Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Changes to btree.c in support of coverage testing. (CVS 6913) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
4cf23e9e860bd6245344884ec84f487f |
User & Date: | drh 2009-07-21 11:52:35.000 |
Context
2009-07-21
| ||
15:33 | Remove an assert() in btree.c which is no longer true due to changes in the error reporting behavior of ptrmapPut(). (CVS 6914) (check-in: 110998f18a user: drh tags: trunk) | |
11:52 | Changes to btree.c in support of coverage testing. (CVS 6913) (check-in: 4cf23e9e86 user: drh tags: trunk) | |
2009-07-20
| ||
19:30 | Reverse the order of two conditionals in a test in order to achieve coverage of them both. Also: clarifications to comments in btree.c. (CVS 6912) (check-in: a159e9d247 user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.694 2009/07/21 11:52:35 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** See the header comment on "btreeInt.h" for additional information. ** Including a description of file format and an overview of operation. */ #include "btreeInt.h" |
︙ | ︙ | |||
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( nByte>=0 ); /* Minimum cell size is 4 */ assert( pPage->nFree>=nByte ); assert( pPage->nOverflow==0 ); nFrag = data[hdr+7]; assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); gap = pPage->cellOffset + 2*pPage->nCell; top = get2byte(&data[hdr+5]); if( gap>top ) return SQLITE_CORRUPT_BKPT; testcase( gap+2==top ); | > | 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( nByte>=0 ); /* Minimum cell size is 4 */ assert( pPage->nFree>=nByte ); assert( pPage->nOverflow==0 ); assert( nByte<pPage->pBt->usableSize-8 ); nFrag = data[hdr+7]; assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); gap = pPage->cellOffset + 2*pPage->nCell; top = get2byte(&data[hdr+5]); if( gap>top ) return SQLITE_CORRUPT_BKPT; testcase( gap+2==top ); |
︙ | ︙ | |||
1180 1181 1182 1183 1184 1185 1186 | if( rc ) return rc; top = get2byte(&data[hdr+5]); assert( gap+nByte<=top ); } /* Allocate memory from the gap in between the cell pointer array | | > > > > | 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 | if( rc ) return rc; top = get2byte(&data[hdr+5]); assert( gap+nByte<=top ); } /* Allocate memory from the gap in between the cell pointer array ** and the cell content area. The btreeInitPage() call has already ** validated the freelist. Given that the freelist is valid, there ** is no way that the allocation can extend off the end of the page. ** The assert() below verifies the previous sentence. */ top -= nByte; put2byte(&data[hdr+5], top); assert( top+nByte <= pPage->pBt->usableSize ); *pIdx = top; return SQLITE_OK; } /* ** Return a section of the pPage->aData to the freelist. ** The first byte of the new free block is pPage->aDisk[start] |
︙ | ︙ | |||
4956 4957 4958 4959 4960 4961 4962 | if( pPage ){ pPage->isInit = 0; } releasePage(pPage); releasePage(pTrunk); return rc; } | | > | > | 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 | if( pPage ){ pPage->isInit = 0; } releasePage(pPage); releasePage(pTrunk); return rc; } static void freePage(MemPage *pPage, int *pRC){ if( (*pRC)==SQLITE_OK ){ *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); } } /* ** Free any overflow pages associated with the given Cell. */ static int clearCell(MemPage *pPage, unsigned char *pCell){ BtShared *pBt = pPage->pBt; |
︙ | ︙ | |||
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 | */ static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ int i; /* Loop counter */ int pc; /* Offset to cell content of cell being deleted */ u8 *data; /* pPage->aData */ u8 *ptr; /* Used to move bytes around within data[] */ int rc; /* The return code */ if( *pRC ) return; assert( idx>=0 && idx<pPage->nCell ); assert( sz==cellSize(pPage, idx) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); data = pPage->aData; ptr = &data[pPage->cellOffset + 2*idx]; pc = get2byte(ptr); | > | > | > | | 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 | */ static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ int i; /* Loop counter */ int pc; /* Offset to cell content of cell being deleted */ u8 *data; /* pPage->aData */ u8 *ptr; /* Used to move bytes around within data[] */ int rc; /* The return code */ int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ if( *pRC ) return; assert( idx>=0 && idx<pPage->nCell ); assert( sz==cellSize(pPage, idx) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); data = pPage->aData; ptr = &data[pPage->cellOffset + 2*idx]; pc = get2byte(ptr); hdr = pPage->hdrOffset; testcase( pc==get2byte(&data[hdr+5]) ); testcase( pc+sz==pPage->pBt->usableSize ); if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ *pRC = SQLITE_CORRUPT_BKPT; return; } rc = freeSpace(pPage, pc, sz); if( rc ){ *pRC = rc; return; } for(i=idx+1; i<pPage->nCell; i++, ptr+=2){ ptr[0] = ptr[2]; ptr[1] = ptr[3]; } pPage->nCell--; put2byte(&data[hdr+3], pPage->nCell); pPage->nFree += 2; } /* ** Insert a new cell on pPage at cell index "i". pCell points to the ** content of the cell. ** |
︙ | ︙ | |||
