SQLite

Check-in [031feebc94]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Bring in all the latest enhancements from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA3-256: 031feebc94b0cfe1b0ae96ede1684fe54cd79c1d340b8b35cca1ef885f82dde4
User & Date: drh 2017-04-24 16:14:58.795
Context
2017-05-11
18:49
Merge recent enhancements from trunk. (check-in: b55c0f14c3 user: drh tags: apple-osx)
2017-04-24
16:14
Bring in all the latest enhancements from trunk. (check-in: 031feebc94 user: drh tags: apple-osx)
14:16
When building an ephemeral table of integers, do not assume that the table does not already contain N if the insert cursor points to N-1. Fix for ticket [61fe9745]. (check-in: 1c1b086223 user: dan tags: trunk)
2017-04-08
18:24
Merge all recent changes from trunk. (check-in: c23ef5e231 user: drh tags: apple-osx)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.msc.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
USE_AMALGAMATION = 1
!ENDIF
# <</mark>>

# Set this non-0 to enable full warnings (-W4, etc) when compiling.
#
!IFNDEF USE_FULLWARN
USE_FULLWARN = 0
!ENDIF

# Set this non-0 to enable treating warnings as errors (-WX, etc) when
# compiling.
#
!IFNDEF USE_FATAL_WARN
USE_FATAL_WARN = 0







|







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
USE_AMALGAMATION = 1
!ENDIF
# <</mark>>

# Set this non-0 to enable full warnings (-W4, etc) when compiling.
#
!IFNDEF USE_FULLWARN
USE_FULLWARN = 1
!ENDIF

# Set this non-0 to enable treating warnings as errors (-WX, etc) when
# compiling.
#
!IFNDEF USE_FATAL_WARN
USE_FATAL_WARN = 0
Changes to ext/fts3/fts3.c.
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392


393
394
395
396
397
398
399
    if( (c & 0x80)==0 ) break;
  }
  *v = b;
  return (int)(p - pStart);
}

/*
** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
** 32-bit integer before it is returned.
*/
int sqlite3Fts3GetVarint32(const char *p, int *pi){
  u32 a;

#ifndef fts3GetVarint32
  GETVARINT_INIT(a, p, 0,  0x00,     0x80, *pi, 1);
#else
  a = (*p++);
  assert( a & 0x80 );
#endif

  GETVARINT_STEP(a, p, 7,  0x7F,     0x4000, *pi, 2);
  GETVARINT_STEP(a, p, 14, 0x3FFF,   0x200000, *pi, 3);
  GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4);
  a = (a & 0x0FFFFFFF );
  *pi = (int)(a | ((u32)(*p & 0x0F) << 28));


  return 5;
}

/*
** Return the number of bytes required to encode v as a varint
*/
int sqlite3Fts3VarintLen(sqlite3_uint64 v){







|
|















|
>
>







368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    if( (c & 0x80)==0 ) break;
  }
  *v = b;
  return (int)(p - pStart);
}

/*
** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to 
** a non-negative 32-bit integer before it is returned.
*/
int sqlite3Fts3GetVarint32(const char *p, int *pi){
  u32 a;

#ifndef fts3GetVarint32
  GETVARINT_INIT(a, p, 0,  0x00,     0x80, *pi, 1);
#else
  a = (*p++);
  assert( a & 0x80 );
#endif

  GETVARINT_STEP(a, p, 7,  0x7F,     0x4000, *pi, 2);
  GETVARINT_STEP(a, p, 14, 0x3FFF,   0x200000, *pi, 3);
  GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4);
  a = (a & 0x0FFFFFFF );
  *pi = (int)(a | ((u32)(*p & 0x07) << 28));
  assert( 0==(a & 0x80000000) );
  assert( *pi>=0 );
  return 5;
}

/*
** Return the number of bytes required to encode v as a varint
*/
int sqlite3Fts3VarintLen(sqlite3_uint64 v){
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280





1281
1282
1283
1284
1285
1286
1287
      }else{
        for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
          struct Fts4Option *pOp = &aFts4Opt[iOpt];
          if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
            break;
          }
        }
        if( iOpt==SizeofArray(aFts4Opt) ){
          sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
          rc = SQLITE_ERROR;
        }else{
          switch( iOpt ){
            case 0:               /* MATCHINFO */
              if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
                sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
                rc = SQLITE_ERROR;
              }
              bNoDocsize = 1;
              break;

            case 1:               /* PREFIX */
              sqlite3_free(zPrefix);
              zPrefix = zVal;
              zVal = 0;
              break;

            case 2:               /* COMPRESS */
              sqlite3_free(zCompress);
              zCompress = zVal;
              zVal = 0;
              break;

            case 3:               /* UNCOMPRESS */
              sqlite3_free(zUncompress);
              zUncompress = zVal;
              zVal = 0;
              break;

            case 4:               /* ORDER */
              if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) 
               && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) 
              ){
                sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
                rc = SQLITE_ERROR;
              }
              bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
              break;

            case 5:              /* CONTENT */
              sqlite3_free(zContent);
              zContent = zVal;
              zVal = 0;
              break;

            case 6:              /* LANGUAGEID */
              assert( iOpt==6 );
              sqlite3_free(zLanguageid);
              zLanguageid = zVal;
              zVal = 0;
              break;

            case 7:              /* NOTINDEXED */
              azNotindexed[nNotindexed++] = zVal;
              zVal = 0;
              break;
          }





        }
        sqlite3_free(zVal);
      }
    }

    /* Otherwise, the argument is a column name. */
    else {







<
<
<
<
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
>
>
>
>
>







1217
1218
1219
1220
1221
1222
1223




1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
      }else{
        for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
          struct Fts4Option *pOp = &aFts4Opt[iOpt];
          if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
            break;
          }
        }




        switch( iOpt ){
          case 0:               /* MATCHINFO */
            if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
              sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
              rc = SQLITE_ERROR;
            }
            bNoDocsize = 1;
            break;

          case 1:               /* PREFIX */
            sqlite3_free(zPrefix);
            zPrefix = zVal;
            zVal = 0;
            break;

          case 2:               /* COMPRESS */
            sqlite3_free(zCompress);
            zCompress = zVal;
            zVal = 0;
            break;

          case 3:               /* UNCOMPRESS */
            sqlite3_free(zUncompress);
            zUncompress = zVal;
            zVal = 0;
            break;

          case 4:               /* ORDER */
            if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) 
             && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) 
            ){
              sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
              rc = SQLITE_ERROR;
            }
            bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
            break;

          case 5:              /* CONTENT */
            sqlite3_free(zContent);
            zContent = zVal;
            zVal = 0;
            break;

          case 6:              /* LANGUAGEID */
            assert( iOpt==6 );
            sqlite3_free(zLanguageid);
            zLanguageid = zVal;
            zVal = 0;
            break;

          case 7:              /* NOTINDEXED */
            azNotindexed[nNotindexed++] = zVal;
            zVal = 0;
            break;

          default:
            assert( iOpt==SizeofArray(aFts4Opt) );
            sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
            rc = SQLITE_ERROR;
            break;
        }
        sqlite3_free(zVal);
      }
    }

    /* Otherwise, the argument is a column name. */
    else {
1842
1843
1844
1845
1846
1847
1848

1849
1850
1851
1852
1853
1854
1855
1856
    ** the size of zBuffer if required.  */
    if( !isFirstTerm ){
      zCsr += fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += fts3GetVarint32(zCsr, &nSuffix);
    

    if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){
      rc = FTS_CORRUPT_VTAB;
      goto finish_scan;
    }
    if( nPrefix+nSuffix>nAlloc ){
      char *zNew;
      nAlloc = (nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);







>
|







1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
    ** the size of zBuffer if required.  */
    if( !isFirstTerm ){
      zCsr += fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += fts3GetVarint32(zCsr, &nSuffix);
    
    assert( nPrefix>=0 && nSuffix>=0 );
    if( &zCsr[nSuffix]>zEnd ){
      rc = FTS_CORRUPT_VTAB;
      goto finish_scan;
    }
    if( nPrefix+nSuffix>nAlloc ){
      char *zNew;
      nAlloc = (nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
      nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
      pOut[nOut++] = 0x02;
      bWritten = 1;
    }
    fts3ColumnlistCopy(0, &p);
  }

  while( p<pEnd && *p==0x01 ){
    sqlite3_int64 iCol;
    p++;
    p += sqlite3Fts3GetVarint(p, &iCol);
    if( *p==0x02 ){
      if( bWritten==0 ){
        nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
        bWritten = 1;







|







2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
      nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
      pOut[nOut++] = 0x02;
      bWritten = 1;
    }
    fts3ColumnlistCopy(0, &p);
  }

  while( p<pEnd ){
    sqlite3_int64 iCol;
    p++;
    p += sqlite3Fts3GetVarint(p, &iCol);
    if( *p==0x02 ){
      if( bWritten==0 ){
        nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
        bWritten = 1;
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341



3342


3343

3344
3345
3346
3347
3348
3349




3350
3351
3352
3353

3354
3355
3356
3357
3358
3359
3360
3361



3362
3363
3364
3365

3366
3367
3368
3369
3370
3371
3372
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+2 );

  if( iCol==p->nColumn+1 ){
    /* This call is a request for the "docid" column. Since "docid" is an 
    ** alias for "rowid", use the xRowid() method to obtain the value.



    */


    sqlite3_result_int64(pCtx, pCsr->iPrevId);

  }else if( iCol==p->nColumn ){
    /* The extra column whose name is the same as the table.
    ** Return a blob which is a pointer to the cursor.  */
    sqlite3_result_blob(pCtx, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
  }else if( iCol==p->nColumn+2 && pCsr->pExpr ){
    sqlite3_result_int64(pCtx, pCsr->iLangid);




  }else{
    /* The requested column is either a user column (one that contains 
    ** indexed data), or the language-id column.  */
    rc = fts3CursorSeek(0, pCsr);


    if( rc==SQLITE_OK ){
      if( iCol==p->nColumn+2 ){
        int iLangid = 0;
        if( p->zLanguageid ){
          iLangid = sqlite3_column_int(pCsr->pStmt, p->nColumn+1);
        }
        sqlite3_result_int(pCtx, iLangid);



      }else if( sqlite3_data_count(pCsr->pStmt)>(iCol+1) ){
        sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
      }
    }

  }

  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/* 







|
|
|
>
>
>
|
>
>
|
>
|
|
<
<
|
|
>
>
>
>
|
<
|
<
>
|
<
<
<
<
<
|
|
>
>
>
|


<
>







3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355


3356
3357
3358
3359
3360
3361
3362

3363

3364
3365





3366
3367
3368
3369
3370
3371
3372
3373

3374
3375
3376
3377
3378
3379
3380
3381
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+2 );

  switch( iCol-p->nColumn ){
    case 0:
      /* The special 'table-name' column */
      sqlite3_result_blob(pCtx, &pCsr, sizeof(Fts3Cursor*), SQLITE_TRANSIENT);
      sqlite3_result_subtype(pCtx, SQLITE_BLOB);
      break;

    case 1:
      /* The docid column */
      sqlite3_result_int64(pCtx, pCsr->iPrevId);
      break;

    case 2:


      if( pCsr->pExpr ){
        sqlite3_result_int64(pCtx, pCsr->iLangid);
        break;
      }else if( p->zLanguageid==0 ){
        sqlite3_result_int(pCtx, 0);
        break;
      }else{

        iCol = p->nColumn;

        /* fall-through */
      }






    default:
      /* A user column. Or, if this is a full-table scan, possibly the
      ** language-id column. Seek the cursor. */
      rc = fts3CursorSeek(0, pCsr);
      if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){
        sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
      }

      break;
  }

  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/* 
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

3456
3457
3458
3459
3460
3461
3462
** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
** if an error occurs.
*/
static int fts3SetHasStat(Fts3Table *p){
  int rc = SQLITE_OK;
  if( p->bHasStat==2 ){
    const char *zFmt ="SELECT 1 FROM %Q.sqlite_master WHERE tbl_name='%q_stat'";
    char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName);
    if( zSql ){
      sqlite3_stmt *pStmt = 0;
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
      if( rc==SQLITE_OK ){
        int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW);
        rc = sqlite3_finalize(pStmt);
        if( rc==SQLITE_OK ) p->bHasStat = (u8)bHasStat;
      }
      sqlite3_free(zSql);

    }else{
      rc = SQLITE_NOMEM;
    }
  }
  return rc;
}








<
|
|
<
<
<
<
|
<
<
|
>







3447
3448
3449
3450
3451
3452
3453

3454
3455




3456


3457
3458
3459
3460
3461
3462
3463
3464
3465
** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
** if an error occurs.
*/
static int fts3SetHasStat(Fts3Table *p){
  int rc = SQLITE_OK;
  if( p->bHasStat==2 ){

    char *zTbl = sqlite3_mprintf("%s_stat", p->zName);
    if( zTbl ){




      int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0);


      sqlite3_free(zTbl);
      p->bHasStat = (res==SQLITE_OK);
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  return rc;
}

3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565

3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
*/
static int fts3FunctionArg(
  sqlite3_context *pContext,      /* SQL function call context */
  const char *zFunc,              /* Function name */
  sqlite3_value *pVal,            /* argv[0] passed to function */
  Fts3Cursor **ppCsr              /* OUT: Store cursor handle here */
){
  Fts3Cursor *pRet;
  if( sqlite3_value_type(pVal)!=SQLITE_BLOB 
   || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
  ){

    char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
    sqlite3_result_error(pContext, zErr, -1);
    sqlite3_free(zErr);
    return SQLITE_ERROR;
  }
  memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
  *ppCsr = pRet;
  return SQLITE_OK;
}

/*
** Implementation of the snippet() function for FTS3
*/
static void fts3SnippetFunc(
  sqlite3_context *pContext,      /* SQLite function call context */







|
|
|
<
>



|

<
<
|







3558
3559
3560
3561
3562
3563
3564
3565
3566
3567

3568
3569
3570
3571
3572
3573


3574
3575
3576
3577
3578
3579
3580
3581
*/
static int fts3FunctionArg(
  sqlite3_context *pContext,      /* SQL function call context */
  const char *zFunc,              /* Function name */
  sqlite3_value *pVal,            /* argv[0] passed to function */
  Fts3Cursor **ppCsr              /* OUT: Store cursor handle here */
){
  int rc = SQLITE_OK;
  if( sqlite3_value_subtype(pVal)==SQLITE_BLOB ){
    *ppCsr = *(Fts3Cursor**)sqlite3_value_blob(pVal);

  }else{
    char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
    sqlite3_result_error(pContext, zErr, -1);
    sqlite3_free(zErr);
    rc = SQLITE_ERROR;
  }


  return rc;
}

/*
** Implementation of the snippet() function for FTS3
*/
static void fts3SnippetFunc(
  sqlite3_context *pContext,      /* SQLite function call context */
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the two scalar functions. If this is successful, register the
  ** module with sqlite.
  */
  if( SQLITE_OK==rc 
   && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))







|







3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the four scalar functions. If this is successful, register the
  ** module with sqlite.
  */
  if( SQLITE_OK==rc 
   && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  u8 bEof = 0;

  /* This is only called if it is guaranteed that the phrase has at least
  ** one incremental token. In which case the bIncr flag is set. */
  assert( p->bIncr==1 );

  if( p->nToken==1 && p->bIncr ){
    rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, 
        &pDL->iDocid, &pDL->pList, &pDL->nList
    );
    if( pDL->pList==0 ) bEof = 1;
  }else{
    int bDescDoclist = pCsr->bDesc;
    struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];







|







4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  u8 bEof = 0;

  /* This is only called if it is guaranteed that the phrase has at least
  ** one incremental token. In which case the bIncr flag is set. */
  assert( p->bIncr==1 );

  if( p->nToken==1 ){
    rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, 
        &pDL->iDocid, &pDL->pList, &pDL->nList
    );
    if( pDL->pList==0 ) bEof = 1;
  }else{
    int bDescDoclist = pCsr->bDesc;
    struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
4769
4770
4771
4772
4773
4774
4775

4776
4777
4778
4779
4780
4781
4782
** The average document size in pages is calculated by first calculating 
** determining the average size in bytes, B. If B is less than the amount
** of data that will fit on a single leaf page of an intkey table in
** this database, then the average docsize is 1. Otherwise, it is 1 plus
** the number of overflow pages consumed by a record B bytes in size.
*/
static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){

  if( pCsr->nRowAvg==0 ){
    /* The average document size, which is required to calculate the cost
    ** of each doclist, has not yet been determined. Read the required 
    ** data from the %_stat table to calculate it.
    **
    ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
    ** varints, where nCol is the number of columns in the FTS3 table.







>







4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
** The average document size in pages is calculated by first calculating 
** determining the average size in bytes, B. If B is less than the amount
** of data that will fit on a single leaf page of an intkey table in
** this database, then the average docsize is 1. Otherwise, it is 1 plus
** the number of overflow pages consumed by a record B bytes in size.
*/
static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
  int rc = SQLITE_OK;
  if( pCsr->nRowAvg==0 ){
    /* The average document size, which is required to calculate the cost
    ** of each doclist, has not yet been determined. Read the required 
    ** data from the %_stat table to calculate it.
    **
    ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
    ** varints, where nCol is the number of columns in the FTS3 table.
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
      return FTS_CORRUPT_VTAB;
    }

    pCsr->nDoc = nDoc;
    pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
    assert( pCsr->nRowAvg>0 ); 
    rc = sqlite3_reset(pStmt);
    if( rc!=SQLITE_OK ) return rc;
  }

  *pnPage = pCsr->nRowAvg;
  return SQLITE_OK;
}

/*
** This function is called to select the tokens (if any) that will be 
** deferred. The array aTC[] has already been populated when this is
** called.
**







<



|







4810
4811
4812
4813
4814
4815
4816

4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
      return FTS_CORRUPT_VTAB;
    }

    pCsr->nDoc = nDoc;
    pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
    assert( pCsr->nRowAvg>0 ); 
    rc = sqlite3_reset(pStmt);

  }

  *pnPage = pCsr->nRowAvg;
  return rc;
}

/*
** This function is called to select the tokens (if any) that will be 
** deferred. The array aTC[] has already been populated when this is
** called.
**
5162
5163
5164
5165
5166
5167
5168

5169
5170
5171
5172
5173
5174
5175
5176
            }else{
              fts3EvalNextRow(pCsr, pRight, pRc);
            }
          }
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
          if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){

            if( pRight->pPhrase && pRight->pPhrase->doclist.aAll ){
              Fts3Doclist *pDl = &pRight->pPhrase->doclist;
              while( *pRc==SQLITE_OK && pRight->bEof==0 ){
                memset(pDl->pList, 0, pDl->nList);
                fts3EvalNextRow(pCsr, pRight, pRc);
              }
            }
            if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){







>
|







5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
            }else{
              fts3EvalNextRow(pCsr, pRight, pRc);
            }
          }
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
          if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
            assert( pRight->eType==FTSQUERY_PHRASE );
            if( pRight->pPhrase->doclist.aAll ){
              Fts3Doclist *pDl = &pRight->pPhrase->doclist;
              while( *pRc==SQLITE_OK && pRight->bEof==0 ){
                memset(pDl->pList, 0, pDl->nList);
                fts3EvalNextRow(pCsr, pRight, pRc);
              }
            }
            if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
        sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);

        assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
        assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );

        if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
          fts3EvalNextRow(pCsr, pLeft, pRc);
        }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){
          fts3EvalNextRow(pCsr, pRight, pRc);
        }else{
          fts3EvalNextRow(pCsr, pLeft, pRc);
          fts3EvalNextRow(pCsr, pRight, pRc);
        }

        pExpr->bEof = (pLeft->bEof && pRight->bEof);







|







5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
        sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);

        assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
        assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );

        if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
          fts3EvalNextRow(pCsr, pLeft, pRc);
        }else if( pLeft->bEof || iCmp>0 ){
          fts3EvalNextRow(pCsr, pRight, pRc);
        }else{
          fts3EvalNextRow(pCsr, pLeft, pRc);
          fts3EvalNextRow(pCsr, pRight, pRc);
        }

        pExpr->bEof = (pLeft->bEof && pRight->bEof);
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298

5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
  **
  ** The right-hand child of a NEAR node is always a phrase. The 
  ** left-hand child may be either a phrase or a NEAR node. There are
  ** no exceptions to this - it's the way the parser in fts3_expr.c works.
  */
  if( *pRc==SQLITE_OK 
   && pExpr->eType==FTSQUERY_NEAR 
   && pExpr->bEof==0
   && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
  ){
    Fts3Expr *p; 
    int nTmp = 0;                 /* Bytes of temp space */
    char *aTmp;                   /* Temp space for PoslistNearMerge() */

    /* Allocate temporary working space. */
    for(p=pExpr; p->pLeft; p=p->pLeft){

      nTmp += p->pRight->pPhrase->doclist.nList;
    }
    nTmp += p->pPhrase->doclist.nList;
    if( nTmp==0 ){
      res = 0;
    }else{
      aTmp = sqlite3_malloc(nTmp*2);
      if( !aTmp ){
        *pRc = SQLITE_NOMEM;
        res = 0;
      }else{
        char *aPoslist = p->pPhrase->doclist.pList;
        int nToken = p->pPhrase->nToken;

        for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
          Fts3Phrase *pPhrase = p->pRight->pPhrase;
          int nNear = p->nNear;
          res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
        }

        aPoslist = pExpr->pRight->pPhrase->doclist.pList;
        nToken = pExpr->pRight->pPhrase->nToken;
        for(p=pExpr->pLeft; p && res; p=p->pLeft){
          int nNear;
          Fts3Phrase *pPhrase;
          assert( p->pParent && p->pParent->pLeft==p );
          nNear = p->pParent->nNear;
          pPhrase = (
              p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
              );
          res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
        }
      }

      sqlite3_free(aTmp);
    }
  }

  return res;
}

/*
** This function is a helper function for sqlite3Fts3EvalTestDeferred().







<








>



<
<
<
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
<







5285
5286
5287
5288
5289
5290
5291

5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303



5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332

5333
5334
5335
5336
5337
5338
5339
  **
  ** The right-hand child of a NEAR node is always a phrase. The 
  ** left-hand child may be either a phrase or a NEAR node. There are
  ** no exceptions to this - it's the way the parser in fts3_expr.c works.
  */
  if( *pRc==SQLITE_OK 
   && pExpr->eType==FTSQUERY_NEAR 

   && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
  ){
    Fts3Expr *p; 
    int nTmp = 0;                 /* Bytes of temp space */
    char *aTmp;                   /* Temp space for PoslistNearMerge() */

    /* Allocate temporary working space. */
    for(p=pExpr; p->pLeft; p=p->pLeft){
      assert( p->pRight->pPhrase->doclist.nList>0 );
      nTmp += p->pRight->pPhrase->doclist.nList;
    }
    nTmp += p->pPhrase->doclist.nList;



    aTmp = sqlite3_malloc(nTmp*2);
    if( !aTmp ){
      *pRc = SQLITE_NOMEM;
      res = 0;
    }else{
      char *aPoslist = p->pPhrase->doclist.pList;
      int nToken = p->pPhrase->nToken;

      for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
        Fts3Phrase *pPhrase = p->pRight->pPhrase;
        int nNear = p->nNear;
        res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }

      aPoslist = pExpr->pRight->pPhrase->doclist.pList;
      nToken = pExpr->pRight->pPhrase->nToken;
      for(p=pExpr->pLeft; p && res; p=p->pLeft){
        int nNear;
        Fts3Phrase *pPhrase;
        assert( p->pParent && p->pParent->pLeft==p );
        nNear = p->pParent->nNear;
        pPhrase = (
            p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
        );
        res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }
    }

    sqlite3_free(aTmp);

  }

  return res;
}

/*
** This function is a helper function for sqlite3Fts3EvalTestDeferred().
Changes to ext/fts5/fts5Int.h.
650
651
652
653
654
655
656

657
658
659
660
661
662
663
  const char *p;                  /* Token text (not NULL terminated) */
  int n;                          /* Size of buffer p in bytes */
};

/* Parse a MATCH expression. */
int sqlite3Fts5ExprNew(
  Fts5Config *pConfig, 

  const char *zExpr,
  Fts5Expr **ppNew, 
  char **pzErr
);

/*
** for(rc = sqlite3Fts5ExprFirst(pExpr, pIdx, bDesc);







>







650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
  const char *p;                  /* Token text (not NULL terminated) */
  int n;                          /* Size of buffer p in bytes */
};

/* Parse a MATCH expression. */
int sqlite3Fts5ExprNew(
  Fts5Config *pConfig, 
  int iCol,                       /* Column on LHS of MATCH operator */
  const char *zExpr,
  Fts5Expr **ppNew, 
  char **pzErr
);

/*
** for(rc = sqlite3Fts5ExprFirst(pExpr, pIdx, bDesc);
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
);

void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase*);
void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset*);
void sqlite3Fts5ParseNodeFree(Fts5ExprNode*);

void sqlite3Fts5ParseSetDistance(Fts5Parse*, Fts5ExprNearset*, Fts5Token*);
void sqlite3Fts5ParseSetColset(Fts5Parse*, Fts5ExprNearset*, Fts5Colset*);
Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse*, Fts5Colset*);
void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p);
void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token*);

/*
** End of interface to code in fts5_expr.c.
**************************************************************************/







|







735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
);

void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase*);
void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset*);
void sqlite3Fts5ParseNodeFree(Fts5ExprNode*);

void sqlite3Fts5ParseSetDistance(Fts5Parse*, Fts5ExprNearset*, Fts5Token*);
void sqlite3Fts5ParseSetColset(Fts5Parse*, Fts5ExprNode*, Fts5Colset*);
Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse*, Fts5Colset*);
void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p);
void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token*);

/*
** End of interface to code in fts5_expr.c.
**************************************************************************/
Changes to ext/fts5/fts5_expr.c.
209
210
211
212
213
214
215

216
217
218
219
220
221
222
}

static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc((int)t); }
static void fts5ParseFree(void *p){ sqlite3_free(p); }

int sqlite3Fts5ExprNew(
  Fts5Config *pConfig,            /* FTS5 Configuration */

  const char *zExpr,              /* Expression text */
  Fts5Expr **ppNew, 
  char **pzErr
){
  Fts5Parse sParse;
  Fts5Token token;
  const char *z = zExpr;







>







209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
}

static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc((int)t); }
static void fts5ParseFree(void *p){ sqlite3_free(p); }

int sqlite3Fts5ExprNew(
  Fts5Config *pConfig,            /* FTS5 Configuration */
  int iCol,
  const char *zExpr,              /* Expression text */
  Fts5Expr **ppNew, 
  char **pzErr
){
  Fts5Parse sParse;
  Fts5Token token;
  const char *z = zExpr;
232
233
234
235
236
237
238












239
240
241
242
243
244
245
  sParse.pConfig = pConfig;

  do {
    t = fts5ExprGetToken(&sParse, &z, &token);
    sqlite3Fts5Parser(pEngine, t, token, &sParse);
  }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
  sqlite3Fts5ParserFree(pEngine, fts5ParseFree);













  assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
  if( sParse.rc==SQLITE_OK ){
    *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
    if( pNew==0 ){
      sParse.rc = SQLITE_NOMEM;
      sqlite3Fts5ParseNodeFree(sParse.pExpr);







>
>
>
>
>
>
>
>
>
>
>
>







233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  sParse.pConfig = pConfig;

  do {
    t = fts5ExprGetToken(&sParse, &z, &token);
    sqlite3Fts5Parser(pEngine, t, token, &sParse);
  }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
  sqlite3Fts5ParserFree(pEngine, fts5ParseFree);

  /* If the LHS of the MATCH expression was a user column, apply the
  ** implicit column-filter.  */
  if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){
    int n = sizeof(Fts5Colset);
    Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n);
    if( pColset ){
      pColset->nCol = 1;
      pColset->aiCol[0] = iCol;
      sqlite3Fts5ParseSetColset(&sParse, sParse.pExpr, pColset);
    }
  }

  assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
  if( sParse.rc==SQLITE_OK ){
    *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
    if( pNew==0 ){
      sParse.rc = SQLITE_NOMEM;
      sqlite3Fts5ParseNodeFree(sParse.pExpr);
1882
1883
1884
1885
1886
1887
1888

























































































