/ Check-in [0df04f92]
Login
SQLite training in Houston TX on 2019-11-05 (details)
Part of the 2019 Tcl Conference

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge branches branch-3.7.2 and stat3-enhancement into a new branch for testing purposes.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | stat3-3.7.2
Files: files | file ages | folders
SHA1: 0df04f920b3e6cfe8db7687cc9c392f65c11d9ce
User & Date: drh 2011-08-26 13:52:23
Original Comment: Merge branches branch-3.7.2 and stat3-enhancement into a new branch for testing purposes.
Context
2011-08-26
15:51
Get stat3 working after import from trunk-based the stat3-enhancement branch. There is still a problem in the wal2 test. check-in: 01cc4ff6 user: drh tags: stat3-3.7.2
13:52
Merge branches branch-3.7.2 and stat3-enhancement into a new branch for testing purposes. check-in: 0df04f92 user: drh tags: stat3-3.7.2
2011-08-18
13:45
Fix the stat3 analysis loader to be compatible with sqlite3_db_status(). Also fix some OOM issues with the stat3 analysis loader. Closed-Leaf check-in: eaf447ea user: drh tags: stat3-enhancement
2011-07-13
18:53
Cherrypicked from trunk: Do not try to use STAT2 for row estimates if the index is unique or nearly so. check-in: d55b64ef user: drh tags: branch-3.7.2
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/analyze.c.

6
7
8
9
10
11
12


























































































13
14
15
16
17
18
19
..
37
38
39
40
41
42
43
44




45


46
47
48
49
50
51
52
..
54
55
56
57
58
59
60











61
62
63
64
65
66
67
..
84
85
86
87
88
89
90
91
92
93
94
95
96
97


























































































































































































































98
99
100
101
102
103
104
...
114
115
116
117
118
119
120
121
122
123
124
125
126
127





128
129
130
131
132



133




134
135
136
137
138
139
140
...
158
159
160
161
162
163
164


165





166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203




204
205
206
207
208
209
210
...
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278





279
280
281
282
283
284
285
286
287
288
289
290
291









292
293
294
295
296

297
298

299

300
301





























302
303
304
305
306
307
308
...
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

363
364
365
366
367
368
369
...
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
...
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
...
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
...
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561




562
563
564
565
566
567

568

































































































































569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
...
595
596
597
598
599
600
601

602
603

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.


























































































*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
................................................................................
  const char *zWhere      /* Delete entries associated with this table */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#ifdef SQLITE_ENABLE_STAT2




    { "sqlite_stat2", "tbl,idx,sampleno,sample" },


#endif
  };

  int aRoot[] = {0, 0};
  u8 aCreateTbl[] = {0, 0};

  int i;
................................................................................
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];












  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
      /* The sqlite_stat[12] table does not exist. Create it. Note that a 
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
................................................................................
      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[12] tables for writing. */
  for(i=0; i<ArraySize(aTable); i++){
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
  }
}



























































































































































































































/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
................................................................................
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */
  int addr = 0;                /* The address of an instruction */
  int jZeroRows = 0;           /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regSampleno = iMem++;    /* Register containing next sample number */
  int regCol = iMem++;         /* Content of a column analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regRowid = iMem++;       /* Rowid for the inserted record */

#ifdef SQLITE_ENABLE_STAT2





  int regTemp2 = iMem++;       /* Temporary use register */
  int regSamplerecno = iMem++; /* Index of next sample to record */
  int regRecno = iMem++;       /* Current sample index */
  int regLast = iMem++;        /* Index of last sample to record */
  int regFirst = iMem++;       /* Index of first sample to record */



#endif





  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
................................................................................
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol = pIdx->nColumn;
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);








    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);
    }

    /* Open a cursor to the index to be analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE_ENABLE_STAT2


    /* If this iteration of the loop is generating code to analyze the
    ** first index in the pTab->pIndex list, then register regLast has
    ** not been populated. In this case populate it now.  */
    if( pTab->pIndex==pIdx ){
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp);
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2);

      sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast);
      sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst);
      addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast);
      sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst);
      sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast);
      sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2);
      sqlite3VdbeAddOp3(v, OP_Divide,  regTemp2, regLast, regLast);
      sqlite3VdbeJumpHere(v, addr);
    }

    /* Zero the regSampleno and regRecno registers. */
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);
    sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno);
#endif





    /* The block of memory cells initialized here is used as follows.
    **
    **    iMem:                
    **        The total number of rows in the table.
    **
    **    iMem+1 .. iMem+nCol: 
................................................................................
    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);

    for(i=0; i<nCol; i++){
      CollSeq *pColl;
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
      if( i==0 ){
#ifdef SQLITE_ENABLE_STAT2
        /* Check if the record that cursor iIdxCur points to contains a
        ** value that should be stored in the sqlite_stat2 table. If so,
        ** store it.  */
        int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
        assert( regTabname+1==regIdxname 
             && regTabname+2==regSampleno
             && regTabname+3==regCol
        );
        sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
        sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);

        /* Calculate new values for regSamplerecno and regSampleno.
        **
        **   sampleno = sampleno + 1
        **   samplerecno = samplerecno+(remaining records)/(remaining samples)
        */
        sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
        sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp);
        sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
        sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
        sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
        sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
        sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);

        sqlite3VdbeJumpHere(v, ne);
        sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
#endif

        /* Always record the very first row */
        sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
      }
      assert( pIdx->azColl!=0 );
      assert( pIdx->azColl[i]!=0 );
      pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
                       (char*)pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);





    }
    if( db->mallocFailed ){
      /* If a malloc failure has occurred, then the result of the expression 
      ** passed as the second argument to the call to sqlite3VdbeJumpHere() 
      ** below may be negative. Which causes an assert() to fail (or an
      ** out-of-bounds write if SQLITE_DEBUG is not defined).  */
      return;
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      int addr2 = sqlite3VdbeCurrentAddr(v) - (nCol*2);
      if( i==0 ){
        sqlite3VdbeJumpHere(v, addr2-1);  /* Set jump dest for the OP_IfNot */









      }
      sqlite3VdbeJumpHere(v, addr2);      /* Set jump dest for the OP_Ne */
      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }


    /* End of the analysis loop. */

    sqlite3VdbeResolveLabel(v, endOfLoop);

    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);






























    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
................................................................................
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
    if( jZeroRows==0 ){
      jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
    }
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  }

  /* If the table has no indices, create a single sqlite_stat1 entry
  ** containing NULL as the index name and the row count as the content.
  */
  if( pTab->pIndex==0 ){
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

  }else{
    assert( jZeroRows>0 );
    addr = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
  sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
  sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
  sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
  sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
  sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  if( pParse->nMem<regRec ) pParse->nMem = regRec;
  if( jZeroRows ){
    sqlite3VdbeJumpHere(v, addr);
  }
}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
................................................................................
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
................................................................................
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, pTab->zName);
  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
................................................................................
** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
  analysisInfo *pInfo = (analysisInfo*)pData;
  Index *pIndex;
  Table *pTable;
  int i, c, n;
  unsigned int v;
  const char *z;

  assert( argc==3 );
  UNUSED_PARAMETER2(NotUsed, argc);

  if( argv==0 || argv[0]==0 || argv[2]==0 ){
    return 0;
................................................................................
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
#ifdef SQLITE_ENABLE_STAT2
  if( pIdx->aSample ){
    int j;
    for(j=0; j<SQLITE_INDEX_SAMPLES; j++){
      IndexSample *p = &pIdx->aSample[j];
      if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
        sqlite3DbFree(db, p->u.z);
      }
    }
    sqlite3DbFree(db, pIdx->aSample);
  }




#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);
#endif
}


/*

































































































































** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat2 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined 
** during compilation and the sqlite_stat2 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT2 was defined during compilation and the 
** sqlite_stat2 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
................................................................................
  assert( db->aDb[iDb].pBt!=0 );
  assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* Clear any prior statistics */
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);

    sqlite3DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;

  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;
  if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
    return SQLITE_ERROR;
  }

  /* Load new statistics out of the sqlite_stat1 table */
  zSql = sqlite3MPrintf(db, 
      "SELECT tbl, idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
  if( zSql==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat2 table. */
#ifdef SQLITE_ENABLE_STAT2
  if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){
    rc = SQLITE_ERROR;
  }
  if( rc==SQLITE_OK ){
    sqlite3_stmt *pStmt = 0;

    zSql = sqlite3MPrintf(db, 
        "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase);
    if( !zSql ){
      rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
      sqlite3DbFree(db, zSql);
    }

    if( rc==SQLITE_OK ){
      while( sqlite3_step(pStmt)==SQLITE_ROW ){
        char *zIndex;   /* Index name */
        Index *pIdx;    /* Pointer to the index object */

        zIndex = (char *)sqlite3_column_text(pStmt, 0);
        pIdx = zIndex ? sqlite3FindIndex(db, zIndex, sInfo.zDatabase) : 0;
        if( pIdx ){
          int iSample = sqlite3_column_int(pStmt, 1);
          if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
            int eType = sqlite3_column_type(pStmt, 2);

            if( pIdx->aSample==0 ){
              static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
              pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz);
              if( pIdx->aSample==0 ){
                db->mallocFailed = 1;
                break;
              }
	      memset(pIdx->aSample, 0, sz);
            }

            assert( pIdx->aSample );
            {
              IndexSample *pSample = &pIdx->aSample[iSample];
              pSample->eType = (u8)eType;
              if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
                pSample->u.r = sqlite3_column_double(pStmt, 2);
              }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
                const char *z = (const char *)(
                    (eType==SQLITE_BLOB) ?
                    sqlite3_column_blob(pStmt, 2):
                    sqlite3_column_text(pStmt, 2)
                );
                int n = sqlite3_column_bytes(pStmt, 2);
                if( n>24 ){
                  n = 24;
                }
                pSample->nByte = (u8)n;
                if( n < 1){
                  pSample->u.z = 0;
                }else{
                  pSample->u.z = sqlite3DbStrNDup(0, z, n);
                  if( pSample->u.z==0 ){
                    db->mallocFailed = 1;
                    break;
                  }
                }
              }
            }
          }
        }
      }
      rc = sqlite3_finalize(pStmt);
    }
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
>
>
>
>
|
>
>







 







>
>
>
>
>
>
>
>
>
>
>







 







|






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
<
<
<
<
<
|
>
>
>
>
>
|
|
|
|
|
>
>
>

>
>
>
>







 







>
>

>
>
>
>
>













|
<
>
|
|
<
<
<
<
<
|
|
|
<
<
<
<
<
<
<
<
<
|
|
|
<
>
>
>
>







 







|





<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

|




|
|

>
>
>
>
>
|
<
<
<
<
<
|



|

|
>
>
>
>
>
>
>
>
>

<



>

<
>

>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|





|




|


|
|









|

>







|
|






>







 







|







 







|







 







|







 







|


|







>
>
>
>






>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|

|



|
|


|
|







 







>


>











|








|
|
<
<
<

<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<











6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
...
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
...
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
...
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
...
439
440
441
442
443
444
445
446





447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
...
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

519
520
521





522
523
524









525
526
527

528
529
530
531
532
533
534
535
536
537
538
...
554
555
556
557
558
559
560
561
562
563
564
565
566































567
568
569
570
571
572
573
574
575
576
577
578
579
580
581





582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

599
600
601
602
603

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
...
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
...
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
...
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
...
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
...
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
....
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099



1100



1101






























































1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** The ANALYZE command gather statistics about the content of tables
** and indices.  These statistics are made available to the query planner
** to help it make better decisions about how to perform queries.
**
** The following system tables are or have been supported:
**
**    CREATE TABLE sqlite_stat1(tbl, idx, stat);
**    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
**    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
**
** Additional tables might be added in future releases of SQLite.
** The sqlite_stat2 table is not created or used unless the SQLite version
** is between 3.6.18 and 3.7.7, inclusive, and unless SQLite is compiled
** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
** The sqlite_stat2 table is superceded by sqlite_stat3, which is only
** created and used by SQLite versions after 2011-08-09 with
** SQLITE_ENABLE_STAT3 defined.  The fucntionality of sqlite_stat3
** is a superset of sqlite_stat2.  
**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column.  The tbl column is the name of the table to
** which the index belongs.  In each such row, the stat column will be
** a string consisting of a list of integers.  The first integer in this
** list is the number of rows in the index and in the table.  The second
** integer is the average number of rows in the index that have the same
** value in the first column of the index.  The third integer is the average
** number of rows in the index that have the same value for the first two
** columns.  The N-th integer (for N>1) is the average number of rows in 
** the index which have the same value for the first N-1 columns.  For
** a K-column index, there will be K+1 integers in the stat column.  If
** the index is unique, then the last integer will be 1.
**
** The list of integers in the stat column can optionally be followed
** by the keyword "unordered".  The "unordered" keyword, if it is present,
** must be separated from the last integer by a single space.  If the
** "unordered" keyword is present, then the query planner assumes that
** the index is unordered and will not use the index for a range query.
** 
** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
** column contains a single integer which is the (estimated) number of
** rows in the table identified by sqlite_stat1.tbl.
**
** Format of sqlite_stat2:
**
** The sqlite_stat2 is only created and is only used if SQLite is compiled
** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
** 3.6.18 and 3.7.7.  The "stat2" table contains additional information
** about the distribution of keys within an index.  The index is identified by
** the "idx" column and the "tbl" column is the name of the table to which
** the index belongs.  There are usually 10 rows in the sqlite_stat2
** table for each index.
**
** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
** inclusive are samples of the left-most key value in the index taken at
** evenly spaced points along the index.  Let the number of samples be S
** (10 in the standard build) and let C be the number of rows in the index.
** Then the sampled rows are given by:
**
**     rownumber = (i*C*2 + C)/(S*2)
**
** For i between 0 and S-1.  Conceptually, the index space is divided into
** S uniform buckets and the samples are the middle row from each bucket.
**
** The format for sqlite_stat2 is recorded here for legacy reference.  This
** version of SQLite does not support sqlite_stat2.  It neither reads nor
** writes the sqlite_stat2 table.  This version of SQLite only supports
** sqlite_stat3.
**
** Format for sqlite_stat3:
**
** The sqlite_stat3 is an enhancement to sqlite_stat2.  A new name is
** used to avoid compatibility problems.  
**
** The format of the sqlite_stat3 table is similar to the format for
** the sqlite_stat2 table, with the following changes:  (1)
** The sampleno column is removed.  (2) Every sample has nEq, nLt, and nDLt
** columns which hold the approximate number of rows in the table that
** exactly match the sample, the approximate number of rows with values
** less than the sample, and the approximate number of distinct key values
** less than the sample, respectively.  (3) The number of samples can vary 
** from one table to the next; the sample count does not have to be 
** exactly 10 as it is with sqlite_stat2.
**
** The ANALYZE command will typically generate sqlite_stat3 tables
** that contain between 10 and 40 samples which are distributed across
** the key space, though not uniformly, and which include samples with
** largest possible nEq values.
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
................................................................................
  const char *zWhere      /* Delete entries associated with this table */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#ifdef SQLITE_ENABLE_STAT3
    { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
#endif
  };
  static const char *azToDrop[] = { 
    "sqlite_stat2",
#ifndef SQLITE_ENABLE_STAT3
    "sqlite_stat3",
#endif
  };

  int aRoot[] = {0, 0};
  u8 aCreateTbl[] = {0, 0};

  int i;
................................................................................
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  /* Drop all statistics tables that this version of SQLite does not
  ** understand.
  */
  for(i=0; i<ArraySize(azToDrop); i++){
    Table *pTab = sqlite3FindTable(db, azToDrop[i], pDb->zName);
    if( pTab ) sqlite3CodeDropTable(pParse, pTab, iDb, 0);
  }

