SQLite

Check-in [027875e4d4]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Refactoring the VM. The P3 parameter is changed to P4. A P5 parameter is added (though not currently used.) Add routines sqlite3VdbeAddOpX() where X is one of 0, 1, 2, 3, or 4. (CVS 4660)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 027875e4d4c4bd7686dc880c6917a968049b2fec
User & Date: drh 2008-01-03 00:01:24.000
Context
2008-01-03
01:28
Revamp sqlite3VdbeAddOpList() so that the structure holds integer values for P1, P2, and P3. (CVS 4661) (check-in: 4dc507d87b user: drh tags: trunk)
00:01
Refactoring the VM. The P3 parameter is changed to P4. A P5 parameter is added (though not currently used.) Add routines sqlite3VdbeAddOpX() where X is one of 0, 1, 2, 3, or 4. (CVS 4660) (check-in: 027875e4d4 user: drh tags: trunk)
2008-01-02
17:25
Add operands p4 and p5 to the VdbeOp structure. (CVS 4659) (check-in: ad528735e4 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/alter.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that used to generate VDBE code
** that implements the ALTER TABLE command.
**
** $Id: alter.c,v 1.35 2007/12/13 21:54:11 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** The code in this file only exists if we are not omitting the
** ALTER TABLE logic from the build.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that used to generate VDBE code
** that implements the ALTER TABLE command.
**
** $Id: alter.c,v 1.36 2008/01/03 00:01:24 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** The code in this file only exists if we are not omitting the
** ALTER TABLE logic from the build.
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  assert( iDb>=0 );

#ifndef SQLITE_OMIT_TRIGGER
  /* Drop any table triggers from the internal schema. */
  for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
    int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
    assert( iTrigDb==iDb || iTrigDb==1 );
    sqlite3VdbeOp3(v, OP_DropTrigger, iTrigDb, 0, pTrig->name, 0);
  }
#endif

  /* Drop the table and index from the internal schema */
  sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */
  zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
  if( !zWhere ) return;
  sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, zWhere, P3_DYNAMIC);

#ifndef SQLITE_OMIT_TRIGGER
  /* Now, if the table is not stored in the temp database, reload any temp 
  ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
  */
  if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
    sqlite3VdbeOp3(v, OP_ParseSchema, 1, 0, zWhere, P3_DYNAMIC);
  }
#endif
}

/*
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" 
** command. 







|




|




|






|







239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  assert( iDb>=0 );

#ifndef SQLITE_OMIT_TRIGGER
  /* Drop any table triggers from the internal schema. */
  for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
    int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
    assert( iTrigDb==iDb || iTrigDb==1 );
    sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
  }
#endif

  /* Drop the table and index from the internal schema */
  sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */
  zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
  if( !zWhere ) return;
  sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);

#ifndef SQLITE_OMIT_TRIGGER
  /* Now, if the table is not stored in the temp database, reload any temp 
  ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
  */
  if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
    sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
  }
#endif
}

/*
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" 
** command. 
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
  /* If this is a virtual table, invoke the xRename() function if
  ** one is defined. The xRename() callback will modify the names
  ** of any resources used by the v-table implementation (including other
  ** SQLite tables) that are identified by the name of the virtual table.
  */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( isVirtualRename ){
    sqlite3VdbeOp3(v, OP_String8, 0, 0, zName, 0);
    sqlite3VdbeOp3(v, OP_VRename, 0, 0, (const char*)pTab->pVtab, P3_VTAB);
  }
#endif

  /* figure out how many UTF-8 characters are in zName */
  zTabName = pTab->zName;
  nTabName = sqlite3Utf8CharLen(zTabName, -1);








|
|







358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
  /* If this is a virtual table, invoke the xRename() function if
  ** one is defined. The xRename() callback will modify the names
  ** of any resources used by the v-table implementation (including other
  ** SQLite tables) that are identified by the name of the virtual table.
  */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( isVirtualRename ){
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, zName, 0);
    sqlite3VdbeAddOp4(v, OP_VRename, 0, 0, 0,(const char*)pTab->pVtab, P4_VTAB);
  }
#endif

  /* figure out how many UTF-8 characters are in zName */
  zTabName = pTab->zName;
  nTabName = sqlite3Utf8CharLen(zTabName, -1);

Changes to src/analyze.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2005 July 8
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** @(#) $Id: analyze.c,v 1.26 2008/01/02 14:28:13 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2005 July 8
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** @(#) $Id: analyze.c,v 1.27 2008/01/03 00:01:24 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
       "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
       pDb->zName, zWhere
    );
    iRootPage = pStat->tnum;
  }else{
    /* The sqlite_stat1 table already exists.  Delete all rows. */
    iRootPage = pStat->tnum;
    sqlite3VdbeAddOp(v, OP_Clear, pStat->tnum, iDb);
  }

  /* Open the sqlite_stat1 table for writing. Unless it was created
  ** by this vdbe program, lock it for writing at the shared-cache level. 
  ** If this vdbe did create the sqlite_stat1 table, then it must have 
  ** already obtained a schema-lock, making the write-lock redundant.
  */
  if( iRootPage>0 ){
    sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
  }
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  sqlite3VdbeAddOp(v, OP_OpenWrite, iStatCur, iRootPage);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, iStatCur, 3);
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(







|










|
|
|







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
       "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
       pDb->zName, zWhere
    );
    iRootPage = pStat->tnum;
  }else{
    /* The sqlite_stat1 table already exists.  Delete all rows. */
    iRootPage = pStat->tnum;
    sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
  }

  /* Open the sqlite_stat1 table for writing. Unless it was created
  ** by this vdbe program, lock it for writing at the shared-cache level. 
  ** If this vdbe did create the sqlite_stat1 table, then it must have 
  ** already obtained a schema-lock, making the write-lock redundant.
  */
  if( iRootPage>0 ){
    sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
  }
  sqlite3VdbeAddOp1(v, OP_Integer, iDb);
  sqlite3VdbeAddOp2(v, OP_OpenWrite, iStatCur, iRootPage);
  sqlite3VdbeAddOp2(v, OP_SetNumColumns, iStatCur, 3);
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
  iIdxCur = pParse->nTab;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);

    /* Open a cursor to the index to be analyzed
    */
    assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    VdbeComment((v, "%s", pIdx->zName));
    sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
        (char *)pKey, P3_KEYINFO_HANDOFF);
    nCol = pIdx->nColumn;
    if( iMem+nCol*2>=pParse->nMem ){
      pParse->nMem = iMem+nCol*2+1;
    }
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, nCol+1);

    /* Memory cells are used as follows:
    **
    **    mem[iMem]:             The total number of rows in the table.
    **    mem[iMem+1]:           Number of distinct values in column 1
    **    ...
    **    mem[iMem+nCol]:        Number of distinct values in column N
    **    mem[iMem+nCol+1]       Last observed value of column 1
    **    ...
    **    mem[iMem+nCol+nCol]:   Last observed value of column N
    **
    ** Cells iMem through iMem+nCol are initialized to 0.  The others
    ** are initialized to NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp(v, OP_MemNull, 0, iMem+nCol+i+1);
    }

    /* Do the analysis.
    */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem+nCol+i+1, 0);
      sqlite3VdbeAddOp(v, OP_Ne, 0x100, 0);
    }
    sqlite3VdbeAddOp(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      addr = sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem+i+1);
      sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
      sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
      sqlite3VdbeAddOp(v, OP_MemStore, iMem+nCol+i+1, 1);
    }
    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp(v, OP_Close, iIdxCur, 0);

    /* Store the results.  
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entires
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
    ** rows of the table the index will select.  If D is the count of distinct
    ** values and K is the total number of rows, then the integer is computed
    ** as:
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
    addr = sqlite3VdbeAddOp(v, OP_IfNot, 0, 0);
    sqlite3VdbeAddOp(v, OP_NewRowid, iStatCur, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
    sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, " ", 0);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
      sqlite3VdbeAddOp(v, OP_Add, 0, 0);
      sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
      sqlite3VdbeAddOp(v, OP_Divide, 0, 0);
      sqlite3VdbeAddOp(v, OP_ToInt, 0, 0);
      if( i==nCol-1 ){
        sqlite3VdbeAddOp(v, OP_Concat, nCol*2-1, 0);
      }else{
        sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
      }
    }
    sqlite3VdbeOp3(v, OP_MakeRecord, 3, 0, "aaa", 0);
    sqlite3VdbeAddOp(v, OP_Insert, iStatCur, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
** Generate code that will cause the most recent index analysis to
** be laoded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp(v, OP_LoadAnalysis, iDb, 0);
  }
}

/*
** Generate code that will do an analysis of an entire database
*/
static void analyzeDatabase(Parse *pParse, int iDb){







|

|
|




|















|


|





|

|

|
|
|

|

|

|
|


|
|



















|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|


|
|











|







118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
  iIdxCur = pParse->nTab;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);

    /* Open a cursor to the index to be analyzed
    */
    assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
    sqlite3VdbeAddOp1(v, OP_Integer, iDb);
    VdbeComment((v, "%s", pIdx->zName));
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, 0,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    nCol = pIdx->nColumn;
    if( iMem+nCol*2>=pParse->nMem ){
      pParse->nMem = iMem+nCol*2+1;
    }
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, iIdxCur, nCol+1);

    /* Memory cells are used as follows:
    **
    **    mem[iMem]:             The total number of rows in the table.
    **    mem[iMem+1]:           Number of distinct values in column 1
    **    ...
    **    mem[iMem+nCol]:        Number of distinct values in column N
    **    mem[iMem+nCol+1]       Last observed value of column 1
    **    ...
    **    mem[iMem+nCol+nCol]:   Last observed value of column N
    **
    ** Cells iMem through iMem+nCol are initialized to 0.  The others
    ** are initialized to NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp2(v, OP_MemInt, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_MemNull, 0, iMem+nCol+i+1);
    }

    /* Do the analysis.
    */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_MemIncr, 1, iMem);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Column, iIdxCur, i);
      sqlite3VdbeAddOp1(v, OP_MemLoad, iMem+nCol+i+1);
      sqlite3VdbeAddOp1(v, OP_Ne, 0x100);
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      addr = sqlite3VdbeAddOp2(v, OP_MemIncr, 1, iMem+i+1);
      sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
      sqlite3VdbeAddOp2(v, OP_Column, iIdxCur, i);
      sqlite3VdbeAddOp2(v, OP_MemStore, iMem+nCol+i+1, 1);
    }
    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

    /* Store the results.  
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entires
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
    ** rows of the table the index will select.  If D is the count of distinct
    ** values and K is the total number of rows, then the integer is computed
    ** as:
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp1(v, OP_MemLoad, iMem);
    addr = sqlite3VdbeAddOp0(v, OP_IfNot);
    sqlite3VdbeAddOp1(v, OP_NewRowid, iStatCur);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pIdx->zName, 0);
    sqlite3VdbeAddOp1(v, OP_MemLoad, iMem);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, " ", 0);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp1(v, OP_MemLoad, iMem);
      sqlite3VdbeAddOp1(v, OP_MemLoad, iMem+i+1);
      sqlite3VdbeAddOp0(v, OP_Add);
      sqlite3VdbeAddOp1(v, OP_AddImm, -1);
      sqlite3VdbeAddOp1(v, OP_MemLoad, iMem+i+1);
      sqlite3VdbeAddOp0(v, OP_Divide);
      sqlite3VdbeAddOp0(v, OP_ToInt);
      if( i==nCol-1 ){
        sqlite3VdbeAddOp1(v, OP_Concat, nCol*2-1);
      }else{
        sqlite3VdbeAddOp1(v, OP_Dup, 1);
      }
    }
    sqlite3VdbeAddOp4(v, OP_MakeRecord, 3, 0, 0, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_Insert, iStatCur, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
** Generate code that will cause the most recent index analysis to
** be laoded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
  }
}

/*
** Generate code that will do an analysis of an entire database
*/
static void analyzeDatabase(Parse *pParse, int iDb){
Changes to src/attach.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
** $Id: attach.c,v 1.64 2007/12/27 15:12:17 danielk1977 Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_ATTACH
/*
** Resolve an expression that was part of an ATTACH or DETACH statement. This
** is slightly different from resolving a normal SQL expression, because simple













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
** $Id: attach.c,v 1.65 2008/01/03 00:01:24 drh Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_ATTACH
/*
** Resolve an expression that was part of an ATTACH or DETACH statement. This
** is slightly different from resolving a normal SQL expression, because simple
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
  v = sqlite3GetVdbe(pParse);
  sqlite3ExprCode(pParse, pFilename);
  sqlite3ExprCode(pParse, pDbname);
  sqlite3ExprCode(pParse, pKey);

  assert( v || db->mallocFailed );
  if( v ){
    sqlite3VdbeAddOp(v, OP_Function, 0, nFunc);
    pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
    sqlite3VdbeChangeP3(v, -1, (char *)pFunc, P3_FUNCDEF);

    /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
    ** statement only). For DETACH, set it to false (expire all existing
    ** statements).
    */
    sqlite3VdbeAddOp(v, OP_Expire, (type==SQLITE_ATTACH), 0);
  }
  
attach_end:
  sqlite3ExprDelete(pFilename);
  sqlite3ExprDelete(pDbname);
  sqlite3ExprDelete(pKey);
}







|

|





|







328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
  v = sqlite3GetVdbe(pParse);
  sqlite3ExprCode(pParse, pFilename);
  sqlite3ExprCode(pParse, pDbname);
  sqlite3ExprCode(pParse, pKey);

  assert( v || db->mallocFailed );
  if( v ){
    sqlite3VdbeAddOp2(v, OP_Function, 0, nFunc);
    pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
    sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);

    /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
    ** statement only). For DETACH, set it to false (expire all existing
    ** statements).
    */
    sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
  }
  
attach_end:
  sqlite3ExprDelete(pFilename);
  sqlite3ExprDelete(pDbname);
  sqlite3ExprDelete(pKey);
}
Changes to src/build.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.452 2008/01/02 16:27:10 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.453 2008/01/03 00:01:24 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

  for(i=0; i<pParse->nTableLock; i++){
    TableLock *p = &pParse->aTableLock[i];
    int p1 = p->iDb;
    if( p->isWriteLock ){
      p1 = -1*(p1+1);
    }
    sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC);
  }
}
#else
  #define codeTableLocks(x)
#endif

/*







|







110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

  for(i=0; i<pParse->nTableLock; i++){
    TableLock *p = &pParse->aTableLock[i];
    int p1 = p->iDb;
    if( p->isWriteLock ){
      p1 = -1*(p1+1);
    }
    sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, 0, p->zName, P4_STATIC);
  }
}
#else
  #define codeTableLocks(x)
#endif

/*
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

193
194
195
196
197
198
199
200
  }

  /* Begin by generating some termination code at the end of the
  ** vdbe program
  */
  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp(v, OP_Halt, 0, 0);

    /* The cookie mask contains one bit for each database file open.
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    ** set for each database that is used.  Generate code to start a
    ** transaction on each used database and to verify the schema cookie
    ** on each used database.
    */
    if( pParse->cookieGoto>0 ){
      u32 mask;
      int iDb;
      sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
      for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
        if( (mask & pParse->cookieMask)==0 ) continue;
        sqlite3VdbeUsesBtree(v, iDb);
        sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
        sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      if( pParse->pVirtualLock ){
        char *vtab = (char *)pParse->pVirtualLock->pVtab;
        sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);
      }
#endif

      /* Once all the cookies have been verified and transactions opened, 
      ** obtain the required table-locks. This is a no-op unless the 
      ** shared-cache feature is enabled.
      */
      codeTableLocks(pParse);
      sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
    }

#ifndef SQLITE_OMIT_TRACE
    /* Add a No-op that contains the complete text of the compiled SQL
    ** statement as its P3 argument.  This does not change the functionality
    ** of the program. 
    **
    ** This is used to implement sqlite3_trace().
    */

    sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
#endif /* SQLITE_OMIT_TRACE */
  }


  /* Get the VDBE program ready for execution
  */
  if( v && pParse->nErr==0 && !db->mallocFailed ){







|














|
|




|








|




|




>
|







146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  }

  /* Begin by generating some termination code at the end of the
  ** vdbe program
  */
  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp0(v, OP_Halt);

    /* The cookie mask contains one bit for each database file open.
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    ** set for each database that is used.  Generate code to start a
    ** transaction on each used database and to verify the schema cookie
    ** on each used database.
    */
    if( pParse->cookieGoto>0 ){
      u32 mask;
      int iDb;
      sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
      for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
        if( (mask & pParse->cookieMask)==0 ) continue;
        sqlite3VdbeUsesBtree(v, iDb);
        sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
        sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      if( pParse->pVirtualLock ){
        char *vtab = (char *)pParse->pVirtualLock->pVtab;
        sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
      }
#endif

      /* Once all the cookies have been verified and transactions opened, 
      ** obtain the required table-locks. This is a no-op unless the 
      ** shared-cache feature is enabled.
      */
      codeTableLocks(pParse);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
    }

#ifndef SQLITE_OMIT_TRACE
    /* Add a No-op that contains the complete text of the compiled SQL
    ** statement as its P4 argument.  This does not change the functionality
    ** of the program. 
    **
    ** This is used to implement sqlite3_trace().
    */
    sqlite3VdbeAddOp4(v, OP_Noop, 0, 0, 0,
                      pParse->zSql, pParse->zTail-pParse->zSql);
#endif /* SQLITE_OMIT_TRACE */
  }


  /* Get the VDBE program ready for execution
  */
  if( v && pParse->nErr==0 && !db->mallocFailed ){
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
** Open the sqlite_master table stored in database number iDb for
** writing. The table is opened using cursor 0.
*/
void sqlite3OpenMasterTable(Parse *p, int iDb){
  Vdbe *v = sqlite3GetVdbe(p);
  sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
}

/*
** The token *pName contains the name of a database (either "main" or
** "temp" or the name of an attached db). This routine returns the
** index of the named database in db->aDb[], or -1 if the named db 
** does not exist.







|
|
|







596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*
** Open the sqlite_master table stored in database number iDb for
** writing. The table is opened using cursor 0.
*/
void sqlite3OpenMasterTable(Parse *p, int iDb){
  Vdbe *v = sqlite3GetVdbe(p);
  sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
  sqlite3VdbeAddOp1(v, OP_Integer, iDb);
  sqlite3VdbeAddOp2(v, OP_OpenWrite, 0, MASTER_ROOT);
  sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
}

/*
** The token *pName contains the name of a database (either "main" or
** "temp" or the name of an attached db). This routine returns the
** index of the named database in db->aDb[], or -1 if the named db 
** does not exist.
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
  if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
    int lbl;
    int fileFormat;
    sqlite3BeginWriteOperation(pParse, 0, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( isVirtual ){
      sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
    }
#endif

    /* If the file format and encoding in the database have not been set, 
    ** set them now.
    */
    sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);   /* file_format */
    sqlite3VdbeUsesBtree(v, iDb);
    lbl = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp(v, OP_If, 0, lbl);
    fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
                  1 : SQLITE_MAX_FILE_FORMAT;
    sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0);
    sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
    sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0);
    sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
    sqlite3VdbeResolveLabel(v, lbl);

    /* This just creates a place-holder record in the sqlite_master table.
    ** The record created does not contain anything yet.  It will be replaced
    ** by the real entry in code generated at sqlite3EndTable().
    **
    ** The rowid for the new entry is left on the top of the stack.
    ** The rowid value is needed by the code that sqlite3EndTable will
    ** generate.
    */
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
    if( isView || isVirtual ){
      sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
    }else
#endif
    {
      sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
    }
    sqlite3OpenMasterTable(pParse, iDb);
    sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
    sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
    sqlite3VdbeAddOp(v, OP_Null, 0, 0);
    sqlite3VdbeAddOp(v, OP_Insert, 0, OPFLAG_APPEND);
    sqlite3VdbeAddOp(v, OP_Close, 0, 0);
    sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
  }

  /* Normal (non-error) return. */
  return;

  /* If an error occurs, we jump here */
begin_table_error:







|






|


|


|
|
|
|












|



|


|
|
|
|
|
|







841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
  if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
    int lbl;
    int fileFormat;
    sqlite3BeginWriteOperation(pParse, 0, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( isVirtual ){
      sqlite3VdbeAddOp0(v, OP_VBegin);
    }
#endif

    /* If the file format and encoding in the database have not been set, 
    ** set them now.
    */
    sqlite3VdbeAddOp2(v, OP_ReadCookie, iDb, 1);   /* file_format */
    sqlite3VdbeUsesBtree(v, iDb);
    lbl = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_If, 0, lbl);
    fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
                  1 : SQLITE_MAX_FILE_FORMAT;
    sqlite3VdbeAddOp1(v, OP_Integer, fileFormat);
    sqlite3VdbeAddOp2(v, OP_SetCookie, iDb, 1);
    sqlite3VdbeAddOp1(v, OP_Integer, ENC(db));
    sqlite3VdbeAddOp2(v, OP_SetCookie, iDb, 4);
    sqlite3VdbeResolveLabel(v, lbl);

    /* This just creates a place-holder record in the sqlite_master table.
    ** The record created does not contain anything yet.  It will be replaced
    ** by the real entry in code generated at sqlite3EndTable().
    **
    ** The rowid for the new entry is left on the top of the stack.
    ** The rowid value is needed by the code that sqlite3EndTable will
    ** generate.
    */
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
    if( isView || isVirtual ){
      sqlite3VdbeAddOp0(v, OP_Integer);
    }else
#endif
    {
      sqlite3VdbeAddOp1(v, OP_CreateTable, iDb);
    }
    sqlite3OpenMasterTable(pParse, iDb);
    sqlite3VdbeAddOp0(v, OP_NewRowid);
    sqlite3VdbeAddOp0(v, OP_Dup);
    sqlite3VdbeAddOp0(v, OP_Null);
    sqlite3VdbeAddOp2(v, OP_Insert, 0, OPFLAG_APPEND);
    sqlite3VdbeAddOp0(v, OP_Close);
    sqlite3VdbeAddOp1(v, OP_Pull, 1);
  }

  /* Normal (non-error) return. */
  return;

  /* If an error occurs, we jump here */
begin_table_error:
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
** This plan is not completely bullet-proof.  It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value.  But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
  sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
  sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.
**







|
|







1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
** This plan is not completely bullet-proof.  It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value.  But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
  sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
  sqlite3VdbeAddOp2(v, OP_SetCookie, iDb, 0);
}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.
**
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    char *zType;    /* "view" or "table" */
    char *zType2;   /* "VIEW" or "TABLE" */
    char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */

    v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;

    sqlite3VdbeAddOp(v, OP_Close, 0, 0);

    /* Create the rootpage for the new table and push it onto the stack.
    ** A view has no rootpage, so just push a zero onto the stack for
    ** views.  Initialize zType at the same time.
    */
    if( p->pSelect==0 ){
      /* A regular table */







|







1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
    char *zType;    /* "view" or "table" */
    char *zType2;   /* "VIEW" or "TABLE" */
    char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */

    v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;

    sqlite3VdbeAddOp1(v, OP_Close, 0);

    /* Create the rootpage for the new table and push it onto the stack.
    ** A view has no rootpage, so just push a zero onto the stack for
    ** views.  Initialize zType at the same time.
    */
    if( p->pSelect==0 ){
      /* A regular table */
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
    ** as a schema-lock must have already been obtained to create it. Since
    ** a schema-lock excludes all other database users, the write-lock would
    ** be redundant.
    */
    if( pSelect ){
      SelectDest dest = {SRT_Table, 1, 0};
      Table *pSelTab;
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
      sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
      pParse->nTab = 2;
      sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
      sqlite3VdbeAddOp(v, OP_Close, 1, 0);
      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
        if( pSelTab==0 ) return;
        assert( p->aCol==0 );
        p->nCol = pSelTab->nCol;
        p->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;







|
|
|


|







1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
    ** as a schema-lock must have already been obtained to create it. Since
    ** a schema-lock excludes all other database users, the write-lock would
    ** be redundant.
    */
    if( pSelect ){
      SelectDest dest = {SRT_Table, 1, 0};
      Table *pSelTab;
      sqlite3VdbeAddOp1(v, OP_Dup, 0);
      sqlite3VdbeAddOp1(v, OP_Integer, iDb);
      sqlite3VdbeAddOp2(v, OP_OpenWrite, 1, 0);
      pParse->nTab = 2;
      sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
      sqlite3VdbeAddOp1(v, OP_Close, 1);
      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
        if( pSelTab==0 ) return;
        assert( p->aCol==0 );
        p->nCol = pSelTab->nCol;
        p->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
        sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P3_DYNAMIC);
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy && pParse->nErr==0 ){
    Table *pOld;







|
|







1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
        sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy && pParse->nErr==0 ){
    Table *pOld;
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
** Write code to erase the table with root-page iTable from database iDb.
** Also write code to modify the sqlite_master table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy pushes an integer onto the stack. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_master table to
  ** reflect this.
  **
  ** The "#0" in the SQL is a special constant that means whatever value







|







1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
** Write code to erase the table with root-page iTable from database iDb.
** Also write code to modify the sqlite_master table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  sqlite3VdbeAddOp2(v, OP_Destroy, iTable, iDb);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy pushes an integer onto the stack. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_master table to
  ** reflect this.
  **
  ** The "#0" in the SQL is a special constant that means whatever value
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
    Db *pDb = &db->aDb[iDb];
    sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      Vdbe *v = sqlite3GetVdbe(pParse);
      if( v ){
        sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
      }
    }
#endif

    /* Drop all triggers associated with the table being dropped. Code
    ** is generated to remove entries from sqlite_master and/or
    ** sqlite_temp_master if required.







|







2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
    Db *pDb = &db->aDb[iDb];
    sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      Vdbe *v = sqlite3GetVdbe(pParse);
      if( v ){
        sqlite3VdbeAddOp0(v, OP_VBegin);
      }
    }
#endif

    /* Drop all triggers associated with the table being dropped. Code
    ** is generated to remove entries from sqlite_master and/or
    ** sqlite_temp_master if required.
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
      destroyTable(pParse, pTab);
    }

    /* Remove the table entry from SQLite's internal schema and modify
    ** the schema cookie.
    */
    if( IsVirtual(pTab) ){
      sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0);
    }
    sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
    sqlite3ChangeCookie(db, v, iDb);
  }
  sqliteViewResetAll(db, iDb);

exit_drop_table:
  sqlite3SrcListDelete(pName);
}







|

|







2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
      destroyTable(pParse, pTab);
    }

    /* Remove the table entry from SQLite's internal schema and modify
    ** the schema cookie.
    */
    if( IsVirtual(pTab) ){
      sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
    }
    sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
    sqlite3ChangeCookie(db, v, iDb);
  }
  sqliteViewResetAll(db, iDb);

exit_drop_table:
  sqlite3SrcListDelete(pName);
}
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247

2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273

  /* Require a write-lock on the table to perform this operation */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  if( memRootPage>=0 ){
    sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
    tnum = 0;
  }else{
    tnum = pIndex->tnum;
    sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
  }
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  pKey = sqlite3IndexKeyinfo(pParse, pIndex);
  sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF);

  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
  sqlite3GenerateIndexKey(v, pIndex, iTab);
  if( pIndex->onError!=OE_None ){
    int curaddr = sqlite3VdbeCurrentAddr(v);
    int addr2 = curaddr+4;
    sqlite3VdbeChangeP2(v, curaddr-1, addr2);
    sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
    sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
    sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
    sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
                    "indexed columns are not unique", P3_STATIC);
    assert( db->mallocFailed || addr2==sqlite3VdbeCurrentAddr(v) );
  }
  sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
  sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
  sqlite3VdbeJumpHere(v, addr1);
  sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
  sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
}

/*
** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
** and pTblList is the name of the table that is to be indexed.  Both will 
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable







|



|

|

|
>

|





|
|
|
|
|


|
|

|
|







2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275

  /* Require a write-lock on the table to perform this operation */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  if( memRootPage>=0 ){
    sqlite3VdbeAddOp1(v, OP_MemLoad, memRootPage);
    tnum = 0;
  }else{
    tnum = pIndex->tnum;
    sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  }
  sqlite3VdbeAddOp1(v, OP_Integer, iDb);
  pKey = sqlite3IndexKeyinfo(pParse, pIndex);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, 0, 
                    (char *)pKey, P4_KEYINFO_HANDOFF);
  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
  sqlite3GenerateIndexKey(v, pIndex, iTab);
  if( pIndex->onError!=OE_None ){
    int curaddr = sqlite3VdbeCurrentAddr(v);
    int addr2 = curaddr+4;
    sqlite3VdbeChangeP2(v, curaddr-1, addr2);
    sqlite3VdbeAddOp1(v, OP_Rowid, iTab);
    sqlite3VdbeAddOp1(v, OP_AddImm, 1);
    sqlite3VdbeAddOp2(v, OP_IsUnique, iIdx, addr2);
    sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
                    "indexed columns are not unique", P4_STATIC);
    assert( db->mallocFailed || addr2==sqlite3VdbeCurrentAddr(v) );
  }
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, 0);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
  sqlite3VdbeJumpHere(v, addr1);
  sqlite3VdbeAddOp1(v, OP_Close, iTab);
  sqlite3VdbeAddOp1(v, OP_Close, iIdx);
}

/*
** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
** and pTblList is the name of the table that is to be indexed.  Both will 
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto exit_create_index;


    /* Create the rootpage for the index
    */
    sqlite3BeginWriteOperation(pParse, 1, iDb);
    sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);

    /* Gather the complete text of the CREATE INDEX statement into
    ** the zStmt variable
    */
    if( pStart && pEnd ){
      /* A named index with an explicit CREATE INDEX statement */
      zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",







|
|







2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto exit_create_index;


    /* Create the rootpage for the index
    */
    sqlite3BeginWriteOperation(pParse, 1, iDb);
    sqlite3VdbeAddOp1(v, OP_CreateIndex, iDb);
    sqlite3VdbeAddOp2(v, OP_MemStore, iMem, 0);

    /* Gather the complete text of the CREATE INDEX statement into
    ** the zStmt variable
    */
    if( pStart && pEnd ){
      /* A named index with an explicit CREATE INDEX statement */
      zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
    sqlite3NestedParse(pParse, 
        "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
        pIndex->zName,
        pTab->zName,
        zStmt
    );
    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
    sqlite3_free(zStmt);

    /* Fill the index with data and reparse the schema. Code an OP_Expire
    ** to invalidate all pre-compiled statements.
    */
    if( pTblName ){
      sqlite3RefillIndex(pParse, pIndex, iMem);
      sqlite3ChangeCookie(db, v, iDb);
      sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
         sqlite3MPrintf(db, "name='%q'", pIndex->zName), P3_DYNAMIC);
      sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
    }
  }

  /* When adding an index to the list of indices for a table, make
  ** sure all indices labeled OE_Replace come after all those labeled
  ** OE_Ignore.  This is necessary for the correct operation of UPDATE
  ** and INSERT.







|








|
|
|







2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
    sqlite3NestedParse(pParse, 
        "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
        pIndex->zName,
        pTab->zName,
        zStmt
    );
    sqlite3VdbeAddOp1(v, OP_Pop, 1);
    sqlite3_free(zStmt);

    /* Fill the index with data and reparse the schema. Code an OP_Expire
    ** to invalidate all pre-compiled statements.
    */
    if( pTblName ){
      sqlite3RefillIndex(pParse, pIndex, iMem);
      sqlite3ChangeCookie(db, v, iDb);
      sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
         sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
      sqlite3VdbeAddOp1(v, OP_Expire, 0);
    }
  }

  /* When adding an index to the list of indices for a table, make
  ** sure all indices labeled OE_Replace come after all those labeled
  ** OE_Ignore.  This is necessary for the correct operation of UPDATE
  ** and INSERT.
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
** Generate code to make sure the file format number is at least minFormat.
** The generated code will increase the file format number if necessary.
*/
void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
  Vdbe *v;
  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);
    sqlite3VdbeUsesBtree(v, iDb);
    sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
    sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
    sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
    sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
  }
}

/*
** Fill the Index.aiRowEst[] array with default information - information
** to be used when we have not run the ANALYZE command.
**







|

|
|
|
|







2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
** Generate code to make sure the file format number is at least minFormat.
** The generated code will increase the file format number if necessary.
*/
void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
  Vdbe *v;
  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp2(v, OP_ReadCookie, iDb, 1);
    sqlite3VdbeUsesBtree(v, iDb);
    sqlite3VdbeAddOp1(v, OP_Integer, minFormat);
    sqlite3VdbeAddOp2(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
    sqlite3VdbeAddOp1(v, OP_Integer, minFormat);
    sqlite3VdbeAddOp2(v, OP_SetCookie, iDb, 1);
  }
}

/*
** Fill the Index.aiRowEst[] array with default information - information
** to be used when we have not run the ANALYZE command.
**
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
    sqlite3NestedParse(pParse,
       "DELETE FROM %Q.%s WHERE name=%Q",
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       pIndex->zName
    );
    sqlite3ChangeCookie(db, v, iDb);
    destroyRootPage(pParse, pIndex->tnum, iDb);
    sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
  }

exit_drop_index:
  sqlite3SrcListDelete(pName);
}

/*







|







2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
    sqlite3NestedParse(pParse,
       "DELETE FROM %Q.%s WHERE name=%Q",
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       pIndex->zName
    );
    sqlite3ChangeCookie(db, v, iDb);
    destroyRootPage(pParse, pIndex->tnum, iDb);
    sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
  }

exit_drop_index:
  sqlite3SrcListDelete(pName);
}

/*
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
  if( pParse->nErr || db->mallocFailed ) return;
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;

  v = sqlite3GetVdbe(pParse);
  if( !v ) return;
  if( type!=TK_DEFERRED ){
    for(i=0; i<db->nDb; i++){
      sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
      sqlite3VdbeUsesBtree(v, i);
    }
  }
  sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
}

/*
** Commit a transaction
*/
void sqlite3CommitTransaction(Parse *pParse){
  sqlite3 *db;
  Vdbe *v;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || db->mallocFailed ) return;
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;

  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
  }
}

/*
** Rollback a transaction
*/
void sqlite3RollbackTransaction(Parse *pParse){
  sqlite3 *db;
  Vdbe *v;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || db->mallocFailed ) return;
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;

