SQLite

Check-in [0c87fec970]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Initial implementation of the ability to have auxiliary columns in an rtree virtual table that store arbitrary content. It mostly works, but there are some minor issues in OOM corner cases.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | aux-data-in-rtree
Files: files | file ages | folders
SHA3-256: 0c87fec970221f954e0a92f3ef0437b382255479fac5b403ee37b1bb5ab29719
User & Date: drh 2018-05-16 17:57:30.645
Context
2018-05-16
18:18
Fix the OOM issue mentioned in the previous check-in. (check-in: c489d8e44e user: drh tags: aux-data-in-rtree)
17:57
Initial implementation of the ability to have auxiliary columns in an rtree virtual table that store arbitrary content. It mostly works, but there are some minor issues in OOM corner cases. (check-in: 0c87fec970 user: drh tags: aux-data-in-rtree)
15:35
Enhance the sqlite3_str_new() interface so that it always returns a valid and non-NULL pointer even in an OOM condition. (check-in: ed5b09680f user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/rtree/rtree.c.
118
119
120
121
122
123
124

125
126
127
128
129
130

131
132
133
134
135
136
137
  sqlite3 *db;                /* Host database connection */
  int iNodeSize;              /* Size in bytes of each node in the node table */
  u8 nDim;                    /* Number of dimensions */
  u8 nDim2;                   /* Twice the number of dimensions */
  u8 eCoordType;              /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
  u8 nBytesPerCell;           /* Bytes consumed per cell */
  u8 inWrTrans;               /* True if inside write transaction */

  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 
  u32 nBusy;                  /* Current number of users of this structure */
  i64 nRowEst;                /* Estimated number of rows in this table */
  u32 nCursor;                /* Number of open cursors */


  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
  */
  RtreeNode *pDeleted;







>






>







118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
  sqlite3 *db;                /* Host database connection */
  int iNodeSize;              /* Size in bytes of each node in the node table */
  u8 nDim;                    /* Number of dimensions */
  u8 nDim2;                   /* Twice the number of dimensions */
  u8 eCoordType;              /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
  u8 nBytesPerCell;           /* Bytes consumed per cell */
  u8 inWrTrans;               /* True if inside write transaction */
  u8 nAux;                    /* # of auxiliary columns in %_rowid */
  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 
  u32 nBusy;                  /* Current number of users of this structure */
  i64 nRowEst;                /* Estimated number of rows in this table */
  u32 nCursor;                /* Number of open cursors */
  char *zReadAuxSql;          /* SQL for statement to read aux data */

  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
  */
  RtreeNode *pDeleted;
149
150
151
152
153
154
155



156
157
158
159
160
161
162
  sqlite3_stmt *pWriteRowid;
  sqlite3_stmt *pDeleteRowid;

  /* Statements to read/write/delete a record from xxx_parent */
  sqlite3_stmt *pReadParent;
  sqlite3_stmt *pWriteParent;
  sqlite3_stmt *pDeleteParent;




  RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 
};

/* Possible values for Rtree.eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1







>
>
>







151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
  sqlite3_stmt *pWriteRowid;
  sqlite3_stmt *pDeleteRowid;

  /* Statements to read/write/delete a record from xxx_parent */
  sqlite3_stmt *pReadParent;
  sqlite3_stmt *pWriteParent;
  sqlite3_stmt *pDeleteParent;

  /* Statement for writing to the "aux:" fields, if there are any */
  sqlite3_stmt *pWriteAux;

  RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 
};

/* Possible values for Rtree.eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1
226
227
228
229
230
231
232

233
234
235
236
237
238
239

240
241
242
243
244
245
246
/* 
** An rtree cursor object.
*/
struct RtreeCursor {
  sqlite3_vtab_cursor base;         /* Base class.  Must be first */
  u8 atEOF;                         /* True if at end of search */
  u8 bPoint;                        /* True if sPoint is valid */

  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
  int nPointAlloc;                  /* Number of slots allocated for aPoint[] */
  int nPoint;                       /* Number of slots used in aPoint[] */
  int mxLevel;                      /* iLevel value for root of the tree */
  RtreeSearchPoint *aPoint;         /* Priority queue for search points */