5277 5278 5279 5280 5281 5282 5283 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); data = pPage->aData; cellOffset = pPage->cellOffset; end = cellOffset + 2*pPage->nCell; ins = cellOffset + 2*i; rc = allocateSpace(pPage, sz, &idx); if( rc ){ *pRC = rc; return; } | > > | | < < < | 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); data = pPage->aData; cellOffset = pPage->cellOffset; end = cellOffset + 2*pPage->nCell; ins = cellOffset + 2*i; rc = allocateSpace(pPage, sz, &idx); if( rc ){ *pRC = rc; return; } /* The allocateSpace() routine guarantees the following two properties ** if it returns success */ assert( idx >= end+2 ); assert( idx+sz <= pPage->pBt->usableSize ); pPage->nCell++; pPage->nFree -= (u16)(2 + sz); memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); if( iChild ){ put4byte(&data[idx], iChild); } for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){ |
︙ | ︙ | |||
5368 5369 5370 5371 5372 5373 5374 | #ifndef SQLITE_OMIT_QUICKBALANCE /* ** This version of balance() handles the common special case where ** a new entry is being inserted on the extreme right-end of the ** tree, in other words, when the new entry will become the largest ** entry in the tree. ** | | | 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 | #ifndef SQLITE_OMIT_QUICKBALANCE /* ** This version of balance() handles the common special case where ** a new entry is being inserted on the extreme right-end of the ** tree, in other words, when the new entry will become the largest ** entry in the tree. ** ** Instead of trying to balance the 3 right-most leaf pages, just add ** a new page to the right-hand side and put the one new entry in ** that page. This leaves the right side of the tree somewhat ** unbalanced. But odds are that we will be inserting new entries ** at the end soon afterwards so the nearly empty page will quickly ** fill up. On average. ** ** pPage is the leaf page which is the right-most page in the tree. |
︙ | ︙ | |||
5395 5396 5397 5398 5399 5400 5401 | int rc; /* Return Code */ Pgno pgnoNew; /* Page number of pNew */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); assert( pPage->nOverflow==1 ); | | | 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 | int rc; /* Return Code */ Pgno pgnoNew; /* Page number of pNew */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); assert( pPage->nOverflow==1 ); if( NEVER(pPage->nCell<=0) ) return SQLITE_CORRUPT_BKPT; /* Allocate a new page. This page will become the right-sibling of ** pPage. Make the parent page writable, so that the new divider cell ** may be inserted. If both these operations are successful, proceed. */ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
︙ | ︙ | |||
5524 5525 5526 5527 5528 5529 5530 | ** ** Before returning, page pTo is reinitialized using btreeInitPage(). ** ** The performance of this function is not critical. It is only used by ** the balance_shallower() and balance_deeper() procedures, neither of ** which are called often under normal circumstances. */ | | > | | | | | | | | > | | | | | | | | | | | | | | | | | | > | | | < > | 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 | ** ** Before returning, page pTo is reinitialized using btreeInitPage(). ** ** The performance of this function is not critical. It is only used by ** the balance_shallower() and balance_deeper() procedures, neither of ** which are called often under normal circumstances. */ static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ if( (*pRC)==SQLITE_OK ){ BtShared * const pBt = pFrom->pBt; u8 * const aFrom = pFrom->aData; u8 * const aTo = pTo->aData; int const iFromHdr = pFrom->hdrOffset; int const iToHdr = ((pTo->pgno==1) ? 100 : 0); TESTONLY(int rc;) int iData; assert( pFrom->isInit ); assert( pFrom->nFree>=iToHdr ); assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize ); /* Copy the b-tree node content from page pFrom to page pTo. */ iData = get2byte(&aFrom[iFromHdr+5]); memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); /* Reinitialize page pTo so that the contents of the MemPage structure ** match the new data. The initialization of pTo "cannot" fail, as the ** data copied from pFrom is known to be valid. */ pTo->isInit = 0; TESTONLY(rc = ) btreeInitPage(pTo); assert( rc==SQLITE_OK ); /* If this is an auto-vacuum database, update the pointer-map entries ** for any b-tree or overflow pages that pTo now contains the pointers to. */ if( ISAUTOVACUUM ){ *pRC = setChildPtrmaps(pTo); } } } /* ** This routine redistributes cells on the iParentIdx'th child of pParent ** (hereafter "the page") and up to 2 siblings so that all pages have about the ** same amount of free space. Usually a single sibling on either side of the ** page are used in the balancing, though both siblings might come from one |
︙ | ︙ | |||
5923 5924 5925 5926 5927 5928 5929 | } } } /* Free any old pages that were not reused as new pages. */ while( i<nOld ){ | | | 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 | } } } /* Free any old pages that were not reused as new pages. */ while( i<nOld ){ freePage(apOld[i], &rc); if( rc ) goto balance_cleanup; releasePage(apOld[i]); apOld[i] = 0; i++; } /* |
︙ | ︙ | |||