  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
  }
}

/*
** Make sure the TEMP database is open and available for use.  Return
** the number of errors.  Leave any error messages in the pParse structure.
*/







|



|















|
















|







3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
  if( pParse->nErr || db->mallocFailed ) return;
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;

  v = sqlite3GetVdbe(pParse);
  if( !v ) return;
  if( type!=TK_DEFERRED ){
    for(i=0; i<db->nDb; i++){
      sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
      sqlite3VdbeUsesBtree(v, i);
    }
  }
  sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
}

/*
** Commit a transaction
*/
void sqlite3CommitTransaction(Parse *pParse){
  sqlite3 *db;
  Vdbe *v;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || db->mallocFailed ) return;
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;

  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
  }
}

/*
** Rollback a transaction
*/
void sqlite3RollbackTransaction(Parse *pParse){
  sqlite3 *db;
  Vdbe *v;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || db->mallocFailed ) return;
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;

  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
  }
}

/*
** Make sure the TEMP database is open and available for use.  Return
** the number of errors.  Leave any error messages in the pParse structure.
*/
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
  Vdbe *v;
  int mask;

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;  /* This only happens if there was a prior error */
  db = pParse->db;
  if( pParse->cookieGoto==0 ){
    pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
  }
  if( iDb>=0 ){
    assert( iDb<db->nDb );
    assert( db->aDb[iDb].pBt!=0 || iDb==1 );
    assert( iDb<SQLITE_MAX_ATTACHED+2 );
    mask = 1<<iDb;
    if( (pParse->cookieMask & mask)==0 ){







|







3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
  Vdbe *v;
  int mask;

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;  /* This only happens if there was a prior error */
  db = pParse->db;
  if( pParse->cookieGoto==0 ){
    pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
  }
  if( iDb>=0 ){
    assert( iDb<db->nDb );
    assert( db->aDb[iDb].pBt!=0 || iDb==1 );
    assert( iDb<SQLITE_MAX_ATTACHED+2 );
    mask = 1<<iDb;
    if( (pParse->cookieMask & mask)==0 ){
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
*/
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  sqlite3CodeVerifySchema(pParse, iDb);
  pParse->writeMask |= 1<<iDb;
  if( setStatement && pParse->nested==0 ){
    sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
  }
  if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
    sqlite3BeginWriteOperation(pParse, setStatement, 1);
  }
}

/*







|







3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
*/
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  sqlite3CodeVerifySchema(pParse, iDb);
  pParse->writeMask |= 1<<iDb;
  if( setStatement && pParse->nested==0 ){
    sqlite3VdbeAddOp1(v, OP_Statement, iDb);
  }
  if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
    sqlite3BeginWriteOperation(pParse, setStatement, 1);
  }
}

/*
Changes to src/delete.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
** $Id: delete.c,v 1.139 2008/01/02 16:27:10 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** Look up every table that is named in pSrc.  If any table is not found,
** add an error message to pParse->zErrMsg and return NULL.  If all tables
** are found, return a pointer to the last table.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
** $Id: delete.c,v 1.140 2008/01/03 00:01:24 drh Exp $
*/
#include "sqliteInt.h"

/*
** Look up every table that is named in pSrc.  If any table is not found,
** add an error message to pParse->zErrMsg and return NULL.  If all tables
** are found, return a pointer to the last table.
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
  int opcode      /* OP_OpenRead or OP_OpenWrite */
){
  Vdbe *v;
  if( IsVirtual(pTab) ) return;
  v = sqlite3GetVdbe(p);
  assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
  sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  VdbeComment((v, "%s", pTab->zName));
  sqlite3VdbeAddOp(v, opcode, iCur, pTab->tnum);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
}


/*
** Generate code for a DELETE FROM statement.
**
**     DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;







|

|
|







71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
  int opcode      /* OP_OpenRead or OP_OpenWrite */
){
  Vdbe *v;
  if( IsVirtual(pTab) ) return;
  v = sqlite3GetVdbe(p);
  assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
  sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
  sqlite3VdbeAddOp1(v, OP_Integer, iDb);
  VdbeComment((v, "%s", pTab->zName));
  sqlite3VdbeAddOp2(v, opcode, iCur, pTab->tnum);
  sqlite3VdbeAddOp2(v, OP_SetNumColumns, iCur, pTab->nCol);
}


/*
** Generate code for a DELETE FROM statement.
**
**     DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);

  if( triggers_exist ){
    int iGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    addr = sqlite3VdbeMakeLabel(v);
    iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
    (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
        -1, oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
        addr, &old_col_mask, 0);
    iEndBeforeTrigger = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
    (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
        oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
        addr, &old_col_mask, 0);
    iEndAfterTrigger = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, iGoto);
  }

  /* If we are trying to delete from a view, realize that view into
  ** a ephemeral table.
  */
  if( isView ){
    SelectDest dest = {SRT_EphemTab, 0, 0};
    Select *pView = sqlite3SelectDup(db, pTab->pSelect);
    sqlite3SelectMask(pParse, pView, old_col_mask);
    dest.iParm = iCur;
    sqlite3Select(pParse, pView, &dest, 0, 0, 0, 0);
    sqlite3SelectDelete(pView);
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( db->flags & SQLITE_CountRows ){
    memCnt = pParse->nMem++;
    sqlite3VdbeAddOp(v, OP_MemInt, 0, memCnt);
  }

  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table.  Note, however, that
  ** this means that the row change count will be incorrect.
  */
  if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
    if( db->flags & SQLITE_CountRows ){
      /* If counting rows deleted, just count the total number of
      ** entries in the table. */
      int addr2;
      if( !isView ){
        sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
      }
      sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
      addr2 = sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
      sqlite3VdbeAddOp(v, OP_Next, iCur, addr2);
      sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
    }
    if( !isView ){
      sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, iDb);
      if( !pParse->nested ){
        sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
      }
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        assert( pIdx->pSchema==pTab->pSchema );
        sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, iDb);
      }
    }
  } 
  /* The usual case: There is a WHERE clause so we have to scan through
  ** the table and pick which records to delete.
  */
  else{
    /* Begin the database scan
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
    if( pWInfo==0 ) goto delete_from_cleanup;

    /* Remember the rowid of every item to be deleted.
    */
    sqlite3VdbeAddOp(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, 0);
    sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
    }

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);

    /* Open the pseudo-table used to store OLD if there are triggers.
    */
    if( triggers_exist ){
      sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
      sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
    }

    /* Delete every item whose key was written to the list during the
    ** database scan.  We have to delete items after the scan is complete
    ** because deleting an item can change the scan order.
    */
    end = sqlite3VdbeMakeLabel(v);







|





|




|




















|














|
|
|
|


|

|



|














|
|

|









|
|







197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);

  if( triggers_exist ){
    int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
    addr = sqlite3VdbeMakeLabel(v);
    iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
    (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
        -1, oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
        addr, &old_col_mask, 0);
    iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
    iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
    (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
        oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
        addr, &old_col_mask, 0);
    iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, iGoto);
  }

  /* If we are trying to delete from a view, realize that view into
  ** a ephemeral table.
  */
  if( isView ){
    SelectDest dest = {SRT_EphemTab, 0, 0};
    Select *pView = sqlite3SelectDup(db, pTab->pSelect);
    sqlite3SelectMask(pParse, pView, old_col_mask);
    dest.iParm = iCur;
    sqlite3Select(pParse, pView, &dest, 0, 0, 0, 0);
    sqlite3SelectDelete(pView);
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( db->flags & SQLITE_CountRows ){
    memCnt = pParse->nMem++;
    sqlite3VdbeAddOp2(v, OP_MemInt, 0, memCnt);
  }

  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table.  Note, however, that
  ** this means that the row change count will be incorrect.
  */
  if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
    if( db->flags & SQLITE_CountRows ){
      /* If counting rows deleted, just count the total number of
      ** entries in the table. */
      int addr2;
      if( !isView ){
        sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
      }
      sqlite3VdbeAddOp2(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
      addr2 = sqlite3VdbeAddOp2(v, OP_MemIncr, 1, memCnt);
      sqlite3VdbeAddOp2(v, OP_Next, iCur, addr2);
      sqlite3VdbeAddOp1(v, OP_Close, iCur);
    }
    if( !isView ){
      sqlite3VdbeAddOp2(v, OP_Clear, pTab->tnum, iDb);
      if( !pParse->nested ){
        sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
      }
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        assert( pIdx->pSchema==pTab->pSchema );
        sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
      }
    }
  } 
  /* The usual case: There is a WHERE clause so we have to scan through
  ** the table and pick which records to delete.
  */
  else{
    /* Begin the database scan
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
    if( pWInfo==0 ) goto delete_from_cleanup;

    /* Remember the rowid of every item to be deleted.
    */
    sqlite3VdbeAddOp1(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur);
    sqlite3VdbeAddOp0(v, OP_FifoWrite);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_MemIncr, 1, memCnt);
    }

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);

    /* Open the pseudo-table used to store OLD if there are triggers.
    */
    if( triggers_exist ){
      sqlite3VdbeAddOp1(v, OP_OpenPseudo, oldIdx);
      sqlite3VdbeAddOp2(v, OP_SetNumColumns, oldIdx, pTab->nCol);
    }

    /* Delete every item whose key was written to the list during the
    ** database scan.  We have to delete items after the scan is complete
    ** because deleting an item can change the scan order.
    */
    end = sqlite3VdbeMakeLabel(v);
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

    /* This is the beginning of the delete loop. If a trigger encounters
    ** an IGNORE constraint, it jumps back to here.
    */
    if( triggers_exist ){
      sqlite3VdbeResolveLabel(v, addr);
    }
    addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
    sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);

    if( triggers_exist ){
      int mem1 = pParse->nMem++;
      if( !isView ){
        sqlite3VdbeAddOp(v, OP_MemStore, mem1, 0);
      }
      sqlite3VdbeAddOp(v, OP_NotExists, iCur, addr);
      sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
      if( old_col_mask ){
        sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
      }else{
        sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      }
      sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);

      /* Jump back and run the BEFORE triggers */
      sqlite3VdbeAddOp(v, OP_Goto, 0, iBeginBeforeTrigger);
      sqlite3VdbeJumpHere(v, iEndBeforeTrigger);

      if( !isView ){
        sqlite3VdbeAddOp(v, OP_MemLoad, mem1, 0);
      }
    }

    if( !isView ){
      /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
      if( IsVirtual(pTab) ){
        pParse->pVirtualLock = pTab;

        sqlite3VdbeOp3(v, OP_VUpdate, 0, 1, (const char*)pTab->pVtab, P3_VTAB);
      }else
#endif
      {
        sqlite3GenerateRowDelete(db, v, pTab, iCur, pParse->nested==0);
      }
    }

    /* If there are row triggers, close all cursors then invoke
    ** the AFTER triggers
    */
    if( triggers_exist ){
      /* Jump back and run the AFTER triggers */
      sqlite3VdbeAddOp(v, OP_Goto, 0, iBeginAfterTrigger);
      sqlite3VdbeJumpHere(v, iEndAfterTrigger);
    }

    /* End of the delete loop */
    sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
    sqlite3VdbeResolveLabel(v, end);

    /* Close the cursors after the loop if there are no row triggers */
    if( !isView  && !IsVirtual(pTab) ){
      for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
        sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
      }
      sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
    }
  }

  /*
  ** Return the number of rows that were deleted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
    sqlite3VdbeAddOp(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P3_STATIC);
  }

delete_from_cleanup:
  sqlite3AuthContextPop(&sContext);
  sqlite3SrcListDelete(pTabList);
  sqlite3ExprDelete(pWhere);
  return;







|
|




|

|
|

|

|

|


|



|








>
|












|




|





|

|









|

|







307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

    /* This is the beginning of the delete loop. If a trigger encounters
    ** an IGNORE constraint, it jumps back to here.
    */
    if( triggers_exist ){
      sqlite3VdbeResolveLabel(v, addr);
    }
    addr = sqlite3VdbeAddOp2(v, OP_FifoRead, 0, end);
    sqlite3VdbeAddOp1(v, OP_StackDepth, -1);

    if( triggers_exist ){
      int mem1 = pParse->nMem++;
      if( !isView ){
        sqlite3VdbeAddOp1(v, OP_MemStore, mem1);
      }
      sqlite3VdbeAddOp2(v, OP_NotExists, iCur, addr);
      sqlite3VdbeAddOp1(v, OP_Rowid, iCur);
      if( old_col_mask ){
        sqlite3VdbeAddOp1(v, OP_RowData, iCur);
      }else{
        sqlite3VdbeAddOp0(v, OP_Null);
      }
      sqlite3VdbeAddOp1(v, OP_Insert, oldIdx);

      /* Jump back and run the BEFORE triggers */
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
      sqlite3VdbeJumpHere(v, iEndBeforeTrigger);

      if( !isView ){
        sqlite3VdbeAddOp1(v, OP_MemLoad, mem1);
      }
    }

    if( !isView ){
      /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
      if( IsVirtual(pTab) ){
        pParse->pVirtualLock = pTab;
        sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, 0,
                          (const char*)pTab->pVtab, P4_VTAB);
      }else
#endif
      {
        sqlite3GenerateRowDelete(db, v, pTab, iCur, pParse->nested==0);
      }
    }

    /* If there are row triggers, close all cursors then invoke
    ** the AFTER triggers
    */
    if( triggers_exist ){
      /* Jump back and run the AFTER triggers */
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
      sqlite3VdbeJumpHere(v, iEndAfterTrigger);
    }

    /* End of the delete loop */
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
    sqlite3VdbeResolveLabel(v, end);

    /* Close the cursors after the loop if there are no row triggers */
    if( !isView  && !IsVirtual(pTab) ){
      for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
        sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
      }
      sqlite3VdbeAddOp1(v, OP_Close, iCur);
    }
  }

  /*
  ** Return the number of rows that were deleted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P4_STATIC);
  }

delete_from_cleanup:
  sqlite3AuthContextPop(&sContext);
  sqlite3SrcListDelete(pTabList);
  sqlite3ExprDelete(pWhere);
  return;
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  sqlite3 *db,       /* The database containing the index */
  Vdbe *v,           /* Generate code into this VDBE */
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  int count          /* Increment the row change counter */
){
  int addr;
  addr = sqlite3VdbeAddOp(v, OP_NotExists, iCur, 0);
  sqlite3GenerateRowIndexDelete(v, pTab, iCur, 0);
  sqlite3VdbeAddOp(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
  if( count ){
    sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
  }
  sqlite3VdbeJumpHere(v, addr);
}

/*
** This routine generates VDBE code that causes the deletion of all
** index entries associated with a single row of a single table.







|

|

|







415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
  sqlite3 *db,       /* The database containing the index */
  Vdbe *v,           /* Generate code into this VDBE */
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  int count          /* Increment the row change counter */
){
  int addr;
  addr = sqlite3VdbeAddOp1(v, OP_NotExists, iCur);
  sqlite3GenerateRowIndexDelete(v, pTab, iCur, 0);
  sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
  if( count ){
    sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
  }
  sqlite3VdbeJumpHere(v, addr);
}

/*
** This routine generates VDBE code that causes the deletion of all
** index entries associated with a single row of a single table.
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
){
  int i;
  Index *pIdx;

  for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
    if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
    sqlite3GenerateIndexKey(v, pIdx, iCur);
    sqlite3VdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
  }
}

/*
** Generate code that will assemble an index key and put it on the top
** of the tack.  The key with be for index pIdx which is an index on pTab.
** iCur is the index of a cursor open on the pTab table and pointing to
** the entry that needs indexing.
*/
void sqlite3GenerateIndexKey(
  Vdbe *v,           /* Generate code into this VDBE */
  Index *pIdx,       /* The index for which to generate a key */
  int iCur           /* Cursor number for the pIdx->pTable table */
){
  int j;
  Table *pTab = pIdx->pTable;

  sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
  for(j=0; j<pIdx->nColumn; j++){
    int idx = pIdx->aiColumn[j];
    if( idx==pTab->iPKey ){
      sqlite3VdbeAddOp(v, OP_Dup, j, 0);
    }else{
      sqlite3VdbeAddOp(v, OP_Column, iCur, idx);
      sqlite3ColumnDefault(v, pTab, idx);
    }
  }
  sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
  sqlite3IndexAffinityStr(v, pIdx);
}







|

















|



|

|



|


452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
){
  int i;
  Index *pIdx;

  for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
    if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
    sqlite3GenerateIndexKey(v, pIdx, iCur);
    sqlite3VdbeAddOp1(v, OP_IdxDelete, iCur+i);
  }
}

/*
** Generate code that will assemble an index key and put it on the top
** of the tack.  The key with be for index pIdx which is an index on pTab.
** iCur is the index of a cursor open on the pTab table and pointing to
** the entry that needs indexing.
*/
void sqlite3GenerateIndexKey(
  Vdbe *v,           /* Generate code into this VDBE */
  Index *pIdx,       /* The index for which to generate a key */
  int iCur           /* Cursor number for the pIdx->pTable table */
){
  int j;
  Table *pTab = pIdx->pTable;

  sqlite3VdbeAddOp1(v, OP_Rowid, iCur);
  for(j=0; j<pIdx->nColumn; j++){
    int idx = pIdx->aiColumn[j];
    if( idx==pTab->iPKey ){
      sqlite3VdbeAddOp1(v, OP_Dup, j);
    }else{
      sqlite3VdbeAddOp2(v, OP_Column, iCur, idx);
      sqlite3ColumnDefault(v, pTab, idx);
    }
  }
  sqlite3VdbeAddOp1(v, OP_MakeIdxRec, pIdx->nColumn);
  sqlite3IndexAffinityStr(v, pIdx);
}
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.324 2008/01/02 16:27:10 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.325 2008/01/03 00:01:24 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
  Expr *pRight,     /* The right operand */
  int opcode,       /* The comparison opcode */
  int dest,         /* Jump here if true.  */
  int jumpIfNull    /* If true, jump if either operand is NULL */
){
  int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
  CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
  return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);

}

/*
** Construct a new expression node and return a pointer to it.  Memory
** for this node is obtained from sqlite3_malloc().  The calling function
** is responsible for making sure the node eventually gets freed.
*/







|
>







212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  Expr *pRight,     /* The right operand */
  int opcode,       /* The comparison opcode */
  int dest,         /* Jump here if true.  */
  int jumpIfNull    /* If true, jump if either operand is NULL */
){
  int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
  CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
  return sqlite3VdbeAddOp4(pParse->pVdbe, opcode, p1, dest, 0,
                           (void*)p3, P4_COLLSEQ);
}

/*
** Construct a new expression node and return a pointer to it.  Memory
** for this node is obtained from sqlite3_malloc().  The calling function
** is responsible for making sure the node eventually gets freed.
*/
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
  if( v==0 ) return 0;
  p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
  if( p==0 ){
    return 0;  /* Malloc failed */
  }
  depth = atoi((char*)&pToken->z[1]);
  p->iTable = pParse->nMem++;
  sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
  sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
  return p;
}

/*
** Join two expressions using an AND operator.  If either expression is
** NULL, then just return the other expression.
*/







|
|







304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
  if( v==0 ) return 0;
  p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
  if( p==0 ){
    return 0;  /* Malloc failed */
  }
  depth = atoi((char*)&pToken->z[1]);
  p->iTable = pParse->nMem++;
  sqlite3VdbeAddOp1(v, OP_Dup, depth);
  sqlite3VdbeAddOp2(v, OP_MemStore, p->iTable, 1);
  return p;
}

/*
** Join two expressions using an AND operator.  If either expression is
** NULL, then just return the other expression.
*/
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
    if( iCol<0 ){
      int iMem = pParse->nMem++;
      int iAddr;
      Table *pTab = p->pSrc->a[0].pTab;
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      sqlite3VdbeUsesBtree(v, iDb);

      sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
      iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);
      sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);

      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
      eType = IN_INDEX_ROWID;

      sqlite3VdbeJumpHere(v, iAddr);
    }else{
      /* The collation sequence used by the comparison. If an index is to 







|
|
|







1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
    if( iCol<0 ){
      int iMem = pParse->nMem++;
      int iAddr;
      Table *pTab = p->pSrc->a[0].pTab;
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      sqlite3VdbeUsesBtree(v, iDb);

      sqlite3VdbeAddOp1(v, OP_MemLoad, iMem);
      iAddr = sqlite3VdbeAddOp2(v, OP_If, 0, iMem);
      sqlite3VdbeAddOp2(v, OP_MemInt, 1, iMem);

      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
      eType = IN_INDEX_ROWID;

      sqlite3VdbeJumpHere(v, iAddr);
    }else{
      /* The collation sequence used by the comparison. If an index is to 
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
          int iAddr;
          char *pKey;
  
          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
          iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
          sqlite3VdbeUsesBtree(v, iDb);

          sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
          iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);
          sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);
  
          sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
          VdbeComment((v, "%s", pIdx->zName));

          sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF);
          eType = IN_INDEX_INDEX;
          sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn);

          sqlite3VdbeJumpHere(v, iAddr);
        }
      }
    }
  }








|
|
|

|

>
|

|







1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
          int iAddr;
          char *pKey;
  
          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
          iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
          sqlite3VdbeUsesBtree(v, iDb);

          sqlite3VdbeAddOp1(v, OP_MemLoad, iMem);
          iAddr = sqlite3VdbeAddOp2(v, OP_If, 0, iMem);
          sqlite3VdbeAddOp2(v, OP_MemInt, 1, iMem);
  
          sqlite3VdbeAddOp1(v, OP_Integer, iDb);
          VdbeComment((v, "%s", pIdx->zName));
          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, 0,
                               pKey,P4_KEYINFO_HANDOFF);
          eType = IN_INDEX_INDEX;
          sqlite3VdbeAddOp2(v, OP_SetNumColumns, iTab, pIdx->nColumn);

          sqlite3VdbeJumpHere(v, iAddr);
        }
      }
    }
  }

1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
  **    *  We are inside a trigger
  **
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
  */
  if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
    int mem = pParse->nMem++;
    sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
    testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
    assert( testAddr>0 || pParse->db->mallocFailed );
    sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
  }

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;
      KeyInfo keyInfo;
      int addr;        /* Address of OP_OpenEphemeral instruction */







|
|

|







1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
  **    *  We are inside a trigger
  **
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
  */
  if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
    int mem = pParse->nMem++;
    sqlite3VdbeAddOp1(v, OP_MemLoad, mem);
    testAddr = sqlite3VdbeAddOp0(v, OP_If);
    assert( testAddr>0 || pParse->db->mallocFailed );
    sqlite3VdbeAddOp2(v, OP_MemInt, 1, mem);
  }

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;
      KeyInfo keyInfo;
      int addr;        /* Address of OP_OpenEphemeral instruction */
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
      ** column is used to build the index keys. If both 'x' and the
      ** SELECT... statement are columns, then numeric affinity is used
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
      memset(&keyInfo, 0, sizeof(keyInfo));
      keyInfo.nField = 1;
      sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);

      if( pExpr->pSelect ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */







|


|







1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
      ** column is used to build the index keys. If both 'x' and the
      ** SELECT... statement are columns, then numeric affinity is used
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite3VdbeAddOp1(v, OP_OpenEphemeral, pExpr->iTable);
      memset(&keyInfo, 0, sizeof(keyInfo));
      keyInfo.nField = 1;
      sqlite3VdbeAddOp2(v, OP_SetNumColumns, pExpr->iTable, 1);

      if( pExpr->pSelect ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary
        ** table allocated and opened above.
        */
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
          if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
            sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
            testAddr = 0;
          }

          /* Evaluate the expression and insert it into the temp table */
          sqlite3ExprCode(pParse, pE2);
          sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
          sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
        }
      }
      sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
      break;
    }

    case TK_EXISTS:
    case TK_SELECT: {
      /* This has to be a scalar SELECT.  Generate code to put the
      ** value of this select in a memory cell and record the number
      ** of the memory cell in iColumn.
      */
      static const Token one = { (u8*)"1", 0, 1 };
      Select *pSel;
      SelectDest dest;

      pSel = pExpr->pSelect;
      dest.iParm = pParse->nMem++;
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        sqlite3VdbeAddOp(v, OP_MemNull, 0, dest.iParm);
        VdbeComment((v, "Init subquery result"));
      }else{
        dest.eDest = SRT_Exists;
        sqlite3VdbeAddOp(v, OP_MemInt, 0, dest.iParm);
        VdbeComment((v, "Init EXISTS result"));
      }
      sqlite3ExprDelete(pSel->pLimit);
      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
      if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){
        return;
      }







|
|


|

















|



|







1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
          if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
            sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
            testAddr = 0;
          }

          /* Evaluate the expression and insert it into the temp table */
          sqlite3ExprCode(pParse, pE2);
          sqlite3VdbeAddOp4(v, OP_MakeRecord, 1, 0, 0, &affinity, 1);
          sqlite3VdbeAddOp1(v, OP_IdxInsert, pExpr->iTable);
        }
      }
      sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
      break;
    }

    case TK_EXISTS:
    case TK_SELECT: {
      /* This has to be a scalar SELECT.  Generate code to put the
      ** value of this select in a memory cell and record the number
      ** of the memory cell in iColumn.
      */
      static const Token one = { (u8*)"1", 0, 1 };
      Select *pSel;
      SelectDest dest;

      pSel = pExpr->pSelect;
      dest.iParm = pParse->nMem++;
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        sqlite3VdbeAddOp2(v, OP_MemNull, 0, dest.iParm);
        VdbeComment((v, "Init subquery result"));
      }else{
        dest.eDest = SRT_Exists;
        sqlite3VdbeAddOp2(v, OP_MemInt, 0, dest.iParm);
        VdbeComment((v, "Init EXISTS result"));
      }
      sqlite3ExprDelete(pSel->pLimit);
      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
      if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){
        return;
      }
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
  if( z ){
    double value;
    char *zV;
    assert( !isdigit(z[n]) );
    sqlite3AtoF(z, &value);
    if( negateFlag ) value = -value;
    zV = dup8bytes(v, (char*)&value);
    sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL);
  }
}


/*
** Generate an instruction that will put the integer describe by
** text z[0..n-1] on the stack.
**
** The z[] string will probably not be zero-terminated.  But the 
** z[n] character is guaranteed to be something that does not look
** like the continuation of the number.
*/
static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){
  assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
  if( z ){
    int i;
    assert( !isdigit(z[n]) );
    if( sqlite3GetInt32(z, &i) ){
      if( negateFlag ) i = -i;
      sqlite3VdbeAddOp(v, OP_Integer, i, 0);
    }else if( sqlite3FitsIn64Bits(z, negateFlag) ){
      i64 value;
      char *zV;
      sqlite3Atoi64(z, &value);
      if( negateFlag ) value = -value;
      zV = dup8bytes(v, (char*)&value);
      sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64);
    }else{
      codeReal(v, z, n, negateFlag);
    }
  }
}


/*
** Generate code that will extract the iColumn-th column from
** table pTab and push that column value on the stack.  There
** is an open cursor to pTab in iTable.  If iColumn<0 then
** code is generated that extracts the rowid.
*/
void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
  if( iColumn<0 ){
    int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
    sqlite3VdbeAddOp(v, op, iTable, 0);
  }else if( pTab==0 ){
    sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
  }else{
    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
    sqlite3VdbeAddOp(v, op, iTable, iColumn);
    sqlite3ColumnDefault(v, pTab, iColumn);
#ifndef SQLITE_OMIT_FLOATING_POINT
    if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
      sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
    }
#endif
  }
}

/*
** Generate code into the current Vdbe to evaluate the given







|



















|






|
















|

|


|



|







1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
  if( z ){
    double value;
    char *zV;
    assert( !isdigit(z[n]) );
    sqlite3AtoF(z, &value);
    if( negateFlag ) value = -value;
    zV = dup8bytes(v, (char*)&value);
    sqlite3VdbeAddOp4(v, OP_Real, 0, 0, 0, zV, P4_REAL);
  }
}


/*
** Generate an instruction that will put the integer describe by
** text z[0..n-1] on the stack.
**
** The z[] string will probably not be zero-terminated.  But the 
** z[n] character is guaranteed to be something that does not look
** like the continuation of the number.
*/
static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){
  assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
  if( z ){
    int i;
    assert( !isdigit(z[n]) );
    if( sqlite3GetInt32(z, &i) ){
      if( negateFlag ) i = -i;
      sqlite3VdbeAddOp1(v, OP_Integer, i);
    }else if( sqlite3FitsIn64Bits(z, negateFlag) ){
      i64 value;
      char *zV;
      sqlite3Atoi64(z, &value);
      if( negateFlag ) value = -value;
      zV = dup8bytes(v, (char*)&value);
      sqlite3VdbeAddOp4(v, OP_Int64, 0, 0, 0, zV, P4_INT64);
    }else{
      codeReal(v, z, n, negateFlag);
    }
  }
}


/*
** Generate code that will extract the iColumn-th column from
** table pTab and push that column value on the stack.  There
** is an open cursor to pTab in iTable.  If iColumn<0 then
** code is generated that extracts the rowid.
*/
void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
  if( iColumn<0 ){
    int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
    sqlite3VdbeAddOp1(v, op, iTable);
  }else if( pTab==0 ){
    sqlite3VdbeAddOp2(v, OP_Column, iTable, iColumn);
  }else{
    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
    sqlite3VdbeAddOp2(v, op, iTable, iColumn);
    sqlite3ColumnDefault(v, pTab, iColumn);
#ifndef SQLITE_OMIT_FLOATING_POINT
    if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
      sqlite3VdbeAddOp0(v, OP_RealAffinity);
    }
#endif
  }
}

/*
** Generate code into the current Vdbe to evaluate the given
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
  Vdbe *v = pParse->pVdbe;
  int op;
  int stackChng = 1;    /* Amount of change to stack depth */

  if( v==0 ) return;
  if( pExpr==0 ){
    sqlite3VdbeAddOp(v, OP_Null, 0, 0);
    return;
  }
  op = pExpr->op;
  switch( op ){
    case TK_AGG_COLUMN: {
      AggInfo *pAggInfo = pExpr->pAggInfo;
      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
      if( !pAggInfo->directMode ){
        sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
        break;
      }else if( pAggInfo->useSortingIdx ){
        sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
                              pCol->iSorterColumn);
        break;
      }
      /* Otherwise, fall thru into the TK_COLUMN case */
    }
    case TK_COLUMN: {
      if( pExpr->iTable<0 ){
        /* This only happens when coding check constraints */
        assert( pParse->ckOffset>0 );
        sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
      }else{
        sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
      }
      break;
    }
    case TK_INTEGER: {
      codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0);
      break;
    }
    case TK_FLOAT: {
      codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0);
      break;
    }
    case TK_STRING: {
      sqlite3DequoteExpr(pParse->db, pExpr);

      sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
      break;
    }
    case TK_NULL: {
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      break;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case TK_BLOB: {
      int n;
      const char *z;
      assert( TK_BLOB==OP_HexBlob );
      n = pExpr->token.n - 3;
      z = (char*)pExpr->token.z + 2;
      assert( n>=0 );
      if( n==0 ){
        z = "";
      }
      sqlite3VdbeOp3(v, op, 0, 0, z, n);
      break;
    }
#endif
    case TK_VARIABLE: {
      sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
      if( pExpr->token.n>1 ){
        sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
      }
      break;
    }
    case TK_REGISTER: {
      sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
      break;
    }
#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */
      int aff, to_op;
      sqlite3ExprCode(pParse, pExpr->pLeft);
      aff = sqlite3AffinityType(&pExpr->token);
      to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
      assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
      assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
      assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
      assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
      assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
      sqlite3VdbeAddOp(v, to_op, 0, 0);
      stackChng = 0;
      break;
    }
#endif /* SQLITE_OMIT_CAST */
    case TK_LT:
    case TK_LE:
    case TK_GT:







|








|


|









|















>
|



|













|




|

|




|














|







1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
  Vdbe *v = pParse->pVdbe;
  int op;
  int stackChng = 1;    /* Amount of change to stack depth */

  if( v==0 ) return;
  if( pExpr==0 ){
    sqlite3VdbeAddOp0(v, OP_Null);
    return;
  }
  op = pExpr->op;
  switch( op ){
    case TK_AGG_COLUMN: {
      AggInfo *pAggInfo = pExpr->pAggInfo;
      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
      if( !pAggInfo->directMode ){
        sqlite3VdbeAddOp1(v, OP_MemLoad, pCol->iMem);
        break;
      }else if( pAggInfo->useSortingIdx ){
        sqlite3VdbeAddOp2(v, OP_Column, pAggInfo->sortingIdx,
                              pCol->iSorterColumn);
        break;
      }
      /* Otherwise, fall thru into the TK_COLUMN case */
    }
    case TK_COLUMN: {
      if( pExpr->iTable<0 ){
        /* This only happens when coding check constraints */
        assert( pParse->ckOffset>0 );
        sqlite3VdbeAddOp2(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
      }else{
        sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
      }
      break;
    }
    case TK_INTEGER: {
      codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0);
      break;
    }
    case TK_FLOAT: {
      codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0);
      break;
    }
    case TK_STRING: {
      sqlite3DequoteExpr(pParse->db, pExpr);
      sqlite3VdbeAddOp4(v,OP_String8, 0, 0, 0,
                        (char*)pExpr->token.z, pExpr->token.n);
      break;
    }
    case TK_NULL: {
      sqlite3VdbeAddOp0(v, OP_Null);
      break;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case TK_BLOB: {
      int n;
      const char *z;
      assert( TK_BLOB==OP_HexBlob );
      n = pExpr->token.n - 3;
      z = (char*)pExpr->token.z + 2;
      assert( n>=0 );
      if( n==0 ){
        z = "";
      }
      sqlite3VdbeAddOp4(v, op, 0, 0, 0, z, n);
      break;
    }
#endif
    case TK_VARIABLE: {
      sqlite3VdbeAddOp1(v, OP_Variable, pExpr->iTable);
      if( pExpr->token.n>1 ){
        sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
      }
      break;
    }
    case TK_REGISTER: {
      sqlite3VdbeAddOp1(v, OP_MemLoad, pExpr->iTable);
      break;
    }
#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */
      int aff, to_op;
      sqlite3ExprCode(pParse, pExpr->pLeft);
      aff = sqlite3AffinityType(&pExpr->token);
      to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
      assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
      assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
      assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
      assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
      assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
      sqlite3VdbeAddOp0(v, to_op);
      stackChng = 0;
      break;
    }
#endif /* SQLITE_OMIT_CAST */
    case TK_LT:
    case TK_LE:
    case TK_GT:
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
      assert( TK_BITOR==OP_BitOr );
      assert( TK_SLASH==OP_Divide );
      assert( TK_LSHIFT==OP_ShiftLeft );
      assert( TK_RSHIFT==OP_ShiftRight );
      assert( TK_CONCAT==OP_Concat );
      sqlite3ExprCode(pParse, pExpr->pLeft);
      sqlite3ExprCode(pParse, pExpr->pRight);
      sqlite3VdbeAddOp(v, op, 0, 0);
      stackChng = -1;
      break;
    }
    case TK_UMINUS: {
      Expr *pLeft = pExpr->pLeft;
      assert( pLeft );
      if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){







|







2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
      assert( TK_BITOR==OP_BitOr );
      assert( TK_SLASH==OP_Divide );
      assert( TK_LSHIFT==OP_ShiftLeft );
      assert( TK_RSHIFT==OP_ShiftRight );
      assert( TK_CONCAT==OP_Concat );
      sqlite3ExprCode(pParse, pExpr->pLeft);
      sqlite3ExprCode(pParse, pExpr->pRight);
      sqlite3VdbeAddOp0(v, op);
      stackChng = -1;
      break;
    }
    case TK_UMINUS: {
      Expr *pLeft = pExpr->pLeft;
      assert( pLeft );
      if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
      /* Fall through into TK_NOT */
    }
    case TK_BITNOT:
    case TK_NOT: {
      assert( TK_BITNOT==OP_BitNot );
      assert( TK_NOT==OP_Not );
      sqlite3ExprCode(pParse, pExpr->pLeft);
      sqlite3VdbeAddOp(v, op, 0, 0);
      stackChng = 0;
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      int dest;
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
      sqlite3ExprCode(pParse, pExpr->pLeft);
      dest = sqlite3VdbeCurrentAddr(v) + 2;
      sqlite3VdbeAddOp(v, op, 1, dest);
      sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
      stackChng = 0;
      break;
    }
    case TK_AGG_FUNCTION: {
      AggInfo *pInfo = pExpr->pAggInfo;
      if( pInfo==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
            &pExpr->span);
      }else{
        sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
      }
      break;
    }
    case TK_CONST_FUNC:
    case TK_FUNCTION: {
      ExprList *pList = pExpr->pList;
      int nExpr = pList ? pList->nExpr : 0;







|








|


|
|









|







2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
      /* Fall through into TK_NOT */
    }
    case TK_BITNOT:
    case TK_NOT: {
      assert( TK_BITNOT==OP_BitNot );
      assert( TK_NOT==OP_Not );
      sqlite3ExprCode(pParse, pExpr->pLeft);
      sqlite3VdbeAddOp0(v, op);
      stackChng = 0;
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      int dest;
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3VdbeAddOp1(v, OP_Integer, 1);
      sqlite3ExprCode(pParse, pExpr->pLeft);
      dest = sqlite3VdbeCurrentAddr(v) + 2;
      sqlite3VdbeAddOp2(v, op, 1, dest);
      sqlite3VdbeAddOp1(v, OP_AddImm, -1);
      stackChng = 0;
      break;
    }
    case TK_AGG_FUNCTION: {
      AggInfo *pInfo = pExpr->pAggInfo;
      if( pInfo==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
            &pExpr->span);
      }else{
        sqlite3VdbeAddOp1(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem);
      }
      break;
    }
    case TK_CONST_FUNC:
    case TK_FUNCTION: {
      ExprList *pList = pExpr->pList;
      int nExpr = pList ? pList->nExpr : 0;
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168