1889
1890
1891
1892
1893

1894
1895
1896
1897
1898
1899
1900
1901

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
    assert( pParse->rc!=SQLITE_OK );
    sqlite3_free(pColset);
  }

  return pRet;
}


























































































void sqlite3Fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNearset *pNear, 
  Fts5Colset *pColset 
){

  if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pParse->rc = SQLITE_ERROR;
    pParse->zErr = sqlite3_mprintf(
      "fts5: column queries are not supported (detail=none)"
    );
    sqlite3_free(pColset);
    return;
  }


  if( pNear ){
    pNear->pColset = pColset;
  }else{
    sqlite3_free(pColset);
  }
}

static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
  switch( pNode->eType ){
    case FTS5_STRING: {
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|


>





<
<
|
>
|
<
<
<
|
<







1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001


2002
2003
2004



2005

2006
2007
2008
2009
2010
2011
2012
    assert( pParse->rc!=SQLITE_OK );
    sqlite3_free(pColset);
  }

  return pRet;
}

/*
** If argument pOrig is NULL, or if (*pRc) is set to anything other than
** SQLITE_OK when this function is called, NULL is returned. 
**
** Otherwise, a copy of (*pOrig) is made into memory obtained from
** sqlite3Fts5MallocZero() and a pointer to it returned. If the allocation
** fails, (*pRc) is set to SQLITE_NOMEM and NULL is returned.
*/
static Fts5Colset *fts5CloneColset(int *pRc, Fts5Colset *pOrig){
  Fts5Colset *pRet;
  if( pOrig ){
    int nByte = sizeof(Fts5Colset) + (pOrig->nCol-1) * sizeof(int);
    pRet = (Fts5Colset*)sqlite3Fts5MallocZero(pRc, nByte);
    if( pRet ){ 
      memcpy(pRet, pOrig, nByte);
    }
  }else{
    pRet = 0;
  }
  return pRet;
}

/*
** Remove from colset pColset any columns that are not also in colset pMerge.
*/
static void fts5MergeColset(Fts5Colset *pColset, Fts5Colset *pMerge){
  int iIn = 0;          /* Next input in pColset */
  int iMerge = 0;       /* Next input in pMerge */
  int iOut = 0;         /* Next output slot in pColset */

  while( iIn<pColset->nCol && iMerge<pMerge->nCol ){
    int iDiff = pColset->aiCol[iIn] - pMerge->aiCol[iMerge];
    if( iDiff==0 ){
      pColset->aiCol[iOut++] = pMerge->aiCol[iMerge];
      iMerge++;
      iIn++;
    }else if( iDiff>0 ){
      iMerge++;
    }else{
      iIn++;
    }
  }
  pColset->nCol = iOut;
}

/*
** Recursively apply colset pColset to expression node pNode and all of
** its decendents. If (*ppFree) is not NULL, it contains a spare copy
** of pColset. This function may use the spare copy and set (*ppFree) to
** zero, or it may create copies of pColset using fts5CloneColset().
*/
static void fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNode *pNode, 
  Fts5Colset *pColset,
  Fts5Colset **ppFree
){
  if( pParse->rc==SQLITE_OK ){
    assert( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING 
         || pNode->eType==FTS5_AND  || pNode->eType==FTS5_OR
         || pNode->eType==FTS5_NOT  || pNode->eType==FTS5_EOF
    );
    if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->pColset ){
        fts5MergeColset(pNear->pColset, pColset);
        if( pNear->pColset->nCol==0 ){
          pNode->eType = FTS5_EOF;
          pNode->xNext = 0;
        }
      }else if( *ppFree ){
        pNear->pColset = pColset;
        *ppFree = 0;
      }else{
        pNear->pColset = fts5CloneColset(&pParse->rc, pColset);
      }
    }else{
      int i;
      assert( pNode->eType!=FTS5_EOF || pNode->nChild==0 );
      for(i=0; i<pNode->nChild; i++){
        fts5ParseSetColset(pParse, pNode->apChild[i], pColset, ppFree);
      }
    }
  }
}

/*
** Apply colset pColset to expression node pExpr and all of its descendents.
*/
void sqlite3Fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNode *pExpr, 
  Fts5Colset *pColset 
){
  Fts5Colset *pFree = pColset;
  if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pParse->rc = SQLITE_ERROR;
    pParse->zErr = sqlite3_mprintf(
      "fts5: column queries are not supported (detail=none)"
    );


  }else{
    fts5ParseSetColset(pParse, pExpr, pColset, &pFree);
  }



  sqlite3_free(pFree);

}

static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
  switch( pNode->eType ){
    case FTS5_STRING: {
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
    azConfig[i++] = (const char*)sqlite3_value_text(apVal[iArg]);
  }

  zExpr = (const char*)sqlite3_value_text(apVal[0]);

  rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr);
  }
  if( rc==SQLITE_OK ){
    char *zText;
    if( pExpr->pRoot->xNext==0 ){
      zText = sqlite3_mprintf("");
    }else if( bTcl ){
      zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);







|







2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
    azConfig[i++] = (const char*)sqlite3_value_text(apVal[iArg]);
  }

  zExpr = (const char*)sqlite3_value_text(apVal[0]);

  rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ExprNew(pConfig, pConfig->nCol, zExpr, &pExpr, &zErr);
  }
  if( rc==SQLITE_OK ){
    char *zText;
    if( pExpr->pRoot->xNext==0 ){
      zText = sqlite3_mprintf("");
    }else if( bTcl ){
      zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
Changes to ext/fts5/fts5_index.c.
2874
2875
2876
2877
2878
2879
2880

2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5Iter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){

    do {
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;

      assert( p->rc==SQLITE_OK );
      pSeg->xNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }else{
        *pbNewTerm = 0;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}








>
|












<
<







2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894


2895
2896
2897
2898
2899
2900
2901
static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5Iter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){
    *pbNewTerm = 0;
    do{
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;

      assert( p->rc==SQLITE_OK );
      pSeg->xNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;


      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}

3154
3155
3156
3157
3158
3159
3160
3161

3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177

3178
3179
3180
3181
3182
3183
3184
  while( p<pEnd && *p!=0x01 ){
    while( *p++ & 0x80 );
  }

  return p - (*pa);
}

static int fts5IndexExtractColset (

  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  int rc = SQLITE_OK;
  int i;

  fts5BufferZero(pBuf);
  for(i=0; i<pColset->nCol; i++){
    const u8 *pSub = pPos;
    int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
    if( nSub ){
      fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
    }
  }
  return rc;

}

/*
** xSetOutputs callback used by detail=none tables.
*/
static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );







|
>




|
|
<
|
|
|
|
|
|
|
|
<
>







3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167

3168
3169
3170
3171
3172
3173
3174
3175

3176
3177
3178
3179
3180
3181
3182
3183
  while( p<pEnd && *p!=0x01 ){
    while( *p++ & 0x80 );
  }

  return p - (*pa);
}

static void fts5IndexExtractColset(
  int *pRc,
  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  if( *pRc==SQLITE_OK ){
    int i;

    fts5BufferZero(pBuf);
    for(i=0; i<pColset->nCol; i++){
      const u8 *pSub = pPos;
      int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
      if( nSub ){
        fts5BufferAppendBlob(pRc, pBuf, nSub, pSub);
      }
    }

  }
}

/*
** xSetOutputs callback used by detail=none tables.
*/
static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );
3294
3295
3296
3297
3298
3299
3300

3301
3302
3303
3304
3305
3306
3307
3308
3309
    /* All data is stored on the current page. Populate the output 
    ** variables to point into the body of the page object. */
    const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset->nCol==1 ){
      pIter->base.nData = fts5IndexExtractCol(&a, pSeg->nPos,pColset->aiCol[0]);
      pIter->base.pData = a;
    }else{

      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pColset, a, pSeg->nPos, &pIter->poslist);
      pIter->base.pData = pIter->poslist.p;
      pIter->base.nData = pIter->poslist.n;
    }
  }else{
    /* The data is distributed over two or more pages. Copy it into the
    ** Fts5Iter.poslist buffer and then set the output pointer to point
    ** to this buffer.  */







>

|







3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
    /* All data is stored on the current page. Populate the output 
    ** variables to point into the body of the page object. */
    const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset->nCol==1 ){
      pIter->base.nData = fts5IndexExtractCol(&a, pSeg->nPos,pColset->aiCol[0]);
      pIter->base.pData = a;
    }else{
      int *pRc = &pIter->pIndex->rc;
      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pRc, pColset, a, pSeg->nPos, &pIter->poslist);
      pIter->base.pData = pIter->poslist.p;
      pIter->base.nData = pIter->poslist.n;
    }
  }else{
    /* The data is distributed over two or more pages. Copy it into the
    ** Fts5Iter.poslist buffer and then set the output pointer to point
    ** to this buffer.  */
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
}

static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
  static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
  Fts5PageWriter *pPage = &pWriter->writer;
  i64 iRowid;

static int nCall = 0;
nCall++;

  assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );

  /* Set the szLeaf header field. */
  assert( 0==fts5GetU16(&pPage->buf.p[2]) );
  fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n);

  if( pWriter->bFirstTermInPage ){







<
<
<







3840
3841
3842
3843
3844
3845
3846



3847
3848
3849
3850
3851
3852
3853
}

static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
  static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
  Fts5PageWriter *pPage = &pWriter->writer;
  i64 iRowid;




  assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );

  /* Set the szLeaf header field. */
  assert( 0==fts5GetU16(&pPage->buf.p[2]) );
  fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n);

  if( pWriter->bFirstTermInPage ){
Changes to ext/fts5/fts5_main.c.
502
503
504
505
506
507
508

509
510
511
512
513
514
515
**       * An == rowid constraint:       cost=10.0
**
** Costs are not modified by the ORDER BY clause.
*/
static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  Fts5Table *pTab = (Fts5Table*)pVTab;
  Fts5Config *pConfig = pTab->pConfig;

  int idxFlags = 0;               /* Parameter passed through to xFilter() */
  int bHasMatch;
  int iNext;
  int i;

  struct Constraint {
    int op;                       /* Mask against sqlite3_index_constraint.op */







>







502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
**       * An == rowid constraint:       cost=10.0
**
** Costs are not modified by the ORDER BY clause.
*/
static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  Fts5Table *pTab = (Fts5Table*)pVTab;
  Fts5Config *pConfig = pTab->pConfig;
  const int nCol = pConfig->nCol;
  int idxFlags = 0;               /* Parameter passed through to xFilter() */
  int bHasMatch;
  int iNext;
  int i;

  struct Constraint {
    int op;                       /* Mask against sqlite3_index_constraint.op */
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543


544

545
546
547
548
549
550
551








552
553
554
555
556
557
558
                                    FTS5_BI_ROWID_LE, 0, 0, -1},
    {SQLITE_INDEX_CONSTRAINT_GT|SQLITE_INDEX_CONSTRAINT_GE, 
                                    FTS5_BI_ROWID_GE, 0, 0, -1},
  };

  int aColMap[3];
  aColMap[0] = -1;
  aColMap[1] = pConfig->nCol;
  aColMap[2] = pConfig->nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int j;
    for(j=0; j<ArraySize(aConstraint); j++){
      struct Constraint *pC = &aConstraint[j];
      if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){


        if( p->usable ){

          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }else if( j==0 ){
          /* As there exists an unusable MATCH constraint this is an 
          ** unusable plan. Set a prohibitively high cost. */
          pInfo->estimatedCost = 1e50;
          return SQLITE_OK;








        }
      }
    }
  }

  /* Set idxFlags flags for the ORDER BY clause */
  if( pInfo->nOrderBy==1 ){







|
|




|
|
|
|
>
>
|
>
|
<
|
|
|
|
|
>
>
>
>
>
>
>
>







528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
                                    FTS5_BI_ROWID_LE, 0, 0, -1},
    {SQLITE_INDEX_CONSTRAINT_GT|SQLITE_INDEX_CONSTRAINT_GE, 
                                    FTS5_BI_ROWID_GE, 0, 0, -1},
  };

  int aColMap[3];
  aColMap[0] = -1;
  aColMap[1] = nCol;
  aColMap[2] = nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int iCol = p->iColumn;

    if( (p->op==SQLITE_INDEX_CONSTRAINT_MATCH && iCol>=0 && iCol<=nCol)
     || (p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol==nCol)
    ){
      /* A MATCH operator or equivalent */
      if( p->usable ){
        idxFlags = (idxFlags & 0xFFFF) | FTS5_BI_MATCH | (iCol << 16);
        aConstraint[0].iConsIndex = i;

      }else{
        /* As there exists an unusable MATCH constraint this is an 
        ** unusable plan. Set a prohibitively high cost. */
        pInfo->estimatedCost = 1e50;
        return SQLITE_OK;
      }
    }else{
      int j;
      for(j=1; j<ArraySize(aConstraint); j++){
        struct Constraint *pC = &aConstraint[j];
        if( iCol==aColMap[pC->iCol] && p->op & pC->op && p->usable ){
          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }
      }
    }
  }

  /* Set idxFlags flags for the ORDER BY clause */
  if( pInfo->nOrderBy==1 ){
1119
1120
1121
1122
1123
1124
1125

1126
1127
1128
1129
1130
1131
1132
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */

  char **pzErrmsg = pConfig->pzErrmsg;

  UNUSED_PARAM(zUnused);
  UNUSED_PARAM(nVal);

  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);







>







1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */
  int iCol;                       /* Column on LHS of MATCH operator */
  char **pzErrmsg = pConfig->pzErrmsg;

  UNUSED_PARAM(zUnused);
  UNUSED_PARAM(nVal);

  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);
1149
1150
1151
1152
1153
1154
1155


1156
1157
1158
1159
1160
1161
1162
  ** order as the corresponding entries in the struct at the top of
  ** fts5BestIndexMethod().  */
  if( BitFlagTest(idxNum, FTS5_BI_MATCH) ) pMatch = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_RANK) ) pRank = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_EQ) ) pRowidEq = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_LE) ) pRowidLe = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_GE) ) pRowidGe = apVal[iVal++];


  assert( iVal==nVal );
  bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
  pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);

  /* Set the cursor upper and lower rowid limits. Only some strategies 
  ** actually use them. This is ok, as the xBestIndex() method leaves the
  ** sqlite3_index_constraint.omit flag clear for range constraints







>
>







1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
  ** order as the corresponding entries in the struct at the top of
  ** fts5BestIndexMethod().  */
  if( BitFlagTest(idxNum, FTS5_BI_MATCH) ) pMatch = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_RANK) ) pRank = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_EQ) ) pRowidEq = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_LE) ) pRowidLe = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_GE) ) pRowidGe = apVal[iVal++];
  iCol = (idxNum>>16);
  assert( iCol>=0 && iCol<=pConfig->nCol );
  assert( iVal==nVal );
  bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
  pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);

  /* Set the cursor upper and lower rowid limits. Only some strategies 
  ** actually use them. This is ok, as the xBestIndex() method leaves the
  ** sqlite3_index_constraint.omit flag clear for range constraints
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
      if( zExpr[0]=='*' ){
        /* The user has issued a query of the form "MATCH '*...'". This
        ** indicates that the MATCH expression is not a full text query,
        ** but a request for an internal parameter.  */
        rc = fts5SpecialMatch(pTab, pCsr, &zExpr[1]);
      }else{
        char **pzErr = &pTab->base.zErrMsg;
        rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pCsr->pExpr, pzErr);
        if( rc==SQLITE_OK ){
          if( bOrderByRank ){
            pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
            rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
          }else{
            pCsr->ePlan = FTS5_PLAN_MATCH;
            rc = fts5CursorFirst(pTab, pCsr, bDesc);







|







1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
      if( zExpr[0]=='*' ){
        /* The user has issued a query of the form "MATCH '*...'". This
        ** indicates that the MATCH expression is not a full text query,
        ** but a request for an internal parameter.  */
        rc = fts5SpecialMatch(pTab, pCsr, &zExpr[1]);
      }else{
        char **pzErr = &pTab->base.zErrMsg;
        rc = sqlite3Fts5ExprNew(pConfig, iCol, zExpr, &pCsr->pExpr, pzErr);
        if( rc==SQLITE_OK ){
          if( bOrderByRank ){
            pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
            rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
          }else{
            pCsr->ePlan = FTS5_PLAN_MATCH;
            rc = fts5CursorFirst(pTab, pCsr, bDesc);
Changes to ext/fts5/fts5parse.y.
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
%type cnearset    {Fts5ExprNode*}
%type expr        {Fts5ExprNode*}
%type exprlist    {Fts5ExprNode*}
%destructor cnearset { sqlite3Fts5ParseNodeFree($$); }
%destructor expr     { sqlite3Fts5ParseNodeFree($$); }
%destructor exprlist { sqlite3Fts5ParseNodeFree($$); }

expr(A) ::= expr(X) AND expr(Y). {
  A = sqlite3Fts5ParseNode(pParse, FTS5_AND, X, Y, 0);
}
expr(A) ::= expr(X) OR expr(Y). {
  A = sqlite3Fts5ParseNode(pParse, FTS5_OR, X, Y, 0);
}
expr(A) ::= expr(X) NOT expr(Y). {
  A = sqlite3Fts5ParseNode(pParse, FTS5_NOT, X, Y, 0);
}

expr(A) ::= LP expr(X) RP. {A = X;}
expr(A) ::= exprlist(X).   {A = X;}

exprlist(A) ::= cnearset(X). {A = X;}
exprlist(A) ::= exprlist(X) cnearset(Y). {
  A = sqlite3Fts5ParseImplicitAnd(pParse, X, Y);
}

cnearset(A) ::= nearset(X). { 
  A = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, X); 
}
cnearset(A) ::= colset(X) COLON nearset(Y). { 
  sqlite3Fts5ParseSetColset(pParse, Y, X);
  A = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, Y); 
}

%type colset {Fts5Colset*}
%destructor colset { sqlite3_free($$); }
%type colsetlist {Fts5Colset*}
%destructor colsetlist { sqlite3_free($$); }

colset(A) ::= MINUS LCP colsetlist(X) RCP. { 
    A = sqlite3Fts5ParseColsetInvert(pParse, X);







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







85
86
87
88
89
90
91


























92
93
94
95
96
97
98
%type cnearset    {Fts5ExprNode*}
%type expr        {Fts5ExprNode*}
%type exprlist    {Fts5ExprNode*}
%destructor cnearset { sqlite3Fts5ParseNodeFree($$); }
%destructor expr     { sqlite3Fts5ParseNodeFree($$); }
%destructor exprlist { sqlite3Fts5ParseNodeFree($$); }



























%type colset {Fts5Colset*}
%destructor colset { sqlite3_free($$); }
%type colsetlist {Fts5Colset*}
%destructor colsetlist { sqlite3_free($$); }

colset(A) ::= MINUS LCP colsetlist(X) RCP. { 
    A = sqlite3Fts5ParseColsetInvert(pParse, X);
133
134
135
136
137
138
139































140
141
142
143
144
145
146
}

colsetlist(A) ::= colsetlist(Y) STRING(X). { 
  A = sqlite3Fts5ParseColset(pParse, Y, &X); }
colsetlist(A) ::= STRING(X). { 
  A = sqlite3Fts5ParseColset(pParse, 0, &X); 
}
































%type nearset     {Fts5ExprNearset*}
%type nearphrases {Fts5ExprNearset*}
%destructor nearset { sqlite3Fts5ParseNearsetFree($$); }
%destructor nearphrases { sqlite3Fts5ParseNearsetFree($$); }

nearset(A) ::= phrase(X). { A = sqlite3Fts5ParseNearset(pParse, 0, X); }







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
}

colsetlist(A) ::= colsetlist(Y) STRING(X). { 
  A = sqlite3Fts5ParseColset(pParse, Y, &X); }
colsetlist(A) ::= STRING(X). { 
  A = sqlite3Fts5ParseColset(pParse, 0, &X); 
}

expr(A) ::= expr(X) AND expr(Y). {
  A = sqlite3Fts5ParseNode(pParse, FTS5_AND, X, Y, 0);
}
expr(A) ::= expr(X) OR expr(Y). {
  A = sqlite3Fts5ParseNode(pParse, FTS5_OR, X, Y, 0);
}
expr(A) ::= expr(X) NOT expr(Y). {
  A = sqlite3Fts5ParseNode(pParse, FTS5_NOT, X, Y, 0);
}

expr(A) ::= colset(X) COLON LP expr(Y) RP. {
  sqlite3Fts5ParseSetColset(pParse, Y, X);
  A = Y;
}
expr(A) ::= LP expr(X) RP. {A = X;}
expr(A) ::= exprlist(X).   {A = X;}

exprlist(A) ::= cnearset(X). {A = X;}
exprlist(A) ::= exprlist(X) cnearset(Y). {
  A = sqlite3Fts5ParseImplicitAnd(pParse, X, Y);
}

cnearset(A) ::= nearset(X). { 
  A = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, X); 
}
cnearset(A) ::= colset(X) COLON nearset(Y). { 
  A = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, Y); 
  sqlite3Fts5ParseSetColset(pParse, A, X);
}


%type nearset     {Fts5ExprNearset*}
%type nearphrases {Fts5ExprNearset*}
%destructor nearset { sqlite3Fts5ParseNearsetFree($$); }
%destructor nearphrases { sqlite3Fts5ParseNearsetFree($$); }

nearset(A) ::= phrase(X). { A = sqlite3Fts5ParseNearset(pParse, 0, X); }
Changes to ext/fts5/test/fts5aa.test.
572
573
574
575
576
577
578














579
580
581
582
583
584
585

do_execsql_test 21.1 {
  BEGIN;
    INSERT INTO ft VALUES('a b c');
    DROP TABLE t8;
  COMMIT;
}















}


finish_test









>
>
>
>
>
>
>
>
>
>
>
>
>
>







572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

do_execsql_test 21.1 {
  BEGIN;
    INSERT INTO ft VALUES('a b c');
    DROP TABLE t8;
  COMMIT;
}

do_execsql_test 22.0 {
  CREATE VIRTUAL TABLE t9 USING fts5(x, detail=%DETAIL%);
  INSERT INTO t9(rowid, x) VALUES(2, 'bbb');
  BEGIN;
    INSERT INTO t9(rowid, x) VALUES(1, 'aaa');
    DELETE FROM t9 WHERE rowid = 2;
    INSERT INTO t9(rowid, x) VALUES(3, 'bbb');
  COMMIT;
}

do_execsql_test 22.1 {
  SELECT rowid FROM t9('a*')
} {1}

}


finish_test


Changes to ext/fts5/test/fts5colset.test.
40
41
42
43
44
45
46
47
48
49
50
51
52













53

















54
55
56
57
58
59
    5 " - {d d c} : a" {1 2}
    6 "- {d c b a} : a" {}
    7 "-{\"a\"} : b" {1 2 3}
    8 "- c : a" {1 2 4}
    9 "-c : a"  {1 2 4}
    10 "-\"c\" : a"  {1 2 4}
  } {
  breakpoint
    do_execsql_test 1.$tn {
      SELECT rowid FROM t1($q)
    } $res
  }
































}


finish_test









<





>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    5 " - {d d c} : a" {1 2}
    6 "- {d c b a} : a" {}
    7 "-{\"a\"} : b" {1 2 3}
    8 "- c : a" {1 2 4}
    9 "-c : a"  {1 2 4}
    10 "-\"c\" : a"  {1 2 4}
  } {

    do_execsql_test 1.$tn {
      SELECT rowid FROM t1($q)
    } $res
  }

  foreach {tn q res} {
    0 {{a} : (a AND ":")}     {}
    1 "{a b c} : (a AND d)"   {2 3}
    2 "{a b c} : (a AND b:d)" {3}
    3 "{a b c} : (a AND d:d)" {}
    4 "{b} : ( {b a} : ( {c b a} : ( {d b c a} : ( d OR c ) ) ) )" {3 4}
    5 "{a} : ( {b a} : ( {c b a} : ( {d b c a} : ( d OR c ) ) ) )" {2 3}
    6 "{a} : ( {b a} : ( {c b} : ( {d b c a} : ( d OR c ) ) ) )" {}
    7 "{a b c} : (b:a AND c:b)" {2}
  } {
    do_execsql_test 2.$tn {
      SELECT rowid FROM t1($q)
    } $res
  }

  foreach {tn w res} {
    0 "a MATCH 'a'" {1}
    1 "b MATCH 'a'" {2}
    2 "b MATCH '{a b c} : a'" {2}
    3 "b MATCH 'a OR b'"      {1 2}
    4 "b MATCH 'a OR a:b'"    {2}
    5 "b MATCH 'a OR b:b'"    {1 2}
  } {
    do_execsql_test 3.$tn "
      SELECT rowid FROM t1 WHERE $w
    " $res
  }

  do_catchsql_test 4.1 {
    SELECT * FROM t1 WHERE rowid MATCH 'a'
  } {1 {unable to use function MATCH in the requested context}}
}


finish_test


Changes to ext/fts5/test/fts5faultB.test.
102
103
104
105
106
107
108
























109
110
111
do_faultsim_test 3.3 -faults oom* -body {
  execsql {
    SELECT rowid FROM x1('c') WHERE rowid>1;
  }
} -test {
  faultsim_test_result {0 {2 3}}
}

























finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
do_faultsim_test 3.3 -faults oom* -body {
  execsql {
    SELECT rowid FROM x1('c') WHERE rowid>1;
  }
} -test {
  faultsim_test_result {0 {2 3}}
}

#-------------------------------------------------------------------------
# Test OOM injection with nested colsets.
#
reset_db
do_execsql_test 4.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(a, b, c, d);
  INSERT INTO t1 VALUES('a', 'b', 'c', 'd');  -- 1
  INSERT INTO t1 VALUES('d', 'a', 'b', 'c');  -- 2
  INSERT INTO t1 VALUES('c', 'd', 'a', 'b');  -- 3
  INSERT INTO t1 VALUES('b', 'c', 'd', 'a');  -- 4
}
do_faultsim_test 4.1 -faults oom* -body {
  execsql { SELECT rowid FROM t1('{a b c} : (b:a AND c:b)'); }
} -test {
  faultsim_test_result {0 2}
}

do_faultsim_test 4.2 -faults oom* -body {
  execsql { SELECT rowid FROM t1('{a b c} : (a AND d)') }
} -test {
  faultsim_test_result {0 {2 3}}
}


finish_test

Changes to ext/fts5/test/fts5plan.test.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  CREATE VIRTUAL TABLE f1 USING fts5(ff);
}

do_eqp_test 1.1 {
  SELECT * FROM t1, f1 WHERE f1 MATCH t1.x
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE f1 VIRTUAL TABLE INDEX 1:}
}

do_eqp_test 1.2 {
  SELECT * FROM t1, f1 WHERE f1 > t1.x
} {
  0 0 1 {SCAN TABLE f1 VIRTUAL TABLE INDEX 0:}
  0 1 0 {SCAN TABLE t1} 
}

do_eqp_test 1.3 {
  SELECT * FROM f1 WHERE f1 MATCH ? ORDER BY ff
} {
  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 1:}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

do_eqp_test 1.4 {
  SELECT * FROM f1 ORDER BY rank
} {
  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 0:}







|












|







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  CREATE VIRTUAL TABLE f1 USING fts5(ff);
}

do_eqp_test 1.1 {
  SELECT * FROM t1, f1 WHERE f1 MATCH t1.x
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:}
}

do_eqp_test 1.2 {
  SELECT * FROM t1, f1 WHERE f1 > t1.x
} {
  0 0 1 {SCAN TABLE f1 VIRTUAL TABLE INDEX 0:}
  0 1 0 {SCAN TABLE t1} 
}

do_eqp_test 1.3 {
  SELECT * FROM f1 WHERE f1 MATCH ? ORDER BY ff
} {
  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 65537:}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

do_eqp_test 1.4 {
  SELECT * FROM f1 ORDER BY rank
} {
  0 0 0 {SCAN TABLE f1 VIRTUAL TABLE INDEX 0:}
Added ext/misc/anycollseq.c.




















































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/*
** 2017-04-16
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements a run-time loadable extension to SQLite that
** registers a sqlite3_collation_needed() callback to register a fake
** collating function for any unknown collating sequence.  The fake
** collating function works like BINARY.
**
** This extension can be used to load schemas that contain one or more
** unknown collating sequences.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <string.h>

static int anyCollFunc(
  void *NotUsed,
  int nKey1, const void *pKey1,
  int nKey2, const void *pKey2
){
  int rc, n;
  n = nKey1<nKey2 ? nKey1 : nKey2;
  rc = memcmp(pKey1, pKey2, n);
  if( rc==0 ) rc = nKey1 - nKey2;
  return rc;
}

static void anyCollNeeded(
  void *NotUsed,
  sqlite3 *db,
  int eTextRep,
  const char *zCollName
){
  sqlite3_create_collation(db, zCollName, eTextRep, 0, anyCollFunc); 
}

#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_anycollseq_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  int rc = SQLITE_OK;
  SQLITE_EXTENSION_INIT2(pApi);
  rc = sqlite3_collation_needed(db, 0, anyCollNeeded);
  return rc;
}
Changes to ext/misc/dbdump.c.
320
321
322
323
324
325
326

327
328



















329
330

331
332
333
334
335
336
337
338
339
340
341








342









343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

365
366
367


368

369
370
371
372

373
374

375
376
377
378
379
380
381
  z = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  p->xCallback(z, p->pArg);
  sqlite3_free(z);
}

/*

** Output the given string as a quoted string using SQL quoting conventions.
**



















** The "\n" and "\r" characters are converted to char(10) and char(13)
** to prevent them from being transformed by end-of-line translators.