  RtreeSearchPoint sPoint;          /* Cached next search point */
  RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
  u32 anQueue[RTREE_MAX_DEPTH+1];   /* Number of queued entries by iLevel */
};

/* Return the Rtree of a RtreeCursor */
#define RTREE_OF_CURSOR(X)   ((Rtree*)((X)->base.pVtab))







>







>







231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/* 
** An rtree cursor object.
*/
struct RtreeCursor {
  sqlite3_vtab_cursor base;         /* Base class.  Must be first */
  u8 atEOF;                         /* True if at end of search */
  u8 bPoint;                        /* True if sPoint is valid */
  u8 bAuxValid;                     /* True if pReadAux is valid */
  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
  int nPointAlloc;                  /* Number of slots allocated for aPoint[] */
  int nPoint;                       /* Number of slots used in aPoint[] */
  int mxLevel;                      /* iLevel value for root of the tree */
  RtreeSearchPoint *aPoint;         /* Priority queue for search points */
  sqlite3_stmt *pReadAux;           /* Statement to read aux-data */
  RtreeSearchPoint sPoint;          /* Cached next search point */
  RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
  u32 anQueue[RTREE_MAX_DEPTH+1];   /* Number of queued entries by iLevel */
};

/* Return the Rtree of a RtreeCursor */
#define RTREE_OF_CURSOR(X)   ((Rtree*)((X)->base.pVtab))
926
927
928
929
930
931
932


933
934
935
936
937
938
939
    sqlite3_finalize(pRtree->pDeleteNode);
    sqlite3_finalize(pRtree->pReadRowid);
    sqlite3_finalize(pRtree->pWriteRowid);
    sqlite3_finalize(pRtree->pDeleteRowid);
    sqlite3_finalize(pRtree->pReadParent);
    sqlite3_finalize(pRtree->pWriteParent);
    sqlite3_finalize(pRtree->pDeleteParent);


    sqlite3_free(pRtree);
  }
}

/* 
** Rtree virtual table module xDisconnect method.
*/







>
>







933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
    sqlite3_finalize(pRtree->pDeleteNode);
    sqlite3_finalize(pRtree->pReadRowid);
    sqlite3_finalize(pRtree->pWriteRowid);
    sqlite3_finalize(pRtree->pDeleteRowid);
    sqlite3_finalize(pRtree->pReadParent);
    sqlite3_finalize(pRtree->pWriteParent);
    sqlite3_finalize(pRtree->pDeleteParent);
    sqlite3_finalize(pRtree->pWriteAux);
    sqlite3_free(pRtree->zReadAuxSql);
    sqlite3_free(pRtree);
  }
}

/* 
** Rtree virtual table module xDisconnect method.
*/
1014
1015
1016
1017
1018
1019
1020

1021
1022
1023
1024
1025
1026
1027
*/
static int rtreeClose(sqlite3_vtab_cursor *cur){
  Rtree *pRtree = (Rtree *)(cur->pVtab);
  int ii;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  assert( pRtree->nCursor>0 );
  freeCursorConstraints(pCsr);

  sqlite3_free(pCsr->aPoint);
  for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
  sqlite3_free(pCsr);
  pRtree->nCursor--;
  nodeBlobReset(pRtree);
  return SQLITE_OK;
}







>







1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
*/
static int rtreeClose(sqlite3_vtab_cursor *cur){
  Rtree *pRtree = (Rtree *)(cur->pVtab);
  int ii;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  assert( pRtree->nCursor>0 );
  freeCursorConstraints(pCsr);
  sqlite3_finalize(pCsr->pReadAux);
  sqlite3_free(pCsr->aPoint);
  for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
  sqlite3_free(pCsr);
  pRtree->nCursor--;
  nodeBlobReset(pRtree);
  return SQLITE_OK;
}
1556
1557
1558
1559
1560
1561
1562




1563
1564
1565
1566
1567
1568
1569
*/
static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
  int rc = SQLITE_OK;

  /* Move to the next entry that matches the configured constraints. */
  RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");




  rtreeSearchPointPop(pCsr);
  rc = rtreeStepToLeaf(pCsr);
  return rc;
}

/* 
** Rtree virtual table module xRowid method.







