SQLite

Check-in [18bd6ba96d]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Further refinement of the idea of multiplying run-time cost estimates by the estimated row size.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | row-size-est
Files: files | file ages | folders
SHA1: 18bd6ba96d19de6047baebfa15b1f739577c9ec4
User & Date: drh 2013-10-08 18:40:37.532
Context
2013-10-08
20:01
Use #ifdefs to omit unused code in the columnType() routine depending on compile-time options. (check-in: 3fd5e33217 user: drh tags: row-size-est)
18:40
Further refinement of the idea of multiplying run-time cost estimates by the estimated row size. (check-in: 18bd6ba96d user: drh tags: row-size-est)
2013-10-07
17:32
Multiply all cursor step cost estimates by the estimated size of the row in bytes, in order to get the query planner ot make use of estimated row sizes. This check-in uses magic numbers in a few places (for example, estimates of the size of output rows) and needs lots of refinement. Consider this a proof-of-concept only. (check-in: cb34cfe57c user: drh tags: row-size-est)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/build.c.
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
    pParse->nErr++;
    goto begin_table_error;
  }
  pTable->zName = zName;
  pTable->iPKey = -1;
  pTable->pSchema = db->aDb[iDb].pSchema;
  pTable->nRef = 1;
  pTable->nRowEst = 1000000;
  assert( pParse->pNewTable==0 );
  pParse->pNewTable = pTable;

  /* If this is the magic sqlite_sequence table used by autoincrement,
  ** then record a pointer to this table in the main database structure
  ** so that INSERT can find the table easily.
  */







|







875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
    pParse->nErr++;
    goto begin_table_error;
  }
  pTable->zName = zName;
  pTable->iPKey = -1;
  pTable->pSchema = db->aDb[iDb].pSchema;
  pTable->nRef = 1;
  pTable->nRowEst = 1048576;
  assert( pParse->pNewTable==0 );
  pParse->pNewTable = pTable;

  /* If this is the magic sqlite_sequence table used by autoincrement,
  ** then record a pointer to this table in the main database structure
  ** so that INSERT can find the table easily.
  */
Changes to src/select.c.
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448


1449
1450
1451
1452
1453
1454
1455

1456
1457
1458
1459
1460
1461
1462
** routine goes through and adds the types and collations.
**
** This routine requires that all identifiers in the SELECT
** statement be resolved.
*/
static void selectAddColumnTypeAndCollation(
  Parse *pParse,        /* Parsing contexts */
  int nCol,             /* Number of columns */
  Column *aCol,         /* List of columns */
  Select *pSelect       /* SELECT used to determine types and collations */
){
  sqlite3 *db = pParse->db;
  NameContext sNC;
  Column *pCol;
  CollSeq *pColl;
  int i;
  Expr *p;
  struct ExprList_item *a;


  assert( pSelect!=0 );
  assert( (pSelect->selFlags & SF_Resolved)!=0 );
  assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
  if( db->mallocFailed ) return;
  memset(&sNC, 0, sizeof(sNC));
  sNC.pSrcList = pSelect->pSrc;
  a = pSelect->pEList->a;
  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    p = a[i].pExpr;
    pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));


    pCol->affinity = sqlite3ExprAffinity(p);
    if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
    pColl = sqlite3ExprCollSeq(pParse, p);
    if( pColl ){
      pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
    }
  }

}

/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){







|
<









>



|




|


>
>







>







1420
1421
1422
1423
1424
1425
1426
1427

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
** routine goes through and adds the types and collations.
**
** This routine requires that all identifiers in the SELECT
** statement be resolved.
*/
static void selectAddColumnTypeAndCollation(
  Parse *pParse,        /* Parsing contexts */
  Table *pTab,          /* Add column type information to this table */

  Select *pSelect       /* SELECT used to determine types and collations */
){
  sqlite3 *db = pParse->db;
  NameContext sNC;
  Column *pCol;
  CollSeq *pColl;
  int i;
  Expr *p;
  struct ExprList_item *a;
  u64 szAll = 0;

  assert( pSelect!=0 );
  assert( (pSelect->selFlags & SF_Resolved)!=0 );
  assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
  if( db->mallocFailed ) return;
  memset(&sNC, 0, sizeof(sNC));
  sNC.pSrcList = pSelect->pSrc;
  a = pSelect->pEList->a;
  for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
    p = a[i].pExpr;
    pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
    sqlite3AffinityType(pCol->zType, &pCol->szEst);
    szAll += pCol->szEst;
    pCol->affinity = sqlite3ExprAffinity(p);
    if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
    pColl = sqlite3ExprCollSeq(pParse, p);
    if( pColl ){
      pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
    }
  }
  pTab->szTabRow = sqlite3LogEst(szAll*4);
}