*/
static void output_quoted_string(DState *p, const unsigned char *z){
  int i;
  char c;
  int inQuote = 0;
  int bStarted = 0;

  for(i=0; (c = z[i])!=0 && c!='\'' && c!='\n' && c!='\r'; i++){}
  if( c==0 ){
    output_formatted(p, "'%s'", z);
    return;








  }









  while( *z ){
    for(i=0; (c = z[i])!=0 && c!='\n' && c!='\r' && c!='\''; i++){}
    if( c=='\'' ) i++;
    if( i ){
      if( !inQuote ){
        if( bStarted ) p->xCallback("||", p->pArg);
        p->xCallback("'", p->pArg);
        inQuote = 1;
      }
      output_formatted(p, "%.*s", i, z);
      z += i;
      bStarted = 1;
    }
    if( c=='\'' ){
      p->xCallback("'", p->pArg);
      continue;
    }
    if( inQuote ){
      p->xCallback("'", p->pArg);
      inQuote = 0;
    }

    if( c==0 ){

      break;
    }
    for(i=0; (c = z[i])=='\r' || c=='\n'; i++){


      if( bStarted ) p->xCallback("||", p->pArg);

      output_formatted(p, "char(%d)", c);
      bStarted = 1;
    }
    z += i;

  }
  if( inQuote ) p->xCallback("'", p->pArg);

}

/*
** This is an sqlite3_exec callback routine used for dumping the database.
** Each row received by this callback consists of a table name,
** the table type ("index" or "table") and SQL to create the table.
** This routine should print text sufficient to recreate the table.







>
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>

|


<
<
<


|
|
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
|
|
|
<
<
<
<
<
|
|
<
|
|
|
|
|
|
<
|
|
>
|
>
|
|
<
>
>
|
>
|
<

|
>
|
<
>







320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355



356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381





382
383

384
385
386
387
388
389

390
391
392
393
394
395
396

397
398
399
400
401

402
403
404
405

406
407
408
409
410
411
412
413
  z = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  p->xCallback(z, p->pArg);
  sqlite3_free(z);
}

/*
** Find a string that is not found anywhere in z[].  Return a pointer
** to that string.
**
** Try to use zA and zB first.  If both of those are already found in z[]
** then make up some string and store it in the buffer zBuf.
*/
static const char *unused_string(
  const char *z,                    /* Result must not appear anywhere in z */
  const char *zA, const char *zB,   /* Try these first */
  char *zBuf                        /* Space to store a generated string */
){
  unsigned i = 0;
  if( strstr(z, zA)==0 ) return zA;
  if( strstr(z, zB)==0 ) return zB;
  do{
    sqlite3_snprintf(20,zBuf,"(%s%u)", zA, i++);
  }while( strstr(z,zBuf)!=0 );
  return zBuf;
}

/*
** Output the given string as a quoted string using SQL quoting conventions.
** Additionallly , escape the "\n" and "\r" characters so that they do not
** get corrupted by end-of-line translation facilities in some operating
** systems.
*/
static void output_quoted_escaped_string(DState *p, const char *z){
  int i;
  char c;



  for(i=0; (c = z[i])!=0 && c!='\'' && c!='\n' && c!='\r'; i++){}
  if( c==0 ){
    output_formatted(p,"'%s'",z);
  }else{
    const char *zNL = 0;
    const char *zCR = 0;
    int nNL = 0;
    int nCR = 0;
    char zBuf1[20], zBuf2[20];
    for(i=0; z[i]; i++){
      if( z[i]=='\n' ) nNL++;
      if( z[i]=='\r' ) nCR++;
    }
    if( nNL ){
      p->xCallback("replace(", p->pArg);
      zNL = unused_string(z, "\\n", "\\012", zBuf1);
    }
    if( nCR ){
      p->xCallback("replace(", p->pArg);
      zCR = unused_string(z, "\\r", "\\015", zBuf2);
    }
    p->xCallback("'", p->pArg);
    while( *z ){
      for(i=0; (c = z[i])!=0 && c!='\n' && c!='\r' && c!='\''; i++){}
      if( c=='\'' ) i++;
      if( i ){





        output_formatted(p, "%.*s", i, z);
        z += i;

      }
      if( c=='\'' ){
        p->xCallback("'", p->pArg);
        continue;
      }
      if( c==0 ){

        break;
      }
      z++;
      if( c=='\n' ){
        p->xCallback(zNL, p->pArg);
        continue;
      }

      p->xCallback(zCR, p->pArg);
    }
    p->xCallback("'", p->pArg);
    if( nCR ){
      output_formatted(p, ",'%s',char(13))", zCR);

    }
    if( nNL ){
      output_formatted(p, ",'%s',char(10))", zNL);
    }

  }
}

/*
** This is an sqlite3_exec callback routine used for dumping the database.
** Each row received by this callback consists of a table name,
** the table type ("index" or "table") and SQL to create the table.
** This routine should print text sufficient to recreate the table.
491
492
493
494
495
496
497

498
499
500
501
502
503
504
505
              break;
            }
            case SQLITE_NULL: {
              p->xCallback("NULL", p->pArg);
              break;
            }
            case SQLITE_TEXT: {

              output_quoted_string(p, sqlite3_column_text(pStmt,i));
              break;
            }
            case SQLITE_BLOB: {
              int nByte = sqlite3_column_bytes(pStmt,i);
              unsigned char *a = (unsigned char*)sqlite3_column_blob(pStmt,i);
              int j;
              p->xCallback("x'", p->pArg);







>
|







523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
              break;
            }
            case SQLITE_NULL: {
              p->xCallback("NULL", p->pArg);
              break;
            }
            case SQLITE_TEXT: {
              output_quoted_escaped_string(p, 
                   (const char*)sqlite3_column_text(pStmt,i));
              break;
            }
            case SQLITE_BLOB: {
              int nByte = sqlite3_column_bytes(pStmt,i);
              unsigned char *a = (unsigned char*)sqlite3_column_blob(pStmt,i);
              int j;
              p->xCallback("x'", p->pArg);
Changes to ext/misc/json1.c.
86
87
88
89
90
91
92

93
94
95
96
97
98
99
#define safe_isspace(x) (jsonIsSpace[(unsigned char)x])

#ifndef SQLITE_AMALGAMATION
  /* Unsigned integer types.  These are already defined in the sqliteInt.h,
  ** but the definitions need to be repeated for separate compilation. */
  typedef sqlite3_uint64 u64;
  typedef unsigned int u32;

  typedef unsigned char u8;
#endif

/* Objects */
typedef struct JsonString JsonString;
typedef struct JsonNode JsonNode;
typedef struct JsonParse JsonParse;







>







86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#define safe_isspace(x) (jsonIsSpace[(unsigned char)x])

#ifndef SQLITE_AMALGAMATION
  /* Unsigned integer types.  These are already defined in the sqliteInt.h,
  ** but the definitions need to be repeated for separate compilation. */
  typedef sqlite3_uint64 u64;
  typedef unsigned int u32;
  typedef unsigned short int u16;
  typedef unsigned char u8;
#endif

/* Objects */
typedef struct JsonString JsonString;
typedef struct JsonNode JsonNode;
typedef struct JsonParse JsonParse;
165
166
167
168
169
170
171

172
173









174
175
176
177
178
179
180
  u32 nNode;         /* Number of slots of aNode[] used */
  u32 nAlloc;        /* Number of slots of aNode[] allocated */
  JsonNode *aNode;   /* Array of nodes containing the parse */
  const char *zJson; /* Original JSON string */
  u32 *aUp;          /* Index of parent of each node */
  u8 oom;            /* Set to true if out of memory */
  u8 nErr;           /* Number of errors seen */

};










/**************************************************************************
** Utility routines for dealing with JsonString objects
**************************************************************************/

/* Set the JsonString object to an empty string
*/
static void jsonZero(JsonString *p){







>


>
>
>
>
>
>
>
>
>







166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
  u32 nNode;         /* Number of slots of aNode[] used */
  u32 nAlloc;        /* Number of slots of aNode[] allocated */
  JsonNode *aNode;   /* Array of nodes containing the parse */
  const char *zJson; /* Original JSON string */
  u32 *aUp;          /* Index of parent of each node */
  u8 oom;            /* Set to true if out of memory */
  u8 nErr;           /* Number of errors seen */
  u16 iDepth;        /* Nesting depth */
};

/*
** Maximum nesting depth of JSON for this implementation.
**
** This limit is needed to avoid a stack overflow in the recursive
** descent parser.  A depth of 2000 is far deeper than any sane JSON
** should go.
*/
#define JSON_MAX_DEPTH  2000

/**************************************************************************
** Utility routines for dealing with JsonString objects
**************************************************************************/

/* Set the JsonString object to an empty string
*/
static void jsonZero(JsonString *p){
731
732
733
734
735
736
737

738
739

740
741
742
743
744
745
746
747
748
749
750
751

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

768

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787


788

789
790
791
792
793
794
795
  while( safe_isspace(z[i]) ){ i++; }
  if( (c = z[i])=='{' ){
    /* Parse object */
    iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( safe_isspace(z[j]) ){ j++; }

      x = jsonParseValue(pParse, j);
      if( x<0 ){

        if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      if( pParse->oom ) return -1;
      pNode = &pParse->aNode[pParse->nNode-1];
      if( pNode->eType!=JSON_STRING ) return -1;
      pNode->jnFlags |= JNODE_LABEL;
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      if( z[j]!=':' ) return -1;
      j++;
      x = jsonParseValue(pParse, j);

      if( x<0 ) return -1;
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      c = z[j];
      if( c==',' ) continue;
      if( c!='}' ) return -1;
      break;
    }
    pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
    return j+1;
  }else if( c=='[' ){
    /* Parse array */
    iThis = jsonParseAddNode(pParse, JSON_ARRAY, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( safe_isspace(z[j]) ){ j++; }

      x = jsonParseValue(pParse, j);

      if( x<0 ){
        if( x==(-3) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      c = z[j];
      if( c==',' ) continue;
      if( c!=']' ) return -1;
      break;
    }
    pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
    return j+1;
  }else if( c=='"' ){
    /* Parse string */
    u8 jnFlags = 0;
    j = i+1;
    for(;;){
      c = z[j];


      if( c==0 ) return -1;

      if( c=='\\' ){
        c = z[++j];
        if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f'
           || c=='n' || c=='r' || c=='t'
           || (c=='u' && jsonIs4Hex(z+j+1)) ){
          jnFlags = JNODE_ESCAPE;
        }else{







>


>












>
















>

>



















>
>
|
>







742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
  while( safe_isspace(z[i]) ){ i++; }
  if( (c = z[i])=='{' ){
    /* Parse object */
    iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( safe_isspace(z[j]) ){ j++; }
      if( ++pParse->iDepth > JSON_MAX_DEPTH ) return -1;
      x = jsonParseValue(pParse, j);
      if( x<0 ){
        pParse->iDepth--;
        if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      if( pParse->oom ) return -1;
      pNode = &pParse->aNode[pParse->nNode-1];
      if( pNode->eType!=JSON_STRING ) return -1;
      pNode->jnFlags |= JNODE_LABEL;
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      if( z[j]!=':' ) return -1;
      j++;
      x = jsonParseValue(pParse, j);
      pParse->iDepth--;
      if( x<0 ) return -1;
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      c = z[j];
      if( c==',' ) continue;
      if( c!='}' ) return -1;
      break;
    }
    pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
    return j+1;
  }else if( c=='[' ){
    /* Parse array */
    iThis = jsonParseAddNode(pParse, JSON_ARRAY, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( safe_isspace(z[j]) ){ j++; }
      if( ++pParse->iDepth > JSON_MAX_DEPTH ) return -1;
      x = jsonParseValue(pParse, j);
      pParse->iDepth--;
      if( x<0 ){
        if( x==(-3) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      c = z[j];
      if( c==',' ) continue;
      if( c!=']' ) return -1;
      break;
    }
    pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
    return j+1;
  }else if( c=='"' ){
    /* Parse string */
    u8 jnFlags = 0;
    j = i+1;
    for(;;){
      c = z[j];
      if( (c & ~0x1f)==0 ){
        /* Control characters are not allowed in strings */
        return -1;
      }
      if( c=='\\' ){
        c = z[++j];
        if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f'
           || c=='n' || c=='r' || c=='t'
           || (c=='u' && jsonIs4Hex(z+j+1)) ){
          jnFlags = JNODE_ESCAPE;
        }else{
881
882
883
884
885
886
887

888
889
890
891
892
893
894
  int i;
  memset(pParse, 0, sizeof(*pParse));
  if( zJson==0 ) return 1;
  pParse->zJson = zJson;
  i = jsonParseValue(pParse, 0);
  if( pParse->oom ) i = -1;
  if( i>0 ){

    while( safe_isspace(zJson[i]) ) i++;
    if( zJson[i] ) i = -1;
  }
  if( i<=0 ){
    if( pCtx!=0 ){
      if( pParse->oom ){
        sqlite3_result_error_nomem(pCtx);







>







900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
  int i;
  memset(pParse, 0, sizeof(*pParse));
  if( zJson==0 ) return 1;
  pParse->zJson = zJson;
  i = jsonParseValue(pParse, 0);
  if( pParse->oom ) i = -1;
  if( i>0 ){
    assert( pParse->iDepth==0 );
    while( safe_isspace(zJson[i]) ) i++;
    if( zJson[i] ) i = -1;
  }
  if( i<=0 ){
    if( pCtx!=0 ){
      if( pParse->oom ){
        sqlite3_result_error_nomem(pCtx);
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
  jsonParseReset(&x);
}

/* This is the RFC 7396 MergePatch algorithm.
*/
static JsonNode *jsonMergePatch(
  JsonParse *pParse,   /* The JSON parser that contains the TARGET */
  int iTarget,         /* Node of the TARGET in pParse */
  JsonNode *pPatch     /* The PATCH */
){
  u32 i, j;
  u32 iRoot;
  JsonNode *pTarget;
  if( pPatch->eType!=JSON_OBJECT ){
    return pPatch;







|







1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
  jsonParseReset(&x);
}

/* This is the RFC 7396 MergePatch algorithm.
*/
static JsonNode *jsonMergePatch(
  JsonParse *pParse,   /* The JSON parser that contains the TARGET */
  u32 iTarget,         /* Node of the TARGET in pParse */
  JsonNode *pPatch     /* The PATCH */
){
  u32 i, j;
  u32 iRoot;
  JsonNode *pTarget;
  if( pPatch->eType!=JSON_OBJECT ){
    return pPatch;
Changes to ext/rbu/rbu.c.
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  char zBuf[200];                 /* Buffer for printf() */
  char *zErrmsg;                  /* Error message, if any */
  sqlite3rbu *pRbu;               /* RBU handle */
  int nStep = 0;                  /* Maximum number of step() calls */
  int bVacuum = 0;
  int rc;
  sqlite3_int64 nProgress = 0;
  int nArg = argc-2;

  if( argc<3 ) usage(argv[0]);
  for(i=1; i<nArg; i++){
    const char *zArg = argv[i];
    int nArg = strlen(zArg);
    if( nArg>1 && nArg<=8 && 0==memcmp(zArg, "-vacuum", nArg) ){
      bVacuum = 1;
    }else if( nArg>1 && nArg<=5 && 0==memcmp(zArg, "-step", nArg) && i<nArg-1 ){
      i++;
      nStep = atoi(argv[i]);







|


|







78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  char zBuf[200];                 /* Buffer for printf() */
  char *zErrmsg;                  /* Error message, if any */
  sqlite3rbu *pRbu;               /* RBU handle */
  int nStep = 0;                  /* Maximum number of step() calls */
  int bVacuum = 0;
  int rc;
  sqlite3_int64 nProgress = 0;
  int nArgc = argc-2;

  if( argc<3 ) usage(argv[0]);
  for(i=1; i<nArgc; i++){
    const char *zArg = argv[i];
    int nArg = strlen(zArg);
    if( nArg>1 && nArg<=8 && 0==memcmp(zArg, "-vacuum", nArg) ){
      bVacuum = 1;
    }else if( nArg>1 && nArg<=5 && 0==memcmp(zArg, "-step", nArg) && i<nArg-1 ){
      i++;
      nStep = atoi(argv[i]);
Changes to src/btree.c.
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
            ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
      loc = 0;
    }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
               && pCur->info.nKey==pX->nKey-1 ){
      loc = -1;
    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
    if( pX->nMem ){
      UnpackedRecord r;







<
<
<







8126
8127
8128
8129
8130
8131
8132



8133
8134
8135
8136
8137
8138
8139
            ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
      loc = 0;



    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
    if( pX->nMem ){
      UnpackedRecord r;
Changes to src/btree.h.
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
** organized and understandable, and it also helps the resulting code to
** run a little faster by using fewer registers for parameter passing.
*/
struct BtreePayload {
  const void *pKey;       /* Key content for indexes.  NULL for tables */
  sqlite3_int64 nKey;     /* Size of pKey for indexes.  PRIMARY KEY for tabs */
  const void *pData;      /* Data for tables.  NULL for indexes */
  struct Mem *aMem;       /* First of nMem value in the unpacked pKey */
  u16 nMem;               /* Number of aMem[] value.  Might be zero */
  int nData;              /* Size of pData.  0 if none. */
  int nZero;              /* Extra zero data appended after pData,nData */
};

int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
                       int flags, int seekResult);







|







272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
** organized and understandable, and it also helps the resulting code to
** run a little faster by using fewer registers for parameter passing.
*/
struct BtreePayload {
  const void *pKey;       /* Key content for indexes.  NULL for tables */
  sqlite3_int64 nKey;     /* Size of pKey for indexes.  PRIMARY KEY for tabs */
  const void *pData;      /* Data for tables.  NULL for indexes */
  sqlite3_value *aMem;    /* First of nMem value in the unpacked pKey */
  u16 nMem;               /* Number of aMem[] value.  Might be zero */
  int nData;              /* Size of pData.  0 if none. */
  int nZero;              /* Extra zero data appended after pData,nData */
};

int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
                       int flags, int seekResult);
Changes to src/date.c.
419
420
421
422
423
424
425



426
427
428
429
430
431
432
433
434
static void computeYMD(DateTime *p){
  int Z, A, B, C, D, E, X1;
  if( p->validYMD ) return;
  if( !p->validJD ){
    p->Y = 2000;
    p->M = 1;
    p->D = 1;



  }else{
    assert( validJulianDay(p->iJD) );
    Z = (int)((p->iJD + 43200000)/86400000);
    A = (int)((Z - 1867216.25)/36524.25);
    A = Z + 1 + A - (A/4);
    B = A + 1524;
    C = (int)((B - 122.1)/365.25);
    D = (36525*(C&32767))/100;
    E = (int)((B-D)/30.6001);







>
>
>

<







419
420
421
422
423
424
425
426
427
428
429

430
431
432
433
434
435
436
static void computeYMD(DateTime *p){
  int Z, A, B, C, D, E, X1;
  if( p->validYMD ) return;
  if( !p->validJD ){
    p->Y = 2000;
    p->M = 1;
    p->D = 1;
  }else if( !validJulianDay(p->iJD) ){
    datetimeError(p);
    return;
  }else{

    Z = (int)((p->iJD + 43200000)/86400000);
    A = (int)((Z - 1867216.25)/36524.25);
    A = Z + 1 + A - (A/4);
    B = A + 1524;
    C = (int)((B - 122.1)/365.25);
    D = (36525*(C&32767))/100;
    E = (int)((B-D)/30.6001);
Changes to src/expr.c.
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  if( op==TK_REGISTER ) op = pExpr->op2;
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    assert( !ExprHasProperty(pExpr, EP_IntValue) );
    return sqlite3AffinityType(pExpr->u.zToken, 0);
  }
#endif
  if( op==TK_AGG_COLUMN || op==TK_COLUMN ){
    return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
  }
  if( op==TK_SELECT_COLUMN ){
    assert( pExpr->pLeft->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(
        pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
    );







|







54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  if( op==TK_REGISTER ) op = pExpr->op2;
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    assert( !ExprHasProperty(pExpr, EP_IntValue) );
    return sqlite3AffinityType(pExpr->u.zToken, 0);
  }
#endif
  if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
    return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
  }
  if( op==TK_SELECT_COLUMN ){
    assert( pExpr->pLeft->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(
        pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
    );
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
  ynVar x;

  if( pExpr==0 ) return;
  assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  assert( n==sqlite3Strlen30(z) );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    x = (ynVar)(++pParse->nVar);
  }else{
    int doAdd = 0;
    if( z[0]=='?' ){







|







952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
  ynVar x;

  if( pExpr==0 ) return;
  assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  assert( n==(u32)sqlite3Strlen30(z) );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    x = (ynVar)(++pParse->nVar);
  }else{
    int doAdd = 0;
    if( z[0]=='?' ){
3188
3189
3190
3191
3192
3193
3194




3195
3196
3197
3198
3199
3200
3201
void sqlite3ExprCodeGetColumnOfTable(
  Vdbe *v,        /* The VDBE under construction */
  Table *pTab,    /* The table containing the value */
  int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
  int iCol,       /* Index of the column to extract */
  int regOut      /* Extract the value into this register */
){




  if( iCol<0 || iCol==pTab->iPKey ){
    sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
  }else{
    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
    int x = iCol;
    if( !HasRowid(pTab) && !IsVirtual(pTab) ){
      x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);







>
>
>
>







3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
void sqlite3ExprCodeGetColumnOfTable(
  Vdbe *v,        /* The VDBE under construction */
  Table *pTab,    /* The table containing the value */
  int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
  int iCol,       /* Index of the column to extract */
  int regOut      /* Extract the value into this register */
){
  if( pTab==0 ){
    sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
    return;
  }
  if( iCol<0 || iCol==pTab->iPKey ){
    sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
  }else{
    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
    int x = iCol;
    if( !HasRowid(pTab) && !IsVirtual(pTab) ){
      x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3880
3881
3882
3883
3884
3885
3886











3887
3888
3889
3890
3891
3892
3893
      break;
    }

    case TK_VECTOR: {
      sqlite3ErrorMsg(pParse, "row value misused");
      break;
    }












    /*
    ** Form A:
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
    **
    ** Form B:
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END







>
>
>
>
>
>
>
>
>
>
>







3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
      break;
    }

    case TK_VECTOR: {
      sqlite3ErrorMsg(pParse, "row value misused");
      break;
    }

    case TK_IF_NULL_ROW: {
      int addrINR;
      addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
      sqlite3ExprCachePush(pParse);
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      sqlite3ExprCachePop(pParse);
      sqlite3VdbeJumpHere(v, addrINR);
      sqlite3VdbeChangeP3(v, addrINR, inReg);
      break;
    }

    /*
    ** Form A:
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
    **
    ** Form B:
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
Changes to src/fkey.c.
1083
1084
1085
1086
1087
1088
1089
1090
1091








1092
1093
1094
1095
1096
1097
1098

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

1112


1113
1114
1115
1116
1117



1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
** to an array of size N, where N is the number of columns in table pTab.
** If the i'th column is not modified by the UPDATE, then the corresponding 
** entry in the aChange[] array is set to -1. If the column is modified,
** the value is 0 or greater. Parameter chngRowid is set to true if the
** UPDATE statement modifies the rowid fields of the table.
**
** If any foreign key processing will be required, this function returns
** true. If there is no foreign key related processing, this function 
** returns false.








*/
int sqlite3FkRequired(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being modified */
  int *aChange,                   /* Non-NULL for UPDATE operations */
  int chngRowid                   /* True for UPDATE that affects rowid */
){

  if( pParse->db->flags&SQLITE_ForeignKeys ){
    if( !aChange ){
      /* A DELETE operation. Foreign key processing is required if the 
      ** table in question is either the child or parent table for any 
      ** foreign key constraint.  */
      return (sqlite3FkReferences(pTab) || pTab->pFKey);
    }else{
      /* This is an UPDATE. Foreign key processing is only required if the
      ** operation modifies one or more child or parent key columns. */
      FKey *p;

      /* Check if any child key columns are being modified. */
      for(p=pTab->pFKey; p; p=p->pNextFrom){

        if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1;


      }

      /* Check if any parent key columns are being modified. */
      for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
        if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1;



      }
    }
  }
  return 0;
}

/*
** This function is called when an UPDATE or DELETE operation is being 
** compiled on table pTab, which is the parent table of foreign-key pFKey.
** If the current operation is an UPDATE, then the pChanges parameter is
** passed a pointer to the list of columns being modified. If it is a







|
|
>
>
>
>
>
>
>
>







>





|







>
|
>
>




|
>
>
>



|







1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
** to an array of size N, where N is the number of columns in table pTab.
** If the i'th column is not modified by the UPDATE, then the corresponding 
** entry in the aChange[] array is set to -1. If the column is modified,
** the value is 0 or greater. Parameter chngRowid is set to true if the
** UPDATE statement modifies the rowid fields of the table.
**
** If any foreign key processing will be required, this function returns
** non-zero. If there is no foreign key related processing, this function 
** returns zero.
**
** For an UPDATE, this function returns 2 if:
**
**   * There are any FKs for which pTab is the child and the parent table, or
**   * the UPDATE modifies one or more parent keys for which the action is
**     not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
**
** Or, assuming some other foreign key processing is required, 1.
*/
int sqlite3FkRequired(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being modified */
  int *aChange,                   /* Non-NULL for UPDATE operations */
  int chngRowid                   /* True for UPDATE that affects rowid */
){
  int eRet = 0;
  if( pParse->db->flags&SQLITE_ForeignKeys ){
    if( !aChange ){
      /* A DELETE operation. Foreign key processing is required if the 
      ** table in question is either the child or parent table for any 
      ** foreign key constraint.  */
      eRet = (sqlite3FkReferences(pTab) || pTab->pFKey);
    }else{
      /* This is an UPDATE. Foreign key processing is only required if the
      ** operation modifies one or more child or parent key columns. */
      FKey *p;

      /* Check if any child key columns are being modified. */
      for(p=pTab->pFKey; p; p=p->pNextFrom){
        if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2;
        if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
          eRet = 1;
        }
      }

      /* Check if any parent key columns are being modified. */
      for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
        if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
          if( p->aAction[1]!=OE_None ) return 2;
          eRet = 1;
        }
      }
    }
  }
  return eRet;
}

/*
** This function is called when an UPDATE or DELETE operation is being 
** compiled on table pTab, which is the parent table of foreign-key pFKey.
** If the current operation is an UPDATE, then the pChanges parameter is
** passed a pointer to the list of columns being modified. If it is a
Changes to src/parse.y.
188
189
190
191
192
193
194

















195
196
197
198
199
200
201
    A = 0;
    sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
  }
}
columnlist ::= columnlist COMMA columnname carglist.
columnlist ::= columnname carglist.
columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}


















// Define operator precedence early so that this is the first occurrence
// of the operator tokens in the grammer.  Keeping the operators together
// causes them to be assigned integer values that are close together,
// which keeps parser tables smaller.
//
// The token values assigned to these symbols is determined by the order







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    A = 0;
    sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
  }
}
columnlist ::= columnlist COMMA columnname carglist.
columnlist ::= columnname carglist.
columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}

// The following directive causes tokens ABORT, AFTER, ASC, etc. to
// fallback to ID if they will not parse as their original value.
// This obviates the need for the "id" nonterminal.
//
%fallback ID
  ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
  CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
  IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
  QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
  ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
%ifdef SQLITE_OMIT_COMPOUND_SELECT
  EXCEPT INTERSECT UNION
%endif SQLITE_OMIT_COMPOUND_SELECT
  REINDEX RENAME CTIME_KW IF
  .
%wildcard ANY.

// Define operator precedence early so that this is the first occurrence
// of the operator tokens in the grammer.  Keeping the operators together
// causes them to be assigned integer values that are close together,
// which keeps parser tables smaller.
//
// The token values assigned to these symbols is determined by the order
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
%right BITNOT.

// An IDENTIFIER can be a generic identifier, or one of several
// keywords.  Any non-standard keyword can also be an identifier.
//
%token_class id  ID|INDEXED.

// The following directive causes tokens ABORT, AFTER, ASC, etc. to
// fallback to ID if they will not parse as their original value.
// This obviates the need for the "id" nonterminal.
//
%fallback ID
  ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
  CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
  IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
  QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
  ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
%ifdef SQLITE_OMIT_COMPOUND_SELECT
  EXCEPT INTERSECT UNION
%endif SQLITE_OMIT_COMPOUND_SELECT
  REINDEX RENAME CTIME_KW IF
  .
%wildcard ANY.


// And "ids" is an identifer-or-string.
//
%token_class ids  ID|STRING.

// The name of a column or table can be any of the following:
//







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







235
236
237
238
239
240
241

















242
243
244
245
246
247
248
%right BITNOT.

// An IDENTIFIER can be a generic identifier, or one of several
// keywords.  Any non-standard keyword can also be an identifier.
//
%token_class id  ID|INDEXED.



















// And "ids" is an identifer-or-string.
//
%token_class ids  ID|STRING.

// The name of a column or table can be any of the following:
//
Changes to src/pragma.c.
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342
1343
1344

1345
1346

1347
1348
1349
1350



1351
1352
1353
1354
1355





1356
1357


1358



1359
1360
1361
1362
1363
1364
1365
        pIdx = 0;
        aiCols = 0;
        if( pParent ){
          x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
          assert( x==0 );
        }
        addrOk = sqlite3VdbeMakeLabel(v);
        if( pParent && pIdx==0 ){
          int iKey = pFK->aCol[0].iFrom;
          assert( iKey>=0 && iKey<pTab->nCol );
          if( iKey!=pTab->iPKey ){
            sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow);
            sqlite3ColumnDefault(v, pTab, iKey, regRow);
            sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v);
          }else{
            sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow);
          }

          sqlite3VdbeAddOp3(v, OP_SeekRowid, i, 0, regRow); VdbeCoverage(v);
          sqlite3VdbeGoto(v, addrOk);
          sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);

        }else{
          for(j=0; j<pFK->nCol; j++){

            sqlite3ExprCodeGetColumnOfTable(v, pTab, 0,
                            aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j);
            sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
          }



          if( pParent ){
            sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
                              sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
            sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
            VdbeCoverage(v);





          }
        }


        sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);



        sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1);
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
        sqlite3VdbeResolveLabel(v, addrOk);
        sqlite3DbFree(db, aiCols);
      }
      sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
      sqlite3VdbeJumpHere(v, addrTop);







<
<
<
<
<
<
<
<
<
|
>
|
<
<
>
|
|
>
|
<
|
|
>
>
>
|
|
|
|
|
>
>
>
>
>
|
|
>
>
|
>
>
>







1325
1326
1327
1328
1329
1330
1331









1332
1333
1334


1335
1336
1337
1338
1339

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
        pIdx = 0;
        aiCols = 0;
        if( pParent ){
          x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
          assert( x==0 );
        }
        addrOk = sqlite3VdbeMakeLabel(v);










        /* Generate code to read the child key values into registers
        ** regRow..regRow+n. If any of the child key values are NULL, this 


        ** row cannot cause an FK violation. Jump directly to addrOk in 
        ** this case. */
        for(j=0; j<pFK->nCol; j++){
          int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
          sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);

          sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
        }

        /* Generate code to query the parent index for a matching parent
        ** key. If a match is found, jump to addrOk. */
        if( pIdx ){
          sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
              sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
          sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
          VdbeCoverage(v);
        }else if( pParent ){
          int jmp = sqlite3VdbeCurrentAddr(v)+2;
          sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
          sqlite3VdbeGoto(v, addrOk);
          assert( pFK->nCol==1 );
        }

        /* Generate code to report an FK violation to the caller. */
        if( HasRowid(pTab) ){
          sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
        }else{
          sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
        }
        sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1);
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
        sqlite3VdbeResolveLabel(v, addrOk);
        sqlite3DbFree(db, aiCols);
      }
      sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
      sqlite3VdbeJumpHere(v, addrTop);
Changes to src/select.c.
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
  ExprList *pOrderBy,   /* the ORDER BY clause */
  u32 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( db->mallocFailed );
    pNew = &standin;
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;
  pNew->op = TK_SELECT;
  pNew->selFlags = selFlags;
  pNew->iLimit = 0;
  pNew->iOffset = 0;
#if SELECTTRACE_ENABLED
  pNew->zSelName[0] = 0;
#endif
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = 0;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->pPrior = 0;
  pNew->pNext = 0;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->pWith = 0;
  assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
  if( db->mallocFailed ) {
    clearSelect(db, pNew, pNew!=&standin);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}







<
|

|



|












|










|
|
|







108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
  ExprList *pOrderBy,   /* the ORDER BY clause */
  u32 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;

  pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( pParse->db->mallocFailed );
    pNew = &standin;
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;
  pNew->op = TK_SELECT;
  pNew->selFlags = selFlags;
  pNew->iLimit = 0;
  pNew->iOffset = 0;
#if SELECTTRACE_ENABLED
  pNew->zSelName[0] = 0;
#endif
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = 0;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->pPrior = 0;
  pNew->pNext = 0;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->pWith = 0;
  assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 );
  if( pParse->db->mallocFailed ) {
    clearSelect(pParse->db, pNew, pNew!=&standin);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}
1526
1527
1528
1529
1530
1531
1532

1533
1534
1535
1536
1537
1538
1539
){
#ifndef SQLITE_OMIT_DECLTYPE
  Vdbe *v = pParse->pVdbe;
  int i;
  NameContext sNC;
  sNC.pSrcList = pTabList;
  sNC.pParse = pParse;

  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;
    const char *zType;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
    const char *zOrigDb = 0;
    const char *zOrigTab = 0;
    const char *zOrigCol = 0;







>







1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
){
#ifndef SQLITE_OMIT_DECLTYPE
  Vdbe *v = pParse->pVdbe;
  int i;
  NameContext sNC;
  sNC.pSrcList = pTabList;
  sNC.pParse = pParse;
  sNC.pNext = 0;
  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;
    const char *zType;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
    const char *zOrigDb = 0;
    const char *zOrigTab = 0;
    const char *zOrigCol = 0;
1549
1550
1551
1552
1553
1554
1555













1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

1569
1570
1571
1572
1573
1574
1575
#else
    zType = columnType(&sNC, p, 0, 0, 0, 0);
#endif
    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
  }
#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
}














/*
** Generate code that will tell the VDBE the names of columns
** in the result set.  This information is used to provide the
** azCol[] values in the callback.
*/
static void generateColumnNames(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i, j;

  sqlite3 *db = pParse->db;
  int fullNames, shortNames;

#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;







>
>
>
>
>
>
>
>
>
>
>
>
>












|
>







1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
#else
    zType = columnType(&sNC, p, 0, 0, 0, 0);
#endif
    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
  }
#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
}

/*
** Return the Table objecct in the SrcList that has cursor iCursor.
** Or return NULL if no such Table object exists in the SrcList.
*/
static Table *tableWithCursor(SrcList *pList, int iCursor){
  int j;
  for(j=0; j<pList->nSrc; j++){
    if( pList->a[j].iCursor==iCursor ) return pList->a[j].pTab;
  }
  return 0;
}


/*
** Generate code that will tell the VDBE the names of columns
** in the result set.  This information is used to provide the
** azCol[] values in the callback.
*/
static void generateColumnNames(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  Table *pTab;
  sqlite3 *db = pParse->db;
  int fullNames, shortNames;

#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
1586
1587
1588
1589
1590
1591
1592
1593
1594

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( NEVER(p==0) ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
      Table *pTab;

      char *zCol;
      int iCol = p->iColumn;
      for(j=0; ALWAYS(j<pTabList->nSrc); j++){
        if( pTabList->a[j].iCursor==p->iTable ) break;
      }
      assert( j<pTabList->nSrc );
      pTab = pTabList->a[j].pTab;
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;
      }







|
|
>


<
<
<
<
<







1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611





1612
1613
1614
1615
1616
1617
1618
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( NEVER(p==0) ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
           && (pTab = tableWithCursor(pTabList, p->iTable))!=0
    ){
      char *zCol;
      int iCol = p->iColumn;





      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;
      }
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        pTab = pColExpr->pTab;
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );







|







1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        pTab = pColExpr->pTab;
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
3130
3131
3132
3133
3134
3135
3136















3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161



3162
3163
3164
3165
3166
3167

3168
3169
3170
3171
3172








3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)















/* Forward Declarations */
static void substExprList(Parse*, ExprList*, int, ExprList*);
static void substSelect(Parse*, Select *, int, ExprList*, int);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine make the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static Expr *substExpr(
  Parse *pParse,      /* Report errors here */
  Expr *pExpr,        /* Expr in which substitution occurs */
  int iTable,         /* Table to be substituted */
  ExprList *pEList    /* Substitute expressions */
){
  sqlite3 *db = pParse->db;
  if( pExpr==0 ) return 0;



  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else{
      Expr *pNew;
      Expr *pCopy = pEList->a[pExpr->iColumn].pExpr;

      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 );
      if( sqlite3ExprIsVector(pCopy) ){
        sqlite3VectorErrorMsg(pParse, pCopy);
      }else{








        pNew = sqlite3ExprDup(db, pCopy, 0);
        if( pNew && (pExpr->flags & EP_FromJoin) ){
          pNew->iRightJoinTable = pExpr->iRightJoinTable;
          pNew->flags |= EP_FromJoin;
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;
      }
    }
  }else{
    pExpr->pLeft = substExpr(pParse, pExpr->pLeft, iTable, pEList);
    pExpr->pRight = substExpr(pParse, pExpr->pRight, iTable, pEList);
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      substSelect(pParse, pExpr->x.pSelect, iTable, pEList, 1);
    }else{
      substExprList(pParse, pExpr->x.pList, iTable, pEList);
    }
  }
  return pExpr;
}
static void substExprList(
  Parse *pParse,       /* Report errors here */
  ExprList *pList,     /* List to scan and in which to make substitutes */
  int iTable,          /* Table to be substituted */
  ExprList *pEList     /* Substitute values */
){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nExpr; i++){
    pList->a[i].pExpr = substExpr(pParse, pList->a[i].pExpr, iTable, pEList);
  }
}
static void substSelect(
  Parse *pParse,       /* Report errors here */
  Select *p,           /* SELECT statement in which to make substitutions */
  int iTable,          /* Table to be replaced */
  ExprList *pEList,    /* Substitute values */
  int doPrior          /* Do substitutes on p->pPrior too */
){
  SrcList *pSrc;
  struct SrcList_item *pItem;
  int i;
  if( !p ) return;
  do{
    substExprList(pParse, p->pEList, iTable, pEList);
    substExprList(pParse, p->pGroupBy, iTable, pEList);
    substExprList(pParse, p->pOrderBy, iTable, pEList);
    p->pHaving = substExpr(pParse, p->pHaving, iTable, pEList);
    p->pWhere = substExpr(pParse, p->pWhere, iTable, pEList);
    pSrc = p->pSrc;
    assert( pSrc!=0 );
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(pParse, pItem->pSelect, iTable, pEList, 1);
      if( pItem->fg.isTabFunc ){
        substExprList(pParse, pItem->u1.pFuncArg, iTable, pEList);
      }
    }
  }while( doPrior && (p = p->pPrior)!=0 );
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
|










|




|
|
<
<

<

>
>
>
|




|
>
|


|

>
>
>
>
>
>
>
>










|
|

|

|





|
|
<
<




|



|
|
<
<
|






|
|
|
|
|



|

|







3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181


3182

3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229


3230
3231
3232
3233
3234
3235
3236
3237
3238
3239


3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)

/* An instance of the SubstContext object describes an substitution edit
** to be performed on a parse tree.
**
** All references to columns in table iTable are to be replaced by corresponding
** expressions in pEList.
*/
typedef struct SubstContext {
  Parse *pParse;            /* The parsing context */
  int iTable;               /* Replace references to this table */
  int iNewTable;            /* New table number */
  int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
  ExprList *pEList;         /* Replacement expressions */
} SubstContext;

/* Forward Declarations */
static void substExprList(SubstContext*, ExprList*);
static void substSelect(SubstContext*, Select*, int);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine makes the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static Expr *substExpr(
  SubstContext *pSubst,  /* Description of the substitution */
  Expr *pExpr            /* Expr in which substitution occurs */


){

  if( pExpr==0 ) return 0;
  if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){
    pExpr->iRightJoinTable = pSubst->iNewTable;
  }
  if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else{
      Expr *pNew;
      Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
      Expr ifNullRow;
      assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 );
      if( sqlite3ExprIsVector(pCopy) ){
        sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
      }else{
        sqlite3 *db = pSubst->pParse->db;
        if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
          memset(&ifNullRow, 0, sizeof(ifNullRow));
          ifNullRow.op = TK_IF_NULL_ROW;
          ifNullRow.pLeft = pCopy;
          ifNullRow.iTable = pSubst->iNewTable;
          pCopy = &ifNullRow;
        }
        pNew = sqlite3ExprDup(db, pCopy, 0);
        if( pNew && (pExpr->flags & EP_FromJoin) ){
          pNew->iRightJoinTable = pExpr->iRightJoinTable;
          pNew->flags |= EP_FromJoin;
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;
      }
    }
  }else{
    pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
    pExpr->pRight = substExpr(pSubst, pExpr->pRight);
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      substSelect(pSubst, pExpr->x.pSelect, 1);
    }else{
      substExprList(pSubst, pExpr->x.pList);
    }
  }
  return pExpr;
}
static void substExprList(
  SubstContext *pSubst, /* Description of the substitution */
  ExprList *pList       /* List to scan and in which to make substitutes */


){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nExpr; i++){
    pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
  }
}
static void substSelect(
  SubstContext *pSubst, /* Description of the substitution */
  Select *p,            /* SELECT statement in which to make substitutions */


  int doPrior           /* Do substitutes on p->pPrior too */
){
  SrcList *pSrc;
  struct SrcList_item *pItem;
  int i;
  if( !p ) return;
  do{
    substExprList(pSubst, p->pEList);
    substExprList(pSubst, p->pGroupBy);
    substExprList(pSubst, p->pOrderBy);
    p->pHaving = substExpr(pSubst, p->pHaving);
    p->pWhere = substExpr(pSubst, p->pWhere);
    pSrc = p->pSrc;
    assert( pSrc!=0 );
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(pSubst, pItem->pSelect, 1);
      if( pItem->fg.isTabFunc ){
        substExprList(pSubst, pItem->u1.pFuncArg);
      }
    }
  }while( doPrior && (p = p->pPrior)!=0 );
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
**   (1)  The subquery and the outer query do not both use aggregates.
**
**   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
**        and (2b) the outer query does not use subqueries other than the one
**        FROM-clause subquery that is a candidate for flattening.  (2b is
**        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
**
**   (3)  The subquery is not the right operand of a left outer join
**        (Originally ticket #306.  Strengthened by ticket #3300)
**
**   (4)  The subquery is not DISTINCT.
**
**  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
**        sub-queries that were excluded from this optimization. Restriction 
**        (4) has since been expanded to exclude all DISTINCT subqueries.
**
**   (6)  The subquery does not use aggregates or the outer query is not
**        DISTINCT.
**
**   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
**        A FROM clause, consider adding a FROM close with the special
**        table sqlite_once that consists of a single row containing a
**        single NULL.
**
**   (8)  The subquery does not use LIMIT or the outer query is not a join.
**
**   (9)  The subquery does not use LIMIT or the outer query does not use
**        aggregates.







|
|











|







3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
**   (1)  The subquery and the outer query do not both use aggregates.
**
**   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
**        and (2b) the outer query does not use subqueries other than the one
**        FROM-clause subquery that is a candidate for flattening.  (2b is
**        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
**
**   (3)  The subquery is not the right operand of a LEFT JOIN
**        or the subquery is not itself a join.
**
**   (4)  The subquery is not DISTINCT.
**
**  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
**        sub-queries that were excluded from this optimization. Restriction 
**        (4) has since been expanded to exclude all DISTINCT subqueries.
**
**   (6)  The subquery does not use aggregates or the outer query is not
**        DISTINCT.
**
**   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
**        A FROM clause, consider adding a FROM clause with the special
**        table sqlite_once that consists of a single row containing a
**        single NULL.
**
**   (8)  The subquery does not use LIMIT or the outer query is not a join.
**
**   (9)  The subquery does not use LIMIT or the outer query does not use
**        aggregates.
3382
3383
3384
3385
3386
3387
3388


3389
3390
3391
3392
3393
3394
3395
  Select *pParent;    /* Current UNION ALL term of the other query */
  Select *pSub;       /* The inner query or "subquery" */
  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */


  int i;              /* Loop counter */
  Expr *pWhere;                    /* The WHERE clause */
  struct SrcList_item *pSubitem;   /* The subquery */
  sqlite3 *db = pParse->db;

  /* Check to see if flattening is permitted.  Return 0 if not.
  */







>
>







3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
  Select *pParent;    /* Current UNION ALL term of the other query */
  Select *pSub;       /* The inner query or "subquery" */
  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
  int iNewParent = -1;/* Replacement table for iParent */
  int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */    
  int i;              /* Loop counter */
  Expr *pWhere;                    /* The WHERE clause */
  struct SrcList_item *pSubitem;   /* The subquery */
  sqlite3 *db = pParse->db;

  /* Check to see if flattening is permitted.  Return 0 if not.
  */
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
    if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
     || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
     || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
    ){
      return 0;                                          /* Restriction (2b)  */
    }
  }
    
  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */







|







3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
    if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
     || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
     || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
    ){
      return 0;                                          /* Restriction (2b)  */
    }
  }

  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485


3486

3487
3488
3489
3490
3491
3492
3493
  if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
    return 0; /* Restrictions (22) and (24) */
  }
  if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
    return 0; /* Restriction (23) */
  }

  /* OBSOLETE COMMENT 1:
  ** Restriction 3:  If the subquery is a join, make sure the subquery is 
  ** not used as the right operand of an outer join.  Examples of why this
  ** is not allowed:
  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) JOIN t3
  **
  ** which is not at all the same thing.
  **
  ** OBSOLETE COMMENT 2:
  ** Restriction 12:  If the subquery is the right operand of a left outer
  ** join, make sure the subquery has no WHERE clause.
  ** An examples of why this is not allowed:
  **
  **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
  **
  ** But the t2.x>0 test will always fail on a NULL row of t2, which
  ** effectively converts the OUTER JOIN into an INNER JOIN.
  **
  ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
  ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
  ** is fraught with danger.  Best to avoid the whole thing.  If the
  ** subquery is the right term of a LEFT JOIN, then do not flatten.
  */
  if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){


    return 0;

  }

  /* Restriction 17: If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */







|
|
|
<









|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


>
>
|
>







3478
3479
3480
3481
3482
3483
3484
3485
3486
3487

3488
3489
3490
3491
3492
3493
3494
3495
3496
3497

















3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
  if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
    return 0; /* Restrictions (22) and (24) */
  }
  if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
    return 0; /* Restriction (23) */
  }

  /*
  ** If the subquery is the right operand of a LEFT JOIN, then the
  ** subquery may not be a join itself.  Example of why this is not allowed:

  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) JOIN t3
  **
  ** which is not at all the same thing.
  **
  ** See also tickets #306, #350, and #3300.

















  */
  if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
    isLeftJoin = 1;
    if( pSubSrc->nSrc>1 ){
      return 0; /* Restriction (3) */
    }
  }

  /* Restriction 17: If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */
3688
3689
3690
3691
3692
3693
3694

3695
3696
3697
3698
3699
3700
3701
    /* Transfer the FROM clause terms from the subquery into the
    ** outer query.
    */
    for(i=0; i<nSubSrc; i++){
      sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
      assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
      pSrc->a[i+iFrom] = pSubSrc->a[i];

      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom].fg.jointype = jointype;
  
    /* Now begin substituting subquery result set expressions for 
    ** references to the iParent in the outer query.
    ** 







>







3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
    /* Transfer the FROM clause terms from the subquery into the
    ** outer query.
    */
    for(i=0; i<nSubSrc; i++){
      sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
      assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
      pSrc->a[i+iFrom] = pSubSrc->a[i];
      iNewParent = pSubSrc->a[i].iCursor;
      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom].fg.jointype = jointype;
  
    /* Now begin substituting subquery result set expressions for 
    ** references to the iParent in the outer query.
    ** 
3733
3734
3735
3736
3737
3738
3739



3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752






3753
3754
3755
3756
3757
3758
3759
3760
      }
      assert( pParent->pOrderBy==0 );
      assert( pSub->pPrior==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;
    }
    pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);



    if( subqueryIsAgg ){
      assert( pParent->pHaving==0 );
      pParent->pHaving = pParent->pWhere;
      pParent->pWhere = pWhere;
      pParent->pHaving = sqlite3ExprAnd(db, 
          sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
      );
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
    }else{
      pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
    }
    if( db->mallocFailed==0 ){






      substSelect(pParse, pParent, iParent, pSub->pEList, 0);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  







>
>
>













>
>
>
>
>
>
|







3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
      }
      assert( pParent->pOrderBy==0 );
      assert( pSub->pPrior==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;
    }
    pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
    if( isLeftJoin ){
      setJoinExpr(pWhere, iNewParent);
    }
    if( subqueryIsAgg ){
      assert( pParent->pHaving==0 );
      pParent->pHaving = pParent->pWhere;
      pParent->pWhere = pWhere;
      pParent->pHaving = sqlite3ExprAnd(db, 
          sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
      );
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
    }else{
      pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
    }
    if( db->mallocFailed==0 ){
      SubstContext x;
      x.pParse = pParse;
      x.iTable = iParent;
      x.iNewTable = iNewParent;
      x.isLeftJoin = isLeftJoin;
      x.pEList = pSub->pEList;
      substSelect(&x, pParent, 0);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  
3849
3850
3851
3852
3853
3854
3855

3856





3857
3858
3859
3860
3861
3862
3863
3864
    nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
    pWhere = pWhere->pLeft;
  }
  if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
  if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
    nChng++;
    while( pSubq ){

      pNew = sqlite3ExprDup(pParse->db, pWhere, 0);





      pNew = substExpr(pParse, pNew, iCursor, pSubq->pEList);
      pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
      pSubq = pSubq->pPrior;
    }
  }
  return nChng;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */







>

>
>
>
>
>
|







3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
    nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
    pWhere = pWhere->pLeft;
  }
  if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
  if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
    nChng++;
    while( pSubq ){
      SubstContext x;
      pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
      x.pParse = pParse;
      x.iTable = iCursor;
      x.iNewTable = iCursor;
      x.isLeftJoin = 0;
      x.pEList = pSubq->pEList;
      pNew = substExpr(&x, pNew);
      pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
      pSubq = pSubq->pPrior;
    }
  }
  return nChng;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
Changes to src/shell.c.
423
424
425
426
427
428
429






























430
431
432
433
434
435
436
  z = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  utf8_printf(iotrace, "%s", z);
  sqlite3_free(z);
}
#endif
































/*
** Determines if a string is a number of not.
*/
static int isNumber(const char *z, int *realnum){
  if( *z=='-' || *z=='+' ) z++;
  if( !IsDigit(*z) ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
  z = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  utf8_printf(iotrace, "%s", z);
  sqlite3_free(z);
}
#endif

/*
** Output string zUtf to stream pOut as w characters.  If w is negative,
** then right-justify the text.  W is the width in UTF-8 characters, not
** in bytes.  This is different from the %*.*s specification in printf
** since with %*.*s the width is measured in bytes, not characters.
*/
static void utf8_width_print(FILE *pOut, int w, const char *zUtf){
  int i;
  int n;
  int aw = w<0 ? -w : w;
  char zBuf[1000];
  if( aw>sizeof(zBuf)/3 ) aw = sizeof(zBuf)/3;
  for(i=n=0; zUtf[i]; i++){
    if( (zUtf[i]&0xc0)!=0x80 ){
      n++;
      if( n==aw ){
        do{ i++; }while( (zUtf[i]&0xc0)==0x80 );
        break;
      }
    }
  }
  if( n>=aw ){
    utf8_printf(pOut, "%.*s", i, zUtf);
  }else if( w<0 ){
    utf8_printf(pOut, "%*s%s", aw-n, "", zUtf);
  }else{
    utf8_printf(pOut, "%s%*s", zUtf, aw-n, "");
  }
}


/*
** Determines if a string is a number of not.
*/
static int isNumber(const char *z, int *realnum){
  if( *z=='-' || *z=='+' ) z++;
  if( !IsDigit(*z) ){
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
            n = strlen30(azArg && azArg[i] ? azArg[i] : p->nullValue);
            if( w<n ) w = n;
          }
          if( i<ArraySize(p->actualWidth) ){
            p->actualWidth[i] = w;
          }
          if( showHdr ){
            if( w<0 ){
              utf8_printf(p->out,"%*.*s%s",-w,-w,azCol[i],
                      i==nArg-1 ? rowSep : "  ");
            }else{
              utf8_printf(p->out,"%-*.*s%s",w,w,azCol[i],
                      i==nArg-1 ? rowSep : "  ");
            }
          }
        }
        if( showHdr ){
          for(i=0; i<nArg; i++){
            int w;
            if( i<ArraySize(p->actualWidth) ){
               w = p->actualWidth[i];







<
|
|
<
<
<
<







1904
1905
1906
1907
1908
1909
1910

1911
1912




1913
1914
1915
1916
1917
1918
1919
            n = strlen30(azArg && azArg[i] ? azArg[i] : p->nullValue);
            if( w<n ) w = n;
          }
          if( i<ArraySize(p->actualWidth) ){
            p->actualWidth[i] = w;
          }
          if( showHdr ){

            utf8_width_print(p->out, w, azCol[i]);
            utf8_printf(p->out, "%s", i==nArg-1 ? rowSep : "  ");




          }
        }
        if( showHdr ){
          for(i=0; i<nArg; i++){
            int w;
            if( i<ArraySize(p->actualWidth) ){
               w = p->actualWidth[i];
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
        }
        if( i==1 && p->aiIndent && p->pStmt ){
          if( p->iIndent<p->nIndent ){
            utf8_printf(p->out, "%*.s", p->aiIndent[p->iIndent], "");
          }
          p->iIndent++;
        }
        if( w<0 ){
          utf8_printf(p->out,"%*.*s%s",-w,-w,
              azArg[i] ? azArg[i] : p->nullValue,
              i==nArg-1 ? rowSep : "  ");
        }else{
          utf8_printf(p->out,"%-*.*s%s",w,w,
              azArg[i] ? azArg[i] : p->nullValue,
              i==nArg-1 ? rowSep : "  ");
        }
      }
      break;
    }
    case MODE_Semi: {   /* .schema and .fullschema output */
      printSchemaLine(p->out, azArg[0], ";\n");
      break;
    }







<
<
|
|
<
<
<
<
<







1941
1942
1943
1944
1945
1946
1947


1948
1949





1950
1951
1952
1953
1954
1955
1956
        }
        if( i==1 && p->aiIndent && p->pStmt ){
          if( p->iIndent<p->nIndent ){
            utf8_printf(p->out, "%*.s", p->aiIndent[p->iIndent], "");
          }
          p->iIndent++;
        }


        utf8_width_print(p->out, w, azArg[i] ? azArg[i] : p->nullValue);
        utf8_printf(p->out, "%s", i==nArg-1 ? rowSep : "  ");