>
>
>
>







1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
*/
static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
  int rc = SQLITE_OK;

  /* Move to the next entry that matches the configured constraints. */
  RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
  if( pCsr->bAuxValid ){
    pCsr->bAuxValid = 0;
    sqlite3_reset(pCsr->pReadAux);
  }
  rtreeSearchPointPop(pCsr);
  rc = rtreeStepToLeaf(pCsr);
  return rc;
}

/* 
** Rtree virtual table module xRowid method.
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607






1608














1609
1610
1611
1612
1613
1614
1615
  Rtree *pRtree = (Rtree *)cur->pVtab;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
  RtreeCoord c;
  int rc = SQLITE_OK;
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);

  if( rc ) return rc;
  if( p==0 ) return SQLITE_OK;
  if( i==0 ){
    sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
  }else{
    nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else
#endif
    {
      assert( pRtree->eCoordType==RTREE_COORD_INT32 );
      sqlite3_result_int(ctx, c.i);
    }






  }














  return SQLITE_OK;
}

/* 
** Use nodeAcquire() to obtain the leaf node containing the record with 
** rowid iRowid. If successful, set *ppLeaf to point to the node and
** return SQLITE_OK. If there is no such record in the table, set







<
|


|










>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1600
1601
1602
1603
1604
1605
1606

1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
  Rtree *pRtree = (Rtree *)cur->pVtab;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
  RtreeCoord c;
  int rc = SQLITE_OK;
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);


  if( p==0 || pNode==0 ) return SQLITE_OK;
  if( i==0 ){
    sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
  }else if( i<=pRtree->nDim2 ){
    nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else
#endif
    {
      assert( pRtree->eCoordType==RTREE_COORD_INT32 );
      sqlite3_result_int(ctx, c.i);
    }
  }else{
    if( !pCsr->bAuxValid ){
      if( pCsr->pReadAux==0 ){
        rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
                                &pCsr->pReadAux, 0);
        if( rc ) return rc;
      }
      sqlite3_bind_int64(pCsr->pReadAux, 1, 
          nodeGetRowid(pRtree, pNode, p->iCell));
      rc = sqlite3_step(pCsr->pReadAux);
      if( rc==SQLITE_ROW ){
        pCsr->bAuxValid = 1;
      }else{
        sqlite3_reset(pCsr->pReadAux);
        if( rc==SQLITE_DONE ) rc = SQLITE_OK;
        return rc;
      }
    }
    sqlite3_result_value(ctx,
         sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1));
  }  
  return SQLITE_OK;
}

/* 
** Use nodeAcquire() to obtain the leaf node containing the record with 
** rowid iRowid. If successful, set *ppLeaf to point to the node and
** return SQLITE_OK. If there is no such record in the table, set
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025

/*
** The xUpdate method for rtree module virtual tables.
*/
static int rtreeUpdate(
  sqlite3_vtab *pVtab, 
  int nData, 
  sqlite3_value **azData, 
  sqlite_int64 *pRowid
){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_OK;
  RtreeCell cell;                 /* New cell to insert if nData>1 */
  int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */








|







3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058

/*
** The xUpdate method for rtree module virtual tables.
*/
static int rtreeUpdate(
  sqlite3_vtab *pVtab, 
  int nData, 
  sqlite3_value **aData, 
  sqlite_int64 *pRowid
){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_OK;
  RtreeCell cell;                 /* New cell to insert if nData>1 */
  int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */

3037
3038
3039
3040
3041
3042
3043

3044

3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
  ** In the first case, if the conflict-handling mode is REPLACE, then
  ** the conflicting row can be removed before proceeding. In the second
  ** case, SQLITE_CONSTRAINT must be returned regardless of the
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 ){
    int ii;



    /* Populate the cell.aCoord[] array. The first coordinate is azData[3].
    **
    ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
    ** with "column" that are interpreted as table constraints.
    ** Example:  CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
    ** This problem was discovered after years of use, so we silently ignore
    ** these kinds of misdeclared tables to avoid breaking any legacy.
    */
    assert( nData<=(pRtree->nDim2 + 3) );

#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<nData-4; ii+=2){
        cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]);
        cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
          rc = rtreeConstraintError(pRtree, ii+1);
          goto constraint;
        }
      }
    }else
#endif
    {
      for(ii=0; ii<nData-4; ii+=2){
        cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
        cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = rtreeConstraintError(pRtree, ii+1);
          goto constraint;
        }
      }
    }

