Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Cherrypick changes [53f5cfe115] and [1f7ef0af8d] in order to fix an issue with DISTINCT |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | branch-3.7.2 |
Files: | files | file ages | folders |
SHA1: |
14bc58ca70336aed62069f2233243048 |
User & Date: | drh 2011-10-25 20:36:39.155 |
Context
2011-10-25
| ||
21:18 | Cherrypick the [3513bf6ee090d9] so that the sqlite_source_id() function works correctly even with newer versions of Fossil (check-in: 89d63a0e1d user: drh tags: branch-3.7.2) | |
20:36 | Cherrypick changes [53f5cfe115] and [1f7ef0af8d] in order to fix an issue with DISTINCT (check-in: 14bc58ca70 user: drh tags: branch-3.7.2) | |
2011-08-26
| ||
17:17 | Cherrypick the recursion fix to test_vfs.c from [065e5a5ea4f82]. Also fix the nan.test module to handle upper/lower case changes in TCL. (check-in: 41b5f86971 user: drh tags: branch-3.7.2) | |
Changes
Changes to src/expr.c.
︙ | ︙ | |||
2231 2232 2233 2234 2235 2236 2237 | int r = p->iReg; if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ } return 0; } #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 | int r = p->iReg; if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ } return 0; } #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ /* ** Generate code into the current Vdbe to evaluate the given ** expression. Attempt to store the results in register "target". ** Return the register where results are stored. ** ** With this routine, there is no guarantee that results will ** be stored in target. The result might be stored in some other |
︙ | ︙ | |||
2406 2407 2408 2409 2410 2411 2412 | break; } case TK_REGISTER: { inReg = pExpr->iTable; break; } case TK_AS: { | | | 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 | break; } case TK_REGISTER: { inReg = pExpr->iTable; break; } case TK_AS: { inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ int aff, to_op; inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
︙ | ︙ | |||
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 | testcase( pX->op==TK_REGISTER ); cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); testcase( regFree1==0 ); cacheX.op = TK_REGISTER; opCompare.op = TK_EQ; opCompare.pLeft = &cacheX; pTest = &opCompare; } for(i=0; i<nExpr; i=i+2){ sqlite3ExprCachePush(pParse); if( pX ){ assert( pTest!=0 ); opCompare.pRight = aListelem[i].pExpr; }else{ | > > > > > | 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 | testcase( pX->op==TK_REGISTER ); cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); testcase( regFree1==0 ); cacheX.op = TK_REGISTER; opCompare.op = TK_EQ; opCompare.pLeft = &cacheX; pTest = &opCompare; /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: ** The value in regFree1 might get SCopy-ed into the file result. ** So make sure that the regFree1 register is not reused for other ** purposes and possibly overwritten. */ regFree1 = 0; } for(i=0; i<nExpr; i=i+2){ sqlite3ExprCachePush(pParse); if( pX ){ assert( pTest!=0 ); opCompare.pRight = aListelem[i].pExpr; }else{ |
︙ | ︙ | |||
2931 2932 2933 2934 2935 2936 2937 | ** results in register target. The results are guaranteed to appear ** in register target. */ int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ int inReg; assert( target>0 && target<=pParse->nMem ); | > > > | | | | > | 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 | ** results in register target. The results are guaranteed to appear ** in register target. */ int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ int inReg; assert( target>0 && target<=pParse->nMem ); if( pExpr && pExpr->op==TK_REGISTER ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); }else{ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); assert( pParse->pVdbe || pParse->db->mallocFailed ); if( inReg!=target && pParse->pVdbe ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); } } return target; } /* ** Generate code that evalutes the given expression and puts the result ** in register target. |
︙ | ︙ | |||
3107 3108 3109 3110 3111 3112 3113 3114 3115 | int target, /* Where to write results */ int doHardCopy /* Make a hard copy of every element */ ){ struct ExprList_item *pItem; int i, n; assert( pList!=0 ); assert( target>0 ); n = pList->nExpr; for(pItem=pList->a, i=0; i<n; i++, pItem++){ | > | < | | | < < | < < < | 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 | int target, /* Where to write results */ int doHardCopy /* Make a hard copy of every element */ ){ struct ExprList_item *pItem; int i, n; assert( pList!=0 ); assert( target>0 ); assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ n = pList->nExpr; for(pItem=pList->a, i=0; i<n; i++, pItem++){ Expr *pExpr = pItem->pExpr; int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); if( inReg!=target+i ){ sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, inReg, target+i); } } return n; } /* ** Generate code for a BETWEEN operator. |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
376 377 378 379 380 381 382 | int regTemp = sqlite3GetTempRange(pParse, nCol); int regRec = sqlite3GetTempReg(pParse); KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); for(i=0; i<nCol; i++){ | | | 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | int regTemp = sqlite3GetTempRange(pParse, nCol); int regRec = sqlite3GetTempReg(pParse); KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); for(i=0; i<nCol; i++){ sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); } /* If the parent table is the same as the child table, and we are about ** to increment the constraint-counter (i.e. this is an INSERT operation), ** then check if the row being inserted matches itself. If so, do not ** increment the constraint-counter. */ if( pTab==pFKey->pFrom && nIncr==1 ){ |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
