SQLite

Check-in [3a71afe674]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Use N separate cursors when scanning an index with N columns to collect sqlite_stat4 data. This fixes a problem with collecting incorrect nEq values from multi-column indexes.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | sqlite_stat4
Files: files | file ages | folders
SHA1: 3a71afe67418ce00097cd9714c395fe9ff16f23b
User & Date: dan 2013-08-05 18:00:56.397
Context
2013-08-05
19:04
Modify the vdbe code generated by ANALYZE to use fewer memory cells and cursor slots. (check-in: 4a51cf289f user: dan tags: sqlite_stat4)
18:00
Use N separate cursors when scanning an index with N columns to collect sqlite_stat4 data. This fixes a problem with collecting incorrect nEq values from multi-column indexes. (check-in: 3a71afe674 user: dan tags: sqlite_stat4)
05:34
Fix a couple of problems in code related to sqlite_stat4. (check-in: badd24d987 user: dan tags: sqlite_stat4)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/analyze.c.
387
388
389
390
391
392
393
394

395
396
397
398
399
400
401
  pSample->iRowid = rowid;
  pSample->iHash = h;
  pSample->isPSample = isPSample;
  pSample->nSumEq = nSumEq;
  for(i=0; i<p->nCol; i++){
    pSample->anEq[i] = sqlite3_value_int64(aEq[i]);
    pSample->anLt[i] = sqlite3_value_int64(aLt[i]);
    pSample->anDLt[i] = sqlite3_value_int64(aDLt[i]);

  } 

  /* Find the new minimum */
  if( p->nSample==p->mxSample ){
    u32 iHash = 0;                /* Hash corresponding to iMin/nSumEq entry */
    i64 nMinEq = LARGEST_INT64;   /* Smallest nSumEq seen so far */
    assert( iMin = -1 );







|
>







387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
  pSample->iRowid = rowid;
  pSample->iHash = h;
  pSample->isPSample = isPSample;
  pSample->nSumEq = nSumEq;
  for(i=0; i<p->nCol; i++){
    pSample->anEq[i] = sqlite3_value_int64(aEq[i]);
    pSample->anLt[i] = sqlite3_value_int64(aLt[i]);
    pSample->anDLt[i] = sqlite3_value_int64(aDLt[i])-1;
    assert( sqlite3_value_int64(aDLt[i])>0 );
  } 

  /* Find the new minimum */
  if( p->nSample==p->mxSample ){
    u32 iHash = 0;                /* Hash corresponding to iMin/nSumEq entry */
    i64 nMinEq = LARGEST_INT64;   /* Smallest nSumEq seen so far */
    assert( iMin = -1 );
560
561
562
563
564
565
566
567

568
569
570

571

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603






604



































































605


606






607


608
609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

651
652
653
654



655
656
657
658
659
660
661
662
663




664

665
666

667
668
669
670
671
672

673

674

675





676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710


711
712
713

714
715
716
717
718

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

799
800
801
802
803
804
805
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. */

  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;

  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;                     /* Number of columns indexed by pIdx */
    KeyInfo *pKey;                /* KeyInfo structure for pIdx */
    int addrIfNot = 0;            /* address of OP_IfNot */
    int *aChngAddr;               /* Array of jump instruction addresses */

    int regRowid;                 /* Register for rowid of current row */
    int regPrev;                  /* First in array of previous values */
    int regDLt;                   /* First in array of nDlt registers */
    int regLt;                    /* First in array of nLt registers */
    int regEq;                    /* First in array of nEq registers */
    int regCnt;                   /* Number of index entries */

    int addrGoto;

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
    if( aChngAddr==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);

    /* Open a cursor to the index to be analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);







#ifdef SQLITE_ENABLE_STAT4



































































    if( once ){


      once = 0;






      sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);


    }


    /* Invoke the stat4_init() function. The arguments are:
    ** 
    **     * the number of rows in the index,
    **     * the number of columns in the index,
    **     * the recommended number of samples for the stat4 table.
    */
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+2);
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT4_SAMPLES, regStat4+3);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4InitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);
#endif /* SQLITE_ENABLE_STAT4 */

    /* The block of (1 + 4*nCol) memory cells initialized here is used 
    ** as follows:
    **
    ** TODO: Update this comment:
    **
    **    iMem:                
    **        Loop counter. The number of rows visited so far, including
    **        the current row (i.e. this register is set to 1 for the
    **        first iteration of the loop).
    **
    **    iMem+1 .. iMem+nCol:
    **        Number of distinct index entries seen so far, considering
    **        the left-most N columns only, where N is between 1 and nCol,
    **        inclusive.
    **
    **    iMem+nCol+1 .. Mem+2*nCol:  
    **        Previous value of indexed columns, from left to right.
    **
    ** Cells iMem through iMem+nCol are initialized to 0. The others are 
    ** initialized to contain an SQL NULL.
    */
    regRowid = regStat4+1;        /* Rowid argument */
    regEq = regRowid+1;           /* First in array of nEq value registers */
    regLt = regEq+nCol;           /* First in array of nLt value registers */
    regDLt = regLt+nCol;          /* First in array of nDLt value registers */
    regCnt = regDLt+nCol;         /* Row counter */
    regPrev = regCnt+1;           /* First in array of prev. value registers */


    if( regPrev+1>pParse->nMem ){
      pParse->nMem = regPrev+1;
    }



    for(i=0; i<2+nCol*4; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowid+i);
    }

    /*
    ** Loop through all entries in the b-tree index. Pseudo-code for the
    ** body of the loop is as follows:
    **
    **    foreach i IN index {




    **      regCnt += 1

    **
    **      if( regEq(0)==0 ) goto ne_0;

    **
    **      if i(0) != regPrev(0) {
    **          stat4_push(regRowid, regEq, regLt, regDLt);
    **          goto ne_0;
    **      }
    **      regEq(0) += 1

    **

    **      if i(1) != regPrev(1){

    **          stat4_push(regRowid, regEq, regLt, regDLt);





    **          goto ne_1;
    **      }
    **      regEq(1) += 1
    **    
    **      goto all_eq;
    **    
    **      ne_0:
    **        regPrev(0) = i(0)
    **        if( regEq(0) != 0 ) regDLt(0) += 1
    **        regLt(0) += regEq(0)
    **        regEq(0) = 1
    **    
    **      ne_1:
    **        regPrev(1) = $i(1)
    **        if( regEq(1) != 0 ) regDLt(1) += 1
    **        regLt(1) += regEq(1)
    **        regEq(1) = 1
    **
    **      all_eq:
    **        regRowid = i(rowid)
    **    }
    **
    **    stat4_push(regRowid, regEq, regLt, regDLt);
    **    
    **    if( regEq(0) != 0 ) regDLt(0) += 1
    **    if( regEq(1) != 0 ) regDLt(1) += 1
    **
    ** The last two lines above modify the contents of the regDLt array
    ** so that each element contains the number of distinct key prefixes
    ** of the corresponding length. As required to calculate the contents
    ** of the sqlite_stat1 entry.
    **
    ** Note: if regEq(0)==0, stat4_push() is a no-op.
    */
    endOfLoop = sqlite3VdbeMakeLabel(v);


    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, regCnt, 1);  /* Increment row counter */


    /* This jump is taken for the first iteration of the loop only.
    **
    **     if( regEq(0)==0 ) goto ne_0;
    */

    addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, regEq);

    /* Code these bits:
    **
    **      if i(N) != regPrev(N) {
    **          stat4_push(regRowid, regEq, regLt, regDLt);
    **          goto ne_N;
    **      }
    **      regEq(N) += 1
    */
    for(i=0; i<nCol; i++){
      char *pColl;                /* Pointer to CollSeq cast to (char*) */
      assert( pIdx->azColl && pIdx->azColl[i]!=0 );
      pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);

      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
      sqlite3VdbeAddOp4(v, OP_Eq, regCol, 0, regPrev+i, pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);

      sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp2);
      sqlite3VdbeChangeP4(v, -1, (char*)&stat4PushFuncdef, P4_FUNCDEF);
      sqlite3VdbeChangeP5(v, 2 + 3*nCol);

      aChngAddr[i] = sqlite3VdbeAddOp0(v, OP_Goto);
      VdbeComment((v, "jump if column %d changed", i));

      sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-3);
      sqlite3VdbeAddOp2(v, OP_AddImm, regEq+i, 1);
      VdbeComment((v, "incr repeat count"));
    }

    /* Code the "continue" */
    addrGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);

