SQLite

Check-in [0c4d138807]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Change the record format to include an extra varint at the beginning to record the number of bytes in the header. (CVS 1478)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 0c4d138807f367d75b3fb5b2dadf206df725659f
User & Date: drh 2004-05-27 19:59:32.000
Context
2004-05-27
23:56
Add API functions sqlite3_open_varargs(), sqlite3_open16_varargs() and sqlite3_complete16(). (CVS 1479) (check-in: 203af2b2e3 user: danielk1977 tags: trunk)
19:59
Change the record format to include an extra varint at the beginning to record the number of bytes in the header. (CVS 1478) (check-in: 0c4d138807 user: drh tags: trunk)
17:22
Remove the COPY command. (CVS 1477) (check-in: 287f86731c user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.340 2004/05/27 17:22:56 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.341 2004/05/27 19:59:32 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    pTail->pNext = pLeft;
  }else if( pRight ){
    pTail->pNext = pRight;
  }
  return sHead.pNext;
}

/*
** The following routine works like a replacement for the standard
** library routine fgets().  The difference is in how end-of-line (EOL)
** is handled.  Standard fgets() uses LF for EOL under unix, CRLF
** under windows, and CR under mac.  This routine accepts any of these
** character sequences as an EOL mark.  The EOL mark is replaced by
** a single LF character in zBuf.
*/
static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
  int i, c;
  for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
    zBuf[i] = c;
    if( c=='\r' || c=='\n' ){
      if( c=='\r' ){
        zBuf[i] = '\n';
        c = getc(in);
        if( c!=EOF && c!='\n' ) ungetc(c, in);
      }
      i++;
      break;
    }
  }
  zBuf[i]  = 0;
  return i>0 ? zBuf : 0;
}

/*
** Make sure there is space in the Vdbe structure to hold at least
** mxCursor cursors.  If there is not currently enough space, then
** allocate more.
**
** If a memory allocation error occurs, return 1.  Return 0 if
** everything works.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







237
238
239
240
241
242
243


























244
245
246
247
248
249
250
    pTail->pNext = pLeft;
  }else if( pRight ){
    pTail->pNext = pRight;
  }
  return sHead.pNext;
}



























/*
** Make sure there is space in the Vdbe structure to hold at least
** mxCursor cursors.  If there is not currently enough space, then
** allocate more.
**
** If a memory allocation error occurs, return 1.  Return 0 if
** everything works.
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854

1855

1856
1857
1858
1859
1860
1861
1862
1863

1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915





1916










1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931

1932
1933
1934
1935
1936

1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960


1961

1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981




1982
1983




1984
1985
1986
1987
1988
1989
1990

1991
1992

1993


1994

1995
1996
1997
1998

1999
2000
2001
2002
2003
2004
2005

2006
2007





2008




2009


2010
2011



2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

2023
2024



2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
** next on the stack is used.  And so forth.  The value pushed is always
** just a pointer into the record which is stored further down on the
** stack.  The column value is not copied. The number of columns in the
** record is stored on the stack just above the record itself.
*/
case OP_Column: {
  int payloadSize;   /* Number of bytes in the record */
  int i = pOp->p1;
  int p2 = pOp->p2;  /* column number to retrieve */
  Cursor *pC = 0;
  char *zRec;        /* Pointer to record-data from stack or pseudo-table. */
  BtCursor *pCrsr;


  u64 nField;        /* number of fields in the record */

  int len;           /* The length of the serialized data for the column */
  int offset = 0;
  int nn;

  char *zData;       
  Mem sMem;
  sMem.flags = 0;


  assert( i<p->nCursor );
  pTos++;

  /* If the record is coming from the stack, not from a cursor, then there
  ** is nowhere to cache the record header infomation. This simplifies
  ** things greatly, so deal with this case seperately.
  */
  if( i<0 ){
    char *zRec;     /* Pointer to record data from the stack. */
    int off = 0;    /* Offset in zRec to start of the columns data. */
    int off2 = 0;   /* Offset in zRec to the next serial type to read */
    u64 colType;    /* The serial type of the value being read. */

    assert( &pTos[i-1]>=p->aStack );

    /* FIX ME: I don't understand this either. How is it related to
    ** OP_SortNext? (I thought it would be the commented out assert())
    */
    /* assert( pTos[i].flags & MEM_Blob ); */
    assert( pTos[i].flags & (MEM_Blob|MEM_Str) );
    assert( pTos[i-1].flags & MEM_Int );

    if( pTos[i].n==0 ){
      pTos->flags = MEM_Null;
      break;
    }

    zRec = pTos[i].z;
    nField = pTos[i-1].i;
     
    for( nn=0; nn<nField; nn++ ){
      u64 v;
      off2 += sqlite3GetVarint(&zRec[off2], &v);
      if( nn==p2 ){
        colType = v;
      }else if( nn<p2 ){
        off += sqlite3VdbeSerialTypeLen(v);
      }
    }
    off += off2;
    
    sqlite3VdbeSerialGet(&zRec[off], colType, pTos, p->db->enc);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    break;
  }


  /* This block sets the variable payloadSize, and if the data is coming
  ** from the stack or from a pseudo-table zRec. If the data is coming
  ** from a real cursor, then zRec is left as NULL.





  */










  if( (pC = p->apCsr[i])->pCursor!=0 ){
    sqlite3VdbeCursorMoveto(pC);
    zRec = 0;
    pCrsr = pC->pCursor;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->cacheValid ){
      payloadSize = pC->payloadSize;
    }else if( pC->keyAsData ){
      i64 payloadSize64;
      sqlite3BtreeKeySize(pCrsr, &payloadSize64);
      payloadSize = payloadSize64;
    }else{
      sqlite3BtreeDataSize(pCrsr, &payloadSize);
    }

  }else if( pC->pseudoTable ){
    payloadSize = pC->nData;
    zRec = pC->pData;
    pC->cacheValid = 0;
    assert( payloadSize==0 || zRec!=0 );

  }else{
    payloadSize = 0;
  }

  /* If payloadSize is 0, then just push a NULL onto the stack. */
  if( payloadSize==0 ){
    pTos->flags = MEM_Null;
    break;
  }

  /* If the row data is coming from a cursor, then OP_SetNumColumns must of
  ** been executed on that cursor. Also, p2 (the column to read) must be
  ** less than nField.
  */
  assert( !pC || pC->nField>0 );
  assert( p2<pC->nField );
  nField = pC->nField;

  /* Read and parse the table header.  Store the results of the parse
  ** into the record header cache fields of the cursor.
  */
  if( !pC || !pC->cacheValid ){
    pC->payloadSize = payloadSize;
    if( !pC->aType ){


      pC->aType = sqliteMallocRaw( nField*sizeof(pC->aType[0]) );

      if( pC->aType==0 ){
        goto no_mem;
      }
    }

    if( zRec ){
      zData = zRec;
    }else{
      /* Estimate the maximum space required by the nField varints by
      ** assuming the maximum space for each is the length required to store:
      **
      **     (<record length> * 2) + 13
      **
      ** This is the serial-type for a text object as long as the record
      ** itself. In almost all cases the length required to store this is
      ** three bytes or less. 
      */
      int max_space = sqlite3VarintLen((((u64)payloadSize)<<1)+13)*nField;
      if( max_space>payloadSize ){
        max_space = payloadSize;




      }





      rc = getBtreeMem(pCrsr, 0, max_space, pC->keyAsData, &sMem);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      zData = sMem.z;
    }


    /* Read all the serial types for the record.  At the end of this block
    ** variable offset is set to the offset to the start of Data0 in the record.

    */


    for(nn=0; nn<nField; nn++){

      offset += sqlite3GetVarint(&zData[offset], &pC->aType[nn]);
    }
    pC->nHeader = offset;
    pC->cacheValid = 1;


    Release(&sMem);
    sMem.flags = 0;
  }

  /* Compute the offset from the beginning of the record to the beginning
  ** of the data.  And get the length of the data.