3478 3479 3480 3481 3482 3483 3484 | int addrNext = 0; int regAgg; ExprList *pList = pF->pExpr->x.pList; assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); if( pList ){ nArg = pList->nExpr; regAgg = sqlite3GetTempRange(pParse, nArg); | | | 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 | int addrNext = 0; int regAgg; ExprList *pList = pF->pExpr->x.pList; assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); if( pList ){ nArg = pList->nExpr; regAgg = sqlite3GetTempRange(pParse, nArg); sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 ){ addrNext = sqlite3VdbeMakeLabel(v); assert( nArg==1 ); |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
2686 2687 2688 2689 2690 2691 2692 | void sqlite3ExprCodeCopy(Parse*, int, int, int); void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); void sqlite3ExprCachePop(Parse*, int); void sqlite3ExprCacheRemove(Parse*, int, int); void sqlite3ExprCacheClear(Parse*); void sqlite3ExprCacheAffinityChange(Parse*, int, int); | < | 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 | void sqlite3ExprCodeCopy(Parse*, int, int, int); void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); void sqlite3ExprCachePop(Parse*, int); void sqlite3ExprCacheRemove(Parse*, int, int); void sqlite3ExprCacheClear(Parse*); void sqlite3ExprCacheAffinityChange(Parse*, int, int); int sqlite3ExprCode(Parse*, Expr*, int); int sqlite3ExprCodeTemp(Parse*, Expr*, int*); int sqlite3ExprCodeTarget(Parse*, Expr*, int); int sqlite3ExprCodeAndCache(Parse*, Expr*, int); void sqlite3ExprCodeConstants(Parse*, Expr*); int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); void sqlite3ExprIfTrue(Parse*, Expr*, int, int); |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
42 43 44 45 46 47 48 49 50 51 52 53 54 55 | ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test ** procedures use this information to make sure that indices are ** working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ | > > > > > > > > > > > | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. */ #ifdef SQLITE_DEBUG # define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M) #else # define memAboutToChange(P,M) #endif /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test ** procedures use this information to make sure that indices are ** working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ |
︙ | ︙ | |||
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 | ** value or convert mem[p2] to a different type. */ assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); pOut = &aMem[pOp->p2]; sqlite3VdbeMemReleaseExternal(pOut); pOut->flags = MEM_Int; } /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG if( (pOp->opflags & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=p->nMem ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (pOp->opflags & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (pOp->opflags & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=p->nMem ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (pOp->opflags & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); } if( (pOp->opflags & OPFLG_OUT3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=p->nMem ); } #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a | > > > > > > | 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 | ** value or convert mem[p2] to a different type. */ assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); sqlite3VdbeMemReleaseExternal(pOut); pOut->flags = MEM_Int; } /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG if( (pOp->opflags & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=p->nMem ); assert( memIsValid(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (pOp->opflags & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); assert( memIsValid(&aMem[pOp->p2]) ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (pOp->opflags & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=p->nMem ); assert( memIsValid(&aMem[pOp->p3]) ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (pOp->opflags & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); memAboutToChange(p, &aMem[pOp->p2]); } if( (pOp->opflags & OPFLG_OUT3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=p->nMem ); memAboutToChange(p, &aMem[pOp->p3]); } #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a |
︙ | ︙ | |||
752 753 754 755 756 757 758 759 760 761 762 763 764 765 | ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Dyn)==0 ); pIn1->flags = MEM_Int; pIn1->u.i = pc; REGISTER_TRACE(pOp->p1, pIn1); pc = pOp->p2 - 1; break; } | > | 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 | ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Dyn)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; pIn1->u.i = pc; REGISTER_TRACE(pOp->p1, pIn1); pc = pOp->p2 - 1; break; } |
︙ | ︙ | |||
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 | assert( p1+n<=p2 || p2+n<=p1 ); pIn1 = &aMem[p1]; pOut = &aMem[p2]; while( n-- ){ assert( pOut<=&aMem[p->nMem] ); assert( pIn1<=&aMem[p->nMem] ); zMalloc = pOut->zMalloc; pOut->zMalloc = 0; sqlite3VdbeMemMove(pOut, pIn1); pIn1->zMalloc = zMalloc; REGISTER_TRACE(p2++, pOut); pIn1++; pOut++; | > > | 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 | assert( p1+n<=p2 || p2+n<=p1 ); pIn1 = &aMem[p1]; pOut = &aMem[p2]; while( n-- ){ assert( pOut<=&aMem[p->nMem] ); assert( pIn1<=&aMem[p->nMem] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); zMalloc = pOut->zMalloc; pOut->zMalloc = 0; sqlite3VdbeMemMove(pOut, pIn1); pIn1->zMalloc = zMalloc; REGISTER_TRACE(p2++, pOut); pIn1++; pOut++; |
︙ | ︙ | |||
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 | ** copy. */ case OP_SCopy: { /* in1, out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); REGISTER_TRACE(pOp->p2, pOut); break; } /* Opcode: ResultRow P1 P2 * * * ** ** The registers P1 through P1+P2-1 contain a single row of | > > > | 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 | ** copy. */ case OP_SCopy: { /* in1, out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); #ifdef SQLITE_DEBUG if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; #endif REGISTER_TRACE(pOp->p2, pOut); break; } /* Opcode: ResultRow P1 P2 * * * ** ** The registers P1 through P1+P2-1 contain a single row of |
︙ | ︙ | |||