    /* And now these:
    **

    **      ne_N:
    **        regPrev(N) = i(N)
    **        if( regEq(N) != N ) regDLt(N) += 1
    **        regLt(N) += regEq(N)
    **        regEq(N) = 1
    */
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, aChngAddr[i]);  /* Set jump dest for the OP_Ne */
      if( i==0 ){
        sqlite3VdbeJumpHere(v, addrIfNot);   /* Jump dest for OP_IfNot */
      }
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
      sqlite3VdbeAddOp2(v, OP_IfNot, regEq+i, sqlite3VdbeCurrentAddr(v)+2);
      sqlite3VdbeAddOp2(v, OP_AddImm, regDLt+i, 1);
      sqlite3VdbeAddOp3(v, OP_Add, regEq+i, regLt+i, regLt+i);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, regEq+i);
    }

    sqlite3DbFree(db, aChngAddr);

    /*
    **      all_eq:
    **        regRowid = i(rowid)
    */
    sqlite3VdbeJumpHere(v, addrGoto);
    sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);

    /* The end of the loop that iterates through all index entries. Always 
    ** jump here after updating the iMem+1...iMem+1+nCol counters. */
    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

    /* Final invocation of stat4_push() */
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp2);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4PushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2 + 3*nCol);

    /* Finally:
    **
    **    if( regEq(0) != 0 ) regDLt(0) += 1
    */
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_IfNot, regEq+i, sqlite3VdbeCurrentAddr(v)+2);
      sqlite3VdbeAddOp2(v, OP_AddImm, regDLt+i, 1);

    }

#ifdef SQLITE_ENABLE_STAT4
    /* Add rows to the sqlite_stat4 table */
    regLoop = regStat4+1;
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
    shortJump = sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);







|
>

<
|
>

>








|



|
|









<
<
<
<
<
<



>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
>
>
>
>
>
|
>
>


>














<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
|
<
<
<
<
<
>
|
<
<
|
>
>
>
|
|


<
<
<
<
|
>
>
>
>
|
>
|
<
>
|
|
<
|
|
|
>
|
>
|
>
|
>
>
>
>
>
|
|
<
|
<
|
|
|
<
|
|
<
|
<
<
<
<
<
|
<
|
<
<
<
|
<
<
<
<
<
<
<
<
|
|
>
>
<
<
|
>
|
<
<
<
<
>
|
|
<
<
<
<
<
<
<
<
<
<
<
|
|
|
|
|
|
<
<
<
|
<
<
<
<
|
|


|
|
|
<
<
>
|
<
<
<
|
<
|
<
<
|
<
|
<
|
|
|

>


<
<
<
<
<
<
<
<
<
|
<
<

<
<
<
<
|
<
<
<
<

<
|
>







561
562
563
564
565
566
567
568
569
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597






598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704



















705

706





707
708


709
710
711
712
713
714
715
716




717
718
719
720
721
722
723
724

725
726
727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

744

745
746
747

748
749

750





751

752



753








754
755
756
757


758
759
760




761
762
763











764
765
766
767
768
769



770




771
772
773
774
775
776
777


778
779



780

781


782

783

784
785
786
787
788
789
790









791


792




793




794

795
796
797
798
799
800
801
802
803
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. 
  ** Also open a read-only cursor on the table.  */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iTabCur = pParse->nTab++;
  sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;                     /* Number of columns indexed by pIdx */
    KeyInfo *pKey;                /* KeyInfo structure for pIdx */
    int addrIfNot = 0;            /* address of OP_IfNot */
    int *aChngAddr;               /* Array of jump instruction addresses */

    int regRowid;                 /* Register for rowid of current row */
    int regPrev;                  /* First in array of previous values */
    int regDLte;                  /* First in array of nDlt registers */
    int regLt;                    /* First in array of nLt registers */
    int regEq;                    /* First in array of nEq registers */
    int regCnt;                   /* Number of index entries */
    int regEof;                   /* True once cursors are all at EOF */
    int endOfScan;                /* Label to jump to once scan is finished */

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
    if( aChngAddr==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);