2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214

2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
        }
        if( pDef->needCollSeq && !pColl ){
          pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
        }
      }
      if( pDef->needCollSeq ){
        if( !pColl ) pColl = pParse->db->pDfltColl; 
        sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
      }
      sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);

      stackChng = 1-nExpr;
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS:
    case TK_SELECT: {
      if( pExpr->iColumn==0 ){
        sqlite3CodeSubselect(pParse, pExpr);
      }
      sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
      VdbeComment((v, "load subquery result"));
      break;
    }
    case TK_IN: {
      int addr;
      char affinity;
      int ckOffset = pParse->ckOffset;
      int eType;
      int iLabel = sqlite3VdbeMakeLabel(v);

      eType = sqlite3FindInIndex(pParse, pExpr, 0);

      /* Figure out the affinity to use to create a key from the results
      ** of the expression. affinityStr stores a static string suitable for
      ** P3 of OP_MakeRecord.
      */
      affinity = comparisonAffinity(pExpr);

      sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
      pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);

      /* Code the <expr> from "<expr> IN (...)". The temporary table
      ** pExpr->iTable contains the values that make up the (...) set.
      */
      sqlite3ExprCode(pParse, pExpr->pLeft);
      addr = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
      sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel);
      if( eType==IN_INDEX_ROWID ){
        int iAddr = sqlite3VdbeCurrentAddr(v)+3;
        sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr);
        sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr);
        sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel);
      }else{

        sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
        sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel);
      }
      sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
      sqlite3VdbeResolveLabel(v, iLabel);

      break;
    }
#endif
    case TK_BETWEEN: {
      Expr *pLeft = pExpr->pLeft;
      struct ExprList_item *pLItem = pExpr->pList->a;
      Expr *pRight = pLItem->pExpr;
      sqlite3ExprCode(pParse, pLeft);
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      sqlite3ExprCode(pParse, pRight);
      codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
      sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
      pLItem++;
      pRight = pLItem->pExpr;
      sqlite3ExprCode(pParse, pRight);
      codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
      sqlite3VdbeAddOp(v, OP_And, 0, 0);
      break;
    }
    case TK_UPLUS: {
      sqlite3ExprCode(pParse, pExpr->pLeft);
      stackChng = 0;
      break;
    }







|

|
>









|














|



|







|
|
|
|


|
|
|

>
|
|

|










|


|




|







2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
        }
        if( pDef->needCollSeq && !pColl ){
          pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
        }
      }
      if( pDef->needCollSeq ){
        if( !pColl ) pColl = pParse->db->pDfltColl; 
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
      }
      sqlite3VdbeAddOp4(v, OP_Function, constMask, nExpr, 0,
                        (char*)pDef, P4_FUNCDEF);
      stackChng = 1-nExpr;
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS:
    case TK_SELECT: {
      if( pExpr->iColumn==0 ){
        sqlite3CodeSubselect(pParse, pExpr);
      }
      sqlite3VdbeAddOp1(v, OP_MemLoad, pExpr->iColumn);
      VdbeComment((v, "load subquery result"));
      break;
    }
    case TK_IN: {
      int addr;
      char affinity;
      int ckOffset = pParse->ckOffset;
      int eType;
      int iLabel = sqlite3VdbeMakeLabel(v);

      eType = sqlite3FindInIndex(pParse, pExpr, 0);

      /* Figure out the affinity to use to create a key from the results
      ** of the expression. affinityStr stores a static string suitable for
      ** P4 of OP_MakeRecord.
      */
      affinity = comparisonAffinity(pExpr);

      sqlite3VdbeAddOp1(v, OP_Integer, 1);
      pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);

      /* Code the <expr> from "<expr> IN (...)". The temporary table
      ** pExpr->iTable contains the values that make up the (...) set.
      */
      sqlite3ExprCode(pParse, pExpr->pLeft);
      addr = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
      sqlite3VdbeAddOp1(v, OP_Pop, 2);
      sqlite3VdbeAddOp0(v, OP_Null);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iLabel);
      if( eType==IN_INDEX_ROWID ){
        int iAddr = sqlite3VdbeCurrentAddr(v)+3;
        sqlite3VdbeAddOp2(v, OP_MustBeInt, 1, iAddr);
        sqlite3VdbeAddOp2(v, OP_NotExists, pExpr->iTable, iAddr);
        sqlite3VdbeAddOp2(v, OP_Goto, pExpr->iTable, iLabel);
      }else{
        sqlite3VdbeAddOp4(v, OP_MakeRecord, 1, 0, 0,
                             &affinity, 1);   /* addr + 4 */
        sqlite3VdbeAddOp2(v, OP_Found, pExpr->iTable, iLabel);
      }
      sqlite3VdbeAddOp1(v, OP_AddImm, -1);                     /* addr + 6 */
      sqlite3VdbeResolveLabel(v, iLabel);

      break;
    }
#endif
    case TK_BETWEEN: {
      Expr *pLeft = pExpr->pLeft;
      struct ExprList_item *pLItem = pExpr->pList->a;
      Expr *pRight = pLItem->pExpr;
      sqlite3ExprCode(pParse, pLeft);
      sqlite3VdbeAddOp0(v, OP_Dup);
      sqlite3ExprCode(pParse, pRight);
      codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
      sqlite3VdbeAddOp1(v, OP_Pull, 1);
      pLItem++;
      pRight = pLItem->pExpr;
      sqlite3ExprCode(pParse, pRight);
      codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
      sqlite3VdbeAddOp0(v, OP_And);
      break;
    }
    case TK_UPLUS: {
      sqlite3ExprCode(pParse, pExpr->pLeft);
      stackChng = 0;
      break;
    }
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
      expr_end_label = sqlite3VdbeMakeLabel(v);
      if( pExpr->pLeft ){
        sqlite3ExprCode(pParse, pExpr->pLeft);
      }
      for(i=0; i<nExpr; i=i+2){
        sqlite3ExprCode(pParse, aListelem[i].pExpr);
        if( pExpr->pLeft ){
          sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
          jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
                                 OP_Ne, 0, 1);
          sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
        }else{
          jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
        }
        sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
        sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
        sqlite3VdbeJumpHere(v, jumpInst);
      }
      if( pExpr->pLeft ){
        sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
      }
      if( pExpr->pRight ){
        sqlite3ExprCode(pParse, pExpr->pRight);
      }else{
        sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      }
      sqlite3VdbeResolveLabel(v, expr_end_label);
      break;
    }
#ifndef SQLITE_OMIT_TRIGGER
    case TK_RAISE: {
      if( !pParse->trigStack ){
        sqlite3ErrorMsg(pParse,
                       "RAISE() may only be used within a trigger-program");
        return;
      }
      if( pExpr->iColumn!=OE_Ignore ){
         assert( pExpr->iColumn==OE_Rollback ||
                 pExpr->iColumn == OE_Abort ||
                 pExpr->iColumn == OE_Fail );
         sqlite3DequoteExpr(pParse->db, pExpr);
         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
                        (char*)pExpr->token.z, pExpr->token.n);
      } else {
         assert( pExpr->iColumn == OE_Ignore );
         sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
         sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
         VdbeComment((v, "raise(IGNORE)"));
      }
      stackChng = 0;
      break;
    }
#endif
  }







|


|

|


|



|




|
















|



|
|







2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
      expr_end_label = sqlite3VdbeMakeLabel(v);
      if( pExpr->pLeft ){
        sqlite3ExprCode(pParse, pExpr->pLeft);
      }
      for(i=0; i<nExpr; i=i+2){
        sqlite3ExprCode(pParse, aListelem[i].pExpr);
        if( pExpr->pLeft ){
          sqlite3VdbeAddOp2(v, OP_Dup, 1, 1);
          jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
                                 OP_Ne, 0, 1);
          sqlite3VdbeAddOp1(v, OP_Pop, 1);
        }else{
          jumpInst = sqlite3VdbeAddOp2(v, OP_IfNot, 1, 0);
        }
        sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
        sqlite3VdbeAddOp2(v, OP_Goto, 0, expr_end_label);
        sqlite3VdbeJumpHere(v, jumpInst);
      }
      if( pExpr->pLeft ){
        sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      }
      if( pExpr->pRight ){
        sqlite3ExprCode(pParse, pExpr->pRight);
      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
      }
      sqlite3VdbeResolveLabel(v, expr_end_label);
      break;
    }
#ifndef SQLITE_OMIT_TRIGGER
    case TK_RAISE: {
      if( !pParse->trigStack ){
        sqlite3ErrorMsg(pParse,
                       "RAISE() may only be used within a trigger-program");
        return;
      }
      if( pExpr->iColumn!=OE_Ignore ){
         assert( pExpr->iColumn==OE_Rollback ||
                 pExpr->iColumn == OE_Abort ||
                 pExpr->iColumn == OE_Fail );
         sqlite3DequoteExpr(pParse->db, pExpr);
         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
                        (char*)pExpr->token.z, pExpr->token.n);
      } else {
         assert( pExpr->iColumn == OE_Ignore );
         sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
         sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
         VdbeComment((v, "raise(IGNORE)"));
      }
      stackChng = 0;
      break;
    }
#endif
  }
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
  if( v==0 ) return;
  addr1 = sqlite3VdbeCurrentAddr(v);
  sqlite3ExprCode(pParse, pExpr);
  addr2 = sqlite3VdbeCurrentAddr(v);
  if( addr2>addr1+1
   || ((pOp = sqlite3VdbeGetOp(v, addr1))!=0 && pOp->opcode==OP_Function) ){
    iMem = pExpr->iTable = pParse->nMem++;
    sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
    pExpr->op = TK_REGISTER;
  }
}
#endif

/*
** Generate code to evaluate an expression and store the result in







|







2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
  if( v==0 ) return;
  addr1 = sqlite3VdbeCurrentAddr(v);
  sqlite3ExprCode(pParse, pExpr);
  addr2 = sqlite3VdbeCurrentAddr(v);
  if( addr2>addr1+1
   || ((pOp = sqlite3VdbeGetOp(v, addr1))!=0 && pOp->opcode==OP_Function) ){
    iMem = pExpr->iTable = pParse->nMem++;
    sqlite3VdbeAddOp2(v, OP_MemStore, iMem, 0);
    pExpr->op = TK_REGISTER;
  }
}
#endif

/*
** Generate code to evaluate an expression and store the result in
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
int sqlite3ExprIntoReg(Parse *pParse, Expr *pExpr, int target){
  Vdbe *v = pParse->pVdbe;
  if( v==0 ) return -1;
  sqlite3ExprCode(pParse, pExpr);
  if( target<0 ){
    target = pParse->nMem++;
  }
  sqlite3VdbeAddOp(v, OP_MemStore, target, 1);
  return target;
}

/*
** Generate code that pushes the value of every element of the given
** expression list onto the stack.
**







|







2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
int sqlite3ExprIntoReg(Parse *pParse, Expr *pExpr, int target){
  Vdbe *v = pParse->pVdbe;
  if( v==0 ) return -1;
  sqlite3ExprCode(pParse, pExpr);
  if( target<0 ){
    target = pParse->nMem++;
  }
  sqlite3VdbeAddOp2(v, OP_MemStore, target, 1);
  return target;
}

/*
** Generate code that pushes the value of every element of the given
** expression list onto the stack.
**
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3ExprCode(pParse, pExpr->pLeft);
      sqlite3VdbeAddOp(v, op, 1, dest);
      break;
    }
    case TK_BETWEEN: {
      /* The expression "x BETWEEN y AND z" is implemented as:
      **
      ** 1 IF (x < y) GOTO 3
      ** 2 IF (x <= z) GOTO <dest>
      ** 3 ...
      */
      int addr;
      Expr *pLeft = pExpr->pLeft;
      Expr *pRight = pExpr->pList->a[0].pExpr;
      sqlite3ExprCode(pParse, pLeft);
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      sqlite3ExprCode(pParse, pRight);
      addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);

      pRight = pExpr->pList->a[1].pExpr;
      sqlite3ExprCode(pParse, pRight);
      codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);

      sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
      sqlite3VdbeJumpHere(v, addr);
      sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
      break;
    }
    default: {
      sqlite3ExprCode(pParse, pExpr);
      sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
      break;
    }
  }
  pParse->ckOffset = ckOffset;
}

/*







|













|







|

|




|







2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      assert( TK_ISNULL==OP_IsNull );
      assert( TK_NOTNULL==OP_NotNull );
      sqlite3ExprCode(pParse, pExpr->pLeft);
      sqlite3VdbeAddOp2(v, op, 1, dest);
      break;
    }
    case TK_BETWEEN: {
      /* The expression "x BETWEEN y AND z" is implemented as:
      **
      ** 1 IF (x < y) GOTO 3
      ** 2 IF (x <= z) GOTO <dest>
      ** 3 ...
      */
      int addr;
      Expr *pLeft = pExpr->pLeft;
      Expr *pRight = pExpr->pList->a[0].pExpr;
      sqlite3ExprCode(pParse, pLeft);
      sqlite3VdbeAddOp2(v, OP_Dup, 0, 0);
      sqlite3ExprCode(pParse, pRight);
      addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);

      pRight = pExpr->pList->a[1].pExpr;
      sqlite3ExprCode(pParse, pRight);
      codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);

      sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
      sqlite3VdbeJumpHere(v, addr);
      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      break;
    }
    default: {
      sqlite3ExprCode(pParse, pExpr);
      sqlite3VdbeAddOp2(v, OP_If, jumpIfNull, dest);
      break;
    }
  }
  pParse->ckOffset = ckOffset;
}

/*
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
      sqlite3ExprCode(pParse, pExpr->pRight);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      sqlite3ExprCode(pParse, pExpr->pLeft);
      sqlite3VdbeAddOp(v, op, 1, dest);
      break;
    }
    case TK_BETWEEN: {
      /* The expression is "x BETWEEN y AND z". It is implemented as:
      **
      ** 1 IF (x >= y) GOTO 3
      ** 2 GOTO <dest>
      ** 3 IF (x > z) GOTO <dest>
      */
      int addr;
      Expr *pLeft = pExpr->pLeft;
      Expr *pRight = pExpr->pList->a[0].pExpr;
      sqlite3ExprCode(pParse, pLeft);
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      sqlite3ExprCode(pParse, pRight);
      addr = sqlite3VdbeCurrentAddr(v);
      codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);

      sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
      pRight = pExpr->pList->a[1].pExpr;
      sqlite3ExprCode(pParse, pRight);
      codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
      break;
    }
    default: {
      sqlite3ExprCode(pParse, pExpr);
      sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
      break;
    }
  }
  pParse->ckOffset = ckOffset;
}

/*







|













|




|
|







|







2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
      sqlite3ExprCode(pParse, pExpr->pRight);
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      sqlite3ExprCode(pParse, pExpr->pLeft);
      sqlite3VdbeAddOp2(v, op, 1, dest);
      break;
    }
    case TK_BETWEEN: {
      /* The expression is "x BETWEEN y AND z". It is implemented as:
      **
      ** 1 IF (x >= y) GOTO 3
      ** 2 GOTO <dest>
      ** 3 IF (x > z) GOTO <dest>
      */
      int addr;
      Expr *pLeft = pExpr->pLeft;
      Expr *pRight = pExpr->pList->a[0].pExpr;
      sqlite3ExprCode(pParse, pLeft);
      sqlite3VdbeAddOp2(v, OP_Dup, 0, 0);
      sqlite3ExprCode(pParse, pRight);
      addr = sqlite3VdbeCurrentAddr(v);
      codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);

      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
      pRight = pExpr->pList->a[1].pExpr;
      sqlite3ExprCode(pParse, pRight);
      codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
      break;
    }
    default: {
      sqlite3ExprCode(pParse, pExpr);
      sqlite3VdbeAddOp2(v, OP_IfNot, jumpIfNull, dest);
      break;
    }
  }
  pParse->ckOffset = ckOffset;
}

/*
Changes to src/insert.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.201 2008/01/02 16:27:10 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** Set P3 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE







|




|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.202 2008/01/03 00:01:24 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    }
    for(n=0; n<pIdx->nColumn; n++){
      pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
    }
    pIdx->zColAff[pIdx->nColumn] = '\0';
  }
 
  sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
}

/*
** Set P3 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT







|



|







48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    }
    for(n=0; n<pIdx->nColumn; n++){
      pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
    }
    pIdx->zColAff[pIdx->nColumn] = '\0';
  }
 
  sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
}

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
      zColAff[i] = pTab->aCol[i].affinity;
    }
    zColAff[pTab->nCol] = '\0';

    pTab->zColAff = zColAff;
  }

  sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
}

/*
** Return non-zero if the table pTab in database iDb or any of its indices
** have been opened at any point in the VDBE program beginning at location
** iStartAddr throught the end of the program.  This is used to see if 
** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can 







|







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
      zColAff[i] = pTab->aCol[i].affinity;
    }
    zColAff[pTab->nCol] = '\0';

    pTab->zColAff = zColAff;
  }

  sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
}

/*
** Return non-zero if the table pTab in database iDb or any of its indices
** have been opened at any point in the VDBE program beginning at location
** iStartAddr throught the end of the program.  This is used to see if 
** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can 
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
          if( tnum==pIndex->tnum ){
            return 1;
          }
        }
      }
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( pOp->opcode==OP_VOpen && pOp->p3.p==(const char*)pTab->pVtab ){
      assert( pOp->p3.p!=0 );
      assert( pOp->p3type==P3_VTAB );
      return 1;
    }
#endif
  }
  return 0;
}








|
|
|







125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
          if( tnum==pIndex->tnum ){
            return 1;
          }
        }
      }
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( pOp->opcode==OP_VOpen && pOp->p4.p==(const char*)pTab->pVtab ){
      assert( pOp->p4.p!=0 );
      assert( pOp->p4type==P4_VTAB );
      return 1;
    }
#endif
  }
  return 0;
}

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    int iCur = pParse->nTab;
    int addr;
    assert( v );
    addr = sqlite3VdbeCurrentAddr(v);
    memId = pParse->nMem+1;
    pParse->nMem += 2;
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
    sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
    sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
    sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
    sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
    sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
    sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
    sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
  }
  return memId;
}

/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the top of the stack holds a
** new rowid that is about to be inserted.  If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated.  The stack is unchanged.
*/
static void autoIncStep(Parse *pParse, int memId){
  if( memId>0 ){
    sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
  }
}

/*
** After doing one or more inserts, the maximum rowid is stored
** in mem[memId].  Generate code to write this value back into the
** the sqlite_sequence table.







|
|
|
|
|
|
|
|
|
|
|














|







167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    int iCur = pParse->nTab;
    int addr;
    assert( v );
    addr = sqlite3VdbeCurrentAddr(v);
    memId = pParse->nMem+1;
    pParse->nMem += 2;
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+13);
    sqlite3VdbeAddOp2(v, OP_Column, iCur, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp2(v, OP_Ne, 0x100, addr+12);
    sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0);
    sqlite3VdbeAddOp2(v, OP_MemStore, memId-1, 1);
    sqlite3VdbeAddOp2(v, OP_Column, iCur, 1);
    sqlite3VdbeAddOp2(v, OP_MemStore, memId, 1);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+13);
    sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+4);
    sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  }
  return memId;
}

/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the top of the stack holds a
** new rowid that is about to be inserted.  If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated.  The stack is unchanged.
*/
static void autoIncStep(Parse *pParse, int memId){
  if( memId>0 ){
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, 0);
  }
}

/*
** After doing one or more inserts, the maximum rowid is stored
** in mem[memId].  Generate code to write this value back into the
** the sqlite_sequence table.
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    int iCur = pParse->nTab;
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int addr;
    assert( v );
    addr = sqlite3VdbeCurrentAddr(v);
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
    sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
    sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
    sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
    sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
  }
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/







|
|
|
|
|
|
|
|
|







215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    int iCur = pParse->nTab;
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int addr;
    assert( v );
    addr = sqlite3VdbeCurrentAddr(v);
    sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    sqlite3VdbeAddOp2(v, OP_MemLoad, memId-1, 0);
    sqlite3VdbeAddOp2(v, OP_NotNull, -1, addr+7);
    sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp2(v, OP_MemLoad, memId, 0);
    sqlite3VdbeAddOp2(v, OP_MakeRecord, 2, 0);
    sqlite3VdbeAddOp2(v, OP_Insert, iCur, OPFLAG_APPEND);
    sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  }
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
  ** results in a temporary table. (Template 3.)
  */
  if( pSelect ){
    /* Data is coming from a SELECT.  Generate code to implement that SELECT
    */
    SelectDest dest = {SRT_Subroutine, 0, 0};
    int rc, iInitCode;
    iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    iSelectLoop = sqlite3VdbeCurrentAddr(v);
    iInsertBlock = sqlite3VdbeMakeLabel(v);
    dest.iParm = iInsertBlock;

    /* Resolve the expressions in the SELECT statement and execute it. */
    rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
    if( rc || pParse->nErr || db->mallocFailed ){
      goto insert_cleanup;
    }

    iCleanup = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table.  Set to FALSE if each
    ** row of the SELECT can be written directly into the result table.
    **







|











|







474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
  ** results in a temporary table. (Template 3.)
  */
  if( pSelect ){
    /* Data is coming from a SELECT.  Generate code to implement that SELECT
    */
    SelectDest dest = {SRT_Subroutine, 0, 0};
    int rc, iInitCode;
    iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    iSelectLoop = sqlite3VdbeCurrentAddr(v);
    iInsertBlock = sqlite3VdbeMakeLabel(v);
    dest.iParm = iInsertBlock;

    /* Resolve the expressions in the SELECT statement and execute it. */
    rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
    if( rc || pParse->nErr || db->mallocFailed ){
      goto insert_cleanup;
    }

    iCleanup = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table.  Set to FALSE if each
    ** row of the SELECT can be written directly into the result table.
    **
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

    if( useTempTable ){
      /* Generate the subroutine that SELECT calls to process each row of
      ** the result.  Store the result in a temporary table
      */
      srcTab = pParse->nTab++;
      sqlite3VdbeResolveLabel(v, iInsertBlock);
      sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
      sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
      sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
      sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
      sqlite3VdbeAddOp(v, OP_Return, 0, 0);

      /* The following code runs first because the GOTO at the very top
      ** of the program jumps to it.  Create the temporary table, then jump
      ** back up and execute the SELECT code above.
      */
      sqlite3VdbeJumpHere(v, iInitCode);
      sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
      sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
      sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
      sqlite3VdbeResolveLabel(v, iCleanup);
    }else{
      sqlite3VdbeJumpHere(v, iInitCode);
    }
  }else{
    /* This is the case if the data for the INSERT is coming from a VALUES
    ** clause







|
|
|
|
|
|






|
|
|







508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

    if( useTempTable ){
      /* Generate the subroutine that SELECT calls to process each row of
      ** the result.  Store the result in a temporary table
      */
      srcTab = pParse->nTab++;
      sqlite3VdbeResolveLabel(v, iInsertBlock);
      sqlite3VdbeAddOp2(v, OP_StackDepth, -1, 0);
      sqlite3VdbeAddOp2(v, OP_MakeRecord, nColumn, 0);
      sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, 0);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Insert, srcTab, OPFLAG_APPEND);
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);

      /* The following code runs first because the GOTO at the very top
      ** of the program jumps to it.  Create the temporary table, then jump
      ** back up and execute the SELECT code above.
      */
      sqlite3VdbeJumpHere(v, iInitCode);
      sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, 0);
      sqlite3VdbeAddOp2(v, OP_SetNumColumns, srcTab, nColumn);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
      sqlite3VdbeResolveLabel(v, iCleanup);
    }else{
      sqlite3VdbeJumpHere(v, iInitCode);
    }
  }else{
    /* This is the case if the data for the INSERT is coming from a VALUES
    ** clause
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
  if( pColumn==0 && nColumn>0 ){
    keyColumn = pTab->iPKey;
  }

  /* Open the temp table for FOR EACH ROW triggers
  */
  if( triggers_exist ){
    sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
  }
    
  /* Initialize the count of rows to be inserted
  */
  if( db->flags & SQLITE_CountRows ){
    iCntMem = pParse->nMem++;
    sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    base = pParse->nTab;
    sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
  }

  /* If the data source is a temporary table, then we have to create
  ** a loop because there might be multiple rows of data.  If the data
  ** source is a subroutine call from the SELECT statement, then we need
  ** to launch the SELECT statement processing.
  */
  if( useTempTable ){
    iBreak = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
    iCont = sqlite3VdbeCurrentAddr(v);
  }else if( pSelect ){
    sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
    sqlite3VdbeResolveLabel(v, iInsertBlock);
    sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
  }

  /* Run the BEFORE and INSTEAD OF triggers, if there are any
  */
  endOfLoop = sqlite3VdbeMakeLabel(v);
  if( triggers_exist & TRIGGER_BEFORE ){

    /* build the NEW.* reference row.  Note that if there is an INTEGER
    ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
    ** translated into a unique ID for the row.  But on a BEFORE trigger,
    ** we do not know what the unique ID will be (because the insert has
    ** not happened yet) so we substitute a rowid of -1
    */
    if( keyColumn<0 ){
      sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
    }else if( useTempTable ){
      sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
    }else{
      assert( pSelect==0 );  /* Otherwise useTempTable is true */
      sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
      sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
      sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
      sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
    }

    /* Cannot have triggers on a virtual table. If it were possible,
    ** this block would have to account for hidden column.
    */
    assert(!IsVirtual(pTab));

    /* Create the new column data
    */
    for(i=0; i<pTab->nCol; i++){
      if( pColumn==0 ){
        j = i;
      }else{
        for(j=0; j<pColumn->nId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( pColumn && j>=pColumn->nId ){
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
      }else if( useTempTable ){
        sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 
      }else{
        assert( pSelect==0 ); /* Otherwise useTempTable is true */
        sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
      }
    }
    sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);

    /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
    ** do not attempt any conversions before assembling the record.
    ** If this is a real table, attempt conversions as required by the
    ** table column affinities.
    */
    if( !isView ){
      sqlite3TableAffinityStr(v, pTab);
    }
    sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);

    /* Fire BEFORE or INSTEAD OF triggers */
    if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 
        newIdx, -1, onError, endOfLoop, 0, 0) ){
      goto insert_cleanup;
    }
  }

  /* Push the record number for the new entry onto the stack.  The
  ** record number is a randomly generate integer created by NewRowid
  ** except when the table has an INTEGER PRIMARY KEY column, in which
  ** case the record number is the same as that column. 
  */
  if( !isView ){
    if( IsVirtual(pTab) ){
      /* The row that the VUpdate opcode will delete:  none */
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
    }
    if( keyColumn>=0 ){
      if( useTempTable ){
        sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
      }else if( pSelect ){
        sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
      }else{
        VdbeOp *pOp;
        sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
        pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
        if( pOp && pOp->opcode==OP_Null ){
          appendFlag = 1;
          pOp->opcode = OP_NewRowid;
          pOp->p1 = base;
          pOp->p2 = counterMem;
        }
      }
      /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
      ** to generate a unique primary key value.
      */
      if( !appendFlag ){
        sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
        sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
        sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
        sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
      }
    }else if( IsVirtual(pTab) ){
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
    }else{
      sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
      appendFlag = 1;
    }
    autoIncStep(pParse, counterMem);

    /* Push onto the stack, data for all columns of the new entry, beginning
    ** with the first column.
    */
    nHidden = 0;
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        /* The value of the INTEGER PRIMARY KEY column is always a NULL.
        ** Whenever this column is read, the record number will be substituted
        ** in its place.  So will fill this column with a NULL to avoid
        ** taking up data space with information that will never be used. */
        sqlite3VdbeAddOp(v, OP_Null, 0, 0);
        continue;
      }
      if( pColumn==0 ){
        if( IsHiddenColumn(&pTab->aCol[i]) ){
          assert( IsVirtual(pTab) );
          j = -1;
          nHidden++;
        }else{
          j = i - nHidden;
        }
      }else{
        for(j=0; j<pColumn->nId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
      }else if( useTempTable ){
        sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 
      }else if( pSelect ){
        sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
      }else{
        sqlite3ExprCode(pParse, pList->a[j].pExpr);
      }
    }

    /* Generate code to check constraints and generate index keys and
    ** do the insertion.
    */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      pParse->pVirtualLock = pTab;
      sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
                     (const char*)pTab->pVtab, P3_VTAB);
    }else
#endif
    {
      sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
                                     0, onError, endOfLoop);
      sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
                            (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
                            appendFlag);
    }
  }

  /* Update the count of rows that are inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0 ){
    sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
  }

  if( triggers_exist ){
    /* Code AFTER triggers */
    if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
          newIdx, -1, onError, endOfLoop, 0, 0) ){
      goto insert_cleanup;
    }
  }

  /* The bottom of the loop, if the data source is a SELECT statement
  */
  sqlite3VdbeResolveLabel(v, endOfLoop);
  if( useTempTable ){
    sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
    sqlite3VdbeResolveLabel(v, iBreak);
    sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
  }else if( pSelect ){
    sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
    sqlite3VdbeAddOp(v, OP_Return, 0, 0);
    sqlite3VdbeResolveLabel(v, iCleanup);
  }

  if( !IsVirtual(pTab) && !isView ){
    /* Close all tables opened */
    sqlite3VdbeAddOp(v, OP_Close, base, 0);
    for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
      sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
    }
  }

  /* Update the sqlite_sequence table by storing the content of the
  ** counter value in memory counterMem back into the sqlite_sequence
  ** table.
  */
  autoIncEnd(pParse, iDb, pTab, counterMem);

  /*
  ** Return the number of rows inserted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
    sqlite3VdbeAddOp(v, OP_ResultRow, iCntMem, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
  }

insert_cleanup:
  sqlite3SrcListDelete(pTabList);
  sqlite3ExprListDelete(pList);
  sqlite3SelectDelete(pSelect);
  sqlite3IdListDelete(pColumn);







|
|






|















|


|

|














|

|



|
|
|
|




















|





|









|
















|



|

|















|
|
|
|


|

|














|


















|

|











|
|














|














|

|

|
|





|

|















|

|







612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
  if( pColumn==0 && nColumn>0 ){
    keyColumn = pTab->iPKey;
  }

  /* Open the temp table for FOR EACH ROW triggers
  */
  if( triggers_exist ){
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, newIdx, pTab->nCol);
  }
    
