SQLite

Check-in [3eb5f9f8d6]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Add new SelectDest codes, SRT_Queue and SRT_DistQueue in anticipation of adding ORDER BY support on recursive queries. Factor out the recursive query code generator into a separate procedure.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | cte-via-queue
Files: files | file ages | folders
SHA1: 3eb5f9f8d6ac1ee145cb4119087c516f66fe1456
User & Date: drh 2014-01-22 13:35:53.476
Context
2014-01-22
17:28
Get ORDER BY working for recursive queries. (check-in: 37b343b018 user: drh tags: cte-via-queue)
13:35
Add new SelectDest codes, SRT_Queue and SRT_DistQueue in anticipation of adding ORDER BY support on recursive queries. Factor out the recursive query code generator into a separate procedure. (check-in: 3eb5f9f8d6 user: drh tags: cte-via-queue)
10:22
Fix a typo in a comment. No changes to code or tests. (check-in: cceacc0e79 user: dan tags: cte-via-queue)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/select.c.
577
578
579
580
581
582
583

584
585

586
587
588
589
590
591
592
  /* Pull the requested columns.
  */
  nResultCol = pEList->nExpr;
  if( pDest->iSdst==0 ){
    pDest->iSdst = pParse->nMem+1;
    pDest->nSdst = nResultCol;
    pParse->nMem += nResultCol;

  }else{ 
    assert( pDest->nSdst==nResultCol );

  }
  regResult = pDest->iSdst;
  if( srcTab>=0 ){
    for(i=0; i<nResultCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
      VdbeComment((v, "%s", pEList->a[i].zName));
    }







>


>







577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
  /* Pull the requested columns.
  */
  nResultCol = pEList->nExpr;
  if( pDest->iSdst==0 ){
    pDest->iSdst = pParse->nMem+1;
    pDest->nSdst = nResultCol;
    pParse->nMem += nResultCol;
    if( eDest==SRT_Queue ) pParse->nMem++;
  }else{ 
    assert( pDest->nSdst==nResultCol );
    assert( eDest!=SRT_Queue );
  }
  regResult = pDest->iSdst;
  if( srcTab>=0 ){
    for(i=0; i<nResultCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
      VdbeComment((v, "%s", pEList->a[i].zName));
    }
658
659
660
661
662
663
664








665
666
667
668












669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
  }

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */
#ifndef SQLITE_OMIT_COMPOUND_SELECT








    case SRT_Union: {
      int r1;
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);












      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.
    */
    case SRT_Except: {
      sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
      break;
    }
#endif

    /* Store the result as data using a unique key.
    */
    case SRT_DistTable:
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);







>
>
>
>
>
>
>
>




>
>
>
>
>
>
>
>
>
>
>
>













|







660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
  }

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */
#ifndef SQLITE_OMIT_COMPOUND_SELECT
#ifndef SQLITE_OMIT_CTE
    case SRT_Queue: {
      sqlite3VdbeAddOp2(v, OP_Sequence, iParm, regResult+nResultCol);
      nResultCol++;
      /* Fall through into SRT_Union */
    }
    case SRT_DistQueue:
#endif /* SQLITE_OMIT_CTE */
    case SRT_Union: {
      int r1;
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
#ifndef SQLITE_OMIT_CTE
      if( eDest==SRT_DistQueue ){
        /* If the destination is DistQueue, then cursor (iParm+1) is open
        ** on a second ephemeral index that holds all values every previously
        ** added to the queue.  Only add this new value if it has never before
        ** been added */
        int addr = sqlite3VdbeCurrentAddr(v) + 3;
        sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
        assert( pOrderBy==0 );
      }
#endif /* SQLITE_OMIT_CTE */
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.
    */
    case SRT_Except: {
      sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
      break;
    }
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

    /* Store the result as data using a unique key.
    */
    case SRT_DistTable:
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);
1672
1673
1674
1675
1676
1677
1678




































































































































1679
1680
1681
1682
1683
1684
1685
1686
  if( pRet==0 && iCol<p->pEList->nExpr ){
    pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
  }
  return pRet;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */





































































































































/* Forward reference */
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
);









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
  if( pRet==0 && iCol<p->pEList->nExpr ){
    pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
  }
  return pRet;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