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 | /* Make sure the results of the current row are \000 terminated ** and have an assigned type. The results are de-ephemeralized as ** as side effect. */ pMem = p->pResultSet = &aMem[pOp->p1]; for(i=0; i<pOp->p2; i++){ sqlite3VdbeMemNulTerminate(&pMem[i]); sqlite3VdbeMemStoreType(&pMem[i]); REGISTER_TRACE(pOp->p1+i, &pMem[i]); } if( db->mallocFailed ) goto no_mem; /* Return SQLITE_ROW | > > > > | 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 | /* Make sure the results of the current row are \000 terminated ** and have an assigned type. The results are de-ephemeralized as ** as side effect. */ pMem = p->pResultSet = &aMem[pOp->p1]; for(i=0; i<pOp->p2; i++){ assert( memIsValid(&pMem[i]) ); Deephemeralize(&pMem[i]); assert( (pMem[i].flags & MEM_Ephem)==0 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); sqlite3VdbeMemNulTerminate(&pMem[i]); sqlite3VdbeMemStoreType(&pMem[i]); REGISTER_TRACE(pOp->p1+i, &pMem[i]); } if( db->mallocFailed ) goto no_mem; /* Return SQLITE_ROW |
︙ | ︙ | |||
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 | sqlite3_context ctx; sqlite3_value **apVal; int n; n = pOp->p5; apVal = p->apArg; assert( apVal || n==0 ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; sqlite3VdbeMemStoreType(pArg); REGISTER_TRACE(pOp->p2+i, pArg); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ ctx.pFunc = pOp->p4.pFunc; ctx.pVdbeFunc = 0; }else{ ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; ctx.pFunc = ctx.pVdbeFunc->pFunc; } | > > > > > < < | 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 | sqlite3_context ctx; sqlite3_value **apVal; int n; n = pOp->p5; apVal = p->apArg; assert( apVal || n==0 ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pOut = &aMem[pOp->p3]; memAboutToChange(p, pOut); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ assert( memIsValid(pArg) ); apVal[i] = pArg; Deephemeralize(pArg); sqlite3VdbeMemStoreType(pArg); REGISTER_TRACE(pOp->p2+i, pArg); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ ctx.pFunc = pOp->p4.pFunc; ctx.pVdbeFunc = 0; }else{ ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; ctx.pFunc = ctx.pVdbeFunc->pFunc; } ctx.s.flags = MEM_Null; ctx.s.db = db; ctx.s.xDel = 0; ctx.s.zMalloc = 0; /* The output cell may already have a buffer allocated. Move ** the pointer to ctx.s so in case the user-function can use |
︙ | ︙ | |||
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 | ** Add the constant P2 to the value in register P1. ** The result is always an integer. ** ** To force any register to be an integer, just add 0. */ case OP_AddImm: { /* in1 */ pIn1 = &aMem[pOp->p1]; sqlite3VdbeMemIntegerify(pIn1); pIn1->u.i += pOp->p2; break; } /* Opcode: MustBeInt P1 P2 * * * ** ** Force the value in register P1 to be an integer. If the value ** in P1 is not an integer and cannot be converted into an integer ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; | > > | 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 | ** Add the constant P2 to the value in register P1. ** The result is always an integer. ** ** To force any register to be an integer, just add 0. */ case OP_AddImm: { /* in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); sqlite3VdbeMemIntegerify(pIn1); pIn1->u.i += pOp->p2; break; } /* Opcode: MustBeInt P1 P2 * * * ** ** Force the value in register P1 to be an integer. If the value ** in P1 is not an integer and cannot be converted into an integer ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; |
︙ | ︙ | |||
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 | ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Int ){ sqlite3VdbeMemRealify(pIn1); } break; } #endif #ifndef SQLITE_OMIT_CAST /* Opcode: ToText P1 * * * * ** ** Force the value in register P1 to be text. ** If the value is numeric, convert it to a string using the ** equivalent of printf(). Blob values are unchanged and ** are afterwards simply interpreted as text. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToText: { /* same as TK_TO_TEXT, in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Null ) break; assert( MEM_Str==(MEM_Blob>>3) ); pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); rc = ExpandBlob(pIn1); assert( pIn1->flags & MEM_Str || db->mallocFailed ); pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); | > > | 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 | ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); if( pIn1->flags & MEM_Int ){ sqlite3VdbeMemRealify(pIn1); } break; } #endif #ifndef SQLITE_OMIT_CAST /* Opcode: ToText P1 * * * * ** ** Force the value in register P1 to be text. ** If the value is numeric, convert it to a string using the ** equivalent of printf(). Blob values are unchanged and ** are afterwards simply interpreted as text. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToText: { /* same as TK_TO_TEXT, in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); if( pIn1->flags & MEM_Null ) break; assert( MEM_Str==(MEM_Blob>>3) ); pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); rc = ExpandBlob(pIn1); assert( pIn1->flags & MEM_Str || db->mallocFailed ); pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); |
︙ | ︙ | |||
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 | ** Strings are simply reinterpreted as blobs with no change ** to the underlying data. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Null ) break; if( (pIn1->flags & MEM_Blob)==0 ){ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); assert( pIn1->flags & MEM_Str || db->mallocFailed ); MemSetTypeFlag(pIn1, MEM_Blob); }else{ pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); | > | 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 | ** Strings are simply reinterpreted as blobs with no change ** to the underlying data. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); if( pIn1->flags & MEM_Null ) break; if( (pIn1->flags & MEM_Blob)==0 ){ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); assert( pIn1->flags & MEM_Str || db->mallocFailed ); MemSetTypeFlag(pIn1, MEM_Blob); }else{ pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); |
︙ | ︙ | |||
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 | ** equivalent of atoi() or atof() and store 0 if no such conversion ** is possible. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){ sqlite3VdbeMemNumerify(pIn1); } break; } #endif /* SQLITE_OMIT_CAST */ /* Opcode: ToInt P1 * * * * ** ** Force the value in register P1 be an integer. If ** The value is currently a real number, drop its fractional part. ** If the value is text or blob, try to convert it to an integer using the ** equivalent of atoi() and store 0 if no such conversion is possible. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToInt: { /* same as TK_TO_INT, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Null)==0 ){ sqlite3VdbeMemIntegerify(pIn1); } break; } #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Opcode: ToReal P1 * * * * ** ** Force the value in register P1 to be a floating point number. ** If The value is currently an integer, convert it. ** If the value is text or blob, try to convert it to an integer using the ** equivalent of atoi() and store 0.0 if no such conversion is possible. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToReal: { /* same as TK_TO_REAL, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Null)==0 ){ sqlite3VdbeMemRealify(pIn1); } break; } #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ | > > > | 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 | ** equivalent of atoi() or atof() and store 0 if no such conversion ** is possible. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){ sqlite3VdbeMemNumerify(pIn1); } break; } #endif /* SQLITE_OMIT_CAST */ /* Opcode: ToInt P1 * * * * ** ** Force the value in register P1 be an integer. If ** The value is currently a real number, drop its fractional part. ** If the value is text or blob, try to convert it to an integer using the ** equivalent of atoi() and store 0 if no such conversion is possible. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToInt: { /* same as TK_TO_INT, in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); if( (pIn1->flags & MEM_Null)==0 ){ sqlite3VdbeMemIntegerify(pIn1); } break; } #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Opcode: ToReal P1 * * * * ** ** Force the value in register P1 to be a floating point number. ** If The value is currently an integer, convert it. ** If the value is text or blob, try to convert it to an integer using the ** equivalent of atoi() and store 0.0 if no such conversion is possible. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToReal: { /* same as TK_TO_REAL, in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); if( (pIn1->flags & MEM_Null)==0 ){ sqlite3VdbeMemRealify(pIn1); } break; } #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ |
︙ | ︙ | |||
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 | int res; /* Result of the comparison of pIn1 against pIn3 */ char affinity; /* Affinity to use for comparison */ u16 flags1; /* Copy of initial value of pIn1->flags */ u16 flags3; /* Copy of initial value of pIn3->flags */ pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; flags1 = pIn1->flags; flags3 = pIn3->flags; if( (pIn1->flags | pIn3->flags)&MEM_Null ){ /* One or both operands are NULL */ if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether | > > | 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 | int res; /* Result of the comparison of pIn1 against pIn3 */ char affinity; /* Affinity to use for comparison */ u16 flags1; /* Copy of initial value of pIn1->flags */ u16 flags3; /* Copy of initial value of pIn3->flags */ pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; memAboutToChange(p, pIn1); memAboutToChange(p, pIn3); flags1 = pIn1->flags; flags3 = pIn3->flags; if( (pIn1->flags | pIn3->flags)&MEM_Null ){ /* One or both operands are NULL */ if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether |
︙ | ︙ | |||
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 | case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; default: res = res>=0; break; } if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); }else if( res ){ pc = pOp->p2-1; } | > | 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 | case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; default: res = res>=0; break; } if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); }else if( res ){ pc = pOp->p2-1; } |
︙ | ︙ | |||
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 | }else{ assert( p1>0 && p1+n<=p->nMem+1 ); assert( p2>0 && p2+n<=p->nMem+1 ); } #endif /* SQLITE_DEBUG */ for(i=0; i<n; i++){ idx = aPermute ? aPermute[i] : i; REGISTER_TRACE(p1+idx, &aMem[p1+idx]); REGISTER_TRACE(p2+idx, &aMem[p2+idx]); assert( i<pKeyInfo->nField ); pColl = pKeyInfo->aColl[i]; bRev = pKeyInfo->aSortOrder[i]; iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); if( iCompare ){ | > > | 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 | }else{ assert( p1>0 && p1+n<=p->nMem+1 ); assert( p2>0 && p2+n<=p->nMem+1 ); } #endif /* SQLITE_DEBUG */ for(i=0; i<n; i++){ idx = aPermute ? aPermute[i] : i; assert( memIsValid(&aMem[p1+idx]) ); assert( memIsValid(&aMem[p2+idx]) ); REGISTER_TRACE(p1+idx, &aMem[p1+idx]); REGISTER_TRACE(p2+idx, &aMem[p2+idx]); assert( i<pKeyInfo->nField ); pColl = pKeyInfo->aColl[i]; bRev = pKeyInfo->aSortOrder[i]; iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); if( iCompare ){ |
︙ | ︙ | |||
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 | p1 = pOp->p1; p2 = pOp->p2; pC = 0; memset(&sMem, 0, sizeof(sMem)); assert( p1<p->nCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &aMem[pOp->p3]; MemSetTypeFlag(pDest, MEM_Null); zRec = 0; /* This block sets the variable payloadSize to be the total number of ** bytes in the record. ** ** zRec is set to be the complete text of the record if it is available. | > | 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 | p1 = pOp->p1; p2 = pOp->p2; pC = 0; memset(&sMem, 0, sizeof(sMem)); assert( p1<p->nCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); MemSetTypeFlag(pDest, MEM_Null); zRec = 0; /* This block sets the variable payloadSize to be the total number of ** bytes in the record. ** ** zRec is set to be the complete text of the record if it is available. |