  /* Initialize the count of rows to be inserted
  */
  if( db->flags & SQLITE_CountRows ){
    iCntMem = pParse->nMem++;
    sqlite3VdbeAddOp2(v, OP_MemInt, 0, iCntMem);
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    base = pParse->nTab;
    sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
  }

  /* If the data source is a temporary table, then we have to create
  ** a loop because there might be multiple rows of data.  If the data
  ** source is a subroutine call from the SELECT statement, then we need
  ** to launch the SELECT statement processing.
  */
  if( useTempTable ){
    iBreak = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
    iCont = sqlite3VdbeCurrentAddr(v);
  }else if( pSelect ){
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
    sqlite3VdbeResolveLabel(v, iInsertBlock);
    sqlite3VdbeAddOp2(v, OP_StackDepth, -1, 0);
  }

  /* Run the BEFORE and INSTEAD OF triggers, if there are any
  */
  endOfLoop = sqlite3VdbeMakeLabel(v);
  if( triggers_exist & TRIGGER_BEFORE ){

    /* build the NEW.* reference row.  Note that if there is an INTEGER
    ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
    ** translated into a unique ID for the row.  But on a BEFORE trigger,
    ** we do not know what the unique ID will be (because the insert has
    ** not happened yet) so we substitute a rowid of -1
    */
    if( keyColumn<0 ){
      sqlite3VdbeAddOp2(v, OP_Integer, -1, 0);
    }else if( useTempTable ){
      sqlite3VdbeAddOp2(v, OP_Column, srcTab, keyColumn);
    }else{
      assert( pSelect==0 );  /* Otherwise useTempTable is true */
      sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
      sqlite3VdbeAddOp2(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Integer, -1, 0);
      sqlite3VdbeAddOp2(v, OP_MustBeInt, 0, 0);
    }

    /* Cannot have triggers on a virtual table. If it were possible,
    ** this block would have to account for hidden column.
    */
    assert(!IsVirtual(pTab));

    /* Create the new column data
    */
    for(i=0; i<pTab->nCol; i++){
      if( pColumn==0 ){
        j = i;
      }else{
        for(j=0; j<pColumn->nId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( pColumn && j>=pColumn->nId ){
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
      }else if( useTempTable ){
        sqlite3VdbeAddOp2(v, OP_Column, srcTab, j); 
      }else{
        assert( pSelect==0 ); /* Otherwise useTempTable is true */
        sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
      }
    }
    sqlite3VdbeAddOp2(v, OP_MakeRecord, pTab->nCol, 0);

    /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
    ** do not attempt any conversions before assembling the record.
    ** If this is a real table, attempt conversions as required by the
    ** table column affinities.
    */
    if( !isView ){
      sqlite3TableAffinityStr(v, pTab);
    }
    sqlite3VdbeAddOp2(v, OP_Insert, newIdx, 0);

    /* Fire BEFORE or INSTEAD OF triggers */
    if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 
        newIdx, -1, onError, endOfLoop, 0, 0) ){
      goto insert_cleanup;
    }
  }

  /* Push the record number for the new entry onto the stack.  The
  ** record number is a randomly generate integer created by NewRowid
  ** except when the table has an INTEGER PRIMARY KEY column, in which
  ** case the record number is the same as that column. 
  */
  if( !isView ){
    if( IsVirtual(pTab) ){
      /* The row that the VUpdate opcode will delete:  none */
      sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
    }
    if( keyColumn>=0 ){
      if( useTempTable ){
        sqlite3VdbeAddOp2(v, OP_Column, srcTab, keyColumn);
      }else if( pSelect ){
        sqlite3VdbeAddOp2(v, OP_Dup, nColumn - keyColumn - 1, 1);
      }else{
        VdbeOp *pOp;
        sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
        pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
        if( pOp && pOp->opcode==OP_Null ){
          appendFlag = 1;
          pOp->opcode = OP_NewRowid;
          pOp->p1 = base;
          pOp->p2 = counterMem;
        }
      }
      /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
      ** to generate a unique primary key value.
      */
      if( !appendFlag ){
        sqlite3VdbeAddOp2(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
        sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
        sqlite3VdbeAddOp2(v, OP_NewRowid, base, counterMem);
        sqlite3VdbeAddOp2(v, OP_MustBeInt, 0, 0);
      }
    }else if( IsVirtual(pTab) ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
    }else{
      sqlite3VdbeAddOp2(v, OP_NewRowid, base, counterMem);
      appendFlag = 1;
    }
    autoIncStep(pParse, counterMem);

    /* Push onto the stack, data for all columns of the new entry, beginning
    ** with the first column.
    */
    nHidden = 0;
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        /* The value of the INTEGER PRIMARY KEY column is always a NULL.
        ** Whenever this column is read, the record number will be substituted
        ** in its place.  So will fill this column with a NULL to avoid
        ** taking up data space with information that will never be used. */
        sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
        continue;
      }
      if( pColumn==0 ){
        if( IsHiddenColumn(&pTab->aCol[i]) ){
          assert( IsVirtual(pTab) );
          j = -1;
          nHidden++;
        }else{
          j = i - nHidden;
        }
      }else{
        for(j=0; j<pColumn->nId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
      }else if( useTempTable ){
        sqlite3VdbeAddOp2(v, OP_Column, srcTab, j); 
      }else if( pSelect ){
        sqlite3VdbeAddOp2(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
      }else{
        sqlite3ExprCode(pParse, pList->a[j].pExpr);
      }
    }

    /* Generate code to check constraints and generate index keys and
    ** do the insertion.
    */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      pParse->pVirtualLock = pTab;
      sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, 0,
                     (const char*)pTab->pVtab, P4_VTAB);
    }else
#endif
    {
      sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
                                     0, onError, endOfLoop);
      sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
                            (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
                            appendFlag);
    }
  }

  /* Update the count of rows that are inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0 ){
    sqlite3VdbeAddOp2(v, OP_MemIncr, 1, iCntMem);
  }

  if( triggers_exist ){
    /* Code AFTER triggers */
    if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
          newIdx, -1, onError, endOfLoop, 0, 0) ){
      goto insert_cleanup;
    }
  }

  /* The bottom of the loop, if the data source is a SELECT statement
  */
  sqlite3VdbeResolveLabel(v, endOfLoop);
  if( useTempTable ){
    sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont);
    sqlite3VdbeResolveLabel(v, iBreak);
    sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0);
  }else if( pSelect ){
    sqlite3VdbeAddOp2(v, OP_Pop, nColumn, 0);
    sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
    sqlite3VdbeResolveLabel(v, iCleanup);
  }

  if( !IsVirtual(pTab) && !isView ){
    /* Close all tables opened */
    sqlite3VdbeAddOp2(v, OP_Close, base, 0);
    for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
      sqlite3VdbeAddOp2(v, OP_Close, idx+base, 0);
    }
  }

  /* Update the sqlite_sequence table by storing the content of the
  ** counter value in memory counterMem back into the sqlite_sequence
  ** table.
  */
  autoIncEnd(pParse, iDb, pTab, counterMem);

  /*
  ** Return the number of rows inserted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, iCntMem, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
  }

insert_cleanup:
  sqlite3SrcListDelete(pTabList);
  sqlite3ExprListDelete(pList);
  sqlite3SelectDelete(pSelect);
  sqlite3IdListDelete(pColumn);
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;
    }
    sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
    addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        char *zMsg = 0;
        sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
        sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
                        " may not be NULL", (char*)0);
        sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
        break;
      }
      case OE_Ignore: {
        sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
        sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
      case OE_Replace: {
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
        sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
        break;
      }
    }
    sqlite3VdbeJumpHere(v, addr);
  }

  /* Test all CHECK constraints
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
    int allOk = sqlite3VdbeMakeLabel(v);
    assert( pParse->ckOffset==0 );
    pParse->ckOffset = nCol;
    sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
    assert( pParse->ckOffset==nCol );
    pParse->ckOffset = 0;
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    if( onError==OE_Ignore ){
      sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
      sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
    }else{
      sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
    }
    sqlite3VdbeResolveLabel(v, allOk);
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key
  ** of the new record does not previously exist.  Except, if this
  ** is an UPDATE and the primary key is not changing, that is OK.
  */
  if( rowidChng ){
    onError = pTab->keyConf;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    
    if( isUpdate ){
      sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
      sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
      jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
    }
    sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
    jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
    switch( onError ){
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
                         "PRIMARY KEY must be unique", P3_STATIC);
        break;
      }
      case OE_Replace: {
        sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
        if( isUpdate ){
          sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
          sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
        }
        seenReplace = 1;
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
        sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
    }
    sqlite3VdbeJumpHere(v, jumpInst2);
    if( isUpdate ){
      sqlite3VdbeJumpHere(v, jumpInst1);
      sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
      sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
    }
  }

  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Add the new records to the indices as we go.
  */
  extra = -1;
  for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
    if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
    extra++;

    /* Create a key for accessing the index entry */
    sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
    for(i=0; i<pIdx->nColumn; i++){
      int idx = pIdx->aiColumn[i];
      if( idx==pTab->iPKey ){
        sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
      }else{
        sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
      }
    }
    jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
    sqlite3IndexAffinityStr(v, pIdx);

    /* Find out what action to take in case there is an indexing conflict */
    onError = pIdx->onError;
    if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( seenReplace ){
      if( onError==OE_Ignore ) onError = OE_Replace;
      else if( onError==OE_Fail ) onError = OE_Abort;
    }
    

    /* Check to see if the new index entry will be unique */
    sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
    jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);

    /* Generate code that executes if the new index entry is not unique */
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:







|
|







|


|



|
|




|


















|
|

|


















|
|
|

|
|








|
|





|
|






|
|






|
|













|



|

|


|

















|
|







991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;
    }
    sqlite3VdbeAddOp2(v, OP_Dup, nCol-1-i, 1);
    addr = sqlite3VdbeAddOp2(v, OP_NotNull, 1, 0);
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        char *zMsg = 0;
        sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
        sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
                        " may not be NULL", (char*)0);
        sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
        break;
      }
      case OE_Ignore: {
        sqlite3VdbeAddOp2(v, OP_Pop, nCol+1+hasTwoRowids, 0);
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;
      }
      case OE_Replace: {
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
        sqlite3VdbeAddOp2(v, OP_Push, nCol-i, 0);
        break;
      }
    }
    sqlite3VdbeJumpHere(v, addr);
  }

  /* Test all CHECK constraints
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
    int allOk = sqlite3VdbeMakeLabel(v);
    assert( pParse->ckOffset==0 );
    pParse->ckOffset = nCol;
    sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
    assert( pParse->ckOffset==nCol );
    pParse->ckOffset = 0;
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    if( onError==OE_Ignore ){
      sqlite3VdbeAddOp2(v, OP_Pop, nCol+1+hasTwoRowids, 0);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
    }else{
      sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
    }
    sqlite3VdbeResolveLabel(v, allOk);
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key
  ** of the new record does not previously exist.  Except, if this
  ** is an UPDATE and the primary key is not changing, that is OK.
  */
  if( rowidChng ){
    onError = pTab->keyConf;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    
    if( isUpdate ){
      sqlite3VdbeAddOp2(v, OP_Dup, nCol+1, 1);
      sqlite3VdbeAddOp2(v, OP_Dup, nCol+1, 1);
      jumpInst1 = sqlite3VdbeAddOp2(v, OP_Eq, 0, 0);
    }
    sqlite3VdbeAddOp2(v, OP_Dup, nCol, 1);
    jumpInst2 = sqlite3VdbeAddOp2(v, OP_NotExists, base, 0);
    switch( onError ){
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
                         "PRIMARY KEY must be unique", P4_STATIC);
        break;
      }
      case OE_Replace: {
        sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
        if( isUpdate ){
          sqlite3VdbeAddOp2(v, OP_Dup, nCol+hasTwoRowids, 1);
          sqlite3VdbeAddOp2(v, OP_MoveGe, base, 0);
        }
        seenReplace = 1;
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp2(v, OP_Pop, nCol+1+hasTwoRowids, 0);
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;
      }
    }
    sqlite3VdbeJumpHere(v, jumpInst2);
    if( isUpdate ){
      sqlite3VdbeJumpHere(v, jumpInst1);
      sqlite3VdbeAddOp2(v, OP_Dup, nCol+1, 1);
      sqlite3VdbeAddOp2(v, OP_MoveGe, base, 0);
    }
  }

  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Add the new records to the indices as we go.
  */
  extra = -1;
  for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
    if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
    extra++;

    /* Create a key for accessing the index entry */
    sqlite3VdbeAddOp2(v, OP_Dup, nCol+extra, 1);
    for(i=0; i<pIdx->nColumn; i++){
      int idx = pIdx->aiColumn[i];
      if( idx==pTab->iPKey ){
        sqlite3VdbeAddOp2(v, OP_Dup, i+extra+nCol+1, 1);
      }else{
        sqlite3VdbeAddOp2(v, OP_Dup, i+extra+nCol-idx, 1);
      }
    }
    jumpInst1 = sqlite3VdbeAddOp2(v, OP_MakeIdxRec, pIdx->nColumn, 0);
    sqlite3IndexAffinityStr(v, pIdx);

    /* Find out what action to take in case there is an indexing conflict */
    onError = pIdx->onError;
    if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( seenReplace ){
      if( onError==OE_Ignore ) onError = OE_Replace;
      else if( onError==OE_Fail ) onError = OE_Abort;
    }
    

    /* Check to see if the new index entry will be unique */
    sqlite3VdbeAddOp2(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
    jumpInst2 = sqlite3VdbeAddOp2(v, OP_IsUnique, base+iCur+1, 0);

    /* Generate code that executes if the new index entry is not unique */
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
          }else{
            sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
            n1 += n2;
          }
        }
        sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 
            pIdx->nColumn>1 ? " are not unique" : " is not unique");
        sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
        sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
      case OE_Replace: {
        sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
        if( isUpdate ){
          sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
          sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
        }
        seenReplace = 1;
        break;
      }
    }
#if NULL_DISTINCT_FOR_UNIQUE
    sqlite3VdbeJumpHere(v, jumpInst1);







|




|
|





|
|







1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
          }else{
            sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
            n1 += n2;
          }
        }
        sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 
            pIdx->nColumn>1 ? " are not unique" : " is not unique");
        sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp2(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;
      }
      case OE_Replace: {
        sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
        if( isUpdate ){
          sqlite3VdbeAddOp2(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
          sqlite3VdbeAddOp2(v, OP_MoveGe, base, 0);
        }
        seenReplace = 1;
        break;
      }
    }
#if NULL_DISTINCT_FOR_UNIQUE
    sqlite3VdbeJumpHere(v, jumpInst1);
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
  for(i=nIdx-1; i>=0; i--){
    if( aIdxUsed && aIdxUsed[i]==0 ) continue;
    sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
  }
  sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
  sqlite3TableAffinityStr(v, pTab);
#ifndef SQLITE_OMIT_TRIGGER
  if( newIdx>=0 ){
    sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
    sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
    sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
  }
#endif
  if( pParse->nested ){
    pik_flags = 0;
  }else{
    pik_flags = OPFLAG_NCHANGE;
    pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
  }
  if( appendBias ){
    pik_flags |= OPFLAG_APPEND;
  }
  sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
  if( !pParse->nested ){
    sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
  }
  
  if( isUpdate && rowidChng ){
    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
  }
}

/*
** Generate code that will open cursors for a table and for all
** indices of that table.  The "base" parameter is the cursor number used
** for the table.  Indices are opened on subsequent cursors.







|

|



|
|
|











|

|



|







1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
  for(i=nIdx-1; i>=0; i--){
    if( aIdxUsed && aIdxUsed[i]==0 ) continue;
    sqlite3VdbeAddOp2(v, OP_IdxInsert, base+i+1, 0);
  }
  sqlite3VdbeAddOp2(v, OP_MakeRecord, pTab->nCol, 0);
  sqlite3TableAffinityStr(v, pTab);
#ifndef SQLITE_OMIT_TRIGGER
  if( newIdx>=0 ){
    sqlite3VdbeAddOp2(v, OP_Dup, 1, 0);
    sqlite3VdbeAddOp2(v, OP_Dup, 1, 0);
    sqlite3VdbeAddOp2(v, OP_Insert, newIdx, 0);
  }
#endif
  if( pParse->nested ){
    pik_flags = 0;
  }else{
    pik_flags = OPFLAG_NCHANGE;
    pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
  }
  if( appendBias ){
    pik_flags |= OPFLAG_APPEND;
  }
  sqlite3VdbeAddOp2(v, OP_Insert, base, pik_flags);
  if( !pParse->nested ){
    sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
  }
  
  if( isUpdate && rowidChng ){
    sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
  }
}

/*
** Generate code that will open cursors for a table and for all
** indices of that table.  The "base" parameter is the cursor number used
** for the table.  Indices are opened on subsequent cursors.
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

1288
1289
1290
1291
1292
1293
1294
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  sqlite3OpenTable(pParse, base, iDb, pTab, op);
  for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    assert( pIdx->pSchema==pTab->pSchema );
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    VdbeComment((v, "%s", pIdx->zName));
    sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);

  }
  if( pParse->nTab<=base+i ){
    pParse->nTab = base+i;
  }
}









|

|
>







1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  sqlite3OpenTable(pParse, base, iDb, pTab, op);
  for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    assert( pIdx->pSchema==pTab->pSchema );
    sqlite3VdbeAddOp2(v, OP_Integer, iDb, 0);
    VdbeComment((v, "%s", pIdx->zName));
    sqlite3VdbeAddOp4(v, op, i+base, pIdx->tnum, 0,
                      (char*)pKey, P4_KEYINFO_HANDOFF);
  }
  if( pParse->nTab<=base+i ){
    pParse->nTab = base+i;
  }
}


1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
    ** the rowids might change which will mess up indexing.
    **
    ** Or if the destination has a UNIQUE index and is not empty,
    ** we also disallow the transfer optimization because we cannot
    ** insure that all entries in the union of DEST and SRC will be
    ** unique.
    */
    addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
    emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, addr1);
  }else{
    emptyDestTest = 0;
  }
  sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
  emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
    sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
    addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
    sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 
                      "PRIMARY KEY must be unique", P3_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, counterMem);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
  }else{
    addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
    assert( pDest->autoInc==0 );
  }
  sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
  sqlite3VdbeOp3(v, OP_Insert, iDest,
                    OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
                    pDest->zName, 0);
  sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
  autoIncEnd(pParse, iDbDest, pDest, counterMem);
  for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
    for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
      if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
    }
    assert( pSrcIdx );
    sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
    sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
    sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
    pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
    VdbeComment((v, "%s", pSrcIdx->zName));
    sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 
                   (char*)pKey, P3_KEYINFO_HANDOFF);
    sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
    pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
    VdbeComment((v, "%s", pDestIdx->zName));
    sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, 
                   (char*)pKey, P3_KEYINFO_HANDOFF);
    addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
    sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
    sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
    sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
    sqlite3VdbeJumpHere(v, addr1);
  }
  sqlite3VdbeJumpHere(v, emptySrcTest);
  sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
  sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
  if( emptyDestTest ){
    sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
    sqlite3VdbeJumpHere(v, emptyDestTest);
    sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
    return 0;
  }else{
    return 1;
  }
}
#endif /* SQLITE_OMIT_XFER_OPT */







|
|





|

|
|
|
|
|



|

|


|
|


|






|
|
|


|
|
|


|
|
|
|
|
|



|
|

|

|






1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
    ** the rowids might change which will mess up indexing.
    **
    ** Or if the destination has a UNIQUE index and is not empty,
    ** we also disallow the transfer optimization because we cannot
    ** insure that all entries in the union of DEST and SRC will be
    ** unique.
    */
    addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
    emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, addr1);
  }else{
    emptyDestTest = 0;
  }
  sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
  emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, 0);
    sqlite3VdbeAddOp2(v, OP_Dup, 0, 0);
    addr2 = sqlite3VdbeAddOp2(v, OP_NotExists, iDest, 0);
    sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
                      "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, counterMem);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, 0);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, 0);
    assert( pDest->autoInc==0 );
  }
  sqlite3VdbeAddOp2(v, OP_RowData, iSrc, 0);
  sqlite3VdbeAddOp4(v, OP_Insert, iDest, 0,
                    OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
                    pDest->zName, 0);
  sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
  autoIncEnd(pParse, iDbDest, pDest, counterMem);
  for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
    for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
      if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
    }
    assert( pSrcIdx );
    sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
    sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
    sqlite3VdbeAddOp2(v, OP_Integer, iDbSrc, 0);
    pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
    VdbeComment((v, "%s", pSrcIdx->zName));
    sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 0,
                      (char*)pKey, P4_KEYINFO_HANDOFF);
    sqlite3VdbeAddOp2(v, OP_Integer, iDbDest, 0);
    pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
    VdbeComment((v, "%s", pDestIdx->zName));
    sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, 0,
                      (char*)pKey, P4_KEYINFO_HANDOFF);
    addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
    sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, 0);
    sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, 1);
    sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
    sqlite3VdbeJumpHere(v, addr1);
  }
  sqlite3VdbeJumpHere(v, emptySrcTest);
  sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
  sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
  if( emptyDestTest ){
    sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
    sqlite3VdbeJumpHere(v, emptyDestTest);
    sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
    return 0;
  }else{
    return 1;
  }
}
#endif /* SQLITE_OMIT_XFER_OPT */
Changes to src/pragma.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
** $Id: pragma.c,v 1.154 2008/01/02 00:34:37 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/* Ignore this whole file if pragmas are disabled
*/
#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
** $Id: pragma.c,v 1.155 2008/01/03 00:01:24 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/* Ignore this whole file if pragmas are disabled
*/
#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

/*
** Generate code to return a single integer value.
*/
static void returnSingleInt(Parse *pParse, const char *zLabel, int value){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int mem = pParse->nMem++;
  sqlite3VdbeAddOp(v, OP_MemInt, value, mem);
  if( pParse->explain==0 ){
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P3_STATIC);
  }
  sqlite3VdbeAddOp(v, OP_ResultRow, mem, 1);
}

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
/*
** Check to see if zRight and zLeft refer to a pragma that queries
** or changes one of the flags in db->flags.  Return 1 if so and 0 if not.
** Also, implement the pragma.







|


|

|







144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

/*
** Generate code to return a single integer value.
*/
static void returnSingleInt(Parse *pParse, const char *zLabel, int value){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int mem = pParse->nMem++;
  sqlite3VdbeAddOp2(v, OP_MemInt, value, mem);
  if( pParse->explain==0 ){
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P4_STATIC);
  }
  sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
}

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
/*
** Check to see if zRight and zLeft refer to a pragma that queries
** or changes one of the flags in db->flags.  Return 1 if so and 0 if not.
** Also, implement the pragma.
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            db->flags &= ~p->mask;
          }

          /* Many of the flag-pragmas modify the code generated by the SQL 
          ** compiler (eg. count_changes). So add an opcode to expire all
          ** compiled SQL statements after modifying a pragma value.
          */
          sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
        }
      }

      return 1;
    }
  }
  return 0;







|







206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            db->flags &= ~p->mask;
          }

          /* Many of the flag-pragmas modify the code generated by the SQL 
          ** compiler (eg. count_changes). So add an opcode to expire all
          ** compiled SQL statements after modifying a pragma value.
          */
          sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
        }
      }

      return 1;
    }
  }
  return 0;
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
      { OP_Callback,    1, 0,        0},
    };
    int addr;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeUsesBtree(v, iDb);
    if( !zRight ){
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P3_STATIC);
      addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      sqlite3BeginWriteOperation(pParse, 0, iDb);
      sqlite3VdbeAddOp(v, OP_Integer, size, 0);
      sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 2);
      addr = sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
      sqlite3VdbeAddOp(v, OP_Ge, 0, addr+3);
      sqlite3VdbeAddOp(v, OP_Negative, 0, 0);
      sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 2);
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
  }else

  /*
  **  PRAGMA [database.]page_size







|







|
|
|
|
|
|







307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
      { OP_Callback,    1, 0,        0},
    };
    int addr;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeUsesBtree(v, iDb);
    if( !zRight ){
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC);
      addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      sqlite3BeginWriteOperation(pParse, 0, iDb);
      sqlite3VdbeAddOp2(v, OP_Integer, size, 0);
      sqlite3VdbeAddOp2(v, OP_ReadCookie, iDb, 2);
      addr = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
      sqlite3VdbeAddOp2(v, OP_Ge, 0, addr+3);
      sqlite3VdbeAddOp2(v, OP_Negative, 0, 0);
      sqlite3VdbeAddOp2(v, OP_SetCookie, iDb, 2);
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
  }else

  /*
  **  PRAGMA [database.]page_size
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    }

    assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
    if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
      zRet = "exclusive";
    }
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P3_STATIC);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, zRet, 0);
    sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
  }else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

  /*
  **  PRAGMA [database.]auto_vacuum
  **  PRAGMA [database.]auto_vacuum=N
  **







|
|
|







413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    }

    assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
    if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
      zRet = "exclusive";
    }
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, zRet, 0);
    sqlite3VdbeAddOp2(v, OP_Callback, 1, 0);
  }else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

  /*
  **  PRAGMA [database.]auto_vacuum
  **  PRAGMA [database.]auto_vacuum=N
  **
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    if( sqlite3ReadSchema(pParse) ){
      goto pragma_out;
    }
    if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
      iLimit = 0x7fffffff;
    }
    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3VdbeAddOp(v, OP_MemInt, iLimit, 0);
    addr = sqlite3VdbeAddOp(v, OP_IncrVacuum, iDb, 0);
    sqlite3VdbeAddOp(v, OP_Callback, 0, 0);
    sqlite3VdbeAddOp(v, OP_MemIncr, -1, 0);
    sqlite3VdbeAddOp(v, OP_IfMemPos, 0, addr);
    sqlite3VdbeJumpHere(v, addr);
  }else
#endif

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [database.]cache_size







|
|
|
|
|







488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    if( sqlite3ReadSchema(pParse) ){
      goto pragma_out;
    }
    if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
      iLimit = 0x7fffffff;
    }
    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3VdbeAddOp2(v, OP_MemInt, iLimit, 0);
    addr = sqlite3VdbeAddOp2(v, OP_IncrVacuum, iDb, 0);
    sqlite3VdbeAddOp2(v, OP_Callback, 0, 0);
    sqlite3VdbeAddOp2(v, OP_MemIncr, -1, 0);
    sqlite3VdbeAddOp2(v, OP_IfMemPos, 0, addr);
    sqlite3VdbeJumpHere(v, addr);
  }else
#endif

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [database.]cache_size
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
  **
  */
  if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
    if( !zRight ){
      if( sqlite3_temp_directory ){
        sqlite3VdbeSetNumCols(v, 1);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, 
            "temp_store_directory", P3_STATIC);
        sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3_temp_directory, 0);
        sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
      }
    }else{
      if( zRight[0] 
       && !sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE) 
      ){
        sqlite3ErrorMsg(pParse, "not a writable directory");
        goto pragma_out;







|
|
|







558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
  **
  */
  if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
    if( !zRight ){
      if( sqlite3_temp_directory ){
        sqlite3VdbeSetNumCols(v, 1);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, 
            "temp_store_directory", P4_STATIC);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, sqlite3_temp_directory, 0);
        sqlite3VdbeAddOp2(v, OP_Callback, 1, 0);
      }
    }else{
      if( zRight[0] 
       && !sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE) 
      ){
        sqlite3ErrorMsg(pParse, "not a writable directory");
        goto pragma_out;
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i;
      int nHidden = 0;
      Column *pCol;
      sqlite3VdbeSetNumCols(v, 6);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P3_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P3_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P3_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P3_STATIC);
      sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P3_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);
      for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
        const Token *pDflt;
        if( IsHiddenColumn(pCol) ){
          nHidden++;
          continue;
        }
        sqlite3VdbeAddOp(v, OP_Integer, i-nHidden, 0);
        sqlite3VdbeOp3(v, OP_String8, 0, 0, pCol->zName, 0);
        sqlite3VdbeOp3(v, OP_String8, 0, 0,
           pCol->zType ? pCol->zType : "", 0);
        sqlite3VdbeAddOp(v, OP_Integer, pCol->notNull, 0);
        if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){
          sqlite3VdbeOp3(v, OP_String8, 0, 0, (char*)pDflt->z, pDflt->n);
        }else{
          sqlite3VdbeAddOp(v, OP_Null, 0, 0);
        }
        sqlite3VdbeAddOp(v, OP_Integer, pCol->isPrimKey, 0);
        sqlite3VdbeAddOp(v, OP_Callback, 6, 0);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P3_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P3_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P3_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp(v, OP_Integer, i, 0);
        sqlite3VdbeAddOp(v, OP_Integer, cnum, 0);
        assert( pTab->nCol>cnum );
        sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[cnum].zName, 0);
        sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P3_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp(v, OP_Integer, i, 0);
          sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
          sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
          ++i;
          pIdx = pIdx->pNext;
        }
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "database_list")==0 ){
    int i;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 3);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
    sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P3_STATIC);
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pBt==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqlite3VdbeAddOp(v, OP_Integer, i, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0,
           sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
      sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
    }
  }else

  if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
    int i = 0;
    HashElem *p;
    sqlite3VdbeSetNumCols(v, 2);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
    for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
      CollSeq *pColl = (CollSeq *)sqliteHashData(p);
      sqlite3VdbeAddOp(v, OP_Integer, i++, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0, pColl->zName, 0);
      sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
    }
  }else
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */

#ifndef SQLITE_OMIT_FOREIGN_KEY
  if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
    FKey *pFK;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 5);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P3_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P3_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P3_STATIC);
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P3_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P3_STATIC);
        while(pFK){
          int j;
          for(j=0; j<pFK->nCol; j++){
            char *zCol = pFK->aCol[j].zCol;
            sqlite3VdbeAddOp(v, OP_Integer, i, 0);
            sqlite3VdbeAddOp(v, OP_Integer, j, 0);
            sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->zTo, 0);
            sqlite3VdbeOp3(v, OP_String8, 0, 0,
                             pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
            sqlite3VdbeOp3(v, zCol ? OP_String8 : OP_Null, 0, 0, zCol, 0);
            sqlite3VdbeAddOp(v, OP_Callback, 5, 0);
          }
          ++i;
          pFK = pFK->pNextFrom;
        }
      }
    }
  }else







|
|
|
|
|
|







|
|
|

|

|

|

|
|













|
|
|


|
|

|
|















|
|
|

|
|
|
|











|
|
|



|
|
|

|







|
|


|
|
|
















|
|
|
|
|




|
|
|
|
|
|
|







638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i;
      int nHidden = 0;
      Column *pCol;
      sqlite3VdbeSetNumCols(v, 6);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC);
      sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);
      for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
        const Token *pDflt;
        if( IsHiddenColumn(pCol) ){
          nHidden++;
          continue;
        }
        sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 0);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pCol->zName, 0);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0,
           pCol->zType ? pCol->zType : "", 0);
        sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 0);
        if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){
          sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, (char*)pDflt->z, pDflt->n);
        }else{
          sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
        }
        sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 0);
        sqlite3VdbeAddOp2(v, OP_Callback, 6, 0);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp2(v, OP_Integer, i, 0);
        sqlite3VdbeAddOp2(v, OP_Integer, cnum, 0);
        assert( pTab->nCol>cnum );
        sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pTab->aCol[cnum].zName, 0);
        sqlite3VdbeAddOp2(v, OP_Callback, 3, 0);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp2(v, OP_Integer, i, 0);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 0);
          sqlite3VdbeAddOp2(v, OP_Callback, 3, 0);
          ++i;
          pIdx = pIdx->pNext;
        }
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "database_list")==0 ){
    int i;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 3);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
    sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC);
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pBt==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqlite3VdbeAddOp2(v, OP_Integer, i, 0);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, db->aDb[i].zName, 0);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0,
           sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
      sqlite3VdbeAddOp2(v, OP_Callback, 3, 0);
    }
  }else

  if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
    int i = 0;
    HashElem *p;
    sqlite3VdbeSetNumCols(v, 2);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
    for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
      CollSeq *pColl = (CollSeq *)sqliteHashData(p);
      sqlite3VdbeAddOp2(v, OP_Integer, i++, 0);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pColl->zName, 0);
      sqlite3VdbeAddOp2(v, OP_Callback, 2, 0);
    }
  }else
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */

#ifndef SQLITE_OMIT_FOREIGN_KEY
  if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
    FKey *pFK;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 5);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC);
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC);
        while(pFK){
          int j;
          for(j=0; j<pFK->nCol; j++){
            char *zCol = pFK->aCol[j].zCol;
            sqlite3VdbeAddOp2(v, OP_Integer, i, 0);
            sqlite3VdbeAddOp2(v, OP_Integer, j, 0);
            sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, pFK->zTo, 0);
            sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0,
                              pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
            sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 0, 0, zCol, 0);
            sqlite3VdbeAddOp2(v, OP_Callback, 5, 0);
          }
          ++i;
          pFK = pFK->pNextFrom;
        }
      }
    }
  }else
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
    };

    int isQuick = (zLeft[0]=='q');

    /* Initialize the VDBE program */
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P3_STATIC);

    /* Set the maximum error count */
    mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
    if( zRight ){
      mxErr = atoi(zRight);
      if( mxErr<=0 ){
        mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
      }
    }
    sqlite3VdbeAddOp(v, OP_MemInt, mxErr, 0);

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      Hash *pTbls;
      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;

      sqlite3CodeVerifySchema(pParse, i);
      addr = sqlite3VdbeAddOp(v, OP_IfMemPos, 0, 0);
      sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
      sqlite3VdbeJumpHere(v, addr);

      /* Do an integrity check of the B-Tree
      */
      pTbls = &db->aDb[i].pSchema->tblHash;
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0);
          cnt++;
        }
      }
      if( cnt==0 ) continue;
      sqlite3VdbeAddOp(v, OP_IntegrityCk, 0, i);
      addr = sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
         P3_DYNAMIC);
      sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp(v, OP_Concat, 0, 0);
      sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
      sqlite3VdbeJumpHere(v, addr);