/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
    return 0;
  }
  /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
  ** is disabled */
  assert( db->lookaside.bEnabled==0 );
  pTab->nRef = 1;
  pTab->zName = 0;
  pTab->nRowEst = 1000000;
  selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
  selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
  pTab->iPKey = -1;
  if( db->mallocFailed ){
    sqlite3DeleteTable(db, pTab);
    return 0;
  }
  return pTab;
}







|

|







1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
    return 0;
  }
  /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
  ** is disabled */
  assert( db->lookaside.bEnabled==0 );
  pTab->nRef = 1;
  pTab->zName = 0;
  pTab->nRowEst = 1048576;
  selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
  selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
  pTab->iPKey = -1;
  if( db->mallocFailed ){
    sqlite3DeleteTable(db, pTab);
    return 0;
  }
  return pTab;
}
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
      /* A sub-query in the FROM clause of a SELECT */
      assert( pSel!=0 );
      assert( pFrom->pTab==0 );
      sqlite3WalkSelect(pWalker, pSel);
      pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
      if( pTab==0 ) return WRC_Abort;
      pTab->nRef = 1;
      pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
      while( pSel->pPrior ){ pSel = pSel->pPrior; }
      selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
      pTab->iPKey = -1;
      pTab->nRowEst = 1000000;
      pTab->tabFlags |= TF_Ephemeral;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
      if( pTab==0 ) return WRC_Abort;







|



|







3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
      /* A sub-query in the FROM clause of a SELECT */
      assert( pSel!=0 );
      assert( pFrom->pTab==0 );
      sqlite3WalkSelect(pWalker, pSel);
      pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
      if( pTab==0 ) return WRC_Abort;
      pTab->nRef = 1;
      pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
      while( pSel->pPrior ){ pSel = pSel->pPrior; }
      selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
      pTab->iPKey = -1;
      pTab->nRowEst = 1048576;
      pTab->tabFlags |= TF_Ephemeral;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
      if( pTab==0 ) return WRC_Abort;
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
    for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
      Table *pTab = pFrom->pTab;
      if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
        /* A sub-query in the FROM clause of a SELECT */
        Select *pSel = pFrom->pSelect;
        assert( pSel );
        while( pSel->pPrior ) pSel = pSel->pPrior;
        selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
      }
    }
  }
  return WRC_Continue;
}
#endif








|







3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
    for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
      Table *pTab = pFrom->pTab;
      if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
        /* A sub-query in the FROM clause of a SELECT */
        Select *pSel = pFrom->pSelect;
        assert( pSel );
        while( pSel->pPrior ) pSel = pSel->pPrior;
        selectAddColumnTypeAndCollation(pParse, pTab, pSel);
      }
    }
  }
  return WRC_Continue;
}
#endif

Changes to src/where.c.
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456

2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
** rows visited by a factor of 16.
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  WhereLoopBuilder *pBuilder,
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  LogEst *pnOut        /* IN/OUT: Number of rows visited */
){
  int rc = SQLITE_OK;
  int nOut = (int)*pnOut;

  LogEst nNew;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nEq = pBuilder->pNew->u.btree.nEq;

  if( p->nSample>0
   && nEq==pBuilder->nRecValid
   && nEq<p->nSampleCol
   && OptimizationEnabled(pParse->db, SQLITE_Stat3) 
  ){
    UnpackedRecord *pRec = pBuilder->pRec;







|


|
>



|
<







2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461

2462
2463
2464
2465
2466
2467
2468
** rows visited by a factor of 16.
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  WhereLoopBuilder *pBuilder,
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
){
  int rc = SQLITE_OK;
  int nOut = pLoop->nOut;
  int nEq = pLoop->u.btree.nEq;
  LogEst nNew;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pLoop->u.btree.pIndex;


  if( p->nSample>0
   && nEq==pBuilder->nRecValid
   && nEq<p->nSampleCol
   && OptimizationEnabled(pParse->db, SQLITE_Stat3) 
  ){
    UnpackedRecord *pRec = pBuilder->pRec;
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
        nNew = sqlite3LogEst(iUpper - iLower);
      }else{
        nNew = 10;        assert( 10==sqlite3LogEst(2) );
      }
      if( nNew<nOut ){
        nOut = nNew;
      }
      *pnOut = (LogEst)nOut;
      WHERETRACE(0x100, ("range scan regions: %u..%u  est=%d\n",
                         (u32)iLower, (u32)iUpper, nOut));
      return SQLITE_OK;
    }
  }
#else
  UNUSED_PARAMETER(pParse);







|







2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
        nNew = sqlite3LogEst(iUpper - iLower);
      }else{
        nNew = 10;        assert( 10==sqlite3LogEst(2) );
      }
      if( nNew<nOut ){
        nOut = nNew;
      }
      pLoop->nOut = (LogEst)nOut;
      WHERETRACE(0x100, ("range scan regions: %u..%u  est=%d\n",
                         (u32)iLower, (u32)iUpper, nOut));
      return SQLITE_OK;
    }
  }
#else
  UNUSED_PARAMETER(pParse);
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
  }
  if( pUpper ){
    nNew -= 20;        assert( 20==sqlite3LogEst(4) );
    nOut--;
  }
  if( nNew<10 ) nNew = 10;
  if( nNew<nOut ) nOut = nNew;
  *pnOut = (LogEst)nOut;
  return rc;
}