  /* Create new statistic tables if they do not exist, or clear them
  ** if they do already exist.
  */
  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
      /* The sqlite_stat[12] table does not exist. Create it. Note that a 
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
................................................................................
      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[13] tables for writing. */
  for(i=0; i<ArraySize(aTable); i++){
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
  }
}

/*
** Recommended number of samples for sqlite_stat3
*/
#ifndef SQLITE_STAT3_SAMPLES
# define SQLITE_STAT3_SAMPLES 24
#endif

/*
** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct Stat3Accum Stat3Accum;
struct Stat3Accum {
  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int iMin;                 /* Index of entry with minimum nEq and hash */
  int mxSample;             /* Maximum number of samples to accumulate */
  int nSample;              /* Current number of samples */
  u32 iPrn;                 /* Pseudo-random number used for sampling */
  struct Stat3Sample {
    i64 iRowid;                /* Rowid in main table of the key */
    tRowcnt nEq;               /* sqlite_stat3.nEq */
    tRowcnt nLt;               /* sqlite_stat3.nLt */
    tRowcnt nDLt;              /* sqlite_stat3.nDLt */
    u8 isPSample;              /* True if a periodic sample */
    u32 iHash;                 /* Tiebreaker hash */
  } *a;                     /* An array of samples */
};

#ifdef SQLITE_ENABLE_STAT3
/*
** Implementation of the stat3_init(C,S) SQL function.  The two parameters
** are the number of rows in the table or index (C) and the number of samples
** to accumulate (S).
**
** This routine allocates the Stat3Accum object.
**
** The return value is the Stat3Accum object (P).
*/
static void stat3Init(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat3Accum *p;
  tRowcnt nRow;
  int mxSample;
  int n;

  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
  mxSample = sqlite3_value_int(argv[1]);
  n = sizeof(*p) + sizeof(p->a[0])*mxSample;
  p = sqlite3_malloc( n );
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }
  memset(p, 0, n);
  p->a = (struct Stat3Sample*)&p[1];
  p->nRow = nRow;
  p->mxSample = mxSample;
  p->nPSample = p->nRow/(mxSample/3+1) + 1;
  sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
  sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
}
static const FuncDef stat3InitFuncdef = {
  2,                /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Init,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_init",     /* zName */
  0                 /* pHash */
};


/*
** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function.  The
** arguments describe a single key instance.  This routine makes the 
** decision about whether or not to retain this key for the sqlite_stat3
** table.
**
** The return value is NULL.
*/
static void stat3Push(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]);
  tRowcnt nEq = sqlite3_value_int64(argv[0]);
  tRowcnt nLt = sqlite3_value_int64(argv[1]);
  tRowcnt nDLt = sqlite3_value_int64(argv[2]);
  i64 rowid = sqlite3_value_int64(argv[3]);
  u8 isPSample = 0;
  u8 doInsert = 0;
  int iMin = p->iMin;
  struct Stat3Sample *pSample;
  int i;
  u32 h;

  UNUSED_PARAMETER(context);
  UNUSED_PARAMETER(argc);
  if( nEq==0 ) return;
  h = p->iPrn = p->iPrn*1103515245 + 12345;
  if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){
    doInsert = isPSample = 1;
  }else if( p->nSample<p->mxSample ){
    doInsert = 1;
  }else{
    if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){
      doInsert = 1;
    }
  }
  if( !doInsert ) return;
  if( p->nSample==p->mxSample ){
    if( iMin<p->nSample ){
      memcpy(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin));
    }
    pSample = &p->a[p->nSample-1];
  }else{
    pSample = &p->a[p->nSample++];
  }
  pSample->iRowid = rowid;
  pSample->nEq = nEq;
  pSample->nLt = nLt;
  pSample->nDLt = nDLt;
  pSample->iHash = h;
  pSample->isPSample = isPSample;

  /* Find the new minimum */
  if( p->nSample==p->mxSample ){
    pSample = p->a;
    i = 0;
    while( pSample->isPSample ){
      i++;
      pSample++;
      assert( i<p->nSample );
    }
    nEq = pSample->nEq;
    h = pSample->iHash;
    iMin = i;
    for(i++, pSample++; i<p->nSample; i++, pSample++){
      if( pSample->isPSample ) continue;
      if( pSample->nEq<nEq
       || (pSample->nEq==nEq && pSample->iHash<h)
      ){
        iMin = i;
        nEq = pSample->nEq;
        h = pSample->iHash;
      }
    }
    p->iMin = iMin;
  }
}
static const FuncDef stat3PushFuncdef = {
  5,                /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Push,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_push",     /* zName */
  0                 /* pHash */
};

/*
** Implementation of the stat3_get(P,N,...) SQL function.  This routine is
** used to query the results.  Content is returned for the Nth sqlite_stat3
** row where N is between 0 and S-1 and S is the number of samples.  The
** value returned depends on the number of arguments.
**
**   argc==2    result:  rowid
**   argc==3    result:  nEq
**   argc==4    result:  nLt
**   argc==5    result:  nDLt
*/
static void stat3Get(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int n = sqlite3_value_int(argv[1]);
  Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]);

  assert( p!=0 );
  if( p->nSample<=n ) return;
  switch( argc ){
    case 2: sqlite3_result_int64(context, p->a[n].iRowid); break;
    case 3: sqlite3_result_int64(context, p->a[n].nEq);    break;
    case 4: sqlite3_result_int64(context, p->a[n].nLt);    break;
    case 5: sqlite3_result_int64(context, p->a[n].nDLt);   break;
  }
}
static const FuncDef stat3GetFuncdef = {
  -1,               /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Get,         /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_get",      /* zName */
  0                 /* pHash */
};
#endif /* SQLITE_ENABLE_STAT3 */




/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
................................................................................
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */
  int addr = 0;                /* The address of an instruction */
  int jZeroRows = 0;           /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regStat1 = iMem++;       /* The stat column of sqlite_stat1 */





#ifdef SQLITE_ENABLE_STAT3
  int regNumEq = regStat1;     /* Number of instances.  Same as regStat1 */
  int regNumLt = iMem++;       /* Number of keys less than regSample */
  int regNumDLt = iMem++;      /* Number of distinct keys less than regSample */
  int regSample = iMem++;      /* The next sample value */
  int regRowid = regSample;    /* Rowid of a sample */
  int regAccum = iMem++;       /* Register to hold Stat3Accum object */
  int regLoop = iMem++;        /* Loop counter */
  int regCount = iMem++;       /* Number of rows in the table or index */
  int regTemp1 = iMem++;       /* Intermediate register */
  int regTemp2 = iMem++;       /* Intermediate register */
  int once = 1;                /* One-time initialization */
  int shortJump = 0;           /* Instruction address */
  int iTabCur = pParse->nTab++; /* Table cursor */
#endif
  int regCol = iMem++;         /* Content of a column in analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */

  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
................................................................................
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol = pIdx->nColumn;
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    int addrIfNot = 0;           /* address of OP_IfNot */
    int *aChngAddr;              /* Array of jump instruction addresses */

    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
    if( aChngAddr==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);
    }

    /* Open a cursor to the index to be analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE_ENABLE_STAT3

    if( once ){
      once = 0;
      sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);





    }
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1);









    sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt);
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt);

    sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
                      (char*)&stat3InitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2);
#endif /* SQLITE_ENABLE_STAT3 */

    /* The block of memory cells initialized here is used as follows.
    **
    **    iMem:                
    **        The total number of rows in the table.
    **
    **    iMem+1 .. iMem+nCol: 
................................................................................
    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);  /* Increment row counter */

    for(i=0; i<nCol; i++){
      CollSeq *pColl;
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
      if( i==0 ){































        /* Always record the very first row */
        addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
      }
      assert( pIdx->azColl!=0 );
      assert( pIdx->azColl[i]!=0 );
      pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
                                      (char*)pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
      VdbeComment((v, "jump if column %d changed", i));
#ifdef SQLITE_ENABLE_STAT3
      if( i==0 ){
        sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
        VdbeComment((v, "incr repeat count"));
      }





#endif
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, aChngAddr[i]);  /* Set jump dest for the OP_Ne */
      if( i==0 ){
        sqlite3VdbeJumpHere(v, addrIfNot);   /* Jump dest for OP_IfNot */
#ifdef SQLITE_ENABLE_STAT3
        sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                          (char*)&stat3PushFuncdef, P4_FUNCDEF);
        sqlite3VdbeChangeP5(v, 5);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
        sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
        sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq);
#endif        
      }

      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }
    sqlite3DbFree(db, aChngAddr);


    /* Always jump here after updating the iMem+1...iMem+1+nCol counters */
    sqlite3VdbeResolveLabel(v, endOfLoop);

    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
#ifdef SQLITE_ENABLE_STAT3
    sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                      (char*)&stat3PushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 5);
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
    shortJump = 
    sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2);
    sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1);
    sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
    sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
    sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 4);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 5);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump);
    sqlite3VdbeJumpHere(v, shortJump+2);
#endif        

    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
................................................................................
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1);
    if( jZeroRows==0 ){
      jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
    }
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  }

  /* If the table has no indices, create a single sqlite_stat1 entry
  ** containing NULL as the index name and the row count as the content.
  */
  if( pTab->pIndex==0 ){
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
  }else{
    assert( jZeroRows>0 );
    addr = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
  sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
  sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
  sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
  sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
  sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  if( pParse->nMem<regRec ) pParse->nMem = regRec;
  if( jZeroRows ){
    sqlite3VdbeJumpHere(v, addr);
  }
}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
................................................................................
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
................................................................................
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, pTab->zName);
  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
................................................................................
** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
  analysisInfo *pInfo = (analysisInfo*)pData;
  Index *pIndex;
  Table *pTable;
  int i, c, n;
  tRowcnt v;
  const char *z;

  assert( argc==3 );
  UNUSED_PARAMETER2(NotUsed, argc);

  if( argv==0 || argv[0]==0 || argv[2]==0 ){
    return 0;
................................................................................
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
#ifdef SQLITE_ENABLE_STAT3
  if( pIdx->aSample ){
    int j;
    for(j=0; j<pIdx->nSample; j++){
      IndexSample *p = &pIdx->aSample[j];
      if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
        sqlite3DbFree(db, p->u.z);
      }
    }
    sqlite3DbFree(db, pIdx->aSample);
  }
  if( db && db->pnBytesFreed==0 ){
    pIdx->nSample = 0;
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);
#endif
}

#ifdef SQLITE_ENABLE_STAT3
/*
** Load content from the sqlite_stat3 table into the Index.aSample[]
** arrays of all indices.
*/
static int loadStat3(sqlite3 *db, const char *zDb){
  int rc;                       /* Result codes from subroutines */
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  int idx = 0;                  /* slot in pIdx->aSample[] for next sample */
  int eType;                    /* Datatype of a sample */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
    return SQLITE_OK;
  }

  zSql = sqlite3MPrintf(db, 
      "SELECT idx,count(*) FROM %Q.sqlite_stat3"
      " GROUP BY idx", zDb);
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    if( nSample>255 ) continue;
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    assert( pIdx->nSample==0 );
    pIdx->nSample = (u8)nSample;
    pIdx->aSample = sqlite3MallocZero( nSample*sizeof(IndexSample) );
    pIdx->avgEq = pIdx->aiRowEst[1];
    if( pIdx->aSample==0 ){
      db->mallocFailed = 1;
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }
  }
  rc = sqlite3_finalize(pStmt);
  if( rc ) return rc;

  zSql = sqlite3MPrintf(db, 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int i;          /* Loop counter */
    tRowcnt sumEq;  /* Sum of the nEq values */

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    if( pIdx==pPrevIdx ){
      idx++;
    }else{
      pPrevIdx = pIdx;
      idx = 0;
    }
    assert( idx<pIdx->nSample );
    pSample = &pIdx->aSample[idx];
    pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1);
    pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2);
    pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3);
    if( idx==pIdx->nSample-1 ){
      if( pSample->nDLt>0 ){
        for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
        pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
      }
      if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
    }
    eType = sqlite3_column_type(pStmt, 4);
    pSample->eType = (u8)eType;
    switch( eType ){
      case SQLITE_INTEGER: {
        pSample->u.i = sqlite3_column_int64(pStmt, 4);
        break;
      }
      case SQLITE_FLOAT: {
        pSample->u.r = sqlite3_column_double(pStmt, 4);
        break;
      }
      case SQLITE_NULL: {
        break;
      }
      default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); {
        const char *z = (const char *)(
              (eType==SQLITE_BLOB) ?
              sqlite3_column_blob(pStmt, 4):
              sqlite3_column_text(pStmt, 4)
           );
        int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
        if( n>0xffff ) n = 0xffff;
        pSample->nByte = (u16)n;
        if( n < 1){
          pSample->u.z = 0;
        }else{
          pSample->u.z = sqlite3Malloc(n);
          if( pSample->u.z==0 ){
            db->mallocFailed = 1;
            sqlite3_finalize(pStmt);
            return SQLITE_NOMEM;
          }
          memcpy(pSample->u.z, z, n);
        }
      }
    }
  }
  return sqlite3_finalize(pStmt);
}
#endif /* SQLITE_ENABLE_STAT3 */

/*
** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat3 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined 
** during compilation and the sqlite_stat3 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT3 was defined during compilation and the 
** sqlite_stat3 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
................................................................................
  assert( db->aDb[iDb].pBt!=0 );
  assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* Clear any prior statistics */
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
#ifdef SQLITE_ENABLE_STAT3
    sqlite3DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
#endif
  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;
  if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
    return SQLITE_ERROR;
  }

  /* Load new statistics out of the sqlite_stat1 table */
  zSql = sqlite3MPrintf(db, 
      "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
  if( zSql==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat3 table. */
#ifdef SQLITE_ENABLE_STAT3



  if( rc==SQLITE_OK ){



    rc = loadStat3(db, sInfo.zDatabase);






























































  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */

Changes to src/build.c.

1936
1937
1938
1939
1940
1941
1942

































































































1943
1944
1945
1946
1947
1948
1949
....
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
....
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043

2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
....
2539
2540
2541
2542
2543
2544
2545

2546
2547
2548
2549
2550
2551
2552
2553
2554
2555

2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
....
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
      int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
      destroyRootPage(pParse, iLargest, iDb);
      iDestroyed = iLargest;
    }
  }
#endif
}


































































































/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
*/
void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
  Table *pTab;
................................................................................
      goto exit_drop_table;
    }
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
      goto exit_drop_table;
    }
  }
#endif
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
    sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
    goto exit_drop_table;
  }

#ifndef SQLITE_OMIT_VIEW
  /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
  ** on a table.
................................................................................
#endif

  /* Generate code to remove the table from the master table
  ** on disk.
  */
  v = sqlite3GetVdbe(pParse);
  if( v ){
    Trigger *pTrigger;
    Db *pDb = &db->aDb[iDb];
    sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      sqlite3VdbeAddOp0(v, OP_VBegin);
    }
#endif

    sqlite3FkDropTable(pParse, pName, pTab);

    /* Drop all triggers associated with the table being dropped. Code
    ** is generated to remove entries from sqlite_master and/or
    ** sqlite_temp_master if required.
    */
    pTrigger = sqlite3TriggerList(pParse, pTab);
    while( pTrigger ){
      assert( pTrigger->pSchema==pTab->pSchema || 
          pTrigger->pSchema==db->aDb[1].pSchema );
      sqlite3DropTriggerPtr(pParse, pTrigger);
      pTrigger = pTrigger->pNext;
    }

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Remove any entries of the sqlite_sequence table associated with
    ** the table being dropped. This is done before the table is dropped
    ** at the btree level, in case the sqlite_sequence table needs to
    ** move as a result of the drop (can happen in auto-vacuum mode).
    */
    if( pTab->tabFlags & TF_Autoincrement ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
        pDb->zName, pTab->zName
      );
    }
#endif

    /* Drop all SQLITE_MASTER table and index entries that refer to the
    ** table. The program name loops through the master table and deletes
    ** every row that refers to a table of the same name as the one being
    ** dropped. Triggers are handled seperately because a trigger can be
    ** created in the temp database that refers to a table in another
    ** database.
    */
    sqlite3NestedParse(pParse, 
        "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
        pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);

    /* Drop any statistics from the sqlite_stat1 table, if it exists */
    if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
      );
    }

    if( !isView && !IsVirtual(pTab) ){
      destroyTable(pParse, pTab);
    }

    /* Remove the table entry from SQLite's internal schema and modify
    ** the schema cookie.
    */
    if( IsVirtual(pTab) ){
      sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
    }
    sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
    sqlite3ChangeCookie(pParse, iDb);
  }
  sqliteViewResetAll(db, iDb);

exit_drop_table:
  sqlite3SrcListDelete(db, pName);
}

/*
** This routine is called to create a new foreign key on the table
................................................................................
  /* 
  ** Allocate the index structure. 
  */
  nName = sqlite3Strlen30(zName);
  nCol = pList->nExpr;
  pIndex = sqlite3DbMallocZero(db, 
      sizeof(Index) +              /* Index structure  */

      sizeof(int)*nCol +           /* Index.aiColumn   */
      sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
      sizeof(char *)*nCol +        /* Index.azColl     */
      sizeof(u8)*nCol +            /* Index.aSortOrder */
      nName + 1 +                  /* Index.zName      */
      nExtra                       /* Collation sequence names */
  );
  if( db->mallocFailed ){
    goto exit_create_index;
  }

  pIndex->azColl = (char**)(&pIndex[1]);
  pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
  pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
  pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
  pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
  zExtra = (char *)(&pIndex->zName[nName+1]);
  memcpy(pIndex->zName, zName, nName+1);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = (u8)onError;
  pIndex->autoIndex = (u8)(pName==0);
................................................................................
**           aiRowEst[N]>=1
**
** Apart from that, we have little to go on besides intuition as to
** how aiRowEst[] should be initialized.  The numbers generated here
** are based on typical values found in actual indices.
*/
void sqlite3DefaultRowEst(Index *pIdx){
  unsigned *a = pIdx->aiRowEst;
  int i;
  unsigned n;
  assert( a!=0 );
  a[0] = pIdx->pTable->nRowEst;
  if( a[0]<10 ) a[0] = 10;
  n = 10;
  for(i=1; i<=pIdx->nColumn; i++){
    a[i] = n;
    if( n>5 ) n--;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







<
<

<
<
<
<
<
<
>

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<







 







>

<








>
|

<
|







 







|

|







1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
....
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
....
2125
2126
2127
2128
2129
2130
2131


2132






2133
2134














































2135
2136











2137
2138
2139
2140
2141
2142
2143
....
2572
2573
2574
2575
2576
2577
2578
2579
2580

2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

2592
2593
2594
2595
2596
2597
2598
2599
....
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
      int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
      destroyRootPage(pParse, iLargest, iDb);
      iDestroyed = iLargest;
    }
  }
#endif
}

/*
** Remove entries from the sqlite_stat1 and sqlite_stat2 tables
** after a DROP INDEX or DROP TABLE command.
*/
static void sqlite3ClearStatTables(
  Parse *pParse,         /* The parsing context */
  int iDb,               /* The database number */
  const char *zType,     /* "idx" or "tbl" */
  const char *zName      /* Name of index or table */
){
  static const char *azStatTab[] = { 
    "sqlite_stat1",
    "sqlite_stat2",
    "sqlite_stat3",
  };
  int i;
  const char *zDbName = pParse->db->aDb[iDb].zName;
  for(i=0; i<ArraySize(azStatTab); i++){
    if( sqlite3FindTable(pParse->db, azStatTab[i], zDbName) ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %Q.%s WHERE %s=%Q",
        zDbName, azStatTab[i], zType, zName
      );
    }
  }
}

/*
** Generate code to drop a table.
*/
void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
  Vdbe *v;
  sqlite3 *db = pParse->db;
  Trigger *pTrigger;
  Db *pDb = &db->aDb[iDb];

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(pTab) ){
    sqlite3VdbeAddOp0(v, OP_VBegin);
  }
#endif

  /* Drop all triggers associated with the table being dropped. Code
  ** is generated to remove entries from sqlite_master and/or
  ** sqlite_temp_master if required.
  */
  pTrigger = sqlite3TriggerList(pParse, pTab);
  while( pTrigger ){
    assert( pTrigger->pSchema==pTab->pSchema || 
        pTrigger->pSchema==db->aDb[1].pSchema );
    sqlite3DropTriggerPtr(pParse, pTrigger);
    pTrigger = pTrigger->pNext;
  }

#ifndef SQLITE_OMIT_AUTOINCREMENT
  /* Remove any entries of the sqlite_sequence table associated with
  ** the table being dropped. This is done before the table is dropped
  ** at the btree level, in case the sqlite_sequence table needs to
  ** move as a result of the drop (can happen in auto-vacuum mode).
  */
  if( pTab->tabFlags & TF_Autoincrement ){
    sqlite3NestedParse(pParse,
      "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
      pDb->zName, pTab->zName
    );
  }
#endif

  /* Drop all SQLITE_MASTER table and index entries that refer to the
  ** table. The program name loops through the master table and deletes
  ** every row that refers to a table of the same name as the one being
  ** dropped. Triggers are handled seperately because a trigger can be
  ** created in the temp database that refers to a table in another
  ** database.
  */
  sqlite3NestedParse(pParse, 
      "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
      pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
  if( !isView && !IsVirtual(pTab) ){
    destroyTable(pParse, pTab);
  }

  /* Remove the table entry from SQLite's internal schema and modify
  ** the schema cookie.
  */
  if( IsVirtual(pTab) ){
    sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
  }
  sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
  sqlite3ChangeCookie(pParse, iDb);
  sqliteViewResetAll(db, iDb);
}

/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
*/
void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
  Table *pTab;
................................................................................
      goto exit_drop_table;
    }
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
      goto exit_drop_table;
    }
  }
#endif
  if( !pParse->nested && sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
    sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
    goto exit_drop_table;
  }

#ifndef SQLITE_OMIT_VIEW
  /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
  ** on a table.
................................................................................
#endif

  /* Generate code to remove the table from the master table
  ** on disk.
  */
  v = sqlite3GetVdbe(pParse);
  if( v ){


    sqlite3BeginWriteOperation(pParse, 1, iDb);






    sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
    sqlite3FkDropTable(pParse, pName, pTab);














































    sqlite3CodeDropTable(pParse, pTab, iDb, isView);
  }












exit_drop_table:
  sqlite3SrcListDelete(db, pName);
}

/*
** This routine is called to create a new foreign key on the table
................................................................................
  /* 
  ** Allocate the index structure. 
  */
  nName = sqlite3Strlen30(zName);
  nCol = pList->nExpr;
  pIndex = sqlite3DbMallocZero(db, 
      sizeof(Index) +              /* Index structure  */
      sizeof(tRowcnt)*(nCol+1) +   /* Index.aiRowEst   */
      sizeof(int)*nCol +           /* Index.aiColumn   */

      sizeof(char *)*nCol +        /* Index.azColl     */
      sizeof(u8)*nCol +            /* Index.aSortOrder */
      nName + 1 +                  /* Index.zName      */
      nExtra                       /* Collation sequence names */
  );
  if( db->mallocFailed ){
    goto exit_create_index;
  }
  pIndex->aiRowEst = (tRowcnt*)(&pIndex[1]);
  pIndex->azColl = (char**)(&pIndex->aiRowEst[nCol+1]);
  pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);

  pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
  pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
  zExtra = (char *)(&pIndex->zName[nName+1]);
  memcpy(pIndex->zName, zName, nName+1);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = (u8)onError;
  pIndex->autoIndex = (u8)(pName==0);
................................................................................
**           aiRowEst[N]>=1
**
** Apart from that, we have little to go on besides intuition as to
** how aiRowEst[] should be initialized.  The numbers generated here
** are based on typical values found in actual indices.
*/
void sqlite3DefaultRowEst(Index *pIdx){
  tRowcnt *a = pIdx->aiRowEst;
  int i;
  tRowcnt n;
  assert( a!=0 );
  a[0] = pIdx->pTable->nRowEst;
  if( a[0]<10 ) a[0] = 10;
  n = 10;
  for(i=1; i<=pIdx->nColumn; i++){
    a[i] = n;
    if( n>5 ) n--;

Changes to src/ctime.c.

112
113
114
115
116
117
118



119
120
121
122
123
124
125
  "ENABLE_OVERSIZE_CELL_CHECK",
#endif
#ifdef SQLITE_ENABLE_RTREE
  "ENABLE_RTREE",
#endif
#ifdef SQLITE_ENABLE_STAT2
  "ENABLE_STAT2",



#endif
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  "ENABLE_UNLOCK_NOTIFY",
#endif
#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
  "ENABLE_UPDATE_DELETE_LIMIT",
#endif







>
>
>







112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
  "ENABLE_OVERSIZE_CELL_CHECK",
#endif
#ifdef SQLITE_ENABLE_RTREE
  "ENABLE_RTREE",
#endif
#ifdef SQLITE_ENABLE_STAT2
  "ENABLE_STAT2",
#endif
#ifdef SQLITE_ENABLE_STAT3
  "ENABLE_STAT3",
#endif
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  "ENABLE_UNLOCK_NOTIFY",
#endif
#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
  "ENABLE_UPDATE_DELETE_LIMIT",
#endif

Changes to src/sqlite.h.in.

2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557





2558
2559
2560
2561
2562
2563
2564
** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
** and the application would have to make a second call to [sqlite3_reset()]
** in order to find the underlying cause of the problem. With the "v2" prepare
** interfaces, the underlying reason for the error is returned immediately.
** </li>
**
** <li>
** ^If the value of a [parameter | host parameter] in the WHERE clause might
** change the query plan for a statement, then the statement may be
** automatically recompiled (as if there had been a schema change) on the first 
** [sqlite3_step()] call following any change to the 
** [sqlite3_bind_text | bindings] of the [parameter]. 





** </li>
** </ol>
*/
int sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */







|
|
|
|
|
>
>
>
>
>







2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
** and the application would have to make a second call to [sqlite3_reset()]
** in order to find the underlying cause of the problem. With the "v2" prepare
** interfaces, the underlying reason for the error is returned immediately.
** </li>
**
** <li>
** ^If the specific value bound to [parameter | host parameter] in the 
** WHERE clause might influence the choice of query plan for a statement,
** then the statement will be automatically recompiled, as if there had been 
** a schema change, on the first  [sqlite3_step()] call following any change
** to the [sqlite3_bind_text | bindings] of that [parameter]. 
** ^The specific value of WHERE-clause [parameter] might influence the 
** choice of query plan if the parameter is the left-hand side of a [LIKE]
** or [GLOB] operator or if the parameter is compared to an indexed column
** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled.
** the 
** </li>
** </ol>
*/
int sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */

Changes to src/sqliteInt.h.