6071 6072 6073 6074 6075 6076 6077 | ** (it must be, as it was just reconstructed using assemblePage()). This ** is important if the parent page happens to be page 1 of the database ** image. */ assert( nNew==1 ); assert( apNew[0]->nFree == (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) ); | | | < | 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 | ** (it must be, as it was just reconstructed using assemblePage()). This ** is important if the parent page happens to be page 1 of the database ** image. */ assert( nNew==1 ); assert( apNew[0]->nFree == (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) ); copyNodeContent(apNew[0], pParent, &rc); freePage(apNew[0], &rc); }else if( ISAUTOVACUUM ){ /* Fix the pointer-map entries for all the cells that were shifted around. ** There are several different types of pointer-map entries that need to ** be dealt with by this routine. Some of these have been set already, but ** many have not. The following is a summary: ** ** 1) The entries associated with new sibling pages that were not |
︙ | ︙ | |||
6113 6114 6115 6116 6117 6118 6119 | MemPage *pNew = apNew[0]; MemPage *pOld = apCopy[0]; int nOverflow = pOld->nOverflow; int iNextOld = pOld->nCell + nOverflow; int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1); j = 0; /* Current 'old' sibling page */ k = 0; /* Current 'new' sibling page */ | | | 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 | MemPage *pNew = apNew[0]; MemPage *pOld = apCopy[0]; int nOverflow = pOld->nOverflow; int iNextOld = pOld->nCell + nOverflow; int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1); j = 0; /* Current 'old' sibling page */ k = 0; /* Current 'new' sibling page */ for(i=0; i<nCell; i++){ int isDivider = 0; while( i==iNextOld ){ /* Cell i is the cell immediately following the last cell on old ** sibling page j. If the siblings are not leaf pages of an ** intkey b-tree, then cell i was a divider cell. */ pOld = apCopy[++j]; iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow; |
︙ | ︙ | |||
6235 6236 6237 6238 6239 6240 6241 | /* Make pRoot, the root page of the b-tree, writable. Allocate a new ** page that will become the new right-child of pPage. Copy the contents ** of the node stored on pRoot into the new child page. */ rc = sqlite3PagerWrite(pRoot->pDbPage); if( rc==SQLITE_OK ){ rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); | < | | | < | 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 | /* Make pRoot, the root page of the b-tree, writable. Allocate a new ** page that will become the new right-child of pPage. Copy the contents ** of the node stored on pRoot into the new child page. */ rc = sqlite3PagerWrite(pRoot->pDbPage); if( rc==SQLITE_OK ){ rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); copyNodeContent(pRoot, pChild, &rc); if( ISAUTOVACUUM ){ ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); } } if( rc ){ *ppChild = 0; releasePage(pChild); return rc; } |
︙ | ︙ | |||
6842 6843 6844 6845 6846 6847 6848 | rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange); if( rc ) goto cleardatabasepage_out; }else if( pnChange ){ assert( pPage->intKey ); *pnChange += pPage->nCell; } if( freePageFlag ){ | | | 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 | rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange); if( rc ) goto cleardatabasepage_out; }else if( pnChange ){ assert( pPage->intKey ); *pnChange += pPage->nCell; } if( freePageFlag ){ freePage(pPage, &rc); }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ zeroPage(pPage, pPage->aData[0] | PTF_LEAF); } cleardatabasepage_out: releasePage(pPage); return rc; |
︙ | ︙ | |||
6937 6938 6939 6940 6941 6942 6943 | return rc; } *piMoved = 0; if( iTable>1 ){ #ifdef SQLITE_OMIT_AUTOVACUUM | | | | 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 | return rc; } *piMoved = 0; if( iTable>1 ){ #ifdef SQLITE_OMIT_AUTOVACUUM freePage(pPage, &rc); releasePage(pPage); #else if( pBt->autoVacuum ){ Pgno maxRootPgno; sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); if( iTable==maxRootPgno ){ /* If the table being dropped is the table with the largest root-page ** number in the database, put the root page on the free list. */ freePage(pPage, &rc); releasePage(pPage); if( rc!=SQLITE_OK ){ return rc; } }else{ /* The table being dropped does not have the largest root-page ** number in the database. So move the page that does into the |
︙ | ︙ | |||
6970 6971 6972 6973 6974 6975 6976 | } rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; } rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); | < < < | | 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 | } rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; } rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); freePage(pMove, &rc); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; } *piMoved = maxRootPgno; } |
︙ | ︙ | |||
6995 6996 6997 6998 6999 7000 7001 | || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ maxRootPgno--; } assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); }else{ | | | 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 | || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ maxRootPgno--; } assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); }else{ freePage(pPage, &rc); releasePage(pPage); } #endif }else{ /* If sqlite3BtreeDropTable was called on page 1. ** This really never should happen except in a corrupt ** database. |
︙ | ︙ |