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in







|







2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
  }
  if( pUpper ){
    nNew -= 20;        assert( 20==sqlite3LogEst(4) );
    nOut--;
  }
  if( nNew<10 ) nNew = 10;
  if( nNew<nOut ) nOut = nNew;
  pLoop->nOut = (LogEst)nOut;
  return rc;
}

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
4333
4334
4335
4336
4337
4338
4339
4340






4341
4342
4343
4344
4345
4346
4347
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
                     pNew->aLTerm[pNew->nLTerm-2] : 0;
    }
    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
      /* Adjust nOut and rRun for STAT3 range values */
      assert( pNew->nOut==saved_nOut );
      whereRangeScanEst(pParse, pBuilder, pBtm, pTop, &pNew->nOut);






    }
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    if( nInMul==0 
     && pProbe->nSample 
     && pNew->u.btree.nEq<=pProbe->nSampleCol
     && OptimizationEnabled(db, SQLITE_Stat3) 
    ){







|
>
>
>
>
>
>







4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
                     pNew->aLTerm[pNew->nLTerm-2] : 0;
    }
    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
      /* Adjust nOut and rRun for STAT3 range values */
      assert( pNew->nOut==saved_nOut );
      whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);

      /* If the range constraint is the only constraint on the index and
      ** if the range constraint does not reduce the search space,
      ** then this is really just an index scan which has already
      ** been analyzed. */
      if( pNew->nOut>=saved_nOut && pNew->u.btree.nEq==0 ) continue;
    }
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    if( nInMul==0 
     && pProbe->nSample 
     && pNew->u.btree.nEq<=pProbe->nSampleCol
     && OptimizationEnabled(db, SQLITE_Stat3) 
    ){
4812
4813
4814
4815
4816
4817
4818


4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
  struct SrcList_item *pItem;
  
  pWC = pBuilder->pWC;
  if( pWInfo->wctrlFlags & WHERE_AND_ONLY ) return SQLITE_OK;
  pWCEnd = pWC->a + pWC->nTerm;
  pNew = pBuilder->pNew;
  memset(&sSum, 0, sizeof(sSum));



  for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
    if( (pTerm->eOperator & WO_OR)!=0
     && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int once = 1;
      int i, j;
    
      pItem = pWInfo->pTabList->a + pNew->iTab;
      iCur = pItem->iCursor;
      sSubBuild = *pBuilder;
      sSubBuild.pOrderBy = 0;
      sSubBuild.pOrSet = &sCur;

      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        if( (pOrTerm->eOperator & WO_AND)!=0 ){
          sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;







>
>











<
<







4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837


4838
4839
4840
4841
4842
4843
4844
  struct SrcList_item *pItem;
  
  pWC = pBuilder->pWC;
  if( pWInfo->wctrlFlags & WHERE_AND_ONLY ) return SQLITE_OK;
  pWCEnd = pWC->a + pWC->nTerm;
  pNew = pBuilder->pNew;
  memset(&sSum, 0, sizeof(sSum));
  pItem = pWInfo->pTabList->a + pNew->iTab;
  iCur = pItem->iCursor;

  for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
    if( (pTerm->eOperator & WO_OR)!=0
     && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int once = 1;
      int i, j;
    


      sSubBuild = *pBuilder;
      sSubBuild.pOrderBy = 0;
      sSubBuild.pOrSet = &sCur;

      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        if( (pOrTerm->eOperator & WO_AND)!=0 ){
          sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
5262
5263
5264
5265
5266
5267
5268
5269
5270


5271
5272
5273
5274
5275
5276
5277

  /* Precompute the cost of sorting the final result set, if the caller
  ** to sqlite3WhereBegin() was concerned about sorting */
  rSortCost = 0;
  if( pWInfo->pOrderBy==0 || nRowEst==0 ){
    aFrom[0].isOrderedValid = 1;
  }else{
    /* TUNING: Estimated cost of sorting is N*log2(N) where N is the
    ** number of output rows. */


    rSortCost = nRowEst + estLog(nRowEst) + 55;
    WHERETRACE(0x002,("---- sort cost=%-3d\n", rSortCost));
  }