435
436
437
438
439
440
441












442
443
444
445
446
447
448
....
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
....
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

1432
1433
1434
1435
1436


1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

1448
1449
1450



1451
1452
1453
1454
1455
1456
1457
....
2637
2638
2639
2640
2641
2642
2643

2644
2645
2646
2647
2648
2649
2650
....
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
** that can be stored in a u32 without loss of data.  The value
** is 0x00000000ffffffff.  But because of quirks of some compilers, we
** have to specify the value in the less intuitive manner shown:
*/
#define SQLITE_MAX_U32  ((((u64)1)<<32)-1)













/*
** Macros to determine whether the machine is big or little endian,
** evaluated at runtime.
*/
#ifdef SQLITE_AMALGAMATION
const int sqlite3one = 1;
#else
................................................................................
struct Table {
  char *zName;         /* Name of the table or view */
  int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
  int nCol;            /* Number of columns in this table */
  Column *aCol;        /* Information about each column */
  Index *pIndex;       /* List of SQL indexes on this table. */
  int tnum;            /* Root BTree node for this table (see note above) */
  unsigned nRowEst;    /* Estimated rows in table - from sqlite_stat1 table */
  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
  u16 nRef;            /* Number of pointers to this Table */
  u8 tabFlags;         /* Mask of TF_* values */
  u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
  FKey *pFKey;         /* Linked list of all foreign keys in this table */
  char *zColAff;       /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
................................................................................
** algorithm to employ whenever an attempt is made to insert a non-unique
** element.
*/
struct Index {
  char *zName;     /* Name of this index */
  int nColumn;     /* Number of columns in the table used by this index */
  int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
  unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
  Table *pTable;   /* The SQL table being indexed */
  int tnum;        /* Page containing root of this index in database file */
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  u8 bUnordered;   /* Use this index for == or IN queries only */

  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  Schema *pSchema; /* Schema containing this index */
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  char **azColl;   /* Array of collation sequence names for index */


  IndexSample *aSample;    /* Array of SQLITE_INDEX_SAMPLES samples */

};

/*
** Each sample stored in the sqlite_stat2 table is represented in memory 
** using a structure of this type.
*/
struct IndexSample {
  union {
    char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
    double r;       /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */

  } u;
  u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
  u8 nByte;         /* Size in byte of text or blob. */



};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
................................................................................
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
  int sqlite3ViewGetColumnNames(Parse*,Table*);
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif

void sqlite3DropTable(Parse*, SrcList*, int, int);

void sqlite3DeleteTable(sqlite3*, Table*);
#ifndef SQLITE_OMIT_AUTOINCREMENT
  void sqlite3AutoincrementBegin(Parse *pParse);
  void sqlite3AutoincrementEnd(Parse *pParse);
#else
# define sqlite3AutoincrementBegin(X)
# define sqlite3AutoincrementEnd(X)
................................................................................
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
#ifdef SQLITE_ENABLE_STAT2
char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
#endif
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3OpcodeProperty[];
extern const unsigned char sqlite3UpperToLower[];







>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|





>





>
>
|
>









|
>


|
>
>
>







 







>







 







|







435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
....
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
....
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
....
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
....
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
** that can be stored in a u32 without loss of data.  The value
** is 0x00000000ffffffff.  But because of quirks of some compilers, we
** have to specify the value in the less intuitive manner shown:
*/
#define SQLITE_MAX_U32  ((((u64)1)<<32)-1)

/*
** The datatype used to store estimates of the number of rows in a
** table or index.  This is an unsigned integer type.  For 99.9% of
** the world, a 32-bit integer is sufficient.  But a 64-bit integer
** can be used at compile-time if desired.
*/
#ifdef SQLITE_64BIT_STATS
 typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
#else
 typedef u32 tRowcnt;    /* 32-bit is the default */
#endif

/*
** Macros to determine whether the machine is big or little endian,
** evaluated at runtime.
*/
#ifdef SQLITE_AMALGAMATION
const int sqlite3one = 1;
#else
................................................................................
struct Table {
  char *zName;         /* Name of the table or view */
  int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
  int nCol;            /* Number of columns in this table */
  Column *aCol;        /* Information about each column */
  Index *pIndex;       /* List of SQL indexes on this table. */
  int tnum;            /* Root BTree node for this table (see note above) */
  tRowcnt nRowEst;     /* Estimated rows in table - from sqlite_stat1 table */
  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
  u16 nRef;            /* Number of pointers to this Table */
  u8 tabFlags;         /* Mask of TF_* values */
  u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
  FKey *pFKey;         /* Linked list of all foreign keys in this table */
  char *zColAff;       /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
................................................................................
** algorithm to employ whenever an attempt is made to insert a non-unique
** element.
*/
struct Index {
  char *zName;     /* Name of this index */
  int nColumn;     /* Number of columns in the table used by this index */
  int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
  tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
  Table *pTable;   /* The SQL table being indexed */
  int tnum;        /* Page containing root of this index in database file */
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  u8 bUnordered;   /* Use this index for == or IN queries only */
  u8 nSample;      /* Number of elements in aSample[] */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  Schema *pSchema; /* Schema containing this index */
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  char **azColl;   /* Array of collation sequence names for index */
#ifdef SQLITE_ENABLE_STAT3
  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

/*
** Each sample stored in the sqlite_stat2 table is represented in memory 
** using a structure of this type.
*/
struct IndexSample {
  union {
    char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
    double r;       /* Value if eType is SQLITE_FLOAT */
    i64 i;          /* Value if eType is SQLITE_INTEGER */
  } u;
  u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
  u16 nByte;        /* Size in byte of text or blob. */
  tRowcnt nEq;      /* Est. number of rows where the key equals this sample */
  tRowcnt nLt;      /* Est. number of rows where key is less than this sample */
  tRowcnt nDLt;     /* Est. number of distinct keys less than this sample */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
................................................................................
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
  int sqlite3ViewGetColumnNames(Parse*,Table*);
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif

void sqlite3DropTable(Parse*, SrcList*, int, int);
void sqlite3CodeDropTable(Parse*, Table*, int, int);
void sqlite3DeleteTable(sqlite3*, Table*);
#ifndef SQLITE_OMIT_AUTOINCREMENT
  void sqlite3AutoincrementBegin(Parse *pParse);
  void sqlite3AutoincrementEnd(Parse *pParse);
#else
# define sqlite3AutoincrementBegin(X)
# define sqlite3AutoincrementEnd(X)
................................................................................
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
#ifdef SQLITE_ENABLE_STAT3
char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
#endif
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3OpcodeProperty[];
extern const unsigned char sqlite3UpperToLower[];

Changes to src/test_config.c.

399
400
401
402
403
404
405






406
407
408
409
410
411
412
#endif

#ifdef SQLITE_ENABLE_STAT2
  Tcl_SetVar2(interp, "sqlite_options", "stat2", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat2", "0", TCL_GLOBAL_ONLY);
#endif







#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif







>
>
>
>
>
>







399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#endif

#ifdef SQLITE_ENABLE_STAT2
  Tcl_SetVar2(interp, "sqlite_options", "stat2", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat2", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_STAT3
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY);
#endif

#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif

Changes to src/utf.c.

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
** is set to the length of the returned string in bytes. The call should
** arrange to call sqlite3DbFree() on the returned pointer when it is
** no longer required.
** 
** If a malloc failure occurs, NULL is returned and the db.mallocFailed
** flag set.
*/
#ifdef SQLITE_ENABLE_STAT2
char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
  Mem m;
  memset(&m, 0, sizeof(m));
  m.db = db;
  sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
  if( sqlite3VdbeMemTranslate(&m, enc) ){
    assert( db->mallocFailed );







|







460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
** is set to the length of the returned string in bytes. The call should
** arrange to call sqlite3DbFree() on the returned pointer when it is
** no longer required.
** 
** If a malloc failure occurs, NULL is returned and the db.mallocFailed
** flag set.
*/
#ifdef SQLITE_ENABLE_STAT3
char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
  Mem m;
  memset(&m, 0, sizeof(m));
  m.db = db;
  sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
  if( sqlite3VdbeMemTranslate(&m, enc) ){
    assert( db->mallocFailed );

Changes to src/vdbeaux.c.

555
556
557
558
559
560
561

562
563
564
565
566
567
568
569
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){

  sqlite3VdbeChangeP2(p, addr, p->nOp);
}


/*
** If the input FuncDef structure is ephemeral, then free it.  If
** the FuncDef is not ephermal, then do nothing.
*/







>
|







555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
  assert( addr>=0 || p->db->mallocFailed );
  if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp);
}


/*
** If the input FuncDef structure is ephemeral, then free it.  If
** the FuncDef is not ephermal, then do nothing.
*/

Changes to src/vdbemem.c.

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2.
  ** The ifdef here is to enable us to achieve 100% branch test coverage even
  ** when SQLITE_ENABLE_STAT2 is omitted.
  */
#ifdef SQLITE_ENABLE_STAT2
  if( op==TK_REGISTER ) op = pExpr->op2;
#else
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
#endif

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);







|

|

|







1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT3.
  ** The ifdef here is to enable us to achieve 100% branch test coverage even
  ** when SQLITE_ENABLE_STAT3 is omitted.
  */
#ifdef SQLITE_ENABLE_STAT3
  if( op==TK_REGISTER ) op = pExpr->op2;
#else
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
#endif

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);

Changes to src/where.c.

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
....
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
....
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
....
2412
2413
2414
2415
2416
2417
2418

2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433


2434
2435
2436
2437
2438
2439

2440
2441
2442
2443
2444
2445
2446
2447
2448







2449
2450


2451
2452
2453
2454
2455



















2456
2457

2458
2459
2460

2461
2462
2463
2464



2465

2466
2467
2468




2469

2470
2471


2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
....
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
....
2514
2515
2516
2517
2518
2519
2520


2521
2522
2523
2524
2525
2526
2527
































2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
....
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
....
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627

2628
2629
2630
2631
2632
2633




2634


2635
2636
2637
2638
2639




2640
2641

2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656

2657
2658
2659


2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680

2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
....
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713

2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
....
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769

2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788



2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
....
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
....
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
....
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971


2972
2973
2974
2975
2976
2977
2978
....
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
....
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
....
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
....
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
....
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
#define TERM_CODED      0x04   /* This term is already coded */
#define TERM_COPIED     0x08   /* Has a child */
#define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT2
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat2 */
#endif

/*
** An instance of the following structure holds all information about a
................................................................................
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT2
  /* When sqlite_stat2 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.  This
  ** TERM_VNULL tag will suppress the not-null check at the beginning
................................................................................
      pNewTerm->iParent = idxTerm;
      pTerm = &pWC->a[idxTerm];
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_ENABLE_STAT2 */

  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}

................................................................................
  /* Try to find a more efficient access pattern by using multiple indexes
  ** to optimize an OR expression within the WHERE clause. 
  */
  bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */


/*
** Argument pIdx is a pointer to an index structure that has an array of
** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
** stored in Index.aSample. These samples divide the domain of values stored
** the index into (SQLITE_INDEX_SAMPLES+1) regions.
** Region 0 contains all values less than the first sample value. Region
** 1 contains values between the first and second samples.  Region 2 contains
** values between samples 2 and 3.  And so on.  Region SQLITE_INDEX_SAMPLES
** contains values larger than the last sample.
**
** If the index contains many duplicates of a single value, then it is
** possible that two or more adjacent samples can hold the same value.
** When that is the case, the smallest possible region code is returned
** when roundUp is false and the largest possible region code is returned
** when roundUp is true.


**
** If successful, this function determines which of the regions value 
** pVal lies in, sets *piRegion to the region index (a value between 0
** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
** Or, if an OOM occurs while converting text values between encodings,
** SQLITE_NOMEM is returned and *piRegion is undefined.

*/
#ifdef SQLITE_ENABLE_STAT2
static int whereRangeRegion(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  sqlite3_value *pVal,        /* Value to consider */
  int roundUp,                /* Return largest valid region if true */
  int *piRegion               /* OUT: Region of domain in which value lies */
){







  assert( roundUp==0 || roundUp==1 );
  if( ALWAYS(pVal) ){


    IndexSample *aSample = pIdx->aSample;
    int i = 0;
    int eType = sqlite3_value_type(pVal);

    if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){



















      double r = sqlite3_value_double(pVal);
      for(i=0; i<SQLITE_INDEX_SAMPLES; i++){

        if( aSample[i].eType==SQLITE_NULL ) continue;
        if( aSample[i].eType>=SQLITE_TEXT ) break;
        if( roundUp ){

          if( aSample[i].u.r>r ) break;
        }else{
          if( aSample[i].u.r>=r ) break;
        }



      }

    }else if( eType==SQLITE_NULL ){
      i = 0;
      if( roundUp ){




        while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++;

      }
    }else{ 


      sqlite3 *db = pParse->db;
      CollSeq *pColl;
      const u8 *z;
      int n;

      /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
      assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );

      if( eType==SQLITE_BLOB ){
        z = (const u8 *)sqlite3_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE_UTF8 );
      }else{
        pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
        if( pColl==0 ){
................................................................................
        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite3ValueBytes(pVal, pColl->enc);

      for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
        int c;
        int eSampletype = aSample[i].eType;
        if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
        if( (eSampletype!=eType) ) break;
#ifndef SQLITE_OMIT_UTF16
        if( pColl->enc!=SQLITE_UTF8 ){
          int nSample;
          char *zSample = sqlite3Utf8to16(
              db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
          );
          if( !zSample ){
................................................................................
          c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
          sqlite3DbFree(db, zSample);
        }else
#endif
        {
          c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
        }


        if( c-roundUp>=0 ) break;
      }
    }

    assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
    *piRegion = i;
  }
































  return SQLITE_OK;
}
#endif   /* #ifdef SQLITE_ENABLE_STAT2 */

/*
** If expression pExpr represents a literal value, set *pp to point to
** an sqlite3_value structure containing the same value, with affinity
** aff applied to it, before returning. It is the responsibility of the 
** caller to eventually release this structure by passing it to 
** sqlite3ValueFree().
................................................................................
** create an sqlite3_value structure containing this value, again with
** affinity aff applied to it, instead.
**
** If neither of the above apply, set *pp to NULL.
**
** If an error occurs, return an error code. Otherwise, SQLITE_OK.
*/
#ifdef SQLITE_ENABLE_STAT2
static int valueFromExpr(
  Parse *pParse, 
  Expr *pExpr, 
  u8 aff, 
  sqlite3_value **pp
){
  if( pExpr->op==TK_VARIABLE
................................................................................
** then nEq should be passed the value 1 (as the range restricted column,
** b, is the second left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq should be passed 0.
**
** The returned value is an integer between 1 and 100, inclusive. A return
** value of 1 indicates that the proposed range scan is expected to visit
** approximately 1/100th (1%) of the rows selected by the nEq equality
** constraints (if any). A return value of 100 indicates that it is expected
** that the range scan will visit every row (100%) selected by the equality
** constraints.
**
** In the absence of sqlite_stat2 ANALYZE data, each range inequality
** reduces the search space by 3/4ths.  Hence a single constraint (x>?)
** results in a return of 25 and a range constraint (x>? AND x<?) results
** in a return of 6.
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index containing the range-compared column; "x" */
  int nEq,             /* index into p->aCol[] of the range-compared column */
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  int *piEst           /* OUT: Return value */
){
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_STAT2

  if( nEq==0 && p->aSample ){
    sqlite3_value *pLowerVal = 0;
    sqlite3_value *pUpperVal = 0;
    int iEst;
    int iLower = 0;
    int iUpper = SQLITE_INDEX_SAMPLES;
    int roundUpUpper;
    int roundUpLower;

    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;

    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
      assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );




      roundUpLower = (pLower->eOperator==WO_GT) ?1:0;


    }
    if( rc==SQLITE_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
      assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );




      roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0;
    }


    if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
      sqlite3ValueFree(pLowerVal);
      sqlite3ValueFree(pUpperVal);
      goto range_est_fallback;
    }else if( pLowerVal==0 ){
      rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
      if( pLower ) iLower = iUpper/2;
    }else if( pUpperVal==0 ){
      rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
      if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
    }else{
      rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
      if( rc==SQLITE_OK ){
        rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);

      }
    }
    WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper));



    iEst = iUpper - iLower;
    testcase( iEst==SQLITE_INDEX_SAMPLES );
    assert( iEst<=SQLITE_INDEX_SAMPLES );
    if( iEst<1 ){
      *piEst = 50/SQLITE_INDEX_SAMPLES;
    }else{
      *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES;
    }
    sqlite3ValueFree(pLowerVal);
    sqlite3ValueFree(pUpperVal);
    return rc;
  }
range_est_fallback:
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(nEq);
#endif
  assert( pLower || pUpper );
  *piEst = 100;

  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4;
  if( pUpper ) *piEst /= 4;
  return rc;
}

#ifdef SQLITE_ENABLE_STAT2
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data.  This only works when x is the left-most
** column of an index and sqlite_stat2 histogram data is available
** for that index.
**
** Write the estimated row count into *pnRow and return SQLITE_OK. 
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
................................................................................
int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  double *pnRow        /* Write the revised row estimate here */
){
  sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */
  int iLower, iUpper;       /* Range of histogram regions containing pRhs */
  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  double nRowEst;           /* New estimate of the number of rows */


  assert( p->aSample!=0 );
  aff = p->pTable->aCol[p->aiColumn[0]].affinity;
  if( pExpr ){
    rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
    if( rc ) goto whereEqualScanEst_cancel;
  }else{
    pRhs = sqlite3ValueNew(pParse->db);
  }
  if( pRhs==0 ) return SQLITE_NOTFOUND;
  rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower);
  if( rc ) goto whereEqualScanEst_cancel;
  rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper);
  if( rc ) goto whereEqualScanEst_cancel;
  WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper));
  if( iLower>=iUpper ){
    nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2);
    if( nRowEst<*pnRow ) *pnRow = nRowEst;
  }else{
    nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES;
    *pnRow = nRowEst;
  }

whereEqualScanEst_cancel:
  sqlite3ValueFree(pRhs);
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT2) */

#ifdef SQLITE_ENABLE_STAT2
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values.  Example:
**
**        WHERE x IN (1,2,3,4)
**
................................................................................
*/
int whereInScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
  double *pnRow        /* Write the revised row estimate here */
){
  sqlite3_value *pVal = 0;  /* One value from list */
  int iLower, iUpper;       /* Range of histogram regions containing pRhs */
  u8 aff;                   /* Column affinity */
  int rc = SQLITE_OK;       /* Subfunction return code */

  double nRowEst;           /* New estimate of the number of rows */
  int nSpan = 0;            /* Number of histogram regions spanned */
  int nSingle = 0;          /* Histogram regions hit by a single value */
  int nNotFound = 0;        /* Count of values that are not constants */
  int i;                               /* Loop counter */
  u8 aSpan[SQLITE_INDEX_SAMPLES+1];    /* Histogram regions that are spanned */
  u8 aSingle[SQLITE_INDEX_SAMPLES+1];  /* Histogram regions hit once */

  assert( p->aSample!=0 );
  aff = p->pTable->aCol[p->aiColumn[0]].affinity;
  memset(aSpan, 0, sizeof(aSpan));
  memset(aSingle, 0, sizeof(aSingle));
  for(i=0; i<pList->nExpr; i++){
    sqlite3ValueFree(pVal);
    rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal);
    if( rc ) break;
    if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){
      nNotFound++;
      continue;



    }
    rc = whereRangeRegion(pParse, p, pVal, 0, &iLower);
    if( rc ) break;
    rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper);
    if( rc ) break;
    if( iLower>=iUpper ){
      aSingle[iLower] = 1;
    }else{
      assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES );
      while( iLower<iUpper ) aSpan[iLower++] = 1;
    }
  }
  if( rc==SQLITE_OK ){
    for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){
      if( aSpan[i] ){
        nSpan++;
      }else if( aSingle[i] ){
        nSingle++;
      }
    }
    nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES)
               + nNotFound*p->aiRowEst[1];
    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
    *pnRow = nRowEst;
    WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n",
                 nSpan, nSingle, nNotFound, nRowEst));
  }
  sqlite3ValueFree(pVal);
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT2) */


/*
** Find the best query plan for accessing a particular table.  Write the
** best query plan and its cost into the WhereCost object supplied as the
** last parameter.
**
................................................................................
){
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */
  Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
  int eqTermMask;             /* Current mask of valid equality operators */
  int idxEqTermMask;          /* Index mask of valid equality operators */
  Index sPk;                  /* A fake index object for the primary key */
  unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
  int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
  int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */

  /* Initialize the cost to a worst-case value */
  memset(pCost, 0, sizeof(*pCost));
  pCost->rCost = SQLITE_BIG_DBL;

................................................................................
    eqTermMask = WO_EQ|WO_IN;
    pIdx = 0;
  }

  /* Loop over all indices looking for the best one to use
  */
  for(; pProbe; pIdx=pProbe=pProbe->pNext){
    const unsigned int * const aiRowEst = pProbe->aiRowEst;
    double cost;                /* Cost of using pProbe */
    double nRow;                /* Estimated number of rows in result set */
    double log10N;              /* base-10 logarithm of nRow (inexact) */
    int rev;                    /* True to scan in reverse order */
    int wsFlags = 0;
    Bitmask used = 0;

................................................................................
    **
    **  bInEst:  
    **    Set to true if there was at least one "x IN (SELECT ...)" term used 
    **    in determining the value of nInMul.  Note that the RHS of the
    **    IN operator must be a SELECT, not a value list, for this variable
    **    to be true.
    **
    **  estBound:
    **    An estimate on the amount of the table that must be searched.  A
    **    value of 100 means the entire table is searched.  Range constraints
    **    might reduce this to a value less than 100 to indicate that only
    **    a fraction of the table needs searching.  In the absence of
    **    sqlite_stat2 ANALYZE data, a single inequality reduces the search
    **    space to 1/4rd its original size.  So an x>? constraint reduces
    **    estBound to 25.  Two constraints (x>? AND x<?) reduce estBound to 6.


    **
    **  bSort:   
    **    Boolean. True if there is an ORDER BY clause that will require an 
    **    external sort (i.e. scanning the index being evaluated will not 
    **    correctly order records).
    **
    **  bLookup: 
................................................................................
    **
    **             SELECT a, b    FROM tbl WHERE a = 1;
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int nEq;                      /* Number of == or IN terms matching index */
    int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
    int nInMul = 1;               /* Number of distinct equalities to lookup */
    int estBound = 100;           /* Estimated reduction in search space */
    int nBound = 0;               /* Number of range constraints seen */
    int bSort = !!pOrderBy;       /* True if external sort required */
    int bDist = !!pDistinct;      /* True if index cannot help with DISTINCT */
    int bLookup = 0;              /* True if not a covering index */
    WhereTerm *pTerm;             /* A single term of the WHERE clause */
#ifdef SQLITE_ENABLE_STAT2
    WhereTerm *pFirstTerm = 0;    /* First term matching the index */
#endif

    /* Determine the values of nEq and nInMul */
    for(nEq=0; nEq<pProbe->nColumn; nEq++){
      int j = pProbe->aiColumn[nEq];
      pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
................................................................................
        }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
          /* "x IN (value, value, ...)" */
          nInMul *= pExpr->x.pList->nExpr;
        }
      }else if( pTerm->eOperator & WO_ISNULL ){
        wsFlags |= WHERE_COLUMN_NULL;
      }
#ifdef SQLITE_ENABLE_STAT2
      if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
#endif
      used |= pTerm->prereqRight;
    }

    /* Determine the value of estBound. */
    if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){
      int j = pProbe->aiColumn[nEq];
      if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
        WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
        whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound);
        if( pTop ){
          nBound = 1;
          wsFlags |= WHERE_TOP_LIMIT;
          used |= pTop->prereqRight;
        }
        if( pBtm ){
          nBound++;
................................................................................
    */
    nRow = (double)(aiRowEst[nEq] * nInMul);
    if( bInEst && nRow*2>aiRowEst[0] ){
      nRow = aiRowEst[0]/2;
      nInMul = (int)(nRow / aiRowEst[nEq]);
    }

#ifdef SQLITE_ENABLE_STAT2
    /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
    ** and we do not think that values of x are unique and if histogram
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){
................................................................................
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->pOperator==WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
      }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT2 */

    /* Adjust the number of output rows and downward to reflect rows
    ** that are excluded by range constraints.
    */
    nRow = (nRow * (double)estBound) / (double)100;
    if( nRow<1 ) nRow = 1;

    /* Experiments run on real SQLite databases show that the time needed
    ** to do a binary search to locate a row in a table or index is roughly
    ** log10(N) times the time to move from one row to the next row within
    ** a table or index.  The actual times can vary, with the size of
    ** records being an important factor.  Both moves and searches are
................................................................................
        }
      }
      if( nRow<2 ) nRow = 2;
    }


    WHERETRACE((
      "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
      "         notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
      pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 
      nEq, nInMul, estBound, bSort, bLookup, wsFlags,
      notReady, log10N, nRow, cost, used
    ));

    /* If this index is the best we have seen so far, then record this
    ** index and its cost in the pCost structure.
    */
    if( (!pIdx || wsFlags)







|







 







|







 







|







 







>

<
|
|
<
<
<
<
<

<
<
<
<
<
>
>

<
<
<
<
<
>

<
|



|
|

>
>
>
>
>
>
>

<
>
>
|
|
|

|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
>
|
|
<
>
|
|
|
|
>
>
>

>
|
|
<
>
>
>
>
|
>

<
>
>



<
<
<
<
<







 







|
|


|
|







 







>
>
|
|
|
|
<
<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|







 







|







 







|
|
|
|
<
<

|
|
|
|







|



|

|
|
<
<
|
|
<
<
>




|

>
>
>
>
|
>
>



|

>
>
>
>
|
|
>
|
<
<
<
<
<
|
|
|
<
<
|
<
<
<
>

<
|
>
>
|
<
<
<
<
<
<
<
|
<
<
<
<
<






<
>
|
|



|




|







 







<


<
>










|
|
<
<
|
<
<
<
<
<
|

<




|

|







 







<
<
<
|
>
|
<
<
<
|
<
<


<
<
<
|
<
<
<
<
<
<
>
>
>
|
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<


|
<

<


|







 







|







 







|







 







|
|
|
<
<
|
<
<
>
>







 







|





|







 







|





|





|







 







|







 







|




|







 







|


|







114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
....
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
....
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
....
2412
2413
2414
2415
2416
2417
2418
2419
2420

2421
2422





2423





2424
2425
2426





2427
2428

2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443

2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470

2471
2472
2473

2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485

2486
2487
2488
2489
2490
2491
2492

2493
2494
2495
2496
2497





2498
2499
2500
2501
2502
2503
2504
....
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
....
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544


2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
....
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
....
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649


2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669


2670
2671


2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698





2699
2700
2701


2702



2703
2704

2705
2706
2707
2708







2709





2710
2711
2712
2713
2714
2715

2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
....
2739
2740
2741
2742
2743
2744
2745

2746
2747

2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760


2761





2762
2763

2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
....
2786
2787
2788
2789
2790
2791
2792



2793
2794
2795



2796


2797
2798



2799






2800
2801
2802
2803











2804









2805
2806
2807

2808

2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
....
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
....
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
....
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958


2959


2960
2961
2962
2963
2964
2965
2966
2967
2968
....
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
....
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
....
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
....
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
....
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
#define TERM_CODED      0x04   /* This term is already coded */
#define TERM_COPIED     0x08   /* Has a child */
#define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT3
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat2 */
#endif

/*
** An instance of the following structure holds all information about a
................................................................................
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3
  /* When sqlite_stat2 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.  This
  ** TERM_VNULL tag will suppress the not-null check at the beginning
................................................................................
      pNewTerm->iParent = idxTerm;
      pTerm = &pWC->a[idxTerm];
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_ENABLE_STAT */

  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}

................................................................................
  /* Try to find a more efficient access pattern by using multiple indexes
  ** to optimize an OR expression within the WHERE clause. 
  */
  bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3
/*

** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:





**





**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**





** Return SQLITE_OK on success.
*/

static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  sqlite3_value *pVal,        /* Value to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  tRowcnt n;
  IndexSample *aSample;
  int i, eType;
  int isEq = 0;
  i64 v;
  double r, rS;

  assert( roundUp==0 || roundUp==1 );

  if( pVal==0 ) return SQLITE_ERROR;
  n = pIdx->aiRowEst[0];
  aSample = pIdx->aSample;
  i = 0;
  eType = sqlite3_value_type(pVal);

  if( eType==SQLITE_INTEGER ){
    v = sqlite3_value_int64(pVal);
    r = (i64)v;
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_NULL ) continue;
      if( aSample[i].eType>=SQLITE_TEXT ) break;
      if( aSample[i].eType==SQLITE_INTEGER ){
        if( aSample[i].u.i>=v ){
          isEq = aSample[i].u.i==v;
          break;
        }
      }else{
        assert( aSample[i].eType==SQLITE_FLOAT );
        if( aSample[i].u.r>=r ){
          isEq = aSample[i].u.r==r;
          break;
        }
      }
    }
  }else if( eType==SQLITE_FLOAT ){
    r = sqlite3_value_double(pVal);

    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_NULL ) continue;
      if( aSample[i].eType>=SQLITE_TEXT ) break;

      if( aSample[i].eType==SQLITE_FLOAT ){
        rS = aSample[i].u.r;
      }else{
        rS = aSample[i].u.i;
      }
      if( rS>=r ){
        isEq = rS==r;
        break;
      }
    }
  }else if( eType==SQLITE_NULL ){
    i = 0;

    if( pIdx->nSample>=1 && aSample[0].eType==SQLITE_NULL ) isEq = 1;
  }else{
    assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_TEXT || aSample[i].eType==SQLITE_BLOB ){
        break;
      }

    }
    if( i<pIdx->nSample ){      
      sqlite3 *db = pParse->db;
      CollSeq *pColl;
      const u8 *z;





      if( eType==SQLITE_BLOB ){
        z = (const u8 *)sqlite3_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE_UTF8 );
      }else{
        pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
        if( pColl==0 ){
................................................................................
        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite3ValueBytes(pVal, pColl->enc);
  
      for(; i<pIdx->nSample; i++){
        int c;
        int eSampletype = aSample[i].eType;
        if( eSampletype<eType ) continue;
        if( eSampletype!=eType ) break;
#ifndef SQLITE_OMIT_UTF16
        if( pColl->enc!=SQLITE_UTF8 ){
          int nSample;
          char *zSample = sqlite3Utf8to16(
              db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
          );
          if( !zSample ){
................................................................................
          c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
          sqlite3DbFree(db, zSample);
        }else
#endif
        {
          c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
        }
        if( c>=0 ){
          if( c==0 ) isEq = 1;
          break;
        }
      }
    }


  }

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then isEq==1.
  */
  if( isEq ){
    assert( i<pIdx->nSample );
    aStat[0] = aSample[i].nLt;
    aStat[1] = aSample[i].nEq;
  }else{
    tRowcnt iLower, iUpper, iGap;
    if( i==0 ){
      iLower = 0;
      iUpper = aSample[0].nLt;
    }else{
      iUpper = i>=pIdx->nSample ? n : aSample[i].nLt;
      iLower = aSample[i-1].nEq + aSample[i-1].nLt;
    }
    aStat[1] = pIdx->avgEq;
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
      if( iGap>=aStat[1]/2 ) iGap -= aStat[1]/2;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }
  return SQLITE_OK;
}
#endif /* SQLITE_ENABLE_STAT3 */

/*
** If expression pExpr represents a literal value, set *pp to point to
** an sqlite3_value structure containing the same value, with affinity
** aff applied to it, before returning. It is the responsibility of the 
** caller to eventually release this structure by passing it to 
** sqlite3ValueFree().
................................................................................
** create an sqlite3_value structure containing this value, again with
** affinity aff applied to it, instead.
**
** If neither of the above apply, set *pp to NULL.
**
** If an error occurs, return an error code. Otherwise, SQLITE_OK.
*/
#ifdef SQLITE_ENABLE_STAT3
static int valueFromExpr(
  Parse *pParse, 
  Expr *pExpr, 
  u8 aff, 
  sqlite3_value **pp
){
  if( pExpr->op==TK_VARIABLE
................................................................................
** then nEq should be passed the value 1 (as the range restricted column,
** b, is the second left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq should be passed 0.
**
** The returned value is an integer divisor to reduce the estimated
** search space.  A return value of 1 means that range constraints are
** no help at all.  A return value of 2 means range constraints are
** expected to reduce the search space by half.  And so forth...