    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

    /*
    ** The following pseudo-code demonstrates the way the VM scans an index 
    ** to call stat4_push() and collect the values for the sqlite_stat1 
    ** entry. The code below is for an index with 2 columns. The actual
    ** VM code generated may be for any number of columns.
    **
    ** One cursor is opened for each column in the index (nCol). All cursors 
    ** scan concurrently the index from start to end. All variables used in
    ** the pseudo-code are initialized to zero.
    **
    **   Rewind csr(0)
    **   Rewind csr(1)
    ** 
    **  next_0:
    **   regPrev(0) = csr(0)[0]
    **   regDLte(0) += 1
    **   regLt(0) += regEq(0)
    **   regEq(0) = 0
    **   do {
    **     regEq(0) += 1
    **     Next csr(0)
    **   }while ( csr(0)[0] == regPrev(0) )
    ** 
    **  next_1:
    **   regPrev(1) = csr(1)[1]
    **   regDLte(1) += 1
    **   regLt(1) += regEq(1)
    **   regEq(1) = 0
    **   regRowid = csr(1)[rowid]        // innermost cursor only
    **   do {
    **     regEq(1) += 1
    **     regCnt += 1                   // innermost cursor only
    **     Next csr(1)
    **   }while ( csr(1)[0..1] == regPrev(0..1) )
    ** 
    **   stat4_push(regRowid, regEq, regLt, regDLte);
    ** 
    **   if( eof( csr(1) ) ) goto endOfScan
    **   if( csr(1)[0] != regPrev(0) ) goto next_0
    **   goto next_1
    **
    **  endOfScan:
    **   // done!
    **
    ** The last two lines above modify the contents of the regDLte array
    ** so that each element contains the number of distinct key prefixes
    ** of the corresponding length. As required to calculate the contents
    ** of the sqlite_stat1 entry.
    **
    ** Currently, the last memory cell allocated (that with the largest 
    ** integer identifier) is regStat4. Immediately following regStat4
    ** we allocate the following:
    **
    **     regRowid -    1 register
    **     regEq -    nCol registers
    **     regLt -    nCol registers
    **     regDLte -  nCol registers
    **     regCnt -      1 register
    **     regPrev -  nCol registers
    **     regEof -      1 register
    **
    ** The regRowid, regEq, regLt and regDLte registers must be positioned in 
    ** that order immediately following regStat4 so that they can be passed
    ** to the stat4_push() function.
    **
    ** All of the above are initialized to contain integer value 0.
    */
    regRowid = regStat4+1;        /* Rowid argument */
    regEq = regRowid+1;           /* First in array of nEq value registers */
    regLt = regEq+nCol;           /* First in array of nLt value registers */
    regDLte = regLt+nCol;         /* First in array of nDLt value registers */
    regCnt = regDLte+nCol;        /* Row counter */
    regPrev = regCnt+1;           /* First in array of prev. value registers */
    regEof = regPrev+nCol;        /* True once last row read from index */
    if( regEof+1>pParse->nMem ){
      pParse->nMem = regPrev+nCol;
    }

    /* Open a read-only cursor for each column of the index. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    iIdxCur = pParse->nTab++;
    pParse->nTab += (nCol-1);
    for(i=0; i<nCol; i++){
      int iMode = (i==0 ? P4_KEYINFO_HANDOFF : P4_KEYINFO);
      sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur+i, pIdx->tnum, iDb);
      sqlite3VdbeChangeP4(v, -1, (char*)pKey, iMode); 
      VdbeComment((v, "%s", pIdx->zName));
    }

#ifdef SQLITE_ENABLE_STAT4
    /* Invoke the stat4_init() function. The arguments are:
    ** 
    **     * the number of rows in the index,
    **     * the number of columns in the index,
    **     * the recommended number of samples for the stat4 table.
    */
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+2);
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT4_SAMPLES, regStat4+3);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4InitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);
#endif /* SQLITE_ENABLE_STAT4 */




















    /* Initialize all the memory registers allocated above to 0. */

    for(i=regRowid; i<=regEof; i++){





      sqlite3VdbeAddOp2(v, OP_Integer, 0, i);
    }



    /* Rewind all cursors open on the index. If the table is entry, this
    ** will cause control to jump to address endOfScan immediately.  */
    endOfScan = sqlite3VdbeMakeLabel(v);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur+i, endOfScan);
    }





    for(i=0; i<nCol; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      int iCsr = iIdxCur+i;
      int iDo;
      int iNe;                    /* Jump here to exit do{...}while loop */
      int j;
      int bInner = (i==(nCol-1)); /* True for innermost cursor */


      /* Implementation of the following pseudo-code:
      **
      **   regPrev(i) = csr(i)[i]