    /* If a rowid value was supplied, check if it is already present in 
    ** the table. If so, the constraint has failed. */
    if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){
      cell.iRowid = sqlite3_value_int64(azData[2]);
      if( sqlite3_value_type(azData[0])==SQLITE_NULL
       || sqlite3_value_int64(azData[0])!=cell.iRowid
      ){
        int steprc;
        sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
        steprc = sqlite3_step(pRtree->pReadRowid);
        rc = sqlite3_reset(pRtree->pReadRowid);
        if( SQLITE_ROW==steprc ){
          if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
            rc = rtreeDeleteRowid(pRtree, cell.iRowid);
          }else{
            rc = rtreeConstraintError(pRtree, 0);
            goto constraint;
          }
        }
      }
      bHaveRowid = 1;
    }
  }

  /* If azData[0] is not an SQL NULL value, it is the rowid of a
  ** record to delete from the r-tree table. The following block does
  ** just that.
  */
  if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
    rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
  }

  /* If the azData[] array contains more than one element, elements
  ** (azData[2]..azData[argc-1]) contain a new record to insert into
  ** the r-tree structure.
  */
  if( rc==SQLITE_OK && nData>1 ){
    /* Insert the new record into the r-tree */
    RtreeNode *pLeaf = 0;

    /* Figure out the rowid of the new row. */







>

>
|







<



|
|
|








|
|
|









|
|
|
|


















|



|
|


|
|







3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087

3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
  ** In the first case, if the conflict-handling mode is REPLACE, then
  ** the conflicting row can be removed before proceeding. In the second
  ** case, SQLITE_CONSTRAINT must be returned regardless of the
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 ){
    int ii;
    int nn = nData - 4;

    if( nn > pRtree->nDim2 ) nn = pRtree->nDim2;
    /* Populate the cell.aCoord[] array. The first coordinate is aData[3].
    **
    ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
    ** with "column" that are interpreted as table constraints.
    ** Example:  CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
    ** This problem was discovered after years of use, so we silently ignore
    ** these kinds of misdeclared tables to avoid breaking any legacy.
    */


#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<nn; ii+=2){
        cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]);
        cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
          rc = rtreeConstraintError(pRtree, ii+1);
          goto constraint;
        }
      }
    }else
#endif
    {
      for(ii=0; ii<nn; ii+=2){
        cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]);
        cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]);
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = rtreeConstraintError(pRtree, ii+1);
          goto constraint;
        }
      }
    }

    /* If a rowid value was supplied, check if it is already present in 
    ** the table. If so, the constraint has failed. */
    if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){
      cell.iRowid = sqlite3_value_int64(aData[2]);
      if( sqlite3_value_type(aData[0])==SQLITE_NULL
       || sqlite3_value_int64(aData[0])!=cell.iRowid
      ){
        int steprc;
        sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
        steprc = sqlite3_step(pRtree->pReadRowid);
        rc = sqlite3_reset(pRtree->pReadRowid);
        if( SQLITE_ROW==steprc ){
          if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
            rc = rtreeDeleteRowid(pRtree, cell.iRowid);
          }else{
            rc = rtreeConstraintError(pRtree, 0);
            goto constraint;
          }
        }
      }
      bHaveRowid = 1;
    }
  }

  /* If aData[0] is not an SQL NULL value, it is the rowid of a
  ** record to delete from the r-tree table. The following block does
  ** just that.
  */
  if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){
    rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0]));
  }

  /* If the aData[] array contains more than one element, elements
  ** (aData[2]..aData[argc-1]) contain a new record to insert into
  ** the r-tree structure.
  */
  if( rc==SQLITE_OK && nData>1 ){
    /* Insert the new record into the r-tree */
    RtreeNode *pLeaf = 0;

    /* Figure out the rowid of the new row. */
3129
3130
3131
3132
3133
3134
3135










3136
3137
3138
3139
3140
3141
3142
      pRtree->iReinsertHeight = -1;
      rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
      rc2 = nodeRelease(pRtree, pLeaf);
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }










  }

constraint:
  rtreeRelease(pRtree);
  return rc;
}








>
>
>
>
>
>
>
>
>
>







3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
      pRtree->iReinsertHeight = -1;
      rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
      rc2 = nodeRelease(pRtree, pLeaf);
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
    if( pRtree->nAux ){
      sqlite3_stmt *pUp = pRtree->pWriteAux;
      int jj;
      sqlite3_bind_int64(pUp, 1, *pRowid);
      for(jj=0; jj<pRtree->nAux; jj++){
        sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]);
      }
      sqlite3_step(pUp);
      rc = sqlite3_reset(pUp);
    }
  }

constraint:
  rtreeRelease(pRtree);
  return rc;
}

3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312


3313








3314
3315

3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
  int isCreate
){
  int rc = SQLITE_OK;

  #define N_STATEMENT 8
  static const char *azSql[N_STATEMENT] = {
    /* Write the xxx_node table */
    "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",

    /* Read and write the xxx_rowid table */
    "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
    "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",

    /* Read and write the xxx_parent table */
    "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
    "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
  };
  sqlite3_stmt **appStmt[N_STATEMENT];
  int i;

  pRtree->db = db;

  if( isCreate ){
    char *zCreate = sqlite3_mprintf(
"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"


"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"








"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,"
                                  " parentnode INTEGER);"

"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
      zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
    );
    if( !zCreate ){
      return SQLITE_NOMEM;
    }
    rc = sqlite3_exec(db, zCreate, 0, 0, 0);
    sqlite3_free(zCreate);
    if( rc!=SQLITE_OK ){
      return rc;







|
|


|
|
|


|
|
|







|
|
>
>
|
>
>
>
>
>
>
>
>
|
|
>
|
|
|







3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
  int isCreate
){
  int rc = SQLITE_OK;

  #define N_STATEMENT 8
  static const char *azSql[N_STATEMENT] = {
    /* Write the xxx_node table */
    "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)",
    "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1",

    /* Read and write the xxx_rowid table */
    "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1",
    "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)",
    "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1",

    /* Read and write the xxx_parent table */
    "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1",
    "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)",
    "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1"
  };
  sqlite3_stmt **appStmt[N_STATEMENT];
  int i;

  pRtree->db = db;

  if( isCreate ){
    char *zCreate;
    sqlite3_str *p = sqlite3_str_new(db);
    int ii;
    sqlite3_str_appendf(p,
       "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno",
       zDb, zPrefix);
    for(ii=0; ii<pRtree->nAux; ii++){
      sqlite3_str_appendf(p,",a%d",ii);
    }
    sqlite3_str_appendf(p,
      ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);",
      zDb, zPrefix);
    sqlite3_str_appendf(p,
    "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);",
      zDb, zPrefix);
    sqlite3_str_appendf(p,
       "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))",
       zDb, zPrefix, pRtree->iNodeSize);
    zCreate = sqlite3_str_finish(p);
    if( !zCreate ){
      return SQLITE_NOMEM;
    }
    rc = sqlite3_exec(db, zCreate, 0, 0, 0);
    sqlite3_free(zCreate);
    if( rc!=SQLITE_OK ){
      return rc;
3333
3334
3335
3336
3337
3338
3339
3340










3341
3342
3343
3344
3345
3346
3347


























3348
3349
3350
3351
3352
3353
3354
  appStmt[4] = &pRtree->pDeleteRowid;
  appStmt[5] = &pRtree->pReadParent;
  appStmt[6] = &pRtree->pWriteParent;
  appStmt[7] = &pRtree->pDeleteParent;

  rc = rtreeQueryStat1(db, pRtree);
  for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
    char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);










    if( zSql ){
      rc = sqlite3_prepare_v3(db, zSql, -1, SQLITE_PREPARE_PERSISTENT,
                              appStmt[i], 0); 
    }else{
      rc = SQLITE_NOMEM;
    }
    sqlite3_free(zSql);


