  */
  offset = pC->nHeader;





  for(nn=0; nn<p2; nn++){




    offset += sqlite3VdbeSerialTypeLen(pC->aType[nn]);


  }




  if( zRec ){
    zData = &zRec[offset];
  }else{
    len = sqlite3VdbeSerialTypeLen(pC->aType[p2]);
    getBtreeMem(pCrsr, offset, len, pC->keyAsData, &sMem);
    zData = sMem.z;
  }
  sqlite3VdbeSerialGet(zData, pC->aType[p2], pTos, p->db->enc);
  if( rc!=SQLITE_OK ){
    goto abort_due_to_error;
  }


  Release(&sMem);



  break;
}

/* Opcode MakeRecord P1 * P3
**
** This opcode (not yet in use) is a replacement for the current
** OP_MakeRecord that supports the SQLite3 manifest typing feature.
** It drops the (P2==1) option that was never use.
**
** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table.  The
** details of the format are irrelavant as long as the OP_Column
** opcode can decode the record later.  Refer to source code
** comments for the details of the record format.
**
** P3 may be a string that is P1 characters long.  The nth character of the







|

|

|
|
>

>

|
|
|
|
|
<

>
|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
|














>





>










<
<
<
<
<
|
<




|
<
|
>
>
|
>
|
|
|
|
|



<
<
<
<
<
<
<
<
<
<
<
|
>
>
>
>

|
>
>
>
>
|






>
|
|
>

>
>
|
>
|
<
|
<
>
|

|
|
|
|
<
>
|
|
>
>
>
>
>
|
>
>
>
>
|
>
>
|
|
>
>
>

|

|
|


|



>

|
>
>
>





<
<
<
<







1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837

1838
1839
1840
1841














































1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893





1894

1895
1896
1897
1898
1899

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912











1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940

1941

1942
1943
1944
1945
1946
1947
1948

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991




1992
1993
1994
1995
1996
1997
1998
** next on the stack is used.  And so forth.  The value pushed is always
** just a pointer into the record which is stored further down on the
** stack.  The column value is not copied. The number of columns in the
** record is stored on the stack just above the record itself.
*/
case OP_Column: {
  int payloadSize;   /* Number of bytes in the record */
  int p1 = pOp->p1;  /* P1 value of the opcode */
  int p2 = pOp->p2;  /* column number to retrieve */
  Cursor *pC = 0;    /* The VDBE cursor */
  char *zRec;        /* Pointer to record-data from stack or pseudo-table. */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  u64 nField;        /* number of fields in the record */
  u32 szHdr;         /* Number of bytes in the record header */
  int len;           /* The length of the serialized data for the column */
  int offset = 0;    /* Offset into the data */
  int idx;           /* Index into the header */
  int i;             /* Loop counter */
  char *zData;       /* Part of the record being decoded */
  Mem sMem;          /* For storing the record being decoded */


  sMem.flags = 0;
  assert( p1<p->nCursor );
  pTos++;















































  /* This block sets the variable payloadSize, and if the data is coming
  ** from the stack or from a pseudo-table zRec. If the data is coming
  ** from a real cursor, then zRec is left as NULL.
  **
  ** We also compute the number of columns in the record.  For cursors,
  ** the number of columns is stored in the Cursor.nField element.  For
  ** records on the stack, the next entry down on the stack is an integer
  ** which is the number of records.
  */
  if( p1<0 ){
    Mem *pRec = &pTos[p1];
    Mem *pCnt = &pRec[-1];
    assert( pRec>=p->aStack );
    assert( pRec->flags & MEM_Blob );
    payloadSize = pRec->n;
    zRec = pRec->z;
    assert( pCnt>=p->aStack );
    assert( pCnt->flags & MEM_Int );
    nField = pCnt->i;
  }else if( (pC = p->apCsr[p1])->pCursor!=0 ){
    sqlite3VdbeCursorMoveto(pC);
    zRec = 0;
    pCrsr = pC->pCursor;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->cacheValid ){
      payloadSize = pC->payloadSize;
    }else if( pC->keyAsData ){
      i64 payloadSize64;
      sqlite3BtreeKeySize(pCrsr, &payloadSize64);
      payloadSize = payloadSize64;
    }else{
      sqlite3BtreeDataSize(pCrsr, &payloadSize);
    }
    nField = pC->nField;
  }else if( pC->pseudoTable ){
    payloadSize = pC->nData;
    zRec = pC->pData;
    pC->cacheValid = 0;
    assert( payloadSize==0 || zRec!=0 );
    nField = pC->nField;
  }else{
    payloadSize = 0;
  }

  /* If payloadSize is 0, then just push a NULL onto the stack. */
  if( payloadSize==0 ){
    pTos->flags = MEM_Null;
    break;
  }






  assert( p2<nField );