**
** In the absence of sqlite_stat3 ANALYZE data, each range inequality
** reduces the search space by a factor of 4.  Hence a single constraint (x>?)
** results in a return of 4 and a range constraint (x>? AND x<?) results
** in a return of 16.
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index containing the range-compared column; "x" */
  int nEq,             /* index into p->aCol[] of the range-compared column */
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  double *pRangeDiv   /* OUT: Reduce search space by this divisor */
){
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_STAT3

  if( nEq==0 && p->nSample ){
    sqlite3_value *pRangeVal;


    tRowcnt iLower = 0;
    tRowcnt iUpper = p->aiRowEst[0];


    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;

    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
      ){
        iLower = a[0];
        if( pLower->eOperator==WO_GT ) iLower += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
      ){
        iUpper = a[0];
        if( pUpper->eOperator==WO_LE ) iUpper += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }





    if( rc==SQLITE_OK ){
      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];


      }else{



        *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);
      }

      WHERETRACE(("range scan regions: %u..%u  div=%g\n",
                  (u32)iLower, (u32)iUpper, *pRangeDiv));
      return SQLITE_OK;
    }







  }





#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(nEq);
#endif
  assert( pLower || pUpper );

  *pRangeDiv = (double)1;
  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4;
  if( pUpper ) *pRangeDiv *= (double)4;
  return rc;
}

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data.  This only works when x is the left-most
** column of an index and sqlite_stat3 histogram data is available
** for that index.
**
** Write the estimated row count into *pnRow and return SQLITE_OK. 
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
................................................................................
int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  double *pnRow        /* Write the revised row estimate here */
){
  sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */

  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */

  tRowcnt a[2];             /* Statistics */

  assert( p->aSample!=0 );
  aff = p->pTable->aCol[p->aiColumn[0]].affinity;
  if( pExpr ){
    rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
    if( rc ) goto whereEqualScanEst_cancel;
  }else{
    pRhs = sqlite3ValueNew(pParse->db);
  }
  if( pRhs==0 ) return SQLITE_NOTFOUND;
  rc = whereKeyStats(pParse, p, pRhs, 0, a);
  if( rc==SQLITE_OK ){


    WHERETRACE(("equality scan regions: %d\n", (int)a[1]));





    *pnRow = a[1];
  }

whereEqualScanEst_cancel:
  sqlite3ValueFree(pRhs);
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values.  Example:
**
**        WHERE x IN (1,2,3,4)
**
................................................................................
*/
int whereInScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
  double *pnRow        /* Write the revised row estimate here */
){



  int rc = SQLITE_OK;         /* Subfunction return code */
  double nEst;                /* Number of rows for a single term */
  double nRowEst = (double)0; /* New estimate of the number of rows */



  int i;                      /* Loop counter */



  assert( p->aSample!=0 );



  for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){






    nEst = p->aiRowEst[0];
    rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
    nRowEst += nEst;
  }











  if( rc==SQLITE_OK ){









    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
    *pnRow = nRowEst;
    WHERETRACE(("IN row estimate: est=%g\n", nRowEst));

  }

  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */


/*
** Find the best query plan for accessing a particular table.  Write the
** best query plan and its cost into the WhereCost object supplied as the
** last parameter.
**
................................................................................
){
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */
  Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
  int eqTermMask;             /* Current mask of valid equality operators */
  int idxEqTermMask;          /* Index mask of valid equality operators */
  Index sPk;                  /* A fake index object for the primary key */
  tRowcnt aiRowEstPk[2];      /* The aiRowEst[] value for the sPk index */
  int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
  int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */

  /* Initialize the cost to a worst-case value */
  memset(pCost, 0, sizeof(*pCost));
  pCost->rCost = SQLITE_BIG_DBL;

................................................................................
    eqTermMask = WO_EQ|WO_IN;
    pIdx = 0;
  }

  /* Loop over all indices looking for the best one to use
  */
  for(; pProbe; pIdx=pProbe=pProbe->pNext){
    const tRowcnt * const aiRowEst = pProbe->aiRowEst;
    double cost;                /* Cost of using pProbe */
    double nRow;                /* Estimated number of rows in result set */
    double log10N;              /* base-10 logarithm of nRow (inexact) */
    int rev;                    /* True to scan in reverse order */
    int wsFlags = 0;
    Bitmask used = 0;

................................................................................
    **
    **  bInEst:  
    **    Set to true if there was at least one "x IN (SELECT ...)" term used 
    **    in determining the value of nInMul.  Note that the RHS of the
    **    IN operator must be a SELECT, not a value list, for this variable
    **    to be true.
    **
    **  rangeDiv:
    **    An estimate of a divisor by which to reduce the search space due
    **    to inequality constraints.  In the absence of sqlite_stat3 ANALYZE


    **    data, a single inequality reduces the search space to 1/4rd its


    **    original size (rangeDiv==4).  Two inequalities reduce the search
    **    space to 1/16th of its original size (rangeDiv==16).
    **
    **  bSort:   
    **    Boolean. True if there is an ORDER BY clause that will require an 
    **    external sort (i.e. scanning the index being evaluated will not 
    **    correctly order records).
    **
    **  bLookup: 
................................................................................
    **
    **             SELECT a, b    FROM tbl WHERE a = 1;
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int nEq;                      /* Number of == or IN terms matching index */
    int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
    int nInMul = 1;               /* Number of distinct equalities to lookup */
    double rangeDiv = (double)1;  /* Estimated reduction in search space */
    int nBound = 0;               /* Number of range constraints seen */
    int bSort = !!pOrderBy;       /* True if external sort required */
    int bDist = !!pDistinct;      /* True if index cannot help with DISTINCT */
    int bLookup = 0;              /* True if not a covering index */
    WhereTerm *pTerm;             /* A single term of the WHERE clause */
#ifdef SQLITE_ENABLE_STAT3
    WhereTerm *pFirstTerm = 0;    /* First term matching the index */
#endif

    /* Determine the values of nEq and nInMul */
    for(nEq=0; nEq<pProbe->nColumn; nEq++){
      int j = pProbe->aiColumn[nEq];
      pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
................................................................................
        }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
          /* "x IN (value, value, ...)" */
          nInMul *= pExpr->x.pList->nExpr;
        }
      }else if( pTerm->eOperator & WO_ISNULL ){
        wsFlags |= WHERE_COLUMN_NULL;
      }
#ifdef SQLITE_ENABLE_STAT3
      if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
#endif
      used |= pTerm->prereqRight;
    }

    /* Determine the value of rangeDiv */
    if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){
      int j = pProbe->aiColumn[nEq];
      if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
        WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
        whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &rangeDiv);
        if( pTop ){
          nBound = 1;
          wsFlags |= WHERE_TOP_LIMIT;
          used |= pTop->prereqRight;
        }
        if( pBtm ){
          nBound++;
................................................................................
    */
    nRow = (double)(aiRowEst[nEq] * nInMul);
    if( bInEst && nRow*2>aiRowEst[0] ){
      nRow = aiRowEst[0]/2;
      nInMul = (int)(nRow / aiRowEst[nEq]);
    }

#ifdef SQLITE_ENABLE_STAT3
    /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
    ** and we do not think that values of x are unique and if histogram
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){
................................................................................
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->pOperator==WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
      }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows
    ** that are excluded by range constraints.
    */
    nRow = nRow/rangeDiv;
    if( nRow<1 ) nRow = 1;

    /* Experiments run on real SQLite databases show that the time needed
    ** to do a binary search to locate a row in a table or index is roughly
    ** log10(N) times the time to move from one row to the next row within
    ** a table or index.  The actual times can vary, with the size of
    ** records being an important factor.  Both moves and searches are
................................................................................
        }
      }
      if( nRow<2 ) nRow = 2;
    }


    WHERETRACE((
      "%s(%s): nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
      "         notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
      pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 
      nEq, nInMul, (int)rangeDiv, bSort, bLookup, wsFlags,
      notReady, log10N, nRow, cost, used
    ));

    /* If this index is the best we have seen so far, then record this
    ** index and its cost in the pCost structure.
    */
    if( (!pIdx || wsFlags)

Changes to test/alter.test.

835
836
837
838
839
840
841
842




















843
} {1 {Cannot add a UNIQUE column}}
do_test alter-14.2 {
  catchsql {
    ALTER TABLE t3651 ADD COLUMN b PRIMARY KEY;
  }
} {1 {Cannot add a PRIMARY KEY column}}






















finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
} {1 {Cannot add a UNIQUE column}}
do_test alter-14.2 {
  catchsql {
    ALTER TABLE t3651 ADD COLUMN b PRIMARY KEY;
  }
} {1 {Cannot add a PRIMARY KEY column}}


#-------------------------------------------------------------------------
# Test that it is not possible to use ALTER TABLE on any system table.
#
set system_table_list {1 sqlite_master}
catchsql ANALYZE
ifcapable analyze { lappend system_table_list 2 sqlite_stat1 }
ifcapable stat2   { lappend system_table_list 3 sqlite_stat2 }
ifcapable stat3   { lappend system_table_list 4 sqlite_stat3 }

foreach {tn tbl} $system_table_list {
  do_test alter-15.$tn.1 {
    catchsql "ALTER TABLE $tbl RENAME TO xyz"
  } [list 1 "table $tbl may not be altered"]

  do_test alter-15.$tn.2 {
    catchsql "ALTER TABLE $tbl ADD COLUMN xyz"
  } [list 1 "table $tbl may not be altered"]
}


finish_test

Changes to test/analyze.test.

282
283
284
285
286
287
288


























































289
290
291
292
293
294
295
  }
  db close
  sqlite3 db test.db
  execsql {
    SELECT * FROM t4 WHERE x=1234;
  }
} {}



























































# This test corrupts the database file so it must be the last test
# in the series.
#
do_test analyze-99.1 {
  execsql {
    PRAGMA writable_schema=on;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
  }
  db close
  sqlite3 db test.db
  execsql {
    SELECT * FROM t4 WHERE x=1234;
  }
} {}

# Verify that DROP TABLE and DROP INDEX remove entries from the 
# sqlite_stat1 and sqlite_stat3 tables.
#
do_test analyze-5.0 {
  execsql {
    DELETE FROM t3;
    DELETE FROM t4;
    INSERT INTO t3 VALUES(1,2,3,4);
    INSERT INTO t3 VALUES(5,6,7,8);
    INSERT INTO t3 SELECT a+8, b+8, c+8, d+8 FROM t3;
    INSERT INTO t3 SELECT a+16, b+16, c+16, d+16 FROM t3;
    INSERT INTO t3 SELECT a+32, b+32, c+32, d+32 FROM t3;
    INSERT INTO t3 SELECT a+64, b+64, c+64, d+64 FROM t3;
    INSERT INTO t4 SELECT a, b, c FROM t3;
    ANALYZE;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat3 {
  do_test analyze-5.1 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }
  } {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.2 {
  execsql {
    DROP INDEX t3i2;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat3 {
  do_test analyze-5.3 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }
  } {t3i1 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.4 {
  execsql {
    DROP TABLE t3;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t4i1 t4i2 t4}
ifcapable stat3 {
  do_test analyze-5.5 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }
  } {t4i1 t4i2 t4}
}

# This test corrupts the database file so it must be the last test
# in the series.
#
do_test analyze-99.1 {
  execsql {
    PRAGMA writable_schema=on;

Changes to test/analyze3.test.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
..
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
...
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
...
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
...
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
...
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
...
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# implements tests for range and LIKE constraints that use bound variables
# instead of literal constant arguments.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat2 {
  finish_test
  return
}

#----------------------------------------------------------------------
# Test Organization:
#
................................................................................
    COMMIT;
    ANALYZE;
  }
} {}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?) (~100 rows)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SCAN TABLE t1 (~111 rows)}}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
do_test analyze3-1.1.6 {
  set l [expr int(200)]
  set u [expr int(300)]
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u }
} {199 0 14850}
do_test analyze3-1.1.7 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 }
} {999 999 499500}
do_test analyze3-1.1.8 {
  set l [string range "0" 0 end]
  set u [string range "1100" 0 end]
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u }
} {999 999 499500}
do_test analyze3-1.1.9 {
  set l [expr int(0)]
  set u [expr int(1100)]
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u }
} {999 999 499500}


# The following tests are similar to the block above. The difference is
# that the indexed column has TEXT affinity in this case. In the tests
# above the affinity is INTEGER.
#
do_test analyze3-1.2.1 {
................................................................................
      CREATE INDEX i2 ON t2(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?) (~200 rows)}}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {0 0 0 {SCAN TABLE t2 (~111 rows)}}
do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
................................................................................
do_test analyze3-1.2.6 {
  set l [expr int(12)]
  set u [expr int(20)]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
} {161 0 integer integer 4760}
do_test analyze3-1.2.7 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>0 AND x<99 }
} {999 999 490555}
do_test analyze3-1.2.8 {
  set l [string range "0" 0 end]
  set u [string range "99" 0 end]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
} {999 999 text text 490555}
do_test analyze3-1.2.9 {
  set l [expr int(0)]
  set u [expr int(99)]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
} {999 999 integer integer 490555}