      }
      break;
    }
    case MODE_Semi: {   /* .schema and .fullschema output */
      printSchemaLine(p->out, azArg[0], ";\n");
      break;
    }
Changes to src/sqlite.h.in.
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
** ^The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()].
** The [sqlite3_value_blob | sqlite3_value_type()] family of
** interfaces require protected sqlite3_value objects.
*/
typedef struct Mem sqlite3_value;

/*
** CAPI3REF: SQL Function Context Object
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object.  ^A pointer to an sqlite3_context object
** is always first parameter to [application-defined SQL functions].







|







3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
** ^The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()].
** The [sqlite3_value_blob | sqlite3_value_type()] family of
** interfaces require protected sqlite3_value objects.
*/
typedef struct sqlite3_value sqlite3_value;

/*
** CAPI3REF: SQL Function Context Object
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object.  ^A pointer to an sqlite3_context object
** is always first parameter to [application-defined SQL functions].
Changes to src/sqliteInt.h.
3320
3321
3322
3323
3324
3325
3326

3327
3328
3329
3330
3331
3332
3333
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
    struct CCurHint *pCCurHint;                /* Used by codeCursorHint() */
    int *aiCol;                                /* array of column indexes */
    struct IdxCover *pIdxCover;                /* Check for index coverage */

  } u;
};

/* Forward declarations */
int sqlite3WalkExpr(Walker*, Expr*);
int sqlite3WalkExprList(Walker*, ExprList*);
int sqlite3WalkSelect(Walker*, Select*);







>







3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
    struct CCurHint *pCCurHint;                /* Used by codeCursorHint() */
    int *aiCol;                                /* array of column indexes */
    struct IdxCover *pIdxCover;                /* Check for index coverage */
    struct IdxExprTrans *pIdxTrans;            /* Convert indexed expr to column */
  } u;
};

/* Forward declarations */
int sqlite3WalkExpr(Walker*, Expr*);
int sqlite3WalkExprList(Walker*, ExprList*);
int sqlite3WalkSelect(Walker*, Select*);
Changes to src/test_delete.c.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
**   * The journal file.
**   * The wal file.
**   * The SQLITE_ENABLE_8_3_NAMES version of the db, journal or wal files.
**   * Files created by the test_multiplex.c module to extend any of the 
**     above.
*/

#if SQLITE_OS_WIN
#  include <io.h>
#  define F_OK 0
#else
#  include <unistd.h>
#endif
#include <string.h>
#include <errno.h>
#include "sqlite3.h"

/* The following #defines are copied from test_multiplex.c */
#ifndef MX_CHUNK_NUMBER 
# define MX_CHUNK_NUMBER 299
#endif
#ifndef SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET







|
|
<
<
|


|







15
16
17
18
19
20
21
22
23


24
25
26
27
28
29
30
31
32
33
34
**   * The journal file.
**   * The wal file.
**   * The SQLITE_ENABLE_8_3_NAMES version of the db, journal or wal files.
**   * Files created by the test_multiplex.c module to extend any of the 
**     above.
*/

#ifndef SQLITE_OS_WIN
#  include <unistd.h>


#  include <errno.h>
#endif
#include <string.h>
#include <assert.h>
#include "sqlite3.h"

/* The following #defines are copied from test_multiplex.c */
#ifndef MX_CHUNK_NUMBER 
# define MX_CHUNK_NUMBER 299
#endif
#ifndef SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET
53
54
55
56
57
58
59
60
61
62
63




64











65
66
67
68
69

70
71
72
73
74

75
76
77
78
79
80
81
82
83
}

/*
** zFile is a filename. Assuming no error occurs, if this file exists, 
** set *pbExists to true and unlink it. Or, if the file does not exist,
** set *pbExists to false before returning.
**
** If an error occurs, the value of errno is returned. Or, if no error
** occurs, zero is returned.
*/
static int sqlite3DeleteUnlinkIfExists(const char *zFile, int *pbExists){




  int rc;











  rc = access(zFile, F_OK);
  if( rc ){
    if( errno==ENOENT ){ 
      if( pbExists ) *pbExists = 0;
      return 0; 

    }
    return errno;
  }
  if( pbExists ) *pbExists = 1;
  rc = unlink(zFile);

  if( rc ) return errno;
  return 0;
}

/*
** Delete the database file identified by the string argument passed to this
** function. The string must contain a filename, not an SQLite URI.
*/
SQLITE_API int sqlite3_delete_database(







|
<

|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>




<
>

<
|
|
|
>
|
|







51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
}

/*
** zFile is a filename. Assuming no error occurs, if this file exists, 
** set *pbExists to true and unlink it. Or, if the file does not exist,
** set *pbExists to false before returning.
**
** If an error occurs, non-zero is returned. Or, if no error occurs, zero.

*/
static int sqlite3DeleteUnlinkIfExists(
  sqlite3_vfs *pVfs,
  const char *zFile, 
  int *pbExists
){
  int rc = SQLITE_ERROR;
#if SQLITE_OS_WIN
  if( pVfs ){
    if( pbExists ) *pbExists = 1;
    rc = pVfs->xDelete(pVfs, zFile, 0);
    if( rc==SQLITE_IOERR_DELETE_NOENT ){
      if( pbExists ) *pbExists = 0;
      rc = SQLITE_OK;
    }
  }
#else
  assert( pVfs==0 );
  rc = access(zFile, F_OK);
  if( rc ){
    if( errno==ENOENT ){ 
      if( pbExists ) *pbExists = 0;

      rc = SQLITE_OK; 
    }

  }else{
    if( pbExists ) *pbExists = 1;
    rc = unlink(zFile);
  }
#endif
  return rc;
}

/*
** Delete the database file identified by the string argument passed to this
** function. The string must contain a filename, not an SQLite URI.
*/
SQLITE_API int sqlite3_delete_database(
98
99
100
101
102
103
104






105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    { "%s%03d",         0,   0 },
    { "%s-journal%03d", 0,   0 },
    { "%s-wal%03d",     0,   0 },
    { "%s%03d",         0,   1 },
    { "%s-journal%03d", SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET, 1 },
    { "%s-wal%03d",     SQLITE_MULTIPLEX_WAL_8_3_OFFSET, 1 },
  };







  /* Allocate a buffer large enough for any of the files that need to be
  ** deleted.  */
  nBuf = (int)strlen(zFile) + 100;
  zBuf = (char*)sqlite3_malloc(nBuf);
  if( zBuf==0 ) return SQLITE_NOMEM;

  /* Delete both the regular and 8.3 filenames versions of the database,
  ** journal, wal and shm files.  */
  for(i=0; rc==0 && i<sizeof(azFmt)/sizeof(azFmt[0]); i++){
    sqlite3_snprintf(nBuf, zBuf, azFmt[i], zFile);
    rc = sqlite3DeleteUnlinkIfExists(zBuf, 0);
    if( rc==0 && i!=0 ){
      sqlite3Delete83Name(zBuf);
      rc = sqlite3DeleteUnlinkIfExists(zBuf, 0);
    }
  }

  /* Delete any multiplexor files */
  for(i=0; rc==0 && i<sizeof(aMFile)/sizeof(aMFile[0]); i++){
    struct MFile *p = &aMFile[i];
    int iChunk;
    for(iChunk=1; iChunk<=MX_CHUNK_NUMBER; iChunk++){
      int bExists;
      sqlite3_snprintf(nBuf, zBuf, p->zFmt, zFile, iChunk+p->iOffset);
      if( p->b83 ) sqlite3Delete83Name(zBuf);
      rc = sqlite3DeleteUnlinkIfExists(zBuf, &bExists);
      if( bExists==0 || rc!=0 ) break;
    }
  }

  sqlite3_free(zBuf);
  return (rc ? SQLITE_ERROR : SQLITE_OK);
}







>
>
>
>
>
>











|


|











|







110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    { "%s%03d",         0,   0 },
    { "%s-journal%03d", 0,   0 },
    { "%s-wal%03d",     0,   0 },
    { "%s%03d",         0,   1 },
    { "%s-journal%03d", SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET, 1 },
    { "%s-wal%03d",     SQLITE_MULTIPLEX_WAL_8_3_OFFSET, 1 },
  };

#ifdef SQLITE_OS_WIN
  sqlite3_vfs *pVfs = sqlite3_vfs_find("win32");
#else
  sqlite3_vfs *pVfs = 0;
#endif

  /* Allocate a buffer large enough for any of the files that need to be
  ** deleted.  */
  nBuf = (int)strlen(zFile) + 100;
  zBuf = (char*)sqlite3_malloc(nBuf);
  if( zBuf==0 ) return SQLITE_NOMEM;

  /* Delete both the regular and 8.3 filenames versions of the database,
  ** journal, wal and shm files.  */
  for(i=0; rc==0 && i<sizeof(azFmt)/sizeof(azFmt[0]); i++){
    sqlite3_snprintf(nBuf, zBuf, azFmt[i], zFile);
    rc = sqlite3DeleteUnlinkIfExists(pVfs, zBuf, 0);
    if( rc==0 && i!=0 ){
      sqlite3Delete83Name(zBuf);
      rc = sqlite3DeleteUnlinkIfExists(pVfs, zBuf, 0);
    }
  }

  /* Delete any multiplexor files */
  for(i=0; rc==0 && i<sizeof(aMFile)/sizeof(aMFile[0]); i++){
    struct MFile *p = &aMFile[i];
    int iChunk;
    for(iChunk=1; iChunk<=MX_CHUNK_NUMBER; iChunk++){
      int bExists;
      sqlite3_snprintf(nBuf, zBuf, p->zFmt, zFile, iChunk+p->iOffset);
      if( p->b83 ) sqlite3Delete83Name(zBuf);
      rc = sqlite3DeleteUnlinkIfExists(pVfs, zBuf, &bExists);
      if( bExists==0 || rc!=0 ) break;
    }
  }

  sqlite3_free(zBuf);
  return (rc ? SQLITE_ERROR : SQLITE_OK);
}
Changes to src/treeview.c.
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248




249

250
251
252
253
254
255
256

/*
** Generate a human-readable explanation of an expression tree.
*/
void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */
  char zFlgs[30];
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( pExpr==0 ){
    sqlite3TreeViewLine(pView, "nil");
    sqlite3TreeViewPop(pView);
    return;
  }
  if( pExpr->flags ){




    sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x",pExpr->flags);

  }else{
    zFlgs[0] = 0;
  }
  switch( pExpr->op ){
    case TK_AGG_COLUMN: {
      sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
            pExpr->iTable, pExpr->iColumn, zFlgs);







|







>
>
>
>
|
>







234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

/*
** Generate a human-readable explanation of an expression tree.
*/
void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */
  char zFlgs[60];
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( pExpr==0 ){
    sqlite3TreeViewLine(pView, "nil");
    sqlite3TreeViewPop(pView);
    return;
  }
  if( pExpr->flags ){
    if( ExprHasProperty(pExpr, EP_FromJoin) ){
      sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x iRJT=%d",
                       pExpr->flags, pExpr->iRightJoinTable);
    }else{
      sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x",pExpr->flags);
    }
  }else{
    zFlgs[0] = 0;
  }
  switch( pExpr->op ){
    case TK_AGG_COLUMN: {
      sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
            pExpr->iTable, pExpr->iColumn, zFlgs);
460
461
462
463
464
465
466





467
468
469
470
471
472
473
      sqlite3TreeViewBareExprList(pView, pExpr->x.pList, "VECTOR");
      break;
    }
    case TK_SELECT_COLUMN: {
      sqlite3TreeViewLine(pView, "SELECT-COLUMN %d", pExpr->iColumn);
      sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0);
      break;





    }
    default: {
      sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
      break;
    }
  }
  if( zBinOp ){







>
>
>
>
>







465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
      sqlite3TreeViewBareExprList(pView, pExpr->x.pList, "VECTOR");
      break;
    }
    case TK_SELECT_COLUMN: {
      sqlite3TreeViewLine(pView, "SELECT-COLUMN %d", pExpr->iColumn);
      sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0);
      break;
    }
    case TK_IF_NULL_ROW: {
      sqlite3TreeViewLine(pView, "IF-NULL-ROW %d", pExpr->iTable);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }
    default: {
      sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
      break;
    }
  }
  if( zBinOp ){
Changes to src/update.c.
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  ** being updated.  Fill in aRegIdx[] with a register number that will hold
  ** the key for accessing each index.
  **
  ** FIXME:  Be smarter about omitting indexes that use expressions.
  */
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( chngKey || hasFK || pIdx->pPartIdxWhere || pIdx==pPk ){
      reg = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nKeyCol; i++){
        i16 iIdxCol = pIdx->aiColumn[i];
        if( iIdxCol<0 || aXRef[iIdxCol]>=0 ){







|







281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  ** being updated.  Fill in aRegIdx[] with a register number that will hold
  ** the key for accessing each index.
  **
  ** FIXME:  Be smarter about omitting indexes that use expressions.
  */
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( chngKey || hasFK>1 || pIdx->pPartIdxWhere || pIdx==pPk ){
      reg = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nKeyCol; i++){
        i16 iIdxCol = pIdx->aiColumn[i];
        if( iIdxCol<0 || aXRef[iIdxCol]>=0 ){
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    ** pre-update hook. If the caller invokes preupdate_new(), the returned
    ** value is copied from memory cell (regNewRowid+1+iCol), where iCol
    ** is the column index supplied by the user.
    */
    assert( regNew==regNewRowid+1 );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeAddOp3(v, OP_Delete, iDataCur,
        OPFLAG_ISUPDATE | ((hasFK || chngKey) ? 0 : OPFLAG_ISNOOP),
        regNewRowid
    );
    if( eOnePass==ONEPASS_MULTI ){
      assert( hasFK==0 && chngKey==0 );
      sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
    }
    if( !pParse->nested ){
      sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
    }
#else
    if( hasFK || chngKey ){
      sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
    }
#endif
    if( bReplace || chngKey ){
      sqlite3VdbeJumpHere(v, addr1);
    }








|










|







636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    ** pre-update hook. If the caller invokes preupdate_new(), the returned
    ** value is copied from memory cell (regNewRowid+1+iCol), where iCol
    ** is the column index supplied by the user.
    */
    assert( regNew==regNewRowid+1 );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeAddOp3(v, OP_Delete, iDataCur,
        OPFLAG_ISUPDATE | ((hasFK>1 || chngKey) ? 0 : OPFLAG_ISNOOP),
        regNewRowid
    );
    if( eOnePass==ONEPASS_MULTI ){
      assert( hasFK==0 && chngKey==0 );
      sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
    }
    if( !pParse->nested ){
      sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
    }
#else
    if( hasFK>1 || chngKey ){
      sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
    }
#endif
    if( bReplace || chngKey ){
      sqlite3VdbeJumpHere(v, addr1);
    }

Changes to src/vdbe.c.
482
483
484
485
486
487
488

489
490
491
492
493
494
495
  }
  if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
}
static void registerTrace(int iReg, Mem *p){
  printf("REG[%d] = ", iReg);
  memTracePrint(p);
  printf("\n");

}
#endif

#ifdef SQLITE_DEBUG
#  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
#else
#  define REGISTER_TRACE(R,M)







>







482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
  }
  if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
}
static void registerTrace(int iReg, Mem *p){
  printf("REG[%d] = ", iReg);
  memTracePrint(p);
  printf("\n");
  sqlite3VdbeCheckMemInvariants(p);
}
#endif

#ifdef SQLITE_DEBUG
#  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
#else
#  define REGISTER_TRACE(R,M)
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {
  assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
  pOut = &aMem[pOp->p1];
  pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
  break;
}

/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long.  Store this







|







1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {
  assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
  pOut = &aMem[pOp->p1];
  pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
  break;
}

/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long.  Store this
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505

  pIn1 = &aMem[pOp->p1];
  type1 = numericType(pIn1);
  pIn2 = &aMem[pOp->p2];
  type2 = numericType(pIn2);
  pOut = &aMem[pOp->p3];
  flags = pIn1->flags | pIn2->flags;
  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
  if( (type1 & type2 & MEM_Int)!=0 ){
    iA = pIn1->u.i;
    iB = pIn2->u.i;
    bIntint = 1;
    switch( pOp->opcode ){
      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;







<







1492
1493
1494
1495
1496
1497
1498

1499
1500
1501
1502
1503
1504
1505

  pIn1 = &aMem[pOp->p1];
  type1 = numericType(pIn1);
  pIn2 = &aMem[pOp->p2];
  type2 = numericType(pIn2);
  pOut = &aMem[pOp->p3];
  flags = pIn1->flags | pIn2->flags;

  if( (type1 & type2 & MEM_Int)!=0 ){
    iA = pIn1->u.i;
    iB = pIn2->u.i;
    bIntint = 1;
    switch( pOp->opcode ){
      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1515
1516
1517
1518
1519
1520
1521


1522
1523
1524
1525
1526
1527
1528
        if( iA==-1 ) iA = 1;
        iB %= iA;
        break;
      }
    }
    pOut->u.i = iB;
    MemSetTypeFlag(pOut, MEM_Int);


  }else{
    bIntint = 0;
fp_math:
    rA = sqlite3VdbeRealValue(pIn1);
    rB = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         rB += rA;       break;







>
>







1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
        if( iA==-1 ) iA = 1;
        iB %= iA;
        break;
      }
    }
    pOut->u.i = iB;
    MemSetTypeFlag(pOut, MEM_Int);
  }else if( (flags & MEM_Null)!=0 ){
    goto arithmetic_result_is_null;
  }else{
    bIntint = 0;
fp_math:
    rA = sqlite3VdbeRealValue(pIn1);
    rB = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         rB += rA;       break;
2425
2426
2427
2428
2429
2430
2431

















2432
2433
2434
2435
2436
2437
2438
  pIn1 = &aMem[pOp->p1];
  VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
  if( (pIn1->flags & MEM_Null)==0 ){
    goto jump_to_p2;
  }
  break;
}


















/* Opcode: Column P1 P2 P3 P4 P5
** Synopsis: r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
  pIn1 = &aMem[pOp->p1];
  VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
  if( (pIn1->flags & MEM_Null)==0 ){
    goto jump_to_p2;
  }
  break;
}

/* Opcode: IfNullRow P1 P2 P3 * *
** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
**
** Check the cursor P1 to see if it is currently pointing at a NULL row.
** If it is, then set register P3 to NULL and jump immediately to P2.
** If P1 is not on a NULL row, then fall through without making any
** changes.
*/
case OP_IfNullRow: {         /* jump */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  if( p->apCsr[pOp->p1]->nullRow ){
    sqlite3VdbeMemSetNull(aMem + pOp->p3);
    goto jump_to_p2;
  }
  break;
}

/* Opcode: Column P1 P2 P3 P4 P5
** Synopsis: r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
Changes to src/vdbe.h.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
*/
typedef struct Vdbe Vdbe;

/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct Mem Mem;
typedef struct SubProgram SubProgram;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/







|







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
*/
typedef struct Vdbe Vdbe;

/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct sqlite3_value Mem;
typedef struct SubProgram SubProgram;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
Changes to src/vdbeInt.h.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct Mem {
  union MemValue {
    double r;           /* Real value used when MEM_Real is set in flags */
    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */







|







181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct sqlite3_value {
  union MemValue {
    double r;           /* Real value used when MEM_Real is set in flags */
    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
Changes to src/vdbeaux.c.
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain 
** nOp entries. 
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
  if( aOp ){
    Op *pOp;
    for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
      if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      sqlite3DbFree(db, pOp->zComment);
#endif     
    }
    sqlite3DbFreeNN(db, aOp);
  }







|







875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain 
** nOp entries. 
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
  if( aOp ){
    Op *pOp;
    for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
      if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      sqlite3DbFree(db, pOp->zComment);
#endif     
    }
    sqlite3DbFreeNN(db, aOp);
  }
Changes to src/vdbemem.c.
36
37
38
39
40
41
42




43
44
45
46
47
48
49
  ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
  ** That saves a few cycles in inner loops. */
  assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );

  /* Cannot be both MEM_Int and MEM_Real at the same time */
  assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );





  /* The szMalloc field holds the correct memory allocation size */
  assert( p->szMalloc==0
       || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );

  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **







>
>
>
>







36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
  ** That saves a few cycles in inner loops. */
  assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );

  /* Cannot be both MEM_Int and MEM_Real at the same time */
  assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );

  /* Cannot be both MEM_Null and some other type */
  assert( (p->flags & MEM_Null)==0 ||
          (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob))==0 );

  /* The szMalloc field holds the correct memory allocation size */
  assert( p->szMalloc==0
       || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );

  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
  if( pMem->szMalloc<n ){
    if( n<32 ) n = 32;
    if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      sqlite3VdbeMemSetNull(pMem);
      pMem->z = 0;
      pMem->szMalloc = 0;
      return SQLITE_NOMEM_BKPT;
    }else{
      pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
    }
  }

  if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }








<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|







125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156
  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );

  if( n<32 ) n = 32;
  if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
    pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
    bPreserve = 0;
  }else{
    if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
    pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
  }
  if( pMem->zMalloc==0 ){
    sqlite3VdbeMemSetNull(pMem);
    pMem->z = 0;
    pMem->szMalloc = 0;
    return SQLITE_NOMEM_BKPT;
  }else{
    pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
  }


  if( bPreserve && pMem->z && ALWAYS(pMem->z!=pMem->zMalloc) ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }

Changes to src/vtab.c.
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
  unsigned char *z;


  /* Check to see the left operand is a column in a virtual table */
  if( NEVER(pExpr==0) ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( NEVER(pTab==0) ) return pDef;
  if( !IsVirtual(pTab) ) return pDef;
  pVtab = sqlite3GetVTable(db, pTab)->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 







|







1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
  unsigned char *z;


  /* Check to see the left operand is a column in a virtual table */
  if( NEVER(pExpr==0) ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( pTab==0 ) return pDef;
  if( !IsVirtual(pTab) ) return pDef;
  pVtab = sqlite3GetVTable(db, pTab)->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 
Changes to src/where.c.
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
  }

  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return N:
** 
**   N>0:   N terms of the ORDER BY clause are satisfied
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**







|







3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
  }

  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return N:
** 
**   N>0:   N terms of the ORDER BY clause are satisfied
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**
3528
3529
3530
3531
3532
3533
3534


3535
3536
3537
3538
3539
3540
3541
      if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
    }else{
      pLoop = pLast;
    }
    if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
      if( pLoop->u.vtab.isOrdered ) obSat = obDone;
      break;


    }
    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;

    /* Mark off any ORDER BY term X that is a column in the table of
    ** the current loop for which there is term in the WHERE
    ** clause of the form X IS NULL or X=? that reference only outer
    ** loops.







>
>







3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
      if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
    }else{
      pLoop = pLast;
    }
    if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
      if( pLoop->u.vtab.isOrdered ) obSat = obDone;
      break;
    }else{
      pLoop->u.btree.nIdxCol = 0;
    }
    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;

    /* Mark off any ORDER BY term X that is a column in the table of
    ** the current loop for which there is term in the WHERE
    ** clause of the form X IS NULL or X=? that reference only outer
    ** loops.
3673
3674
3675
3676
3677
3678
3679

3680
3681
3682
3683
3684
3685
3686
            }
          }
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }

          isMatch = 1;
          break;
        }
        if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){







>







3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
            }
          }
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          pLoop->u.btree.nIdxCol = j+1;
          isMatch = 1;
          break;
        }
        if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){
4443
4444
4445
4446
4447
4448
4449

4450
4451
4452
4453
4454
4455
4456
    sqlite3DbFree(db, pWInfo);
    pWInfo = 0;
    goto whereBeginError;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;

  pWInfo->pResultSet = pResultSet;
  pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
  pWInfo->nLevel = nTabList;
  pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->iLimit = iAuxArg;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;







>







4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
    sqlite3DbFree(db, pWInfo);
    pWInfo = 0;
    goto whereBeginError;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;
  pWInfo->pWhere = pWhere;
  pWInfo->pResultSet = pResultSet;
  pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
  pWInfo->nLevel = nTabList;
  pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->iLimit = iAuxArg;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4753
4754
4755
4756
4757
4758
4759

4760
4761
4762
4763
4764
4765
4766
      assert( iIndexCur>=0 );
      if( op ){
        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
        sqlite3VdbeSetP4KeyInfo(pParse, pIx);
        if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
         && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
         && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0

        ){
          sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
        }
        VdbeComment((v, "%s", pIx->zName));
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
        {
          u64 colUsed = 0;







>







4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
      assert( iIndexCur>=0 );
      if( op ){
        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
        sqlite3VdbeSetP4KeyInfo(pParse, pIx);
        if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
         && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
         && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
         && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
        ){
          sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
        }
        VdbeComment((v, "%s", pIx->zName));
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
        {
          u64 colUsed = 0;
4841
4842
4843
4844
4845
4846
4847
4848
4849

























4850
4851
4852
4853
4854
4855





4856
4857
4858
4859
4860
4861
4862
  */
  VdbeModuleComment((v, "End WHERE-core"));
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    int addr;
    pLevel = &pWInfo->a[i];
    pLoop = pLevel->pWLoop;
    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){

























      sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
      sqlite3VdbeChangeP5(v, pLevel->p5);
      VdbeCoverage(v);
      VdbeCoverageIf(v, pLevel->op==OP_Next);
      VdbeCoverageIf(v, pLevel->op==OP_Prev);
      VdbeCoverageIf(v, pLevel->op==OP_VNext);





    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);







<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






>
>
>
>
>







4846
4847
4848
4849
4850
4851
4852

4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
  */
  VdbeModuleComment((v, "End WHERE-core"));
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    int addr;
    pLevel = &pWInfo->a[i];
    pLoop = pLevel->pWLoop;

    if( pLevel->op!=OP_Noop ){
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
      int addrSeek = 0;
      Index *pIdx;
      int n;
      if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
       && (pLoop->wsFlags & WHERE_INDEXED)!=0
       && (pIdx = pLoop->u.btree.pIndex)->hasStat1
       && (n = pLoop->u.btree.nIdxCol)>0
       && pIdx->aiRowLogEst[n]>=36
      ){
        int r1 = pParse->nMem+1;
        int j, op;
        for(j=0; j<n; j++){
          sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
        }
        pParse->nMem += n+1;
        op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
        addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
        VdbeCoverageIf(v, op==OP_SeekLT);
        VdbeCoverageIf(v, op==OP_SeekGT);
        sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
      }
#endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
      /* The common case: Advance to the next row */
      sqlite3VdbeResolveLabel(v, pLevel->addrCont);
      sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
      sqlite3VdbeChangeP5(v, pLevel->p5);
      VdbeCoverage(v);
      VdbeCoverageIf(v, pLevel->op==OP_Next);
      VdbeCoverageIf(v, pLevel->op==OP_Prev);
      VdbeCoverageIf(v, pLevel->op==OP_VNext);
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
      if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
#endif
    }else{
      sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4971
4972
4973
4974
4975
4976
4977


4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
            pOp->p1 = pLevel->iIdxCur;
          }
          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 
              || pWInfo->eOnePass );
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;


        }
      }
    }
  }

  /* Final cleanup
  */
  pParse->nQueryLoop = pWInfo->savedNQueryLoop;
  whereInfoFree(db, pWInfo);
  return;
}







>
>











5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
            pOp->p1 = pLevel->iIdxCur;
          }
          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 
              || pWInfo->eOnePass );
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }else if( pOp->opcode==OP_IfNullRow ){
          pOp->p1 = pLevel->iIdxCur;
        }
      }
    }
  }

  /* Final cleanup
  */
  pParse->nQueryLoop = pWInfo->savedNQueryLoop;
  whereInfoFree(db, pWInfo);
  return;
}
Changes to src/whereInt.h.
120
121
122
123
124
125
126

127
128
129
130
131
132
133
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */
      u16 nBtm;              /* Size of BTM vector */
      u16 nTop;              /* Size of TOP vector */

      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */







>







120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */
      u16 nBtm;              /* Size of BTM vector */
      u16 nTop;              /* Size of TOP vector */
      u16 nIdxCol;           /* Index column used for ORDER BY */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
413
414
415
416
417
418
419