  /* Compute successively longer WherePaths using the previous generation
  ** of WherePaths as the basis for the next.  Keep track of the mxChoice
  ** best paths at each generation */







|
|
>
>







5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285

  /* Precompute the cost of sorting the final result set, if the caller
  ** to sqlite3WhereBegin() was concerned about sorting */
  rSortCost = 0;
  if( pWInfo->pOrderBy==0 || nRowEst==0 ){
    aFrom[0].isOrderedValid = 1;
  }else{
    /* TUNING: Estimated cost of sorting is 48*N*log2(N) where N is the
    ** number of output rows. The 48 is the expected size of a row to sort. 
    ** FIXME:  compute a better estimate of the 48 multiplier based on the
    ** result set expressions. */
    rSortCost = nRowEst + estLog(nRowEst) + 55;
    WHERETRACE(0x002,("---- sort cost=%-3d\n", rSortCost));
  }

  /* Compute successively longer WherePaths using the previous generation
  ** of WherePaths as the basis for the next.  Keep track of the mxChoice
  ** best paths at each generation */
Changes to test/e_select.test.
446
447
448
449
450
451
452
453
454
455
456
457
458

459
460
461
462
463

464
465
466
467
468
469
470
} [concat {-60.06 {} {}} {-39.24 {} encompass -1}]

# EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
# dataset formed by combining each unique combination of a row from the
# left-hand and right-hand datasets.
#
do_join_test e_select-1.4.2.1 {
  SELECT * FROM x2 %JOIN% x3
} [list -60.06 {} {}      -39.24 {} encompass -1                 \
        -60.06 {} {}      presenting 51 reformation dignified    \
        -60.06 {} {}      conducting -87.24 37.56 {}             \
        -60.06 {} {}      coldest -96 dramatists 82.3            \
        -60.06 {} {}      alerting {} -93.79 {}                  \

        -58 {} 1.21       -39.24 {} encompass -1                 \
        -58 {} 1.21       presenting 51 reformation dignified    \
        -58 {} 1.21       conducting -87.24 37.56 {}             \
        -58 {} 1.21       coldest -96 dramatists 82.3            \
        -58 {} 1.21       alerting {} -93.79 {}                  \

]
# TODO: Come back and add a few more like the above.

# EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset
# consists of Nlhs rows of Mlhs columns, and the right-hand dataset of
# Nrhs rows of Mrhs columns, then the cartesian product is a dataset of
# Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns.







|

|
<

|
>

|
<

|
>







446
447
448
449
450
451
452
453
454
455

456
457
458
459
460

461
462
463
464
465
466
467
468
469
470
} [concat {-60.06 {} {}} {-39.24 {} encompass -1}]

# EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
# dataset formed by combining each unique combination of a row from the
# left-hand and right-hand datasets.
#
do_join_test e_select-1.4.2.1 {
  SELECT * FROM x2 %JOIN% x3 ORDER BY +c, +f
} [list -60.06 {} {}      -39.24 {} encompass -1                 \
        -60.06 {} {}      alerting {} -93.79 {}                  \

        -60.06 {} {}      coldest -96 dramatists 82.3            \
        -60.06 {} {}      conducting -87.24 37.56 {}             \
        -60.06 {} {}      presenting 51 reformation dignified    \
        -58 {} 1.21       -39.24 {} encompass -1                 \
        -58 {} 1.21       alerting {} -93.79 {}                  \

        -58 {} 1.21       coldest -96 dramatists 82.3            \
        -58 {} 1.21       conducting -87.24 37.56 {}             \
        -58 {} 1.21       presenting 51 reformation dignified    \
]
# TODO: Come back and add a few more like the above.

# EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset
# consists of Nlhs rows of Mlhs columns, and the right-hand dataset of
# Nrhs rows of Mrhs columns, then the cartesian product is a dataset of
# Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns.
Changes to test/where9.test.
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
  catchsql {
    UPDATE t1 INDEXED BY t1b SET a=a+100
     WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {no query solution}}
ifcapable stat4||stat3 {
  # When STAT3 is enabled, the "b NOT NULL" terms get translated
  # into b>NULL, which can be satified by the index t1b.  It is a very
  # expensive way to do the query, but it works, and so a solution is possible.
  do_test where9-6.8.3-stat4 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
  do_test where9-6.8.4-stat4 {
    catchsql {
      DELETE FROM t1 INDEXED BY t1b
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
} else {
  do_test where9-6.8.3 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }







<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<







777
778
779
780
781
782
783











784









785
786
787
788
789
790
791
  catchsql {
    UPDATE t1 INDEXED BY t1b SET a=a+100
     WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {no query solution}}











if {1} {









  do_test where9-6.8.3 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }