Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Cache the sqlite3_context structure in the P4 operand of VDBE programs for faster SQL function dispatch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
2abc44eb3b9d489321baa50bc25e17da |
User & Date: | drh 2015-06-26 18:16:52.781 |
Context
2015-06-26
| ||
18:47 | Further optimization of SQL function dispatch. Improvements to opcode documentation. (check-in: eaddbf296a user: drh tags: trunk) | |
18:16 | Cache the sqlite3_context structure in the P4 operand of VDBE programs for faster SQL function dispatch. (check-in: 2abc44eb3b user: drh tags: trunk) | |
03:12 | Fix harmless compiler warning in assert statement. (check-in: 7097716cae user: mistachkin tags: trunk) | |
Changes
Changes to mkopcodeh.awk.
︙ | ︙ | |||
118 119 120 121 122 123 124 | order[n_op++] = "OP_Explain"; # Assign small values to opcodes that are processed by resolveP2Values() # to make code generation for the switch() statement smaller and faster. for(i=0; i<n_op; i++){ name = order[i]; if( op[name]>=0 ) continue; | < < | | 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | order[n_op++] = "OP_Explain"; # Assign small values to opcodes that are processed by resolveP2Values() # to make code generation for the switch() statement smaller and faster. for(i=0; i<n_op; i++){ name = order[i]; if( op[name]>=0 ) continue; if( name=="OP_Transaction" \ || name=="OP_AutoCommit" \ || name=="OP_Savepoint" \ || name=="OP_Checkpoint" \ || name=="OP_Vacuum" \ || name=="OP_JournalMode" \ || name=="OP_VUpdate" \ || name=="OP_VFilter" \ |
︙ | ︙ |
Changes to src/analyze.c.
︙ | ︙ | |||
939 940 941 942 943 944 945 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); #elif SQLITE_DEBUG assert( iParam==STAT_GET_STAT1 ); #else UNUSED_PARAMETER( iParam ); #endif | | | 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); #elif SQLITE_DEBUG assert( iParam==STAT_GET_STAT1 ); #else UNUSED_PARAMETER( iParam ); #endif sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4, regOut); sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 1 + IsStat34); } /* ** Generate code to do an analysis of all indices associated with ** a single table. |
︙ | ︙ | |||
1094 1095 1096 1097 1098 1099 1100 | ** The third argument is only used for STAT3 and STAT4 */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); #endif sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); | | | 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 | ** The third argument is only used for STAT3 and STAT4 */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); #endif sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4+1, regStat4); sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); /* Implementation of the following: ** ** Rewind csr ** if eof(csr) goto end_of_scan; |
︙ | ︙ | |||
1190 1191 1192 1193 1194 1195 1196 | VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); | | | 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 | VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); sqlite3VdbeAddOp3(v, OP_Function0, 1, regStat4, regTemp); sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); /* Add the entry to the stat1 table. */ callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
︙ | ︙ |
Changes to src/attach.c.
︙ | ︙ | |||
355 356 357 358 359 360 361 | regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ | | | 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ sqlite3VdbeAddOp3(v, OP_Function0, 0, regArgs+3-pFunc->nArg, regArgs+3); assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg ); sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg)); sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF); /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this ** statement only). For DETACH, set it to false (expire all existing ** statements). |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
2921 2922 2923 2924 2925 2926 2927 | pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } | | | 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 | pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nFarg); if( nFarg && constMask==0 ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); } break; } |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
4682 4683 4684 4685 4686 4687 4688 | } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } | | | 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 | } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, (void*)pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); sqlite3ExprCacheClear(pParse); |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
1542 1543 1544 1545 1546 1547 1548 | assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } | | | | > > > > > > > > > > > > | | > > | > | > > > > > | < < < < < < < < < < < < < < < < > > > > > > > | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 | assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } /* Opcode: Function0 P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to a Function structure that ** defines the function) with P5 arguments taken from register P2 and ** successors. The result of the function is stored in register P3. ** Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** See also: Function, AggStep, AggFinal */ /* Opcode: Function P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to an sqlite3_context object that ** contains a pointer to the function to be run) with P5 arguments taken ** from register P2 and successors. The result of the function is stored ** in register P3. Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** SQL functions are initially coded as OP_Function0 with P4 pointing ** to the function itself. But on first evaluation, the P4 operand is ** automatically converted into an sqlite3_context object and the operation ** changed to this OP_Function opcode. In this way, the initialization of ** the sqlite3_context object occurs only once, rather than once for each ** evaluation of the function. ** ** See also: Function0, AggStep, AggFinal */ case OP_Function0: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); if( pCtx==0 ) goto no_mem; pCtx->pOut = 0; pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; pOp->opcode = OP_Function; /* Fall through into OP_Function */ } case OP_Function: { int i; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relavant parts of the sqlite3_context object */ if( pCtx->pOut != &aMem[pOp->p3] ){ pCtx->pOut = &aMem[pOp->p3]; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } memAboutToChange(p, pCtx->pOut); #ifdef SQLITE_DEBUG for(i=0; i<pCtx->argc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif MemSetTypeFlag(pCtx->pOut, MEM_Null); pCtx->fErrorOrAux = 0; db->lastRowid = lastRowid; (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */ lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ /* If the function returned an error, throw an exception */ if( pCtx->fErrorOrAux ){ if( pCtx->isError ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); rc = pCtx->isError; } sqlite3VdbeDeleteAuxData(p, (int)(pOp - aOp), pOp->p1); } /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); if( sqlite3VdbeMemTooBig(pCtx->pOut) ){ goto too_big; } REGISTER_TRACE(pOp->p3, pCtx->pOut); UPDATE_MAX_BLOBSIZE(pCtx->pOut); break; } /* Opcode: BitAnd P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]&r[P2] ** ** Take the bit-wise AND of the values in register P1 and P2 and |
︙ | ︙ | |||
5704 5705 5706 5707 5708 5709 5710 | ** function has P5 arguments. P4 is a pointer to the FuncDef ** structure that specifies the function. Use register ** P3 as the accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ | | > > > > > > > > > > > > > > > > > > > > > < < < > | < | | > > > > > > > > | > | | | < > | < < | | < < | | > | | | | > > > > | < | 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 | ** function has P5 arguments. P4 is a pointer to the FuncDef ** structure that specifies the function. Use register ** P3 as the accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ case OP_AggStep0: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); if( pCtx==0 ) goto no_mem; pCtx->pMem = 0; pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; pOp->opcode = OP_AggStep; /* Fall through into OP_AggStep */ } case OP_AggStep: { int i; sqlite3_context *pCtx; Mem *pMem; Mem t; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; pMem = &aMem[pOp->p3]; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relavant parts of the sqlite3_context object */ if( pCtx->pMem != pMem ){ pCtx->pMem = pMem; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } #ifdef SQLITE_DEBUG for(i=0; i<pCtx->argc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif pMem->n++; sqlite3VdbeMemInit(&t, db, MEM_Null); pCtx->pOut = &t; pCtx->fErrorOrAux = 0; pCtx->skipFlag = 0; (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ if( pCtx->fErrorOrAux ){ if( pCtx->isError ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); rc = pCtx->isError; } sqlite3VdbeMemRelease(&t); }else{ assert( t.flags==MEM_Null ); } if( pCtx->skipFlag ){ assert( pOp[-1].opcode==OP_CollSeq ); i = pOp[-1].p1; if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); } break; } /* Opcode: AggFinal P1 P2 * P4 * ** Synopsis: accum=r[P1] N=P2 ** ** Execute the finalizer function for an aggregate. P1 is |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
42 43 44 45 46 47 48 | u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ | | > | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ union p4union { /* fourth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ int *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); |
︙ | ︙ | |||
115 116 117 118 119 120 121 122 123 124 125 126 127 128 | #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ #define P4_ADVANCE (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 | > | 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ #define P4_ADVANCE (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */ #define P4_FUNCCTX (-20) /* P4 is a pointer to an sqlite3_context object */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
275 276 277 278 279 280 281 | ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { | | | | | | | | | > > | 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { Mem *pOut; /* The return value is stored here */ FuncDef *pFunc; /* Pointer to function information */ Mem *pMem; /* Memory cell used to store aggregate context */ Vdbe *pVdbe; /* The VM that owns this context */ int iOp; /* Instruction number of OP_Function */ int isError; /* Error code returned by the function. */ u8 skipFlag; /* Skip accumulator loading if true */ u8 fErrorOrAux; /* isError!=0 or pVdbe->pAuxData modified */ u8 argc; /* Number of arguments */ sqlite3_value *argv[1]; /* Argument set */ }; /* ** An Explain object accumulates indented output which is helpful ** in describing recursive data structures. */ struct Explain { |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
485 486 487 488 489 490 491 | p->bIsReader = 0; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; /* NOTE: Be sure to update mkopcodeh.awk when adding or removing ** cases from this switch! */ switch( opcode ){ | < < < < < | 485 486 487 488 489 490 491 492 493 494 495 496 497 498 | p->bIsReader = 0; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; /* NOTE: Be sure to update mkopcodeh.awk when adding or removing ** cases from this switch! */ switch( opcode ){ case OP_Transaction: { if( pOp->p2!=0 ) p->readOnly = 0; /* fall thru */ } case OP_AutoCommit: case OP_Savepoint: { p->bIsReader = 1; |
︙ | ︙ | |||
733 734 735 736 737 738 739 740 741 742 743 744 745 746 | /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ assert( db ); switch( p4type ){ case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { sqlite3DbFree(db, p4); break; } | > > > > | 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 | /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ assert( db ); switch( p4type ){ case P4_FUNCCTX: { freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); /* Fall through into the next case */ } case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { sqlite3DbFree(db, p4); break; } |
︙ | ︙ | |||
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 | sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); | > > > > > | 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 | sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_FUNCCTX: { FuncDef *pDef = pOp->p4.pCtx->pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); |
︙ | ︙ |