# Same tests a third time. This time, column x has INTEGER affinity and
# is not the leftmost column of the table. This triggered a bug causing
# SQLite to use sub-optimal query plans in 3.6.18 and earlier.
#
do_test analyze3-1.3.1 {
  execsql {
................................................................................
      CREATE INDEX i3 ON t3(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?) (~100 rows)}}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {0 0 0 {SCAN TABLE t3 (~111 rows)}}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
do_test analyze3-1.3.6 {
  set l [expr int(200)]
  set u [expr int(300)]
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u }
} {199 0 14850}
do_test analyze3-1.3.7 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>0 AND x<1100 }
} {999 999 499500}
do_test analyze3-1.3.8 {
  set l [string range "0" 0 end]
  set u [string range "1100" 0 end]
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u }
} {999 999 499500}
do_test analyze3-1.3.9 {
  set l [expr int(0)]
  set u [expr int(1100)]
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u }
} {999 999 499500}

#-------------------------------------------------------------------------
# Test that the values of bound SQL variables may be used for the LIKE
# optimization.
#
drop_all_tables
do_test analyze3-2.1 {
................................................................................
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?) (~30000 rows)}}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1 (~500000 rows)}}

do_test analyze3-2.4 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' }
} {101 0 100}







|







 







|


|







 







|




|




|







 







|


|







 







|




|




|







 







|


|







 







|




|




|







 







|







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
..
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
...
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
...
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
...
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
...
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
...
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# implements tests for range and LIKE constraints that use bound variables
# instead of literal constant arguments.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

#----------------------------------------------------------------------
# Test Organization:
#
................................................................................
    COMMIT;
    ANALYZE;
  }
} {}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?) (~179 rows)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?) (~959 rows)}}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
do_test analyze3-1.1.6 {
  set l [expr int(200)]
  set u [expr int(300)]
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u }
} {199 0 14850}
do_test analyze3-1.1.7 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 }
} {2000 0 499500}
do_test analyze3-1.1.8 {
  set l [string range "0" 0 end]
  set u [string range "1100" 0 end]
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u }
} {2000 0 499500}
do_test analyze3-1.1.9 {
  set l [expr int(0)]
  set u [expr int(1100)]
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u }
} {2000 0 499500}


# The following tests are similar to the block above. The difference is
# that the indexed column has TEXT affinity in this case. In the tests
# above the affinity is INTEGER.
#
do_test analyze3-1.2.1 {
................................................................................
      CREATE INDEX i2 ON t2(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?) (~196 rows)}}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?) (~982 rows)}}
do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
................................................................................
do_test analyze3-1.2.6 {
  set l [expr int(12)]
  set u [expr int(20)]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
} {161 0 integer integer 4760}
do_test analyze3-1.2.7 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>0 AND x<99 }
} {1981 0 490555}
do_test analyze3-1.2.8 {
  set l [string range "0" 0 end]
  set u [string range "99" 0 end]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
} {1981 0 text text 490555}
do_test analyze3-1.2.9 {
  set l [expr int(0)]
  set u [expr int(99)]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
} {1981 0 integer integer 490555}

# Same tests a third time. This time, column x has INTEGER affinity and
# is not the leftmost column of the table. This triggered a bug causing
# SQLite to use sub-optimal query plans in 3.6.18 and earlier.
#
do_test analyze3-1.3.1 {
  execsql {
................................................................................
      CREATE INDEX i3 ON t3(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?) (~156 rows)}}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?) (~989 rows)}}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
do_test analyze3-1.3.6 {
  set l [expr int(200)]
  set u [expr int(300)]
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u }
} {199 0 14850}
do_test analyze3-1.3.7 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>0 AND x<1100 }
} {2000 0 499500}
do_test analyze3-1.3.8 {
  set l [string range "0" 0 end]
  set u [string range "1100" 0 end]
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u }
} {2000 0 499500}
do_test analyze3-1.3.9 {
  set l [expr int(0)]
  set u [expr int(1100)]
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u }
} {2000 0 499500}

#-------------------------------------------------------------------------
# Test that the values of bound SQL variables may be used for the LIKE
# optimization.
#
drop_all_tables
do_test analyze3-2.1 {
................................................................................
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?) (~31250 rows)}}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1 (~500000 rows)}}

do_test analyze3-2.4 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' }
} {101 0 100}

Changes to test/analyze5.test.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
..
51
52
53
54
55
56
57
58
59
60

61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
...
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223

224
225
226
227
228
229
230
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for SQLite library.  The focus of the tests
# in this file is the use of the sqlite_stat2 histogram data on tables
# with many repeated values and only a few distinct values.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat2 {
  finish_test
  return
}

set testprefix analyze5

proc eqp {sql {db db}} {
................................................................................
    CREATE INDEX t1u ON t1(u);  -- text
    CREATE INDEX t1v ON t1(v);  -- mixed case text
    CREATE INDEX t1w ON t1(w);  -- integers 0, 1, 2 and a few NULLs
    CREATE INDEX t1x ON t1(x);  -- integers 1, 2, 3 and many NULLs
    CREATE INDEX t1y ON t1(y);  -- integers 0 and very few 1s
    CREATE INDEX t1z ON t1(z);  -- integers 0, 1, 2, and 3
    ANALYZE;
    SELECT sample FROM sqlite_stat2 WHERE idx='t1u' ORDER BY sampleno;
  }
} {alpha alpha alpha alpha bravo bravo bravo charlie charlie delta}

do_test analyze5-1.1 {
  string tolower \
   [db eval {SELECT sample from sqlite_stat2 WHERE idx='t1v' ORDER BY sampleno}]
} {alpha alpha alpha alpha bravo bravo bravo charlie charlie delta}

do_test analyze5-1.2 {
  db eval {SELECT sample from sqlite_stat2 WHERE idx='t1w' ORDER BY sampleno}
} {{} 0 0 0 0 1 1 1 2 2}
do_test analyze5-1.3 {
  db eval {SELECT sample from sqlite_stat2 WHERE idx='t1x' ORDER BY sampleno}
} {{} {} {} {} 1 1 1 2 2 3}
do_test analyze5-1.4 {
  db eval {SELECT sample from sqlite_stat2 WHERE idx='t1y' ORDER BY sampleno}
} {0 0 0 0 0 0 0 0 0 0}
do_test analyze5-1.5 {
  db eval {SELECT sample from sqlite_stat2 WHERE idx='t1z' ORDER BY sampleno}
} {0 0 0 0 1 1 1 2 2 3}
do_test analyze5-1.6 {
  db eval {SELECT sample from sqlite_stat2 WHERE idx='t1t' ORDER BY sampleno}
} {0.5 0.5 0.5 0.5 1.5 1.5 1.5 2.5 2.5 3.5}


# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
    1  {z>=0 AND z<=0}       t1z  400
    2  {z>=1 AND z<=1}       t1z  300
    3  {z>=2 AND z<=2}       t1z  200
    4  {z>=3 AND z<=3}       t1z  100
    5  {z>=4 AND z<=4}       t1z   50
    6  {z>=-1 AND z<=-1}     t1z   50
    7  {z>1 AND z<3}         t1z  200
    8  {z>0 AND z<100}       t1z  600
    9  {z>=1 AND z<100}      t1z  600
   10  {z>1 AND z<100}       t1z  300
   11  {z>=2 AND z<100}      t1z  300
   12  {z>2 AND z<100}       t1z  100
   13  {z>=3 AND z<100}      t1z  100
   14  {z>3 AND z<100}       t1z   50
   15  {z>=4 AND z<100}      t1z   50
   16  {z>=-100 AND z<=-1}   t1z   50
   17  {z>=-100 AND z<=0}    t1z  400
   18  {z>=-100 AND z<0}     t1z   50
   19  {z>=-100 AND z<=1}    t1z  700
   20  {z>=-100 AND z<2}     t1z  700
   21  {z>=-100 AND z<=2}    t1z  900
   22  {z>=-100 AND z<3}     t1z  900
  
   31  {z>=0.0 AND z<=0.0}   t1z  400
   32  {z>=1.0 AND z<=1.0}   t1z  300
   33  {z>=2.0 AND z<=2.0}   t1z  200
   34  {z>=3.0 AND z<=3.0}   t1z  100
   35  {z>=4.0 AND z<=4.0}   t1z   50
   36  {z>=-1.0 AND z<=-1.0} t1z   50
   37  {z>1.5 AND z<3.0}     t1z  200
   38  {z>0.5 AND z<100}     t1z  600
   39  {z>=1.0 AND z<100}    t1z  600
   40  {z>1.5 AND z<100}     t1z  300
   41  {z>=2.0 AND z<100}    t1z  300
   42  {z>2.1 AND z<100}     t1z  100
   43  {z>=3.0 AND z<100}    t1z  100
   44  {z>3.2 AND z<100}     t1z   50
   45  {z>=4.0 AND z<100}    t1z   50
   46  {z>=-100 AND z<=-1.0} t1z   50
   47  {z>=-100 AND z<=0.0}  t1z  400
   48  {z>=-100 AND z<0.0}   t1z   50
   49  {z>=-100 AND z<=1.0}  t1z  700
   50  {z>=-100 AND z<2.0}   t1z  700
   51  {z>=-100 AND z<=2.0}  t1z  900
   52  {z>=-100 AND z<3.0}   t1z  900
  
  101  {z=-1}                t1z   50
  102  {z=0}                 t1z  400
  103  {z=1}                 t1z  300
  104  {z=2}                 t1z  200
  105  {z=3}                 t1z  100
  106  {z=4}                 t1z   50
  107  {z=-10.0}             t1z   50
  108  {z=0.0}               t1z  400
  109  {z=1.0}               t1z  300
  110  {z=2.0}               t1z  200
  111  {z=3.0}               t1z  100
  112  {z=4.0}               t1z   50
  113  {z=1.5}               t1z   50
  114  {z=2.5}               t1z   50
  
  201  {z IN (-1)}           t1z   50
  202  {z IN (0)}            t1z  400
  203  {z IN (1)}            t1z  300
  204  {z IN (2)}            t1z  200
  205  {z IN (3)}            t1z  100
  206  {z IN (4)}            t1z   50
  207  {z IN (0.5)}          t1z   50
  208  {z IN (0,1)}          t1z  700
  209  {z IN (0,1,2)}        t1z  900
  210  {z IN (0,1,2,3)}      {}   100
  211  {z IN (0,1,2,3,4,5)}  {}   100
  212  {z IN (1,2)}          t1z  500
  213  {z IN (2,3)}          t1z  300
  214  {z=3 OR z=2}          t1z  300
  215  {z IN (-1,3)}         t1z  150
  216  {z=-1 OR z=3}         t1z  150

  300  {y=0}                 {}   100
  301  {y=1}                 t1y   50
  302  {y=0.1}               t1y   50

  400  {x IS NULL}           t1x  400

} {
  # Verify that the expected index is used with the expected row count
  do_test analyze5-1.${testid}a {
    set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
................................................................................
    WHERE rowid IN (SELECT rowid FROM t1 ORDER BY random() LIMIT 5);
   ANALYZE;
}

# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
  500  {x IS NULL AND u='charlie'}         t1u  20
  501  {x=1 AND u='charlie'}               t1x   5
  502  {x IS NULL}                          {} 100
  503  {x=1}                               t1x  50
  504  {x IS NOT NULL}                     t1x  25
  505  {+x IS NOT NULL}                     {} 500
  506  {upper(x) IS NOT NULL}               {} 500

} {
  # Verify that the expected index is used with the expected row count

  do_test analyze5-1.${testid}a {
    set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
    set idx {}
    regexp {INDEX (t1.) } $x all idx
    regexp {~([0-9]+) rows} $x all nrow
    list $idx $nrow
  } [list $index $rows]


  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]







|






|







 







|

|
>

<
|
|
>

<
|
|
<
<
<
<
<
<
<
<
<
<
<
<






|
|
|
|
|




|
|
|
|
|

|


|
|



|
|
|
|
|
|

|

|
|
|
|
|

|


|
|

|


|
|
|
|


|
|
|
|
|

|


|
|
|
|

|


|


|
|

|
|
|







 







|
|
|
|
|





>







>







6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
..
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66

67
68












69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
...
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for SQLite library.  The focus of the tests
# in this file is the use of the sqlite_stat3 histogram data on tables
# with many repeated values and only a few distinct values.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze5

proc eqp {sql {db db}} {
................................................................................
    CREATE INDEX t1u ON t1(u);  -- text
    CREATE INDEX t1v ON t1(v);  -- mixed case text
    CREATE INDEX t1w ON t1(w);  -- integers 0, 1, 2 and a few NULLs
    CREATE INDEX t1x ON t1(x);  -- integers 1, 2, 3 and many NULLs
    CREATE INDEX t1y ON t1(y);  -- integers 0 and very few 1s
    CREATE INDEX t1z ON t1(z);  -- integers 0, 1, 2, and 3
    ANALYZE;
    SELECT sample FROM sqlite_stat3 WHERE idx='t1u' ORDER BY nlt;
  }
} {alpha bravo charlie delta}

do_test analyze5-1.1 {

  db eval {SELECT DISTINCT lower(sample) FROM sqlite_stat3 WHERE idx='t1v'
             ORDER BY 1}
} {alpha bravo charlie delta}
do_test analyze5-1.2 {

  db eval {SELECT idx, count(*) FROM sqlite_stat3 GROUP BY 1 ORDER BY 1}
} {t1t 4 t1u 4 t1v 4 t1w 4 t1x 4 t1y 2 t1z 4}













# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
    1  {z>=0 AND z<=0}       t1z  400
    2  {z>=1 AND z<=1}       t1z  300
    3  {z>=2 AND z<=2}       t1z  175
    4  {z>=3 AND z<=3}       t1z  125
    5  {z>=4 AND z<=4}       t1z    1
    6  {z>=-1 AND z<=-1}     t1z    1
    7  {z>1 AND z<3}         t1z  175
    8  {z>0 AND z<100}       t1z  600
    9  {z>=1 AND z<100}      t1z  600
   10  {z>1 AND z<100}       t1z  300
   11  {z>=2 AND z<100}      t1z  300
   12  {z>2 AND z<100}       t1z  125
   13  {z>=3 AND z<100}      t1z  125
   14  {z>3 AND z<100}       t1z    1
   15  {z>=4 AND z<100}      t1z    1
   16  {z>=-100 AND z<=-1}   t1z    1
   17  {z>=-100 AND z<=0}    t1z  400
   18  {z>=-100 AND z<0}     t1z    1
   19  {z>=-100 AND z<=1}    t1z  700
   20  {z>=-100 AND z<2}     t1z  700
   21  {z>=-100 AND z<=2}    t1z  875
   22  {z>=-100 AND z<3}     t1z  875
  