︙ | ︙ | |||
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 | assert( sqlite3BtreeCursorIsValid(pCrsr) ); rc = sqlite3BtreeDataSize(pCrsr, &payloadSize); assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ } }else if( pC->pseudoTableReg>0 ){ pReg = &aMem[pC->pseudoTableReg]; assert( pReg->flags & MEM_Blob ); payloadSize = pReg->n; zRec = pReg->z; pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; assert( payloadSize==0 || zRec!=0 ); }else{ /* Consider the row to be NULL */ payloadSize = 0; | > | 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 | assert( sqlite3BtreeCursorIsValid(pCrsr) ); rc = sqlite3BtreeDataSize(pCrsr, &payloadSize); assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ } }else if( pC->pseudoTableReg>0 ){ pReg = &aMem[pC->pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); payloadSize = pReg->n; zRec = pReg->z; pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; assert( payloadSize==0 || zRec!=0 ); }else{ /* Consider the row to be NULL */ payloadSize = 0; |
︙ | ︙ | |||
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 | zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( (cAff = *(zAffinity++))!=0 ){ assert( pIn1 <= &p->aMem[p->nMem] ); ExpandBlob(pIn1); applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } | > > | 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 | zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( (cAff = *(zAffinity++))!=0 ){ assert( pIn1 <= &p->aMem[p->nMem] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pIn1); ExpandBlob(pIn1); applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } |
︙ | ︙ | |||
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 | nField = pOp->p1; zAffinity = pOp->p4.z; assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); pData0 = &aMem[nField]; nField = pOp->p2; pLast = &pData0[nField-1]; file_format = p->minWriteFileFormat; /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ for(pRec=pData0; pRec<=pLast; pRec++){ if( zAffinity ){ applyAffinity(pRec, zAffinity[pRec-pData0], encoding); } if( pRec->flags&MEM_Zero && pRec->n>0 ){ sqlite3VdbeMemExpandBlob(pRec); } serial_type = sqlite3VdbeSerialType(pRec, file_format); len = sqlite3VdbeSerialTypeLen(serial_type); | > > > > > > > | 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 | nField = pOp->p1; zAffinity = pOp->p4.z; assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); pData0 = &aMem[nField]; nField = pOp->p2; pLast = &pData0[nField-1]; file_format = p->minWriteFileFormat; /* Identify the output register */ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); pOut = &aMem[pOp->p3]; memAboutToChange(p, pOut); /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ for(pRec=pData0; pRec<=pLast; pRec++){ assert( memIsValid(pRec) ); if( zAffinity ){ memAboutToChange(p, pRec); applyAffinity(pRec, zAffinity[pRec-pData0], encoding); } if( pRec->flags&MEM_Zero && pRec->n>0 ){ sqlite3VdbeMemExpandBlob(pRec); } serial_type = sqlite3VdbeSerialType(pRec, file_format); len = sqlite3VdbeSerialTypeLen(serial_type); |
︙ | ︙ | |||
2439 2440 2441 2442 2443 2444 2445 | } /* Make sure the output register has a buffer large enough to store ** the new record. The output register (pOp->p3) is not allowed to ** be one of the input registers (because the following call to ** sqlite3VdbeMemGrow() could clobber the value before it is used). */ | < < | 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 | } /* Make sure the output register has a buffer large enough to store ** the new record. The output register (pOp->p3) is not allowed to ** be one of the input registers (because the following call to ** sqlite3VdbeMemGrow() could clobber the value before it is used). */ if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ goto no_mem; } zNewRecord = (u8 *)pOut->z; /* Write the record */ i = putVarint32(zNewRecord, nHdr); |
︙ | ︙ | |||
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 | }else{ wrFlag = 0; } if( pOp->p5 ){ assert( p2>0 ); assert( p2<=p->nMem ); pIn2 = &aMem[p2]; sqlite3VdbeMemIntegerify(pIn2); p2 = (int)pIn2->u.i; /* The p2 value always comes from a prior OP_CreateTable opcode and ** that opcode will always set the p2 value to 2 or more or else fail. ** If there were a failure, the prepared statement would have halted ** before reaching this instruction. */ if( NEVER(p2<2) ) { | > > | 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 | }else{ wrFlag = 0; } if( pOp->p5 ){ assert( p2>0 ); assert( p2<=p->nMem ); pIn2 = &aMem[p2]; assert( memIsValid(pIn2) ); assert( (pIn2->flags & MEM_Int)!=0 ); sqlite3VdbeMemIntegerify(pIn2); p2 = (int)pIn2->u.i; /* The p2 value always comes from a prior OP_CreateTable opcode and ** that opcode will always set the p2 value to 2 or more or else fail. ** If there were a failure, the prepared statement would have halted ** before reaching this instruction. */ if( NEVER(p2<2) ) { |
︙ | ︙ | |||
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt))); assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY ); assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY ); assert( oc!=OP_SeekGe || r.flags==0 ); assert( oc!=OP_SeekLt || r.flags==0 ); r.aMem = &aMem[pOp->p3]; ExpandBlob(r.aMem); rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->rowidIsValid = 0; } | > > > | 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 | r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt))); assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY ); assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY ); assert( oc!=OP_SeekGe || r.flags==0 ); assert( oc!=OP_SeekLt || r.flags==0 ); r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif ExpandBlob(r.aMem); rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->rowidIsValid = 0; } |
︙ | ︙ | |||