#ifndef SQLITE_OMIT_CTE
/*
** This routine generates VDBE code to compute the content of a WITH RECURSIVE
** query of the form:
**
**   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
**                         \___________/             \_______________/
**                           p->pPrior                      p
**
**
** There is exactly one reference to the recursive-table in the FROM clause
** of recursive-query, marked with the SrcList->a[].isRecursive flag.
**
** The setup-query runs once to generate an initial set of rows that go
** into a Queue table.  Rows are extracted from the Queue table one by
** one.  Each row extracted from iQueue is output to pDest.  Then the single
** extracted row (now the iCurrent table) becomes the content of the
** recursive-table and recursive-query is run.  The output of the recursive-query
** is added back into the Queue table.  Then another row is extracted from Queue
** and the iteration continues until the Queue table is empty.
**
** If the compound query operator is UNION then no duplicate rows are ever
** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
** that have ever been inserted into Queue and causes duplicates to be
** discarded.  If the operator is UNION ALL, then duplicates are allowed.
** 
** If the query has an ORDER BY, then entries in the Queue table are kept in
** ORDER BY order and the first entry is extracted for each cycle.  Without
** an ORDER BY, the Queue table is just a FIFO.
**
** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
** have been output to pDest.  A LIMIT of zero means to output no rows and a
** negative LIMIT means to output all rows.  If there is also an OFFSET clause
** with a positive value, then the first OFFSET outputs are discarded rather
** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
** rows have been skipped.
*/
static void generateWithRecursiveQuery(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The recursive SELECT to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
  int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
  Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
  Select *pSetup = p->pPrior;   /* The setup query */
  int addrTop;                  /* Top of the loop */
  int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
  int iCurrent;                 /* The Current table */
  int regCurrent;               /* Register holding Current table */
  int iQueue;                   /* The Queue table */
  int iDistinct = 0;            /* To ensure unique results if UNION */
  int eDest = SRT_Table;        /* How to write to Queue */
  SelectDest destQueue;         /* SelectDest targetting the Queue table */
  int i;                        /* Loop counter */
  int rc;                       /* Result code */

  /* Obtain authorization to do a recursive query */
  if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
  addrBreak = sqlite3VdbeMakeLabel(v);
  addrCont = sqlite3VdbeMakeLabel(v);


  /* Check that there is no ORDER BY or LIMIT clause. Neither of these 
  ** are currently supported on recursive queries.
  */
  assert( p->pOffset==0 || p->pLimit );
  if( p->pOrderBy || p->pLimit ){
    sqlite3ErrorMsg(pParse, "%s in a recursive query",
        p->pOrderBy ? "ORDER BY" : "LIMIT"
    );
    return;
  }

  /* Locate the cursor number of the Current table */
  for(i=0; ALWAYS(i<pSrc->nSrc); i++){
    if( pSrc->a[i].isRecursive ){
      iCurrent = pSrc->a[i].iCursor;
      break;
    }
  }

  /* Allocate cursors for Queue and Distinct.  The cursor number for
  ** the Distinct table must be exactly one greater than Queue in order
  ** for the SRT_DistTable destination to work. */
  iQueue = pParse->nTab++;
  if( p->op==TK_UNION ){
    assert( SRT_Table+1==SRT_DistTable );
    assert( SRT_Queue+1==SRT_DistQueue );
    eDest++;
    iDistinct = pParse->nTab++;
  }
  sqlite3SelectDestInit(&destQueue, eDest, iQueue);

  /* Allocate cursors for Current, Queue, and Distinct. */
  regCurrent = ++pParse->nMem;
  sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
  sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
  if( iDistinct ){
    p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
    p->selFlags |= SF_UsesEphemeral;
  }

  /* Store the results of the setup-query in Queue. */
  rc = sqlite3Select(pParse, pSetup, &destQueue);
  if( rc ) return;

  /* Find the next row in the Queue and output that row */
  addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak);
  selectInnerLoop(pParse, p, p->pEList, iQueue,
      0, 0, pDest, addrCont, addrBreak);
  sqlite3VdbeResolveLabel(v, addrCont);

  /* Transfer the next row in Queue over to Current */
  sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
  sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
  sqlite3VdbeAddOp1(v, OP_Delete, iQueue);

  /* Execute the recursive SELECT taking the single row in Current as
  ** the value for the recursive-table. Store the results in the Queue.
  */
  p->pPrior = 0;
  sqlite3Select(pParse, p, &destQueue);
  assert( p->pPrior==0 );
  p->pPrior = pSetup;

  /* Keep running the loop until the Queue is empty */
  sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
  sqlite3VdbeResolveLabel(v, addrBreak);
}
#endif