      **   regDLte(i) += 1
      **   regLt(i) += regEq(i)
      **   regEq(i) = 0
      **   regRowid = csr(i)[rowid]        // innermost cursor only
      */
      aChngAddr[i] = sqlite3VdbeAddOp3(v, OP_Column, iCsr, i, regPrev+i);
      VdbeComment((v, "regPrev(%d) = csr(%d)(%d)", i, i, i));
      sqlite3VdbeAddOp2(v, OP_AddImm, regDLte+i, 1);
      VdbeComment((v, "regDLte(%d) += 1", i));
      sqlite3VdbeAddOp3(v, OP_Add, regEq+i, regLt+i, regLt+i);
      VdbeComment((v, "regLt(%d) += regEq(%d)", i, i));
      sqlite3VdbeAddOp2(v, OP_Integer, 0, regEq+i);
      VdbeComment((v, "regEq(%d) = 0", i));
      if( bInner ) sqlite3VdbeAddOp2(v, OP_IdxRowid, iCsr, regRowid);

      /* This bit:

      **

      **   do {
      **     regEq(i) += 1
      **     regCnt += 1                   // innermost cursor only

      **     Next csr(i)
      **     if( Eof csr(i) ){

      **       regEof = 1                  // innermost cursor only





      **       break

      **     }



      **   }while ( csr(i)[0..i] == regPrev(0..i) )








      */
      iDo = sqlite3VdbeAddOp2(v, OP_AddImm, regEq+i, 1);
      VdbeComment((v, "regEq(%d) += 1", i));
      if( bInner ){


        sqlite3VdbeAddOp2(v, OP_AddImm, regCnt, 1);
        VdbeComment((v, "regCnt += 1"));
      }




      sqlite3VdbeAddOp2(v, OP_Next, iCsr, sqlite3VdbeCurrentAddr(v)+2+bInner);
      if( bInner ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);
      iNe = sqlite3VdbeMakeLabel(v);











      sqlite3VdbeAddOp2(v, OP_Goto, 0, iNe);
      for(j=0; j<=i; j++){
        sqlite3VdbeAddOp3(v, OP_Column, iCsr, j, regCol);
        sqlite3VdbeAddOp4(v, OP_Ne, regCol, iNe, regPrev+j, pColl, P4_COLLSEQ);
        sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
        VdbeComment((v, "if( regPrev(%d) != csr(%d)(%d) )", j, i, j));



      }




      sqlite3VdbeAddOp2(v, OP_Goto, 0, iDo);
      sqlite3VdbeResolveLabel(v, iNe);
    }

    /* Invoke stat4_push() */
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp2);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4PushFuncdef, P4_FUNCDEF);


    sqlite3VdbeChangeP5(v, 2 + 3*nCol);




    sqlite3VdbeAddOp2(v, OP_If, regEof, endOfScan);

    for(i=0; i<nCol-1; i++){


      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);

      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur+nCol-1, i, regCol);

      sqlite3VdbeAddOp3(v, OP_Ne, regCol, aChngAddr[i], regPrev+i);
      sqlite3VdbeChangeP4(v, -1, pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, aChngAddr[nCol-1]);
    sqlite3DbFree(db, aChngAddr);










    sqlite3VdbeResolveLabel(v, endOfScan);







    /* Close all the cursors */




    for(i=0; i<nCol; i++){

      sqlite3VdbeAddOp1(v, OP_Close, iIdxCur+i);
      VdbeComment((v, "close index cursor %d", i));
    }

#ifdef SQLITE_ENABLE_STAT4
    /* Add rows to the sqlite_stat4 table */
    regLoop = regStat4+1;
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
    shortJump = sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890




891
892
893
894
895
896
897
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, regCnt, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regCnt);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
      sqlite3VdbeAddOp3(v, OP_Add, regCnt, regDLt+i, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, regDLt+i, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
    }
    if( pIdx->pPartIdxWhere!=0 ) sqlite3VdbeJumpHere(v, jZeroRows);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    if( pIdx->pPartIdxWhere==0 ) sqlite3VdbeJumpHere(v, jZeroRows);
  }

  /* Create a single sqlite_stat1 entry containing NULL as the index
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }




  if( pParse->nMem<regRec ) pParse->nMem = regRec;
}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.







|

|















<

|
<








>
>
>
>







852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

877
878

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, regCnt, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regCnt);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
      sqlite3VdbeAddOp3(v, OP_Add, regCnt, regDLte+i, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, regDLte+i, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
    }
    if( pIdx->pPartIdxWhere!=0 ) sqlite3VdbeJumpHere(v, jZeroRows);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    if( pIdx->pPartIdxWhere==0 ) sqlite3VdbeJumpHere(v, jZeroRows);
  }