420
421
422
423
424
425
426
** planner.
*/
struct WhereInfo {
  Parse *pParse;            /* Parsing and code generating context */
  SrcList *pTabList;        /* List of tables in the join */
  ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
  ExprList *pResultSet;     /* Result set of the query */

  LogEst iLimit;            /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */
  int aiCurOnePass[2];      /* OP_OpenWrite cursors for the ONEPASS opt */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 nLevel;                /* Number of nested loop */







>







414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
** planner.
*/
struct WhereInfo {
  Parse *pParse;            /* Parsing and code generating context */
  SrcList *pTabList;        /* List of tables in the join */
  ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
  ExprList *pResultSet;     /* Result set of the query */
  Expr *pWhere;             /* The complete WHERE clause */
  LogEst iLimit;            /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */
  int aiCurOnePass[2];      /* OP_OpenWrite cursors for the ONEPASS opt */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 nLevel;                /* Number of nested loop */
Changes to src/wherecode.c.
1034
1035
1036
1037
1038
1039
1040































































1041
1042
1043
1044
1045
1046
1047
      }
    }
  }else{
    assert( nReg==1 );
    sqlite3ExprCode(pParse, p, iReg);
  }
}
































































/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
      }
    }
  }else{
    assert( nReg==1 );
    sqlite3ExprCode(pParse, p, iReg);
  }
}

/* An instance of the IdxExprTrans object carries information about a
** mapping from an expression on table columns into a column in an index
** down through the Walker.
*/
typedef struct IdxExprTrans {
  Expr *pIdxExpr;    /* The index expression */
  int iTabCur;       /* The cursor of the corresponding table */
  int iIdxCur;       /* The cursor for the index */
  int iIdxCol;       /* The column for the index */
} IdxExprTrans;

/* The walker node callback used to transform matching expressions into
** a reference to an index column for an index on an expression.
**
** If pExpr matches, then transform it into a reference to the index column
** that contains the value of pExpr.
*/
static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
  IdxExprTrans *pX = p->u.pIdxTrans;
  if( sqlite3ExprCompare(pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
    pExpr->op = TK_COLUMN;
    pExpr->iTable = pX->iIdxCur;
    pExpr->iColumn = pX->iIdxCol;
    pExpr->pTab = 0;
    return WRC_Prune;
  }else{
    return WRC_Continue;
  }
}

/*
** For an indexes on expression X, locate every instance of expression X in pExpr
** and change that subexpression into a reference to the appropriate column of
** the index.
*/
static void whereIndexExprTrans(
  Index *pIdx,      /* The Index */
  int iTabCur,      /* Cursor of the table that is being indexed */
  int iIdxCur,      /* Cursor of the index itself */
  WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
){
  int iIdxCol;               /* Column number of the index */
  ExprList *aColExpr;        /* Expressions that are indexed */
  Walker w;
  IdxExprTrans x;
  aColExpr = pIdx->aColExpr;
  if( aColExpr==0 ) return;  /* Not an index on expressions */
  memset(&w, 0, sizeof(w));
  w.xExprCallback = whereIndexExprTransNode;
  w.u.pIdxTrans = &x;
  x.iTabCur = iTabCur;
  x.iIdxCur = iIdxCur;
  for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
    if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
    assert( aColExpr->a[iIdxCol].pExpr!=0 );
    x.iIdxCol = iIdxCol;
    x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
    sqlite3WalkExpr(&w, pWInfo->pWhere);
    sqlite3WalkExprList(&w, pWInfo->pOrderBy);
    sqlite3WalkExprList(&w, pWInfo->pResultSet);
  }
}

/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1615
1616
1617
1618
1619
1620
1621







1622
1623
1624
1625
1626
1627
1628
      for(j=0; j<pPk->nKeyCol; j++){
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
      }
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
    }








    /* Record the instruction used to terminate the loop. */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{







>
>
>
>
>
>
>







1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
      for(j=0; j<pPk->nKeyCol; j++){
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
      }
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
    }

    /* If pIdx is an index on one or more expressions, then look through
    ** all the expressions in pWInfo and try to transform matching expressions
    ** into reference to index columns.
    */
    whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);


    /* Record the instruction used to terminate the loop. */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
Changes to src/whereexpr.c.
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846
847
848
849
850
851
852










853











854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
  return mask;
}

/*
** Expression pExpr is one operand of a comparison operator that might
** be useful for indexing.  This routine checks to see if pExpr appears
** in any index.  Return TRUE (1) if pExpr is an indexed term and return
** FALSE (0) if not.  If TRUE is returned, also set *piCur to the cursor
** number of the table that is indexed and *piColumn to the column number
** of the column that is indexed, or XN_EXPR (-2) if an expression is being
** indexed.
**
** If pExpr is a TK_COLUMN column reference, then this routine always returns
** true even if that particular column is not indexed, because the column
** might be added to an automatic index later.
*/
static int exprMightBeIndexed(
  SrcList *pFrom,        /* The FROM clause */
  int op,                /* The specific comparison operator */
  Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */

  Expr *pExpr,           /* An operand of a comparison operator */
  int *piCur,            /* Write the referenced table cursor number here */
  int *piColumn          /* Write the referenced table column number here */
){
  Index *pIdx;
  int i;
  int iCur;






















  /* If this expression is a vector to the left or right of a 
  ** inequality constraint (>, <, >= or <=), perform the processing 
  ** on the first element of the vector.  */
  assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
  assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
  assert( op<=TK_GE );
  if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
    pExpr = pExpr->x.pList->a[0].pExpr;
  }

  if( pExpr->op==TK_COLUMN ){
    *piCur = pExpr->iTable;
    *piColumn = pExpr->iColumn;
    return 1;
  }
  if( mPrereq==0 ) return 0;                 /* No table references */
  if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */
  for(i=0; mPrereq>1; i++, mPrereq>>=1){}
  iCur = pFrom->a[i].iCursor;
  for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->aColExpr==0 ) continue;
    for(i=0; i<pIdx->nKeyCol; i++){
      if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
      if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
        *piCur = iCur;
        *piColumn = XN_EXPR;
        return 1;
      }
    }
  }
  return 0;
}

/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.







|
|







|

<

>
|
<
<




>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>











|
|




<
<
<
<
<
<
<
<
<
|
<
<
<
<







826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

844
845
846


847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889









890




891
892
893
894
895
896
897
  return mask;
}

/*
** Expression pExpr is one operand of a comparison operator that might
** be useful for indexing.  This routine checks to see if pExpr appears
** in any index.  Return TRUE (1) if pExpr is an indexed term and return
** FALSE (0) if not.  If TRUE is returned, also set aiCurCol[0] to the cursor
** number of the table that is indexed and aiCurCol[1] to the column number
** of the column that is indexed, or XN_EXPR (-2) if an expression is being
** indexed.
**
** If pExpr is a TK_COLUMN column reference, then this routine always returns
** true even if that particular column is not indexed, because the column
** might be added to an automatic index later.
*/
static SQLITE_NOINLINE int exprMightBeIndexed2(
  SrcList *pFrom,        /* The FROM clause */

  Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
  int *aiCurCol,         /* Write the referenced table cursor and column here */
  Expr *pExpr            /* An operand of a comparison operator */


){
  Index *pIdx;
  int i;
  int iCur;
  for(i=0; mPrereq>1; i++, mPrereq>>=1){}
  iCur = pFrom->a[i].iCursor;
  for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->aColExpr==0 ) continue;
    for(i=0; i<pIdx->nKeyCol; i++){
      if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
      if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
        aiCurCol[0] = iCur;
        aiCurCol[1] = XN_EXPR;
        return 1;
      }
    }
  }
  return 0;
}
static int exprMightBeIndexed(
  SrcList *pFrom,        /* The FROM clause */
  Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
  int *aiCurCol,         /* Write the referenced table cursor & column here */
  Expr *pExpr,           /* An operand of a comparison operator */
  int op                 /* The specific comparison operator */
){
  /* If this expression is a vector to the left or right of a 
  ** inequality constraint (>, <, >= or <=), perform the processing 
  ** on the first element of the vector.  */
  assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
  assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
  assert( op<=TK_GE );
  if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
    pExpr = pExpr->x.pList->a[0].pExpr;
  }

  if( pExpr->op==TK_COLUMN ){
    aiCurCol[0] = pExpr->iTable;
    aiCurCol[1] = pExpr->iColumn;
    return 1;
  }
  if( mPrereq==0 ) return 0;                 /* No table references */
  if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */









  return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);




}

/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
    }
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    int iCur, iColumn;
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;

    if( pTerm->iField>0 ){
      assert( op==TK_IN );
      assert( pLeft->op==TK_VECTOR );
      pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
    }

    if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){
      pTerm->leftCursor = iCur;
      pTerm->u.leftColumn = iColumn;
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
    if( pRight 
     && exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn)
    ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      assert( pTerm->iField==0 );
      if( pTerm->leftCursor>=0 ){
        int idxNew;







|










|
|
|




|







963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    }
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    int aiCurCol[2];
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;

    if( pTerm->iField>0 ){
      assert( op==TK_IN );
      assert( pLeft->op==TK_VECTOR );
      pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
    }

    if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
      pTerm->leftCursor = aiCurCol[0];
      pTerm->u.leftColumn = aiCurCol[1];
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
    if( pRight 
     && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
    ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      assert( pTerm->iField==0 );
      if( pTerm->leftCursor>=0 ){
        int idxNew;
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
          eExtraOp = WO_EQUIV;
        }
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pNew->leftCursor = iCur;
      pNew->u.leftColumn = iColumn;
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
    }
  }








|
|







1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
          eExtraOp = WO_EQUIV;
        }
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pNew->leftCursor = aiCurCol[0];
      pNew->u.leftColumn = aiCurCol[1];
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
    }
  }

Added test/distinct2.test.














































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# 2016-04-15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is DISTINCT queries using the skip-ahead 
# optimization.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set testprefix distinct2

do_execsql_test 100 {
  CREATE TABLE t1(x INTEGER PRIMARY KEY);
  INSERT INTO t1 VALUES(0),(1),(2);
  CREATE TABLE t2 AS
     SELECT DISTINCT a.x AS aa, b.x AS bb
      FROM t1 a, t1 b;
  SELECT *, '|' FROM t2 ORDER BY aa, bb;
} {0 0 | 0 1 | 0 2 | 1 0 | 1 1 | 1 2 | 2 0 | 2 1 | 2 2 |}
do_execsql_test 110 {
  DROP TABLE t2;
  CREATE TABLE t2 AS
     SELECT DISTINCT a.x AS aa, b.x AS bb
       FROM t1 a, t1 b
      WHERE a.x IN t1 AND b.x IN t1;
  SELECT *, '|' FROM t2 ORDER BY aa, bb;
} {0 0 | 0 1 | 0 2 | 1 0 | 1 1 | 1 2 | 2 0 | 2 1 | 2 2 |}
do_execsql_test 120 {
  CREATE TABLE t102 (i0 TEXT UNIQUE NOT NULL);
  INSERT INTO t102 VALUES ('0'),('1'),('2');
  DROP TABLE t2;
  CREATE TABLE t2 AS
    SELECT DISTINCT * 
    FROM t102 AS t0 
    JOIN t102 AS t4 ON (t2.i0 IN t102)
    NATURAL JOIN t102 AS t3
    JOIN t102 AS t1 ON (t0.i0 IN t102)
    JOIN t102 AS t2 ON (t2.i0=+t0.i0 OR (t0.i0<>500 AND t2.i0=t1.i0));
  SELECT *, '|' FROM t2 ORDER BY 1, 2, 3, 4, 5;
} {0 0 0 0 | 0 0 1 0 | 0 0 1 1 | 0 0 2 0 | 0 0 2 2 | 0 1 0 0 | 0 1 1 0 | 0 1 1 1 | 0 1 2 0 | 0 1 2 2 | 0 2 0 0 | 0 2 1 0 | 0 2 1 1 | 0 2 2 0 | 0 2 2 2 | 1 0 0 0 | 1 0 0 1 | 1 0 1 1 | 1 0 2 1 | 1 0 2 2 | 1 1 0 0 | 1 1 0 1 | 1 1 1 1 | 1 1 2 1 | 1 1 2 2 | 1 2 0 0 | 1 2 0 1 | 1 2 1 1 | 1 2 2 1 | 1 2 2 2 | 2 0 0 0 | 2 0 0 2 | 2 0 1 1 | 2 0 1 2 | 2 0 2 2 | 2 1 0 0 | 2 1 0 2 | 2 1 1 1 | 2 1 1 2 | 2 1 2 2 | 2 2 0 0 | 2 2 0 2 | 2 2 1 1 | 2 2 1 2 | 2 2 2 2 |}

do_execsql_test 400 {
  CREATE TABLE t4(a,b,c,d,e,f,g,h,i,j);
  INSERT INTO t4 VALUES(0,1,2,3,4,5,6,7,8,9);
  INSERT INTO t4 SELECT * FROM t4;
  INSERT INTO t4 SELECT * FROM t4;
  CREATE INDEX t4x ON t4(c,d,e);
  SELECT DISTINCT a,b,c FROM t4 WHERE a=0 AND b=1;
} {0 1 2}
do_execsql_test 410 {
  SELECT DISTINCT a,b,c,d FROM t4 WHERE a=0 AND b=1;
} {0 1 2 3}
do_execsql_test 411 {
  SELECT DISTINCT d,a,b,c FROM t4 WHERE a=0 AND b=1;
} {3 0 1 2}
do_execsql_test 420 {
  SELECT DISTINCT a,b,c,d,e FROM t4 WHERE a=0 AND b=1;
} {0 1 2 3 4}
do_execsql_test 430 {
  SELECT DISTINCT a,b,c,d,e,f FROM t4 WHERE a=0 AND b=1;
} {0 1 2 3 4 5}

do_execsql_test 500 {
  CREATE TABLE t5(a INT, b INT);
  CREATE UNIQUE INDEX t5x ON t5(a+b);
  INSERT INTO t5(a,b) VALUES(0,0),(1,0),(1,1),(0,3);
  CREATE TEMP TABLE out AS SELECT DISTINCT a+b FROM t5;
  SELECT * FROM out ORDER BY 1;
} {0 1 2 3}

do_execsql_test 600 {
  CREATE TABLE t6a(x INTEGER PRIMARY KEY);
  INSERT INTO t6a VALUES(1);
  CREATE TABLE t6b(y INTEGER PRIMARY KEY);
  INSERT INTO t6b VALUES(2),(3);
  SELECT DISTINCT x, x FROM t6a, t6b;
} {1 1}

do_execsql_test 700 {
  CREATE TABLE t7(a, b, c);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE (i+1)<200
  )
  INSERT INTO t7 SELECT i/100, i/50, i FROM s;
}
do_execsql_test 710 {
  SELECT DISTINCT a, b FROM t7;
} {
  0 0    0 1
  1 2    1 3
}
do_execsql_test 720 {
  SELECT DISTINCT a, b+1 FROM t7;
} {
  0 1    0 2
  1 3    1 4
}
do_execsql_test 730 {
  CREATE INDEX i7 ON t7(a, b+1);
  ANALYZE;
  SELECT DISTINCT a, b+1 FROM t7;
} {
  0 1    0 2
  1 3    1 4
}

do_execsql_test 800 {
  CREATE TABLE t8(a, b, c);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE (i+1)<100
  )
  INSERT INTO t8 SELECT i/40, i/20, i/40 FROM s;
}

do_execsql_test 820 {
  SELECT DISTINCT a, b, c FROM t8;
} {
  0 0 0    0 1 0
  1 2 1    1 3 1
  2 4 2
}

do_execsql_test 820 {
  SELECT DISTINCT a, b, c FROM t8 WHERE b=3;
} {1 3 1}

do_execsql_test 830 {
  CREATE INDEX i8 ON t8(a, c);
  ANALYZE;
  SELECT DISTINCT a, b, c FROM t8 WHERE b=3;
} {1 3 1}

do_execsql_test 900 {
  CREATE TABLE t9(v);
  INSERT INTO t9 VALUES 
    ('abcd'), ('Abcd'), ('aBcd'), ('ABcd'), ('abCd'), ('AbCd'), ('aBCd'), 
    ('ABCd'), ('abcD'), ('AbcD'), ('aBcD'), ('ABcD'), ('abCD'), ('AbCD'), 
    ('aBCD'), ('ABCD'),
    ('wxyz'), ('Wxyz'), ('wXyz'), ('WXyz'), ('wxYz'), ('WxYz'), ('wXYz'), 
    ('WXYz'), ('wxyZ'), ('WxyZ'), ('wXyZ'), ('WXyZ'), ('wxYZ'), ('WxYZ'), 
    ('wXYZ'), ('WXYZ');
}

do_execsql_test 910 {
  SELECT DISTINCT v COLLATE NOCASE, v FROM t9 ORDER BY +v;
} {
  ABCD ABCD ABCd ABCd ABcD ABcD ABcd ABcd AbCD
  AbCD AbCd AbCd AbcD AbcD Abcd Abcd
  WXYZ WXYZ WXYz WXYz WXyZ WXyZ WXyz WXyz WxYZ
  WxYZ WxYz WxYz WxyZ WxyZ Wxyz Wxyz
  aBCD aBCD aBCd aBCd aBcD aBcD aBcd aBcd abCD
  abCD abCd abCd abcD abcD abcd abcd
  wXYZ wXYZ wXYz wXYz wXyZ wXyZ wXyz wXyz wxYZ
  wxYZ wxYz wxYz wxyZ wxyZ wxyz wxyz
}

do_execsql_test 920 {
  CREATE INDEX i9 ON t9(v COLLATE NOCASE, v);
  ANALYZE;

  SELECT DISTINCT v COLLATE NOCASE, v FROM t9 ORDER BY +v;
} {
  ABCD ABCD ABCd ABCd ABcD ABcD ABcd ABcd AbCD
  AbCD AbCd AbCd AbcD AbcD Abcd Abcd
  WXYZ WXYZ WXYz WXYz WXyZ WXyZ WXyz WXyz WxYZ
  WxYZ WxYz WxYz WxyZ WxyZ Wxyz Wxyz
  aBCD aBCD aBCd aBCd aBcD aBcD aBcd aBcd abCD
  abCD abCd abCd abcD abcD abcd abcd
  wXYZ wXYZ wXYz wXYz wXyZ wXyZ wXyz wXyz wxYZ
  wxYZ wxYz wxYz wxyZ wxyZ wxyz wxyz
}


finish_test
Changes to test/fkey5.test.
384
385
386
387
388
389
390



































391
392
  PRAGMA foreign_key_check(k2);
} {}
do_execsql_test 9.4 {
  INSERT INTO k2 VALUES('six', 'seven');
  PRAGMA foreign_key_check(k2);
} {k2 3 s1 0}





































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
  PRAGMA foreign_key_check(k2);
} {}
do_execsql_test 9.4 {
  INSERT INTO k2 VALUES('six', 'seven');
  PRAGMA foreign_key_check(k2);
} {k2 3 s1 0}

#-------------------------------------------------------------------------
# Test using a WITHOUT ROWID table as the child table with an INTEGER 
# PRIMARY KEY as the parent key.
#
reset_db
do_execsql_test 10.1 {
  CREATE TABLE p30 (id INTEGER PRIMARY KEY);
  CREATE TABLE IF NOT EXISTS c30 (
      line INTEGER, 
      master REFERENCES p30(id), 
      PRIMARY KEY(master)
  ) WITHOUT ROWID;

  INSERT INTO p30 (id) VALUES (1);
  INSERT INTO c30 (master, line)  VALUES (1, 999);
}
do_execsql_test 10.2 {
  PRAGMA foreign_key_check;
}
do_execsql_test 10.3 {
  INSERT INTO c30 VALUES(45, 45);
  PRAGMA foreign_key_check;
} {c30 {} p30 0}

#-------------------------------------------------------------------------
# Test "foreign key mismatch" errors.
#
reset_db
do_execsql_test 11.0 {
  CREATE TABLE tt(y);
  CREATE TABLE c11(x REFERENCES tt(y));
}
do_catchsql_test 11.1 {
  PRAGMA foreign_key_check;
} {1 {foreign key mismatch - "c11" referencing "tt"}}

finish_test
Changes to test/fts3aa.test.
239
240
241
242
243
244
245






246
247
do_execsql_test 8.4 {
  SELECT docid FROM t0 WHERE t0 MATCH 'abc';
} {6 5}
do_execsql_test 8.5 {
  SELECT docid FROM t0 WHERE t0 MATCH '"abc abc"';
} {}








finish_test







>
>
>
>
>
>


239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
do_execsql_test 8.4 {
  SELECT docid FROM t0 WHERE t0 MATCH 'abc';
} {6 5}
do_execsql_test 8.5 {
  SELECT docid FROM t0 WHERE t0 MATCH '"abc abc"';
} {}

do_execsql_test 9.1 {
  CREATE VIRTUAL TABLE t9 USING fts4(a, "", '---');
}
do_execsql_test 9.2 {
  CREATE VIRTUAL TABLE t10 USING fts3(<, b, c);
}

finish_test
Added test/fts3corrupt3.test.


































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# 2010 October 27
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# Test that the FTS3 extension does not crash when it encounters a
# corrupt data structure on disk.
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If SQLITE_ENABLE_FTS3 is not defined, omit this file.
ifcapable !fts3 { finish_test ; return }

set ::testprefix fts3corrupt3

#-------------------------------------------------------------------------
# Test that fts3 does not choke on an oversized varint.
#
do_execsql_test 1.0 {
  PRAGMA page_size = 512;
  CREATE VIRTUAL TABLE t1 USING fts3;
  BEGIN;
    INSERT INTO t1 VALUES('one');
    INSERT INTO t1 VALUES('one');
    INSERT INTO t1 VALUES('one');
  COMMIT;
}
do_execsql_test 1.1 {
  SELECT quote(root) from t1_segdir;
} {X'00036F6E6509010200010200010200'}
do_execsql_test 1.2 {
  UPDATE t1_segdir SET root = X'00036F6E650EFFFFFFFFFFFFFFFFFFFFFFFF0200';
}
do_catchsql_test 1.3 {
  SELECT rowid FROM t1 WHERE t1 MATCH 'one'
} {0 -1}

#-------------------------------------------------------------------------
# Interior node with the prefix or suffix count of an entry set to a
# negative value.
#
set doc1 [string repeat "x " 600]
set doc2 [string repeat "y " 600]
set doc3 [string repeat "z " 600]

do_execsql_test 2.0 {
  CREATE VIRTUAL TABLE t2 USING fts3;
  BEGIN;
    INSERT INTO t2 VALUES($doc1);
    INSERT INTO t2 VALUES($doc2);
    INSERT INTO t2 VALUES($doc3);
  COMMIT;
}
do_execsql_test 2.1 {
  SELECT quote(root) from t2_segdir;
} {X'0101017900017A'}



finish_test
Changes to test/fts3fault.test.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
source $testdir/tester.tcl

set ::testprefix fts3fault

# If SQLITE_ENABLE_FTS3 is not defined, omit this file.
ifcapable !fts3 { finish_test ; return }

if 0 {

# Test error handling in the sqlite3Fts3Init() function. This is the 
# function that registers the FTS3 module and various support functions
# with SQLite.
#
do_faultsim_test 1 -body { 
  sqlite3 db test.db 
  expr 0







<
<







14
15
16
17
18
19
20


21
22
23
24
25
26
27
source $testdir/tester.tcl

set ::testprefix fts3fault

# If SQLITE_ENABLE_FTS3 is not defined, omit this file.
ifcapable !fts3 { finish_test ; return }



# Test error handling in the sqlite3Fts3Init() function. This is the 
# function that registers the FTS3 module and various support functions
# with SQLite.
#
do_faultsim_test 1 -body { 
  sqlite3 db test.db 
  expr 0
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
} -test {
  faultsim_test_result {1 {unrecognized parameter: matchnfo=fts3}} \
                       {1 {vtable constructor failed: t1}} \
                       {1 {SQL logic error or missing database}}
}


}

proc mit {blob} {
  set scan(littleEndian) i*
  set scan(bigEndian) I*
  binary scan $blob $scan($::tcl_platform(byteOrder)) r
  return $r
}








<
<







154
155
156
157
158
159
160


161
162
163
164
165
166
167
} -test {
  faultsim_test_result {1 {unrecognized parameter: matchnfo=fts3}} \
                       {1 {vtable constructor failed: t1}} \
                       {1 {SQL logic error or missing database}}
}




proc mit {blob} {
  set scan(littleEndian) i*
  set scan(bigEndian) I*
  binary scan $blob $scan($::tcl_platform(byteOrder)) r
  return $r
}

229
230
231
232
233
234
235
236








237
do_faultsim_test 9.1 -prep {
  faultsim_restore_and_reopen
} -body {
  execsql { SELECT offsets(t9) FROM t9 WHERE t9 MATCH 'to*' }
} -test {
  faultsim_test_result {0 {{0 0 20 39 0 0 64 2}}}
}









finish_test








>
>
>
>
>
>
>
>

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
do_faultsim_test 9.1 -prep {
  faultsim_restore_and_reopen
} -body {
  execsql { SELECT offsets(t9) FROM t9 WHERE t9 MATCH 'to*' }
} -test {
  faultsim_test_result {0 {{0 0 20 39 0 0 64 2}}}
}

do_faultsim_test 10.1 -prep {
  faultsim_delete_and_reopen
} -body {
  execsql { CREATE VIRTUAL TABLE t1 USING fts4(a, b, languageid=d) }
} -test {
  faultsim_test_result {0 {}}
}

finish_test
Changes to test/fts3fault2.test.
169
170
171
172
173
174
175
176






































































177


  faultsim_restore_and_reopen
  db eval {SELECT * FROM sqlite_master}
} -body {
  execsql { SELECT docid FROM t6 WHERE t6 MATCH '"a* b"' }
} -test {
  faultsim_test_result {0 -1}
}







































































finish_test










>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  faultsim_restore_and_reopen
  db eval {SELECT * FROM sqlite_master}
} -body {
  execsql { SELECT docid FROM t6 WHERE t6 MATCH '"a* b"' }
} -test {
  faultsim_test_result {0 -1}
}

#-------------------------------------------------------------------------
# Inject faults into a query for an N-byte prefix that uses a prefix=N+1
# index.
reset_db
do_execsql_test 7.0 {
  CREATE VIRTUAL TABLE t7 USING fts4(x,prefix=2);
  INSERT INTO t7 VALUES('the quick brown fox');
  INSERT INTO t7 VALUES('jumped over the');
  INSERT INTO t7 VALUES('lazy dog');
}
do_faultsim_test 7.1 -faults oom* -body {
  execsql { SELECT docid FROM t7 WHERE t7 MATCH 't*' }
} -test {
  faultsim_test_result {0 {1 2}}
}

#-------------------------------------------------------------------------
# Inject faults into a opening an existing fts3 table that has been 
# upgraded to add an %_stat table.
#
reset_db
do_execsql_test 8.0 {
  CREATE VIRTUAL TABLE t8 USING fts3;
  INSERT INTO t8 VALUES('the quick brown fox');
  INSERT INTO t8 VALUES('jumped over the');
  INSERT INTO t8 VALUES('lazy dog');
  INSERT INTO t8(t8) VALUES('automerge=8');
  SELECT name FROM sqlite_master WHERE name LIKE 't8%';
} {
  t8 t8_content t8_segments t8_segdir t8_stat
}
faultsim_save_and_close

do_faultsim_test 8.1 -faults oom* -prep {
  faultsim_restore_and_reopen
} -body {
  execsql { INSERT INTO t8 VALUES('one two three') }
} -test {
  faultsim_test_result {0 {}}
}

do_faultsim_test 8.2 -faults oom* -prep {
  faultsim_restore_and_reopen
} -body {
  execsql { ALTER TABLE t8 RENAME TO t8ii }
} -test {
  faultsim_test_result {0 {}}
}

#-------------------------------------------------------------------------
reset_db
set chunkconfig [fts3_configure_incr_load 1 1]
do_execsql_test 9.0 {
  PRAGMA page_size = 512;
  CREATE VIRTUAL TABLE t9 USING fts3;
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50
  )
  INSERT INTO t9 SELECT 'one two three' FROM s;
}

do_faultsim_test 8.2 -faults io* -body {
  execsql { SELECT count(*) FROM t9 WHERE t9 MATCH '"one two three"' }
} -test {
  faultsim_test_result {0 50}
}

eval fts3_configure_incr_load $chunkconfig


finish_test


Added test/fts3misc.test.








































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# 2017 March 22
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#*************************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the FTS3 module.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix fts3misc

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}

#-------------------------------------------------------------------------
# A self-join.
#
do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING fts3(a, b);
  INSERT INTO t1 VALUES('one', 'i');
  INSERT INTO t1 VALUES('one', 'ii');
  INSERT INTO t1 VALUES('two', 'i');
  INSERT INTO t1 VALUES('two', 'ii');
}

do_execsql_test 1.1 {
  SELECT a.a, b.b FROM t1 a, t1 b WHERE a.t1 MATCH 'two' AND b.t1 MATCH 'i'
} {two i two i two i two i}

#-------------------------------------------------------------------------
# FTS tables with 128 or more columns.
#
proc v1 {v} {
  set vector [list a b c d e f g h]
  set res [list]
  for {set i 0} {$i<8} {incr i} {
    if {$v & (1 << $i)} { lappend res [lindex $vector $i] }
  }
  set res
}
proc v2 {v} {
  set vector [list d e f g h i j k]
  set res [list]
  for {set i 0} {$i<8} {incr i} {
    if {$v & (1 << $i)} { lappend res [lindex $vector $i] }
  }
  set res
}
db func v1 v1
db func v2 v2

do_test 2.0 {
  set cols [list]
  for {set i 0} {$i<200} {incr i} {
    lappend cols "c$i"
  }
  execsql "CREATE VIRTUAL TABLE t2 USING fts3([join $cols ,])"
  execsql {
    WITH data(i) AS (
      SELECT 1 UNION ALL SELECT i+1 FROM data WHERE i<200
    )
    INSERT INTO t2(c198, c199) SELECT v1(i), v2(i) FROM data;
  }
} {}
do_execsql_test 2.1 {
  SELECT rowid FROM t2 WHERE t2 MATCH '"a b c"'
} {
  7 15 23 31 39 47 55 63 71 79 87 95 103 111 
  119 127 135 143 151 159 167 175 183 191 199
}
do_execsql_test 2.2 {
  SELECT rowid FROM t2 WHERE t2 MATCH '"g h i"'
} {
  56 57 58 59 60 61 62 63 120 121 122 123 124 
  125 126 127 184 185 186 187 188 189 190 191
}
do_execsql_test 2.3 {
  SELECT rowid FROM t2 WHERE t2 MATCH '"i h"'
} {
}
do_execsql_test 2.4 {
  SELECT rowid FROM t2 WHERE t2 MATCH '"f e"'
} {
}
do_execsql_test 2.5 {
  SELECT rowid FROM t2 WHERE t2 MATCH '"e f"'
} {
  6 7 14 15 22 23 30 31 38 39 46 47 48 49 50 51 52 53 54 55 56 
  57 58 59 60 61 62 63 70 71 78 79 86 87 94 95 102 103 110 
  111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  134 135 142 143 150 151 158 159 166 167 174 175 176 177 178 179 180 
  181 182 183 184 185 186 187 188 189 190 191 198 199
}

#-------------------------------------------------------------------------
# Range constraints on the docid using non-integer values.
#
do_execsql_test 2.6 {
  SELECT rowid FROM t2 WHERE t2 MATCH 'e' AND rowid BETWEEN NULL AND 45;
} {}
do_execsql_test 2.7 {
  SELECT rowid FROM t2 WHERE t2 MATCH 'e' AND rowid BETWEEN 11.5 AND 48.2;
} {
  14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
  29 30 31 34 35 38 39 42 43 46 47 48
}
do_execsql_test 2.8 {
  SELECT rowid FROM t2 WHERE t2 MATCH 'e' AND rowid BETWEEN '11.5' AND '48.2';
} {
  14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
  29 30 31 34 35 38 39 42 43 46 47 48
}

#-------------------------------------------------------------------------
# Phrase query tests. 
#
do_execsql_test 3.1.1 {
  CREATE VIRTUAL TABLE t3 USING fts3;
  INSERT INTO t3 VALUES('a b c');
  INSERT INTO t3 VALUES('d e f');
  INSERT INTO t3 VALUES('a b d');
  INSERT INTO t3 VALUES('1 2 3 4 5 6 7 8 9 10 11');
}
do_execsql_test 3.1.2 {
  SELECT * FROM t3 WHERE t3 MATCH '"a b x y"' ORDER BY docid DESC
}
do_execsql_test 3.1.3 {
  SELECT * FROM t3 WHERE t3 MATCH '"a b c" OR "a b x y"' ORDER BY docid DESC
} {{a b c}}
do_execsql_test 3.1.4 {
  SELECT * FROM t3 WHERE t3 MATCH '"a* b* x* a*"'
}
do_execsql_test 3.1.5 {
  SELECT rowid FROM t3 WHERE t3 MATCH '"2 3 4 5 6 7 8 9"'
} {4}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 4.0 {
  PRAGMA page_size = 512;
  CREATE VIRTUAL TABLE t4 USING fts4;
  WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<8000 )
  INSERT INTO t4 SELECT 'a b c a b c a b c' FROM s;
}
do_execsql_test 4.1 {
  SELECT count(*) FROM t4 WHERE t4 MATCH '"a b c" OR "c a b"'
} {8000}
do_execsql_test 4.2 {
  SELECT quote(value) from t4_stat where id=0
} {X'C03EC0B204C0A608'}
do_execsql_test 4.3 {
  UPDATE t4_stat SET value = X'C03EC0B204C0A60800' WHERE id=0;
}
do_catchsql_test 4.4 {
  SELECT count(*) FROM t4 WHERE t4 MATCH '"a b c" OR "c a b"'
} {1 {database disk image is malformed}}
do_execsql_test 4.5 {
  UPDATE t4_stat SET value = X'00C03EC0B204C0A608' WHERE id=0;
}
do_catchsql_test 4.6 {
  SELECT count(*) FROM t4 WHERE t4 MATCH '"a b c" OR "c a b"'
} {1 {database disk image is malformed}}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 5.0 {
  CREATE VIRTUAL TABLE t5 USING fts4;
  INSERT INTO t5 VALUES('a x x x x b x x x x c');
  INSERT INTO t5 VALUES('a x x x x b x x x x c');
  INSERT INTO t5 VALUES('a x x x x b x x x x c');
}
do_execsql_test 5.1 {
  SELECT rowid FROM t5 WHERE t5 MATCH 'a NEAR/4 b NEAR/4 c'
} {1 2 3}
do_execsql_test 5.2 {
  SELECT rowid FROM t5 WHERE t5 MATCH 'a NEAR/3 b NEAR/4 c'
} {}
do_execsql_test 5.3 {
  SELECT rowid FROM t5 WHERE t5 MATCH 'a NEAR/4 b NEAR/3 c'
} {}
do_execsql_test 5.4 {
  SELECT rowid FROM t5 WHERE t5 MATCH 'y NEAR/4 b NEAR/4 c'
} {}
do_execsql_test 5.5 {
  SELECT rowid FROM t5 WHERE t5 MATCH 'x OR a NEAR/3 b NEAR/3 c'
} {1 2 3}
do_execsql_test 5.5 {
  SELECT rowid FROM t5 WHERE t5 MATCH 'x OR y NEAR/3 b NEAR/3 c'
} {1 2 3}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 6.0 {
  CREATE VIRTUAL TABLE t6 USING fts4;

  BEGIN;
  WITH s(i) AS (SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50000)
    INSERT INTO t6 SELECT 'x x x x x x x x x x x' FROM s;

  INSERT INTO t6 VALUES('x x x x x x x x x x x A');
  INSERT INTO t6 VALUES('x x x x x x x x x x x B');
  INSERT INTO t6 VALUES('x x x x x x x x x x x A');
  INSERT INTO t6 VALUES('x x x x x x x x x x x B');

  WITH s(i) AS (SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<50000)
    INSERT INTO t6 SELECT 'x x x x x x x x x x x' FROM s;
  COMMIT;
}
breakpoint
do_execsql_test 6.1 {
  SELECT rowid FROM t6 WHERE t6 MATCH 'b OR "x a"'
} {50001 50002 50003 50004}


finish_test
Changes to test/fts4langid.test.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#*************************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the languageid=xxx FTS4 option.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix fts4content

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}








<







10
11
12
13
14
15
16

17
18
19
20
21
22
23
#*************************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the languageid=xxx FTS4 option.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}

336
337
338
339
340
341
342







343
344
345
346
347
348
349
do_test_query1 3.3.2 {"zero one two"} { rowid_list "zero one two" }
do_test_query1 3.3.3 {zero one two} {
  and_merge_lists [rowid_list zero] [rowid_list one] [rowid_list two]
}
do_test_query1 3.3.4 {"zero one" OR "one two"} {
  or_merge_lists [rowid_list "zero one"] [rowid_list "one two"]
}








#-------------------------------------------------------------------------
# Test cases 4.*
#
proc build_multilingual_db_2 {db} {
  $db eval {
    CREATE VIRTUAL TABLE t4 USING fts4(







>
>
>
>
>
>
>







335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
do_test_query1 3.3.2 {"zero one two"} { rowid_list "zero one two" }
do_test_query1 3.3.3 {zero one two} {
  and_merge_lists [rowid_list zero] [rowid_list one] [rowid_list two]
}
do_test_query1 3.3.4 {"zero one" OR "one two"} {
  or_merge_lists [rowid_list "zero one"] [rowid_list "one two"]
}

do_execsql_test 3.4 {
  CREATE TABLE t8c(a, b);
  CREATE VIRTUAL TABLE t8 USING fts4(content=t8c, languageid=langid);
  INSERT INTO t8(docid, a, b) VALUES(-1, 'one two three', 'x y z');
  SELECT docid FROM t8 WHERE t8 MATCH 'one x' AND langid=0
} {-1}

#-------------------------------------------------------------------------
# Test cases 4.*
#
proc build_multilingual_db_2 {db} {
  $db eval {
    CREATE VIRTUAL TABLE t4 USING fts4(
Changes to test/in5.test.
232
233
234
235
236
237
238












239
240
do_execsql_test 8.3 {
  INSERT INTO n1 VALUES(1, NULL), (2, NULL), (3, NULL);
  SELECT count(*) FROM n1 WHERE a IN (1, 2, 3)
} 3
do_execsql_test 8.4 {
  SELECT count(*) FROM n1 WHERE a IN (SELECT +a FROM n1)
} 3













finish_test







>
>
>
>
>
>
>
>
>
>
>
>


232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
do_execsql_test 8.3 {
  INSERT INTO n1 VALUES(1, NULL), (2, NULL), (3, NULL);
  SELECT count(*) FROM n1 WHERE a IN (1, 2, 3)
} 3
do_execsql_test 8.4 {
  SELECT count(*) FROM n1 WHERE a IN (SELECT +a FROM n1)
} 3

#-------------------------------------------------------------------------
# Test that ticket 61fe97454c is fixed.
#
do_execsql_test 9.0 {
  CREATE TABLE t9(a INTEGER PRIMARY KEY);
  INSERT INTO t9 VALUES (44), (45);
}
do_execsql_test 9.1 {
  SELECT * FROM t9 WHERE a IN (44, 45, 44, 45)
} {44 45}


finish_test
Added test/indexexpr2.test.
























































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# 2017 April 11
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix indexexpr2

do_execsql_test 1 {
  CREATE TABLE t1(a, b);
  INSERT INTO t1 VALUES(1, 'one');
  INSERT INTO t1 VALUES(2, 'two');
  INSERT INTO t1 VALUES(3, 'three');

  CREATE INDEX i1 ON t1(b || 'x');
}

do_execsql_test 1.1 {
  SELECT 'TWOX' == (b || 'x') FROM t1 WHERE (b || 'x')>'onex'
} {0 0}

do_execsql_test 1.2 {
  SELECT 'TWOX' == (b || 'x') COLLATE nocase  FROM t1 WHERE (b || 'x')>'onex'
} {0 1}

do_execsql_test 2.0 {
  CREATE INDEX i2 ON t1(a+1);
}

do_execsql_test 2.1 {
  SELECT a+1, quote(a+1) FROM t1 ORDER BY 1;
} {2 2 3 3 4 4}

finish_test

Changes to test/json101.test.
351
352
353
354
355
356
357









358
359
360
361
362
363
364
  INSERT INTO t8(a) VALUES('abc' || char(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35) || 'xyz');
  UPDATE t8 SET b=json_array(a);
  SELECT b FROM t8;
} {{["abc\u0001\u0002\u0003\u0004\u0005\u0006\u0007\b\t\n\u000b\f\r\u000e\u000f\u0010\u0011\u0012\u0013\u0014\u0015\u0016\u0017\u0018\u0019\u001a\u001b\u001c\u001d\u001e\u001f !\"#xyz"]}}
do_execsql_test json-8.2 {
  SELECT a=json_extract(b,'$[0]') FROM t8;
} {1}










# The json_quote() function transforms an SQL value into a JSON value.
# String values are quoted and interior quotes are escaped.  NULL values
# are rendered as the unquoted string "null".
#
do_execsql_test json-9.1 {
  SELECT json_quote('abc"xyz');







>
>
>
>
>
>
>
>
>







351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
  INSERT INTO t8(a) VALUES('abc' || char(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35) || 'xyz');
  UPDATE t8 SET b=json_array(a);
  SELECT b FROM t8;
} {{["abc\u0001\u0002\u0003\u0004\u0005\u0006\u0007\b\t\n\u000b\f\r\u000e\u000f\u0010\u0011\u0012\u0013\u0014\u0015\u0016\u0017\u0018\u0019\u001a\u001b\u001c\u001d\u001e\u001f !\"#xyz"]}}
do_execsql_test json-8.2 {
  SELECT a=json_extract(b,'$[0]') FROM t8;
} {1}

# 2017-04-12.  Regression reported on the mailing list by Rolf Ade
#
do_execsql_test json-8.3 {
  SELECT json_valid(char(0x22,0xe4,0x22));
} {1}
do_execsql_test json-8.4 {
  SELECT unicode(json_extract(char(0x22,228,0x22),'$'));
} {228}

# The json_quote() function transforms an SQL value into a JSON value.
# String values are quoted and interior quotes are escaped.  NULL values
# are rendered as the unquoted string "null".
#
do_execsql_test json-9.1 {
  SELECT json_quote('abc"xyz');
684
685
686
687
688
689
690



691





















692
do_execsql_test json-10.94 {
  SELECT json_valid('" \} "');
} {0}
do_execsql_test json-10.95 {
  SELECT json_valid('" \~ "');
} {0}


























finish_test







>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
do_execsql_test json-10.94 {
  SELECT json_valid('" \} "');
} {0}
do_execsql_test json-10.95 {
  SELECT json_valid('" \~ "');
} {0}

#--------------------------------------------------------------------------
# 2017-04-11.  https://www.sqlite.org/src/info/981329adeef51011
# Stack overflow on deeply nested JSON.
#
# The following tests confirm that deeply nested JSON is considered invalid.
#
do_execsql_test json-11.0 {
  /* Shallow enough to be parsed */
  SELECT json_valid(printf('%.2000c0%.2000c','[',']'));
} {1}
do_execsql_test json-11.1 {
  /* Too deep by one */
  SELECT json_valid(printf('%.2001c0%.2001c','[',']'));
} {0}
do_execsql_test json-11.2 {
  /* Shallow enough to be parsed { */
  SELECT json_valid(replace(printf('%.2000c0%.2000c','[','}'),'[','{"a":'));
  /* } */
} {1}
do_execsql_test json-11.3 {
  /* Too deep by one { */
  SELECT json_valid(replace(printf('%.2001c0%.2001c','[','}'),'[','{"a":'));
  /* } */
} {0}

finish_test
Changes to test/json102.test.
314
315
316
317
318
319
320


















321
322
do_execsql_test json102-1406 { SELECT json_valid('{"x":-0.1}') } 1
do_execsql_test json102-1407 { SELECT json_valid('{"x":0.0000}') } 1
do_execsql_test json102-1408 { SELECT json_valid('{"x":-0.0000}') } 1
do_execsql_test json102-1409 { SELECT json_valid('{"x":01.5}') } 0
do_execsql_test json102-1410 { SELECT json_valid('{"x":-01.5}') } 0
do_execsql_test json102-1411 { SELECT json_valid('{"x":00}') } 0
do_execsql_test json102-1412 { SELECT json_valid('{"x":-00}') } 0



















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
do_execsql_test json102-1406 { SELECT json_valid('{"x":-0.1}') } 1
do_execsql_test json102-1407 { SELECT json_valid('{"x":0.0000}') } 1
do_execsql_test json102-1408 { SELECT json_valid('{"x":-0.0000}') } 1
do_execsql_test json102-1409 { SELECT json_valid('{"x":01.5}') } 0
do_execsql_test json102-1410 { SELECT json_valid('{"x":-01.5}') } 0
do_execsql_test json102-1411 { SELECT json_valid('{"x":00}') } 0
do_execsql_test json102-1412 { SELECT json_valid('{"x":-00}') } 0

#------------------------------------------------------------------------
# 2017-04-10 ticket 6c9b5514077fed34551f98e64c09a10dc2fc8e16
# JSON extension accepts strings containing control characters.
#
# The JSON spec requires that all control characters be escaped.
#
do_execsql_test json102-1500 {
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<0x20)
  SELECT x FROM c WHERE json_valid(printf('{"a":"x%sz"}', char(x))) ORDER BY x;
} {32}

# All control characters are escaped
#
do_execsql_test json102-1501 {
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<0x1f)
  SELECT sum(json_valid(json_quote('a'||char(x)||'z'))) FROM c ORDER BY x;
} {31}

finish_test
Changes to test/permutations.test.
261
262
263
264
265
266
267


268
269
270
271
272
273
274
  fts3offsets.test fts3prefix2.test fts3prefix.test fts3query.test
  fts3shared.test fts3snippet.test fts3sort.test fts3tok1.test
  fts3tok_err.test fts3varint.test fts4aa.test fts4check.test
  fts4content.test fts4docid.test fts4growth2.test fts4growth.test
  fts4incr.test fts4langid.test fts4lastrowid.test fts4merge2.test
  fts4merge4.test fts4merge.test fts4noti.test fts4onepass.test 
  fts4opt.test fts4unicode.test


}

test_suite "fts5" -prefix "" -description {
  All FTS5 tests.
} -files [glob -nocomplain $::testdir/../ext/fts5/test/*.test]

test_suite "fts5-light" -prefix "" -description {







>
>







261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
  fts3offsets.test fts3prefix2.test fts3prefix.test fts3query.test
  fts3shared.test fts3snippet.test fts3sort.test fts3tok1.test
  fts3tok_err.test fts3varint.test fts4aa.test fts4check.test
  fts4content.test fts4docid.test fts4growth2.test fts4growth.test
  fts4incr.test fts4langid.test fts4lastrowid.test fts4merge2.test
  fts4merge4.test fts4merge.test fts4noti.test fts4onepass.test 
  fts4opt.test fts4unicode.test
  fts3corrupt3.test
  fts3misc.test
}

test_suite "fts5" -prefix "" -description {
  All FTS5 tests.
} -files [glob -nocomplain $::testdir/../ext/fts5/test/*.test]

test_suite "fts5-light" -prefix "" -description {
Changes to tool/addopcodes.tcl.
35
36
37
38
39
40
41

42
43
44
45
46
47
48
  AGG_FUNCTION
  AGG_COLUMN
  UMINUS
  UPLUS
  REGISTER
  VECTOR
  SELECT_COLUMN

  ASTERISK
  SPAN
  SPACE
  ILLEGAL
}
if {[lrange $extras end-1 end]!="SPACE ILLEGAL"} {
  error "SPACE and ILLEGAL must be the last two token codes and they\







>







35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
  AGG_FUNCTION
  AGG_COLUMN
  UMINUS
  UPLUS
  REGISTER
  VECTOR
  SELECT_COLUMN
  IF_NULL_ROW
  ASTERISK
  SPAN
  SPACE
  ILLEGAL
}
if {[lrange $extras end-1 end]!="SPACE ILLEGAL"} {
  error "SPACE and ILLEGAL must be the last two token codes and they\
Changes to tool/fuzzershell.c.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
static void StrAppend(Str *p, const char *z){
  sqlite3_uint64 n = strlen(z);
  if( p->n + n >= p->nAlloc ){
    char *zNew;
    sqlite3_uint64 nNew;
    if( p->oomErr ) return;
    nNew = p->nAlloc*2 + 100 + n;
    zNew = sqlite3_realloc(p->z, nNew);
    if( zNew==0 ){
      sqlite3_free(p->z);
      memset(p, 0, sizeof(*p));
      p->oomErr = 1;
      return;
    }
    p->z = zNew;
    p->nAlloc = nNew;
  }
  memcpy(p->z + p->n, z, n);
  p->n += n;
  p->z[p->n] = 0;
}

/* Return the current string content */
static char *StrStr(Str *p){
 return p->z;







|









|







246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
static void StrAppend(Str *p, const char *z){
  sqlite3_uint64 n = strlen(z);
  if( p->n + n >= p->nAlloc ){
    char *zNew;
    sqlite3_uint64 nNew;
    if( p->oomErr ) return;
    nNew = p->nAlloc*2 + 100 + n;
    zNew = sqlite3_realloc(p->z, (int)nNew);
    if( zNew==0 ){
      sqlite3_free(p->z);
      memset(p, 0, sizeof(*p));
      p->oomErr = 1;
      return;
    }
    p->z = zNew;
    p->nAlloc = nNew;
  }
  memcpy(p->z + p->n, z, (size_t)n);
  p->n += n;
  p->z[p->n] = 0;
}

/* Return the current string content */
static char *StrStr(Str *p){
 return p->z;
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

        /* If using an input database file and that database contains a table
        ** named "autoexec" with a column "sql", then replace the input SQL
        ** with the concatenated text of the autoexec table.  In this way,
        ** if the database file is the input being fuzzed, the SQL text is
        ** fuzzed at the same time. */
        if( sqlite3_table_column_metadata(db,0,"autoexec","sql",0,0,0,0,0)==0 ){
          sqlite3_stmt *pStmt;
          rc = sqlite3_prepare_v2(db, "SELECT sql FROM autoexec", -1, &pStmt, 0);
          if( rc==SQLITE_OK ){
            while( sqlite3_step(pStmt)==SQLITE_ROW ){
              StrAppend(&sql, (const char*)sqlite3_column_text(pStmt, 0));
              StrAppend(&sql, "\n");
            }
          }
          sqlite3_finalize(pStmt);
          zSql = StrStr(&sql);
        }

        g.bOomEnable = 1;
        if( verboseFlag ){
          zErrMsg = 0;
          rc = sqlite3_exec(db, zSql, execCallback, 0, &zErrMsg);







|
|

|
|



|







1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

        /* If using an input database file and that database contains a table
        ** named "autoexec" with a column "sql", then replace the input SQL
        ** with the concatenated text of the autoexec table.  In this way,
        ** if the database file is the input being fuzzed, the SQL text is
        ** fuzzed at the same time. */
        if( sqlite3_table_column_metadata(db,0,"autoexec","sql",0,0,0,0,0)==0 ){
          sqlite3_stmt *pStmt2;
          rc = sqlite3_prepare_v2(db,"SELECT sql FROM autoexec",-1,&pStmt2,0);
          if( rc==SQLITE_OK ){
            while( sqlite3_step(pStmt2)==SQLITE_ROW ){
              StrAppend(&sql, (const char*)sqlite3_column_text(pStmt2, 0));
              StrAppend(&sql, "\n");
            }
          }
          sqlite3_finalize(pStmt2);
          zSql = StrStr(&sql);
        }

        g.bOomEnable = 1;
        if( verboseFlag ){
          zErrMsg = 0;
          rc = sqlite3_exec(db, zSql, execCallback, 0, &zErrMsg);
Changes to tool/lemon.c.
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
struct lemon;
struct action;

static struct action *Action_new(void);
static struct action *Action_sort(struct action *);

/********** From the file "build.h" ************************************/
void FindRulePrecedences();
void FindFirstSets();
void FindStates();
void FindLinks();
void FindFollowSets();
void FindActions();

/********* From the file "configlist.h" *********************************/
void Configlist_init(void);
struct config *Configlist_add(struct rule *, int);
struct config *Configlist_addbasis(struct rule *, int);
void Configlist_closure(struct lemon *);
void Configlist_sort(void);







|
|
|
|
|
|







164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
struct lemon;
struct action;

static struct action *Action_new(void);
static struct action *Action_sort(struct action *);

/********** From the file "build.h" ************************************/
void FindRulePrecedences(struct lemon*);
void FindFirstSets(struct lemon*);
void FindStates(struct lemon*);
void FindLinks(struct lemon*);
void FindFollowSets(struct lemon*);
void FindActions(struct lemon*);

/********* From the file "configlist.h" *********************************/
void Configlist_init(void);
struct config *Configlist_add(struct rule *, int);
struct config *Configlist_addbasis(struct rule *, int);
void Configlist_closure(struct lemon *);
void Configlist_sort(void);
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/* Routines to manage the state table */

int Configcmp(const char *, const char *);
struct state *State_new(void);
void State_init(void);
int State_insert(struct state *, struct config *);
struct state *State_find(struct config *);
struct state **State_arrayof(/*  */);

/* Routines used for efficiency in Configlist_add */

void Configtable_init(void);
int Configtable_insert(struct config *);
struct config *Configtable_find(struct config *);
void Configtable_clear(int(*)(struct config *));







|







453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/* Routines to manage the state table */

int Configcmp(const char *, const char *);
struct state *State_new(void);
void State_init(void);
int State_insert(struct state *, struct config *);
struct state *State_find(struct config *);
struct state **State_arrayof(void);

/* Routines used for efficiency in Configlist_add */

void Configtable_init(void);
int Configtable_insert(struct config *);
struct config *Configtable_find(struct config *);
void Configtable_clear(int(*)(struct config *));
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
** value is then added to this initial offset to get an index X into the
** yy_action array. If the aAction[X].lookahead equals the value of the
** of the lookahead input, then the value of the action_number output is
** aAction[X].action.  If the lookaheads do not match then the
** default action for the state_number is returned.
**
** All actions associated with a single state_number are first entered
** into aLookahead[] using multiple calls to acttab_action().  Then the 
** actions for that single state_number are placed into the aAction[] 
** array with a single call to acttab_insert().  The acttab_insert() call
** also resets the aLookahead[] array in preparation for the next
** state number.
*/
struct lookahead_action {
  int lookahead;             /* Value of the lookahead token */
  int action;                /* Action to take on the given lookahead */







|
|







557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
** value is then added to this initial offset to get an index X into the
** yy_action array. If the aAction[X].lookahead equals the value of the
** of the lookahead input, then the value of the action_number output is
** aAction[X].action.  If the lookaheads do not match then the
** default action for the state_number is returned.
**
** All actions associated with a single state_number are first entered
** into aLookahead[] using multiple calls to acttab_action().  Then the
** actions for that single state_number are placed into the aAction[]
** array with a single call to acttab_insert().  The acttab_insert() call
** also resets the aLookahead[] array in preparation for the next
** state number.
*/
struct lookahead_action {
  int lookahead;             /* Value of the lookahead token */
  int action;                /* Action to take on the given lookahead */
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    fprintf(stderr,"Unable to allocate memory for a new acttab.");
    exit(1);
  }
  memset(p, 0, sizeof(*p));
  return p;
}

/* Add a new action to the current transaction set.  
**
** This routine is called once for each lookahead for a particular
** state.
*/
void acttab_action(acttab *p, int lookahead, int action){
  if( p->nLookahead>=p->nLookaheadAlloc ){
    p->nLookaheadAlloc += 25;







|







608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    fprintf(stderr,"Unable to allocate memory for a new acttab.");
    exit(1);
  }
  memset(p, 0, sizeof(*p));
  return p;
}

/* Add a new action to the current transaction set.
**
** This routine is called once for each lookahead for a particular
** state.
*/
void acttab_action(acttab *p, int lookahead, int action){
  if( p->nLookahead>=p->nLookaheadAlloc ){
    p->nLookaheadAlloc += 25;
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    }
    for(i=oldAlloc; i<p->nActionAlloc; i++){
      p->aAction[i].lookahead = -1;
      p->aAction[i].action = -1;
    }
  }