      /* Make sure all the indices are constructed correctly.
      */
      for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        addr = sqlite3VdbeAddOp(v, OP_IfMemPos, 0, 0);
        sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
        sqlite3VdbeJumpHere(v, addr);
        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        sqlite3VdbeAddOp(v, OP_MemInt, 0, 1);
        loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0);
        sqlite3VdbeAddOp(v, OP_MemIncr, 1, 1);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2;
          static const VdbeOpList idxErr[] = {
            { OP_MemIncr,    -1,  0,  0},
            { OP_String8,     0,  0,  "rowid "},
            { OP_Rowid,       1,  0,  0},
            { OP_String8,     0,  0,  " missing from index "},
            { OP_String8,     0,  0,  0},    /* 4 */
            { OP_Concat,      2,  0,  0},
            { OP_Callback,    1,  0,  0},
          };
          sqlite3GenerateIndexKey(v, pIdx, 1);
          jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0);
          addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
          sqlite3VdbeJumpHere(v, jmp2);
        }
        sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1);
        sqlite3VdbeJumpHere(v, loopTop);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static const VdbeOpList cntIdx[] = {
             { OP_MemInt,       0,  2,  0},
             { OP_Rewind,       0,  0,  0},  /* 1 */
             { OP_MemIncr,      1,  2,  0},
             { OP_Next,         0,  0,  0},  /* 3 */
             { OP_MemLoad,      1,  0,  0},
             { OP_MemLoad,      2,  0,  0},
             { OP_Eq,           0,  0,  0},  /* 6 */
             { OP_MemIncr,     -1,  0,  0},
             { OP_String8,      0,  0,  "wrong # of entries in index "},
             { OP_String8,      0,  0,  0},  /* 9 */
             { OP_Concat,       0,  0,  0},
             { OP_Callback,     1,  0,  0},
          };
          if( pIdx->tnum==0 ) continue;
          addr = sqlite3VdbeAddOp(v, OP_IfMemPos, 0, 0);
          sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
          sqlite3VdbeJumpHere(v, addr);
          addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqlite3VdbeChangeP1(v, addr+1, j+2);
          sqlite3VdbeChangeP2(v, addr+1, addr+4);
          sqlite3VdbeChangeP1(v, addr+3, j+2);
          sqlite3VdbeChangeP2(v, addr+3, addr+2);
          sqlite3VdbeJumpHere(v, addr+6);
          sqlite3VdbeChangeP3(v, addr+9, pIdx->zName, P3_STATIC);
        }
      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
    sqlite3VdbeChangeP1(v, addr+1, mxErr);
    sqlite3VdbeJumpHere(v, addr+2);
  }else







|









|










|
|








|


|




|
|
|

|
|
|
|










|
|


|
|
|












|

|


|

















|
|







|







838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
    };

    int isQuick = (zLeft[0]=='q');

    /* Initialize the VDBE program */
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC);

    /* Set the maximum error count */
    mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
    if( zRight ){
      mxErr = atoi(zRight);
      if( mxErr<=0 ){
        mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
      }
    }
    sqlite3VdbeAddOp2(v, OP_MemInt, mxErr, 0);

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      Hash *pTbls;
      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;

      sqlite3CodeVerifySchema(pParse, i);
      addr = sqlite3VdbeAddOp2(v, OP_IfMemPos, 0, 0);
      sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
      sqlite3VdbeJumpHere(v, addr);

      /* Do an integrity check of the B-Tree
      */
      pTbls = &db->aDb[i].pSchema->tblHash;
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 0);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 0);
          cnt++;
        }
      }
      if( cnt==0 ) continue;
      sqlite3VdbeAddOp2(v, OP_IntegrityCk, 0, i);
      addr = sqlite3VdbeAddOp2(v, OP_IsNull, -1, 0);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
         P4_DYNAMIC);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Concat, 0, 0);
      sqlite3VdbeAddOp2(v, OP_Callback, 1, 0);
      sqlite3VdbeJumpHere(v, addr);

      /* Make sure all the indices are constructed correctly.
      */
      for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        addr = sqlite3VdbeAddOp2(v, OP_IfMemPos, 0, 0);
        sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
        sqlite3VdbeJumpHere(v, addr);
        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        sqlite3VdbeAddOp2(v, OP_MemInt, 0, 1);
        loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
        sqlite3VdbeAddOp2(v, OP_MemIncr, 1, 1);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2;
          static const VdbeOpList idxErr[] = {
            { OP_MemIncr,    -1,  0,  0},
            { OP_String8,     0,  0,  "rowid "},
            { OP_Rowid,       1,  0,  0},
            { OP_String8,     0,  0,  " missing from index "},
            { OP_String8,     0,  0,  0},    /* 4 */
            { OP_Concat,      2,  0,  0},
            { OP_Callback,    1,  0,  0},
          };
          sqlite3GenerateIndexKey(v, pIdx, 1);
          jmp2 = sqlite3VdbeAddOp2(v, OP_Found, j+2, 0);
          addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC);
          sqlite3VdbeJumpHere(v, jmp2);
        }
        sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
        sqlite3VdbeJumpHere(v, loopTop);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static const VdbeOpList cntIdx[] = {
             { OP_MemInt,       0,  2,  0},
             { OP_Rewind,       0,  0,  0},  /* 1 */
             { OP_MemIncr,      1,  2,  0},
             { OP_Next,         0,  0,  0},  /* 3 */
             { OP_MemLoad,      1,  0,  0},
             { OP_MemLoad,      2,  0,  0},
             { OP_Eq,           0,  0,  0},  /* 6 */
             { OP_MemIncr,     -1,  0,  0},
             { OP_String8,      0,  0,  "wrong # of entries in index "},
             { OP_String8,      0,  0,  0},  /* 9 */
             { OP_Concat,       0,  0,  0},
             { OP_Callback,     1,  0,  0},
          };
          if( pIdx->tnum==0 ) continue;
          addr = sqlite3VdbeAddOp2(v, OP_IfMemPos, 0, 0);
          sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
          sqlite3VdbeJumpHere(v, addr);
          addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqlite3VdbeChangeP1(v, addr+1, j+2);
          sqlite3VdbeChangeP2(v, addr+1, addr+4);
          sqlite3VdbeChangeP1(v, addr+3, j+2);
          sqlite3VdbeChangeP2(v, addr+3, addr+2);
          sqlite3VdbeJumpHere(v, addr+6);
          sqlite3VdbeChangeP4(v, addr+9, pIdx->zName, P4_STATIC);
        }
      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
    sqlite3VdbeChangeP1(v, addr+1, mxErr);
    sqlite3VdbeJumpHere(v, addr+2);
  }else
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
      { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
      { 0, 0 }
    };
    const struct EncName *pEnc;
    if( !zRight ){    /* "PRAGMA encoding" */
      if( sqlite3ReadSchema(pParse) ) goto pragma_out;
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P3_STATIC);
      sqlite3VdbeAddOp(v, OP_String8, 0, 0);
      for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
        if( pEnc->enc==ENC(pParse->db) ){
          sqlite3VdbeChangeP3(v, -1, pEnc->zName, P3_STATIC);
          break;
        }
      }
      sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
    }else{                        /* "PRAGMA encoding = XXX" */
      /* Only change the value of sqlite.enc if the database handle is not
      ** initialized. If the main database exists, the new sqlite.enc value
      ** will be overwritten when the schema is next loaded. If it does not
      ** already exists, it will be created to use the new encoding value.
      */
      if( 







|
|


|



|







998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
      { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
      { 0, 0 }
    };
    const struct EncName *pEnc;
    if( !zRight ){    /* "PRAGMA encoding" */
      if( sqlite3ReadSchema(pParse) ) goto pragma_out;
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC);
      sqlite3VdbeAddOp2(v, OP_String8, 0, 0);
      for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
        if( pEnc->enc==ENC(pParse->db) ){
          sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC);
          break;
        }
      }
      sqlite3VdbeAddOp2(v, OP_Callback, 1, 0);
    }else{                        /* "PRAGMA encoding = XXX" */
      /* Only change the value of sqlite.enc if the database handle is not
      ** initialized. If the main database exists, the new sqlite.enc value
      ** will be overwritten when the schema is next loaded. If it does not
      ** already exists, it will be created to use the new encoding value.
      */
      if( 
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        { OP_ReadCookie,      0,  0,  0},    /* 0 */
        { OP_Callback,        1,  0,  0}
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP2(v, addr, iCookie);
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P3_TRANSIENT);
    }
  }else
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /*
  ** Report the current state of file logs for all databases
  */
  if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
    static const char *const azLockName[] = {
      "unlocked", "shared", "reserved", "pending", "exclusive"
    };
    int i;
    Vdbe *v = sqlite3GetVdbe(pParse);
    sqlite3VdbeSetNumCols(v, 2);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P3_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P3_STATIC);
    for(i=0; i<db->nDb; i++){
      Btree *pBt;
      Pager *pPager;
      const char *zState = "unknown";
      int j;
      if( db->aDb[i].zName==0 ) continue;
      sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, P3_STATIC);
      pBt = db->aDb[i].pBt;
      if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
        zState = "closed";
      }else if( sqlite3_file_control(db, db->aDb[i].zName, 
                                     SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
         zState = azLockName[j];
      }
      sqlite3VdbeOp3(v, OP_String8, 0, 0, zState, P3_STATIC);
      sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
    }
  }else
#endif

#ifdef SQLITE_SSE
  /*
  ** Check to see if the sqlite_statements table exists.  Create it







|















|
|






|







|
|







1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        { OP_ReadCookie,      0,  0,  0},    /* 0 */
        { OP_Callback,        1,  0,  0}
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP2(v, addr, iCookie);
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT);
    }
  }else
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /*
  ** Report the current state of file logs for all databases
  */
  if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
    static const char *const azLockName[] = {
      "unlocked", "shared", "reserved", "pending", "exclusive"
    };
    int i;
    Vdbe *v = sqlite3GetVdbe(pParse);
    sqlite3VdbeSetNumCols(v, 2);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC);
    for(i=0; i<db->nDb; i++){
      Btree *pBt;
      Pager *pPager;
      const char *zState = "unknown";
      int j;
      if( db->aDb[i].zName==0 ) continue;
      sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, db->aDb[i].zName, P4_STATIC);
      pBt = db->aDb[i].pBt;
      if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
        zState = "closed";
      }else if( sqlite3_file_control(db, db->aDb[i].zName, 
                                     SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
         zState = azLockName[j];
      }
      sqlite3VdbeAddOp4(v, OP_String8, 0, 0, 0, zState, P4_STATIC);
      sqlite3VdbeAddOp2(v, OP_Callback, 2, 0);
    }
  }else
#endif

#ifdef SQLITE_SSE
  /*
  ** Check to see if the sqlite_statements table exists.  Create it
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
  {}

  if( v ){
    /* Code an OP_Expire at the end of each PRAGMA program to cause
    ** the VDBE implementing the pragma to expire. Most (all?) pragmas
    ** are only valid for a single execution.
    */
    sqlite3VdbeAddOp(v, OP_Expire, 1, 0);

    /*
    ** Reset the safety level, in case the fullfsync flag or synchronous
    ** setting changed.
    */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
    if( db->autoCommit ){







|







1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
  {}

  if( v ){
    /* Code an OP_Expire at the end of each PRAGMA program to cause
    ** the VDBE implementing the pragma to expire. Most (all?) pragmas
    ** are only valid for a single execution.
    */
    sqlite3VdbeAddOp2(v, OP_Expire, 1, 0);

    /*
    ** Reset the safety level, in case the fullfsync flag or synchronous
    ** setting changed.
    */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
    if( db->autoCommit ){
Changes to src/prepare.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
** $Id: prepare.c,v 1.68 2007/12/27 15:12:17 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
** $Id: prepare.c,v 1.69 2008/01/03 00:01:24 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
  }
  rc = sParse.rc;

#ifndef SQLITE_OMIT_EXPLAIN
  if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
    if( sParse.explain==2 ){
      sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
      sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P3_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P3_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P3_STATIC);
    }else{
      sqlite3VdbeSetNumCols(sParse.pVdbe, 5);
      sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P3_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P3_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P3_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P3_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P3_STATIC);
    }
  }
#endif

  if( sqlite3SafetyOff(db) ){
    rc = SQLITE_MISUSE;
  }







|
|
|


|
|
|
|
|







564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
  }
  rc = sParse.rc;

#ifndef SQLITE_OMIT_EXPLAIN
  if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
    if( sParse.explain==2 ){
      sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
      sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P4_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P4_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P4_STATIC);
    }else{
      sqlite3VdbeSetNumCols(sParse.pVdbe, 5);
      sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P4_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P4_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P4_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P4_STATIC);
      sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P4_STATIC);
    }
  }
#endif

  if( sqlite3SafetyOff(db) ){
    rc = SQLITE_MISUSE;
  }
Changes to src/select.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.377 2008/01/02 17:11:14 danielk1977 Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.378 2008/01/03 00:01:25 drh Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  ExprList *pOrderBy,    /* The ORDER BY clause */
  Select *pSelect        /* The whole SELECT statement */
){
  Vdbe *v = pParse->pVdbe;
  sqlite3ExprCodeExprList(pParse, pOrderBy);
  sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
  sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
  sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
  sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
  if( pSelect->iLimit>=0 ){
    int addr1, addr2;
    addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
    sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
    addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
    sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
    sqlite3VdbeJumpHere(v, addr2);
    pSelect->iLimit = -1;
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
  Select *p,        /* The SELECT statement being coded */
  int iContinue,    /* Jump here to skip the current record */
  int nPop          /* Number of times to pop stack when jumping */
){
  if( p->iOffset>=0 && iContinue!=0 ){
    int addr;
    sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
    addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
    if( nPop>0 ){
      sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
    }
    sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "skip OFFSET records"));
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
** Add code that will check to make sure the top N elements of the
** stack are distinct.  iTab is a sorting index that holds previously
** seen combinations of the N values.  A new entry is made in iTab
** if the current N values are new.
**
** A jump to addrRepeat is made and the N+1 values are popped from the
** stack if the top N elements are not distinct.
*/
static void codeDistinct_OLD(
  Vdbe *v,           /* Generate code into this VM */
  int iTab,          /* A sorting index used to test for distinctness */
  int addrRepeat,    /* Jump to here if not distinct */
  int N              /* The top N elements of the stack must be distinct */
){
  sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
  sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
  sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
  sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
  VdbeComment((v, "skip indistinct records"));
  sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
}

/*
** Add code that will check to make sure the top N elements of the
** stack are distinct.  iTab is a sorting index that holds previously
** seen combinations of the N values.  A new entry is made in iTab
** if the current N values are new.
**
** A jump to addrRepeat is made and the N+1 values are popped from the
** stack if the top N elements are not distinct.
*/
static void codeDistinct(
  Vdbe *v,           /* Generate code into this VM */
  int iTab,          /* A sorting index used to test for distinctness */
  int addrRepeat,    /* Jump to here if not distinct */
  int iMem           /* First element */
){
  sqlite3VdbeAddOp(v, OP_RegMakeRec, iMem, 0);
  sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
  sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
  sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
  VdbeComment((v, "skip indistinct records"));
  sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
}

/*
** Generate an error message when a SELECT is used within a subexpression
** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
** column.  We do this in a subroutine because the error occurs in multiple
** places.







|
|
|
|


|
|
|

|
|
















|
|

|

|




















|
|
|
|

|

















|
|
|
|

|







384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  ExprList *pOrderBy,    /* The ORDER BY clause */
  Select *pSelect        /* The whole SELECT statement */
){
  Vdbe *v = pParse->pVdbe;
  sqlite3ExprCodeExprList(pParse, pOrderBy);
  sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, 0);
  sqlite3VdbeAddOp2(v, OP_Pull, pOrderBy->nExpr + 1, 0);
  sqlite3VdbeAddOp2(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, 0);
  if( pSelect->iLimit>=0 ){
    int addr1, addr2;
    addr1 = sqlite3VdbeAddOp2(v, OP_IfMemZero, pSelect->iLimit+1, 0);
    sqlite3VdbeAddOp2(v, OP_MemIncr, -1, pSelect->iLimit+1);
    addr2 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp2(v, OP_Last, pOrderBy->iECursor, 0);
    sqlite3VdbeAddOp2(v, OP_Delete, pOrderBy->iECursor, 0);
    sqlite3VdbeJumpHere(v, addr2);
    pSelect->iLimit = -1;
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
  Select *p,        /* The SELECT statement being coded */
  int iContinue,    /* Jump here to skip the current record */
  int nPop          /* Number of times to pop stack when jumping */
){
  if( p->iOffset>=0 && iContinue!=0 ){
    int addr;
    sqlite3VdbeAddOp2(v, OP_MemIncr, -1, p->iOffset);
    addr = sqlite3VdbeAddOp2(v, OP_IfMemNeg, p->iOffset, 0);
    if( nPop>0 ){
      sqlite3VdbeAddOp2(v, OP_Pop, nPop, 0);
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "skip OFFSET records"));
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
** Add code that will check to make sure the top N elements of the
** stack are distinct.  iTab is a sorting index that holds previously
** seen combinations of the N values.  A new entry is made in iTab
** if the current N values are new.
**
** A jump to addrRepeat is made and the N+1 values are popped from the
** stack if the top N elements are not distinct.
*/
static void codeDistinct_OLD(
  Vdbe *v,           /* Generate code into this VM */
  int iTab,          /* A sorting index used to test for distinctness */
  int addrRepeat,    /* Jump to here if not distinct */
  int N              /* The top N elements of the stack must be distinct */
){
  sqlite3VdbeAddOp2(v, OP_MakeRecord, -N, 0);
  sqlite3VdbeAddOp2(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
  sqlite3VdbeAddOp2(v, OP_Pop, N+1, 0);
  sqlite3VdbeAddOp2(v, OP_Goto, 0, addrRepeat);
  VdbeComment((v, "skip indistinct records"));
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, 0);
}

/*
** Add code that will check to make sure the top N elements of the
** stack are distinct.  iTab is a sorting index that holds previously
** seen combinations of the N values.  A new entry is made in iTab
** if the current N values are new.
**
** A jump to addrRepeat is made and the N+1 values are popped from the
** stack if the top N elements are not distinct.
*/
static void codeDistinct(
  Vdbe *v,           /* Generate code into this VM */
  int iTab,          /* A sorting index used to test for distinctness */
  int addrRepeat,    /* Jump to here if not distinct */
  int iMem           /* First element */
){
  sqlite3VdbeAddOp2(v, OP_RegMakeRec, iMem, 0);
  sqlite3VdbeAddOp2(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
  sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
  sqlite3VdbeAddOp2(v, OP_Goto, 0, addrRepeat);
  VdbeComment((v, "skip indistinct records"));
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, 0);
}

/*
** Generate an error message when a SELECT is used within a subexpression
** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
** column.  We do this in a subroutine because the error occurs in multiple
** places.
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
  if( nColumn>0 ){
    n = nColumn;
  }else{
    n = pEList->nExpr;
  }
  iMem = pParse->nMem;
  pParse->nMem += n+1;
  sqlite3VdbeAddOp(v, OP_MemInt, n, iMem);
  if( nColumn>0 ){
    for(i=0; i<nColumn; i++){
      sqlite3VdbeOp3Int(v, OP_Column, srcTab, i, iMem+i+1);
    }
  }else if( eDest!=SRT_Exists ){
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    for(i=0; i<n; i++){
      sqlite3ExprIntoReg(pParse, pEList->a[i].pExpr, iMem+i+1);







|


|







539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
  if( nColumn>0 ){
    n = nColumn;
  }else{
    n = pEList->nExpr;
  }
  iMem = pParse->nMem;
  pParse->nMem += n+1;
  sqlite3VdbeAddOp2(v, OP_MemInt, n, iMem);
  if( nColumn>0 ){
    for(i=0; i<nColumn; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, iMem+i+1);
    }
  }else if( eDest!=SRT_Exists ){
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    for(i=0; i<n; i++){
      sqlite3ExprIntoReg(pParse, pEList->a[i].pExpr, iMem+i+1);
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */
#ifndef SQLITE_OMIT_COMPOUND_SELECT
    case SRT_Union: {
      sqlite3VdbeAddOp(v, OP_RegMakeRec, iMem, 0);
      if( aff ){
        sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
      }
      sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.
    */
    case SRT_Except: {
      int addr;
      addr = sqlite3VdbeAddOp(v, OP_RegMakeRec, iMem, 0);
      sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
      sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
      sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
      break;
    }
#endif

    /* Store the result as data using a unique key.
    */
    case SRT_Table:
    case SRT_EphemTab: {
      sqlite3VdbeAddOp(v, OP_RegMakeRec, iMem, 0);
      if( pOrderBy ){
        pushOntoSorter(pParse, pOrderBy, p);
      }else{
        sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
        sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
        sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
      }
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      int addr2;

      assert( nColumn==1 );
      addr2 = sqlite3VdbeAddOp(v, OP_IfMemNull, iMem+1, 0);
      p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
      if( pOrderBy ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        sqlite3VdbeAddOp(v, OP_MemLoad, iMem+1, 0);
        pushOntoSorter(pParse, pOrderBy, p);
      }else{
        sqlite3VdbeOp3(v, OP_RegMakeRec, iMem, 0, &p->affinity, 1);
        sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
      }
      sqlite3VdbeJumpHere(v, addr2);
      break;
    }

    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem+1, 0);
      if( pOrderBy ){
        pushOntoSorter(pParse, pOrderBy, p);
      }else{
        sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* Send the data to the callback function or to a subroutine.  In the
    ** case of a subroutine, the subroutine itself is responsible for
    ** popping the data from the stack.
    */
    case SRT_Subroutine:
    case SRT_Callback: {
      if( pOrderBy ){
        sqlite3VdbeAddOp(v, OP_RegMakeRec, iMem, 0);
        pushOntoSorter(pParse, pOrderBy, p);
      }else if( eDest==SRT_Subroutine ){
        for(i=0; i<nColumn; i++) sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
        sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
      }else{
        sqlite3VdbeAddOp(v, OP_ResultRow, iMem+1, nColumn);
      }
      break;
    }

#if !defined(SQLITE_OMIT_TRIGGER)
    /* Discard the results.  This is used for SELECT statements inside
    ** the body of a TRIGGER.  The purpose of such selects is to call
    ** user-defined functions that have side effects.  We do not care
    ** about the actual results of the select.
    */
    default: {
      assert( eDest==SRT_Discard );
      break;
    }
#endif
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit>=0 && pOrderBy==0 ){
    sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
    sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
  }
  return 0;
}

/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.  Add the KeyInfo structure to the P3 field of an opcode using
** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
  sqlite3 *db = pParse->db;
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  int i;







|

|

|









|
|
|
|








|



|
|
|













|






|


|
|








|










|



|













|


|
|

|




















|
|
















|
|







577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */
#ifndef SQLITE_OMIT_COMPOUND_SELECT
    case SRT_Union: {
      sqlite3VdbeAddOp2(v, OP_RegMakeRec, iMem, 0);
      if( aff ){
        sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
      }
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, 0);
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.
    */
    case SRT_Except: {
      int addr;
      addr = sqlite3VdbeAddOp2(v, OP_RegMakeRec, iMem, 0);
      sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
      sqlite3VdbeAddOp2(v, OP_NotFound, iParm, addr+3);
      sqlite3VdbeAddOp2(v, OP_Delete, iParm, 0);
      break;
    }
#endif

    /* Store the result as data using a unique key.
    */
    case SRT_Table:
    case SRT_EphemTab: {
      sqlite3VdbeAddOp2(v, OP_RegMakeRec, iMem, 0);
      if( pOrderBy ){
        pushOntoSorter(pParse, pOrderBy, p);
      }else{
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, 0);
        sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
        sqlite3VdbeAddOp2(v, OP_Insert, iParm, OPFLAG_APPEND);
      }
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      int addr2;

      assert( nColumn==1 );
      addr2 = sqlite3VdbeAddOp2(v, OP_IfMemNull, iMem+1, 0);
      p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
      if( pOrderBy ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        sqlite3VdbeAddOp2(v, OP_MemLoad, iMem+1, 0);
        pushOntoSorter(pParse, pOrderBy, p);
      }else{
        sqlite3VdbeAddOp4(v, OP_RegMakeRec, iMem, 0, 0, &p->affinity, 1);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, 0);
      }
      sqlite3VdbeJumpHere(v, addr2);
      break;
    }

    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp2(v, OP_MemInt, 1, iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp2(v, OP_MemLoad, iMem+1, 0);
      if( pOrderBy ){
        pushOntoSorter(pParse, pOrderBy, p);
      }else{
        sqlite3VdbeAddOp2(v, OP_MemStore, iParm, 1);
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* Send the data to the callback function or to a subroutine.  In the
    ** case of a subroutine, the subroutine itself is responsible for
    ** popping the data from the stack.
    */
    case SRT_Subroutine:
    case SRT_Callback: {
      if( pOrderBy ){
        sqlite3VdbeAddOp2(v, OP_RegMakeRec, iMem, 0);
        pushOntoSorter(pParse, pOrderBy, p);
      }else if( eDest==SRT_Subroutine ){
        for(i=0; i<nColumn; i++) sqlite3VdbeAddOp2(v, OP_MemLoad, iMem+i+1, 0);
        sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
      }else{
        sqlite3VdbeAddOp2(v, OP_ResultRow, iMem+1, nColumn);
      }
      break;
    }

#if !defined(SQLITE_OMIT_TRIGGER)
    /* Discard the results.  This is used for SELECT statements inside
    ** the body of a TRIGGER.  The purpose of such selects is to call
    ** user-defined functions that have side effects.  We do not care
    ** about the actual results of the select.
    */
    default: {
      assert( eDest==SRT_Discard );
      break;
    }
#endif
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit>=0 && pOrderBy==0 ){
    sqlite3VdbeAddOp2(v, OP_MemIncr, -1, p->iLimit);
    sqlite3VdbeAddOp2(v, OP_IfMemZero, p->iLimit, iBreak);
  }
  return 0;
}

/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.  Add the KeyInfo structure to the P4 field of an opcode using
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
  sqlite3 *db = pParse->db;
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  int i;
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

  int eDest = pDest->eDest;
  int iParm = pDest->iParm;

  iTab = pOrderBy->iECursor;
  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
  }
  addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
  codeOffset(v, p, cont, 0);
  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
    sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
  }
  sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
      sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case SRT_Set: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
      sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
      sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
      sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
      break;
    }
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif
    case SRT_Callback:
    case SRT_Subroutine: {
      int i;
      sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
      for(i=0; i<nColumn; i++){
        sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
      }
      if( eDest==SRT_Callback ){
        sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
      }else{
        sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
      }
      break;
    }
    default: {
      /* Do nothing */
      break;
    }
  }

  /* Jump to the end of the loop when the LIMIT is reached
  */
  if( p->iLimit>=0 ){
    sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
    sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
  }

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, cont);
  sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
  sqlite3VdbeResolveLabel(v, brk);
  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
    sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
  }

}

/*
** Return a pointer to a string containing the 'declaration type' of the
** expression pExpr. The string may be treated as static by the caller.







|
|

|


|

|



|
|
|





|
|
|
|
|




|







|

|


|

|












|
|





|


|







773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

  int eDest = pDest->eDest;
  int iParm = pDest->iParm;

  iTab = pOrderBy->iECursor;
  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, 0);
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, pseudoTab, nColumn);
  }
  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
  codeOffset(v, p, cont, 0);
  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
    sqlite3VdbeAddOp2(v, OP_Integer, 1, 0);
  }
  sqlite3VdbeAddOp2(v, OP_Column, iTab, pOrderBy->nExpr + 1);
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, 0);
      sqlite3VdbeAddOp2(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Insert, iParm, OPFLAG_APPEND);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case SRT_Set: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp2(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
      sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
      sqlite3VdbeAddOp4(v, OP_MakeRecord, 1, 0, 0, &p->affinity, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, 0);
      break;
    }
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp2(v, OP_MemStore, iParm, 1);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif
    case SRT_Callback:
    case SRT_Subroutine: {
      int i;
      sqlite3VdbeAddOp2(v, OP_Insert, pseudoTab, 0);
      for(i=0; i<nColumn; i++){
        sqlite3VdbeAddOp2(v, OP_Column, pseudoTab, i);
      }
      if( eDest==SRT_Callback ){
        sqlite3VdbeAddOp2(v, OP_Callback, nColumn, 0);
      }else{
        sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
      }
      break;
    }
    default: {
      /* Do nothing */
      break;
    }
  }

  /* Jump to the end of the loop when the LIMIT is reached
  */
  if( p->iLimit>=0 ){
    sqlite3VdbeAddOp2(v, OP_MemIncr, -1, p->iLimit);
    sqlite3VdbeAddOp2(v, OP_IfMemZero, p->iLimit, brk);
  }

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, cont);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
  sqlite3VdbeResolveLabel(v, brk);
  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  }

}

/*
** Return a pointer to a string containing the 'declaration type' of the
** expression pExpr. The string may be treated as static by the caller.
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    const char *zOrigCol = 0;
    const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);

    /* The vdbe must make its own copy of the column-type and other 
    ** column specific strings, in case the schema is reset before this
    ** virtual machine is deleted.
    */
    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
  }
}

/*
** Generate code that will tell the VDBE the names of columns
** in the result set.  This information is used to provide the
** azCol[] values in the callback.







|
|
|
|







1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    const char *zOrigCol = 0;
    const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);

    /* The vdbe must make its own copy of the column-type and other 
    ** column specific strings, in case the schema is reset before this
    ** virtual machine is deleted.
    */
    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
  }
}

/*
** Generate code that will tell the VDBE the names of columns
** in the result set.  This information is used to provide the
** azCol[] values in the callback.
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
      }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
        char *zName = 0;
        char *zTab;
 
        zTab = pTabList->a[j].zAlias;
        if( fullNames || zTab==0 ) zTab = pTab->zName;
        sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
      }else{
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
      }
    }else if( p->span.z && p->span.z[0] ){
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
      /* sqlite3VdbeCompressSpace(v, addr); */
    }else{







|







1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
      }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
        char *zName = 0;
        char *zTab;
 
        zTab = pTabList->a[j].zAlias;
        if( fullNames || zTab==0 ) zTab = pTab->zName;
        sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
      }else{
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
      }
    }else if( p->span.z && p->span.z[0] ){
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
      /* sqlite3VdbeCompressSpace(v, addr); */
    }else{
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
  */
  if( p->pLimit ){
    p->iLimit = iLimit = pParse->nMem;
    pParse->nMem += 2;
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;
    sqlite3ExprCode(pParse, p->pLimit);
    sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
    VdbeComment((v, "LIMIT counter"));
    sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
    sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
  }
  if( p->pOffset ){
    p->iOffset = iOffset = pParse->nMem++;
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;
    sqlite3ExprCode(pParse, p->pOffset);
    sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
    VdbeComment((v, "OFFSET counter"));
    addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
    sqlite3VdbeJumpHere(v, addr1);
    if( p->pLimit ){
      sqlite3VdbeAddOp(v, OP_Add, 0, 0);
    }
  }
  if( p->pLimit ){
    addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
    addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
    VdbeComment((v, "LIMIT+OFFSET"));
    sqlite3VdbeJumpHere(v, addr2);
  }
}

/*
** Allocate a virtual index to use for sorting.
*/
static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
  if( pOrderBy ){
    int addr;
    assert( pOrderBy->iECursor==0 );
    pOrderBy->iECursor = pParse->nTab++;
    addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
                            pOrderBy->iECursor, pOrderBy->nExpr+1);
    assert( p->addrOpenEphm[2] == -1 );
    p->addrOpenEphm[2] = addr;
  }
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT







|
|

|
|






|
|

|
|
|


|



|
|
|
|

|













|







1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
  */
  if( p->pLimit ){
    p->iLimit = iLimit = pParse->nMem;
    pParse->nMem += 2;
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;
    sqlite3ExprCode(pParse, p->pLimit);
    sqlite3VdbeAddOp2(v, OP_MustBeInt, 0, 0);
    sqlite3VdbeAddOp2(v, OP_MemStore, iLimit, 1);
    VdbeComment((v, "LIMIT counter"));
    sqlite3VdbeAddOp2(v, OP_IfMemZero, iLimit, iBreak);
    sqlite3VdbeAddOp2(v, OP_MemLoad, iLimit, 0);
  }
  if( p->pOffset ){
    p->iOffset = iOffset = pParse->nMem++;
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;
    sqlite3ExprCode(pParse, p->pOffset);
    sqlite3VdbeAddOp2(v, OP_MustBeInt, 0, 0);
    sqlite3VdbeAddOp2(v, OP_MemStore, iOffset, p->pLimit==0);
    VdbeComment((v, "OFFSET counter"));
    addr1 = sqlite3VdbeAddOp2(v, OP_IfMemPos, iOffset, 0);
    sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
    sqlite3VdbeJumpHere(v, addr1);
    if( p->pLimit ){
      sqlite3VdbeAddOp2(v, OP_Add, 0, 0);
    }
  }
  if( p->pLimit ){
    addr1 = sqlite3VdbeAddOp2(v, OP_IfMemPos, iLimit, 0);
    sqlite3VdbeAddOp2(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp2(v, OP_MemInt, -1, iLimit+1);
    addr2 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp2(v, OP_MemStore, iLimit+1, 1);
    VdbeComment((v, "LIMIT+OFFSET"));
    sqlite3VdbeJumpHere(v, addr2);
  }
}

/*
** Allocate a virtual index to use for sorting.
*/
static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
  if( pOrderBy ){
    int addr;
    assert( pOrderBy->iECursor==0 );
    pOrderBy->iECursor = pParse->nTab++;
    addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral,
                            pOrderBy->iECursor, pOrderBy->nExpr+1);
    assert( p->addrOpenEphm[2] == -1 );
    p->addrOpenEphm[2] = addr;
  }
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
  }

  /* Create the destination temporary table if necessary
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
    aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, dest.iParm, 0);
    dest.eDest = SRT_Table;
  }

  /* Generate code for the left and right SELECT statements.
  */
  pOrderBy = p->pOrderBy;
  switch( p->op ){







|







1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
  }

  /* Create the destination temporary table if necessary
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
    aSetP2[nSetP2++] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, 0);
    dest.eDest = SRT_Table;
  }