  /* Create a single sqlite_stat1 entry containing NULL as the index
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){

    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);

    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }

  sqlite3VdbeAddOp1(v, OP_Close, iTabCur);

  /* TODO: Not sure about this... */
  if( pParse->nMem<regRec ) pParse->nMem = regRec;
}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
Changes to src/test_func.c.
14
15
16
17
18
19
20



21
22
23
24
25
26
27
*/
#include "sqlite3.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>





/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *testContextMalloc(sqlite3_context *context, int nByte){







>
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
*/
#include "sqlite3.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "sqliteInt.h"
#include "vdbeInt.h"


/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *testContextMalloc(sqlite3_context *context, int nByte){
454
455
456
457
458
459
460





























































































461
462
463
464
465
466
467
      zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
    }
  }
  zOut[16] = 0;
  sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
}































































































static int registerTestFunctions(sqlite3 *db){
  static const struct {
     char *zName;
     signed char nArg;
     unsigned char eTextRep; /* 1: UTF-16.  0: UTF-8 */
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
      zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
    }
  }
  zOut[16] = 0;
  sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as its only argument. It returns
** a tcl list (type SQLITE_TEXT) containing each of the values stored
** in the record.
*/
static void test_decode(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);
  u8 *pRec;
  u8 *pEndHdr;                    /* Points to one byte past record header */
  u8 *pHdr;                       /* Current point in record header */
  u8 *pBody;                      /* Current point in record data */
  u64 nHdr;                       /* Bytes in record header */
  Tcl_Obj *pRet;                  /* Return value */

  pRet = Tcl_NewObj();
  Tcl_IncrRefCount(pRet);

  assert( argc==1 );
  pRec = (u8*)sqlite3_value_blob(argv[0]);

  pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
  pBody = pEndHdr = &pRec[nHdr];
  while( pHdr<pEndHdr ){
    Tcl_Obj *pVal = 0;
    u64 iSerialType;
    Mem mem;

    memset(&mem, 0, sizeof(mem));
    mem.db = db;
    mem.enc = SQLITE_UTF8;
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    sqlite3VdbeMemStoreType(&mem);
    switch( sqlite3_value_type(&mem) ){
      case SQLITE_TEXT:
        pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1);
        break;

      case SQLITE_BLOB: {
        char hexdigit[] = {
          '0', '1', '2', '3', '4', '5', '6', '7',
          '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
        };
        int n = sqlite3_value_bytes(&mem);
        u8 *z = (u8*)sqlite3_value_blob(&mem);
        int i;
        pVal = Tcl_NewStringObj("x'", -1);
        for(i=0; i<n; i++){
          char hex[3];
          hex[0] = hexdigit[((z[i] >> 4) & 0x0F)];
          hex[1] = hexdigit[(z[i] & 0x0F)];
          hex[2] = '\0';
          Tcl_AppendStringsToObj(pVal, hex, 0);
        }
        Tcl_AppendStringsToObj(pVal, "'", 0);
        break;
      }

      case SQLITE_FLOAT:
        pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem));
        break;

      case SQLITE_INTEGER:
        pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem));
        break;

      case SQLITE_NULL:
        pVal = Tcl_NewStringObj("NULL", -1);
        break;

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.zMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}


static int registerTestFunctions(sqlite3 *db){
  static const struct {
     char *zName;
     signed char nArg;
     unsigned char eTextRep; /* 1: UTF-16.  0: UTF-8 */
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
478
479
480
481
482
483
484

485
486
487
488
489
490
491
    { "test_auxdata",         -1, SQLITE_UTF8, test_auxdata},
    { "test_error",            1, SQLITE_UTF8, test_error},
    { "test_error",            2, SQLITE_UTF8, test_error},
    { "test_eval",             1, SQLITE_UTF8, test_eval},
    { "test_isolation",        2, SQLITE_UTF8, test_isolation},
    { "test_counter",          1, SQLITE_UTF8, counterFunc},
    { "real2hex",              1, SQLITE_UTF8, real2hex},

  };
  int i;

  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
    sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
        aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
  }







>







574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    { "test_auxdata",         -1, SQLITE_UTF8, test_auxdata},
    { "test_error",            1, SQLITE_UTF8, test_error},
    { "test_error",            2, SQLITE_UTF8, test_error},
    { "test_eval",             1, SQLITE_UTF8, test_eval},
    { "test_isolation",        2, SQLITE_UTF8, test_isolation},
    { "test_counter",          1, SQLITE_UTF8, counterFunc},
    { "real2hex",              1, SQLITE_UTF8, real2hex},
    { "test_decode",           1, SQLITE_UTF8, test_decode},
  };
  int i;

  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
    sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
        aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
  }
Changes to test/analyze9.test.
32
33
34
35
36
37
38

39
40
41
42










43
44
45
46
47
48
49
50
51
52
53


















































54
55
56
do_test 1.0 {
  execsql { CREATE TABLE t1(a TEXT, b TEXT); }
  for {set i 0} {$i < 5} {incr i} {
    execsql {INSERT INTO t1 VALUES ('('||($i%10)||')', '('||($i%7)||')')}
  }
  execsql { CREATE INDEX i1 ON t1(a, b) }
} {}


do_execsql_test 1.1 {
  ANALYZE;
} {}











do_execsql_test 1.2 {
  SELECT tbl,idx,nEq,nLt,nDLt,s(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1} {0 0} {0 0} ...(0)(0) 
  t1 i1 {1 1} {1 1} {1 1} ...(1)(1) 
  t1 i1 {1 1} {2 2} {2 2} ...(2)(2) 
  t1 i1 {1 1} {3 3} {3 3} ...(3)(3)
  t1 i1 {1 1} {4 4} {4 4} ...(4)(4)
}




















































finish_test








>




>
>
>
>
>
>
>
>
>
>











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
do_test 1.0 {
  execsql { CREATE TABLE t1(a TEXT, b TEXT); }
  for {set i 0} {$i < 5} {incr i} {
    execsql {INSERT INTO t1 VALUES ('('||($i%10)||')', '('||($i%7)||')')}
  }
  execsql { CREATE INDEX i1 ON t1(a, b) }
} {}


do_execsql_test 1.1 {
  ANALYZE;
} {}

do_execsql_test 1.3 {
  SELECT tbl,idx,nEq,nLt,nDLt,test_decode(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1} {0 0} {0 0} {(0) (0)}
  t1 i1 {1 1} {1 1} {1 1} {(1) (1)}
  t1 i1 {1 1} {2 2} {2 2} {(2) (2)}
  t1 i1 {1 1} {3 3} {3 3} {(3) (3)}
  t1 i1 {1 1} {4 4} {4 4} {(4) (4)}
}

do_execsql_test 1.2 {
  SELECT tbl,idx,nEq,nLt,nDLt,s(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1} {0 0} {0 0} ...(0)(0) 
  t1 i1 {1 1} {1 1} {1 1} ...(1)(1) 
  t1 i1 {1 1} {2 2} {2 2} ...(2)(2) 
  t1 i1 {1 1} {3 3} {3 3} ...(3)(3)
  t1 i1 {1 1} {4 4} {4 4} ...(4)(4)
}


#-------------------------------------------------------------------------
# This is really just to test SQL user function "test_decode".
#
reset_db
do_execsql_test 2.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES('some text', 14, NULL);
  INSERT INTO t1 VALUES(22.0, NULL, x'656667');
  CREATE INDEX i1 ON t1(a, b, c);
  ANALYZE;
  SELECT test_decode(sample) FROM sqlite_stat4;
} {
  {22.0 NULL x'656667'} 
  {{some text} 14 NULL}
}

#-------------------------------------------------------------------------
# 
reset_db
do_execsql_test 3.1 {
  CREATE TABLE t2(a, b);
  CREATE INDEX i2 ON t2(a, b);
  BEGIN;
}

do_test 3.2 {
  for {set i 0} {$i < 1000} {incr i} {
    set a [expr $i / 10]
    set b [expr int(rand() * 15.0)]
    execsql { INSERT INTO t2 VALUES($a, $b) }
  }
  execsql COMMIT
} {}

db func lindex lindex

# Each value of "a" occurs exactly 10 times in the table.
#
do_execsql_test 3.3.1 {
  SELECT count(*) FROM t2 GROUP BY a;
} [lrange [string repeat "10 " 100] 0 99]

# The first element in the "nEq" list of all samples should therefore be 10.
#
do_execsql_test 3.3.2 {
  ANALYZE;
  SELECT lindex(nEq, 0) FROM sqlite_stat4;
} [lrange [string repeat "10 " 100] 0 23]


finish_test