  /* Read and parse the table header.  Store the results of the parse
  ** into the record header cache fields of the cursor.
  */
  if( pC && pC->cacheValid ){

    aType = pC->aType;
    aOffset = pC->aOffset;
  }else{
    aType = sqliteMallocRaw( 2*nField*sizeof(aType) );
    aOffset = &aType[nField];
    if( aType==0 ){
      goto no_mem;
    }

    /* Figure out how many bytes are in the header */
    if( zRec ){
      zData = zRec;
    }else{











      int sz = payloadSize<5 ? payloadSize : 5;
      if( pC->keyAsData ){
        zData = (char*)sqlite3BtreeKeyFetch(pCrsr, sz);
      }else{
        zData = (char*)sqlite3BtreeDataFetch(pCrsr, sz);
      }
    }
    idx = sqlite3GetVarint32(zData, &szHdr);

    /* Get the complete header text */
    if( !zRec ){
      rc = getBtreeMem(pCrsr, 0, szHdr, pC->keyAsData, &sMem);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      zData = sMem.z;
    }

    /* Scan the header and use it to fill in the aType[] and aOffset[]
    ** arrays.  aType[i] will contain the type integer for the i-th
    ** column and aOffset[i] will contain the offset from the beginning
    ** of the record to the start of the data for the i-th column
    */
    offset = szHdr;
    i = 0;
    while( idx<szHdr && i<nField && offset<=payloadSize ){
      aOffset[i] = offset;
      idx += sqlite3GetVarint32(&zData[idx], &aType[i]);

      offset += sqlite3VdbeSerialTypeLen(aType[i]);

      i++;
    }
    Release(&sMem);
    sMem.flags = MEM_Null;

    /* The header should end at the start of data and the data should
    ** end at last byte of the record. If this is not the case then

    ** we are dealing with a malformed record.
    */
    if( idx!=szHdr || offset!=payloadSize ){
      sqliteFree(aType);
      if( pC ) pC->aType = 0;
      rc = SQLITE_CORRUPT;
      break;
    }

    /* Remember all aType and aColumn information if we have a cursor
    ** to remember it in. */
    if( pC ){
      pC->payloadSize = payloadSize;
      pC->aType = aType;
      pC->aOffset = aOffset;
      pC->cacheValid = 1;
    }
  }

  /* Get the column information.
  */
  if( zRec ){
    zData = &zRec[aOffset[p2]];
  }else{
    len = sqlite3VdbeSerialTypeLen(aType[p2]);
    getBtreeMem(pCrsr, aOffset[p2], len, pC->keyAsData, &sMem);
    zData = sMem.z;
  }
  sqlite3VdbeSerialGet(zData, aType[p2], pTos, p->db->enc);
  if( rc!=SQLITE_OK ){
    goto abort_due_to_error;
  }
  Release(&sMem);

  /* Release the aType[] memory if we are not dealing with cursor */
  if( !pC ){
    sqliteFree(aType);
  }
  break;
}

/* Opcode MakeRecord P1 * P3
**




** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table.  The
** details of the format are irrelavant as long as the OP_Column
** opcode can decode the record later.  Refer to source code
** comments for the details of the record format.
**
** P3 may be a string that is P1 characters long.  The nth character of the
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076


2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094


2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108

2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
** If P3 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeRecord: {
  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  ** --------------------------------------------------------------------------
  ** | num-fields | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** --------------------------------------------------------------------------
  **
  ** Data(0) is taken from the lowest element of the stack and data(N-1) is
  ** the top of the stack.
  **
  ** Each type field is a varint representing the serial type of the 
  ** corresponding data element (see sqlite3VdbeSerialType()). The
  ** num-fields field is also a varint storing N.
  ** 
  ** TODO: Even when the record is short enough for Mem::zShort, this opcode
  **   allocates it dynamically.
  */
  int nField = pOp->p1;
  unsigned char *zNewRecord;
  unsigned char *zCsr;
  char *zAffinity;
  Mem *pRec;


  int nBytes = 0;    /* Space required for this record */

  Mem *pData0 = &pTos[1-nField];
  assert( pData0>=p->aStack );
  zAffinity = pOp->p3;

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pTos; pRec++){
    u64 serial_type;
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], db->enc);
    }
    serial_type = sqlite3VdbeSerialType(pRec);
    nBytes += sqlite3VdbeSerialTypeLen(serial_type);
    nBytes += sqlite3VarintLen(serial_type);
  }



  if( nBytes>MAX_BYTES_PER_ROW ){
    rc = SQLITE_TOOBIG;
    goto abort_due_to_error;
  }

  /* Allocate space for the new record. */
  zNewRecord = sqliteMallocRaw(nBytes);
  if( !zNewRecord ){
    goto no_mem;
  }

  /* Write the record */
  zCsr = zNewRecord;

  for(pRec=pData0; pRec<=pTos; pRec++){
    u64 serial_type = sqlite3VdbeSerialType(pRec);
    zCsr += sqlite3PutVarint(zCsr, serial_type);      /* serial type */
  }
  for(pRec=pData0; pRec<=pTos; pRec++){
    zCsr += sqlite3VdbeSerialPut(zCsr, pRec);  /* serial data */
  }

  /* If zCsr has not been advanced exactly nBytes bytes, then one
  ** of the sqlite3PutVarint() or sqlite3VdbeSerialPut() calls above
  ** failed. This indicates a corrupted memory cell or code bug.
  */
  if( zCsr!=(zNewRecord+nBytes) ){
    rc = SQLITE_INTERNAL;
    goto abort_due_to_error;
  }

  /* Pop nField entries from the stack and push the new entry on */
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nBytes;
  pTos->z = zNewRecord;
  pTos->flags = MEM_Blob | MEM_Dyn;

  break;
}

/* Opcode: MakeKey P1 P2 P3







|

















>
>
|














|
|

>
>

|





|






>








|



|







|







2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
** If P3 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeRecord: {
  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  ** --------------------------------------------------------------------------
  ** | header-siz | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** --------------------------------------------------------------------------
  **
  ** Data(0) is taken from the lowest element of the stack and data(N-1) is
  ** the top of the stack.
  **
  ** Each type field is a varint representing the serial type of the 
  ** corresponding data element (see sqlite3VdbeSerialType()). The
  ** num-fields field is also a varint storing N.
  ** 
  ** TODO: Even when the record is short enough for Mem::zShort, this opcode
  **   allocates it dynamically.
  */
  int nField = pOp->p1;
  unsigned char *zNewRecord;
  unsigned char *zCsr;
  char *zAffinity;
  Mem *pRec;
  int nData = 0;     /* Number of bytes of data space */
  int nHdr = 0;      /* Number of bytes of header space */
  int nByte = 0;     /* Space required for this record */

  Mem *pData0 = &pTos[1-nField];
  assert( pData0>=p->aStack );
  zAffinity = pOp->p3;

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pTos; pRec++){
    u64 serial_type;
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], db->enc);
    }
    serial_type = sqlite3VdbeSerialType(pRec);
    nData += sqlite3VdbeSerialTypeLen(serial_type);
    nHdr += sqlite3VarintLen(serial_type);
  }
  nHdr += sqlite3VarintLen(nHdr);
  nByte = nHdr+nData;

  if( nByte>MAX_BYTES_PER_ROW ){
    rc = SQLITE_TOOBIG;
    goto abort_due_to_error;
  }

  /* Allocate space for the new record. */
  zNewRecord = sqliteMallocRaw(nByte);
  if( !zNewRecord ){
    goto no_mem;
  }

  /* Write the record */
  zCsr = zNewRecord;
  zCsr += sqlite3PutVarint(zCsr, nHdr);
  for(pRec=pData0; pRec<=pTos; pRec++){
    u64 serial_type = sqlite3VdbeSerialType(pRec);
    zCsr += sqlite3PutVarint(zCsr, serial_type);      /* serial type */
  }
  for(pRec=pData0; pRec<=pTos; pRec++){
    zCsr += sqlite3VdbeSerialPut(zCsr, pRec);  /* serial data */
  }

  /* If zCsr has not been advanced exactly nByte bytes, then one
  ** of the sqlite3PutVarint() or sqlite3VdbeSerialPut() calls above
  ** failed. This indicates a corrupted memory cell or code bug.
  */
  if( zCsr!=(zNewRecord+nByte) ){
    rc = SQLITE_INTERNAL;
    goto abort_due_to_error;
  }

  /* Pop nField entries from the stack and push the new entry on */
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nByte;
  pTos->z = zNewRecord;
  pTos->flags = MEM_Blob | MEM_Dyn;

  break;
}

/* Opcode: MakeKey P1 P2 P3
Changes to src/vdbeInt.h.
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  Btree *pBt;           /* Separate file holding temporary table */
  int nData;            /* Number of bytes in pData */
  char *pData;          /* Data for a NEW or OLD pseudo-table */
  i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
  u8 *pIncrKey;         /* Pointer to pKeyInfo->incrKey */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */


  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to */
  Bool cacheValid;      /* True if the cache is valid */
  int nField;           /* Number of fields in the header */
  int nHeader;          /* Number of bytes in the entire header */
  int payloadSize;      /* Total number of bytes in the record */
  u64 *aType;           /* Type values for all entries in the record */

};
typedef struct Cursor Cursor;

/*
** A sorter builds a list of elements to be sorted.  Each element of
** the list is an instance of the following structure.
*/







>




<
<

|
>







76
77
78
79
80
81
82
83
84
85
86
87


88
89
90
91
92
93
94
95
96
97
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  Btree *pBt;           /* Separate file holding temporary table */
  int nData;            /* Number of bytes in pData */
  char *pData;          /* Data for a NEW or OLD pseudo-table */
  i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
  u8 *pIncrKey;         /* Pointer to pKeyInfo->incrKey */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int nField;           /* Number of fields in the header */

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to */
  Bool cacheValid;      /* True if the cache is valid */


  int payloadSize;      /* Total number of bytes in the record */
  u32 *aType;           /* Type values for all entries in the record */
  u32 *aOffset;         /* Cached offsets to the start of each columns data */
};
typedef struct Cursor Cursor;

/*
** A sorter builds a list of elements to be sorted.  Each element of
** the list is an instance of the following structure.
*/
363
364
365
366
367
368
369
370
int sqlite3VdbeMemDynamicify(Mem*);
int sqlite3VdbeMemStringify(Mem*, int);
int sqlite3VdbeMemIntegerify(Mem*);
int sqlite3VdbeMemRealify(Mem*);
#ifndef NDEBUG
void sqlite3VdbeMemSanity(Mem*, u8);
#endif








<
363
364
365
366
367
368
369

int sqlite3VdbeMemDynamicify(Mem*);
int sqlite3VdbeMemStringify(Mem*, int);
int sqlite3VdbeMemIntegerify(Mem*);
int sqlite3VdbeMemRealify(Mem*);
#ifndef NDEBUG
void sqlite3VdbeMemSanity(Mem*, u8);
#endif

Changes to src/vdbeaux.c.
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480




1481












1482
1483
1484




1485
1486
1487
1488
1489
1490
1491
1492
*/
int sqlite3VdbeRowCompare(
  void *userData,
  int nKey1, const void *pKey1, 
  int nKey2, const void *pKey2
){
  KeyInfo *pKeyInfo = (KeyInfo*)userData;
  int offset1 = 0;
  int offset2 = 0;
  int toffset1 = 0;
  int toffset2 = 0;
  int i;
  u8 enc = pKeyInfo->enc;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;

  assert( pKeyInfo );
  assert( pKeyInfo->nField>0 );

  for( i=0; i<pKeyInfo->nField; i++ ){
    u64 dummy;
    offset1 += sqlite3GetVarint(&aKey1[offset1], &dummy);
    offset2 += sqlite3GetVarint(&aKey1[offset1], &dummy);
  }

  for( i=0; i<pKeyInfo->nField; i++ ){

    Mem mem1;
    Mem mem2;
    u64 serial_type1;
    u64 serial_type2;
    int rc;

    /* Read the serial types for the next element in each key. */
    toffset1 += sqlite3GetVarint(&aKey1[toffset1], &serial_type1);
    toffset2 += sqlite3GetVarint(&aKey2[toffset2], &serial_type2);

    assert( serial_type1 && serial_type2 );