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 | if( ALWAYS(pC->pCursor!=0) ){ assert( pC->isTable==0 ); if( pOp->p4.i>0 ){ r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; r.aMem = pIn3; r.flags = UNPACKED_PREFIX_MATCH; pIdxKey = &r; }else{ assert( pIn3->flags & MEM_Blob ); | > > > | | 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 | if( ALWAYS(pC->pCursor!=0) ){ assert( pC->isTable==0 ); if( pOp->p4.i>0 ){ r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; r.aMem = pIn3; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif r.flags = UNPACKED_PREFIX_MATCH; pIdxKey = &r; }else{ assert( pIn3->flags & MEM_Blob ); assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, aTempRec, sizeof(aTempRec)); if( pIdxKey==0 ){ goto no_mem; } pIdxKey->flags |= UNPACKED_PREFIX_MATCH; } |
︙ | ︙ | |||
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 | if( pCrsr!=0 ){ /* Populate the index search key. */ r.pKeyInfo = pCx->pKeyInfo; r.nField = nField + 1; r.flags = UNPACKED_PREFIX_SEARCH; r.aMem = aMx; /* Extract the value of R from register P3. */ sqlite3VdbeMemIntegerify(pIn3); R = pIn3->u.i; /* Search the B-Tree index. If no conflicting record is found, jump ** to P2. Otherwise, copy the rowid of the conflicting record to | > > > | 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 | if( pCrsr!=0 ){ /* Populate the index search key. */ r.pKeyInfo = pCx->pKeyInfo; r.nField = nField + 1; r.flags = UNPACKED_PREFIX_SEARCH; r.aMem = aMx; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif /* Extract the value of R from register P3. */ sqlite3VdbeMemIntegerify(pIn3); R = pIn3->u.i; /* Search the B-Tree index. If no conflicting record is found, jump ** to P2. Otherwise, copy the rowid of the conflicting record to |
︙ | ︙ | |||
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 | /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=pFrame->nMem ); pMem = &pFrame->aMem[pOp->p3]; }else{ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=p->nMem ); pMem = &aMem[pOp->p3]; } REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; /* IMP: R-12275-61338 */ goto abort_due_to_error; | > > | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 | /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=pFrame->nMem ); pMem = &pFrame->aMem[pOp->p3]; }else{ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=p->nMem ); pMem = &aMem[pOp->p3]; memAboutToChange(p, pMem); } assert( memIsValid(pMem) ); REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; /* IMP: R-12275-61338 */ goto abort_due_to_error; |
︙ | ︙ | |||
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 | int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ const char *zDb; /* database name - used by the update hook */ const char *zTbl; /* Table name - used by the opdate hook */ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ pData = &aMem[pOp->p2]; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pCursor!=0 ); assert( pC->pseudoTableReg==0 ); assert( pC->isTable ); REGISTER_TRACE(pOp->p2, pData); if( pOp->opcode==OP_Insert ){ pKey = &aMem[pOp->p3]; assert( pKey->flags & MEM_Int ); REGISTER_TRACE(pOp->p3, pKey); iKey = pKey->u.i; }else{ assert( pOp->opcode==OP_InsertInt ); iKey = pOp->p3; } | > > | 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 | int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ const char *zDb; /* database name - used by the update hook */ const char *zTbl; /* Table name - used by the opdate hook */ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ pData = &aMem[pOp->p2]; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( memIsValid(pData) ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pCursor!=0 ); assert( pC->pseudoTableReg==0 ); assert( pC->isTable ); REGISTER_TRACE(pOp->p2, pData); if( pOp->opcode==OP_Insert ){ pKey = &aMem[pOp->p3]; assert( pKey->flags & MEM_Int ); assert( memIsValid(pKey) ); REGISTER_TRACE(pOp->p3, pKey); iKey = pKey->u.i; }else{ assert( pOp->opcode==OP_InsertInt ); iKey = pOp->p3; } |
︙ | ︙ | |||
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 | case OP_RowData: { VdbeCursor *pC; BtCursor *pCrsr; u32 n; i64 n64; pOut = &aMem[pOp->p2]; /* Note that RowKey and RowData are really exactly the same instruction */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC->isTable || pOp->opcode==OP_RowKey ); assert( pC->isIndex || pOp->opcode==OP_RowData ); assert( pC!=0 ); | > | 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 | case OP_RowData: { VdbeCursor *pC; BtCursor *pCrsr; u32 n; i64 n64; pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); /* Note that RowKey and RowData are really exactly the same instruction */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC->isTable || pOp->opcode==OP_RowKey ); assert( pC->isIndex || pOp->opcode==OP_RowData ); assert( pC!=0 ); |
︙ | ︙ | |||
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 | assert( pC!=0 ); pCrsr = pC->pCursor; if( ALWAYS(pCrsr!=0) ){ r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.flags = 0; r.aMem = &aMem[pOp->p2]; rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); if( rc==SQLITE_OK && res==0 ){ rc = sqlite3BtreeDelete(pCrsr); } assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; } | > > > | 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 | assert( pC!=0 ); pCrsr = pC->pCursor; if( ALWAYS(pCrsr!=0) ){ r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.flags = 0; r.aMem = &aMem[pOp->p2]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); if( rc==SQLITE_OK && res==0 ){ rc = sqlite3BtreeDelete(pCrsr); } assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; } |
︙ | ︙ | |||
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 | r.nField = (u16)pOp->p4.i; if( pOp->p5 ){ r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; }else{ r.flags = UNPACKED_IGNORE_ROWID; } r.aMem = &aMem[pOp->p3]; rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); if( pOp->opcode==OP_IdxLT ){ res = -res; }else{ assert( pOp->opcode==OP_IdxGE ); res++; } | > > > | 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 | r.nField = (u16)pOp->p4.i; if( pOp->p5 ){ r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; }else{ r.flags = UNPACKED_IGNORE_ROWID; } r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); if( pOp->opcode==OP_IdxLT ){ res = -res; }else{ assert( pOp->opcode==OP_IdxGE ); res++; } |
︙ | ︙ | |||
