Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge EXPLAIN enhancements from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | omit-rowid |
Files: | files | file ages | folders |
SHA1: |
2fcac056074f0a23884ab5425003a7ca |
User & Date: | drh 2013-10-30 02:37:50.150 |
Context
2013-10-30
| ||
13:46 | In the P4 column of the EXPLAIN listing, abbreviate "keyinfo" as just "k" and "BINARY" as just "B". (check-in: 72d45eb79b user: drh tags: omit-rowid) | |
02:37 | Merge EXPLAIN enhancements from trunk. (check-in: 2fcac05607 user: drh tags: omit-rowid) | |
02:28 | Add the SQLITE_ENABLE_EXPLAIN_COMMENTS compile-time option to enable extra commentary in the EXPLAIN output. Formerly, this was only available with SQLITE_DEBUG. (check-in: e1a89b56f7 user: drh tags: trunk) | |
2013-10-29
| ||
20:47 | Import the automatic comment generating changes from trunk. (check-in: 8bb51da130 user: drh tags: omit-rowid) | |
Changes
Changes to mkopcodec.awk.
︙ | ︙ | |||
10 11 12 13 14 15 16 | # BEGIN { print "/* Automatically generated. Do not edit */" print "/* See the mkopcodec.awk script for details. */" printf "#if !defined(SQLITE_OMIT_EXPLAIN)" printf " || defined(VDBE_PROFILE)" print " || defined(SQLITE_DEBUG)" | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # BEGIN { print "/* Automatically generated. Do not edit */" print "/* See the mkopcodec.awk script for details. */" printf "#if !defined(SQLITE_OMIT_EXPLAIN)" printf " || defined(VDBE_PROFILE)" print " || defined(SQLITE_DEBUG)" print "#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)" print "# define OpHelp(X) \"\\0\" X" print "#else" print "# define OpHelp(X)" print "#endif" print "const char *sqlite3OpcodeName(int i){" print " static const char *const azName[] = { \"?\"," mx = 0 |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
213 214 215 216 217 218 219 220 221 222 223 224 225 226 | #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif #if defined(NDEBUG) && defined(SQLITE_DEBUG) # undef NDEBUG #endif /* ** The testcase() macro is used to aid in coverage testing. When ** doing coverage testing, the condition inside the argument to ** testcase() must be evaluated both true and false in order to ** get full branch coverage. The testcase() macro is inserted ** to help ensure adequate test coverage in places where simple ** condition/decision coverage is inadequate. For example, testcase() | > > > > > > > | 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif #if defined(NDEBUG) && defined(SQLITE_DEBUG) # undef NDEBUG #endif /* ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. */ #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 #endif /* ** The testcase() macro is used to aid in coverage testing. When ** doing coverage testing, the condition inside the argument to ** testcase() must be evaluated both true and false in order to ** get full branch coverage. The testcase() macro is inserted ** to help ensure adequate test coverage in places where simple ** condition/decision coverage is inadequate. For example, testcase() |
︙ | ︙ |
Changes to src/trigger.c.
︙ | ︙ | |||
780 781 782 783 784 785 786 | sqlite3VdbeAddOp0(v, OP_ResetCount); } } return 0; } | | | 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 | sqlite3VdbeAddOp0(v, OP_ResetCount); } } return 0; } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* ** This function is used to add VdbeComment() annotations to a VDBE ** program. It is not used in production code, only for debugging. */ static const char *onErrorText(int onError){ switch( onError ){ case OE_Abort: return "abort"; |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
1031 1032 1033 1034 1035 1036 1037 | } sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Move P1 P2 P3 * * | | | 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 | } sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Move P1 P2 P3 * * ** Synopsis: r[P2@P3]=r[P1@P3] ** ** Move the values in register P1..P1+P3 over into ** registers P2..P2+P3. Registers P1..P1+P3 are ** left holding a NULL. It is an error for register ranges ** P1..P1+P3 and P2..P2+P3 to overlap. */ case OP_Move: { |
︙ | ︙ | |||
1074 1075 1076 1077 1078 1079 1080 | pIn1++; pOut++; } break; } /* Opcode: Copy P1 P2 P3 * * | | | 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 | pIn1++; pOut++; } break; } /* Opcode: Copy P1 P2 P3 * * ** Synopsis: r[P2@P3]=r[P1@P3] ** ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. ** ** This instruction makes a deep copy of the value. A duplicate ** is made of any string or blob constant. See also OP_SCopy. */ case OP_Copy: { |
︙ | ︙ | |||
1128 1129 1130 1131 1132 1133 1134 | if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; #endif REGISTER_TRACE(pOp->p2, pOut); break; } /* Opcode: ResultRow P1 P2 * * * | | | 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 | if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; #endif REGISTER_TRACE(pOp->p2, pOut); break; } /* Opcode: ResultRow P1 P2 * * * ** Synopsis: output=r[P1@P2] ** ** The registers P1 through P1+P2-1 contain a single row of ** results. This opcode causes the sqlite3_step() call to terminate ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt ** structure to provide access to the top P1 values as the result ** row. */ |
︙ | ︙ | |||
1396 1397 1398 1399 1400 1401 1402 | if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } /* Opcode: Function P1 P2 P3 P4 P5 | | | 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 | if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } /* Opcode: Function P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to a Function structure that ** defines the function) with P5 arguments taken from register P2 and ** successors. The result of the function is stored in register P3. ** Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the |
︙ | ︙ | |||
2509 2510 2511 2512 2513 2514 2515 | op_column_out: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; } /* Opcode: Affinity P1 P2 * P4 * | | | 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 | op_column_out: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; } /* Opcode: Affinity P1 P2 * P4 * ** Synopsis: affinity(r[P1@P2]) ** ** Apply affinities to a range of P2 registers starting with P1. ** ** P4 is a string that is P2 characters long. The nth character of the ** string indicates the column affinity that should be used for the nth ** memory cell in the range. */ |
︙ | ︙ | |||
2536 2537 2538 2539 2540 2541 2542 | applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } /* Opcode: MakeRecord P1 P2 P3 P4 * | | | 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 | applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } /* Opcode: MakeRecord P1 P2 P3 P4 * ** Synopsis: r[P3]=mkrec(r[P1@P2]) ** ** Convert P2 registers beginning with P1 into the [record format] ** use as a data record in a database table or as a key ** in an index. The OP_Column opcode can decode the record later. ** ** P4 may be a string that is P2 characters long. The nth character of the ** string indicates the column affinity that should be used for the nth |
︙ | ︙ | |||
3375 3376 3377 3378 3379 3380 3381 | pCx->pKeyInfo->enc = ENC(p->db); pCx->isSorter = 1; rc = sqlite3VdbeSorterInit(db, pCx); break; } /* Opcode: OpenPseudo P1 P2 P3 * P5 | | | 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 | pCx->pKeyInfo->enc = ENC(p->db); pCx->isSorter = 1; rc = sqlite3VdbeSorterInit(db, pCx); break; } /* Opcode: OpenPseudo P1 P2 P3 * P5 ** Synopsis: content in r[P2@P3] ** ** Open a new cursor that points to a fake table that contains a single ** row of data. The content of that one row in the content of memory ** register P2 when P5==0. In other words, cursor P1 becomes an alias for the ** MEM_Blob content contained in register P2. When P5==1, then the ** row is represented by P3 consecutive registers beginning with P2. ** |
︙ | ︙ | |||
3418 3419 3420 3421 3422 3423 3424 | assert( pOp->p1>=0 && pOp->p1<p->nCursor ); sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); p->apCsr[pOp->p1] = 0; break; } /* Opcode: SeekGe P1 P2 P3 P4 * | | | | | | 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 | assert( pOp->p1>=0 && pOp->p1<p->nCursor ); sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); p->apCsr[pOp->p1] = 0; break; } /* Opcode: SeekGe P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as the key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than or equal to the key value. If there are no records ** greater than or equal to the key and P2 is not zero, then jump to P2. ** ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe */ /* Opcode: SeekGt P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than the key value. If there are no records greater than ** the key and P2 is not zero, then jump to P2. ** ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe */ /* Opcode: SeekLt P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than the key value. If there are no records less than ** the key and P2 is not zero, then jump to P2. ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe */ /* Opcode: SeekLe P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the largest entry that |
︙ | ︙ | |||
3654 3655 3656 3657 3658 3659 3660 | pC->deferredMoveto = 1; } break; } /* Opcode: Found P1 P2 P3 P4 * | | | > | 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 | pC->deferredMoveto = 1; } break; } /* Opcode: Found P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is a prefix of any entry in P1 then a jump is made to P2 and ** P1 is left pointing at the matching entry. ** ** See also: NotFound, NoConflict, NotExists. SeekGe */ /* Opcode: NotFound P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 ** does contain an entry whose prefix matches the P3/P4 record then control ** falls through to the next instruction and P1 is left pointing at the ** matching entry. ** ** See also: Found, NotExists, NoConflict */ /* Opcode: NoConflict P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** contains any NULL value, jump immediately to P2. If all terms of the |
︙ | ︙ | |||
4581 4582 4583 4584 4585 4586 4587 | } } } break; } /* Opcode: IdxDelete P1 P2 P3 * * | | | 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 | } } } break; } /* Opcode: IdxDelete P1 P2 P3 * * ** Synopsis: key=r[P2@P3] ** ** The content of P3 registers starting at register P2 form ** an unpacked index key. This opcode removes that entry from the ** index opened by cursor P1. */ case OP_IdxDelete: { VdbeCursor *pC; |
︙ | ︙ | |||
4654 4655 4656 4657 4658 4659 4660 | pOut->flags = MEM_Int; } } break; } /* Opcode: IdxGE P1 P2 P3 P4 P5 | | | | 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 | pOut->flags = MEM_Int; } } break; } /* Opcode: IdxGE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the ROWID. Compare this key value against the index ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. ** ** If the P1 index entry is greater than or equal to the key value ** then jump to P2. Otherwise fall through to the next instruction. ** ** If P5 is non-zero then the key value is increased by an epsilon ** prior to the comparison. This make the opcode work like IdxGT except ** that if the key from register P3 is a prefix of the key in the cursor, ** the result is false whereas it would be true with IdxGT. */ /* Opcode: IdxLT P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the ROWID. Compare this key value against the index ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. ** ** If the P1 index entry is less than the key value then jump to P2. ** Otherwise fall through to the next instruction. |
︙ | ︙ | |||
5412 5413 5414 5415 5416 5417 5418 | if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 | | | 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 | if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to the FuncDef ** structure that specifies the function. Use register ** P3 as the accumulator. ** ** The P5 arguments are taken from register P2 and its |
︙ | ︙ | |||
6030 6031 6032 6033 6034 6035 6036 | } break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 * | | | 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 | } break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 * ** Synopsis: data=r[P3@P2] ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xUpdate method. P2 values ** are contiguous memory cells starting at P3 to pass to the xUpdate ** invocation. The value in register (P3+P2-1) corresponds to the ** p2th element of the argv array passed to xUpdate. ** |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
57 58 59 60 61 62 63 | Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ int *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); } p4; | | | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ int *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); } p4; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zComment; /* Comment to improve readability */ #endif #ifdef VDBE_PROFILE int cnt; /* Number of times this instruction was executed */ u64 cycles; /* Total time spent executing this instruction */ #endif }; |
︙ | ︙ | |||
215 216 217 218 219 220 221 | UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **); #ifndef SQLITE_OMIT_TRIGGER void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); #endif | | | 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **); #ifndef SQLITE_OMIT_TRIGGER void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); #endif #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS void sqlite3VdbeComment(Vdbe*, const char*, ...); # define VdbeComment(X) sqlite3VdbeComment X void sqlite3VdbeNoopComment(Vdbe*, const char*, ...); # define VdbeNoopComment(X) sqlite3VdbeNoopComment X #else # define VdbeComment(X) # define VdbeNoopComment(X) #endif #endif |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
140 141 142 143 144 145 146 | pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; | | > > | 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); } #endif #ifdef VDBE_PROFILE pOp->cycles = 0; pOp->cnt = 0; |
︙ | ︙ | |||
528 529 530 531 532 533 534 | }else{ pOut->p2 = p2; } pOut->p3 = pIn->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; | | > > | 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | }else{ pOut->p2 = p2; } pOut->p3 = pIn->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOut->zComment = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); } #endif } p->nOp += nOp; } |
︙ | ︙ | |||
659 660 661 662 663 664 665 | ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ if( aOp ){ Op *pOp; for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ freeP4(db, pOp->p4type, pOp->p4.p); | | | 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 | ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ if( aOp ){ Op *pOp; for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ freeP4(db, pOp->p4type, pOp->p4.p); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS sqlite3DbFree(db, pOp->zComment); #endif } } sqlite3DbFree(db, aOp); } |
︙ | ︙ | |||
777 778 779 780 781 782 783 | }else{ if( n==0 ) n = sqlite3Strlen30(zP4); pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); pOp->p4type = P4_DYNAMIC; } } | | | 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 | }else{ if( n==0 ) n = sqlite3Strlen30(zP4); pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); pOp->p4type = P4_DYNAMIC; } } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* ** Change the comment on the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens ** in a production build. */ static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ |
︙ | ︙ | |||
852 853 854 855 856 857 858 | if( p->db->mallocFailed ){ return (VdbeOp*)&dummy; }else{ return &p->aOp[addr]; } } | | > > > > > > > > > > > > | > > > > > > | | < < < | < < < < | < < > | | > > > | > > > > > > > > | | 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 | if( p->db->mallocFailed ){ return (VdbeOp*)&dummy; }else{ return &p->aOp[addr]; } } #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) /* ** Return an integer value for one of the parameters to the opcode pOp ** determined by character c. */ static int translateP(char c, const Op *pOp){ if( c=='1' ) return pOp->p1; if( c=='2' ) return pOp->p2; if( c=='3' ) return pOp->p3; if( c=='4' ) return pOp->p4.i; return pOp->p5; } /* ** Compute a string for the "comment" field of a VDBE opcode listing */ static int displayComment( const Op *pOp, /* The opcode to be commented */ const char *zP4, /* Previously obtained value for P4 */ char *zTemp, /* Write result here */ int nTemp /* Space available in zTemp[] */ ){ const char *zOpName; const char *zSynopsis; int nOpName; int ii, jj; zOpName = sqlite3OpcodeName(pOp->opcode); nOpName = sqlite3Strlen30(zOpName); if( zOpName[nOpName+1] ){ int seenCom = 0; char c; zSynopsis = zOpName += nOpName + 1; for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ if( c=='P' ){ c = zSynopsis[++ii]; if( c=='4' ){ sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); }else if( c=='X' ){ sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); seenCom = 1; }else{ int v1 = translateP(c, pOp); int v2; sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ ii += 3; jj += sqlite3Strlen30(zTemp+jj); v2 = translateP(zSynopsis[ii], pOp); if( v2>1 ) sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ ii += 4; } } jj += sqlite3Strlen30(zTemp+jj); }else{ zTemp[jj++] = c; } } if( !seenCom && jj<nTemp-5 && pOp->zComment ){ sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); jj += sqlite3Strlen30(zTemp+jj); } if( jj<nTemp ) zTemp[jj] = 0; |
︙ | ︙ | |||
1103 1104 1105 1106 1107 1108 1109 | void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ char *zP4; char zPtr[50]; char zCom[100]; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; if( pOut==0 ) pOut = stdout; zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); | | | 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 | void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ char *zP4; char zPtr[50]; char zCom[100]; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; if( pOut==0 ) pOut = stdout; zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS displayComment(pOp, zP4, zCom, sizeof(zCom)); #else zCom[0] = 0 #endif fprintf(pOut, zFormat1, pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, zCom |
︙ | ︙ | |||
1349 1350 1351 1352 1353 1354 1355 | pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; pMem->n = 2; sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ pMem->type = SQLITE_TEXT; pMem->enc = SQLITE_UTF8; pMem++; | | | 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 | pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; pMem->n = 2; sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ pMem->type = SQLITE_TEXT; pMem->enc = SQLITE_UTF8; pMem++; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS if( sqlite3VdbeMemGrow(pMem, 500, 0) ){ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; pMem->n = displayComment(pOp, zP4, pMem->z, 500); pMem->type = SQLITE_TEXT; |
︙ | ︙ |