  /* Scan the existing action table looking for an offset that is a 
  ** duplicate of the current transaction set.  Fall out of the loop
  ** if and when the duplicate is found.
  **
  ** i is the index in p->aAction[] where p->mnLookahead is inserted.
  */
  for(i=p->nAction-1; i>=0; i--){
    if( p->aAction[i].lookahead==p->mnLookahead ){







|







670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    }
    for(i=oldAlloc; i<p->nActionAlloc; i++){
      p->aAction[i].lookahead = -1;
      p->aAction[i].action = -1;
    }
  }

  /* Scan the existing action table looking for an offset that is a
  ** duplicate of the current transaction set.  Fall out of the loop
  ** if and when the duplicate is found.
  **
  ** i is the index in p->aAction[] where p->mnLookahead is inserted.
  */
  for(i=p->nAction-1; i>=0; i--){
    if( p->aAction[i].lookahead==p->mnLookahead ){
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/********************** From the file "build.c" *****************************/
/*
** Routines to construction the finite state machine for the LEMON
** parser generator.
*/

/* Find a precedence symbol of every rule in the grammar.
** 
** Those rules which have a precedence symbol coded in the input
** grammar using the "[symbol]" construct will already have the
** rp->precsym field filled.  Other rules take as their precedence
** symbol the first RHS symbol with a defined precedence.  If there
** are not RHS symbols with a defined precedence, the precedence
** symbol field is left blank.
*/







|







748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/********************** From the file "build.c" *****************************/
/*
** Routines to construction the finite state machine for the LEMON
** parser generator.
*/

/* Find a precedence symbol of every rule in the grammar.
**
** Those rules which have a precedence symbol coded in the input
** grammar using the "[symbol]" construct will already have the
** rp->precsym field filled.  Other rules take as their precedence
** symbol the first RHS symbol with a defined precedence.  If there
** are not RHS symbols with a defined precedence, the precedence
** symbol field is left blank.
*/
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
  int change;

  for(i=0; i<lemp->nstate; i++){
    for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
      cfp->status = INCOMPLETE;
    }
  }
  
  do{
    progress = 0;
    for(i=0; i<lemp->nstate; i++){
      for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
        if( cfp->status==COMPLETE ) continue;
        for(plp=cfp->fplp; plp; plp=plp->next){
          change = SetUnion(plp->cfp->fws,cfp->fws);







|







1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
  int change;

  for(i=0; i<lemp->nstate; i++){
    for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
      cfp->status = INCOMPLETE;
    }
  }

  do{
    progress = 0;
    for(i=0; i<lemp->nstate; i++){
      for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
        if( cfp->status==COMPLETE ) continue;
        for(plp=cfp->fplp; plp; plp=plp->next){
          change = SetUnion(plp->cfp->fws,cfp->fws);
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
{
  int i,j;
  struct config *cfp;
  struct state *stp;
  struct symbol *sp;
  struct rule *rp;

  /* Add all of the reduce actions 
  ** A reduce action is added for each element of the followset of
  ** a configuration which has its dot at the extreme right.
  */
  for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
    stp = lemp->sorted[i];
    for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
      if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */







|







1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
{
  int i,j;
  struct config *cfp;
  struct state *stp;
  struct symbol *sp;
  struct rule *rp;

  /* Add all of the reduce actions
  ** A reduce action is added for each element of the followset of
  ** a configuration which has its dot at the extreme right.
  */
  for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
    stp = lemp->sorted[i];
    for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
      if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
      errcnt++;
    }else if( spx->prec>spy->prec ){
      apy->type = RD_RESOLVED;
    }else if( spx->prec<spy->prec ){
      apx->type = RD_RESOLVED;
    }
  }else{
    assert( 
      apx->type==SH_RESOLVED ||
      apx->type==RD_RESOLVED ||
      apx->type==SSCONFLICT ||
      apx->type==SRCONFLICT ||
      apx->type==RRCONFLICT ||
      apy->type==SH_RESOLVED ||
      apy->type==RD_RESOLVED ||







|







1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
      errcnt++;
    }else if( spx->prec>spy->prec ){
      apy->type = RD_RESOLVED;
    }else if( spx->prec<spy->prec ){
      apx->type = RD_RESOLVED;
    }
  }else{
    assert(
      apx->type==SH_RESOLVED ||
      apx->type==RD_RESOLVED ||
      apx->type==SSCONFLICT ||
      apx->type==SRCONFLICT ||
      apx->type==RRCONFLICT ||
      apy->type==SH_RESOLVED ||
      apy->type==RD_RESOLVED ||
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
static struct config *freelist = 0;      /* List of free configurations */
static struct config *current = 0;       /* Top of list of configurations */
static struct config **currentend = 0;   /* Last on list of configs */
static struct config *basis = 0;         /* Top of list of basis configs */
static struct config **basisend = 0;     /* End of list of basis configs */

/* Return a pointer to a new configuration */
PRIVATE struct config *newconfig(){
  struct config *newcfg;
  if( freelist==0 ){
    int i;
    int amt = 3;
    freelist = (struct config *)calloc( amt, sizeof(struct config) );
    if( freelist==0 ){
      fprintf(stderr,"Unable to allocate memory for a new configuration.");







|







1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
static struct config *freelist = 0;      /* List of free configurations */
static struct config *current = 0;       /* Top of list of configurations */
static struct config **currentend = 0;   /* Last on list of configs */
static struct config *basis = 0;         /* Top of list of basis configs */
static struct config **basisend = 0;     /* End of list of basis configs */

/* Return a pointer to a new configuration */
PRIVATE struct config *newconfig(void){
  struct config *newcfg;
  if( freelist==0 ){
    int i;
    int amt = 3;
    freelist = (struct config *)calloc( amt, sizeof(struct config) );
    if( freelist==0 ){
      fprintf(stderr,"Unable to allocate memory for a new configuration.");
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
PRIVATE void deleteconfig(struct config *old)
{
  old->next = freelist;
  freelist = old;
}

/* Initialized the configuration list builder */
void Configlist_init(){
  current = 0;
  currentend = &current;
  basis = 0;
  basisend = &basis;
  Configtable_init();
  return;
}

/* Initialized the configuration list builder */
void Configlist_reset(){
  current = 0;
  currentend = &current;
  basis = 0;
  basisend = &basis;
  Configtable_clear(0);
  return;
}







|









|







1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
PRIVATE void deleteconfig(struct config *old)
{
  old->next = freelist;
  freelist = old;
}

/* Initialized the configuration list builder */
void Configlist_init(void){
  current = 0;
  currentend = &current;
  basis = 0;
  basisend = &basis;
  Configtable_init();
  return;
}

/* Initialized the configuration list builder */
void Configlist_reset(void){
  current = 0;
  currentend = &current;
  basis = 0;
  basisend = &basis;
  Configtable_clear(0);
  return;
}
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
      }
    }
  }
  return;
}

/* Sort the configuration list */
void Configlist_sort(){
  current = (struct config*)msort((char*)current,(char**)&(current->next),
                                  Configcmp);
  currentend = 0;
  return;
}

/* Sort the basis configuration list */
void Configlist_sortbasis(){
  basis = (struct config*)msort((char*)current,(char**)&(current->bp),
                                Configcmp);
  basisend = 0;
  return;
}

/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_return(){
  struct config *old;
  old = current;
  current = 0;
  currentend = 0;
  return old;
}

/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_basis(){
  struct config *old;
  old = basis;
  basis = 0;
  basisend = 0;
  return old;
}








|







|








|









|







1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
      }
    }
  }
  return;
}

/* Sort the configuration list */
void Configlist_sort(void){
  current = (struct config*)msort((char*)current,(char**)&(current->next),
                                  Configcmp);
  currentend = 0;
  return;
}

/* Sort the basis configuration list */
void Configlist_sortbasis(void){
  basis = (struct config*)msort((char*)current,(char**)&(current->bp),
                                Configcmp);
  basisend = 0;
  return;
}

/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_return(void){
  struct config *old;
  old = current;
  current = 0;
  currentend = 0;
  return old;
}

/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_basis(void){
  struct config *old;
  old = basis;
  basis = 0;
  basisend = 0;
  return old;
}

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
/*
** Main program file for the LEMON parser generator.
*/

/* Report an out-of-memory condition and abort.  This function
** is used mostly by the "MemoryCheck" macro in struct.h
*/
void memory_error(){
  fprintf(stderr,"Out of memory.  Aborting...\n");
  exit(1);
}

static int nDefine = 0;      /* Number of -D options on the command line */
static char **azDefine = 0;  /* Name of the -D macros */








|







1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
/*
** Main program file for the LEMON parser generator.
*/

/* Report an out-of-memory condition and abort.  This function
** is used mostly by the "MemoryCheck" macro in struct.h
*/
void memory_error(void){
  fprintf(stderr,"Out of memory.  Aborting...\n");
  exit(1);
}

static int nDefine = 0;      /* Number of -D options on the command line */
static char **azDefine = 0;  /* Name of the -D macros */

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
  int exitcode;
  struct lemon lem;
  struct rule *rp;

  OptInit(argv,options,stderr);
  if( version ){
     printf("Lemon version 1.0\n");
     exit(0); 
  }
  if( OptNArgs()!=1 ){
    fprintf(stderr,"Exactly one filename argument is required.\n");
    exit(1);
  }
  memset(&lem, 0, sizeof(lem));
  lem.errorcnt = 0;







|







1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
  int exitcode;
  struct lemon lem;
  struct rule *rp;

  OptInit(argv,options,stderr);
  if( version ){
     printf("Lemon version 1.0\n");
     exit(0);
  }
  if( OptNArgs()!=1 ){
    fprintf(stderr,"Exactly one filename argument is required.\n");
    exit(1);
  }
  memset(&lem, 0, sizeof(lem));
  lem.errorcnt = 0;
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
    fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
    OptPrint();
    exit(1);
  }
  return 0;
}

int OptNArgs(){
  int cnt = 0;
  int dashdash = 0;
  int i;
  if( argv!=0 && argv[0]!=0 ){
    for(i=1; argv[i]; i++){
      if( dashdash || !ISOPT(argv[i]) ) cnt++;
      if( strcmp(argv[i],"--")==0 ) dashdash = 1;







|







2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
    fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
    OptPrint();
    exit(1);
  }
  return 0;
}

int OptNArgs(void){
  int cnt = 0;
  int dashdash = 0;
  int i;
  if( argv!=0 && argv[0]!=0 ){
    for(i=1; argv[i]; i++){
      if( dashdash || !ISOPT(argv[i]) ) cnt++;
      if( strcmp(argv[i],"--")==0 ) dashdash = 1;
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
void OptErr(int n)
{
  int i;
  i = argindex(n);
  if( i>=0 ) errline(i,0,errstream);
}

void OptPrint(){
  int i;
  int max, len;
  max = 0;
  for(i=0; op[i].label; i++){
    len = lemonStrlen(op[i].label) + 1;
    switch( op[i].type ){
      case OPT_FLAG:







|







2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
void OptErr(int n)
{
  int i;
  i = argindex(n);
  if( i>=0 ) errline(i,0,errstream);
}

void OptPrint(void){
  int i;
  int max, len;
  max = 0;
  for(i=0; op[i].label; i++){
    len = lemonStrlen(op[i].label) + 1;
    switch( op[i].type ){
      case OPT_FLAG:
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
        psp->errorcnt++;
        psp->state = RESYNC_AFTER_RULE_ERROR;
      }
      break;
    case IN_RHS:
      if( x[0]=='.' ){
        struct rule *rp;
        rp = (struct rule *)calloc( sizeof(struct rule) + 
             sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
        if( rp==0 ){
          ErrorMsg(psp->filename,psp->tokenlineno,
            "Can't allocate enough memory for this rule.");
          psp->errorcnt++;
          psp->prevrule = 0;
        }else{







|







2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
        psp->errorcnt++;
        psp->state = RESYNC_AFTER_RULE_ERROR;
      }
      break;
    case IN_RHS:
      if( x[0]=='.' ){
        struct rule *rp;
        rp = (struct rule *)calloc( sizeof(struct rule) +
             sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
        if( rp==0 ){
          ErrorMsg(psp->filename,psp->tokenlineno,
            "Can't allocate enough memory for this rule.");
          psp->errorcnt++;
          psp->prevrule = 0;
        }else{
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
/*
** Routines processing configuration follow-set propagation links
** in the LEMON parser generator.
*/
static struct plink *plink_freelist = 0;

/* Allocate a new plink */
struct plink *Plink_new(){
  struct plink *newlink;

  if( plink_freelist==0 ){
    int i;
    int amt = 100;
    plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
    if( plink_freelist==0 ){







|







2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
/*
** Routines processing configuration follow-set propagation links
** in the LEMON parser generator.
*/
static struct plink *plink_freelist = 0;

/* Allocate a new plink */
struct plink *Plink_new(void){
  struct plink *newlink;

  if( plink_freelist==0 ){
    int i;
    int amt = 100;
    plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
    if( plink_freelist==0 ){
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
    fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
    lemp->errorcnt++;
    return 0;
  }
  return fp;
}

/* Duplicate the input file without comments and without actions 
** on rules */
void Reprint(struct lemon *lemp)
{
  struct rule *rp;
  struct symbol *sp;
  int i, j, maxlen, len, ncolumns, skip;
  printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);







|







2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
    fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
    lemp->errorcnt++;
    return 0;
  }
  return fp;
}

/* Duplicate the input file without comments and without actions
** on rules */
void Reprint(struct lemon *lemp)
{
  struct rule *rp;
  struct symbol *sp;
  int i, j, maxlen, len, ncolumns, skip;
  printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
      break;
    case SRCONFLICT:
    case RRCONFLICT:
      fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
        indent,ap->sp->name,ap->x.rp->iRule);
      break;
    case SSCONFLICT:
      fprintf(fp,"%*s shift        %-7d ** Parsing conflict **", 
        indent,ap->sp->name,ap->x.stp->statenum);
      break;
    case SH_RESOLVED:
      if( showPrecedenceConflict ){
        fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
                indent,ap->sp->name,ap->x.stp->statenum);
      }else{







|







3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
      break;
    case SRCONFLICT:
    case RRCONFLICT:
      fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
        indent,ap->sp->name,ap->x.rp->iRule);
      break;
    case SSCONFLICT:
      fprintf(fp,"%*s shift        %-7d ** Parsing conflict **",
        indent,ap->sp->name,ap->x.stp->statenum);
      break;
    case SH_RESOLVED:
      if( showPrecedenceConflict ){
        fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
                indent,ap->sp->name,ap->x.stp->statenum);
      }else{
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
    str++;
  }
  if( str[-1]!='\n' ){
    putc('\n',out);
    (*lineno)++;
  }
  if (!lemp->nolinenosflag) {
    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 
  }
  return;
}

/*
** The following routine emits code for the destructor for the
** symbol sp







|







3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
    str++;
  }
  if( str[-1]!='\n' ){
    putc('\n',out);
    (*lineno)++;
  }
  if (!lemp->nolinenosflag) {
    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
  }
  return;
}

/*
** The following routine emits code for the destructor for the
** symbol sp
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
     cp++;
     continue;
   }
   if( *cp=='\n' ) (*lineno)++;
   fputc(*cp,out);
 }
 fprintf(out,"\n"); (*lineno)++;
 if (!lemp->nolinenosflag) { 
   (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 
 }
 fprintf(out,"}\n"); (*lineno)++;
 return;
}

/*
** Return TRUE (non-zero) if the given symbol has a destructor.







|
|







3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
     cp++;
     continue;
   }
   if( *cp=='\n' ) (*lineno)++;
   fputc(*cp,out);
 }
 fprintf(out,"\n"); (*lineno)++;
 if (!lemp->nolinenosflag) {
   (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
 }
 fprintf(out,"}\n"); (*lineno)++;
 return;
}

/*
** Return TRUE (non-zero) if the given symbol has a destructor.
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
      rp->codePrefix = Strsafe(append_str(0,0,0,0));
      rp->noCode = 0;
    }
  }else if( rp->lhsalias==0 ){
    /* There is no LHS value symbol. */
    lhsdirect = 1;
  }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
    /* The LHS symbol and the left-most RHS symbol are the same, so 
    ** direct writing is allowed */
    lhsdirect = 1;
    lhsused = 1;
    used[0] = 1;
    if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
      ErrorMsg(lemp->filename,rp->ruleline,
        "%s(%s) and %s(%s) share the same label but have "
        "different datatypes.",
        rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
      lemp->errorcnt++;
    }    
  }else{
    lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
                  rp->lhsalias, rp->rhsalias[0]);
    zSkip = strstr(rp->code, zOvwrt);
    if( zSkip!=0 ){
      /* The code contains a special comment that indicates that it is safe
      ** for the LHS label to overwrite left-most RHS label. */







|










|







3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
      rp->codePrefix = Strsafe(append_str(0,0,0,0));
      rp->noCode = 0;
    }
  }else if( rp->lhsalias==0 ){
    /* There is no LHS value symbol. */
    lhsdirect = 1;
  }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
    /* The LHS symbol and the left-most RHS symbol are the same, so
    ** direct writing is allowed */
    lhsdirect = 1;
    lhsused = 1;
    used[0] = 1;
    if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
      ErrorMsg(lemp->filename,rp->ruleline,
        "%s(%s) and %s(%s) share the same label but have "
        "different datatypes.",
        rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
      lemp->errorcnt++;
    }
  }else{
    lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
                  rp->lhsalias, rp->rhsalias[0]);
    zSkip = strstr(rp->code, zOvwrt);
    if( zSkip!=0 ){
      /* The code contains a special comment that indicates that it is safe
      ** for the LHS label to overwrite left-most RHS label. */
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
    rp->codeSuffix = Strsafe(cp);
    rp->noCode = 0;
  }

  return rc;
}

/* 
** Generate code which executes when the rule "rp" is reduced.  Write
** the code to "out".  Make sure lineno stays up-to-date.
*/
PRIVATE void emit_code(
  FILE *out,
  struct rule *rp,
  struct lemon *lemp,







|







3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
    rp->codeSuffix = Strsafe(cp);
    rp->noCode = 0;
  }

  return rc;
}

/*
** Generate code which executes when the rule "rp" is reduced.  Write
** the code to "out".  Make sure lineno stays up-to-date.
*/
PRIVATE void emit_code(
  FILE *out,
  struct rule *rp,
  struct lemon *lemp,
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
  /* Output the yy_shift_ofst[] table */
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", lemp->nactiontab); lineno++;
  fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
  fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
  fprintf(out, "static const %s yy_shift_ofst[] = {\n", 
       minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
       lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iTknOfst;







|







4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
  /* Output the yy_shift_ofst[] table */
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", lemp->nactiontab); lineno++;
  fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
  fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
  fprintf(out, "static const %s yy_shift_ofst[] = {\n",
       minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
       lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iTknOfst;
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
  /* Output the yy_reduce_ofst[] table */
  fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
  fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
  fprintf(out, "static const %s yy_reduce_ofst[] = {\n", 
          minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iNtOfst;
    if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;







|







4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
  /* Output the yy_reduce_ofst[] table */
  fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
  fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
  fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
          minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iNtOfst;
    if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
    fprintf(out," /* %3d */ \"", i);
    writeRuleText(out, rp);
    fprintf(out,"\",\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which executes every time a symbol is popped from
  ** the stack while processing errors or while destroying the parser. 
  ** (In other words, generate the %destructor actions)
  */
  if( lemp->tokendest ){
    int once = 1;
    for(i=0; i<lemp->nsymbol; i++){
      struct symbol *sp = lemp->symbols[i];
      if( sp==0 || sp->type!=TERMINAL ) continue;







|







4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
    fprintf(out," /* %3d */ \"", i);
    writeRuleText(out, rp);
    fprintf(out,"\",\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which executes every time a symbol is popped from
  ** the stack while processing errors or while destroying the parser.
  ** (In other words, generate the %destructor actions)
  */
  if( lemp->tokendest ){
    int once = 1;
    for(i=0; i<lemp->nsymbol; i++){
      struct symbol *sp = lemp->symbols[i];
      if( sp==0 || sp->type!=TERMINAL ) continue;
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which executes whenever the parser stack overflows */
  tplt_print(out,lemp,lemp->overflow,&lineno);
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the table of rule information 
  **
  ** Note: This code depends on the fact that rules are number
  ** sequentually beginning with 0.
  */
  for(rp=lemp->rule; rp; rp=rp->next){
    fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
  }







|







4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which executes whenever the parser stack overflows */
  tplt_print(out,lemp,lemp->overflow,&lineno);
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the table of rule information
  **
  ** Note: This code depends on the fact that rules are number
  ** sequentually beginning with 0.
  */
  for(rp=lemp->rule; rp; rp=rp->next){
    fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
  }
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
    }
  }
  out = file_open(lemp,".h","wb");
  if( out ){
    for(i=1; i<lemp->nterminal; i++){
      fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
    }
    fclose(out);  
  }
  return;
}

/* Reduce the size of the action tables, if possible, by making use
** of defaults.
**







|







4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
    }
  }
  out = file_open(lemp,".h","wb");
  if( out ){
    for(i=1; i<lemp->nterminal; i++){
      fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
    }
    fclose(out);
  }
  return;
}

/* Reduce the size of the action tables, if possible, by making use
** of defaults.
**
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
        if( rp2==rp ) n++;
      }
      if( n>nbest ){
        nbest = n;
        rbest = rp;
      }
    }
 
    /* Do not make a default if the number of rules to default
    ** is not at least 1 or if the wildcard token is a possible
    ** lookahead.
    */
    if( nbest<1 || usesWildcard ) continue;









|







4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
        if( rp2==rp ) n++;
      }
      if( n>nbest ){
        nbest = n;
        rbest = rp;
      }
    }

    /* Do not make a default if the number of rules to default
    ** is not at least 1 or if the wildcard token is a possible
    ** lookahead.
    */
    if( nbest<1 || usesWildcard ) continue;


4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
/* Set the set size */
void SetSize(int n)
{
  size = n+1;
}

/* Allocate a new set */
char *SetNew(){
  char *s;
  s = (char*)calloc( size, 1);
  if( s==0 ){
    extern void memory_error();
    memory_error();
  }
  return s;







|







4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
/* Set the set size */
void SetSize(int n)
{
  size = n+1;
}

/* Allocate a new set */
char *SetNew(void){
  char *s;
  s = (char*)calloc( size, 1);
  if( s==0 ){
    extern void memory_error();
    memory_error();
  }
  return s;
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
  struct s_x1node **from;  /* Previous link */
} x1node;

/* There is only one instance of the array, which is the following */
static struct s_x1 *x1a;

/* Allocate a new associative array */
void Strsafe_init(){
  if( x1a ) return;
  x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
  if( x1a ){
    x1a->size = 1024;
    x1a->count = 0;
    x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
    if( x1a->tbl==0 ){







|







4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
  struct s_x1node **from;  /* Previous link */
} x1node;

/* There is only one instance of the array, which is the following */
static struct s_x1 *x1a;

/* Allocate a new associative array */
void Strsafe_init(void){
  if( x1a ) return;
  x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
  if( x1a ){
    x1a->size = 1024;
    x1a->count = 0;
    x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
    if( x1a->tbl==0 ){
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
  struct s_x2node **from;  /* Previous link */
} x2node;

/* There is only one instance of the array, which is the following */
static struct s_x2 *x2a;

/* Allocate a new associative array */
void Symbol_init(){
  if( x2a ) return;
  x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
  if( x2a ){
    x2a->size = 128;
    x2a->count = 0;
    x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
    if( x2a->tbl==0 ){







|







4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
  struct s_x2node **from;  /* Previous link */
} x2node;

/* There is only one instance of the array, which is the following */
static struct s_x2 *x2a;

/* Allocate a new associative array */
void Symbol_init(void){
  if( x2a ) return;
  x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
  if( x2a ){
    x2a->size = 128;
    x2a->count = 0;
    x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
    if( x2a->tbl==0 ){
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
  struct s_x3node **from;  /* Previous link */
} x3node;

/* There is only one instance of the array, which is the following */
static struct s_x3 *x3a;

/* Allocate a new associative array */
void State_init(){
  if( x3a ) return;
  x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
  if( x3a ){
    x3a->size = 128;
    x3a->count = 0;
    x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
    if( x3a->tbl==0 ){







|







5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
  struct s_x3node **from;  /* Previous link */
} x3node;

/* There is only one instance of the array, which is the following */
static struct s_x3 *x3a;

/* Allocate a new associative array */
void State_init(void){
  if( x3a ) return;
  x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
  if( x3a ){
    x3a->size = 128;
    x3a->count = 0;
    x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
    if( x3a->tbl==0 ){
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
  }
  return np ? np->data : 0;
}

/* Return an array of pointers to all data in the table.
** The array is obtained from malloc.  Return NULL if memory allocation
** problems, or if the array is empty. */
struct state **State_arrayof()
{
  struct state **array;
  int i,arrSize;
  if( x3a==0 ) return 0;
  arrSize = x3a->count;
  array = (struct state **)calloc(arrSize, sizeof(struct state *));
  if( array ){







|







5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
  }
  return np ? np->data : 0;
}

/* Return an array of pointers to all data in the table.
** The array is obtained from malloc.  Return NULL if memory allocation
** problems, or if the array is empty. */
struct state **State_arrayof(void)
{
  struct state **array;
  int i,arrSize;
  if( x3a==0 ) return 0;
  arrSize = x3a->count;
  array = (struct state **)calloc(arrSize, sizeof(struct state *));
  if( array ){
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
  struct s_x4node **from;  /* Previous link */
} x4node;

/* There is only one instance of the array, which is the following */
static struct s_x4 *x4a;

/* Allocate a new associative array */
void Configtable_init(){
  if( x4a ) return;
  x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
  if( x4a ){
    x4a->size = 64;
    x4a->count = 0;
    x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
    if( x4a->tbl==0 ){







|







5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
  struct s_x4node **from;  /* Previous link */
} x4node;

/* There is only one instance of the array, which is the following */
static struct s_x4 *x4a;

/* Allocate a new associative array */
void Configtable_init(void){
  if( x4a ) return;
  x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
  if( x4a ){
    x4a->size = 64;
    x4a->count = 0;
    x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
    if( x4a->tbl==0 ){
Changes to tool/showwal.c.
8
9
10
11
12
13
14

15
16
17
18
19
20
21
#include <fcntl.h>

#define ISDIGIT(X)  isdigit((unsigned char)(X))
#define ISPRINT(X)  isprint((unsigned char)(X))

#if !defined(_MSC_VER)
#include <unistd.h>

#else
#include <io.h>
#endif

#include <stdlib.h>
#include <string.h>








>







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <fcntl.h>

#define ISDIGIT(X)  isdigit((unsigned char)(X))
#define ISPRINT(X)  isprint((unsigned char)(X))

#if !defined(_MSC_VER)
#include <unistd.h>
#include <sys/types.h>
#else
#include <io.h>
#endif

#include <stdlib.h>
#include <string.h>

575
576
577
578
579
580
581








582
583
584
585
586
587
588
          nByte = pagesize;
        }
        ofst = 32 + hdrSize + (iStart-1)*(pagesize+24) + 24;
        a = getContent(ofst, nByte);
        decode_btree_page(a, iStart, hdrSize, zLeft+1);
        free(a);
        continue;








      }else{
        iEnd = iStart;
      }
      if( iStart<1 || iEnd<iStart || iEnd>mxFrame ){
        fprintf(stderr,
          "Page argument should be LOWER?..UPPER?.  Range 1 to %d\n",
          mxFrame);







>
>
>
>
>
>
>
>







576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
          nByte = pagesize;
        }
        ofst = 32 + hdrSize + (iStart-1)*(pagesize+24) + 24;
        a = getContent(ofst, nByte);
        decode_btree_page(a, iStart, hdrSize, zLeft+1);
        free(a);
        continue;
#if !defined(_MSC_VER)
      }else if( zLeft && strcmp(zLeft,"truncate")==0 ){
        /* Frame number followed by "truncate" truncates the WAL file
        ** after that frame */
        off_t newSize = 32 + iStart*(pagesize+24);
        truncate(argv[1], newSize);
        continue;
#endif
      }else{
        iEnd = iStart;
      }
      if( iStart<1 || iEnd<iStart || iEnd>mxFrame ){
        fprintf(stderr,
          "Page argument should be LOWER?..UPPER?.  Range 1 to %d\n",
          mxFrame);