  /* Generate code for the left and right SELECT statements.
  */
  pOrderBy = p->pOrderBy;
  switch( p->op ){
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
        if( rc ){
          goto multi_select_end;
        }
        p->pPrior = 0;
        p->iLimit = pPrior->iLimit;
        p->iOffset = pPrior->iOffset;
        if( p->iLimit>=0 ){
          addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
          VdbeComment((v, "Jump ahead if LIMIT reached"));
        }
        rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff);
        p->pPrior = pPrior;
        if( rc ){
          goto multi_select_end;
        }







|







1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
        if( rc ){
          goto multi_select_end;
        }
        p->pPrior = 0;
        p->iLimit = pPrior->iLimit;
        p->iOffset = pPrior->iOffset;
        if( p->iLimit>=0 ){
          addr = sqlite3VdbeAddOp2(v, OP_IfMemZero, p->iLimit, 0);
          VdbeComment((v, "Jump ahead if LIMIT reached"));
        }
        rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff);
        p->pPrior = pPrior;
        if( rc ){
          goto multi_select_end;
        }
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        if( processCompoundOrderBy(pParse, p, unionTab) ){
          rc = 1;
          goto multi_select_end;
        }
        addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
        if( priorOp==SRT_Table ){
          assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
          aSetP2[nSetP2++] = addr;
        }else{
          assert( p->addrOpenEphm[0] == -1 );
          p->addrOpenEphm[0] = addr;
          p->pRightmost->usesEphm = 1;







|







1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        if( processCompoundOrderBy(pParse, p, unionTab) ){
          rc = 1;
          goto multi_select_end;
        }
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
        if( priorOp==SRT_Table ){
          assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
          aSetP2[nSetP2++] = addr;
        }else{
          assert( p->addrOpenEphm[0] == -1 );
          p->addrOpenEphm[0] = addr;
          p->pRightmost->usesEphm = 1;
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, 0, pFirst->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
        iStart = sqlite3VdbeCurrentAddr(v);
        rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
                             pOrderBy, -1, &dest, iCont, iBreak, 0);
        if( rc ){
          rc = 1;
          goto multi_select_end;
        }
        sqlite3VdbeResolveLabel(v, iCont);
        sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
        sqlite3VdbeResolveLabel(v, iBreak);
        sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
      }
      break;
    }
    case TK_INTERSECT: {
      int tab1, tab2;
      int iCont, iBreak, iStart;
      Expr *pLimit, *pOffset;







|








|

|







2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, 0, pFirst->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
        iStart = sqlite3VdbeCurrentAddr(v);
        rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
                             pOrderBy, -1, &dest, iCont, iBreak, 0);
        if( rc ){
          rc = 1;
          goto multi_select_end;
        }
        sqlite3VdbeResolveLabel(v, iCont);
        sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
        sqlite3VdbeResolveLabel(v, iBreak);
        sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
      }
      break;
    }
    case TK_INTERSECT: {
      int tab1, tab2;
      int iCont, iBreak, iStart;
      Expr *pLimit, *pOffset;
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
      tab2 = pParse->nTab++;
      if( processCompoundOrderBy(pParse, p, tab1) ){
        rc = 1;
        goto multi_select_end;
      }
      createSortingIndex(pParse, p, pOrderBy);

      addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
      assert( p->addrOpenEphm[0] == -1 );
      p->addrOpenEphm[0] = addr;
      p->pRightmost->usesEphm = 1;
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      intersectdest.iParm = tab1;
      rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */
      addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;







|















|







2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
      tab2 = pParse->nTab++;
      if( processCompoundOrderBy(pParse, p, tab1) ){
        rc = 1;
        goto multi_select_end;
      }
      createSortingIndex(pParse, p, pOrderBy);

      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
      assert( p->addrOpenEphm[0] == -1 );
      p->addrOpenEphm[0] = addr;
      p->pRightmost->usesEphm = 1;
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      intersectdest.iParm = tab1;
      rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
        Select *pFirst = p;
        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
        generateColumnNames(pParse, 0, pFirst->pEList);
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);
      sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
      iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
      sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
      rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
                             pOrderBy, -1, &dest, iCont, iBreak, 0);
      if( rc ){
        rc = 1;
        goto multi_select_end;
      }
      sqlite3VdbeResolveLabel(v, iCont);
      sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
      sqlite3VdbeResolveLabel(v, iBreak);
      sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
      sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
      break;
    }
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */







|
|
|







|

|
|







2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
        Select *pFirst = p;
        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
        generateColumnNames(pParse, 0, pFirst->pEList);
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);
      sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
      iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, 0);
      sqlite3VdbeAddOp2(v, OP_NotFound, tab2, iCont);
      rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
                             pOrderBy, -1, &dest, iCont, iBreak, 0);
      if( rc ){
        rc = 1;
        goto multi_select_end;
      }
      sqlite3VdbeResolveLabel(v, iCont);
      sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
      sqlite3VdbeResolveLabel(v, iBreak);
      sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
      sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
      break;
    }
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
        if( addr<0 ){
          /* If [0] is unused then [1] is also unused.  So we can
          ** always safely abort as soon as the first unused slot is found */
          assert( pLoop->addrOpenEphm[1]<0 );
          break;
        }
        sqlite3VdbeChangeP2(v, addr, nCol);
        sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
        pLoop->addrOpenEphm[i] = -1;
      }
    }

    if( pOrderBy ){
      struct ExprList_item *pOTerm = pOrderBy->a;
      int nOrderByExpr = pOrderBy->nExpr;







|







2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
        if( addr<0 ){
          /* If [0] is unused then [1] is also unused.  So we can
          ** always safely abort as soon as the first unused slot is found */
          assert( pLoop->addrOpenEphm[1]<0 );
          break;
        }
        sqlite3VdbeChangeP2(v, addr, nCol);
        sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
        pLoop->addrOpenEphm[i] = -1;
      }
    }

    if( pOrderBy ){
      struct ExprList_item *pOTerm = pOrderBy->a;
      int nOrderByExpr = pOrderBy->nExpr;
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
        *pSortOrder = pOTerm->sortOrder;
      }
      assert( p->pRightmost==p );
      assert( p->addrOpenEphm[2]>=0 );
      addr = p->addrOpenEphm[2];
      sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
      pKeyInfo->nField = nOrderByExpr;
      sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
      pKeyInfo = 0;
      generateSortTail(pParse, p, v, p->pEList->nExpr, &dest);
    }

    sqlite3_free(pKeyInfo);
  }








|







2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
        *pSortOrder = pOTerm->sortOrder;
      }
      assert( p->pRightmost==p );
      assert( p->addrOpenEphm[2]>=0 );
      addr = p->addrOpenEphm[2];
      sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
      pKeyInfo->nField = nOrderByExpr;
      sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
      pKeyInfo = 0;
      generateSortTail(pParse, p, v, p->pEList->nExpr, &dest);
    }

    sqlite3_free(pKeyInfo);
  }

2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return 0;

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp(v, OP_OpenEphemeral, pDest->iParm, 1);
  }

  /* Generating code to find the min or the max.  Basically all we have
  ** to do is find the first or the last entry in the chosen index.  If
  ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
  ** or last entry in the main table.
  */
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  assert( iDb>=0 || pTab->isEphem );
  sqlite3CodeVerifySchema(pParse, iDb);
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
  base = pSrc->a[0].iCursor;
  brk = sqlite3VdbeMakeLabel(v);
  computeLimitRegisters(pParse, p, brk);
  if( pSrc->a[0].pSelect==0 ){
    sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
  }
  if( pIdx==0 ){
    sqlite3VdbeAddOp(v, seekOp, base, 0);
  }else{
    /* Even though the cursor used to open the index here is closed
    ** as soon as a single value has been read from it, allocate it
    ** using (pParse->nTab++) to prevent the cursor id from being 
    ** reused. This is important for statements of the form 
    ** "INSERT INTO x SELECT max() FROM x".
    */
    int iIdx;
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    iIdx = pParse->nTab++;
    assert( pIdx->pSchema==pTab->pSchema );
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 
        (char*)pKey, P3_KEYINFO_HANDOFF);
    if( seekOp==OP_Rewind ){
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
      seekOp = OP_MoveGt;
    }
    if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
      /* Ticket #2514: invert the seek operator if we are using
      ** a descending index. */
      if( seekOp==OP_Last ){
        seekOp = OP_Rewind;
      }else{
        assert( seekOp==OP_MoveGt );
        seekOp = OP_MoveLt;
      }
    }
    sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
    sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
    sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
    sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
  }
  eList.nExpr = 1;
  memset(&eListItem, 0, sizeof(eListItem));
  eList.a = &eListItem;
  eList.a[0].pExpr = pExpr;
  selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, pDest, brk, brk, 0);
  sqlite3VdbeResolveLabel(v, brk);
  sqlite3VdbeAddOp(v, OP_Close, base, 0);
  
  return 1;
}

/*
** This routine resolves any names used in the result set of the
** supplied SELECT statement. If the SELECT statement being resolved







|


















|











|
|
|

|
|












|
|
|
|







|







2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return 0;

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, 1);
  }

  /* Generating code to find the min or the max.  Basically all we have
  ** to do is find the first or the last entry in the chosen index.  If
  ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
  ** or last entry in the main table.
  */
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  assert( iDb>=0 || pTab->isEphem );
  sqlite3CodeVerifySchema(pParse, iDb);
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
  base = pSrc->a[0].iCursor;
  brk = sqlite3VdbeMakeLabel(v);
  computeLimitRegisters(pParse, p, brk);
  if( pSrc->a[0].pSelect==0 ){
    sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
  }
  if( pIdx==0 ){
    sqlite3VdbeAddOp2(v, seekOp, base, 0);
  }else{
    /* Even though the cursor used to open the index here is closed
    ** as soon as a single value has been read from it, allocate it
    ** using (pParse->nTab++) to prevent the cursor id from being 
    ** reused. This is important for statements of the form 
    ** "INSERT INTO x SELECT max() FROM x".
    */
    int iIdx;
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    iIdx = pParse->nTab++;
    assert( pIdx->pSchema==pTab->pSchema );
    sqlite3VdbeAddOp2(v, OP_Integer, iDb, 0);
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdx, pIdx->tnum, 0,
        (char*)pKey, P4_KEYINFO_HANDOFF);
    if( seekOp==OP_Rewind ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
      sqlite3VdbeAddOp2(v, OP_MakeRecord, 1, 0);
      seekOp = OP_MoveGt;
    }
    if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
      /* Ticket #2514: invert the seek operator if we are using
      ** a descending index. */
      if( seekOp==OP_Last ){
        seekOp = OP_Rewind;
      }else{
        assert( seekOp==OP_MoveGt );
        seekOp = OP_MoveLt;
      }
    }
    sqlite3VdbeAddOp2(v, seekOp, iIdx, 0);
    sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdx, 0);
    sqlite3VdbeAddOp2(v, OP_Close, iIdx, 0);
    sqlite3VdbeAddOp2(v, OP_MoveGe, base, 0);
  }
  eList.nExpr = 1;
  memset(&eListItem, 0, sizeof(eListItem));
  eList.a = &eListItem;
  eList.a[0].pExpr = pExpr;
  selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, pDest, brk, brk, 0);
  sqlite3VdbeResolveLabel(v, brk);
  sqlite3VdbeAddOp2(v, OP_Close, base, 0);
  
  return 1;
}

/*
** This routine resolves any names used in the result set of the
** supplied SELECT statement. If the SELECT statement being resolved
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pFunc;
  if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
    return;
  }
  for(i=0; i<pAggInfo->nColumn; i++){
    sqlite3VdbeAddOp(v, OP_MemNull, 0, pAggInfo->aCol[i].iMem);
  }
  for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
    sqlite3VdbeAddOp(v, OP_MemNull, 0, pFunc->iMem);
    if( pFunc->iDistinct>=0 ){
      Expr *pE = pFunc->pExpr;
      if( pE->pList==0 || pE->pList->nExpr!=1 ){
        sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
           "by an expression");
        pFunc->iDistinct = -1;
      }else{
        KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
        sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 
                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
      }
    }
  }
}

/*
** Invoke the OP_AggFinalize opcode for every aggregate function
** in the AggInfo structure.
*/
static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pF;
  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
    ExprList *pList = pF->pExpr->pList;
    sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
                      (void*)pF->pFunc, P3_FUNCDEF);
  }
}

/*
** Update the accumulator memory cells for an aggregate based on
** the current cursor position.
*/







|


|








|
|















|
|







2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pFunc;
  if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
    return;
  }
  for(i=0; i<pAggInfo->nColumn; i++){
    sqlite3VdbeAddOp2(v, OP_MemNull, 0, pAggInfo->aCol[i].iMem);
  }
  for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
    sqlite3VdbeAddOp2(v, OP_MemNull, 0, pFunc->iMem);
    if( pFunc->iDistinct>=0 ){
      Expr *pE = pFunc->pExpr;
      if( pE->pList==0 || pE->pList->nExpr!=1 ){
        sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
           "by an expression");
        pFunc->iDistinct = -1;
      }else{
        KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
        sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
                          (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
      }
    }
  }
}

/*
** Invoke the OP_AggFinalize opcode for every aggregate function
** in the AggInfo structure.
*/
static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pF;
  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
    ExprList *pList = pF->pExpr->pList;
    sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
                      (void*)pF->pFunc, P4_FUNCDEF);
  }
}

/*
** Update the accumulator memory cells for an aggregate based on
** the current cursor position.
*/
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004

3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
      assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
      for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      }
      if( !pColl ){
        pColl = pParse->db->pDfltColl;
      }
      sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
    }
    sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);

    if( addrNext ){
      sqlite3VdbeResolveLabel(v, addrNext);
    }
  }
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    sqlite3ExprCode(pParse, pC->pExpr);
    sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
  }
  pAggInfo->directMode = 0;
}

#ifndef SQLITE_OMIT_TRIGGER
/*
** This function is used when a SELECT statement is used to create a







|

|
>






|







2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
      assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
      for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      }
      if( !pColl ){
        pColl = pParse->db->pDfltColl;
      }
      sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
    }
    sqlite3VdbeAddOp4(v, OP_AggStep, pF->iMem, nArg, 0, 
                      (void*)pF->pFunc, P4_FUNCDEF);
    if( addrNext ){
      sqlite3VdbeResolveLabel(v, addrNext);
    }
  }
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    sqlite3ExprCode(pParse, pC->pExpr);
    sqlite3VdbeAddOp2(v, OP_MemStore, pC->iMem, 1);
  }
  pAggInfo->directMode = 0;
}

#ifndef SQLITE_OMIT_TRIGGER
/*
** This function is used when a SELECT statement is used to create a
3306
3307
3308
3309
3310
3311
3312

3313

3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
    KeyInfo *pKeyInfo;
    if( pParse->nErr ){
      goto select_end;
    }
    pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
    pOrderBy->iECursor = pParse->nTab++;
    p->addrOpenEphm[2] = addrSortIndex =

      sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);

  }else{
    addrSortIndex = -1;
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  computeLimitRegisters(pParse, p, iEnd);

  /* Open a virtual index to use for the distinct set.
  */
  if( isDistinct ){
    KeyInfo *pKeyInfo;
    assert( isAgg || pGroupBy );
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 
                        (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
  }else{
    distinct = -1;
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    /* This case is for non-aggregate queries







>
|
>







|














|
|







3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
    KeyInfo *pKeyInfo;
    if( pParse->nErr ){
      goto select_end;
    }
    pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
    pOrderBy->iECursor = pParse->nTab++;
    p->addrOpenEphm[2] = addrSortIndex =
      sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
                           pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  }else{
    addrSortIndex = -1;
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  computeLimitRegisters(pParse, p, iEnd);

  /* Open a virtual index to use for the distinct set.
  */
  if( isDistinct ){
    KeyInfo *pKeyInfo;
    assert( isAgg || pGroupBy );
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
                        (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  }else{
    distinct = -1;
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    /* This case is for non-aggregate queries
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OpenEphemeral instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
      addrSortingIdx =
          sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
                         sAggInfo.nSortingColumn,
                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = pParse->nMem++;
      iAbortFlag = pParse->nMem++;
      iAMem = pParse->nMem;
      pParse->nMem += pGroupBy->nExpr;
      iBMem = pParse->nMem;
      pParse->nMem += pGroupBy->nExpr;
      sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
      VdbeComment((v, "clear abort flag"));
      sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
      VdbeComment((v, "indicate accumulator empty"));
      sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);

      /* Generate a subroutine that outputs a single row of the result
      ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
      ** is less than or equal to zero, the subroutine is a no-op.  If
      ** the processing calls for the query to abort, this subroutine
      ** increments the iAbortFlag memory location before returning in
      ** order to signal the caller to abort.
      */
      addrSetAbort = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
      VdbeComment((v, "set abort flag"));
      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
      VdbeComment((v, "Groupby result generator entry point"));
      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
      finalizeAggFunctions(pParse, &sAggInfo);
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
      }
      rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
                           distinct, pDest,
                           addrOutputRow+1, addrSetAbort, aff);
      if( rc ){
        goto select_end;
      }
      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
      VdbeComment((v, "end groupby result generator"));

      /* Generate a subroutine that will reset the group-by accumulator
      */
      addrReset = sqlite3VdbeCurrentAddr(v);
      resetAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp(v, OP_Return, 0, 0);

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeResolveLabel(v, addrInitializeLoop);
      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
      if( pWInfo==0 ) goto select_end;
      if( pGroupBy==0 ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        pGroupBy = p->pGroupBy;
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
        ** each row into a sorting index, terminate the first loop,
        ** then loop over the sorting index in order to get the output
        ** in sorted order
        */
        groupBySort = 1;
        sqlite3ExprCodeExprList(pParse, pGroupBy);
        sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
        j = pGroupBy->nExpr+1;
        for(i=0; i<sAggInfo.nColumn; i++){
          struct AggInfo_col *pCol = &sAggInfo.aCol[i];
          if( pCol->iSorterColumn<j ) continue;
          sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
          j++;
        }
        sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
        sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
        VdbeComment((v, "GROUP BY sort"));
        sAggInfo.useSortingIdx = 1;
      }

      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
        }else{
          sAggInfo.directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
        }
        sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
      }
      for(j=pGroupBy->nExpr-1; j>=0; j--){
        if( j<pGroupBy->nExpr-1 ){
          sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
        }
        sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
        if( j==0 ){
          sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
        }else{
          sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
        }
        sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
      }

      /* Generate code that runs whenever the GROUP BY changes.
      ** Change in the GROUP BY are detected by the previous code
      ** block.  If there were no changes, this block is skipped.
      **
      ** This code copies current group by terms in b0,b1,b2,...
      ** over to a0,a1,a2.  It then calls the output subroutine
      ** and resets the aggregate accumulator registers in preparation
      ** for the next GROUP BY batch.
      */
      sqlite3VdbeResolveLabel(v, addrGroupByChange);
      for(j=0; j<pGroupBy->nExpr; j++){
        sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
      }
      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
      VdbeComment((v, "output one row"));
      sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
      VdbeComment((v, "check abort flag"));
      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
      VdbeComment((v, "reset accumulator"));

      /* Update the aggregate accumulators based on the content of
      ** the current row
      */
      sqlite3VdbeResolveLabel(v, addrProcessRow);
      updateAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
      VdbeComment((v, "indicate data in accumulator"));

      /* End of the loop
      */
      if( groupBySort ){
        sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
      }else{
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
      }

      /* Output the final row of result
      */
      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
      VdbeComment((v, "output final row"));
      
    } /* endif pGroupBy */
    else {
      /* This case runs if the aggregate has no GROUP BY clause.  The
      ** processing is much simpler since there is only a single row
      ** of output.







|
|
|









|

|

|









|

|

|

|










|






|







|

















|







|
|

|












|




|



|

|

|

|

|













|

|

|

|







|





|







|







3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OpenEphemeral instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
      addrSortingIdx =
          sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
                         sAggInfo.nSortingColumn, 0,
                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = pParse->nMem++;
      iAbortFlag = pParse->nMem++;
      iAMem = pParse->nMem;
      pParse->nMem += pGroupBy->nExpr;
      iBMem = pParse->nMem;
      pParse->nMem += pGroupBy->nExpr;
      sqlite3VdbeAddOp2(v, OP_MemInt, 0, iAbortFlag);
      VdbeComment((v, "clear abort flag"));
      sqlite3VdbeAddOp2(v, OP_MemInt, 0, iUseFlag);
      VdbeComment((v, "indicate accumulator empty"));
      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);

      /* Generate a subroutine that outputs a single row of the result
      ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
      ** is less than or equal to zero, the subroutine is a no-op.  If
      ** the processing calls for the query to abort, this subroutine
      ** increments the iAbortFlag memory location before returning in
      ** order to signal the caller to abort.
      */
      addrSetAbort = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_MemInt, 1, iAbortFlag);
      VdbeComment((v, "set abort flag"));
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
      VdbeComment((v, "Groupby result generator entry point"));
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
      finalizeAggFunctions(pParse, &sAggInfo);
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
      }
      rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
                           distinct, pDest,
                           addrOutputRow+1, addrSetAbort, aff);
      if( rc ){
        goto select_end;
      }
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
      VdbeComment((v, "end groupby result generator"));

      /* Generate a subroutine that will reset the group-by accumulator
      */
      addrReset = sqlite3VdbeCurrentAddr(v);
      resetAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp2(v, OP_Return, 0, 0);

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeResolveLabel(v, addrInitializeLoop);
      sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
      if( pWInfo==0 ) goto select_end;
      if( pGroupBy==0 ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        pGroupBy = p->pGroupBy;
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
        ** each row into a sorting index, terminate the first loop,
        ** then loop over the sorting index in order to get the output
        ** in sorted order
        */
        groupBySort = 1;
        sqlite3ExprCodeExprList(pParse, pGroupBy);
        sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx, 0);
        j = pGroupBy->nExpr+1;
        for(i=0; i<sAggInfo.nColumn; i++){
          struct AggInfo_col *pCol = &sAggInfo.aCol[i];
          if( pCol->iSorterColumn<j ) continue;
          sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
          j++;
        }
        sqlite3VdbeAddOp2(v, OP_MakeRecord, j, 0);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
        VdbeComment((v, "GROUP BY sort"));
        sAggInfo.useSortingIdx = 1;
      }

      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp2(v, OP_Column, sAggInfo.sortingIdx, j);
        }else{
          sAggInfo.directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
        }
        sqlite3VdbeAddOp2(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
      }
      for(j=pGroupBy->nExpr-1; j>=0; j--){
        if( j<pGroupBy->nExpr-1 ){
          sqlite3VdbeAddOp2(v, OP_MemLoad, iBMem+j, 0);
        }
        sqlite3VdbeAddOp2(v, OP_MemLoad, iAMem+j, 0);
        if( j==0 ){
          sqlite3VdbeAddOp2(v, OP_Eq, 0x200, addrProcessRow);
        }else{
          sqlite3VdbeAddOp2(v, OP_Ne, 0x200, addrGroupByChange);
        }
        sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ);
      }

      /* Generate code that runs whenever the GROUP BY changes.
      ** Change in the GROUP BY are detected by the previous code
      ** block.  If there were no changes, this block is skipped.
      **
      ** This code copies current group by terms in b0,b1,b2,...
      ** over to a0,a1,a2.  It then calls the output subroutine
      ** and resets the aggregate accumulator registers in preparation
      ** for the next GROUP BY batch.
      */
      sqlite3VdbeResolveLabel(v, addrGroupByChange);
      for(j=0; j<pGroupBy->nExpr; j++){
        sqlite3VdbeAddOp2(v, OP_MemMove, iAMem+j, iBMem+j);
      }
      sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
      VdbeComment((v, "output one row"));
      sqlite3VdbeAddOp2(v, OP_IfMemPos, iAbortFlag, addrEnd);
      VdbeComment((v, "check abort flag"));
      sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
      VdbeComment((v, "reset accumulator"));

      /* Update the aggregate accumulators based on the content of
      ** the current row
      */
      sqlite3VdbeResolveLabel(v, addrProcessRow);
      updateAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp2(v, OP_MemInt, 1, iUseFlag);
      VdbeComment((v, "indicate data in accumulator"));

      /* End of the loop
      */
      if( groupBySort ){
        sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
      }else{
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
      }

      /* Output the final row of result
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
      VdbeComment((v, "output final row"));
      
    } /* endif pGroupBy */
    else {
      /* This case runs if the aggregate has no GROUP BY clause.  The
      ** processing is much simpler since there is only a single row
      ** of output.
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.630 2008/01/02 17:11:14 danielk1977 Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** The macro unlikely() is a hint that surrounds a boolean
** expression that is usually false.  Macro likely() surrounds













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.631 2008/01/03 00:01:25 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** The macro unlikely() is a hint that surrounds a boolean
** expression that is usually false.  Macro likely() surrounds
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by number the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'a'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P3 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
*/
#define SQLITE_AFF_TEXT     'a'
#define SQLITE_AFF_NONE     'b'
#define SQLITE_AFF_NUMERIC  'c'







|







697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by number the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'a'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
*/
#define SQLITE_AFF_TEXT     'a'
#define SQLITE_AFF_NONE     'b'
#define SQLITE_AFF_NUMERIC  'c'
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
** If there is a LIMIT clause, the parser sets nLimit to the value of the
** limit and nOffset to the value of the offset (or 0 if there is not
** offset).  But later on, nLimit and nOffset become the memory locations
** in the VDBE that record the limit and offset counters.
**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
** the P3_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
** sequences for the ORDER BY clause.
*/







|







1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
** If there is a LIMIT clause, the parser sets nLimit to the value of the
** limit and nOffset to the value of the offset (or 0 if there is not
** offset).  But later on, nLimit and nOffset become the memory locations
** in the VDBE that record the limit and offset counters.
**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
** sequences for the ORDER BY clause.
*/
Changes to src/test_onefile.c.
818
819
820
821
822
823
824
825
  fs_vfs.base.szOsFile = MAX(sizeof(tmp_file), sizeof(fs_file));
  return sqlite3_vfs_register(&fs_vfs.base, 0);
}

#ifdef SQLITE_TEST
  int SqlitetestOnefile_Init() {return fs_register();}
#endif








<
818
819
820
821
822
823
824

  fs_vfs.base.szOsFile = MAX(sizeof(tmp_file), sizeof(fs_file));
  return sqlite3_vfs_register(&fs_vfs.base, 0);
}

#ifdef SQLITE_TEST
  int SqlitetestOnefile_Init() {return fs_register();}
#endif

Changes to src/trigger.c.
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

    /* Make an entry in the sqlite_master table */
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto triggerfinish_cleanup;
    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3OpenMasterTable(pParse, iDb);
    addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
    sqlite3VdbeChangeP3(v, addr+2, pTrig->name, 0); 
    sqlite3VdbeChangeP3(v, addr+3, pTrig->table, 0); 
    sqlite3VdbeChangeP3(v, addr+6, (char*)pAll->z, pAll->n);
    sqlite3ChangeCookie(db, v, iDb);
    sqlite3VdbeAddOp(v, OP_Close, 0, 0);
    sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, sqlite3MPrintf(
        db, "type='trigger' AND name='%q'", pTrig->name), P3_DYNAMIC
    );
  }

  if( db->init.busy ){
    int n;
    Table *pTab;
    Trigger *pDel;







|
|
|

|
|
|







244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

    /* Make an entry in the sqlite_master table */
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto triggerfinish_cleanup;
    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3OpenMasterTable(pParse, iDb);
    addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
    sqlite3VdbeChangeP4(v, addr+2, pTrig->name, 0); 
    sqlite3VdbeChangeP4(v, addr+3, pTrig->table, 0); 
    sqlite3VdbeChangeP4(v, addr+6, (char*)pAll->z, pAll->n);
    sqlite3ChangeCookie(db, v, iDb);
    sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
        db, "type='trigger' AND name='%q'", pTrig->name), P4_DYNAMIC
    );
  }

  if( db->init.busy ){
    int n;
    Table *pTab;
    Trigger *pDel;
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
      { OP_Delete,     0, 0,        0},
      { OP_Next,       0, ADDR(1),  0}, /* 8 */
    };

    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3OpenMasterTable(pParse, iDb);
    base = sqlite3VdbeAddOpList(v,  ArraySize(dropTrigger), dropTrigger);
    sqlite3VdbeChangeP3(v, base+1, pTrigger->name, 0);
    sqlite3ChangeCookie(db, v, iDb);
    sqlite3VdbeAddOp(v, OP_Close, 0, 0);
    sqlite3VdbeOp3(v, OP_DropTrigger, iDb, 0, pTrigger->name, 0);
  }
}

/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){







|

|
|







544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
      { OP_Delete,     0, 0,        0},
      { OP_Next,       0, ADDR(1),  0}, /* 8 */
    };

    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3OpenMasterTable(pParse, iDb);
    base = sqlite3VdbeAddOpList(v,  ArraySize(dropTrigger), dropTrigger);
    sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0);
    sqlite3ChangeCookie(db, v, iDb);
    sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
    sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
  }
}

/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
  TriggerStep * pTriggerStep = pStepList;
  int orconf;
  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;

  assert( pTriggerStep!=0 );
  assert( v!=0 );
  sqlite3VdbeAddOp(v, OP_ContextPush, 0, 0);
  VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
  while( pTriggerStep ){
    orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
    pParse->trigStack->orconf = orconf;
    switch( pTriggerStep->op ){
      case TK_SELECT: {
        Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
        if( ss ){
          SelectDest dest = {SRT_Discard, 0, 0};
          sqlite3SelectResolve(pParse, ss, 0);
          sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0);
          sqlite3SelectDelete(ss);
        }
        break;
      }
      case TK_UPDATE: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
        sqlite3Update(pParse, pSrc,
                sqlite3ExprListDup(db, pTriggerStep->pExprList), 
                sqlite3ExprDup(db, pTriggerStep->pWhere), orconf);
        sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
        break;
      }
      case TK_INSERT: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
        sqlite3Insert(pParse, pSrc,
          sqlite3ExprListDup(db, pTriggerStep->pExprList), 
          sqlite3SelectDup(db, pTriggerStep->pSelect), 
          sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
        sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
        break;
      }
      case TK_DELETE: {
        SrcList *pSrc;
        sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3DeleteFrom(pParse, pSrc, 
                          sqlite3ExprDup(db, pTriggerStep->pWhere));
        sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
        break;
      }
      default:
        assert(0);
    } 
    pTriggerStep = pTriggerStep->pNext;
  }
  sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
  VdbeComment((v, "end trigger %s", pStepList->pTrig->name));

  return 0;
}

/*
** This is called to code FOR EACH ROW triggers.







|


















|



|





|




|




|



|







|







672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
  TriggerStep * pTriggerStep = pStepList;
  int orconf;
  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;

  assert( pTriggerStep!=0 );
  assert( v!=0 );
  sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
  VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
  while( pTriggerStep ){
    orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
    pParse->trigStack->orconf = orconf;
    switch( pTriggerStep->op ){
      case TK_SELECT: {
        Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
        if( ss ){
          SelectDest dest = {SRT_Discard, 0, 0};
          sqlite3SelectResolve(pParse, ss, 0);
          sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0);
          sqlite3SelectDelete(ss);
        }
        break;
      }
      case TK_UPDATE: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
        sqlite3Update(pParse, pSrc,
                sqlite3ExprListDup(db, pTriggerStep->pExprList), 
                sqlite3ExprDup(db, pTriggerStep->pWhere), orconf);
        sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
        break;
      }
      case TK_INSERT: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
        sqlite3Insert(pParse, pSrc,
          sqlite3ExprListDup(db, pTriggerStep->pExprList), 
          sqlite3SelectDup(db, pTriggerStep->pSelect), 
          sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
        sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
        break;
      }
      case TK_DELETE: {
        SrcList *pSrc;
        sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3DeleteFrom(pParse, pSrc, 
                          sqlite3ExprDup(db, pTriggerStep->pWhere));
        sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
        break;
      }
      default:
        assert(0);
    } 
    pTriggerStep = pTriggerStep->pNext;
  }
  sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
  VdbeComment((v, "end trigger %s", pStepList->pTrig->name));

  return 0;
}

/*
** This is called to code FOR EACH ROW triggers.
Changes to src/update.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
** $Id: update.c,v 1.148 2008/01/02 16:27:10 danielk1977 Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Forward declaration */
static void updateVirtualTable(
  Parse *pParse,       /* The parsing context */
  SrcList *pSrc,       /* The virtual table to be modified */
  Table *pTab,         /* The virtual table */
  ExprList *pChanges,  /* The columns to change in the UPDATE statement */
  Expr *pRowidExpr,    /* Expression used to recompute the rowid */
  int *aXRef,          /* Mapping from columns of pTab to entries in pChanges */
  Expr *pWhere         /* WHERE clause of the UPDATE statement */
);
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** The most recently coded instruction was an OP_Column to retrieve the
** i-th column of table pTab. This routine sets the P3 parameter of the 
** OP_Column to the default value, if any.
**
** The default value of a column is specified by a DEFAULT clause in the 
** column definition. This was either supplied by the user when the table
** was created, or added later to the table definition by an ALTER TABLE
** command. If the latter, then the row-records in the table btree on disk
** may not contain a value for the column and the default value, taken
** from the P3 parameter of the OP_Column instruction, is returned instead.
** If the former, then all row-records are guaranteed to include a value
** for the column and the P3 value is not required.
**
** Column definitions created by an ALTER TABLE command may only have 
** literal default values specified: a number, null or a string. (If a more
** complicated default expression value was provided, it is evaluated 
** when the ALTER TABLE is executed and one of the literal values written
** into the sqlite_master table.)
**
** Therefore, the P3 parameter is only required if the default value for
** the column is a literal number, string or null. The sqlite3ValueFromExpr()
** function is capable of transforming these types of expressions into
** sqlite3_value objects.
*/
void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
  if( pTab && !pTab->pSelect ){
    sqlite3_value *pValue;
    u8 enc = ENC(sqlite3VdbeDb(v));
    Column *pCol = &pTab->aCol[i];
    VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
    assert( i<pTab->nCol );
    sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
                         pCol->affinity, &pValue);
    if( pValue ){
      sqlite3VdbeAddOp(v, OP_DfltValue, 0, 0);
      sqlite3VdbeChangeP3(v, -1, (const char *)pValue, P3_MEM);
    }
  }
}

/*
** Process an UPDATE statement.
**







|


















|







|

|







|














|
|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
** $Id: update.c,v 1.149 2008/01/03 00:01:25 drh Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Forward declaration */
static void updateVirtualTable(
  Parse *pParse,       /* The parsing context */
  SrcList *pSrc,       /* The virtual table to be modified */
  Table *pTab,         /* The virtual table */
  ExprList *pChanges,  /* The columns to change in the UPDATE statement */
  Expr *pRowidExpr,    /* Expression used to recompute the rowid */
  int *aXRef,          /* Mapping from columns of pTab to entries in pChanges */
  Expr *pWhere         /* WHERE clause of the UPDATE statement */
);
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** The most recently coded instruction was an OP_Column to retrieve the
** i-th column of table pTab. This routine sets the P4 parameter of the 
** OP_Column to the default value, if any.
**
** The default value of a column is specified by a DEFAULT clause in the 
** column definition. This was either supplied by the user when the table
** was created, or added later to the table definition by an ALTER TABLE
** command. If the latter, then the row-records in the table btree on disk
** may not contain a value for the column and the default value, taken
** from the P4 parameter of the OP_Column instruction, is returned instead.
** If the former, then all row-records are guaranteed to include a value
** for the column and the P4 value is not required.
**
** Column definitions created by an ALTER TABLE command may only have 
** literal default values specified: a number, null or a string. (If a more
** complicated default expression value was provided, it is evaluated 
** when the ALTER TABLE is executed and one of the literal values written
** into the sqlite_master table.)
**
** Therefore, the P4 parameter is only required if the default value for
** the column is a literal number, string or null. The sqlite3ValueFromExpr()
** function is capable of transforming these types of expressions into
** sqlite3_value objects.
*/
void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
  if( pTab && !pTab->pSelect ){
    sqlite3_value *pValue;
    u8 enc = ENC(sqlite3VdbeDb(v));
    Column *pCol = &pTab->aCol[i];
    VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
    assert( i<pTab->nCol );
    sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
                         pCol->affinity, &pValue);
    if( pValue ){
      sqlite3VdbeAddOp2(v, OP_DfltValue, 0, 0);
      sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
    }
  }
}

/*
** Process an UPDATE statement.
**
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
  /* Generate the code for triggers.
  */
  if( triggers_exist ){
    int iGoto;

    /* Create pseudo-tables for NEW and OLD
    */
    sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
    sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);

    iGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    addr = sqlite3VdbeMakeLabel(v);
    iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
    if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
          newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
      goto update_cleanup;
    }
    iEndBeforeTrigger = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
    if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, 
          newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
      goto update_cleanup;
    }
    iEndAfterTrigger = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, iGoto);
  }

  /* If we are trying to update a view, realize that view into
  ** a ephemeral table.
  */
  if( isView ){







|
|
|
|

|






|





|







298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
  /* Generate the code for triggers.
  */
  if( triggers_exist ){
    int iGoto;

    /* Create pseudo-tables for NEW and OLD
    */
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, oldIdx, 0);
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, oldIdx, pTab->nCol);
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, newIdx, pTab->nCol);

    iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    addr = sqlite3VdbeMakeLabel(v);
    iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
    if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
          newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
      goto update_cleanup;
    }
    iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
    if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, 
          newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
      goto update_cleanup;
    }
    iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, iGoto);
  }

  /* If we are trying to update a view, realize that view into
  ** a ephemeral table.
  */
  if( isView ){
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
  /* Begin the database scan
  */
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
  if( pWInfo==0 ) goto update_cleanup;

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, 0);
  sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);

  /* End the database scan loop.
  */
  sqlite3WhereEnd(pWInfo);

  /* Initialize the count of updated rows
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
    memCnt = pParse->nMem++;
    sqlite3VdbeAddOp(v, OP_MemInt, 0, memCnt);
  }

  if( !isView && !IsVirtual(pTab) ){
    /* 
    ** Open every index that needs updating.  Note that if any
    ** index could potentially invoke a REPLACE conflict resolution 
    ** action, then we need to open all indices because we might need







|
|









|







340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
  /* Begin the database scan
  */
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
  if( pWInfo==0 ) goto update_cleanup;

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, 0);
  sqlite3VdbeAddOp2(v, OP_FifoWrite, 0, 0);

  /* End the database scan loop.
  */
  sqlite3WhereEnd(pWInfo);

  /* Initialize the count of updated rows
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
    memCnt = pParse->nMem++;
    sqlite3VdbeAddOp2(v, OP_MemInt, 0, memCnt);
  }

  if( !isView && !IsVirtual(pTab) ){
    /* 
    ** Open every index that needs updating.  Note that if any
    ** index could potentially invoke a REPLACE conflict resolution 
    ** action, then we need to open all indices because we might need
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
          break;
        }
      }
    }
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
        sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
        sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum,
                       (char*)pKey, P3_KEYINFO_HANDOFF);
        assert( pParse->nTab>iCur+i+1 );
      }
    }

  }
  
  /* Jump back to this point if a trigger encounters an IGNORE constraint. */
  if( triggers_exist ){
    sqlite3VdbeResolveLabel(v, addr);
  }

  /* Top of the update loop */
  addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, 0);
  sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
  sqlite3VdbeAddOp(v, OP_MemStore, mem1, 0);

  if( triggers_exist ){
    /* Make cursor iCur point to the record that is being updated.
    */
    sqlite3VdbeAddOp(v, OP_NotExists, iCur, addr);

    /* Generate the OLD table
    */
    sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
    if( !old_col_mask ){
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
    }else{
      sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
    }
    sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);

    /* Generate the NEW table
    */
    if( chngRowid ){
      sqlite3ExprCodeAndCache(pParse, pRowidExpr);
    }else{
      sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
    }
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        sqlite3VdbeAddOp(v, OP_Null, 0, 0);
        continue;
      }
      j = aXRef[i];
      if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){
        if( j<0 ){
          sqlite3VdbeAddOp(v, OP_Column, iCur, i);
          sqlite3ColumnDefault(v, pTab, i);
        }else{
          sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr);
        }
      }else{
        sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      }
    }
    sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
    if( !isView ){
      sqlite3TableAffinityStr(v, pTab);
    }
    if( pParse->nErr ) goto update_cleanup;
    sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);

    sqlite3VdbeAddOp(v, OP_Goto, 0, iBeginBeforeTrigger);
    sqlite3VdbeJumpHere(v, iEndBeforeTrigger);

    if( !isView ){
      sqlite3VdbeAddOp(v, OP_MemLoad, mem1, 0);
    }
  }

  if( !isView && !IsVirtual(pTab) ){

    /* Loop over every record that needs updating.  We have to load
    ** the old data for each record to be updated because some columns
    ** might not change and we will need to copy the old value.
    ** Also, the old data is needed to delete the old index entries.
    ** So make the cursor point at the old record.
    */
    sqlite3VdbeAddOp(v, OP_NotExists, iCur, addr);
    sqlite3VdbeAddOp(v, OP_MemLoad, mem1, 0);

    /* If the record number will change, push the record number as it
    ** will be after the update. (The old record number is currently
    ** on top of the stack.)
    */
    if( chngRowid ){
      sqlite3ExprCode(pParse, pRowidExpr);
      sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
    }

    /* Compute new data for this record.  
    */
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        sqlite3VdbeAddOp(v, OP_Null, 0, 0);
        continue;
      }
      j = aXRef[i];
      if( j<0 ){
        sqlite3VdbeAddOp(v, OP_Column, iCur, i);
        sqlite3ColumnDefault(v, pTab, i);
      }else{
        sqlite3ExprCode(pParse, pChanges->a[j].pExpr);
      }
    }

    /* Do constraint checks
    */
    sqlite3GenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRowid, 1,
                                   onError, addr);

    /* Delete the old indices for the current record.
    */
    sqlite3GenerateRowIndexDelete(v, pTab, iCur, aIdxUsed);

    /* If changing the record number, delete the old record.
    */
    if( chngRowid ){
      sqlite3VdbeAddOp(v, OP_Delete, iCur, 0);
    }

    /* Create the new index entries and the new record.
    */
    sqlite3CompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRowid, 1, -1, 0);
  }

  /* Increment the row counter 
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack){
    sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
  }

  /* If there are triggers, close all the cursors after each iteration
  ** through the loop.  The fire the after triggers.
  */
  if( triggers_exist ){
    sqlite3VdbeAddOp(v, OP_Goto, 0, iBeginAfterTrigger);
    sqlite3VdbeJumpHere(v, iEndAfterTrigger);
  }

  /* Repeat the above with the next record to be updated, until
  ** all record selected by the WHERE clause have been updated.
  */
  sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
  sqlite3VdbeJumpHere(v, addr);

  /* Close all tables */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    if( openAll || aIdxUsed[i] ){
      sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
    }
  }
  sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
  if( triggers_exist ){
    sqlite3VdbeAddOp(v, OP_Close, newIdx, 0);
    sqlite3VdbeAddOp(v, OP_Close, oldIdx, 0);
  }

  /*
  ** Return the number of rows that were changed. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
    sqlite3VdbeAddOp(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P3_STATIC);
  }

update_cleanup:
  sqlite3AuthContextPop(&sContext);
  sqlite3_free(apIdx);
  sqlite3_free(aXRef);
  sqlite3SrcListDelete(pTabList);







|
|
|












|
|
|




|



|

|

|

|






|



|





|





|


|




|

|



|











|
|







|






|




|


















|










|






|






|





|


|

|
|








|

|







376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
          break;
        }
      }
    }
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
        sqlite3VdbeAddOp2(v, OP_Integer, iDb, 0);
        sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, 0,
                       (char*)pKey, P4_KEYINFO_HANDOFF);
        assert( pParse->nTab>iCur+i+1 );
      }
    }

  }
  
  /* Jump back to this point if a trigger encounters an IGNORE constraint. */
  if( triggers_exist ){
    sqlite3VdbeResolveLabel(v, addr);
  }

  /* Top of the update loop */
  addr = sqlite3VdbeAddOp2(v, OP_FifoRead, 0, 0);
  sqlite3VdbeAddOp2(v, OP_StackDepth, -1, 0);
  sqlite3VdbeAddOp2(v, OP_MemStore, mem1, 0);

  if( triggers_exist ){
    /* Make cursor iCur point to the record that is being updated.
    */
    sqlite3VdbeAddOp2(v, OP_NotExists, iCur, addr);

    /* Generate the OLD table
    */
    sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0);
    if( !old_col_mask ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
    }else{
      sqlite3VdbeAddOp2(v, OP_RowData, iCur, 0);
    }
    sqlite3VdbeAddOp2(v, OP_Insert, oldIdx, 0);

    /* Generate the NEW table
    */
    if( chngRowid ){
      sqlite3ExprCodeAndCache(pParse, pRowidExpr);
    }else{
      sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0);
    }
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
        continue;
      }
      j = aXRef[i];
      if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){
        if( j<0 ){
          sqlite3VdbeAddOp2(v, OP_Column, iCur, i);
          sqlite3ColumnDefault(v, pTab, i);
        }else{
          sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr);
        }
      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
      }
    }
    sqlite3VdbeAddOp2(v, OP_MakeRecord, pTab->nCol, 0);
    if( !isView ){
      sqlite3TableAffinityStr(v, pTab);
    }
    if( pParse->nErr ) goto update_cleanup;
    sqlite3VdbeAddOp2(v, OP_Insert, newIdx, 0);

    sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
    sqlite3VdbeJumpHere(v, iEndBeforeTrigger);

    if( !isView ){
      sqlite3VdbeAddOp2(v, OP_MemLoad, mem1, 0);
    }
  }

  if( !isView && !IsVirtual(pTab) ){

    /* Loop over every record that needs updating.  We have to load
    ** the old data for each record to be updated because some columns
    ** might not change and we will need to copy the old value.
    ** Also, the old data is needed to delete the old index entries.
    ** So make the cursor point at the old record.
    */
    sqlite3VdbeAddOp2(v, OP_NotExists, iCur, addr);
    sqlite3VdbeAddOp2(v, OP_MemLoad, mem1, 0);

    /* If the record number will change, push the record number as it
    ** will be after the update. (The old record number is currently
    ** on top of the stack.)
    */
    if( chngRowid ){
      sqlite3ExprCode(pParse, pRowidExpr);
      sqlite3VdbeAddOp2(v, OP_MustBeInt, 0, 0);
    }

    /* Compute new data for this record.  
    */
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
        continue;
      }
      j = aXRef[i];
      if( j<0 ){
        sqlite3VdbeAddOp2(v, OP_Column, iCur, i);
        sqlite3ColumnDefault(v, pTab, i);
      }else{
        sqlite3ExprCode(pParse, pChanges->a[j].pExpr);
      }
    }

    /* Do constraint checks
    */
    sqlite3GenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRowid, 1,
                                   onError, addr);

    /* Delete the old indices for the current record.
    */
    sqlite3GenerateRowIndexDelete(v, pTab, iCur, aIdxUsed);

    /* If changing the record number, delete the old record.
    */
    if( chngRowid ){
      sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
    }

    /* Create the new index entries and the new record.
    */
    sqlite3CompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRowid, 1, -1, 0);
  }

  /* Increment the row counter 
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack){
    sqlite3VdbeAddOp2(v, OP_MemIncr, 1, memCnt);
  }

  /* If there are triggers, close all the cursors after each iteration
  ** through the loop.  The fire the after triggers.
  */
  if( triggers_exist ){
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
    sqlite3VdbeJumpHere(v, iEndAfterTrigger);
  }

  /* Repeat the above with the next record to be updated, until
  ** all record selected by the WHERE clause have been updated.
  */
  sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
  sqlite3VdbeJumpHere(v, addr);

  /* Close all tables */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    if( openAll || aIdxUsed[i] ){
      sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
    }
  }
  sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  if( triggers_exist ){
    sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
    sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
  }

  /*
  ** Return the number of rows that were changed. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P4_STATIC);
  }

update_cleanup:
  sqlite3AuthContextPop(&sContext);
  sqlite3_free(apIdx);
  sqlite3_free(aXRef);
  sqlite3SrcListDelete(pTabList);
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
  pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
  
  /* Create the ephemeral table into which the update results will
  ** be stored.
  */
  assert( v );
  ephemTab = pParse->nTab++;
  sqlite3VdbeAddOp(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));

  /* fill the ephemeral table 
  */
  dest.iParm = ephemTab;
  sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);

  /*
  ** Generate code to scan the ephemeral table and call VDelete and
  ** VInsert
  */
  sqlite3VdbeAddOp(v, OP_Rewind, ephemTab, 0);
  addr = sqlite3VdbeCurrentAddr(v);
  sqlite3VdbeAddOp(v, OP_Column,  ephemTab, 0);
  if( pRowid ){
    sqlite3VdbeAddOp(v, OP_Column, ephemTab, 1);
  }else{
    sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
  }
  for(i=0; i<pTab->nCol; i++){
    sqlite3VdbeAddOp(v, OP_Column, ephemTab, i+1+(pRowid!=0));
  }
  pParse->pVirtualLock = pTab;
  sqlite3VdbeOp3(v, OP_VUpdate, 0, pTab->nCol+2, 
                     (const char*)pTab->pVtab, P3_VTAB);
  sqlite3VdbeAddOp(v, OP_Next, ephemTab, addr);
  sqlite3VdbeJumpHere(v, addr-1);
  sqlite3VdbeAddOp(v, OP_Close, ephemTab, 0);

  /* Cleanup */
  sqlite3SelectDelete(pSelect);  
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */







|










|

|

|

|


|


|
|
|

|





622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
  pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
  
  /* Create the ephemeral table into which the update results will
  ** be stored.
  */
  assert( v );
  ephemTab = pParse->nTab++;
  sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));

  /* fill the ephemeral table 
  */
  dest.iParm = ephemTab;
  sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);

  /*
  ** Generate code to scan the ephemeral table and call VDelete and
  ** VInsert
  */
  sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
  addr = sqlite3VdbeCurrentAddr(v);
  sqlite3VdbeAddOp2(v, OP_Column,  ephemTab, 0);
  if( pRowid ){
    sqlite3VdbeAddOp2(v, OP_Column, ephemTab, 1);
  }else{
    sqlite3VdbeAddOp2(v, OP_Dup, 0, 0);
  }
  for(i=0; i<pTab->nCol; i++){
    sqlite3VdbeAddOp2(v, OP_Column, ephemTab, i+1+(pRowid!=0));
  }
  pParse->pVirtualLock = pTab;
  sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, 0,
                     (const char*)pTab->pVtab, P4_VTAB);
  sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr);
  sqlite3VdbeJumpHere(v, addr-1);
  sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);

  /* Cleanup */
  sqlite3SelectDelete(pSelect);  
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
Changes to src/vacuum.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains code used to implement the VACUUM command.
**
** Most of the code in this file may be omitted by defining the
** SQLITE_OMIT_VACUUM macro.
**
** $Id: vacuum.c,v 1.75 2007/12/05 01:38:24 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
/*
** Execute zSql on database db. Return an error code.







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains code used to implement the VACUUM command.
**
** Most of the code in this file may be omitted by defining the
** SQLITE_OMIT_VACUUM macro.
**
** $Id: vacuum.c,v 1.76 2008/01/03 00:01:25 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
/*
** Execute zSql on database db. Return an error code.
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
** gdbm_reorganize() on all the database tables.  But beginning
** with 2.0.0, SQLite no longer uses GDBM so this command has
** become a no-op.
*/
void sqlite3Vacuum(Parse *pParse){
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp(v, OP_Vacuum, 0, 0);
  }
  return;
}

/*
** This routine implements the OP_Vacuum opcode of the VDBE.
*/







|







66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
** gdbm_reorganize() on all the database tables.  But beginning
** with 2.0.0, SQLite no longer uses GDBM so this command has
** become a no-op.
*/
void sqlite3Vacuum(Parse *pParse){
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
  }
  return;
}

/*
** This routine implements the OP_Vacuum opcode of the VDBE.
*/
Changes to src/vdbe.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement.  VDBE programs are 
** similar in form to assembly language.  The program consists of
** a linear sequence of operations.  Each operation has an opcode 
** and 3 operands.  Operands P1 and P2 are integers.  Operand P3 
** is a null-terminated string.   The P2 operand must be non-negative.
** Opcodes will typically ignore one or more operands.  Many opcodes
** ignore all three operands.
**
** Computation results are stored on a stack.  Each entry on the
** stack is either an integer, a null-terminated string, a floating point
** number, or the SQL "NULL" value.  An inplicit conversion from one
** type to the other occurs as necessary.
** 
** Most of the code in this file is taken up by the sqlite3VdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.663 2008/01/02 14:28:13 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor







|




















|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement.  VDBE programs are 
** similar in form to assembly language.  The program consists of
** a linear sequence of operations.  Each operation has an opcode 
** and 3 operands.  Operands P1 and P2 are integers.  Operand P4 
** is a null-terminated string.   The P2 operand must be non-negative.
** Opcodes will typically ignore one or more operands.  Many opcodes
** ignore all three operands.
**
** Computation results are stored on a stack.  Each entry on the
** stack is either an integer, a null-terminated string, a floating point
** number, or the SQL "NULL" value.  An inplicit conversion from one
** type to the other occurs as necessary.
** 
** Most of the code in this file is taken up by the sqlite3VdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.664 2008/01/03 00:01:25 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    p->popStack = 0;
  }
  p->pResultSet = 0;
  db->busyHandler.nBusy = 0;
  CHECK_FOR_INTERRUPT;
  sqlite3VdbeIOTraceSql(p);
#ifdef SQLITE_DEBUG
  if( (p->db->flags & SQLITE_VdbeListing)!=0
    || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)
  ){
    int i;
    printf("VDBE Program Listing:\n");
    sqlite3VdbePrintSql(p);
    for(i=0; i<p->nOp; i++){
      sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
    }







|
|







478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    p->popStack = 0;
  }
  p->pResultSet = 0;
  db->busyHandler.nBusy = 0;
  CHECK_FOR_INTERRUPT;
  sqlite3VdbeIOTraceSql(p);
#ifdef SQLITE_DEBUG
  if( p->pc==0 && ((p->db->flags & SQLITE_VdbeListing)!=0
    || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS))
  ){
    int i;
    printf("VDBE Program Listing:\n");
    sqlite3VdbePrintSql(p);
    for(i=0; i<p->nOp; i++){
      sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
    }
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
case OP_Return: {           /* no-push */
  assert( p->returnDepth>0 );
  p->returnDepth--;
  pc = p->returnStack[p->returnDepth] - 1;
  break;
}

/* Opcode:  Halt P1 P2 P3
**
** Exit immediately.  All open cursors, Fifos, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
** For errors, it can be some other value.  If P1!=0 then P2 will determine
** whether or not to rollback the current transaction.  Do not rollback
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction. 
**
** If P3 is not null then it is an error message string.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {            /* no-push */
  p->pTos = pTos;
  p->rc = pOp->p1;
  p->pc = pc;
  p->errorAction = pOp->p2;
  if( pOp->p3.p ){
    sqlite3SetString(&p->zErrMsg, pOp->p3.p, (char*)0);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;







|












|










|
|







651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
case OP_Return: {           /* no-push */
  assert( p->returnDepth>0 );
  p->returnDepth--;
  pc = p->returnStack[p->returnDepth] - 1;
  break;
}

/* Opcode:  Halt P1 P2 P4
**
** Exit immediately.  All open cursors, Fifos, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
** For errors, it can be some other value.  If P1!=0 then P2 will determine
** whether or not to rollback the current transaction.  Do not rollback
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction. 
**
** If P4 is not null then it is an error message string.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {            /* no-push */
  p->pTos = pTos;
  p->rc = pOp->p1;
  p->pc = pc;
  p->errorAction = pOp->p2;
  if( pOp->p4.p ){
    sqlite3SetString(&p->zErrMsg, pOp->p4.p, (char*)0);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
case OP_Integer: {
  pTos++;
  pTos->flags = MEM_Int;
  pTos->u.i = pOp->p1;
  break;
}

/* Opcode: Int64 * * P3
**
** P3 is a pointer to a 64-bit integer value.
** Push  that value onto  the stack.
*/
case OP_Int64: {
  pTos++;
  assert( pOp->p3.p!=0 );
  pTos->flags = MEM_Int;
  memcpy(&pTos->u.i, pOp->p3.p, 8);
  break;
}

/* Opcode: Real * * P3
**
** P3 is a pointer to a 64-bit floating point value.  Push that value
** onto the stack.
*/
case OP_Real: {            /* same as TK_FLOAT, */
  pTos++;
  pTos->flags = MEM_Real;
  memcpy(&pTos->r, pOp->p3.p, 8);
  break;
}

/* Opcode: String8 * * P3
**
** P3 points to a nul terminated UTF-8 string. This opcode is transformed 
** into an OP_String before it is executed for the first time.
*/
case OP_String8: {         /* same as TK_STRING */
  assert( pOp->p3.p!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = strlen(pOp->p3.p);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    pTos++;
    sqlite3VdbeMemSetStr(pTos, pOp->p3.p, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
    if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
    pTos->flags &= ~(MEM_Dyn);
    pTos->flags |= MEM_Static;
    if( pOp->p3type==P3_DYNAMIC ){
      sqlite3_free(pOp->p3.p);
    }
    pOp->p3type = P3_DYNAMIC;
    pOp->p3.p = pTos->z;
    pOp->p1 = pTos->n;
    if( pOp->p1>SQLITE_MAX_LENGTH ){
      goto too_big;
    }
    break;
  }
#endif
  if( pOp->p1>SQLITE_MAX_LENGTH ){
    goto too_big;
  }
  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 * P3
**
** The string value P3 of length P1 (bytes) is pushed onto the stack.
*/
case OP_String: {
  pTos++;
  assert( pOp->p3.p!=0 );
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p3.p;
  pTos->n = pOp->p1;
  pTos->enc = encoding;
  break;
}

/* Opcode: Null * * *
**
** Push a NULL onto the stack.
*/
case OP_Null: {
  pTos++;
  pTos->flags = MEM_Null;
  pTos->n = 0;
  break;
}


#ifndef SQLITE_OMIT_BLOB_LITERAL
/* Opcode: HexBlob * * P3
**
** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
** vdbe stack.
**
** The first time this instruction executes, in transforms itself into a
** 'Blob' opcode with a binary blob as P3.
*/
case OP_HexBlob: {            /* same as TK_BLOB */
  pOp->opcode = OP_Blob;
  pOp->p1 = strlen(pOp->p3.p)/2;
  if( pOp->p1>SQLITE_MAX_LENGTH ){
    goto too_big;
  }
  if( pOp->p1 ){
    char *zBlob = sqlite3HexToBlob(db, pOp->p3.p);
    if( !zBlob ) goto no_mem;
    if( pOp->p3type==P3_DYNAMIC ){
      sqlite3_free(pOp->p3.p);
    }
    pOp->p3.p = zBlob;
    pOp->p3type = P3_DYNAMIC;
  }else{
    if( pOp->p3type==P3_DYNAMIC ){
      sqlite3_free(pOp->p3.p);
    }
    pOp->p3type = P3_STATIC;
    pOp->p3.p = "";
  }

  /* Fall through to the next case, OP_Blob. */
}

/* Opcode: Blob P1 * P3
**
** P3 points to a blob of data P1 bytes long. Push this
** value onto the stack. This instruction is not coded directly
** by the compiler. Instead, the compiler layer specifies
** an OP_HexBlob opcode, with the hex string representation of
** the blob as P3. This opcode is transformed to an OP_Blob
** the first time it is executed.
*/
case OP_Blob: {
  pTos++;
  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
  sqlite3VdbeMemSetStr(pTos, pOp->p3.p, pOp->p1, 0, 0);
  pTos->enc = encoding;
  break;
}
#endif /* SQLITE_OMIT_BLOB_LITERAL */

/* Opcode: Variable P1 * *
**







|

|




|

|



|

|





|



|

|



|

|




|




|
|

|
|













|

|



|

|


















|

|



|



|




|

|
|

|
|

|
|

|
|





|

|



|





|







722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
case OP_Integer: {
  pTos++;
  pTos->flags = MEM_Int;
  pTos->u.i = pOp->p1;
  break;
}

/* Opcode: Int64 * * P4
**
** P4 is a pointer to a 64-bit integer value.
** Push  that value onto  the stack.
*/
case OP_Int64: {
  pTos++;
  assert( pOp->p4.p!=0 );
  pTos->flags = MEM_Int;
  memcpy(&pTos->u.i, pOp->p4.p, 8);
  break;
}

/* Opcode: Real * * P4
**
** P4 is a pointer to a 64-bit floating point value.  Push that value
** onto the stack.
*/
case OP_Real: {            /* same as TK_FLOAT, */
  pTos++;
  pTos->flags = MEM_Real;
  memcpy(&pTos->r, pOp->p4.p, 8);
  break;
}

/* Opcode: String8 * * P4
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
** into an OP_String before it is executed for the first time.
*/
case OP_String8: {         /* same as TK_STRING */
  assert( pOp->p4.p!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = strlen(pOp->p4.p);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    pTos++;
    sqlite3VdbeMemSetStr(pTos, pOp->p4.p, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
    if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
    pTos->flags &= ~(MEM_Dyn);
    pTos->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3_free(pOp->p4.p);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.p = pTos->z;
    pOp->p1 = pTos->n;
    if( pOp->p1>SQLITE_MAX_LENGTH ){
      goto too_big;
    }
    break;
  }
#endif
  if( pOp->p1>SQLITE_MAX_LENGTH ){
    goto too_big;
  }
  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 * P4
**
** The string value P4 of length P1 (bytes) is pushed onto the stack.
*/
case OP_String: {
  pTos++;
  assert( pOp->p4.p!=0 );
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p4.p;
  pTos->n = pOp->p1;
  pTos->enc = encoding;
  break;
}

/* Opcode: Null * * *
**
** Push a NULL onto the stack.
*/
case OP_Null: {
  pTos++;
  pTos->flags = MEM_Null;
  pTos->n = 0;
  break;
}


#ifndef SQLITE_OMIT_BLOB_LITERAL
/* Opcode: HexBlob * * P4
**
** P4 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
** vdbe stack.
**
** The first time this instruction executes, in transforms itself into a
** 'Blob' opcode with a binary blob as P4.
*/
case OP_HexBlob: {            /* same as TK_BLOB */
  pOp->opcode = OP_Blob;
  pOp->p1 = strlen(pOp->p4.p)/2;
  if( pOp->p1>SQLITE_MAX_LENGTH ){
    goto too_big;
  }
  if( pOp->p1 ){
    char *zBlob = sqlite3HexToBlob(db, pOp->p4.p);
    if( !zBlob ) goto no_mem;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3_free(pOp->p4.p);
    }
    pOp->p4.p = zBlob;
    pOp->p4type = P4_DYNAMIC;
  }else{
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3_free(pOp->p4.p);
    }
    pOp->p4type = P4_STATIC;
    pOp->p4.p = "";
  }

  /* Fall through to the next case, OP_Blob. */
}

/* Opcode: Blob P1 * P4
**
** P4 points to a blob of data P1 bytes long. Push this
** value onto the stack. This instruction is not coded directly
** by the compiler. Instead, the compiler layer specifies
** an OP_HexBlob opcode, with the hex string representation of
** the blob as P4. This opcode is transformed to an OP_Blob
** the first time it is executed.
*/
case OP_Blob: {
  pTos++;
  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
  sqlite3VdbeMemSetStr(pTos, pOp->p4.p, pOp->p1, 0, 0);
  pTos->enc = encoding;
  break;
}
#endif /* SQLITE_OMIT_BLOB_LITERAL */

/* Opcode: Variable P1 * *
**
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
  Release(pTos);
  pTos--;
  Release(pTos);
  pTos->flags = MEM_Null;
  break;
}

/* Opcode: CollSeq * * P3
**
** P3 is a pointer to a CollSeq struct. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
case OP_CollSeq: {             /* no-push */
  assert( pOp->p3type==P3_COLLSEQ );
  break;
}

/* Opcode: Function P1 P2 P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P2 arguments taken from the stack.  Pop all
** arguments from the stack and push back the result.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the







|

|









|



|

|







1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
  Release(pTos);
  pTos--;
  Release(pTos);
  pTos->flags = MEM_Null;
  break;
}

/* Opcode: CollSeq * * P4
**
** P4 is a pointer to a CollSeq struct. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
case OP_CollSeq: {             /* no-push */
  assert( pOp->p4type==P4_COLLSEQ );
  break;
}

/* Opcode: Function P1 P2 P4
**
** Invoke a user function (P4 is a pointer to a Function structure that
** defines the function) with P2 arguments taken from the stack.  Pop all
** arguments from the stack and push back the result.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

  pArg = &pTos[1-n];
  for(i=0; i<n; i++, pArg++){
    apVal[i] = pArg;
    storeTypeInfo(pArg, encoding);
  }

  assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
  if( pOp->p3type==P3_FUNCDEF ){
    ctx.pFunc = (FuncDef*)pOp->p3.p;
    ctx.pVdbeFunc = 0;
  }else{
    ctx.pVdbeFunc = (VdbeFunc*)pOp->p3.p;
    ctx.pFunc = ctx.pVdbeFunc->pFunc;
  }

  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3.p;
  }
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  if( db->mallocFailed ){
    /* Even though a malloc() has failed, the implementation of the
    ** user function may have called an sqlite3_result_XXX() function







|
|
|


|










|

|







1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

  pArg = &pTos[1-n];
  for(i=0; i<n; i++, pArg++){
    apVal[i] = pArg;
    storeTypeInfo(pArg, encoding);
  }

  assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
  if( pOp->p4type==P4_FUNCDEF ){
    ctx.pFunc = (FuncDef*)pOp->p4.p;
    ctx.pVdbeFunc = 0;
  }else{
    ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.p;
    ctx.pFunc = ctx.pVdbeFunc->pFunc;
  }

  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p4.p;
  }
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  if( db->mallocFailed ){
    /* Even though a malloc() has failed, the implementation of the
    ** user function may have called an sqlite3_result_XXX() function
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
  popStack(&pTos, n);

  /* If any auxilary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
    pOp->p3.p = (char *)ctx.pVdbeFunc;
    pOp->p3type = P3_VDBEFUNC;
  }

  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
    rc = SQLITE_ERROR;
  }







|
|







1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
  popStack(&pTos, n);

  /* If any auxilary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
    pOp->p4.p = (char *)ctx.pVdbeFunc;
    pOp->p4type = P4_VDBEFUNC;
  }

  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
    rc = SQLITE_ERROR;
  }
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
  if( (pTos->flags & MEM_Null)==0 ){
    sqlite3VdbeMemRealify(pTos);
  }
  break;
}
#endif /* SQLITE_OMIT_CAST */

/* Opcode: Eq P1 P2 P3
**
** Pop the top two elements from the stack.  If they are equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If the 0x100 bit of P1 is true and either operand is NULL then take the
** jump.  If the 0x100 bit of P1 is clear then fall thru if either operand
** is NULL.







|







1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
  if( (pTos->flags & MEM_Null)==0 ){
    sqlite3VdbeMemRealify(pTos);
  }
  break;
}
#endif /* SQLITE_OMIT_CAST */