  }

  return rc;
}

/*
** The second argument to this function contains the text of an SQL statement







|
>
>
>
>
>
>
>
>
>
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
  appStmt[4] = &pRtree->pDeleteRowid;
  appStmt[5] = &pRtree->pReadParent;
  appStmt[6] = &pRtree->pWriteParent;
  appStmt[7] = &pRtree->pDeleteParent;

  rc = rtreeQueryStat1(db, pRtree);
  for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
    char *zSql;
    const char *zFormat;
    if( i!=3 || pRtree->nAux==0 ){
       zFormat = azSql[i];
    }else {
       /* An UPSERT is very slightly slower than REPLACE, but it is needed
       ** if there are auxiliary columns */
       zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)"
                  "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno";
    }
    zSql = sqlite3_mprintf(zFormat, zDb, zPrefix);
    if( zSql ){
      rc = sqlite3_prepare_v3(db, zSql, -1, SQLITE_PREPARE_PERSISTENT,
                              appStmt[i], 0); 
    }else{
      rc = SQLITE_NOMEM;
    }
    sqlite3_free(zSql);
  }
  if( pRtree->nAux ){
    pRtree->zReadAuxSql = sqlite3_mprintf(
       "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1",
       zDb, zPrefix);
    if( pRtree->zReadAuxSql==0 ){
      rc = SQLITE_NOMEM;
    }else{
      sqlite3_str *p = sqlite3_str_new(db);
      int ii;
      char *zSql;
      sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix);
      for(ii=0; ii<pRtree->nAux; ii++){
        if( ii ) sqlite3_str_append(p, ",", 1);
        sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2);
      }
      sqlite3_str_appendf(p, " WHERE rowid=?1");
      zSql = sqlite3_str_finish(p);
      if( zSql==0 ){
        rc = SQLITE_NOMEM;
      }else{
        rc = sqlite3_prepare_v3(db, zSql, -1, SQLITE_PREPARE_PERSISTENT,
                                &pRtree->pWriteAux, 0); 
        sqlite3_free(zSql);
      }
    }
  }

  return rc;
}

/*
** The second argument to this function contains the text of an SQL statement
3444
3445
3446
3447
3448
3449
3450




3451
3452
3453
3454
3455
3456

3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504


3505





3506

3507
3508







3509
3510





3511
3512





3513

3514
3515
3516







3517
3518
3519
3520

3521


3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
  int isCreate                        /* True for xCreate, false for xConnect */
){
  int rc = SQLITE_OK;
  Rtree *pRtree;
  int nDb;              /* Length of string argv[1] */
  int nName;            /* Length of string argv[2] */
  int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);





  const char *aErrMsg[] = {
    0,                                                    /* 0 */
    "Wrong number of columns for an rtree table",         /* 1 */
    "Too few columns for an rtree table",                 /* 2 */
    "Too many columns for an rtree table"                 /* 3 */

  };

  int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
  if( aErrMsg[iErr] ){
    *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
    return SQLITE_ERROR;
  }

  sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);

  /* Allocate the sqlite3_vtab structure */
  nDb = (int)strlen(argv[1]);
  nName = (int)strlen(argv[2]);
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
  if( !pRtree ){
    return SQLITE_NOMEM;
  }
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
  pRtree->nBusy = 1;
  pRtree->base.pModule = &rtreeModule;
  pRtree->zDb = (char *)&pRtree[1];
  pRtree->zName = &pRtree->zDb[nDb+1];
  pRtree->nDim = (u8)((argc-4)/2);
  pRtree->nDim2 = pRtree->nDim*2;
  pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
  pRtree->eCoordType = (u8)eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate, pzErr);

  /* Create/Connect to the underlying relational database schema. If
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  if( rc==SQLITE_OK ){
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }else{
      sqlite3_str *pSql = sqlite3_str_new(db);
      char *zSql;
      int ii;
      if( pSql==0 ){
        zSql = 0;
      }else{
        sqlite3_str_appendf(pSql, "CREATE TABLE x(%s", argv[3]);
        for(ii=4; ii<argc; ii++){


          sqlite3_str_appendf(pSql, ", %s", argv[ii]);





        }

        sqlite3_str_appendf(pSql, ");");
        zSql = sqlite3_str_finish(pSql);







      }
      if( !zSql ){





        rc = SQLITE_NOMEM;
      }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){





        *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));

      }
      sqlite3_free(zSql);
    }







  }

  if( rc==SQLITE_OK ){
    *ppVtab = (sqlite3_vtab *)pRtree;

  }else{


    assert( *ppVtab==0 );
    assert( pRtree->nBusy==1 );
    rtreeRelease(pRtree);
  }
  return rc;
}


/*
** Implementation of a scalar function that decodes r-tree nodes to
** human readable strings. This can be used for debugging and analysis.