    /* Assert that there is enough space left in each key for the blob of
    ** data to go with the serial type just read. This assert may fail if
    ** the file is corrupted.  Then read the value from each key into mem1
    ** and mem2 respectively.
    */
    offset1 += sqlite3VdbeSerialGet(&aKey1[offset1], serial_type1, &mem1, enc);
    offset2 += sqlite3VdbeSerialGet(&aKey2[offset2], serial_type2, &mem2, enc);

    rc = sqlite3MemCompare(&mem1, &mem2, pKeyInfo->aColl[i]);
    if( mem1.flags&MEM_Dyn ){
      sqliteFree(mem1.z);
    }
    if( mem2.flags&MEM_Dyn ){
      sqliteFree(mem2.z);
    }
    if( rc!=0 ){




      return rc;












    }
  }





  return 0;
}
  

/*
** pCur points at an index entry. Read the rowid (varint occuring at
** the end of the entry and store it in *rowid. Return SQLITE_OK if
** everything works, or an error code otherwise.







|
|
|
|
|
|


|
|
<
|
<
<
|
<
<
|
|
>


|
|
<


|
|
<
<






|
|









>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>



>
>
>
>
|







1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443

1444


1445


1446
1447
1448
1449
1450
1451
1452

1453
1454
1455
1456


1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
*/
int sqlite3VdbeRowCompare(
  void *userData,
  int nKey1, const void *pKey1, 
  int nKey2, const void *pKey2
){
  KeyInfo *pKeyInfo = (KeyInfo*)userData;
  u32 d1, d2;          /* Offset into aKey[] of next data element */
  u32 idx1, idx2;      /* Offset into aKey[] of next header element */
  u32 szHdr1, szHdr2;  /* Number of bytes in header */
  int i = 0;
  int nField;
  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;
  
  idx1 = sqlite3GetVarint32(pKey1, &szHdr1);

  d1 = szHdr1;


  idx2 = sqlite3GetVarint32(pKey2, &szHdr2);


  d2 = szHdr2;
  nField = pKeyInfo->nField;
  while( idx1<szHdr1 && idx2<szHdr2 && d1<nKey1 && d2<nKey2 && i<nField ){
    Mem mem1;
    Mem mem2;
    u32 serial_type1;
    u32 serial_type2;


    /* Read the serial types for the next element in each key. */
    idx1 += sqlite3GetVarint32(&aKey1[idx1], &serial_type1);
    idx2 += sqlite3GetVarint32(&aKey2[idx2], &serial_type2);



    /* Assert that there is enough space left in each key for the blob of
    ** data to go with the serial type just read. This assert may fail if
    ** the file is corrupted.  Then read the value from each key into mem1
    ** and mem2 respectively.
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1, 0);
    d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2, 0);

    rc = sqlite3MemCompare(&mem1, &mem2, pKeyInfo->aColl[i]);
    if( mem1.flags&MEM_Dyn ){
      sqliteFree(mem1.z);
    }
    if( mem2.flags&MEM_Dyn ){
      sqliteFree(mem2.z);
    }
    if( rc!=0 ){
      break;
    }
    i++;
  }

  /* One of the keys ran out of fields, but all the fields up to that point
  ** were equal. If the incrKey flag is true, then the second key is
  ** treated as larger.
  */
  if( rc==0 ){
    if( pKeyInfo->incrKey ){
      assert( d2==nKey2 );
      rc = -1;
    }else if( d1<nKey1 ){
      rc = 1;
    }else if( d2<nKey2 ){
      rc = -1;
    }
  }

  if( pKeyInfo->aSortOrder && i<pKeyInfo->nField && pKeyInfo->aSortOrder[i] ){
    rc = -rc;
  }

  return rc;
}
  

/*
** pCur points at an index entry. Read the rowid (varint occuring at
** the end of the entry and store it in *rowid. Return SQLITE_OK if
** everything works, or an error code otherwise.
Changes to test/types.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. Specfically
# it tests that the different storage classes (integer, real, text etc.)
# all work correctly.
#
# $Id: types.test,v 1.6 2004/05/24 12:55:55 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Tests in this file are organized roughly as follows:
#
# types-1.*.*: Test that values are stored using the expected storage







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. Specfically
# it tests that the different storage classes (integer, real, text etc.)
# all work correctly.
#
# $Id: types.test,v 1.7 2004/05/27 19:59:33 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Tests in this file are organized roughly as follows:
#
# types-1.*.*: Test that values are stored using the expected storage
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
} [list 0 120 -120 30000 -30000 2100000000 -2100000000 \
        9000000000000000000 -9000000000000000000]

