    }
  }
  if( rc ){
    *ppChild = 0;
    releasePage(pChild);
    return rc;
  }







<
|
|
|
<







6246
6247
6248
6249
6250
6251
6252

6253
6254
6255

6256
6257
6258
6259
6260
6261
6262
  /* Make pRoot, the root page of the b-tree, writable. Allocate a new 
  ** page that will become the new right-child of pPage. Copy the contents
  ** of the node stored on pRoot into the new child page.
  */
  rc = sqlite3PagerWrite(pRoot->pDbPage);
  if( rc==SQLITE_OK ){
    rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);

    copyNodeContent(pRoot, pChild, &rc);
    if( ISAUTOVACUUM ){
      ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);

    }
  }
  if( rc ){
    *ppChild = 0;
    releasePage(pChild);
    return rc;
  }
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
    if( rc ) goto cleardatabasepage_out;
  }else if( pnChange ){
    assert( pPage->intKey );
    *pnChange += pPage->nCell;
  }
  if( freePageFlag ){
    rc = freePage(pPage);
  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
    zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
  }

cleardatabasepage_out:
  releasePage(pPage);
  return rc;







|







6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
    if( rc ) goto cleardatabasepage_out;
  }else if( pnChange ){
    assert( pPage->intKey );
    *pnChange += pPage->nCell;
  }
  if( freePageFlag ){
    freePage(pPage, &rc);
  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
    zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
  }

cleardatabasepage_out:
  releasePage(pPage);
  return rc;
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
    return rc;
  }

  *piMoved = 0;

  if( iTable>1 ){
#ifdef SQLITE_OMIT_AUTOVACUUM
    rc = freePage(pPage);
    releasePage(pPage);
#else
    if( pBt->autoVacuum ){
      Pgno maxRootPgno;
      sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);

      if( iTable==maxRootPgno ){
        /* If the table being dropped is the table with the largest root-page
        ** number in the database, put the root page on the free list. 
        */
        rc = freePage(pPage);
        releasePage(pPage);
        if( rc!=SQLITE_OK ){
          return rc;
        }
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 







|










|







6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
    return rc;
  }

  *piMoved = 0;

  if( iTable>1 ){
#ifdef SQLITE_OMIT_AUTOVACUUM
    freePage(pPage, &rc);
    releasePage(pPage);
#else
    if( pBt->autoVacuum ){
      Pgno maxRootPgno;
      sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);

      if( iTable==maxRootPgno ){
        /* If the table being dropped is the table with the largest root-page
        ** number in the database, put the root page on the free list. 
        */
        freePage(pPage, &rc);
        releasePage(pPage);
        if( rc!=SQLITE_OK ){
          return rc;
        }
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = freePage(pMove);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }








<
<
<
|







6979
6980
6981
6982
6983
6984
6985



6986
6987
6988
6989
6990
6991
6992
6993
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);



        freePage(pMove, &rc);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }

6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
             || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
        maxRootPgno--;
      }
      assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );

      rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
    }else{
      rc = freePage(pPage);
      releasePage(pPage);
    }
#endif
  }else{
    /* If sqlite3BtreeDropTable was called on page 1.
    ** This really never should happen except in a corrupt
    ** database. 







|







7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
             || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
        maxRootPgno--;
      }
      assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );

      rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
    }else{
      freePage(pPage, &rc);
      releasePage(pPage);
    }
#endif
  }else{
    /* If sqlite3BtreeDropTable was called on page 1.
    ** This really never should happen except in a corrupt
    ** database.