   31  {z>=0.0 AND z<=0.0}   t1z  400
   32  {z>=1.0 AND z<=1.0}   t1z  300
   33  {z>=2.0 AND z<=2.0}   t1z  175
   34  {z>=3.0 AND z<=3.0}   t1z  125
   35  {z>=4.0 AND z<=4.0}   t1z    1
   36  {z>=-1.0 AND z<=-1.0} t1z    1
   37  {z>1.5 AND z<3.0}     t1z  174
   38  {z>0.5 AND z<100}     t1z  599
   39  {z>=1.0 AND z<100}    t1z  600
   40  {z>1.5 AND z<100}     t1z  299
   41  {z>=2.0 AND z<100}    t1z  300
   42  {z>2.1 AND z<100}     t1z  124
   43  {z>=3.0 AND z<100}    t1z  125
   44  {z>3.2 AND z<100}     t1z    1
   45  {z>=4.0 AND z<100}    t1z    1
   46  {z>=-100 AND z<=-1.0} t1z    1
   47  {z>=-100 AND z<=0.0}  t1z  400
   48  {z>=-100 AND z<0.0}   t1z    1
   49  {z>=-100 AND z<=1.0}  t1z  700
   50  {z>=-100 AND z<2.0}   t1z  700
   51  {z>=-100 AND z<=2.0}  t1z  875
   52  {z>=-100 AND z<3.0}   t1z  875
  
  101  {z=-1}                t1z    1
  102  {z=0}                 t1z  400
  103  {z=1}                 t1z  300
  104  {z=2}                 t1z  175
  105  {z=3}                 t1z  125
  106  {z=4}                 t1z    1
  107  {z=-10.0}             t1z    1
  108  {z=0.0}               t1z  400
  109  {z=1.0}               t1z  300
  110  {z=2.0}               t1z  175
  111  {z=3.0}               t1z  125
  112  {z=4.0}               t1z    1
  113  {z=1.5}               t1z    1
  114  {z=2.5}               t1z    1
  
  201  {z IN (-1)}           t1z    1
  202  {z IN (0)}            t1z  400
  203  {z IN (1)}            t1z  300
  204  {z IN (2)}            t1z  175
  205  {z IN (3)}            t1z  125
  206  {z IN (4)}            t1z    1
  207  {z IN (0.5)}          t1z    1
  208  {z IN (0,1)}          t1z  700
  209  {z IN (0,1,2)}        t1z  875
  210  {z IN (0,1,2,3)}      {}   100
  211  {z IN (0,1,2,3,4,5)}  {}   100
  212  {z IN (1,2)}          t1z  475
  213  {z IN (2,3)}          t1z  300
  214  {z=3 OR z=2}          t1z  300
  215  {z IN (-1,3)}         t1z  126
  216  {z=-1 OR z=3}         t1z  126

  300  {y=0}                 t1y  974
  301  {y=1}                 t1y   26
  302  {y=0.1}               t1y    1

  400  {x IS NULL}           t1x  400

} {
  # Verify that the expected index is used with the expected row count
  do_test analyze5-1.${testid}a {
    set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
................................................................................
    WHERE rowid IN (SELECT rowid FROM t1 ORDER BY random() LIMIT 5);
   ANALYZE;
}

# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
  500  {x IS NULL AND u='charlie'}         t1u  17
  501  {x=1 AND u='charlie'}               t1x   1
  502  {x IS NULL}                         t1x 995
  503  {x=1}                               t1x   1
  504  {x IS NOT NULL}                     t1x   2
  505  {+x IS NOT NULL}                     {} 500
  506  {upper(x) IS NOT NULL}               {} 500

} {
  # Verify that the expected index is used with the expected row count
if {$testid==50299} {breakpoint; set sqlite_where_trace 1}
  do_test analyze5-1.${testid}a {
    set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
    set idx {}
    regexp {INDEX (t1.) } $x all idx
    regexp {~([0-9]+) rows} $x all nrow
    list $idx $nrow
  } [list $index $rows]
if {$testid==50299} exit

  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]

Changes to test/analyze6.test.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# in this file a corner-case query planner optimization involving the
# join order of two tables of different sizes.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat2 {
  finish_test
  return
}

set testprefix analyze6

proc eqp {sql {db db}} {







|







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# in this file a corner-case query planner optimization involving the
# join order of two tables of different sizes.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze6

proc eqp {sql {db db}} {

Added test/analyze8.test.















































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# 2011 August 13
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for SQLite library.  The focus of the tests
# in this file is testing the capabilities of sqlite_stat3.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze8

proc eqp {sql {db db}} {
  uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db
}

# Scenario:
#
#    Two indices.  One has mostly singleton entries, but for a few
#    values there are hundreds of entries.  The other has 10-20
#    entries per value.
#
# Verify that the query planner chooses the first index for the singleton
# entries and the second index for the others.
#
do_test 1.0 {
  db eval {
    CREATE TABLE t1(a,b,c,d);
    CREATE INDEX t1a ON t1(a);
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1c ON t1(c);
  }
  for {set i 0} {$i<1000} {incr i} {
    if {$i%2==0} {set a $i} {set a [expr {($i%8)*100}]}
    set b [expr {$i/10}]
    set c [expr {$i/8}]
    set c [expr {$c*$c*$c}]
    db eval {INSERT INTO t1 VALUES($a,$b,$c,$i)}
  }
  db eval {ANALYZE}
} {}

# The a==100 comparison is expensive because there are many rows
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?) (~2 rows)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
#
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 50 AND 54 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?) (~6 rows)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 50 AND 54 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?) (~4 rows)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~63 rows)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?) (~2 rows)}}

finish_test

Changes to test/auth.test.

2309
2310
2311
2312
2313
2314
2315



2316

2317
2318
2319
2320
2321
2322
2323
        DROP TABLE v1chng;
      }
    }
  }
  ifcapable stat2 {
    set stat2 "sqlite_stat2 "
  } else {



    set stat2 ""

  }
  do_test auth-5.2 {
    execsql {
      SELECT name FROM (
        SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master)
      WHERE type='table'
      ORDER BY name







>
>
>
|
>







2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
        DROP TABLE v1chng;
      }
    }
  }
  ifcapable stat2 {
    set stat2 "sqlite_stat2 "
  } else {
    ifcapable stat3 {
      set stat2 "sqlite_stat3 "
    } else {
      set stat2 ""
    }
  }
  do_test auth-5.2 {
    execsql {
      SELECT name FROM (
        SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master)
      WHERE type='table'
      ORDER BY name

Changes to test/dbstatus.test.

44
45
46
47
48
49
50






51
52
53
54
55
56
57
...
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
...
187
188
189
190
191
192
193



194

195
196
197
198
199
200
201


proc lookaside {db} {
  expr { $::lookaside_buffer_size *
    [lindex [sqlite3_db_status $db SQLITE_DBSTATUS_LOOKASIDE_USED 0] 1]
  }
}







#---------------------------------------------------------------------------
# Run the dbstatus-2 and dbstatus-3 tests with several of different
# lookaside buffer sizes.
#
foreach ::lookaside_buffer_size {0 64 120} {

................................................................................
      END;
    }
    5 {
      CREATE TABLE t1(a, b);
      CREATE TABLE t2(c, d);
      CREATE VIEW v1 AS SELECT * FROM t1 UNION SELECT * FROM t2;
    }
    6 {
      CREATE TABLE t1(a, b);
      CREATE INDEX i1 ON t1(a);
      CREATE INDEX i2 ON t1(a,b);
      CREATE INDEX i3 ON t1(b,b);
      INSERT INTO t1 VALUES(randomblob(20), randomblob(25));
      INSERT INTO t1 SELECT randomblob(20), randomblob(25) FROM t1;
      INSERT INTO t1 SELECT randomblob(20), randomblob(25) FROM t1;
................................................................................
    # for any reason is not counted as "schema memory".
    #
    # Additionally, in auto-vacuum mode, dropping tables and indexes causes
    # the page-cache to shrink. So the amount of memory freed is always
    # much greater than just that reported by DBSTATUS_SCHEMA_USED in this
    # case.
    #



    if {[string match *x $tn] || $AUTOVACUUM} {

      do_test dbstatus-2.$tn.ax { expr {($nSchema1-$nSchema2)<=$nFree} } 1
    } else {
      do_test dbstatus-2.$tn.a { expr {$nSchema1-$nSchema2} } $nFree
    }
  
    do_test dbstatus-2.$tn.b { list $nAlloc1 $nSchema1 } "$nAlloc3 $nSchema3"
    do_test dbstatus-2.$tn.c { list $nAlloc2 $nSchema2 } "$nAlloc4 $nSchema4"







>
>
>
>
>
>







 







|







 







>
>
>
|
>







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
...
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
...
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211


proc lookaside {db} {
  expr { $::lookaside_buffer_size *
    [lindex [sqlite3_db_status $db SQLITE_DBSTATUS_LOOKASIDE_USED 0] 1]
  }
}

ifcapable stat3 {
  set STAT3 1
} else {
  set STAT3 0
}

#---------------------------------------------------------------------------
# Run the dbstatus-2 and dbstatus-3 tests with several of different
# lookaside buffer sizes.
#
foreach ::lookaside_buffer_size {0 64 120} {

................................................................................
      END;
    }
    5 {
      CREATE TABLE t1(a, b);
      CREATE TABLE t2(c, d);
      CREATE VIEW v1 AS SELECT * FROM t1 UNION SELECT * FROM t2;
    }
    6y {
      CREATE TABLE t1(a, b);
      CREATE INDEX i1 ON t1(a);
      CREATE INDEX i2 ON t1(a,b);
      CREATE INDEX i3 ON t1(b,b);
      INSERT INTO t1 VALUES(randomblob(20), randomblob(25));
      INSERT INTO t1 SELECT randomblob(20), randomblob(25) FROM t1;
      INSERT INTO t1 SELECT randomblob(20), randomblob(25) FROM t1;
................................................................................
    # for any reason is not counted as "schema memory".
    #
    # Additionally, in auto-vacuum mode, dropping tables and indexes causes
    # the page-cache to shrink. So the amount of memory freed is always
    # much greater than just that reported by DBSTATUS_SCHEMA_USED in this
    # case.
    #
    # Some of the memory used for sqlite_stat3 is unaccounted for by
    # dbstatus.
    #
    if {[string match *x $tn] || $AUTOVACUUM
         || ([string match *y $tn] && $STAT3)} {
      do_test dbstatus-2.$tn.ax { expr {($nSchema1-$nSchema2)<=$nFree} } 1
    } else {
      do_test dbstatus-2.$tn.a { expr {$nSchema1-$nSchema2} } $nFree
    }
  
    do_test dbstatus-2.$tn.b { list $nAlloc1 $nSchema1 } "$nAlloc3 $nSchema3"
    do_test dbstatus-2.$tn.c { list $nAlloc2 $nSchema2 } "$nAlloc4 $nSchema4"

Added test/stat3.test.

















































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# 2011 August 08
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements regression tests for SQLite library. This file 
# implements tests for the extra functionality provided by the ANALYZE 
# command when the library is compiled with SQLITE_ENABLE_STAT3 defined.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set testprefix stat3


# Verify that if not compiled with SQLITE_ENABLE_STAT2 that the ANALYZE
# command will delete the sqlite_stat2 table.  Likewise, if not compiled
# with SQLITE_ENABLE_STAT3, the sqlite_stat3 table is deleted.
#
do_test 1.1 {
  db eval {
    PRAGMA writable_schema=ON;
    CREATE TABLE sqlite_stat2(tbl,idx,sampleno,sample);
    CREATE TABLE sqlite_stat3(tbl,idx,neq,nlt,ndlt,sample);
    SELECT name FROM sqlite_master ORDER BY 1;
  }
} {sqlite_stat2 sqlite_stat3}
do_test 1.2 {
  db close
  sqlite3 db test.db
  db eval {SELECT name FROM sqlite_master ORDER BY 1}
} {sqlite_stat2 sqlite_stat3}

ifcapable {stat3} {
  do_test 1.3 {
    db eval {ANALYZE; SELECT name FROM sqlite_master ORDER BY 1}
  } {sqlite_stat1 sqlite_stat3}
} else {
  do_test 1.4 {
    db eval {ANALYZE; SELECT name FROM sqlite_master ORDER BY 1}
  } {sqlite_stat1}
  finish_test
  return
}




finish_test

Changes to test/tkt-cbd054fa6b.test.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
..
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
..
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# This file implements tests to verify that ticket [cbd054fa6b] has been
# fixed.  
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat2 {
  finish_test
  return
}

do_test tkt-cbd05-1.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT UNIQUE NOT NULL);
................................................................................
  db eval {
    ANALYZE;
  }
} {}
do_test tkt-cbd05-1.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat2 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x { A B C D E F G H I}}

do_test tkt-cbd05-2.1 {
  db eval {
................................................................................
  db eval {
    ANALYZE;
  }
} {}
do_test tkt-cbd05-2.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat2 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x { A B C D E F G H I}}

finish_test







|







 







|







 







|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
..
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
..
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# This file implements tests to verify that ticket [cbd054fa6b] has been
# fixed.  
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

do_test tkt-cbd05-1.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT UNIQUE NOT NULL);
................................................................................
  db eval {
    ANALYZE;
  }
} {}
do_test tkt-cbd05-1.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat3 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x { A B C D E F G H I}}

do_test tkt-cbd05-2.1 {
  db eval {
................................................................................
  db eval {
    ANALYZE;
  }
} {}
do_test tkt-cbd05-2.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat3 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x { A B C D E F G H I}}

finish_test

Changes to test/unordered.test.

27
28
29
30
31
32
33


34
35

36
37
38
39
40
41
42
43
44
45
  INSERT INTO t1 SELECT a+16, b FROM t1;
  INSERT INTO t1 SELECT a+32, b FROM t1;
  INSERT INTO t1 SELECT a+64, b FROM t1;
  ANALYZE;
} {}

foreach idxmode {ordered unordered} {


  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }

    db close
    sqlite3 db test.db
  }
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1 (~128 rows)}}
        {0 0 0 {SCAN TABLE t1 (~128 rows)}}
    2   "SELECT * FROM t1 WHERE a >?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~32 rows)}}
        {0 0 0 {SCAN TABLE t1 (~42 rows)}}







>
>


>
|
|
<







27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
  INSERT INTO t1 SELECT a+16, b FROM t1;
  INSERT INTO t1 SELECT a+32, b FROM t1;
  INSERT INTO t1 SELECT a+64, b FROM t1;
  ANALYZE;
} {}

foreach idxmode {ordered unordered} {
  catchsql { DELETE FROM sqlite_stat2 }
  catchsql { DELETE FROM sqlite_stat3 }
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db

  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1 (~128 rows)}}
        {0 0 0 {SCAN TABLE t1 (~128 rows)}}
    2   "SELECT * FROM t1 WHERE a >?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~32 rows)}}
        {0 0 0 {SCAN TABLE t1 (~42 rows)}}