# Check that all the record sizes are as we expected.
do_test types-2.1.9 {
  set root [db eval {select rootpage from sqlite_master where name = 't1'}]
  record_sizes $root
} {2 2 2 3 3 5 5 9 9}

# Insert some reals. These should be 10 byte records.
do_test types-2.2.1 {
  execsql {
    CREATE TABLE t2(a float);
    INSERT INTO t2 VALUES(0.0);
    INSERT INTO t2 VALUES(12345.678);
    INSERT INTO t2 VALUES(-12345.678);
  }
} {}
do_test types-2.2.2 {
  execsql {
    SELECT a FROM t2;
  }
} {0 12345.678 -12345.678}

# Check that all the record sizes are as we expected.
do_test types-2.2.3 {
  set root [db eval {select rootpage from sqlite_master where name = 't2'}]
  record_sizes $root
} {9 9 9}

# Insert a NULL. This should be a two byte record.
do_test types-2.3.1 {
  execsql {
    CREATE TABLE t3(a nullvalue);
    INSERT INTO t3 VALUES(NULL);
  }
} {}
do_test types-2.3.2 {
  execsql {
    SELECT a ISNULL FROM t3;
  }
} {1}

# Check that all the record sizes are as we expected.
do_test types-2.3.3 {
  set root [db eval {select rootpage from sqlite_master where name = 't3'}]
  record_sizes $root
} {1}

# Insert a couple of strings.
do_test types-2.4.1 {
  set string10 abcdefghij
  set string500 [string repeat $string10 50]
  set string500000 [string repeat $string10 50000]








|




















|


















|







195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
} [list 0 120 -120 30000 -30000 2100000000 -2100000000 \
        9000000000000000000 -9000000000000000000]

# Check that all the record sizes are as we expected.
do_test types-2.1.9 {
  set root [db eval {select rootpage from sqlite_master where name = 't1'}]
  record_sizes $root
} {3 3 3 4 4 6 6 10 10}

# Insert some reals. These should be 10 byte records.
do_test types-2.2.1 {
  execsql {
    CREATE TABLE t2(a float);
    INSERT INTO t2 VALUES(0.0);
    INSERT INTO t2 VALUES(12345.678);
    INSERT INTO t2 VALUES(-12345.678);
  }
} {}
do_test types-2.2.2 {
  execsql {
    SELECT a FROM t2;
  }
} {0 12345.678 -12345.678}

# Check that all the record sizes are as we expected.
do_test types-2.2.3 {
  set root [db eval {select rootpage from sqlite_master where name = 't2'}]
  record_sizes $root
} {10 10 10}

# Insert a NULL. This should be a two byte record.
do_test types-2.3.1 {
  execsql {
    CREATE TABLE t3(a nullvalue);
    INSERT INTO t3 VALUES(NULL);
  }
} {}
do_test types-2.3.2 {
  execsql {
    SELECT a ISNULL FROM t3;
  }
} {1}

# Check that all the record sizes are as we expected.
do_test types-2.3.3 {
  set root [db eval {select rootpage from sqlite_master where name = 't3'}]
  record_sizes $root
} {2}

# Insert a couple of strings.
do_test types-2.4.1 {
  set string10 abcdefghij
  set string500 [string repeat $string10 50]
  set string500000 [string repeat $string10 50000]

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  }
} [list $string10 $string500 $string500000]

# Check that all the record sizes are as we expected.
do_test types-2.4.3 {
  set root [db eval {select rootpage from sqlite_master where name = 't4'}]
  record_sizes $root
} {11 502 500003}

do_test types-2.5.1 {
  execsql {
    DROP TABLE t1;
    DROP TABLE t2;
    DROP TABLE t3;
    DROP TABLE t4;







|







260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  }
} [list $string10 $string500 $string500000]

# Check that all the record sizes are as we expected.
do_test types-2.4.3 {
  set root [db eval {select rootpage from sqlite_master where name = 't4'}]
  record_sizes $root
} {12 503 500004}

do_test types-2.5.1 {
  execsql {
    DROP TABLE t1;
    DROP TABLE t2;
    DROP TABLE t3;
    DROP TABLE t4;