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 | assert( (p->btreeMask & (1<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) ); if( pOp->p3 ){ p->nChange += nChange; if( pOp->p3>0 ){ aMem[pOp->p3].u.i += nChange; } } break; } /* Opcode: CreateTable P1 P2 * * * | > > | 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 | assert( (p->btreeMask & (1<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) ); if( pOp->p3 ){ p->nChange += nChange; if( pOp->p3>0 ){ assert( memIsValid(&aMem[pOp->p3]) ); memAboutToChange(p, &aMem[pOp->p3]); aMem[pOp->p3].u.i += nChange; } } break; } /* Opcode: CreateTable P1 P2 * * * |
︙ | ︙ | |||
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 | Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ pProgram = pOp->p4.pProgram; pRt = &aMem[pOp->p3]; assert( pProgram->nOp>0 ); /* If the p5 flag is clear, then recursive invocation of triggers is ** disabled for backwards compatibility (p5 is set if this sub-program ** is really a trigger, not a foreign key action, and the flag set ** and cleared by the "PRAGMA recursive_triggers" command is clear). ** | > | 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 | Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ pProgram = pOp->p4.pProgram; pRt = &aMem[pOp->p3]; assert( memIsValid(pRt) ); assert( pProgram->nOp>0 ); /* If the p5 flag is clear, then recursive invocation of triggers is ** disabled for backwards compatibility (p5 is set if this sub-program ** is really a trigger, not a foreign key action, and the flag set ** and cleared by the "PRAGMA recursive_triggers" command is clear). ** |
︙ | ︙ | |||
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 | VdbeFrame *pFrame; if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); pIn1 = &pFrame->aMem[pOp->p1]; }else{ pIn1 = &aMem[pOp->p1]; } sqlite3VdbeMemIntegerify(pIn1); pIn2 = &aMem[pOp->p2]; sqlite3VdbeMemIntegerify(pIn2); if( pIn1->u.i<pIn2->u.i){ pIn1->u.i = pIn2->u.i; } break; | > | 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 | VdbeFrame *pFrame; if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); pIn1 = &pFrame->aMem[pOp->p1]; }else{ pIn1 = &aMem[pOp->p1]; } assert( memIsValid(pIn1) ); sqlite3VdbeMemIntegerify(pIn1); pIn2 = &aMem[pOp->p2]; sqlite3VdbeMemIntegerify(pIn2); if( pIn1->u.i<pIn2->u.i){ pIn1->u.i = pIn2->u.i; } break; |
︙ | ︙ | |||
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 | n = pOp->p5; assert( n>=0 ); pRec = &aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; sqlite3VdbeMemStoreType(pRec); } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=p->nMem ); ctx.pMem = pMem = &aMem[pOp->p3]; pMem->n++; ctx.s.flags = MEM_Null; | > > | 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 | n = pOp->p5; assert( n>=0 ); pRec = &aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ assert( memIsValid(pRec) ); apVal[i] = pRec; memAboutToChange(p, pRec); sqlite3VdbeMemStoreType(pRec); } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=p->nMem ); ctx.pMem = pMem = &aMem[pOp->p3]; pMem->n++; ctx.s.flags = MEM_Null; |
︙ | ︙ | |||
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 | int res; int i; Mem **apArg; pQuery = &aMem[pOp->p3]; pArgc = &pQuery[1]; pCur = p->apCsr[pOp->p1]; REGISTER_TRACE(pOp->p3, pQuery); assert( pCur->pVtabCursor ); pVtabCursor = pCur->pVtabCursor; pVtab = pVtabCursor->pVtab; pModule = pVtab->pModule; /* Grab the index number and argc parameters */ | > | 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 | int res; int i; Mem **apArg; pQuery = &aMem[pOp->p3]; pArgc = &pQuery[1]; pCur = p->apCsr[pOp->p1]; assert( memIsValid(pQuery) ); REGISTER_TRACE(pOp->p3, pQuery); assert( pCur->pVtabCursor ); pVtabCursor = pCur->pVtabCursor; pVtab = pVtabCursor->pVtab; pModule = pVtab->pModule; /* Grab the index number and argc parameters */ |
︙ | ︙ | |||
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 | Mem *pDest; sqlite3_context sContext; VdbeCursor *pCur = p->apCsr[pOp->p1]; assert( pCur->pVtabCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &aMem[pOp->p3]; if( pCur->nullRow ){ sqlite3VdbeMemSetNull(pDest); break; } pVtab = pCur->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); | > | 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 | Mem *pDest; sqlite3_context sContext; VdbeCursor *pCur = p->apCsr[pOp->p1]; assert( pCur->pVtabCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); if( pCur->nullRow ){ sqlite3VdbeMemSetNull(pDest); break; } pVtab = pCur->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); |
︙ | ︙ | |||
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 | case OP_VRename: { sqlite3_vtab *pVtab; Mem *pName; pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); rc = pVtab->pModule->xRename(pVtab, pName->z); importVtabErrMsg(p, pVtab); break; } | > | 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 | case OP_VRename: { sqlite3_vtab *pVtab; Mem *pName; pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); assert( memIsValid(pName) ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); rc = pVtab->pModule->xRename(pVtab, pName->z); importVtabErrMsg(p, pVtab); break; } |
︙ | ︙ | |||
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 | pModule = (sqlite3_module *)pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ | > > | 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 | pModule = (sqlite3_module *)pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ assert( memIsValid(pX) ); memAboutToChange(p, pX); sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
148 149 150 151 152 153 154 155 156 157 158 159 160 161 | double r; /* Real value */ sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */ }; /* One or more of the following flags are set to indicate the validOK ** representations of the value stored in the Mem struct. ** | > > > > | 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | double r; /* Real value */ sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ #ifdef SQLITE_DEBUG Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */ void *pFiller; /* So that sizeof(Mem) is a multiple of 8 */ #endif void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */ }; /* One or more of the following flags are set to indicate the validOK ** representations of the value stored in the Mem struct. ** |
