SQLite

Check-in [08f74c45ec]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest trunk changes with this branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | sqlite_stat4
Files: files | file ages | folders
SHA1: 08f74c45ecf711a2373af578d44470add9082377
User & Date: dan 2013-08-07 18:42:27.752
Context
2013-08-07
19:46
Replace variable Index.avgEq (average number of rows in keys for which there is no sample in sqlite_stat4) with vector Index.aAvgEq. (check-in: 7b70b419c4 user: dan tags: sqlite_stat4)
18:42
Merge latest trunk changes with this branch. (check-in: 08f74c45ec user: dan tags: sqlite_stat4)
16:38
Fix typos in a comment in analyze.c. No code changes. (check-in: 812ed0c58f user: dan tags: sqlite_stat4)
14:18
Add a guard #ifndef to test_intarray.h to prevent harm if it is #included more than once. Add a comment on the closing #endif of the guards on sqlite3.h and test_multiplex.h. (check-in: 0ad83ceb79 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to configure.
1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.7.17.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##


|







1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.8.0.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.7.17'
PACKAGE_STRING='sqlite 3.7.17'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>







|
|







739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.8.0'
PACKAGE_STRING='sqlite 3.8.0'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.7.17 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.







|







1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.8.0 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.7.17:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]







|







1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.8.0:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.7.17
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.7.17, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{







|













|







1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.8.0
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.8.0, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.7.17, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@







|







14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.8.0, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.7.17
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."








|







14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.8.0
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."

Changes to ext/misc/vtshim.c.
425
426
427
428
429
430
431

432
433
434
435
436
437
438

/* The destructor function for a disposible module */
static void vtshimAuxDestructor(void *pXAux){
  vtshim_aux *pAux = (vtshim_aux*)pXAux;
  assert( pAux->pAllVtab==0 );
  if( !pAux->bDisposed && pAux->xChildDestroy ){
    pAux->xChildDestroy(pAux->pChildAux);

  }
  sqlite3_free(pAux->zName);
  sqlite3_free(pAux->pMod);
  sqlite3_free(pAux);
}

static int vtshimCopyModule(







>







425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

/* The destructor function for a disposible module */
static void vtshimAuxDestructor(void *pXAux){
  vtshim_aux *pAux = (vtshim_aux*)pXAux;
  assert( pAux->pAllVtab==0 );
  if( !pAux->bDisposed && pAux->xChildDestroy ){
    pAux->xChildDestroy(pAux->pChildAux);
    pAux->xChildDestroy = 0;
  }
  sqlite3_free(pAux->zName);
  sqlite3_free(pAux->pMod);
  sqlite3_free(pAux);
}

static int vtshimCopyModule(
523
524
525
526
527
528
529
530



531
532
533
534
535
536
537
    for(pVtab=pAux->pAllVtab; pVtab; pVtab=pVtab->pNext){
      for(pCur=pVtab->pAllCur; pCur; pCur=pCur->pNext){
        pAux->pMod->xClose(pCur->pChild);
      }
      pAux->pMod->xDisconnect(pVtab->pChild);
    }
    pAux->bDisposed = 1;
    if( pAux->xChildDestroy ) pAux->xChildDestroy(pAux->pChildAux);



  }
}


#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef _WIN32







|
>
>
>







524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    for(pVtab=pAux->pAllVtab; pVtab; pVtab=pVtab->pNext){
      for(pCur=pVtab->pAllCur; pCur; pCur=pCur->pNext){
        pAux->pMod->xClose(pCur->pChild);
      }
      pAux->pMod->xDisconnect(pVtab->pChild);
    }
    pAux->bDisposed = 1;
    if( pAux->xChildDestroy ){
      pAux->xChildDestroy(pAux->pChildAux);
      pAux->xChildDestroy = 0;
    }
  }
}


#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef _WIN32
Changes to mkopcodeh.awk.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60

61
62
63
64
65
66
67
# properties apply to that opcode.  Set corresponding flags using the
# OPFLG_INITIALIZER macro.
#


# Remember the TK_ values from the parse.h file
/^#define TK_/ {
  tk[$2] = 0+$3
}

# Scan for "case OP_aaaa:" lines in the vdbe.c file
/^case OP_/ {
  name = $2
  sub(/:/,"",name)
  sub("\r","",name)
  op[name] = -1
  jump[name] = 0
  out2_prerelease[name] = 0
  in1[name] = 0
  in2[name] = 0
  in3[name] = 0
  out2[name] = 0
  out3[name] = 0
  for(i=3; i<NF; i++){
    if($i=="same" && $(i+1)=="as"){
      sym = $(i+2)
      sub(/,/,"",sym)

      op[name] = tk[sym]
      used[op[name]] = 1
      sameas[op[name]] = sym

    }
    x = $i
    sub(",","",x)
    if(x=="jump"){
      jump[name] = 1
    }else if(x=="out2-prerelease"){
      out2_prerelease[name] = 1







|







|











>
|
|
|
>







31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# properties apply to that opcode.  Set corresponding flags using the
# OPFLG_INITIALIZER macro.
#


# Remember the TK_ values from the parse.h file
/^#define TK_/ {
  tk[$2] = 0+$3    # tk[x] holds the numeric value for TK symbol X
}

# Scan for "case OP_aaaa:" lines in the vdbe.c file
/^case OP_/ {
  name = $2
  sub(/:/,"",name)
  sub("\r","",name)
  op[name] = -1       # op[x] holds the numeric value for OP symbol x
  jump[name] = 0
  out2_prerelease[name] = 0
  in1[name] = 0
  in2[name] = 0
  in3[name] = 0
  out2[name] = 0
  out3[name] = 0
  for(i=3; i<NF; i++){
    if($i=="same" && $(i+1)=="as"){
      sym = $(i+2)
      sub(/,/,"",sym)
      val = tk[sym]
      op[name] = val
      used[val] = 1
      sameas[val] = sym
      def[val] = name
    }
    x = $i
    sub(",","",x)
    if(x=="jump"){
      jump[name] = 1
    }else if(x=="out2-prerelease"){
      out2_prerelease[name] = 1
86
87
88
89
90
91
92





























93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  max = 0
  print "/* Automatically generated.  Do not edit */"
  print "/* See the mkopcodeh.awk script for details */"
  op["OP_Noop"] = -1;
  order[n_op++] = "OP_Noop";
  op["OP_Explain"] = -1;
  order[n_op++] = "OP_Explain";





























  for(i=0; i<n_op; i++){
    name = order[i];
    if( op[name]<0 ){
      cnt++
      while( used[cnt] ) cnt++
      op[name] = cnt
    }
    used[op[name]] = 1;
    if( op[name]>max ) max = op[name]
    printf "#define %-25s %15d", name, op[name]
    if( sameas[op[name]] ) {
      printf "   /* same as %-12s*/", sameas[op[name]]
    } 
    printf "\n"

  }
  seenUnused = 0;
  for(i=1; i<max; i++){
    if( !used[i] ){
      if( !seenUnused ){
        printf "\n/* The following opcode values are never used */\n"
        seenUnused = 1
      }
      printf "#define %-25s %15d\n", sprintf( "OP_NotUsed_%-3d", i ), i


    }

  }

  # Generate the bitvectors:
  #
  #  bit 0:     jump
  #  bit 1:     pushes a result onto stack
  #  bit 2:     output to p1.  release p1 before opcode runs
  #
  for(i=0; i<=max; i++) bv[i] = 0;
  for(i=0; i<n_op; i++){
    name = order[i];
    x = op[name]
    a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0
    # a7 = a9 = a10 = a11 = a12 = a13 = a14 = a15 = 0
    if( jump[name] ) a0 = 1;
    if( out2_prerelease[name] ) a1 = 2;
    if( in1[name] ) a2 = 4;
    if( in2[name] ) a3 = 8;
    if( in3[name] ) a4 = 16;
    if( out2[name] ) a5 = 32;
    if( out3[name] ) a6 = 64;
    # bv[x] = a0+a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14+a15;
    bv[x] = a0+a1+a2+a3+a4+a5+a6+a7;
  }
  print "\n"
  print "/* Properties such as \"out2\" or \"jump\" that are specified in"
  print "** comments following the \"case\" for each opcode in the vdbe.c"
  print "** are encoded into bitvectors as follows:"
  print "*/"
  print "#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */"







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






<
|
|
<
<
<
|
<
|
<
|
|

<
<
|
|
|
>
>
|
>








|
<
|
<

<







<
|







88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131



132

133

134
135
136


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

154

155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
  max = 0
  print "/* Automatically generated.  Do not edit */"
  print "/* See the mkopcodeh.awk script for details */"
  op["OP_Noop"] = -1;
  order[n_op++] = "OP_Noop";
  op["OP_Explain"] = -1;
  order[n_op++] = "OP_Explain";

  # Assign small values to opcodes that are processed by resolveP2Values()
  # to make code generation for the switch() statement smaller and faster.
  for(i=0; i<n_op; i++){
    name = order[i];
    if( op[name]>=0 ) continue;
    if( name=="OP_Function"      \
     || name=="OP_AggStep"       \
     || name=="OP_Transaction"   \
     || name=="OP_AutoCommit"    \
     || name=="OP_Savepoint"     \
     || name=="OP_Checkpoint"    \
     || name=="OP_Vacuum"        \
     || name=="OP_JournalMode"   \
     || name=="OP_VUpdate"       \
     || name=="OP_VFilter"       \
     || name=="OP_Next"          \
     || name=="OP_SorterNext"    \
     || name=="OP_Prev"          \
    ){
      cnt++
      while( used[cnt] ) cnt++
      op[name] = cnt
      used[cnt] = 1
      def[cnt] = name
    }
  }

  # Generate the numeric values for opcodes
  for(i=0; i<n_op; i++){
    name = order[i];
    if( op[name]<0 ){
      cnt++
      while( used[cnt] ) cnt++
      op[name] = cnt

      used[cnt] = 1
      def[cnt] = name



    }

  }

  max = cnt
  for(i=1; i<=max; i++){
    if( !used[i] ){


      def[i] = "OP_NotUsed_" i 
    }
    printf "#define %-25s %15d", def[i], i
    if( sameas[i] ){
      printf "   /* same as %-12s*/", sameas[i]
    } 
    printf "\n"
  }

  # Generate the bitvectors:
  #
  #  bit 0:     jump
  #  bit 1:     pushes a result onto stack
  #  bit 2:     output to p1.  release p1 before opcode runs
  #
  for(i=0; i<=max; i++){

    name = def[i]

    a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0

    if( jump[name] ) a0 = 1;
    if( out2_prerelease[name] ) a1 = 2;
    if( in1[name] ) a2 = 4;
    if( in2[name] ) a3 = 8;
    if( in3[name] ) a4 = 16;
    if( out2[name] ) a5 = 32;
    if( out3[name] ) a6 = 64;

    bv[i] = a0+a1+a2+a3+a4+a5+a6+a7;
  }
  print "\n"
  print "/* Properties such as \"out2\" or \"jump\" that are specified in"
  print "** comments following the \"case\" for each opcode in the vdbe.c"
  print "** are encoded into bitvectors as follows:"
  print "*/"
  print "#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */"
Changes to src/build.c.
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811

3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
** pointer. If an error occurs (out of memory or missing collation 
** sequence), NULL is returned and the state of pParse updated to reflect
** the error.
*/
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
  int i;
  int nCol = pIdx->nColumn;
  int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
  sqlite3 *db = pParse->db;
  KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);


  if( pKey ){
    pKey->db = pParse->db;
    pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
    assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
    for(i=0; i<nCol; i++){
      char *zColl = pIdx->azColl[i];
      assert( zColl );
      pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
    }
    pKey->nField = (u16)nCol;
  }

  if( pParse->nErr ){
    sqlite3DbFree(db, pKey);
    pKey = 0;
  }
  return pKey;
}







<
<
|

>

<
<
<






<



|




3801
3802
3803
3804
3805
3806
3807


3808
3809
3810
3811



3812
3813
3814
3815
3816
3817

3818
3819
3820
3821
3822
3823
3824
3825
** pointer. If an error occurs (out of memory or missing collation 
** sequence), NULL is returned and the state of pParse updated to reflect
** the error.
*/
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
  int i;
  int nCol = pIdx->nColumn;


  KeyInfo *pKey;

  pKey = sqlite3KeyInfoAlloc(pParse->db, nCol);
  if( pKey ){



    for(i=0; i<nCol; i++){
      char *zColl = pIdx->azColl[i];
      assert( zColl );
      pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
    }

  }

  if( pParse->nErr ){
    sqlite3DbFree(pParse->db, pKey);
    pKey = 0;
  }
  return pKey;
}
Changes to src/expr.c.
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698

1699
1700
1701
1702
1703
1704
1705
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;              /* Affinity of the LHS of the IN */
      KeyInfo keyInfo;            /* Keyinfo for the generated table */
      static u8 sortOrder = 0;    /* Fake aSortOrder for keyInfo */
      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */


      if( rMayHaveNull ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
      }

      affinity = sqlite3ExprAffinity(pLeft);








<
<


>







1688
1689
1690
1691
1692
1693
1694


1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;              /* Affinity of the LHS of the IN */


      int addr;                   /* Address of OP_OpenEphemeral instruction */
      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
      KeyInfo *pKeyInfo = 0;      /* Key information */

      if( rMayHaveNull ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
      }

      affinity = sqlite3ExprAffinity(pLeft);

1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

1740

1741
1742
1743


1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763

1764
1765

1766
1767
1768
1769
1770
1771
1772
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
      if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
      memset(&keyInfo, 0, sizeof(keyInfo));
      keyInfo.nField = 1;
      keyInfo.aSortOrder = &sortOrder;

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pExpr->x.pSelect->iLimit = 0;

        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){

          return 0;
        }
        pEList = pExpr->x.pSelect->pEList;


        if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 
          keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
              pEList->a[0].pExpr);
        }
      }else if( ALWAYS(pExpr->x.pList!=0) ){
        /* Case 2:     expr IN (exprlist)
        **
        ** For each expression, build an index key from the evaluation and
        ** store it in the temporary table. If <expr> is a column, then use
        ** that columns affinity when building index keys. If <expr> is not
        ** a column, use numeric affinity.
        */
        int i;
        ExprList *pList = pExpr->x.pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        if( !affinity ){
          affinity = SQLITE_AFF_NONE;
        }

        keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
        keyInfo.aSortOrder = &sortOrder;


        /* Loop through each expression in <exprlist>. */
        r1 = sqlite3GetTempReg(pParse);
        r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
          Expr *pE2 = pItem->pExpr;







<
|
<















>

>



>
>
|
|
|
<
















>
|
<
>







1714
1715
1716
1717
1718
1719
1720

1721

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765

1766
1767
1768
1769
1770
1771
1772
1773
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
      if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);

      pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1);


      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pExpr->x.pSelect->iLimit = 0;
        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
          sqlite3DbFree(pParse->db, pKeyInfo);
          return 0;
        }
        pEList = pExpr->x.pSelect->pEList;
        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
        assert( pEList!=0 );
        assert( pEList->nExpr>0 );
        pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
                                                         pEList->a[0].pExpr);

      }else if( ALWAYS(pExpr->x.pList!=0) ){
        /* Case 2:     expr IN (exprlist)
        **
        ** For each expression, build an index key from the evaluation and
        ** store it in the temporary table. If <expr> is a column, then use
        ** that columns affinity when building index keys. If <expr> is not
        ** a column, use numeric affinity.
        */
        int i;
        ExprList *pList = pExpr->x.pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        if( !affinity ){
          affinity = SQLITE_AFF_NONE;
        }
        if( pKeyInfo ){
          pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);

        }

        /* Loop through each expression in <exprlist>. */
        r1 = sqlite3GetTempReg(pParse);
        r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
          Expr *pE2 = pItem->pExpr;
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
              sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
            }
          }
        }
        sqlite3ReleaseTempReg(pParse, r1);
        sqlite3ReleaseTempReg(pParse, r2);
      }
      if( !isRowid ){
        sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
      }
      break;
    }

    case TK_EXISTS:
    case TK_SELECT:
    default: {







|
|







1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
              sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
            }
          }
        }
        sqlite3ReleaseTempReg(pParse, r1);
        sqlite3ReleaseTempReg(pParse, r2);
      }
      if( pKeyInfo ){
        sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO_HANDOFF);
      }
      break;
    }

    case TK_EXISTS:
    case TK_SELECT:
    default: {
Changes to src/parse.y.
413
414
415
416
417
418
419

420
421
422
423
424
425
426

select(A) ::= oneselect(X).                      {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
  if( Z ){
    Z->op = (u8)Y;
    Z->pPrior = X;

  }else{
    sqlite3SelectDelete(pParse->db, X);
  }
  A = Z;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}







>







413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

select(A) ::= oneselect(X).                      {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
  if( Z ){
    Z->op = (u8)Y;
    Z->pPrior = X;
    if( Y!=TK_ALL ) pParse->hasCompound = 1;
  }else{
    sqlite3SelectDelete(pParse->db, X);
  }
  A = Z;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}
Changes to src/select.c.
797
798
799
800
801
802
803



















804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pOrderBy==0 && p->iLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
  }
}




















/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.  Add the KeyInfo structure to the P4 field of an opcode using
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
  sqlite3 *db = pParse->db;
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;

  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
  if( pInfo ){
    pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
    pInfo->nField = (u16)nExpr;
    pInfo->enc = ENC(db);
    pInfo->db = db;
    for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      if( !pColl ){
        pColl = db->pDfltColl;
      }
      pInfo->aColl[i] = pColl;
      pInfo->aSortOrder[i] = pItem->sortOrder;
    }
  }
  return pInfo;
}








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

















<



>



|

<
<
<
<



<
|
<







797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

840
841
842
843
844
845
846
847
848




849
850
851

852

853
854
855
856
857
858
859
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pOrderBy==0 && p->iLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
  }
}

/*
** Allocate a KeyInfo object sufficient for an index of N columns.
**
** Actually, always allocate one extra column for the rowid at the end
** of the index.  So the KeyInfo returned will have space sufficient for
** N+1 columns.
*/
KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N){
  KeyInfo *p = sqlite3DbMallocZero(db, 
                   sizeof(KeyInfo) + (N+1)*(sizeof(CollSeq*)+1));
  if( p ){
    p->aSortOrder = (u8*)&p->aColl[N+1];
    p->nField = (u16)N;
    p->enc = ENC(db);
    p->db = db;
  }
  return p;
}

/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.  Add the KeyInfo structure to the P4 field of an opcode using
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){

  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  sqlite3 *db = pParse->db;
  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3KeyInfoAlloc(db, nExpr);
  if( pInfo ){




    for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);

      if( !pColl ) pColl = db->pDfltColl;

      pInfo->aColl[i] = pColl;
      pInfo->aSortOrder[i] = pItem->sortOrder;
    }
  }
  return pInfo;
}

1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
    Select *pLoop;                /* For looping through SELECT statements */
    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
    int nCol;                     /* Number of columns in result set */

    assert( p->pRightmost==p );
    nCol = p->pEList->nExpr;
    pKeyInfo = sqlite3DbMallocZero(db,
                       sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
    if( !pKeyInfo ){
      rc = SQLITE_NOMEM;
      goto multi_select_end;
    }

    pKeyInfo->enc = ENC(db);
    pKeyInfo->nField = (u16)nCol;

    for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
      *apColl = multiSelectCollSeq(pParse, p, i);
      if( 0==*apColl ){
        *apColl = db->pDfltColl;
      }
    }
    pKeyInfo->aSortOrder = (u8*)apColl;

    for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
      for(i=0; i<2; i++){
        int addr = pLoop->addrOpenEphm[i];
        if( addr<0 ){
          /* If [0] is unused then [1] is also unused.  So we can
          ** always safely abort as soon as the first unused slot is found */







|
<




<
<
<
<






<







1951
1952
1953
1954
1955
1956
1957
1958

1959
1960
1961
1962




1963
1964
1965
1966
1967
1968

1969
1970
1971
1972
1973
1974
1975
    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
    Select *pLoop;                /* For looping through SELECT statements */
    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
    int nCol;                     /* Number of columns in result set */

    assert( p->pRightmost==p );
    nCol = p->pEList->nExpr;
    pKeyInfo = sqlite3KeyInfoAlloc(db, nCol);

    if( !pKeyInfo ){
      rc = SQLITE_NOMEM;
      goto multi_select_end;
    }




    for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
      *apColl = multiSelectCollSeq(pParse, p, i);
      if( 0==*apColl ){
        *apColl = db->pDfltColl;
      }
    }


    for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
      for(i=0; i<2; i++){
        int addr = pLoop->addrOpenEphm[i];
        if( addr<0 ){
          /* If [0] is unused then [1] is also unused.  So we can
          ** always safely abort as soon as the first unused slot is found */
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  if( aPermute ){
    struct ExprList_item *pItem;
    for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
      assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->iOrderByCol - 1;
    }
    pKeyMerge =
      sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
    if( pKeyMerge ){
      pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
      pKeyMerge->nField = (u16)nOrderBy;
      pKeyMerge->enc = ENC(db);
      for(i=0; i<nOrderBy; i++){
        CollSeq *pColl;
        Expr *pTerm = pOrderBy->a[i].pExpr;
        if( pTerm->flags & EP_Collate ){
          pColl = sqlite3ExprCollSeq(pParse, pTerm);
        }else{
          pColl = multiSelectCollSeq(pParse, p, aPermute[i]);







|
<

<
<
<







2330
2331
2332
2333
2334
2335
2336
2337

2338



2339
2340
2341
2342
2343
2344
2345
  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  if( aPermute ){
    struct ExprList_item *pItem;
    for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
      assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->iOrderByCol - 1;
    }
    pKeyMerge = sqlite3KeyInfoAlloc(db, nOrderBy);

    if( pKeyMerge ){



      for(i=0; i<nOrderBy; i++){
        CollSeq *pColl;
        Expr *pTerm = pOrderBy->a[i].pExpr;
        if( pTerm->flags & EP_Collate ){
          pColl = sqlite3ExprCollSeq(pParse, pTerm);
        }else{
          pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
    regPrev = 0;
  }else{
    int nExpr = p->pEList->nExpr;
    assert( nOrderBy>=nExpr || db->mallocFailed );
    regPrev = pParse->nMem+1;
    pParse->nMem += nExpr+1;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
    pKeyDup = sqlite3DbMallocZero(db,
                  sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
    if( pKeyDup ){
      pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
      pKeyDup->nField = (u16)nExpr;
      pKeyDup->enc = ENC(db);
      for(i=0; i<nExpr; i++){
        pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
        pKeyDup->aSortOrder[i] = 0;
      }
    }
  }
 







|
<

<
<
<







2368
2369
2370
2371
2372
2373
2374
2375

2376



2377
2378
2379
2380
2381
2382
2383
    regPrev = 0;
  }else{
    int nExpr = p->pEList->nExpr;
    assert( nOrderBy>=nExpr || db->mallocFailed );
    regPrev = pParse->nMem+1;
    pParse->nMem += nExpr+1;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
    pKeyDup = sqlite3KeyInfoAlloc(db, nExpr);

    if( pKeyDup ){



      for(i=0; i<nExpr; i++){
        pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
        pKeyDup->aSortOrder[i] = 0;
      }
    }
  }
 
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645


3646

3647
3648
3649
3650
3651
3652
3653
** If anything goes wrong, an error message is written into pParse.
** The calling function can detect the problem by looking at pParse->nErr
** and/or pParse->db->mallocFailed.
*/
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.xSelectCallback = convertCompoundSelectToSubquery;
  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;


  sqlite3WalkSelect(&w, pSelect);

  w.xSelectCallback = selectExpander;
  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*







<


>
>
|
>







3635
3636
3637
3638
3639
3640
3641

3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
** If anything goes wrong, an error message is written into pParse.
** The calling function can detect the problem by looking at pParse->nErr
** and/or pParse->db->mallocFailed.
*/
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  Walker w;
  memset(&w, 0, sizeof(w));

  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;
  if( pParse->hasCompound ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;
  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
Changes to src/shell.c.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# include <editline/editline.h>
#endif
#if defined(HAVE_READLINE) && HAVE_READLINE==1
# include <readline/readline.h>
# include <readline/history.h>
#endif
#if !defined(HAVE_EDITLINE) && (!defined(HAVE_READLINE) || HAVE_READLINE!=1)
# define readline(p) local_getline(p,stdin,0)
# define add_history(X)
# define read_history(X)
# define write_history(X)
# define stifle_history(X)
#endif

#if defined(_WIN32) || defined(WIN32)







<







49
50
51
52
53
54
55

56
57
58
59
60
61
62
# include <editline/editline.h>
#endif
#if defined(HAVE_READLINE) && HAVE_READLINE==1
# include <readline/readline.h>
# include <readline/history.h>
#endif
#if !defined(HAVE_EDITLINE) && (!defined(HAVE_READLINE) || HAVE_READLINE!=1)

# define add_history(X)
# define read_history(X)
# define write_history(X)
# define stifle_history(X)
#endif

#if defined(_WIN32) || defined(WIN32)
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390








391
392
393
394
395
396
397
398
399
400
401
402
403
404


405




406

407
408
409
410
411
412
413

/*
** This routine reads a line of text from FILE in, stores
** the text in memory obtained from malloc() and returns a pointer
** to the text.  NULL is returned at end of file, or if malloc()
** fails.
**
** The interface is like "readline" but no command-line editing
** is done.
*/
static char *local_getline(char *zPrompt, FILE *in, int csvFlag){
  char *zLine;
  int nLine;
  int n;
  int inQuote = 0;

  if( zPrompt && *zPrompt ){
    printf("%s",zPrompt);
    fflush(stdout);
  }
  nLine = 100;
  zLine = malloc( nLine );
  if( zLine==0 ) return 0;
  n = 0;
  while( 1 ){
    if( n+100>nLine ){
      nLine = nLine*2 + 100;
      zLine = realloc(zLine, nLine);
      if( zLine==0 ) return 0;
    }
    if( fgets(&zLine[n], nLine - n, in)==0 ){
      if( n==0 ){
        free(zLine);
        return 0;
      }
      zLine[n] = 0;
      break;
    }
    while( zLine[n] ){
      if( zLine[n]=='"' ) inQuote = !inQuote;
      n++;
    }
    if( n>0 && zLine[n-1]=='\n' && (!inQuote || !csvFlag) ){
      n--;
      if( n>0 && zLine[n-1]=='\r' ) n--;
      zLine[n] = 0;
      break;
    }
  }
  zLine = realloc( zLine, n+1 );
  return zLine;
}

/*
** Retrieve a single line of input text.
**
** zPrior is a string of prior text retrieved.  If not the empty
** string, then issue a continuation prompt.








*/
static char *one_input_line(const char *zPrior, FILE *in){
  char *zPrompt;
  char *zResult;
  if( in!=0 ){
    return local_getline(0, in, 0);
  }
  if( zPrior && zPrior[0] ){
    zPrompt = continuePrompt;
  }else{
    zPrompt = mainPrompt;
  }
  zResult = readline(zPrompt);
#if defined(HAVE_READLINE) && HAVE_READLINE==1


  if( zResult && *zResult ) add_history(zResult);




#endif

  return zResult;
}

struct previous_mode_data {
  int valid;        /* Is there legit data in here? */
  int mode;
  int showHeader;







|
|

|
<
|
|
<

<
<
<
<
<
<
<
<














|
<
<
<
|






<






|
|
>
>
>
>
>
>
>
>

|



|
<
<
<

|
<
<

>
>
|
>
>
>
>

>







332
333
334
335
336
337
338
339
340
341
342

343
344

345








346
347
348
349
350
351
352
353
354
355
356
357
358
359
360



361
362
363
364
365
366
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389



390
391


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

/*
** This routine reads a line of text from FILE in, stores
** the text in memory obtained from malloc() and returns a pointer
** to the text.  NULL is returned at end of file, or if malloc()
** fails.
**
** If zLine is not NULL then it is a malloced buffer returned from
** a previous call to this routine that may be reused.
*/
static char *local_getline(char *zLine, FILE *in){

  int nLine = zLine==0 ? 0 : 100;
  int n = 0;










  while( 1 ){
    if( n+100>nLine ){
      nLine = nLine*2 + 100;
      zLine = realloc(zLine, nLine);
      if( zLine==0 ) return 0;
    }
    if( fgets(&zLine[n], nLine - n, in)==0 ){
      if( n==0 ){
        free(zLine);
        return 0;
      }
      zLine[n] = 0;
      break;
    }
    while( zLine[n] ) n++;



    if( n>0 && zLine[n-1]=='\n' ){
      n--;
      if( n>0 && zLine[n-1]=='\r' ) n--;
      zLine[n] = 0;
      break;
    }
  }

  return zLine;
}

/*
** Retrieve a single line of input text.
**
** If in==0 then read from standard input and prompt before each line.
** If isContinuation is true, then a continuation prompt is appropriate.
** If isContinuation is zero, then the main prompt should be used.
**
** If zPrior is not NULL then it is a buffer from a prior call to this
** routine that can be reused.
**
** The result is stored in space obtained from malloc() and must either
** be freed by the caller or else passed back into this routine via the
** zPrior argument for reuse.
*/
static char *one_input_line(FILE *in, char *zPrior, int isContinuation){
  char *zPrompt;
  char *zResult;
  if( in!=0 ){
    zResult = local_getline(zPrior, in);



  }else{
    zPrompt = isContinuation ? continuePrompt : mainPrompt;


#if defined(HAVE_READLINE) && HAVE_READLINE==1
    free(zPrior);
    zResult = readline(zPrompt);
    if( zResult && *zResult ) add_history(zResult);
#else
    printf("%s", zPrompt);
    fflush(stdout);
    zResult = local_getline(zPrior, stdin);
#endif
  }
  return zResult;
}

struct previous_mode_data {
  int valid;        /* Is there legit data in here? */
  int mode;
  int showHeader;
1991
1992
1993
1994
1995
1996
1997

1998
1999
2000
2001
2002
2003
2004
  if( c=='i' && strncmp(azArg[0], "import", n)==0 && nArg==3 ){
    char *zTable = azArg[2];    /* Insert data into this table */
    char *zFile = azArg[1];     /* Name of file to extra content from */
    sqlite3_stmt *pStmt = NULL; /* A statement */
    int nCol;                   /* Number of columns in the table */
    int nByte;                  /* Number of bytes in an SQL string */
    int i, j;                   /* Loop counters */

    int nSep;                   /* Number of bytes in p->separator[] */
    char *zSql;                 /* An SQL statement */
    CSVReader sCsv;             /* Reader context */
    int (*xCloser)(FILE*);      /* Procedure to close th3 connection */

    seenInterrupt = 0;
    memset(&sCsv, 0, sizeof(sCsv));







>







1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
  if( c=='i' && strncmp(azArg[0], "import", n)==0 && nArg==3 ){
    char *zTable = azArg[2];    /* Insert data into this table */
    char *zFile = azArg[1];     /* Name of file to extra content from */
    sqlite3_stmt *pStmt = NULL; /* A statement */
    int nCol;                   /* Number of columns in the table */
    int nByte;                  /* Number of bytes in an SQL string */
    int i, j;                   /* Loop counters */
    int needCommit;             /* True to COMMIT or ROLLBACK at end */
    int nSep;                   /* Number of bytes in p->separator[] */
    char *zSql;                 /* An SQL statement */
    CSVReader sCsv;             /* Reader context */
    int (*xCloser)(FILE*);      /* Procedure to close th3 connection */

    seenInterrupt = 0;
    memset(&sCsv, 0, sizeof(sCsv));
2092
2093
2094
2095
2096
2097
2098


2099
2100
2101
2102
2103
2104
2105
    sqlite3_free(zSql);
    if( rc ){
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(db));
      if (pStmt) sqlite3_finalize(pStmt);
      xCloser(sCsv.in);
      return 1;
    }


    do{
      int startLine = sCsv.nLine;
      for(i=0; i<nCol; i++){
        char *z = csv_read_one_field(&sCsv);
        if( z==0 && i==0 ) break;
        sqlite3_bind_text(pStmt, i+1, z, -1, SQLITE_TRANSIENT);
        if( i<nCol-1 && sCsv.cTerm!=sCsv.cSeparator ){







>
>







2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
    sqlite3_free(zSql);
    if( rc ){
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(db));
      if (pStmt) sqlite3_finalize(pStmt);
      xCloser(sCsv.in);
      return 1;
    }
    needCommit = sqlite3_get_autocommit(db);
    if( needCommit ) sqlite3_exec(db, "BEGIN", 0, 0, 0);
    do{
      int startLine = sCsv.nLine;
      for(i=0; i<nCol; i++){
        char *z = csv_read_one_field(&sCsv);
        if( z==0 && i==0 ) break;
        sqlite3_bind_text(pStmt, i+1, z, -1, SQLITE_TRANSIENT);
        if( i<nCol-1 && sCsv.cTerm!=sCsv.cSeparator ){
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
        }
      }
    }while( sCsv.cTerm!=EOF );

    xCloser(sCsv.in);
    sqlite3_free(sCsv.z);
    sqlite3_finalize(pStmt);
    sqlite3_exec(p->db, "COMMIT", 0, 0, 0);
  }else

  if( c=='i' && strncmp(azArg[0], "indices", n)==0 && nArg<3 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));







|







2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
        }
      }
    }while( sCsv.cTerm!=EOF );

    xCloser(sCsv.in);
    sqlite3_free(sCsv.z);
    sqlite3_finalize(pStmt);
    if( needCommit ) sqlite3_exec(db, "COMMIT", 0, 0, 0);
  }else

  if( c=='i' && strncmp(azArg[0], "indices", n)==0 && nArg<3 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
  return rc;
}

/*
** Return TRUE if a semicolon occurs anywhere in the first N characters
** of string z[].
*/
static int _contains_semicolon(const char *z, int N){
  int i;
  for(i=0; i<N; i++){  if( z[i]==';' ) return 1; }
  return 0;
}

/*
** Test to see if a line consists entirely of whitespace.







|







2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
  return rc;
}

/*
** Return TRUE if a semicolon occurs anywhere in the first N characters
** of string z[].
*/
static int line_contains_semicolon(const char *z, int N){
  int i;
  for(i=0; i<N; i++){  if( z[i]==';' ) return 1; }
  return 0;
}

/*
** Test to see if a line consists entirely of whitespace.
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856

2857

2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899


2900
2901
2902
2903





2904
2905
2906

2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
}

/*
** Return TRUE if the line typed in is an SQL command terminator other
** than a semi-colon.  The SQL Server style "go" command is understood
** as is the Oracle "/".
*/
static int _is_command_terminator(const char *zLine){
  while( IsSpace(zLine[0]) ){ zLine++; };
  if( zLine[0]=='/' && _all_whitespace(&zLine[1]) ){
    return 1;  /* Oracle */
  }
  if( ToLower(zLine[0])=='g' && ToLower(zLine[1])=='o'
         && _all_whitespace(&zLine[2]) ){
    return 1;  /* SQL Server */
  }
  return 0;
}

/*
** Return true if zSql is a complete SQL statement.  Return false if it
** ends in the middle of a string literal or C-style comment.
*/
static int _is_complete(char *zSql, int nSql){
  int rc;
  if( zSql==0 ) return 1;
  zSql[nSql] = ';';
  zSql[nSql+1] = 0;
  rc = sqlite3_complete(zSql);
  zSql[nSql] = 0;
  return rc;
}

/*
** Read input from *in and process it.  If *in==0 then input
** is interactive - the user is typing it it.  Otherwise, input
** is coming from a file or device.  A prompt is issued and history
** is saved only if input is interactive.  An interrupt signal will
** cause this routine to exit immediately, unless input is interactive.
**
** Return the number of errors.
*/
static int process_input(struct callback_data *p, FILE *in){
  char *zLine = 0;
  char *zSql = 0;

  int nSql = 0;

  int nSqlPrior = 0;
  char *zErrMsg;
  int rc;
  int errCnt = 0;
  int lineno = 0;
  int startline = 0;

  while( errCnt==0 || !bail_on_error || (in==0 && stdin_is_interactive) ){
    fflush(p->out);
    free(zLine);
    zLine = one_input_line(zSql, in);
    if( zLine==0 ){
      /* End of input */
      if( stdin_is_interactive ) printf("\n");
      break;
    }
    if( seenInterrupt ){
      if( in!=0 ) break;
      seenInterrupt = 0;
    }
    lineno++;
    if( (zSql==0 || zSql[0]==0) && _all_whitespace(zLine) ) continue;
    if( zLine && zLine[0]=='.' && nSql==0 ){
      if( p->echoOn ) printf("%s\n", zLine);
      rc = do_meta_command(zLine, p);
      if( rc==2 ){ /* exit requested */
        break;
      }else if( rc ){
        errCnt++;
      }
      continue;
    }
    if( _is_command_terminator(zLine) && _is_complete(zSql, nSql) ){
      memcpy(zLine,";",2);
    }
    nSqlPrior = nSql;
    if( zSql==0 ){
      int i;
      for(i=0; zLine[i] && IsSpace(zLine[i]); i++){}
      if( zLine[i]!=0 ){
        nSql = strlen30(zLine);
        zSql = malloc( nSql+3 );


        if( zSql==0 ){
          fprintf(stderr, "Error: out of memory\n");
          exit(1);
        }





        memcpy(zSql, zLine, nSql+1);
        startline = lineno;
      }

    }else{
      int len = strlen30(zLine);
      zSql = realloc( zSql, nSql + len + 4 );
      if( zSql==0 ){
        fprintf(stderr,"Error: out of memory\n");
        exit(1);
      }
      zSql[nSql++] = '\n';
      memcpy(&zSql[nSql], zLine, len+1);
      nSql += len;
    }
    if( zSql && _contains_semicolon(&zSql[nSqlPrior], nSql-nSqlPrior)
                && sqlite3_complete(zSql) ){
      p->cnt = 0;
      open_db(p);
      BEGIN_TIMER;
      rc = shell_exec(p->db, zSql, shell_callback, p, &zErrMsg);
      END_TIMER;
      if( rc || zErrMsg ){







|















|



















|
|
>
|
>
|
|
|
|
|
|



<
|










|










|


<
<
<
<
<
|
|
>
>
|
|
|
|
>
>
>
>
>
|
|
<
>

<
<
<
<
<
<

|
|

|







2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866

2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891





2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906

2907
2908






2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
}

/*
** Return TRUE if the line typed in is an SQL command terminator other
** than a semi-colon.  The SQL Server style "go" command is understood
** as is the Oracle "/".
*/
static int line_is_command_terminator(const char *zLine){
  while( IsSpace(zLine[0]) ){ zLine++; };
  if( zLine[0]=='/' && _all_whitespace(&zLine[1]) ){
    return 1;  /* Oracle */
  }
  if( ToLower(zLine[0])=='g' && ToLower(zLine[1])=='o'
         && _all_whitespace(&zLine[2]) ){
    return 1;  /* SQL Server */
  }
  return 0;
}

/*
** Return true if zSql is a complete SQL statement.  Return false if it
** ends in the middle of a string literal or C-style comment.
*/
static int line_is_complete(char *zSql, int nSql){
  int rc;
  if( zSql==0 ) return 1;
  zSql[nSql] = ';';
  zSql[nSql+1] = 0;
  rc = sqlite3_complete(zSql);
  zSql[nSql] = 0;
  return rc;
}

/*
** Read input from *in and process it.  If *in==0 then input
** is interactive - the user is typing it it.  Otherwise, input
** is coming from a file or device.  A prompt is issued and history
** is saved only if input is interactive.  An interrupt signal will
** cause this routine to exit immediately, unless input is interactive.
**
** Return the number of errors.
*/
static int process_input(struct callback_data *p, FILE *in){
  char *zLine = 0;          /* A single input line */
  char *zSql = 0;           /* Accumulated SQL text */
  int nLine;                /* Length of current line */
  int nSql = 0;             /* Bytes of zSql[] used */
  int nAlloc = 0;           /* Allocated zSql[] space */
  int nSqlPrior = 0;        /* Bytes of zSql[] used by prior line */
  char *zErrMsg;            /* Error message returned */
  int rc;                   /* Error code */
  int errCnt = 0;           /* Number of errors seen */
  int lineno = 0;           /* Current line number */
  int startline = 0;        /* Line number for start of current input */

  while( errCnt==0 || !bail_on_error || (in==0 && stdin_is_interactive) ){
    fflush(p->out);

    zLine = one_input_line(in, zLine, nSql>0);
    if( zLine==0 ){
      /* End of input */
      if( stdin_is_interactive ) printf("\n");
      break;
    }
    if( seenInterrupt ){
      if( in!=0 ) break;
      seenInterrupt = 0;
    }
    lineno++;
    if( nSql==0 && _all_whitespace(zLine) ) continue;
    if( zLine && zLine[0]=='.' && nSql==0 ){
      if( p->echoOn ) printf("%s\n", zLine);
      rc = do_meta_command(zLine, p);
      if( rc==2 ){ /* exit requested */
        break;
      }else if( rc ){
        errCnt++;
      }
      continue;
    }
    if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){
      memcpy(zLine,";",2);
    }





    nLine = strlen30(zLine);
    if( nSql+nLine+2>=nAlloc ){
      nAlloc = nSql+nLine+100;
      zSql = realloc(zSql, nAlloc);
      if( zSql==0 ){
        fprintf(stderr, "Error: out of memory\n");
        exit(1);
      }
    }
    nSqlPrior = nSql;
    if( nSql==0 ){
      int i;
      for(i=0; zLine[i] && IsSpace(zLine[i]); i++){}
      memcpy(zSql, zLine+i, nLine+1-i);
      startline = lineno;

      nSql = nLine-i;
    }else{






      zSql[nSql++] = '\n';
      memcpy(zSql+nSql, zLine, nLine+1);
      nSql += nLine;
    }
    if( nSql && line_contains_semicolon(&zSql[nSqlPrior], nSql-nSqlPrior)
                && sqlite3_complete(zSql) ){
      p->cnt = 0;
      open_db(p);
      BEGIN_TIMER;
      rc = shell_exec(p->db, zSql, shell_callback, p, &zErrMsg);
      END_TIMER;
      if( rc || zErrMsg ){
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
          sqlite3_free(zErrMsg);
          zErrMsg = 0;
        }else{
          fprintf(stderr, "%s %s\n", zPrefix, sqlite3_errmsg(p->db));
        }
        errCnt++;
      }
      free(zSql);
      zSql = 0;
      nSql = 0;
    }else if( zSql && _all_whitespace(zSql) ){
      free(zSql);
      zSql = 0;
      nSql = 0;
    }
  }
  if( zSql ){
    if( !_all_whitespace(zSql) ){
      fprintf(stderr, "Error: incomplete SQL: %s\n", zSql);
    }
    free(zSql);
  }
  free(zLine);
  return errCnt>0;







<
<

|
<
<



|







2930
2931
2932
2933
2934
2935
2936


2937
2938


2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
          sqlite3_free(zErrMsg);
          zErrMsg = 0;
        }else{
          fprintf(stderr, "%s %s\n", zPrefix, sqlite3_errmsg(p->db));
        }
        errCnt++;
      }


      nSql = 0;
    }else if( nSql && _all_whitespace(zSql) ){


      nSql = 0;
    }
  }
  if( nSql ){
    if( !_all_whitespace(zSql) ){
      fprintf(stderr, "Error: incomplete SQL: %s\n", zSql);
    }
    free(zSql);
  }
  free(zLine);
  return errCnt>0;
Changes to src/sqlite.h.in.
7224
7225
7226
7227
7228
7229
7230
7231
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double
#endif

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif
#endif







|
7224
7225
7226
7227
7228
7229
7230
7231
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double
#endif

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif
#endif /* _SQLITE3_H_ */
Changes to src/sqliteInt.h.
1460
1461
1462
1463
1464
1465
1466




1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
#define OE_Default  99  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the 
** comparison of the two index keys.




*/
struct KeyInfo {
  sqlite3 *db;        /* The database connection */
  u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
  u16 nField;         /* Number of entries in aColl[] */
  u8 *aSortOrder;     /* Sort order for each column.  May be NULL */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual
** values.







>
>
>
>




|
|







1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
#define OE_Default  99  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the 
** comparison of the two index keys.
**
** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
** are nField slots for the columns of an index then one extra slot
** for the rowid at the end.
*/
struct KeyInfo {
  sqlite3 *db;        /* The database connection */
  u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
  u16 nField;         /* Maximum index for aColl[] and aSortOrder[] */
  u8 *aSortOrder;     /* Sort order for each column. */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual
** values.
2065
2066
2067
2068
2069
2070
2071

2072
2073
2074
2075
2076
2077
2078
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* Force materialization of views */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */



/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */







>







2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* Force materialization of views */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */


/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */
2186
2187
2188
2189
2190
2191
2192

2193
2194
2195
2196
2197
2198
2199
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
  u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
  u8 nColCache;        /* Number of entries in aColCache[] */
  u8 iColCache;        /* Next entry in aColCache[] to replace */
  u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */

  int aTempReg[8];     /* Holding area for temporary registers */
  int nRangeReg;       /* Size of the temporary register block */
  int iRangeReg;       /* First register in temporary register block */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */







>







2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
  u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
  u8 nColCache;        /* Number of entries in aColCache[] */
  u8 iColCache;        /* Next entry in aColCache[] to replace */
  u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */
  u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
  int aTempReg[8];     /* Holding area for temporary registers */
  int nRangeReg;       /* Size of the temporary register block */
  int iRangeReg;       /* First register in temporary register block */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
3074
3075
3076
3077
3078
3079
3080

3081
3082
3083
3084
3085
3086
3087
void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
void sqlite3MinimumFileFormat(Parse*, int, int);
void sqlite3SchemaClear(void *);
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);

KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
  void (*)(sqlite3_context*,int,sqlite3_value **),
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
  FuncDestructor *pDestructor
);
int sqlite3ApiExit(sqlite3 *db, int);







>







3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
void sqlite3MinimumFileFormat(Parse*, int, int);
void sqlite3SchemaClear(void *);
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int);
KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
  void (*)(sqlite3_context*,int,sqlite3_value **),
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
  FuncDestructor *pDestructor
);
int sqlite3ApiExit(sqlite3 *db, int);
Changes to src/test_autoext.c.
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219
220
221
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_sqr",
          autoExtSqrObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_cube",
          autoExtCubeObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_broken",
          autoExtBrokenObjCmd, 0, 0);
#endif
  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_sqr",
          cancelAutoExtSqrObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_cube",
          cancelAutoExtCubeObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_broken",
          cancelAutoExtBrokenObjCmd, 0, 0);

  Tcl_CreateObjCommand(interp, "sqlite3_reset_auto_extension",
          resetAutoExtObjCmd, 0, 0);
  return TCL_OK;
}







<






>




204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_sqr",
          autoExtSqrObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_cube",
          autoExtCubeObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_auto_extension_broken",
          autoExtBrokenObjCmd, 0, 0);

  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_sqr",
          cancelAutoExtSqrObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_cube",
          cancelAutoExtCubeObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite3_cancel_auto_extension_broken",
          cancelAutoExtBrokenObjCmd, 0, 0);
#endif
  Tcl_CreateObjCommand(interp, "sqlite3_reset_auto_extension",
          resetAutoExtObjCmd, 0, 0);
  return TCL_OK;
}
Changes to src/test_demovfs.c.
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
  int nPathOut,                   /* Size of output buffer in bytes */
  char *zPathOut                  /* Pointer to output buffer */
){
  char zDir[MAXPATHNAME+1];
  if( zPath[0]=='/' ){
    zDir[0] = '\0';
  }else{
    getcwd(zDir, sizeof(zDir));
  }
  zDir[MAXPATHNAME] = '\0';

  sqlite3_snprintf(nPathOut, zPathOut, "%s/%s", zDir, zPath);
  zPathOut[nPathOut-1] = '\0';

  return SQLITE_OK;







|







532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
  int nPathOut,                   /* Size of output buffer in bytes */
  char *zPathOut                  /* Pointer to output buffer */
){
  char zDir[MAXPATHNAME+1];
  if( zPath[0]=='/' ){
    zDir[0] = '\0';
  }else{
    if( getcwd(zDir, sizeof(zDir))==0 ) return SQLITE_IOERR;
  }
  zDir[MAXPATHNAME] = '\0';

  sqlite3_snprintf(nPathOut, zPathOut, "%s/%s", zDir, zPath);
  zPathOut[nPathOut-1] = '\0';

  return SQLITE_OK;
Changes to src/test_fs.c.
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225
  assert( i==0 || i==1 );
  if( i==0 ){
    sqlite3_result_value(ctx, sqlite3_column_value(pCur->pStmt, 0));
  }else{
    const char *zFile = (const char *)sqlite3_column_text(pCur->pStmt, 1);
    struct stat sbuf;
    int fd;


    fd = open(zFile, O_RDONLY);
    if( fd<0 ) return SQLITE_IOERR;
    fstat(fd, &sbuf);

    if( sbuf.st_size>=pCur->nAlloc ){
      int nNew = sbuf.st_size*2;
      char *zNew;
      if( nNew<1024 ) nNew = 1024;

      zNew = sqlite3Realloc(pCur->zBuf, nNew);
      if( zNew==0 ){
        close(fd);
        return SQLITE_NOMEM;
      }
      pCur->zBuf = zNew;
      pCur->nAlloc = nNew;
    }

    read(fd, pCur->zBuf, sbuf.st_size);
    close(fd);

    pCur->nBuf = sbuf.st_size;
    pCur->zBuf[pCur->nBuf] = '\0';

    sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
  }
  return SQLITE_OK;
}







>



















|

>







191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  assert( i==0 || i==1 );
  if( i==0 ){
    sqlite3_result_value(ctx, sqlite3_column_value(pCur->pStmt, 0));
  }else{
    const char *zFile = (const char *)sqlite3_column_text(pCur->pStmt, 1);
    struct stat sbuf;
    int fd;
    int n;

    fd = open(zFile, O_RDONLY);
    if( fd<0 ) return SQLITE_IOERR;
    fstat(fd, &sbuf);

    if( sbuf.st_size>=pCur->nAlloc ){
      int nNew = sbuf.st_size*2;
      char *zNew;
      if( nNew<1024 ) nNew = 1024;

      zNew = sqlite3Realloc(pCur->zBuf, nNew);
      if( zNew==0 ){
        close(fd);
        return SQLITE_NOMEM;
      }
      pCur->zBuf = zNew;
      pCur->nAlloc = nNew;
    }

    n = (int)read(fd, pCur->zBuf, sbuf.st_size);
    close(fd);
    if( n!=sbuf.st_size ) return SQLITE_ERROR;
    pCur->nBuf = sbuf.st_size;
    pCur->zBuf[pCur->nBuf] = '\0';

    sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
  }
  return SQLITE_OK;
}
Changes to src/test_intarray.h.
71
72
73
74
75
76
77


78
79
80
81
82
83
84
** The intarray object is automatically destroyed when its corresponding
** virtual table is dropped.  Since the virtual tables are created in the
** TEMP database, they are automatically dropped when the database connection
** closes so the application does not normally need to take any special
** action to free the intarray objects.
*/
#include "sqlite3.h"



/*
** Make sure we can call this stuff from C++.
*/
#ifdef __cplusplus
extern "C" {
#endif







>
>







71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
** The intarray object is automatically destroyed when its corresponding
** virtual table is dropped.  Since the virtual tables are created in the
** TEMP database, they are automatically dropped when the database connection
** closes so the application does not normally need to take any special
** action to free the intarray objects.
*/
#include "sqlite3.h"
#ifndef _INTARRAY_H_
#define _INTARRAY_H_

/*
** Make sure we can call this stuff from C++.
*/
#ifdef __cplusplus
extern "C" {
#endif
119
120
121
122
123
124
125

  sqlite3_int64 *aElements,      /* Content of the intarray */
  void (*xFree)(void*)           /* How to dispose of the intarray when done */
);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif








>
121
122
123
124
125
126
127
128
  sqlite3_int64 *aElements,      /* Content of the intarray */
  void (*xFree)(void*)           /* How to dispose of the intarray when done */
);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif
#endif /* _INTARRAY_H_ */
Changes to src/test_multiplex.h.
92
93
94
95
96
97
98
99
*/
extern int sqlite3_multiplex_shutdown(void);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif

#endif







|
92
93
94
95
96
97
98
99
*/
extern int sqlite3_multiplex_shutdown(void);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif

#endif /* _TEST_MULTIPLEX_H */
Changes to src/test_rtree.c.
10
11
12
13
14
15
16

17
18
19
20
21
22
23
**
*************************************************************************
** Code for testing all sorts of SQLite interfaces. This code
** is not included in the SQLite library. 
*/

#include <sqlite3.h>


/* Solely for the UNUSED_PARAMETER() macro. */
#include "sqliteInt.h"

#ifdef SQLITE_ENABLE_RTREE
/* 
** Type used to cache parameter information for the "circle" r-tree geometry







>







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Code for testing all sorts of SQLite interfaces. This code
** is not included in the SQLite library. 
*/

#include <sqlite3.h>
#include <tcl.h>

/* Solely for the UNUSED_PARAMETER() macro. */
#include "sqliteInt.h"

#ifdef SQLITE_ENABLE_RTREE
/* 
** Type used to cache parameter information for the "circle" r-tree geometry
Changes to src/vdbe.c.
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */
  int iCompare = 0;          /* Result of last OP_Compare operation */
  unsigned nVmStep = 0;      /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */
  Mem *pIn3 = 0;             /* 3rd input operand */
  Mem *pOut = 0;             /* Output operand */
  int *aPermute = 0;         /* Permutation of columns for OP_Compare */







|







551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */
  int iCompare = 0;          /* Result of last OP_Compare operation */
  unsigned nVmStep = 0;      /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */
  Mem *pIn3 = 0;             /* 3rd input operand */
  Mem *pOut = 0;             /* Output operand */
  int *aPermute = 0;         /* Permutation of columns for OP_Compare */
Changes to src/vdbeaux.c.
403
404
405
406
407
408
409


410
411

412


413
414
415


416

417
418
419


420
421
422
423


424
425


426
427
428


429
430
431
432
433
434


435

436
437
438


439
440
441

442
443


444
445
446
447
448
449
450
  Op *pOp;
  int *aLabel = p->aLabel;
  p->readOnly = 1;
  p->bIsReader = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;



    pOp->opflags = sqlite3OpcodeProperty[opcode];
    if( opcode==OP_Function || opcode==OP_AggStep ){

      if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;


    }else if( opcode==OP_Transaction ){
      if( pOp->p2!=0 ) p->readOnly = 0;
      p->bIsReader = 1;


    }else if( opcode==OP_AutoCommit || opcode==OP_Savepoint ){

      p->bIsReader = 1;
    }else if( opcode==OP_Vacuum
           || opcode==OP_JournalMode


#ifndef SQLITE_OMIT_WAL
           || opcode==OP_Checkpoint
#endif
    ){


      p->readOnly = 0;
      p->bIsReader = 1;


#ifndef SQLITE_OMIT_VIRTUALTABLE
    }else if( opcode==OP_VUpdate ){
      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;


    }else if( opcode==OP_VFilter ){
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;


#endif

    }else if( opcode==OP_Next || opcode==OP_SorterNext ){
      pOp->p4.xAdvance = sqlite3BtreeNext;
      pOp->p4type = P4_ADVANCE;


    }else if( opcode==OP_Prev ){
      pOp->p4.xAdvance = sqlite3BtreePrevious;
      pOp->p4type = P4_ADVANCE;

    }



    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, p->aLabel);
  p->aLabel = 0;







>
>
|
|
>
|
>
>
|
|
<
>
>
|
>
|
<
<
>
>

|

<
>
>
|
|
>
>

|
|
>
>
|
|
|
|
|
|
>
>

>
|
|
|
>
>
|
|
|
>
|
|
>
>







403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

420
421
422
423
424


425
426
427
428
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
  Op *pOp;
  int *aLabel = p->aLabel;
  p->readOnly = 1;
  p->bIsReader = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
    ** cases from this switch! */
    switch( opcode ){
      case OP_Function:
      case OP_AggStep: {
        if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
        break;
      }
      case OP_Transaction: {
        if( pOp->p2!=0 ) p->readOnly = 0;

        /* fall thru */
      }
      case OP_AutoCommit:
      case OP_Savepoint: {
        p->bIsReader = 1;


        break;
      }
#ifndef SQLITE_OMIT_WAL
      case OP_Checkpoint:
#endif

      case OP_Vacuum:
      case OP_JournalMode: {
        p->readOnly = 0;
        p->bIsReader = 1;
        break;
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      case OP_VUpdate: {
        if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
        break;
      }
      case OP_VFilter: {
        int n;
        assert( p->nOp - i >= 3 );
        assert( pOp[-1].opcode==OP_Integer );
        n = pOp[-1].p1;
        if( n>nMaxArgs ) nMaxArgs = n;
        break;
      }
#endif
      case OP_Next:
      case OP_SorterNext: {
        pOp->p4.xAdvance = sqlite3BtreeNext;
        pOp->p4type = P4_ADVANCE;
        break;
      }
      case OP_Prev: {
        pOp->p4.xAdvance = sqlite3BtreePrevious;
        pOp->p4type = P4_ADVANCE;
        break;
      }
    }

    pOp->opflags = sqlite3OpcodeProperty[opcode];
    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, p->aLabel);
  p->aLabel = 0;
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
    ** that was cast to a (const char *). */
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    pOp->p4type = P4_INT32;
  }else if( zP4==0 ){
    pOp->p4.p = 0;
    pOp->p4type = P4_NOTUSED;
  }else if( n==P4_KEYINFO ){
    KeyInfo *pKeyInfo;
    int nField, nByte;

    nField = ((KeyInfo*)zP4)->nField;
    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
    pKeyInfo = sqlite3DbMallocRaw(0, nByte);
    pOp->p4.pKeyInfo = pKeyInfo;
    if( pKeyInfo ){
      u8 *aSortOrder;
      memcpy((char*)pKeyInfo, zP4, nByte - nField);
      aSortOrder = pKeyInfo->aSortOrder;
      assert( aSortOrder!=0 );
      pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
      memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
      pOp->p4type = P4_KEYINFO;
    }else{
      p->db->mallocFailed = 1;
      pOp->p4type = P4_NOTUSED;
    }
  }else if( n==P4_KEYINFO_HANDOFF ){
    pOp->p4.p = (void*)zP4;







|
<

|
<
<
|
|
<
|
|
<
<
<







745
746
747
748
749
750
751
752

753
754


755
756

757
758



759
760
761
762
763
764
765
    ** that was cast to a (const char *). */
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    pOp->p4type = P4_INT32;
  }else if( zP4==0 ){
    pOp->p4.p = 0;
    pOp->p4type = P4_NOTUSED;
  }else if( n==P4_KEYINFO ){
    KeyInfo *pOrig, *pNew;


    pOrig = (KeyInfo*)zP4;


    pOp->p4.pKeyInfo = pNew = sqlite3KeyInfoAlloc(db, pOrig->nField);
    if( pNew ){

      memcpy(pNew->aColl, pOrig->aColl, pOrig->nField*sizeof(pNew->aColl[0]));
      memcpy(pNew->aSortOrder, pOrig->aSortOrder, pOrig->nField);



      pOp->p4type = P4_KEYINFO;
    }else{
      p->db->mallocFailed = 1;
      pOp->p4type = P4_NOTUSED;
    }
  }else if( n==P4_KEYINFO_HANDOFF ){
    pOp->p4.p = (void*)zP4;
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  u32 d1;            /* Offset into aKey[] of next data element */
  u32 idx1;          /* Offset into aKey[] of next header element */
  u32 szHdr1;        /* Number of bytes in header */
  int i = 0;
  int nField;
  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  KeyInfo *pKeyInfo;
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  mem1.enc = pKeyInfo->enc;







<







3002
3003
3004
3005
3006
3007
3008

3009
3010
3011
3012
3013
3014
3015
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  u32 d1;            /* Offset into aKey[] of next data element */
  u32 idx1;          /* Offset into aKey[] of next header element */
  u32 szHdr1;        /* Number of bytes in header */
  int i = 0;

  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  KeyInfo *pKeyInfo;
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  mem1.enc = pKeyInfo->enc;
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025








3026



3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.
  */
  /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
  
  idx1 = getVarint32(aKey1, szHdr1);
  d1 = szHdr1;
  nField = pKeyInfo->nField;
  assert( pKeyInfo->aSortOrder!=0 );
  while( idx1<szHdr1 && i<pPKey2->nField ){
    u32 serial_type1;

    /* Read the serial types for the next element in each key. */
    idx1 += getVarint32( aKey1+idx1, serial_type1 );








    if( d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 ) break;




    /* Extract the values to be compared.
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
                           i<nField ? pKeyInfo->aColl[i] : 0);
    if( rc!=0 ){
      assert( mem1.zMalloc==0 );  /* See comment below */

      /* Invert the result if we are using DESC sort order. */
      if( i<nField && pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
    
      /* If the PREFIX_SEARCH flag is set and all fields except the final
      ** rowid field were equal, then clear the PREFIX_SEARCH flag and set 
      ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
      ** This is used by the OP_IsUnique opcode.







|






>
>
>
>
>
>
>
>
|
>
>
>







|
<




|







3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057

3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.
  */
  /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
  
  idx1 = getVarint32(aKey1, szHdr1);
  d1 = szHdr1;
  assert( pKeyInfo->nField+1>=pPKey2->nField );
  assert( pKeyInfo->aSortOrder!=0 );
  while( idx1<szHdr1 && i<pPKey2->nField ){
    u32 serial_type1;

    /* Read the serial types for the next element in each key. */
    idx1 += getVarint32( aKey1+idx1, serial_type1 );

    /* Verify that there is enough key space remaining to avoid
    ** a buffer overread.  The "d1+serial_type1+2" subexpression will
    ** always be greater than or equal to the amount of required key space.
    ** Use that approximation to avoid the more expensive call to
    ** sqlite3VdbeSerialTypeLen() in the common case.
    */
    if( d1+serial_type1+2>(u32)nKey1
     && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 
    ){
      break;
    }

    /* Extract the values to be compared.
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);

    if( rc!=0 ){
      assert( mem1.zMalloc==0 );  /* See comment below */

      /* Invert the result if we are using DESC sort order. */
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
    
      /* If the PREFIX_SEARCH flag is set and all fields except the final
      ** rowid field were equal, then clear the PREFIX_SEARCH flag and set 
      ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
      ** This is used by the OP_IsUnique opcode.
Changes to src/where.c.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
# define WHERETRACE(K,X)  if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X
# define WHERETRACE_ENABLED 1
#else
# define WHERETRACE(K,X)
#endif

/* Forward reference
*/
typedef struct WhereClause WhereClause;
typedef struct WhereMaskSet WhereMaskSet;
typedef struct WhereOrInfo WhereOrInfo;
typedef struct WhereAndInfo WhereAndInfo;
typedef struct WhereLevel WhereLevel;
typedef struct WhereLoop WhereLoop;







|







29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
# define WHERETRACE(K,X)  if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X
# define WHERETRACE_ENABLED 1
#else
# define WHERETRACE(K,X)
#endif

/* Forward references
*/
typedef struct WhereClause WhereClause;
typedef struct WhereMaskSet WhereMaskSet;
typedef struct WhereOrInfo WhereOrInfo;
typedef struct WhereAndInfo WhereAndInfo;
typedef struct WhereLevel WhereLevel;
typedef struct WhereLoop WhereLoop;
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
/*
** Cost X is tracked as 10*log2(X) stored in a 16-bit integer.  The
** maximum cost for ordinary tables is 64*(2**63) which becomes 6900.
** (Virtual tables can return a larger cost, but let's assume they do not.)
** So all costs can be stored in a 16-bit unsigned integer without risk
** of overflow.
**
** Costs are estimates, so don't go to the computational trouble to compute
** 10*log2(X) exactly.  Instead, a close estimate is used.  Any value of
** X<=1 is stored as 0.  X=2 is 10.  X=3 is 16.  X=1000 is 99. etc.
**
** The tool/wherecosttest.c source file implements a command-line program
** that will convert between WhereCost to integers and do addition and
** multiplication on WhereCost values.  That command-line program is a
** useful utility to have around when working with this module.

*/
typedef unsigned short int WhereCost;

/*
** This object contains information needed to implement a single nested
** loop in WHERE clause.
**







|
|
|


|
|
|
>







51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/*
** Cost X is tracked as 10*log2(X) stored in a 16-bit integer.  The
** maximum cost for ordinary tables is 64*(2**63) which becomes 6900.
** (Virtual tables can return a larger cost, but let's assume they do not.)
** So all costs can be stored in a 16-bit unsigned integer without risk
** of overflow.
**
** Costs are estimates, so no effort is made to compute 10*log2(X) exactly.
** Instead, a close estimate is used.  Any value of X<=1 is stored as 0.
** X=2 is 10.  X=3 is 16.  X=1000 is 99. etc.
**
** The tool/wherecosttest.c source file implements a command-line program
** that will convert WhereCosts to integers, convert integers to WhereCosts
** and do addition and multiplication on WhereCost values.  The wherecosttest
** command-line program is a useful utility to have around when working with
** this module.
*/
typedef unsigned short int WhereCost;

/*
** This object contains information needed to implement a single nested
** loop in WHERE clause.
**
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
struct WhereOrCost {
  Bitmask prereq;     /* Prerequisites */
  WhereCost rRun;     /* Cost of running this subquery */
  WhereCost nOut;     /* Number of outputs for this subquery */
};

/* The WhereOrSet object holds a set of possible WhereOrCosts that
** correspond to the subquery(s) of OR-clause processing.  At most
** favorable N_OR_COST elements are retained.
*/
#define N_OR_COST 3
struct WhereOrSet {
  u16 n;                      /* Number of valid a[] entries */
  WhereOrCost a[N_OR_COST];   /* Set of best costs */
};








|
|







162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
struct WhereOrCost {
  Bitmask prereq;     /* Prerequisites */
  WhereCost rRun;     /* Cost of running this subquery */
  WhereCost nOut;     /* Number of outputs for this subquery */
};

/* The WhereOrSet object holds a set of possible WhereOrCosts that
** correspond to the subquery(s) of OR-clause processing.  Only the
** best N_OR_COST elements are retained.
*/
#define N_OR_COST 3
struct WhereOrSet {
  u16 n;                      /* Number of valid a[] entries */
  WhereOrCost a[N_OR_COST];   /* Set of best costs */
};

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
** use of a bitmask encoding for the operator allows us to search
** quickly for terms that match any of several different operators.
**
** A WhereTerm might also be two or more subterms connected by OR:
**
**         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
**
** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
** and the WhereTerm.u.pOrInfo field points to auxiliary information that
** is collected about the
**
** If a term in the WHERE clause does not match either of the two previous
** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
** to the original subexpression content and wtFlags is set up appropriately
** but no other fields in the WhereTerm object are meaningful.
**
** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,







|

|







229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
** use of a bitmask encoding for the operator allows us to search
** quickly for terms that match any of several different operators.
**
** A WhereTerm might also be two or more subterms connected by OR:
**
**         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
**
** In this second case, wtFlag has the TERM_ORINFO bit set and eOperator==WO_OR
** and the WhereTerm.u.pOrInfo field points to auxiliary information that
** is collected about the OR clause.
**
** If a term in the WHERE clause does not match either of the two previous
** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
** to the original subexpression content and wtFlags is set up appropriately
** but no other fields in the WhereTerm object are meaningful.
**
** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
*/
static void createMask(WhereMaskSet *pMaskSet, int iCursor){
  assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
  pMaskSet->ix[pMaskSet->n++] = iCursor;
}

/*
** These routine walk (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
*/
static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
  Bitmask mask = 0;







|







748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
*/
static void createMask(WhereMaskSet *pMaskSet, int iCursor){
  assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
  pMaskSet->ix[pMaskSet->n++] = iCursor;
}

/*
** These routines walk (recursively) an expression tree and generate
** a bitmask indicating which tables are used in that expression
** tree.
*/
static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
  Bitmask mask = 0;
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
** subsubterms at least one of which is indexable.  Indexable AND 
** subterms have their eOperator set to WO_AND and they have
** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
**
** From another point of view, "indexable" means that the subterm could
** potentially be used with an index if an appropriate index exists.
** This analysis does not consider whether or not the index exists; that
** is something the bestIndex() routine will determine.  This analysis
** only looks at whether subterms appropriate for indexing exist.
**
** All examples A through E above all satisfy case 2.  But if a term
** also statisfies case 1 (such as B) we know that the optimizer will
** always prefer case 1, so in that case we pretend that case 2 is not
** satisfied.
**
** It might be the case that multiple tables are indexable.  For example,
** (E) above is indexable on tables P, Q, and R.
**







|
|

|







1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
** subsubterms at least one of which is indexable.  Indexable AND 
** subterms have their eOperator set to WO_AND and they have
** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
**
** From another point of view, "indexable" means that the subterm could
** potentially be used with an index if an appropriate index exists.
** This analysis does not consider whether or not the index exists; that
** is decided elsewhere.  This analysis only looks at whether subterms
** appropriate for indexing exist.
**
** All examples A through E above satisfy case 2.  But if a term
** also statisfies case 1 (such as B) we know that the optimizer will
** always prefer case 1, so in that case we pretend that case 2 is not
** satisfied.
**
** It might be the case that multiple tables are indexable.  For example,
** (E) above is indexable on tables P, Q, and R.
**
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
    }
  }

  return 0;
}

/* 
** The (an approximate) sum of two WhereCosts.  This computation is
** not a simple "+" operator because WhereCost is stored as a logarithmic
** value.
** 
*/
static WhereCost whereCostAdd(WhereCost a, WhereCost b){
  static const unsigned char x[] = {
     10, 10,                         /* 0,1 */







|







1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
    }
  }

  return 0;
}

/* 
** Find (an approximate) sum of two WhereCosts.  This computation is
** not a simple "+" operator because WhereCost is stored as a logarithmic
** value.
** 
*/
static WhereCost whereCostAdd(WhereCost a, WhereCost b){
  static const unsigned char x[] = {
     10, 10,                         /* 0,1 */
Changes to test/index6.test.
140
141
142
143
144
145
146

147
148
149
150
151
152








153
154
155
156
157
158
159
} {800}
do_test index6-2.2 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a=5;
  }
} {/.* TABLE t2 USING INDEX t2a1 .*/}

do_test index6-2.3 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a IS NOT NULL;
  }
} {/.* TABLE t2 USING INDEX t2a1 .*/}








do_test index6-2.4 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a IS NULL;
  }
} {~/.*INDEX t2a1.*/}








>
|
|
|
|
|
|
>
>
>
>
>
>
>
>







140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
} {800}
do_test index6-2.2 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a=5;
  }
} {/.* TABLE t2 USING INDEX t2a1 .*/}
ifcapable stat4 {
  do_test index6-2.3stat4 {
    execsql {
      EXPLAIN QUERY PLAN
      SELECT * FROM t2 WHERE a IS NOT NULL;
    }
  } {/.* TABLE t2 USING INDEX t2a1 .*/}
} else {
  do_test index6-2.3stat4 {
    execsql {
      EXPLAIN QUERY PLAN
      SELECT * FROM t2 WHERE a IS NOT NULL AND a>0;
    }
  } {/.* TABLE t2 USING INDEX t2a1 .*/}
}
do_test index6-2.4 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a IS NULL;
  }
} {~/.*INDEX t2a1.*/}