/* Forward references */
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
);


1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
    }
    rc = 1;
    goto multi_select_end;
  }

#ifndef SQLITE_OMIT_CTE
  if( p->selFlags & SF_Recursive ){
    SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
    int nCol = p->pEList->nExpr;  /* Number of columns in the CTE */
    int addrTop;                  /* Top of the loop */
    int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
    int iCurrent;                 /* The Current table */
    int regCurrent;               /* Register holding Current table */
    int iQueue;                   /* The Queue table */
    int iDistinct;                /* To ensure unique results if UNION */
    int eDest;                    /* How to write to Queue */
    SelectDest destQueue;         /* SelectDest targetting the Queue table */
    int i;                        /* Loop counter */

    /* Check that there is no ORDER BY or LIMIT clause. Neither of these 
    ** are currently supported on recursive queries.
    */
    assert( p->pOffset==0 || p->pLimit );
    if( p->pOrderBy || p->pLimit ){
      sqlite3ErrorMsg(pParse, "%s in a recursive query",
          p->pOrderBy ? "ORDER BY" : "LIMIT"
      );
      goto multi_select_end;
    }

    if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ){
      goto multi_select_end;
    }
    addrBreak = sqlite3VdbeMakeLabel(v);
    addrCont = sqlite3VdbeMakeLabel(v);

    /* Locate the cursor number of the Current table */
    for(i=0; ALWAYS(i<pSrc->nSrc); i++){
      if( pSrc->a[i].isRecursive ){
        iCurrent = pSrc->a[i].iCursor;
        break;
      }
    }

    /* Allocate cursors for Queue and Distinct.  The cursor number for
    ** the Distinct table must be exactly one greater than Queue in order
    ** for the SRT_DistTable destination to work. */
    iQueue = pParse->nTab++;
    if( p->op==TK_UNION ){
      eDest = SRT_DistTable;
      iDistinct = pParse->nTab++;
    }else{
      eDest = SRT_Table;
      iDistinct = 0;
    }
    sqlite3SelectDestInit(&destQueue, eDest, iQueue);

    /* Allocate cursors for Current, Queue, and iDistinct. */
    regCurrent = ++pParse->nMem;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
    if( iDistinct ){
      p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
      p->selFlags |= SF_UsesEphemeral;
    }

    /* Store the results of the initial SELECT in Queue. */
    rc = sqlite3Select(pParse, pPrior, &destQueue);
    if( rc ) goto multi_select_end;

    /* Find the next row in the Queue and output that row */
    addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak);
    selectInnerLoop(pParse, p, p->pEList, iQueue,
        0, 0, &dest, addrCont, addrBreak);
    sqlite3VdbeResolveLabel(v, addrCont);

    /* Transfer the next row in Queue over to Current */
    sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
    sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
    sqlite3VdbeAddOp1(v, OP_Delete, iQueue);

    /* Execute the recursive SELECT taking the single row in Current as
    ** the value for the CTE. Store the results in the Queue.
    */
    p->pPrior = 0;
    rc = sqlite3Select(pParse, p, &destQueue);
    assert( p->pPrior==0 );
    p->pPrior = pPrior;
    if( rc ) goto multi_select_end;

    /* Keep running the loop until the Queue is empty */
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
    sqlite3VdbeResolveLabel(v, addrBreak);
  }else
#endif

  /* Compound SELECTs that have an ORDER BY clause are handled separately.
  */
  if( p->pOrderBy ){
    return multiSelectOrderBy(pParse, p, pDest);







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<







1934
1935
1936
1937
1938
1939
1940














































































1941







1942
1943
1944
1945
1946
1947
1948
    }
    rc = 1;
    goto multi_select_end;
  }

#ifndef SQLITE_OMIT_CTE
  if( p->selFlags & SF_Recursive ){














































































    generateWithRecursiveQuery(pParse, p, &dest);







  }else
#endif

  /* Compound SELECTs that have an ORDER BY clause are handled separately.
  */
  if( p->pOrderBy ){
    return multiSelectOrderBy(pParse, p, pDest);
Changes to src/sqliteInt.h.
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216




2217
2218
2219
2220
2221








2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236

2237


2238
2239
2240
2241
2242
2243
2244
**                     of the query.  This destination implies "LIMIT 1".
**
**     SRT_Set         The result must be a single column.  Store each
**                     row of result as the key in table pDest->iSDParm. 
**                     Apply the affinity pDest->affSdst before storing
**                     results.  Used to implement "IN (SELECT ...)".
**
**     SRT_Table       Store results in temporary table pDest->iSDParm.
**                     This is like SRT_EphemTab except that the table
**                     is assumed to already be open.
**
**     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
**                     the result there. The cursor is left open after
**                     returning.  This is like SRT_Table except that
**                     this destination uses OP_OpenEphemeral to create
**                     the table first.
**
**     SRT_Coroutine   Generate a co-routine that returns a new row of
**                     results each time it is invoked.  The entry point
**                     of the co-routine is stored in register pDest->iSDParm
**                     and the result row is stored in pDest->nDest registers
**                     starting with pDest->iSdst.




**
**     SRT_DistTable   Store results in a temporary table pDest->iSDParm.
**                     But also use temporary table pDest->iSDParm+1 as
**                     a record of all prior results and ignore any duplicate
**                     rows.  Name means:  "Distinct Table".








*/
#define SRT_Union        1  /* Store result as keys in an index */
#define SRT_Except       2  /* Remove result from a UNION index */
#define SRT_Exists       3  /* Store 1 if the result is not empty */
#define SRT_Discard      4  /* Do not save the results anywhere */

/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)

#define SRT_Output       5  /* Output each row of result */
#define SRT_Mem          6  /* Store result in a memory cell */
#define SRT_Set          7  /* Store results as keys in an index */
#define SRT_Table        8  /* Store result as data with an automatic rowid */
#define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
#define SRT_Coroutine   10  /* Generate a single row of result */

#define SRT_DistTable   11  /* Like SRT_TABLE, but unique results only */



/*
** An instance of this object describes where to put of the results of
** a SELECT statement.
*/
struct SelectDest {
  u8 eDest;         /* How to dispose of the results.  On of SRT_* above. */







<
<
<
<











>
>
>
>





>
>
>
>
>
>
>
>












<
|
|
>
|
>
>







2195
2196
2197
2198
2199
2200
2201




2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241

2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
**                     of the query.  This destination implies "LIMIT 1".
**
**     SRT_Set         The result must be a single column.  Store each
**                     row of result as the key in table pDest->iSDParm. 
**                     Apply the affinity pDest->affSdst before storing
**                     results.  Used to implement "IN (SELECT ...)".
**




**     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
**                     the result there. The cursor is left open after
**                     returning.  This is like SRT_Table except that
**                     this destination uses OP_OpenEphemeral to create
**                     the table first.
**
**     SRT_Coroutine   Generate a co-routine that returns a new row of
**                     results each time it is invoked.  The entry point
**                     of the co-routine is stored in register pDest->iSDParm
**                     and the result row is stored in pDest->nDest registers
**                     starting with pDest->iSdst.
**
**     SRT_Table       Store results in temporary table pDest->iSDParm.
**                     This is like SRT_EphemTab except that the table
**                     is assumed to already be open.
**
**     SRT_DistTable   Store results in a temporary table pDest->iSDParm.
**                     But also use temporary table pDest->iSDParm+1 as
**                     a record of all prior results and ignore any duplicate
**                     rows.  Name means:  "Distinct Table".
**
**     SRT_Queue       Store results in priority queue pDest->iSDParm (really
**                     an index).  Append a sequence number so that all entries
**                     are distinct.
**
**     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
**                     the same record has never been stored before.  The
**                     index at pDest->iSDParm+1 hold all prior stores.
*/
#define SRT_Union        1  /* Store result as keys in an index */
#define SRT_Except       2  /* Remove result from a UNION index */
#define SRT_Exists       3  /* Store 1 if the result is not empty */
#define SRT_Discard      4  /* Do not save the results anywhere */

/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)

#define SRT_Output       5  /* Output each row of result */
#define SRT_Mem          6  /* Store result in a memory cell */
#define SRT_Set          7  /* Store results as keys in an index */

#define SRT_EphemTab     8  /* Create transient tab and store like SRT_Table */
#define SRT_Coroutine    9  /* Generate a single row of result */
#define SRT_Table       10  /* Store result as data with an automatic rowid */
#define SRT_DistTable   11  /* Like SRT_Table, but unique results only */
#define SRT_Queue       12  /* Store result in an queue */
#define SRT_DistQueue   13  /* Like SRT_Queue, but unique results only */

/*
** An instance of this object describes where to put of the results of
** a SELECT statement.
*/
struct SelectDest {
  u8 eDest;         /* How to dispose of the results.  On of SRT_* above. */