︙ | ︙ | |||
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MEM_RowSet 0x0020 /* Value is a RowSet object */ #define MEM_Frame 0x0040 /* Value is a VdbeFrame object */ #define MEM_TypeMask 0x00ff /* Mask of type bits */ /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ #define MEM_Term 0x0200 /* String rep is nul terminated */ #define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */ #define MEM_Static 0x0800 /* Mem.z points to a static string */ #define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */ #define MEM_Agg 0x2000 /* Mem.z points to an agg function context */ #define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */ | > < < > > > > > > > > | 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MEM_RowSet 0x0020 /* Value is a RowSet object */ #define MEM_Frame 0x0040 /* Value is a VdbeFrame object */ #define MEM_Invalid 0x0080 /* Value is undefined */ #define MEM_TypeMask 0x00ff /* Mask of type bits */ /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ #define MEM_Term 0x0200 /* String rep is nul terminated */ #define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */ #define MEM_Static 0x0800 /* Mem.z points to a static string */ #define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */ #define MEM_Agg 0x2000 /* Mem.z points to an agg function context */ #define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */ #ifdef SQLITE_OMIT_INCRBLOB #undef MEM_Zero #define MEM_Zero 0x0000 #endif /* ** Clear any existing type flags from a Mem and replace them with f */ #define MemSetTypeFlag(p, f) \ ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f) /* ** Return true if a memory cell is not marked as invalid. This macro ** is for use inside assert() statements only. */ #ifdef SQLITE_DEBUG #define memIsValid(M) ((M)->flags & MEM_Invalid)==0 #endif /* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains ** additional information about auxiliary information bound to arguments ** of the function. This is used to implement the sqlite3_get_auxdata() ** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data ** that can be associated with a constant argument to a function. This ** allows functions such as "regexp" to compile their constant regular |
︙ | ︙ | |||
387 388 389 390 391 392 393 394 395 396 397 398 399 400 | int sqlite3VdbeMemFinalize(Mem*, FuncDef*); const char *sqlite3OpcodeName(int); int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); int sqlite3VdbeCloseStatement(Vdbe *, int); void sqlite3VdbeFrameDelete(VdbeFrame*); int sqlite3VdbeFrameRestore(VdbeFrame *); void sqlite3VdbeMemStoreType(Mem *pMem); #ifndef SQLITE_OMIT_FOREIGN_KEY int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif | > > > > | 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | int sqlite3VdbeMemFinalize(Mem*, FuncDef*); const char *sqlite3OpcodeName(int); int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); int sqlite3VdbeCloseStatement(Vdbe *, int); void sqlite3VdbeFrameDelete(VdbeFrame*); int sqlite3VdbeFrameRestore(VdbeFrame *); void sqlite3VdbeMemStoreType(Mem *pMem); #ifdef SQLITE_DEBUG void sqlite3VdbeMemPrepareToChange(Vdbe*,Mem*); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
128 129 130 131 132 133 134 135 136 137 138 139 140 141 | if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ return SQLITE_NOMEM; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; } return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary | > > > | 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ return SQLITE_NOMEM; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; #ifdef SQLITE_DEBUG pMem->pScopyFrom = 0; #endif } return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary |
︙ | ︙ | |||
589 590 591 592 593 594 595 596 597 598 599 600 601 602 | n += p->u.nZero; } return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } /* ** Size of struct Mem not including the Mem.zMalloc member. */ #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) /* ** Make an shallow copy of pFrom into pTo. Prior contents of | > > > > > > > > > > > > > > > > > > > > > > | 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | n += p->u.nZero; } return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } #ifdef SQLITE_DEBUG /* ** This routine prepares a memory cell for modication by breaking ** its link to a shallow copy and by marking any current shallow ** copies of this cell as invalid. ** ** This is used for testing and debugging only - to make sure shallow ** copies are not misused. */ void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){ int i; Mem *pX; for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ if( pX->pScopyFrom==pMem ){ pX->flags |= MEM_Invalid; pX->pScopyFrom = 0; } } pMem->pScopyFrom = 0; } #endif /* SQLITE_DEBUG */ /* ** Size of struct Mem not including the Mem.zMalloc member. */ #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) /* ** Make an shallow copy of pFrom into pTo. Prior contents of |
︙ | ︙ |
Added test/tkt-b351d95f9.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | # 2010 September 28 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. Specifically, # it tests that ticket [b351d95f9cd5ef17e9d9dbae18f5ca8611190001] has been # resolved. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl do_test tkt-b351d95.1 { execsql { CREATE table t1(a,b); INSERT INTO t1 VALUES('name1','This is a test'); INSERT INTO t1 VALUES('name2','xyz'); CREATE TABLE t2(x,y); INSERT INTO t2 SELECT a, CASE b WHEN 'xyz' THEN null ELSE b END FROM t1; SELECT x, y FROM t2 ORDER BY x; } } {name1 {This is a test} name2 {}} do_test tkt-b351d95.2 { execsql { DELETE FROM t2; INSERT INTO t2 SELECT a, coalesce(b,a) FROM t1; SELECT x, y FROM t2 ORDER BY x; } } {name1 {This is a test} name2 xyz} do_test tkt-b351d95.3 { execsql { DELETE FROM t2; INSERT INTO t2 SELECT a, coalesce(b,a) FROM t1; SELECT x, y BETWEEN 'xy' AND 'xz' FROM t2 ORDER BY x; } } {name1 0 name2 1} finish_test |