>
>
>
>





|
>


<
|
|

















<
<
<




<
<





<
<
<
<
|
<
<
<
<
<
|
|
>
>
|
>
>
>
>
>
|
>
|
|
>
>
>
>
>
>
>
|
|
>
>
>
>
>
|
|
>
>
>
>
>
|
>
|
|
|
>
>
>
>
>
>
>


<
|
>
|
>
>
|
|
|
<







3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554

3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573



3574
3575
3576
3577


3578
3579
3580
3581
3582




3583





3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632

3633
3634
3635
3636
3637
3638
3639
3640

3641
3642
3643
3644
3645
3646
3647
  int isCreate                        /* True for xCreate, false for xConnect */
){
  int rc = SQLITE_OK;
  Rtree *pRtree;
  int nDb;              /* Length of string argv[1] */
  int nName;            /* Length of string argv[2] */
  int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
  sqlite3_str *pSql;
  char *zSql;
  int ii = 4;
  int iErr;

  const char *aErrMsg[] = {
    0,                                                    /* 0 */
    "Wrong number of columns for an rtree table",         /* 1 */
    "Too few columns for an rtree table",                 /* 2 */
    "Too many columns for an rtree table",                /* 3 */
    "AUX: columns must be last"                           /* 4 */
  };


  if( argc>=256 ){
    *pzErr = sqlite3_mprintf("%s", aErrMsg[3]);
    return SQLITE_ERROR;
  }

  sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);

  /* Allocate the sqlite3_vtab structure */
  nDb = (int)strlen(argv[1]);
  nName = (int)strlen(argv[2]);
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
  if( !pRtree ){
    return SQLITE_NOMEM;
  }
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
  pRtree->nBusy = 1;
  pRtree->base.pModule = &rtreeModule;
  pRtree->zDb = (char *)&pRtree[1];
  pRtree->zName = &pRtree->zDb[nDb+1];



  pRtree->eCoordType = (u8)eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);




  /* Create/Connect to the underlying relational database schema. If
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */




  pSql = sqlite3_str_new(db);





  sqlite3_str_appendf(pSql, "CREATE TABLE x(%s", argv[3]);
  for(ii=4; ii<argc; ii++){
    if( sqlite3_strlike("aux:%", argv[ii], 0)==0 ){
      pRtree->nAux++;
      sqlite3_str_appendf(pSql, ",%s", argv[ii]+4);
    }else if( pRtree->nAux>0 ){
      break;
    }else{
      pRtree->nDim2++;
      sqlite3_str_appendf(pSql, ",%s", argv[ii]);
    }
  }
  sqlite3_str_appendf(pSql, ");");
  zSql = sqlite3_str_finish(pSql);
  if( !zSql ){
    rc = SQLITE_NOMEM;
  }else if( ii<argc ){
    *pzErr = sqlite3_mprintf("%s", aErrMsg[4]);
    rc = SQLITE_ERROR;
  }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
    *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
  }
  sqlite3_free(zSql);
  if( rc ) goto rtreeInit_fail;
  pRtree->nDim = pRtree->nDim2/2;
  if( pRtree->nDim<1 ){
    iErr = 2;
  }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){
    iErr = 3;
  }else if( pRtree->nDim2 % 2 ){
    iErr = 1;
  }else{
    iErr = 0;
  }
  if( iErr ){
    *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
    goto rtreeInit_fail;
  }
  pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate, pzErr);
  if( rc ) goto rtreeInit_fail;
  rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
  if( rc ){
    *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    goto rtreeInit_fail;
  }


  *ppVtab = (sqlite3_vtab *)pRtree;
  return SQLITE_OK;

rtreeInit_fail:
  if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
  assert( *ppVtab==0 );
  assert( pRtree->nBusy==1 );
  rtreeRelease(pRtree);

  return rc;
}


/*
** Implementation of a scalar function that decodes r-tree nodes to
** human readable strings. This can be used for debugging and analysis.