Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | The SQLITE_RTREE_INT_ONLY compile-time option causes the RTree extension to use only integer math and store only integer coordinates. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
02b7640f5118e0a635b68f65765191bb |
User & Date: | drh 2012-04-02 21:35:42.939 |
Context
2012-04-03
| ||
14:59 | Enhance the "showdb" utility program with the "pgidx" option. Now requires linkage with the amalgamation. (check-in: 4b5737014c user: drh tags: trunk) | |
2012-04-02
| ||
21:35 | The SQLITE_RTREE_INT_ONLY compile-time option causes the RTree extension to use only integer math and store only integer coordinates. (check-in: 02b7640f51 user: drh tags: trunk) | |
17:18 | Add #ifdefs to allow a test build to succeed even if SQLITE_ENABLE_FTS3 is not defined. (check-in: fb121980e4 user: drh tags: trunk) | |
Changes
Changes to ext/rtree/rtree.c.
︙ | ︙ | |||
178 179 180 181 182 183 184 185 186 187 188 189 190 191 | int eCoordType; }; /* Possible values for eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 /* ** The minimum number of cells allowed for a node is a third of the ** maximum. In Gutman's notation: ** ** m = M/3 ** ** If an R*-tree "Reinsert" operation is required, the same number of | > > > > > > > > > > > > > | 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | int eCoordType; }; /* Possible values for eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 /* ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will ** only deal with integer coordinates. No floating point operations ** will be done. */ #ifdef SQLITE_RTREE_INT_ONLY typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ typedef int RtreeValue; /* Low accuracy coordinate */ #else typedef double RtreeDValue; /* High accuracy coordinate */ typedef float RtreeValue; /* Low accuracy coordinate */ #endif /* ** The minimum number of cells allowed for a node is a third of the ** maximum. In Gutman's notation: ** ** m = M/3 ** ** If an R*-tree "Reinsert" operation is required, the same number of |
︙ | ︙ | |||
213 214 215 216 217 218 219 | int iCell; /* Index of current cell in pNode */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ }; union RtreeCoord { | | | | > > > > | | | | | > | | | 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | int iCell; /* Index of current cell in pNode */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ }; union RtreeCoord { RtreeValue f; int i; }; /* ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord ** formatted as a RtreeDValue (double or int64). This macro assumes that local ** variable pRtree points to the Rtree structure associated with the ** RtreeCoord. */ #ifdef SQLITE_RTREE_INT_ONLY # define DCOORD(coord) ((RtreeDValue)coord.i) #else # define DCOORD(coord) ( \ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ ((double)coord.f) : \ ((double)coord.i) \ ) #endif /* ** A search constraint. */ struct RtreeConstraint { int iCoord; /* Index of constrained coordinate */ int op; /* Constraining operation */ RtreeDValue rValue; /* Constraint value. */ int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */ }; /* Possible values for RtreeConstraint.op */ #define RTREE_EQ 0x41 #define RTREE_LE 0x42 #define RTREE_LT 0x43 |
︙ | ︙ | |||
283 284 285 286 287 288 289 | /* ** An instance of this structure must be supplied as a blob argument to ** the right-hand-side of an SQL MATCH operator used to constrain an ** r-tree query. */ struct RtreeMatchArg { u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ | | | | | 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | /* ** An instance of this structure must be supplied as a blob argument to ** the right-hand-side of an SQL MATCH operator used to constrain an ** r-tree query. */ struct RtreeMatchArg { u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue*, int *); void *pContext; int nParam; RtreeDValue aParam[1]; }; /* ** When a geometry callback is created (see sqlite3_rtree_geometry_callback), ** a single instance of the following structure is allocated. It is used ** as the context for the user-function created by by s_r_g_c(). The object ** is eventually deleted by the destructor mechanism provided by ** sqlite3_create_function_v2() (which is called by s_r_g_c() to create ** the geometry callback function). */ struct RtreeGeomCallback { int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); void *pContext; }; #ifndef MAX # define MAX(x,y) ((x) < (y) ? (y) : (x)) #endif #ifndef MIN |
︙ | ︙ | |||
864 865 866 867 868 869 870 | static int testRtreeGeom( Rtree *pRtree, /* R-Tree object */ RtreeConstraint *pConstraint, /* MATCH constraint to test */ RtreeCell *pCell, /* Cell to test */ int *pbRes /* OUT: Test result */ ){ int i; | | | 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 | static int testRtreeGeom( Rtree *pRtree, /* R-Tree object */ RtreeConstraint *pConstraint, /* MATCH constraint to test */ RtreeCell *pCell, /* Cell to test */ int *pbRes /* OUT: Test result */ ){ int i; RtreeDValue aCoord[RTREE_MAX_DIMENSIONS*2]; int nCoord = pRtree->nDim*2; assert( pConstraint->op==RTREE_MATCH ); assert( pConstraint->pGeom ); for(i=0; i<nCoord; i++){ aCoord[i] = DCOORD(pCell->aCoord[i]); |
︙ | ︙ | |||
894 895 896 897 898 899 900 | int ii; int bRes = 0; int rc = SQLITE_OK; nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){ RtreeConstraint *p = &pCursor->aConstraint[ii]; | | | | 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 | int ii; int bRes = 0; int rc = SQLITE_OK; nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){ RtreeConstraint *p = &pCursor->aConstraint[ii]; RtreeDValue cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]); RtreeDValue cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH ); switch( p->op ){ case RTREE_LE: case RTREE_LT: |
︙ | ︙ | |||
947 948 949 950 951 952 953 | RtreeCell cell; int ii; *pbEof = 0; nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); for(ii=0; ii<pCursor->nConstraint; ii++){ RtreeConstraint *p = &pCursor->aConstraint[ii]; | | | 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 | RtreeCell cell; int ii; *pbEof = 0; nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); for(ii=0; ii<pCursor->nConstraint; ii++){ RtreeConstraint *p = &pCursor->aConstraint[ii]; RtreeDValue coord = DCOORD(cell.aCoord[p->iCoord]); int res; assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH ); switch( p->op ){ case RTREE_LE: res = (coord<=p->rValue); break; case RTREE_LT: res = (coord<p->rValue); break; |
︙ | ︙ | |||
1145 1146 1147 1148 1149 1150 1151 1152 1153 | if( i==0 ){ i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); sqlite3_result_int64(ctx, iRowid); }else{ RtreeCoord c; nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c); if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ sqlite3_result_double(ctx, c.f); | > | > > | 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 | if( i==0 ){ i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); sqlite3_result_int64(ctx, iRowid); }else{ RtreeCoord c; nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ sqlite3_result_double(ctx, c.f); }else #endif { assert( pRtree->eCoordType==RTREE_COORD_INT32 ); sqlite3_result_int(ctx, c.i); } } return SQLITE_OK; } |
︙ | ︙ | |||
1194 1195 1196 1197 1198 1199 1200 | /* Check that value is actually a blob. */ if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR; /* Check that the blob is roughly the right size. */ nBlob = sqlite3_value_bytes(pValue); if( nBlob<(int)sizeof(RtreeMatchArg) | | | | 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 | /* Check that value is actually a blob. */ if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR; /* Check that the blob is roughly the right size. */ nBlob = sqlite3_value_bytes(pValue); if( nBlob<(int)sizeof(RtreeMatchArg) || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0 ){ return SQLITE_ERROR; } pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc( sizeof(sqlite3_rtree_geometry) + nBlob ); if( !pGeom ) return SQLITE_NOMEM; memset(pGeom, 0, sizeof(sqlite3_rtree_geometry)); p = (RtreeMatchArg *)&pGeom[1]; memcpy(p, sqlite3_value_blob(pValue), nBlob); if( p->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(RtreeDValue)) ){ sqlite3_free(pGeom); return SQLITE_ERROR; } pGeom->pContext = p->pContext; pGeom->nParam = p->nParam; |
︙ | ︙ | |||
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 | ** an sqlite3_rtree_geometry_callback() SQL user function. */ rc = deserializeGeometry(argv[ii], p); if( rc!=SQLITE_OK ){ break; } }else{ p->rValue = sqlite3_value_double(argv[ii]); } } } } if( rc==SQLITE_OK ){ pCsr->pNode = 0; | > > > > | 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 | ** an sqlite3_rtree_geometry_callback() SQL user function. */ rc = deserializeGeometry(argv[ii], p); if( rc!=SQLITE_OK ){ break; } }else{ #ifdef SQLITE_RTREE_INT_ONLY p->rValue = sqlite3_value_int64(argv[ii]); #else p->rValue = sqlite3_value_double(argv[ii]); #endif } } } } if( rc==SQLITE_OK ){ pCsr->pNode = 0; |
︙ | ︙ | |||
1414 1415 1416 1417 1418 1419 1420 | pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1)); return rc; } /* ** Return the N-dimensional volumn of the cell stored in *p. */ | | | | | | | | 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 | pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1)); return rc; } /* ** Return the N-dimensional volumn of the cell stored in *p. */ static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ RtreeDValue area = (RtreeDValue)1; int ii; for(ii=0; ii<(pRtree->nDim*2); ii+=2){ area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]))); } return area; } /* ** Return the margin length of cell p. The margin length is the sum ** of the objects size in each dimension. */ static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ RtreeDValue margin = (RtreeDValue)0; int ii; for(ii=0; ii<(pRtree->nDim*2); ii+=2){ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); } return margin; } /* ** Store the union of cells p1 and p2 in p1. */ |
︙ | ︙ | |||
1476 1477 1478 1479 1480 1481 1482 | } return 1; } /* ** Return the amount cell p would grow by if it were unioned with pCell. */ | | | | | | | < | | | < | | 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 | } return 1; } /* ** Return the amount cell p would grow by if it were unioned with pCell. */ static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ RtreeDValue area; RtreeCell cell; memcpy(&cell, p, sizeof(RtreeCell)); area = cellArea(pRtree, &cell); cellUnion(pRtree, &cell, pCell); return (cellArea(pRtree, &cell)-area); } #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT static RtreeDValue cellOverlap( Rtree *pRtree, RtreeCell *p, RtreeCell *aCell, int nCell, int iExclude ){ int ii; RtreeDValue overlap = 0.0; for(ii=0; ii<nCell; ii++){ #if VARIANT_RSTARTREE_CHOOSESUBTREE if( ii!=iExclude ) #else assert( iExclude==-1 ); UNUSED_PARAMETER(iExclude); #endif { int jj; RtreeDValue o = (RtreeDValue)1; for(jj=0; jj<(pRtree->nDim*2); jj+=2){ RtreeDValue x1, x2; x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); if( x2<x1 ){ o = 0.0; break; }else{ o = o * (x2-x1); } } overlap += o; } } return overlap; } #endif #if VARIANT_RSTARTREE_CHOOSESUBTREE static RtreeDValue cellOverlapEnlargement( Rtree *pRtree, RtreeCell *p, RtreeCell *pInsert, RtreeCell *aCell, int nCell, int iExclude ){ RtreeDValue before, after; before = cellOverlap(pRtree, p, aCell, nCell, iExclude); cellUnion(pRtree, p, pInsert); after = cellOverlap(pRtree, p, aCell, nCell, iExclude); return (after-before); } #endif /* ** This function implements the ChooseLeaf algorithm from Gutman[84]. ** ChooseSubTree in r*tree terminology. |
︙ | ︙ | |||
1564 1565 1566 1567 1568 1569 1570 | RtreeNode *pNode; rc = nodeAcquire(pRtree, 1, 0, &pNode); for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ int iCell; sqlite3_int64 iBest = 0; | | | | | | 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 | RtreeNode *pNode; rc = nodeAcquire(pRtree, 1, 0, &pNode); for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ int iCell; sqlite3_int64 iBest = 0; RtreeDValue fMinGrowth = 0.0; RtreeDValue fMinArea = 0.0; #if VARIANT_RSTARTREE_CHOOSESUBTREE RtreeDValue fMinOverlap = 0.0; RtreeDValue overlap; #endif int nCell = NCELL(pNode); RtreeCell cell; RtreeNode *pChild; RtreeCell *aCell = 0; |
︙ | ︙ | |||
1599 1600 1601 1602 1603 1604 1605 | /* Select the child node which will be enlarged the least if pCell ** is inserted into it. Resolve ties by choosing the entry with ** the smallest area. */ for(iCell=0; iCell<nCell; iCell++){ int bBest = 0; | | | | 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 | /* Select the child node which will be enlarged the least if pCell ** is inserted into it. Resolve ties by choosing the entry with ** the smallest area. */ for(iCell=0; iCell<nCell; iCell++){ int bBest = 0; RtreeDValue growth; RtreeDValue area; nodeGetCell(pRtree, pNode, iCell, &cell); growth = cellGrowth(pRtree, &cell, pCell); area = cellArea(pRtree, &cell); #if VARIANT_RSTARTREE_CHOOSESUBTREE if( ii==(pRtree->iDepth-1) ){ overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); |
︙ | ︙ | |||
1727 1728 1729 1730 1731 1732 1733 | int nCell, int *piLeftSeed, int *piRightSeed ){ int i; int iLeftSeed = 0; int iRightSeed = 1; | | | | | | | | | | 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 | int nCell, int *piLeftSeed, int *piRightSeed ){ int i; int iLeftSeed = 0; int iRightSeed = 1; RtreeDValue maxNormalInnerWidth = (RtreeDValue)0; /* Pick two "seed" cells from the array of cells. The algorithm used ** here is the LinearPickSeeds algorithm from Gutman[1984]. The ** indices of the two seed cells in the array are stored in local ** variables iLeftSeek and iRightSeed. */ for(i=0; i<pRtree->nDim; i++){ RtreeDValue x1 = DCOORD(aCell[0].aCoord[i*2]); RtreeDValue x2 = DCOORD(aCell[0].aCoord[i*2+1]); RtreeDValue x3 = x1; RtreeDValue x4 = x2; int jj; int iCellLeft = 0; int iCellRight = 0; for(jj=1; jj<nCell; jj++){ RtreeDValue left = DCOORD(aCell[jj].aCoord[i*2]); RtreeDValue right = DCOORD(aCell[jj].aCoord[i*2+1]); if( left<x1 ) x1 = left; if( right>x4 ) x4 = right; if( left>x3 ){ x3 = left; iCellRight = jj; } if( right<x2 ){ x2 = right; iCellLeft = jj; } } if( x4!=x1 ){ RtreeDValue normalwidth = (x3 - x2) / (x4 - x1); if( normalwidth>maxNormalInnerWidth ){ iLeftSeed = iCellLeft; iRightSeed = iCellRight; } } } |
︙ | ︙ | |||
1790 1791 1792 1793 1794 1795 1796 | RtreeCell *pLeftBox, RtreeCell *pRightBox, int *aiUsed ){ #define FABS(a) ((a)<0.0?-1.0*(a):(a)) int iSelect = -1; | | | | | | 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 | RtreeCell *pLeftBox, RtreeCell *pRightBox, int *aiUsed ){ #define FABS(a) ((a)<0.0?-1.0*(a):(a)) int iSelect = -1; RtreeDValue fDiff; int ii; for(ii=0; ii<nCell; ii++){ if( aiUsed[ii]==0 ){ RtreeDValue left = cellGrowth(pRtree, pLeftBox, &aCell[ii]); RtreeDValue right = cellGrowth(pRtree, pLeftBox, &aCell[ii]); RtreeDValue diff = FABS(right-left); if( iSelect<0 || diff>fDiff ){ fDiff = diff; iSelect = ii; } } } aiUsed[iSelect] = 1; |
︙ | ︙ | |||
1823 1824 1825 1826 1827 1828 1829 | int *piRightSeed ){ int ii; int jj; int iLeftSeed = 0; int iRightSeed = 1; | | | | | | 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 | int *piRightSeed ){ int ii; int jj; int iLeftSeed = 0; int iRightSeed = 1; RtreeDValue fWaste = 0.0; for(ii=0; ii<nCell; ii++){ for(jj=ii+1; jj<nCell; jj++){ RtreeDValue right = cellArea(pRtree, &aCell[jj]); RtreeDValue growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]); RtreeDValue waste = growth - right; if( waste>fWaste ){ iLeftSeed = ii; iRightSeed = jj; fWaste = waste; } } |
︙ | ︙ | |||
1864 1865 1866 1867 1868 1869 1870 | ** ** The aSpare array is used as temporary working space by the ** sorting algorithm. */ static void SortByDistance( int *aIdx, int nIdx, | | | 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 | ** ** The aSpare array is used as temporary working space by the ** sorting algorithm. */ static void SortByDistance( int *aIdx, int nIdx, RtreeDValue *aDistance, int *aSpare ){ if( nIdx>1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; |
︙ | ︙ | |||
1890 1891 1892 1893 1894 1895 1896 | if( iLeft==nLeft ){ aIdx[iLeft+iRight] = aRight[iRight]; iRight++; }else if( iRight==nRight ){ aIdx[iLeft+iRight] = aLeft[iLeft]; iLeft++; }else{ | | | | | | 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 | if( iLeft==nLeft ){ aIdx[iLeft+iRight] = aRight[iRight]; iRight++; }else if( iRight==nRight ){ aIdx[iLeft+iRight] = aLeft[iLeft]; iLeft++; }else{ RtreeDValue fLeft = aDistance[aLeft[iLeft]]; RtreeDValue fRight = aDistance[aRight[iRight]]; if( fLeft<fRight ){ aIdx[iLeft+iRight] = aLeft[iLeft]; iLeft++; }else{ aIdx[iLeft+iRight] = aRight[iRight]; iRight++; } } } #if 0 /* Check that the sort worked */ { int jj; for(jj=1; jj<nIdx; jj++){ RtreeDValue left = aDistance[aIdx[jj-1]]; RtreeDValue right = aDistance[aIdx[jj]]; assert( left<=right ); } } #endif } } |
︙ | ︙ | |||
1951 1952 1953 1954 1955 1956 1957 | SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeft<nLeft || iRight<nRight ){ | | | | | | | | | | 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 | SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeft<nLeft || iRight<nRight ){ RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); if( (iLeft!=nLeft) && ((iRight==nRight) || (xleft1<xright1) || (xleft1==xright1 && xleft2<xright2) )){ aIdx[iLeft+iRight] = aLeft[iLeft]; iLeft++; }else{ aIdx[iLeft+iRight] = aRight[iRight]; iRight++; } } #if 0 /* Check that the sort worked */ { int jj; for(jj=1; jj<nIdx; jj++){ RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); } } #endif } } |
︙ | ︙ | |||
2002 2003 2004 2005 2006 2007 2008 | ){ int **aaSorted; int *aSpare; int ii; int iBestDim = 0; int iBestSplit = 0; | | | | | | | | 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 | ){ int **aaSorted; int *aSpare; int ii; int iBestDim = 0; int iBestSplit = 0; RtreeDValue fBestMargin = 0.0; int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); aaSorted = (int **)sqlite3_malloc(nByte); if( !aaSorted ){ return SQLITE_NOMEM; } aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; memset(aaSorted, 0, nByte); for(ii=0; ii<pRtree->nDim; ii++){ int jj; aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; for(jj=0; jj<nCell; jj++){ aaSorted[ii][jj] = jj; } SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); } for(ii=0; ii<pRtree->nDim; ii++){ RtreeDValue margin = 0.0; RtreeDValue fBestOverlap = 0.0; RtreeDValue fBestArea = 0.0; int iBestLeft = 0; int nLeft; for( nLeft=RTREE_MINCELLS(pRtree); nLeft<=(nCell-RTREE_MINCELLS(pRtree)); nLeft++ ){ RtreeCell left; RtreeCell right; int kk; RtreeDValue overlap; RtreeDValue area; memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); for(kk=1; kk<(nCell-1); kk++){ if( kk<nLeft ){ cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); }else{ |
︙ | ︙ | |||
2121 2122 2123 2124 2125 2126 2127 | nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); aiUsed[iLeftSeed] = 1; aiUsed[iRightSeed] = 1; for(i=nCell-2; i>0; i--){ RtreeCell *pNext; pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); | | | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 | nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); aiUsed[iLeftSeed] = 1; aiUsed[iRightSeed] = 1; for(i=nCell-2; i>0; i--){ RtreeCell *pNext; pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); RtreeDValue diff = cellGrowth(pRtree, pBboxLeft, pNext) - cellGrowth(pRtree, pBboxRight, pNext) ; if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) ){ nodeInsertCell(pRtree, pRight, pNext); |
︙ | ︙ | |||
2454 2455 2456 2457 2458 2459 2460 | RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int *aOrder; int *aSpare; RtreeCell *aCell; | | | > | > | | | | | | | | | | | | | | 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 | RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int *aOrder; int *aSpare; RtreeCell *aCell; RtreeDValue *aDistance; int nCell; RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS]; int iDim; int ii; int rc = SQLITE_OK; int n; memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS); nCell = NCELL(pNode)+1; n = (nCell+1)&(~1); /* Allocate the buffers used by this operation. The allocation is ** relinquished before this function returns. */ aCell = (RtreeCell *)sqlite3_malloc(n * ( sizeof(RtreeCell) + /* aCell array */ sizeof(int) + /* aOrder array */ sizeof(int) + /* aSpare array */ sizeof(RtreeDValue) /* aDistance array */ )); if( !aCell ){ return SQLITE_NOMEM; } aOrder = (int *)&aCell[n]; aSpare = (int *)&aOrder[n]; aDistance = (RtreeDValue *)&aSpare[n]; for(ii=0; ii<nCell; ii++){ if( ii==(nCell-1) ){ memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); }else{ nodeGetCell(pRtree, pNode, ii, &aCell[ii]); } aOrder[ii] = ii; for(iDim=0; iDim<pRtree->nDim; iDim++){ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); } } for(iDim=0; iDim<pRtree->nDim; iDim++){ aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); } for(ii=0; ii<nCell; ii++){ aDistance[ii] = 0.0; for(iDim=0; iDim<pRtree->nDim; iDim++){ RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - DCOORD(aCell[ii].aCoord[iDim*2])); aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); } } SortByDistance(aOrder, nCell, aDistance, aSpare); nodeZero(pRtree, pNode); |
︙ | ︙ | |||
2743 2744 2745 2746 2747 2748 2749 2750 2751 | ** conflict-handling mode specified by the user. */ if( nData>1 ){ int ii; /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ assert( nData==(pRtree->nDim*2 + 3) ); if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ | > | | | > > | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 | ** conflict-handling mode specified by the user. */ if( nData>1 ){ int ii; /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ assert( nData==(pRtree->nDim*2 + 3) ); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ cell.aCoord[ii].f = (RtreeValue)sqlite3_value_double(azData[ii+3]); cell.aCoord[ii+1].f = (RtreeValue)sqlite3_value_double(azData[ii+4]); if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ rc = SQLITE_CONSTRAINT; goto constraint; } } }else #endif { for(ii=0; ii<(pRtree->nDim*2); ii+=2){ cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ rc = SQLITE_CONSTRAINT; goto constraint; } |
︙ | ︙ | |||
3150 3151 3152 3153 3154 3155 3156 | RtreeCell cell; int jj; nodeGetCell(&tree, &node, ii, &cell); sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); nCell = (int)strlen(zCell); for(jj=0; jj<tree.nDim*2; jj++){ | > | > > > > > | 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 | RtreeCell cell; int jj; nodeGetCell(&tree, &node, ii, &cell); sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); nCell = (int)strlen(zCell); for(jj=0; jj<tree.nDim*2; jj++){ #ifndef SQLITE_RTREE_INT_ONLY sqlite3_snprintf(512-nCell,&zCell[nCell], " %f", (double)cell.aCoord[jj].f); #else sqlite3_snprintf(512-nCell,&zCell[nCell], " %d", cell.aCoord[jj].i); #endif nCell = (int)strlen(zCell); } if( zText ){ char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); sqlite3_free(zText); zText = zTextNew; |
︙ | ︙ | |||
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 | int rc; rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); } if( rc==SQLITE_OK ){ void *c = (void *)RTREE_COORD_REAL32; rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); } if( rc==SQLITE_OK ){ void *c = (void *)RTREE_COORD_INT32; rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); } | > > > > | 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 | int rc; rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); } if( rc==SQLITE_OK ){ #ifdef SQLITE_RTREE_INT_ONLY void *c = (void *)RTREE_COORD_INT32; #else void *c = (void *)RTREE_COORD_REAL32; #endif rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); } if( rc==SQLITE_OK ){ void *c = (void *)RTREE_COORD_INT32; rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); } |
︙ | ︙ | |||
3226 3227 3228 3229 3230 3231 3232 | ** table MATCH operators. */ static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); RtreeMatchArg *pBlob; int nBlob; | | > > > > | | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 | ** table MATCH operators. */ static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); RtreeMatchArg *pBlob; int nBlob; nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue); pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); if( !pBlob ){ sqlite3_result_error_nomem(ctx); }else{ int i; pBlob->magic = RTREE_GEOMETRY_MAGIC; pBlob->xGeom = pGeomCtx->xGeom; pBlob->pContext = pGeomCtx->pContext; pBlob->nParam = nArg; for(i=0; i<nArg; i++){ #ifdef SQLITE_RTREE_INT_ONLY pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); #else pBlob->aParam[i] = sqlite3_value_double(aArg[i]); #endif } sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free); } } /* ** Register a new geometry function for use with the r-tree MATCH operator. */ int sqlite3_rtree_geometry_callback( sqlite3 *db, const char *zGeom, int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue *, int *), void *pContext ){ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ /* Allocate and populate the context object. */ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); if( !pGeomCtx ) return SQLITE_NOMEM; |
︙ | ︙ |
Changes to ext/rtree/rtree1.test.
︙ | ︙ | |||
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | catchsql " CREATE VIRTUAL TABLE t1 USING rtree($columns); " } $X catchsql { DROP TABLE t1 } } # Test that it is possible to open an existing database that contains # r-tree tables. # do_test rtree-1.4.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2); INSERT INTO t1 VALUES(1, 5.0, 10.0); INSERT INTO t1 VALUES(2, 15.0, 20.0); } } {} do_test rtree-1.4.2 { db close sqlite3 db test.db | > > > > > > > > > > > > | | | | | 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | catchsql " CREATE VIRTUAL TABLE t1 USING rtree($columns); " } $X catchsql { DROP TABLE t1 } } # Like execsql except display output as integer where that can be # done without loss of information. # proc execsql_intout {sql} { set out {} foreach term [execsql $sql] { regsub {\.0$} $term {} term lappend out $term } return $out } # Test that it is possible to open an existing database that contains # r-tree tables. # do_test rtree-1.4.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2); INSERT INTO t1 VALUES(1, 5.0, 10.0); INSERT INTO t1 VALUES(2, 15.0, 20.0); } } {} do_test rtree-1.4.2 { db close sqlite3 db test.db execsql_intout { SELECT * FROM t1 ORDER BY ii } } {1 5 10 2 15 20} do_test rtree-1.4.3 { execsql { DROP TABLE t1 } } {} # Test that it is possible to create an r-tree table with ridiculous # column names. # do_test rtree-1.5.1 { execsql_intout { CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim"); INSERT INTO t1 VALUES(1, 2, 3); SELECT "the key", "x dim.", "x2'dim" FROM t1; } } {1 2 3} do_test rtree-1.5.1 { execsql { DROP TABLE t1 } } {} # Force the r-tree constructor to fail. # do_test rtree-1.6.1 { |
︙ | ︙ | |||
157 158 159 160 161 162 163 | CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2); SELECT * FROM t1; } } {} do_test rtree-2.1.2 { execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) } | | | | 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2); SELECT * FROM t1; } } {} do_test rtree-2.1.2 { execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) } execsql_intout { SELECT * FROM t1 } } {1 1 3 2 4} do_test rtree-2.1.3 { execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) } execsql { SELECT rowid FROM t1 ORDER BY rowid } } {1 2} do_test rtree-2.1.3 { execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) } execsql { SELECT ii FROM t1 ORDER BY ii } |
︙ | ︙ | |||
197 198 199 200 201 202 203 | do_test rtree-3.1.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2); SELECT * FROM t1; } } {} do_test rtree-3.1.2 { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | do_test rtree-3.1.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2); SELECT * FROM t1; } } {} do_test rtree-3.1.2 { execsql_intout { INSERT INTO t1 VALUES(5, 1, 3, 2, 4); SELECT * FROM t1; } } {5 1 3 2 4} do_test rtree-3.1.3 { execsql_intout { INSERT INTO t1 VALUES(6, 2, 6, 4, 8); SELECT * FROM t1; } } {5 1 3 2 4 6 2 6 4 8} # Test the constraint on the coordinates (c[i]<=c[i+1] where (i%2==0)): do_test rtree-3.2.1 { catchsql { INSERT INTO t1 VALUES(7, 2, 6, 4, 3) } } {1 {constraint failed}} do_test rtree-3.2.2 { catchsql { INSERT INTO t1 VALUES(8, 2, 6, 3, 3) } } {0 {}} #---------------------------------------------------------------------------- # Test cases rtree-5.* test DELETE operations. # do_test rtree-5.1.1 { execsql { CREATE VIRTUAL TABLE t2 USING rtree(ii, x1, x2) } } {} do_test rtree-5.1.2 { execsql_intout { INSERT INTO t2 VALUES(1, 10, 20); INSERT INTO t2 VALUES(2, 30, 40); INSERT INTO t2 VALUES(3, 50, 60); SELECT * FROM t2 ORDER BY ii; } } {1 10 20 2 30 40 3 50 60} do_test rtree-5.1.3 { execsql_intout { DELETE FROM t2 WHERE ii=2; SELECT * FROM t2 ORDER BY ii; } } {1 10 20 3 50 60} do_test rtree-5.1.4 { execsql_intout { DELETE FROM t2 WHERE ii=1; SELECT * FROM t2 ORDER BY ii; } } {3 50 60} do_test rtree-5.1.5 { execsql { DELETE FROM t2 WHERE ii=3; SELECT * FROM t2 ORDER BY ii; } } {} do_test rtree-5.1.6 { execsql { SELECT * FROM t2_rowid } } {} #---------------------------------------------------------------------------- # Test cases rtree-5.* test UPDATE operations. # do_test rtree-6.1.1 { execsql { CREATE VIRTUAL TABLE t3 USING rtree(ii, x1, x2, y1, y2) } } {} do_test rtree-6.1.2 { execsql_intout { INSERT INTO t3 VALUES(1, 2, 3, 4, 5); UPDATE t3 SET x2=5; SELECT * FROM t3; } } {1 2 5 4 5} do_test rtree-6.1.3 { execsql { UPDATE t3 SET ii = 2 } execsql_intout { SELECT * FROM t3 } } {2 2 5 4 5} #---------------------------------------------------------------------------- # Test cases rtree-7.* test rename operations. # do_test rtree-7.1.1 { execsql { CREATE VIRTUAL TABLE t4 USING rtree(ii, x1, x2, y1, y2, z1, z2); INSERT INTO t4 VALUES(1, 2, 3, 4, 5, 6, 7); } } {} do_test rtree-7.1.2 { execsql { ALTER TABLE t4 RENAME TO t5 } execsql_intout { SELECT * FROM t5 } } {1 2 3 4 5 6 7} do_test rtree-7.1.3 { db close sqlite3 db test.db execsql_intout { SELECT * FROM t5 } } {1 2 3 4 5 6 7} do_test rtree-7.1.4 { execsql { ALTER TABLE t5 RENAME TO 'raisara "one"'''} execsql_intout { SELECT * FROM "raisara ""one""'" } } {1 2 3 4 5 6 7} do_test rtree-7.1.5 { execsql_intout { SELECT * FROM 'raisara "one"''' } } {1 2 3 4 5 6 7} do_test rtree-7.1.6 { execsql { ALTER TABLE "raisara ""one""'" RENAME TO "abc 123" } execsql_intout { SELECT * FROM "abc 123" } } {1 2 3 4 5 6 7} do_test rtree-7.1.7 { db close sqlite3 db test.db execsql_intout { SELECT * FROM "abc 123" } } {1 2 3 4 5 6 7} # An error midway through a rename operation. do_test rtree-7.2.1 { execsql { CREATE TABLE t4_node(a); } catchsql { ALTER TABLE "abc 123" RENAME TO t4 } } {1 {SQL logic error or missing database}} do_test rtree-7.2.2 { execsql_intout { SELECT * FROM "abc 123" } } {1 2 3 4 5 6 7} do_test rtree-7.2.3 { execsql { DROP TABLE t4_node; CREATE TABLE t4_rowid(a); } catchsql { ALTER TABLE "abc 123" RENAME TO t4 } } {1 {SQL logic error or missing database}} do_test rtree-7.2.4 { db close sqlite3 db test.db execsql_intout { SELECT * FROM "abc 123" } } {1 2 3 4 5 6 7} do_test rtree-7.2.5 { execsql { DROP TABLE t4_rowid } execsql { ALTER TABLE "abc 123" RENAME TO t4 } execsql_intout { SELECT * FROM t4 } } {1 2 3 4 5 6 7} #---------------------------------------------------------------------------- # Test cases rtree-8.* # # Test that the function to determine if a leaf cell is part of the |
︙ | ︙ |
Changes to ext/rtree/rtree4.test.
︙ | ︙ | |||
23 24 25 26 27 28 29 | } set ::NROW 2500 if {[info exists G(isquick)] && $G(isquick)} { set ::NROW 250 } | > | | | | | | | | | | | | | | > > | > > > > > > > > > > > > > > | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | } set ::NROW 2500 if {[info exists G(isquick)] && $G(isquick)} { set ::NROW 250 } ifcapable !rtree_int_only { # Return a floating point number between -X and X. # proc rand {X} { return [expr {int((rand()-0.5)*1024.0*$X)/512.0}] } # Return a positive floating point number less than or equal to X # proc randincr {X} { while 1 { set r [expr {int(rand()*$X*32.0)/32.0}] if {$r>0.0} {return $r} } } } else { # For rtree_int_only, return an number between -X and X. # proc rand {X} { return [expr {int((rand()-0.5)*2*$X)}] } # Return a positive integer less than or equal to X # proc randincr {X} { while 1 { set r [expr {int(rand()*$X)+1}] if {$r>0} {return $r} } } } # Scramble the $inlist into a random order. # proc scramble {inlist} { set y {} foreach x $inlist { lappend y [list [expr {rand()}] $x] } |
︙ | ︙ |
Changes to ext/rtree/rtree5.test.
︙ | ︙ | |||
45 46 47 48 49 50 51 | do_test rtree5-1.6 { execsql { SELECT x1==5.0 FROM t1 } } {1} do_test rtree5-1.7 { execsql { SELECT count(*) FROM t1 WHERE x1==5 } } {1} | > | | | > | 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | do_test rtree5-1.6 { execsql { SELECT x1==5.0 FROM t1 } } {1} do_test rtree5-1.7 { execsql { SELECT count(*) FROM t1 WHERE x1==5 } } {1} ifcapable !rtree_int_only { do_test rtree5-1.8 { execsql { SELECT count(*) FROM t1 WHERE x1==5.2 } } {0} } do_test rtree5-1.9 { execsql { SELECT count(*) FROM t1 WHERE x1==5.0 } } {1} do_test rtree5-1.10 { execsql { SELECT (1<<31)-5, (1<<31)-1, -1*(1<<31), -1*(1<<31)+5 } } {2147483643 2147483647 -2147483648 -2147483643} |
︙ | ︙ |
Changes to ext/rtree/rtree6.test.
︙ | ︙ | |||
12 13 14 15 16 17 18 | # if {![info exists testdir]} { set testdir [file join [file dirname [info script]] .. .. test] } source $testdir/tester.tcl | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # if {![info exists testdir]} { set testdir [file join [file dirname [info script]] .. .. test] } source $testdir/tester.tcl ifcapable !rtree || rtree_int_only { finish_test return } # Operator Byte Value # ---------------------- # = 0x41 ('A') |
︙ | ︙ |
Changes to ext/rtree/rtree7.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | } source $testdir/tester.tcl ifcapable !rtree||!vacuum { finish_test return } do_test rtree7-1.1 { execsql { PRAGMA page_size = 1024; CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2); INSERT INTO rt VALUES(1, 1, 2, 3, 4); } } {} do_test rtree7-1.2 { | > > > > > > > > > > > > | | | | | | | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | } source $testdir/tester.tcl ifcapable !rtree||!vacuum { finish_test return } # Like execsql except display output as integer where that can be # done without loss of information. # proc execsql_intout {sql} { set out {} foreach term [execsql $sql] { regsub {\.0$} $term {} term lappend out $term } return $out } do_test rtree7-1.1 { execsql { PRAGMA page_size = 1024; CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2); INSERT INTO rt VALUES(1, 1, 2, 3, 4); } } {} do_test rtree7-1.2 { execsql_intout { SELECT * FROM rt } } {1 1 2 3 4} do_test rtree7-1.3 { execsql_intout { PRAGMA page_size = 2048; VACUUM; SELECT * FROM rt; } } {1 1 2 3 4} do_test rtree7-1.4 { for {set i 2} {$i <= 51} {incr i} { execsql { INSERT INTO rt VALUES($i, 1, 2, 3, 4) } } execsql_intout { SELECT sum(x1), sum(x2), sum(y1), sum(y2) FROM rt } } {51 102 153 204} do_test rtree7-1.5 { execsql_intout { PRAGMA page_size = 512; VACUUM; SELECT sum(x1), sum(x2), sum(y1), sum(y2) FROM rt } } {51 102 153 204} finish_test |
Changes to ext/rtree/rtree9.test.
︙ | ︙ | |||
13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # if {![info exists testdir]} { set testdir [file join [file dirname [info script]] .. .. test] } source $testdir/tester.tcl ifcapable !rtree { finish_test ; return } register_cube_geom db do_execsql_test rtree9-1.1 { CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2, z1, z2); INSERT INTO rt VALUES(1, 1, 2, 1, 2, 1, 2); } {} | > | 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | # if {![info exists testdir]} { set testdir [file join [file dirname [info script]] .. .. test] } source $testdir/tester.tcl ifcapable !rtree { finish_test ; return } ifcapable rtree_int_only { finish_test; return } register_cube_geom db do_execsql_test rtree9-1.1 { CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2, z1, z2); INSERT INTO rt VALUES(1, 1, 2, 1, 2, 1, 2); } {} |
︙ | ︙ |
Changes to ext/rtree/rtreeB.test.
︙ | ︙ | |||
14 15 16 17 18 19 20 | if {![info exists testdir]} { set testdir [file join [file dirname [info script]] .. .. test] } source $testdir/tester.tcl ifcapable !rtree { finish_test ; return } | > > > > > > > > > > > > > | | | | | | | | | | | | | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | if {![info exists testdir]} { set testdir [file join [file dirname [info script]] .. .. test] } source $testdir/tester.tcl ifcapable !rtree { finish_test ; return } ifcapable rtree_int_only { do_test rtreeB-1.1-intonly { db eval { CREATE VIRTUAL TABLE t1 USING rtree(ii, x0, y0, x1, y1); INSERT INTO t1 VALUES(1073741824, 0.0, 0.0, 100.0, 100.0); INSERT INTO t1 VALUES(2147483646, 0.0, 0.0, 200.0, 200.0); INSERT INTO t1 VALUES(4294967296, 0.0, 0.0, 300.0, 300.0); INSERT INTO t1 VALUES(8589934592, 20.0, 20.0, 150.0, 150.0); INSERT INTO t1 VALUES(9223372036854775807, 150, 150, 400, 400); SELECT rtreenode(2, data) FROM t1_node; } } {{{1073741824 0 0 100 100} {2147483646 0 0 200 200} {4294967296 0 0 300 300} {8589934592 20 20 150 150} {9223372036854775807 150 150 400 400}}} } else { do_test rtreeB-1.1 { db eval { CREATE VIRTUAL TABLE t1 USING rtree(ii, x0, y0, x1, y1); INSERT INTO t1 VALUES(1073741824, 0.0, 0.0, 100.0, 100.0); INSERT INTO t1 VALUES(2147483646, 0.0, 0.0, 200.0, 200.0); INSERT INTO t1 VALUES(4294967296, 0.0, 0.0, 300.0, 300.0); INSERT INTO t1 VALUES(8589934592, 20.0, 20.0, 150.0, 150.0); INSERT INTO t1 VALUES(9223372036854775807, 150, 150, 400, 400); SELECT rtreenode(2, data) FROM t1_node; } } {{{1073741824 0.000000 0.000000 100.000000 100.000000} {2147483646 0.000000 0.000000 200.000000 200.000000} {4294967296 0.000000 0.000000 300.000000 300.000000} {8589934592 20.000000 20.000000 150.000000 150.000000} {9223372036854775807 150.000000 150.000000 400.000000 400.000000}}} } finish_test |
Changes to ext/rtree/sqlite3rtree.h.
︙ | ︙ | |||
27 28 29 30 31 32 33 | ** R-Tree geometry query as follows: ** ** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...) */ int sqlite3_rtree_geometry_callback( sqlite3 *db, const char *zGeom, | > > > | > | 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ** R-Tree geometry query as follows: ** ** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...) */ int sqlite3_rtree_geometry_callback( sqlite3 *db, const char *zGeom, #ifdef SQLITE_RTREE_INT_ONLY int (*xGeom)(sqlite3_rtree_geometry*, int n, sqlite3_int64 *a, int *pRes), #else int (*xGeom)(sqlite3_rtree_geometry*, int n, double *a, int *pRes), #endif void *pContext ); /* ** A pointer to a structure of the following type is passed as the first ** argument to callbacks registered using rtree_geometry_callback(). |
︙ | ︙ |
Changes to src/test_config.c.
︙ | ︙ | |||
415 416 417 418 419 420 421 422 423 424 425 426 427 428 | #endif #ifdef SQLITE_ENABLE_RTREE Tcl_SetVar2(interp, "sqlite_options", "rtree", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "rtree", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_OMIT_SCHEMA_PRAGMAS Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "1", TCL_GLOBAL_ONLY); #endif | > > > > > > | 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 | #endif #ifdef SQLITE_ENABLE_RTREE Tcl_SetVar2(interp, "sqlite_options", "rtree", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "rtree", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_RTREE_INT_ONLY Tcl_SetVar2(interp, "sqlite_options", "rtree_int_only", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "rtree_int_only", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_OMIT_SCHEMA_PRAGMAS Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "1", TCL_GLOBAL_ONLY); #endif |
︙ | ︙ |
Changes to src/test_rtree.c.
︙ | ︙ | |||
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | /* ** Implementation of "circle" r-tree geometry callback. */ static int circle_geom( sqlite3_rtree_geometry *p, int nCoord, double *aCoord, int *pRes ){ int i; /* Iterator variable */ Circle *pCircle; /* Structure defining circular region */ double xmin, xmax; /* X dimensions of box being tested */ double ymin, ymax; /* X dimensions of box being tested */ | > > > > | 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | /* ** Implementation of "circle" r-tree geometry callback. */ static int circle_geom( sqlite3_rtree_geometry *p, int nCoord, #ifdef SQLITE_RTREE_INT_ONLY sqlite3_int64 *aCoord, #else double *aCoord, #endif int *pRes ){ int i; /* Iterator variable */ Circle *pCircle; /* Structure defining circular region */ double xmin, xmax; /* X dimensions of box being tested */ double ymin, ymax; /* X dimensions of box being tested */ |
︙ | ︙ | |||
184 185 186 187 188 189 190 | ** ** cube(x, y, z, width, height, depth) ** ** The width, height and depth parameters must all be greater than zero. */ static int cube_geom( sqlite3_rtree_geometry *p, | | > > > > | 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | ** ** cube(x, y, z, width, height, depth) ** ** The width, height and depth parameters must all be greater than zero. */ static int cube_geom( sqlite3_rtree_geometry *p, int nCoord, #ifdef SQLITE_RTREE_INT_ONLY sqlite3_int64 *aCoord, #else double *aCoord, #endif int *piRes ){ Cube *pCube = (Cube *)p->pUser; assert( p->pContext==(void *)&gHere ); if( pCube==0 ){ |
︙ | ︙ |