/* Opcode: Eq P1 P2 P4
**
** Pop the top two elements from the stack.  If they are equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If the 0x100 bit of P1 is true and either operand is NULL then take the
** jump.  If the 0x100 bit of P1 is clear then fall thru if either operand
** is NULL.
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
** both values are numeric, then a numeric comparison is used. If the
** two values are of different types, then they are inequal.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
**
** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
** structure) that defines how to compare text.
*/
/* Opcode: Ne P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the operands from the stack are not equal.  See the Eq opcode for
** additional information.
*/
/* Opcode: Lt P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is less than the top of the stack.
** See the Eq opcode for additional information.
*/
/* Opcode: Le P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is less than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than the top of the stack.
** See the Eq opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, no-push */
case OP_Ne:               /* same as TK_NE, no-push */







|


|





|





|





|





|







1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
** both values are numeric, then a numeric comparison is used. If the
** two values are of different types, then they are inequal.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
**
** If P4 is not NULL it is a pointer to a collating sequence (a CollSeq
** structure) that defines how to compare text.
*/
/* Opcode: Ne P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the operands from the stack are not equal.  See the Eq opcode for
** additional information.
*/
/* Opcode: Lt P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is less than the top of the stack.
** See the Eq opcode for additional information.
*/
/* Opcode: Le P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is less than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
/* Opcode: Gt P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than the top of the stack.
** See the Eq opcode for additional information.
*/
/* Opcode: Ge P1 P2 P4
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, no-push */
case OP_Ne:               /* same as TK_NE, no-push */
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787

  affinity = pOp->p1 & 0xFF;
  if( affinity ){
    applyAffinity(pNos, affinity, encoding);
    applyAffinity(pTos, affinity, encoding);
  }

  assert( pOp->p3type==P3_COLLSEQ || pOp->p3.p==0 );
  ExpandBlob(pNos);
  ExpandBlob(pTos);
  res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3.p);
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;
    default:       res = res>=0;     break;







|


|







1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787

  affinity = pOp->p1 & 0xFF;
  if( affinity ){
    applyAffinity(pNos, affinity, encoding);
    applyAffinity(pTos, affinity, encoding);
  }

  assert( pOp->p4type==P4_COLLSEQ || pOp->p4.p==0 );
  ExpandBlob(pNos);
  ExpandBlob(pTos);
  res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p4.p);
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;
    default:       res = res>=0;     break;
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
  assert( (pOp->p1)<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );
  pC = p->apCsr[pOp->p1];
  pC->nField = pOp->p2;
  break;
}

/* Opcode: Column P1 P2 P3
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**
** The value extracted is pushed onto the stack.  Or if P3 is an integer
** register number, then the value is written into that register.
**
** If the KeyAsData opcode has previously executed on this cursor, then the
** field might be extracted from the key rather than the data.
**
** If the column contains fewer than P2 fields, then extract a NULL.  Or
** if the next instruction is OP_DfltValue then the P3 argument to the
** OP_DfltValue instruction will be a P3_MEM.  Use the P3 argument of
** the OP_DfltValue instruction as the extracted value instead of NULL.
** The OP_DfltValue P3 value will be a default value for a column 
** that has been added using the ALTER TABLE ADD COLUMN command.
*/
case OP_Column: {
  u32 payloadSize;   /* Number of bytes in the record */
  int p1 = pOp->p1;  /* P1 value of the opcode */
  int p2 = pOp->p2;  /* column number to retrieve */
  Cursor *pC = 0;    /* The VDBE cursor */
  char *zRec;        /* Pointer to complete record-data */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  u32 nField;        /* number of fields in the record */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  char *zData;       /* Part of the record being decoded */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */

  sMem.flags = 0;
  assert( p1<p->nCursor );
  if( pOp->p3type==P3_INT32 ){
    assert( pOp->p3.i>=0 && pOp->p3.i<p->nMem );
    pDest = &p->aMem[pOp->p3.i];
  }else{
    pDest = ++pTos;
  }
  sqlite3VdbeMemSetNull(pDest);

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.







|







|
|





|
|

|




















|
<
|







2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070

2071
2072
2073
2074
2075
2076
2077
2078
  assert( (pOp->p1)<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );
  pC = p->apCsr[pOp->p1];
  pC->nField = pOp->p2;
  break;
}

/* Opcode: Column P1 P2 P3 *
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**
** The value extracted is pushed onto the stack.  Or if P3 is a positive
** integer register number, then the value is written into that register.
**
** If the KeyAsData opcode has previously executed on this cursor, then the
** field might be extracted from the key rather than the data.
**
** If the column contains fewer than P2 fields, then extract a NULL.  Or
** if the next instruction is OP_DfltValue then the P4 argument to the
** OP_DfltValue instruction will be a P4_MEM.  Use the P4 argument of
** the OP_DfltValue instruction as the extracted value instead of NULL.
** The OP_DfltValue P4 value will be a default value for a column 
** that has been added using the ALTER TABLE ADD COLUMN command.
*/
case OP_Column: {
  u32 payloadSize;   /* Number of bytes in the record */
  int p1 = pOp->p1;  /* P1 value of the opcode */
  int p2 = pOp->p2;  /* column number to retrieve */
  Cursor *pC = 0;    /* The VDBE cursor */
  char *zRec;        /* Pointer to complete record-data */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  u32 nField;        /* number of fields in the record */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  char *zData;       /* Part of the record being decoded */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */

  sMem.flags = 0;
  assert( p1<p->nCursor );
  if( pOp->p3>0 ){

    pDest = &p->aMem[pOp->p3];
  }else{
    pDest = ++pTos;
  }
  sqlite3VdbeMemSetNull(pDest);

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
      goto op_column_out;
    }
  }

  /* Get the column information. If aOffset[p2] is non-zero, then 
  ** deserialize the value from the record. If aOffset[p2] is zero,
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P3 if P3 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      zData = &zRec[aOffset[p2]];
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
    pDest->enc = encoding;
  }else{
    if( pOp[1].opcode==OP_DfltValue ){
      assert( pOp[1].p3type==P3_MEM );
      sqlite3VdbeMemShallowCopy(pDest, (Mem *)(pOp[1].p3.p), MEM_Static);
    }else{
      assert( pDest->flags==MEM_Null );
    }
  }

  /* If we dynamically allocated space to hold the data (in the
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that







|


















|
|







2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
      goto op_column_out;
    }
  }

  /* Get the column information. If aOffset[p2] is non-zero, then 
  ** deserialize the value from the record. If aOffset[p2] is zero,
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P4 if P4 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      zData = &zRec[aOffset[p2]];
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
    pDest->enc = encoding;
  }else{
    if( pOp[1].opcode==OP_DfltValue ){
      assert( pOp[1].p4type==P4_MEM );
      sqlite3VdbeMemShallowCopy(pDest, (Mem *)(pOp[1].p4.p), MEM_Static);
    }else{
      assert( pDest->flags==MEM_Null );
    }
  }

  /* If we dynamically allocated space to hold the data (in the
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
op_column_out:
  if( pOp[1].opcode==OP_DfltValue ){
    pc++;
  }
  break;
}

/* Opcode: DfltValue * * P3
**
** This instruction always follows an OP_Column.  This instruction
** does nothing by itself.  It is just a place holder for the default
** value for the previous OP_Column instruction.
*/
case OP_DfltValue: {       /* no-push */
  assert( 0 );
}

/* Opcode: MakeRecord P1 P2 P3
**
** Convert the top abs(P1) entries of the stack into a single entry
** suitable for use as a data record in a database table or as a key
** in an index.  The details of the format are irrelavant as long as
** the OP_Column opcode can decode the record later and as long as the
** sqlite3VdbeRecordCompare function will correctly compare two encoded
** records.  Refer to source code comments for the details of the record
** format.
**
** The original stack entries are popped from the stack if P1>0 but
** remain on the stack if P1<0.
**
** If P2 is not zero and one or more of the entries are NULL, then jump
** to the address given by P2.  This feature can be used to skip a
** uniqueness test on indices.
**
** P3 may be a string that is P1 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key (i.e. the first character of P3 corresponds to the
** lowest element on the stack).
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P3 is NULL then all index fields have the affinity NONE.
**
** See also OP_MakeIdxRec
*/
/* Opcode: MakeIdxRec P1 P2 P3
**
** This opcode works just OP_MakeRecord except that it reads an extra
** integer from the stack (thus reading a total of abs(P1+1) entries)
** and appends that extra integer to the end of the record as a varint.
** This results in an index key.
*/
/*
** Opcode: RegMakeRec P1 P2 P3
**
** Works like OP_MakeRecord except data is taken from registers
** rather than from the stack.  The P1 register is an integer which
** is the number of register to use in building the new record.
** Data is taken from P1+1, P1+2, ..., P1+mem[P1].
*/
/*
** Opcode: RegMakeIRec P1 P2 P3
**
** Works like OP_MakeIdxRec except data is taken from registers
** rather than from the stack.  The P1 register is an integer which
** is the number of register to use in building the new record.
** Data is taken from P1+1, P1+2, ..., P1+mem[P1].
*/
case OP_RegMakeRec:







|









|
















|

|





|



|







|







|







2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
op_column_out:
  if( pOp[1].opcode==OP_DfltValue ){
    pc++;
  }
  break;
}

/* Opcode: DfltValue * * P4
**
** This instruction always follows an OP_Column.  This instruction
** does nothing by itself.  It is just a place holder for the default
** value for the previous OP_Column instruction.
*/
case OP_DfltValue: {       /* no-push */
  assert( 0 );
}

/* Opcode: MakeRecord P1 P2 P4
**
** Convert the top abs(P1) entries of the stack into a single entry
** suitable for use as a data record in a database table or as a key
** in an index.  The details of the format are irrelavant as long as
** the OP_Column opcode can decode the record later and as long as the
** sqlite3VdbeRecordCompare function will correctly compare two encoded
** records.  Refer to source code comments for the details of the record
** format.
**
** The original stack entries are popped from the stack if P1>0 but
** remain on the stack if P1<0.
**
** If P2 is not zero and one or more of the entries are NULL, then jump
** to the address given by P2.  This feature can be used to skip a
** uniqueness test on indices.
**
** P4 may be a string that is P1 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key (i.e. the first character of P4 corresponds to the
** lowest element on the stack).
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity NONE.
**
** See also OP_MakeIdxRec
*/
/* Opcode: MakeIdxRec P1 P2 P4
**
** This opcode works just OP_MakeRecord except that it reads an extra
** integer from the stack (thus reading a total of abs(P1+1) entries)
** and appends that extra integer to the end of the record as a varint.
** This results in an index key.
*/
/*
** Opcode: RegMakeRec P1 P2 P4
**
** Works like OP_MakeRecord except data is taken from registers
** rather than from the stack.  The P1 register is an integer which
** is the number of register to use in building the new record.
** Data is taken from P1+1, P1+2, ..., P1+mem[P1].
*/
/*
** Opcode: RegMakeIRec P1 P2 P4
**
** Works like OP_MakeIdxRec except data is taken from registers
** rather than from the stack.  The P1 register is an integer which
** is the number of register to use in building the new record.
** Data is taken from P1+1, P1+2, ..., P1+mem[P1].
*/
case OP_RegMakeRec:
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
    nField = -pOp->p1;
  }else{
    leaveOnStack = 0;
    nField = pOp->p1;
  }
  jumpIfNull = pOp->p2;
  addRowid = pOp->opcode==OP_MakeIdxRec || pOp->opcode==OP_RegMakeIRec;
  zAffinity = pOp->p3.p;

  if( pOp->opcode==OP_RegMakeRec || pOp->opcode==OP_RegMakeIRec ){
    Mem *pCount;
    assert( nField>=0 && nField<p->nMem );
    pCount = &p->aMem[nField];
    assert( pCount->flags & MEM_Int );
    assert( pCount->u.i>=0 && pCount->u.i+nField<p->nMem );







|







2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
    nField = -pOp->p1;
  }else{
    leaveOnStack = 0;
    nField = pOp->p1;
  }
  jumpIfNull = pOp->p2;
  addRowid = pOp->opcode==OP_MakeIdxRec || pOp->opcode==OP_RegMakeIRec;
  zAffinity = pOp->p4.p;

  if( pOp->opcode==OP_RegMakeRec || pOp->opcode==OP_RegMakeIRec ){
    Mem *pCount;
    assert( nField>=0 && nField<p->nMem );
    pCount = &p->aMem[nField];
    assert( pCount->flags & MEM_Int );
    assert( pCount->u.i>=0 && pCount->u.i+nField<p->nMem );
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839

    sqlite3ExpirePreparedStatements(db);
    rc = SQLITE_SCHEMA;
  }
  break;
}

/* Opcode: OpenRead P1 P2 P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file.  The database file is determined by an 
** integer from the top of the stack.  0 means the main database and
** 1 means the database used for temporary tables.  Give the new 
** cursor an identifier of P1.  The P1 values need not be contiguous
** but all P1 values should be small integers.  It is an error for
** P1 to be negative.
**
** If P2==0 then take the root page number from the next of the stack.
**
** There will be a read lock on the database whenever there is an
** open cursor.  If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction.  A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database.  The read lock is
** released when all cursors are closed.  If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P3 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices.  P3 is NULL for cursors
** that are not pointing to indices.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  If P2==0 then take the root page number from the stack.
**
** The P3 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices.  P3 is NULL for cursors
** that are not pointing to indices.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.







|




















|
|




|




|
|







2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838

    sqlite3ExpirePreparedStatements(db);
    rc = SQLITE_SCHEMA;
  }
  break;
}

/* Opcode: OpenRead P1 P2 P4
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file.  The database file is determined by an 
** integer from the top of the stack.  0 means the main database and
** 1 means the database used for temporary tables.  Give the new 
** cursor an identifier of P1.  The P1 values need not be contiguous
** but all P1 values should be small integers.  It is an error for
** P1 to be negative.
**
** If P2==0 then take the root page number from the next of the stack.
**
** There will be a read lock on the database whenever there is an
** open cursor.  If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction.  A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database.  The read lock is
** released when all cursors are closed.  If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P4 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices.  P4 is NULL for cursors
** that are not pointing to indices.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P4
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  If P2==0 then take the root page number from the stack.
**
** The P4 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices.  P4 is NULL for cursors
** that are not pointing to indices.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
  pCur = allocateCursor(p, i, iDb);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  if( pX==0 ) break;
  /* We always provide a key comparison function.  If the table being
  ** opened is of type INTKEY, the comparision function will be ignored. */
  rc = sqlite3BtreeCursor(pX, p2, wrFlag,
           sqlite3VdbeRecordCompare, pOp->p3.p,
           &pCur->pCursor);
  if( pOp->p3type==P3_KEYINFO ){
    pCur->pKeyInfo = (KeyInfo*)pOp->p3.p;
    pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
    pCur->pKeyInfo->enc = ENC(p->db);
  }else{
    pCur->pKeyInfo = 0;
    pCur->pIncrKey = &pCur->bogusIncrKey;
  }
  switch( rc ){







|

|
|







2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
  pCur = allocateCursor(p, i, iDb);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  if( pX==0 ) break;
  /* We always provide a key comparison function.  If the table being
  ** opened is of type INTKEY, the comparision function will be ignored. */
  rc = sqlite3BtreeCursor(pX, p2, wrFlag,
           sqlite3VdbeRecordCompare, pOp->p4.p,
           &pCur->pCursor);
  if( pOp->p4type==P4_KEYINFO ){
    pCur->pKeyInfo = (KeyInfo*)pOp->p4.p;
    pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
    pCur->pKeyInfo->enc = ENC(p->db);
  }else{
    pCur->pKeyInfo = 0;
    pCur->pIncrKey = &pCur->bogusIncrKey;
  }
  switch( rc ){
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
      */
      if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
        rc = SQLITE_CORRUPT_BKPT;
        goto abort_due_to_error;
      }
      pCur->isTable = (flags & BTREE_INTKEY)!=0;
      pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
      /* If P3==0 it means we are expected to open a table.  If P3!=0 then
      ** we expect to be opening an index.  If this is not what happened,
      ** then the database is corrupt
      */
      if( (pCur->isTable && pOp->p3type==P3_KEYINFO)
       || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){
        rc = SQLITE_CORRUPT_BKPT;
        goto abort_due_to_error;
      }
      break;
    }
    case SQLITE_EMPTY: {
      pCur->isTable = pOp->p3type!=P3_KEYINFO;
      pCur->isIndex = !pCur->isTable;
      rc = SQLITE_OK;
      break;
    }
    default: {
      goto abort_due_to_error;
    }
  }
  break;
}

/* Opcode: OpenEphemeral P1 P2 P3
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
** the main database is read-only.  The transient or virtual
** table is deleted automatically when the cursor is closed.
**
** P2 is the number of columns in the virtual table.
** The cursor points to a BTree table if P3==0 and to a BTree index
** if P3 is not 0.  If P3 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** This opcode was once called OpenTemp.  But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode.  Then this opcode was call OpenVirtual.  But
** that created confusion with the whole virtual-table idea.







|



|
|






|











|







|
|







2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
      */
      if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
        rc = SQLITE_CORRUPT_BKPT;
        goto abort_due_to_error;
      }
      pCur->isTable = (flags & BTREE_INTKEY)!=0;
      pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
      /* If P4==0 it means we are expected to open a table.  If P4!=0 then
      ** we expect to be opening an index.  If this is not what happened,
      ** then the database is corrupt
      */
      if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
       || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
        rc = SQLITE_CORRUPT_BKPT;
        goto abort_due_to_error;
      }
      break;
    }
    case SQLITE_EMPTY: {
      pCur->isTable = pOp->p4type!=P4_KEYINFO;
      pCur->isIndex = !pCur->isTable;
      rc = SQLITE_OK;
      break;
    }
    default: {
      goto abort_due_to_error;
    }
  }
  break;
}

/* Opcode: OpenEphemeral P1 P2 P4
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
** the main database is read-only.  The transient or virtual
** table is deleted automatically when the cursor is closed.
**
** P2 is the number of columns in the virtual table.
** The cursor points to a BTree table if P4==0 and to a BTree index
** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** This opcode was once called OpenTemp.  But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode.  Then this opcode was call OpenVirtual.  But
** that created confusion with the whole virtual-table idea.
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an INTKEY table).
    */
    if( pOp->p3.p ){
      int pgno;
      assert( pOp->p3type==P3_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
            pOp->p3.p, &pCx->pCursor);
        pCx->pKeyInfo = (KeyInfo*)pOp->p3.p;
        pCx->pKeyInfo->enc = ENC(p->db);
        pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
      }
      pCx->isTable = 0;
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
      pCx->isTable = 1;







|

|




|
|







2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an INTKEY table).
    */
    if( pOp->p4.p ){
      int pgno;
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
            pOp->p4.p, &pCx->pCursor);
        pCx->pKeyInfo = (KeyInfo*)pOp->p4.p;
        pCx->pKeyInfo->enc = ENC(p->db);
        pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
      }
      pCx->isTable = 0;
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
      pCx->isTable = 1;
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
  }
  pTos++;
  pTos->u.i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: Insert P1 P2 P3
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be an integer.  The stack is popped twice by this instruction.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P2 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
**
** Parameter P3 may point to a string containing the table-name, or
** may be NULL. If it is not NULL, then the update-hook 
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert: {         /* no-push */







|












|







3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
  }
  pTos++;
  pTos->u.i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: Insert P1 P2 P4
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be an integer.  The stack is popped twice by this instruction.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P2 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
**
** Parameter P4 may point to a string containing the table-name, or
** may be NULL. If it is not NULL, then the update-hook 
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert: {         /* no-push */
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
    }
    
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;

    /* Invoke the update-hook if required. */
    if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3.p ){
      const char *zDb = db->aDb[pC->iDb].zName;
      const char *zTbl = pOp->p3.p;
      int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
      assert( pC->isTable );
      db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
      assert( pC->iDb>=0 );
    }
  }
  popStack(&pTos, 2);

  break;
}

/* Opcode: Delete P1 P2 P3
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within an Next loop.







|

|











|







3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
    }
    
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;

    /* Invoke the update-hook if required. */
    if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.p ){
      const char *zDb = db->aDb[pC->iDb].zName;
      const char *zTbl = pOp->p4.p;
      int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
      assert( pC->isTable );
      db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
      assert( pC->iDb>=0 );
    }
  }
  popStack(&pTos, 2);

  break;
}

/* Opcode: Delete P1 P2 P4
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within an Next loop.
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    i64 iKey;

    /* If the update-hook will be invoked, set iKey to the rowid of the
    ** row being deleted.
    */
    if( db->xUpdateCallback && pOp->p3.p ){
      assert( pC->isTable );
      if( pC->rowidIsValid ){
        iKey = pC->lastRowid;
      }else{
        rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
        if( rc ){
          goto abort_due_to_error;
        }
        iKey = keyToInt(iKey);
      }
    }

    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    rc = sqlite3BtreeDelete(pC->pCursor);
    pC->nextRowidValid = 0;
    pC->cacheStatus = CACHE_STALE;

    /* Invoke the update-hook if required. */
    if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3.p ){
      const char *zDb = db->aDb[pC->iDb].zName;
      const char *zTbl = pOp->p3.p;
      db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
      assert( pC->iDb>=0 );
    }
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}







|



















|

|







3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    i64 iKey;

    /* If the update-hook will be invoked, set iKey to the rowid of the
    ** row being deleted.
    */
    if( db->xUpdateCallback && pOp->p4.p ){
      assert( pC->isTable );
      if( pC->rowidIsValid ){
        iKey = pC->lastRowid;
      }else{
        rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
        if( rc ){
          goto abort_due_to_error;
        }
        iKey = keyToInt(iKey);
      }
    }

    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    rc = sqlite3BtreeDelete(pC->pCursor);
    pC->nextRowidValid = 0;
    pC->cacheStatus = CACHE_STALE;

    /* Invoke the update-hook if required. */
    if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.p ){
      const char *zDb = db->aDb[pC->iDb].zName;
      const char *zTbl = pOp->p4.p;
      db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
      assert( pC->iDb>=0 );
    }
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
**
** The top of the stack might have fewer columns that P1.
**
** If the P1 index entry is greater than the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxGE P1 P2 P3
**
** The top of the stack is an index entry that omits the ROWID.  Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** If the P1 index entry is greater than or equal to the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
**
** If P3 is the "+" string (or any other non-NULL string) then the
** index taken from the top of the stack is temporarily increased by
** an epsilon prior to the comparison.  This make the opcode work
** like IdxGT except that if the key from the stack is a prefix of
** the key in the cursor, the result is false whereas it would be
** true with IdxGT.
*/
/* Opcode: IdxLT P1 P2 P3
**
** The top of the stack is an index entry that omits the ROWID.  Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** If the P1 index entry is less than  the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
**
** If P3 is the "+" string (or any other non-NULL string) then the
** index taken from the top of the stack is temporarily increased by
** an epsilon prior to the comparison.  This makes the opcode work
** like IdxLE.
*/
case OP_IdxLT:          /* no-push */
case OP_IdxGT:          /* no-push */
case OP_IdxGE: {        /* no-push */
  int i= pOp->p1;
  Cursor *pC;

  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos>=p->aStack );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res;
 
    assert( pTos->flags & MEM_Blob );  /* Created using OP_MakeRecord */
    assert( pC->deferredMoveto==0 );
    ExpandBlob(pTos);
    *pC->pIncrKey = pOp->p3.p!=0;
    assert( pOp->p3.p==0 || pOp->opcode!=OP_IdxGT );
    rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
    *pC->pIncrKey = 0;
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;







|









|






|









|



















|
|







4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
**
** The top of the stack might have fewer columns that P1.
**
** If the P1 index entry is greater than the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxGE P1 P2 P4
**
** The top of the stack is an index entry that omits the ROWID.  Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** If the P1 index entry is greater than or equal to the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
**
** If P4 is the "+" string (or any other non-NULL string) then the
** index taken from the top of the stack is temporarily increased by
** an epsilon prior to the comparison.  This make the opcode work
** like IdxGT except that if the key from the stack is a prefix of
** the key in the cursor, the result is false whereas it would be
** true with IdxGT.
*/
/* Opcode: IdxLT P1 P2 P4
**
** The top of the stack is an index entry that omits the ROWID.  Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** If the P1 index entry is less than  the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
**
** If P4 is the "+" string (or any other non-NULL string) then the
** index taken from the top of the stack is temporarily increased by
** an epsilon prior to the comparison.  This makes the opcode work
** like IdxLE.
*/
case OP_IdxLT:          /* no-push */
case OP_IdxGT:          /* no-push */
case OP_IdxGE: {        /* no-push */
  int i= pOp->p1;
  Cursor *pC;

  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos>=p->aStack );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res;
 
    assert( pTos->flags & MEM_Blob );  /* Created using OP_MakeRecord */
    assert( pC->deferredMoveto==0 );
    ExpandBlob(pTos);
    *pC->pIncrKey = pOp->p4.p!=0;
    assert( pOp->p4.p==0 || pOp->opcode!=OP_IdxGT );
    rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
    *pC->pIncrKey = 0;
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
case OP_Clear: {        /* no-push */

  /* For consistency with the way other features of SQLite operate
  ** with a truncate, we will also skip the update callback.
  */
#if 0
  Btree *pBt = db->aDb[pOp->p2].pBt;
  if( db->xUpdateCallback && pOp->p3.p ){
    const char *zDb = db->aDb[pOp->p2].zName;
    const char *zTbl = pOp->p3.p;
    BtCursor *pCur = 0;
    int fin = 0;

    rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }







|

|







4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
case OP_Clear: {        /* no-push */

  /* For consistency with the way other features of SQLite operate
  ** with a truncate, we will also skip the update callback.
  */
#if 0
  Btree *pBt = db->aDb[pOp->p2].pBt;
  if( db->xUpdateCallback && pOp->p4.p ){
    const char *zDb = db->aDb[pOp->p2].zName;
    const char *zTbl = pOp->p4.p;
    BtCursor *pCur = 0;
    int fin = 0;

    rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
    pTos->flags = MEM_Int;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: ParseSchema P1 P2 P3
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P3.  P2 is the "force" flag.   Always do
** the parsing if P2 is true.  If P2 is false, then this routine is a
** no-op if the schema is not currently loaded.  In other words, if P2
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a reentrant opcode.







|


|







4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
    pTos->flags = MEM_Int;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: ParseSchema P1 P2 P4
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P4.  P2 is the "force" flag.   Always do
** the parsing if P2 is true.  If P2 is false, then this routine is a
** no-op if the schema is not currently loaded.  In other words, if P2
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a reentrant opcode.
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
  }
  zMaster = SCHEMA_TABLE(iDb);
  initData.db = db;
  initData.iDb = pOp->p1;
  initData.pzErrMsg = &p->zErrMsg;
  zSql = sqlite3MPrintf(db,
     "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
     db->aDb[iDb].zName, zMaster, pOp->p3.p);
  if( zSql==0 ) goto no_mem;
  sqlite3SafetyOff(db);
  assert( db->init.busy==0 );
  db->init.busy = 1;
  assert( !db->mallocFailed );
  rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
  if( rc==SQLITE_ABORT ) rc = initData.rc;







|







4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
  }
  zMaster = SCHEMA_TABLE(iDb);
  initData.db = db;
  initData.iDb = pOp->p1;
  initData.pzErrMsg = &p->zErrMsg;
  zSql = sqlite3MPrintf(db,
     "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
     db->aDb[iDb].zName, zMaster, pOp->p4.p);
  if( zSql==0 ) goto no_mem;
  sqlite3SafetyOff(db);
  assert( db->init.busy==0 );
  db->init.busy = 1;
  assert( !db->mallocFailed );
  rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
  if( rc==SQLITE_ABORT ) rc = initData.rc;
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
  int iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );
  rc = sqlite3AnalysisLoad(db, iDb);
  break;  
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */

/* Opcode: DropTable P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the table named P3 in database P1.  This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {        /* no-push */
  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3.p);
  break;
}

/* Opcode: DropIndex P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the index named P3 in database P1.  This is called after an index
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {        /* no-push */
  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3.p);
  break;
}

/* Opcode: DropTrigger P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P3 in database P1.  This is called after a trigger
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {        /* no-push */
  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3.p);
  break;
}


#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 *
**







|


|




|



|


|




|



|


|




|







4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
  int iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );
  rc = sqlite3AnalysisLoad(db, iDb);
  break;  
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */

/* Opcode: DropTable P1 * P4
**
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1.  This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {        /* no-push */
  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.p);
  break;
}

/* Opcode: DropIndex P1 * P4
**
** Remove the internal (in-memory) data structures that describe
** the index named P4 in database P1.  This is called after an index
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {        /* no-push */
  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.p);
  break;
}

/* Opcode: DropTrigger P1 * P4
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P4 in database P1.  This is called after a trigger
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {        /* no-push */
  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.p);
  break;
}


#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 *
**
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
case OP_MemMove: {
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  assert( pOp->p2>=0 && pOp->p2<p->nMem );
  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
  break;
}

/* Opcode: AggStep P1 P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
** structure that specifies the function.  Use memory location
** P1 as the accumulator.
**
** The P2 arguments are popped from the stack.
*/
case OP_AggStep: {        /* no-push */
  int n = pOp->p2;







|


|







4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
case OP_MemMove: {
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  assert( pOp->p2>=0 && pOp->p2<p->nMem );
  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
  break;
}

/* Opcode: AggStep P1 P2 P4
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P4 is a pointer to the FuncDef
** structure that specifies the function.  Use memory location
** P1 as the accumulator.
**
** The P2 arguments are popped from the stack.
*/
case OP_AggStep: {        /* no-push */
  int n = pOp->p2;
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
  assert( pRec>=p->aStack );
  apVal = p->apArg;
  assert( apVal || n==0 );
  for(i=0; i<n; i++, pRec++){
    apVal[i] = pRec;
    storeTypeInfo(pRec, encoding);
  }
  ctx.pFunc = (FuncDef*)pOp->p3.p;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  ctx.pMem = pMem = &p->aMem[pOp->p1];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  ctx.pColl = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3.p;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal);
  popStack(&pTos, n);
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
    rc = SQLITE_ERROR;
  }
  sqlite3VdbeMemRelease(&ctx.s);
  break;
}

/* Opcode: AggFinal P1 P2 P3
**
** Execute the finalizer function for an aggregate.  P1 is
** the memory location that is the accumulator for the aggregate.
**
** P2 is the number of arguments that the step function takes and
** P3 is a pointer to the FuncDef for this function.  The P2
** argument is not used by this opcode.  It is only there to disambiguate
** functions that can take varying numbers of arguments.  The
** P3 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {        /* no-push */
  Mem *pMem;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  pMem = &p->aMem[pOp->p1];
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3.p);
  if( rc==SQLITE_ERROR ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
  }
  if( sqlite3VdbeMemTooBig(pMem) ){
    goto too_big;
  }
  break;







|











|

|











|





|


|







|







4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
  assert( pRec>=p->aStack );
  apVal = p->apArg;
  assert( apVal || n==0 );
  for(i=0; i<n; i++, pRec++){
    apVal[i] = pRec;
    storeTypeInfo(pRec, encoding);
  }
  ctx.pFunc = (FuncDef*)pOp->p4.p;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  ctx.pMem = pMem = &p->aMem[pOp->p1];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  ctx.pColl = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p4.p;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal);
  popStack(&pTos, n);
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
    rc = SQLITE_ERROR;
  }
  sqlite3VdbeMemRelease(&ctx.s);
  break;
}

/* Opcode: AggFinal P1 P2 P4
**
** Execute the finalizer function for an aggregate.  P1 is
** the memory location that is the accumulator for the aggregate.
**
** P2 is the number of arguments that the step function takes and
** P4 is a pointer to the FuncDef for this function.  The P2
** argument is not used by this opcode.  It is only there to disambiguate
** functions that can take varying numbers of arguments.  The
** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {        /* no-push */
  Mem *pMem;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  pMem = &p->aMem[pOp->p1];
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p4.p);
  if( rc==SQLITE_ERROR ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
  }
  if( sqlite3VdbeMemTooBig(pMem) ){
    goto too_big;
  }
  break;
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
  }else{
    p->expired = 1;
  }
  break;
}

#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled. 
**
** If P1 is not negative, then it is the index of the database
** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a 
** write-lock is required. In this case the index of the database is the 
** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
** required. 
**
** P2 contains the root-page of the table to lock.
**
** P3 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {        /* no-push */
  int p1 = pOp->p1; 
  u8 isWriteLock = (p1<0);
  if( isWriteLock ){
    p1 = (-1*p1)-1;
  }
  assert( p1>=0 && p1<db->nDb );
  assert( (p->btreeMask & (1<<p1))!=0 );
  rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
  if( rc==SQLITE_LOCKED ){
    const char *z = (const char *)pOp->p3.p;
    sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
  }
  break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * P3
**
** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method 
** for that table.
*/
case OP_VBegin: {   /* no-push */
  rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3.p);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * P3
**
** P3 is the name of a virtual table in database P1. Call the xCreate method
** for that table.
*/
case OP_VCreate: {   /* no-push */
  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3.p, &p->zErrMsg);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * P3
**
** P3 is the name of a virtual table in database P1.  Call the xDestroy method
** of that table.
*/
case OP_VDestroy: {   /* no-push */
  p->inVtabMethod = 2;
  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3.p);
  p->inVtabMethod = 0;
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * P3
**
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {   /* no-push */
  Cursor *pCur = 0;
  sqlite3_vtab_cursor *pVtabCursor = 0;

  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3.p);
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;

  assert(pVtab && pModule);
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  if( SQLITE_OK==rc ){







|












|












|







|

|



|





|

|



|





|

|




|






|

|







|







4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
  }else{
    p->expired = 1;
  }
  break;
}

#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P4
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled. 
**
** If P1 is not negative, then it is the index of the database
** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a 
** write-lock is required. In this case the index of the database is the 
** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
** required. 
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {        /* no-push */
  int p1 = pOp->p1; 
  u8 isWriteLock = (p1<0);
  if( isWriteLock ){
    p1 = (-1*p1)-1;
  }
  assert( p1>=0 && p1<db->nDb );
  assert( (p->btreeMask & (1<<p1))!=0 );
  rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
  if( rc==SQLITE_LOCKED ){
    const char *z = (const char *)pOp->p4.p;
    sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
  }
  break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * P4
**
** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method 
** for that table.
*/
case OP_VBegin: {   /* no-push */
  rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p4.p);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * P4
**
** P4 is the name of a virtual table in database P1. Call the xCreate method
** for that table.
*/
case OP_VCreate: {   /* no-push */
  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.p, &p->zErrMsg);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * P4
**
** P4 is the name of a virtual table in database P1.  Call the xDestroy method
** of that table.
*/
case OP_VDestroy: {   /* no-push */
  p->inVtabMethod = 2;
  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.p);
  p->inVtabMethod = 0;
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * P4
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {   /* no-push */
  Cursor *pCur = 0;
  sqlite3_vtab_cursor *pVtabCursor = 0;

  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p4.p);
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;

  assert(pVtab && pModule);
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  if( SQLITE_OK==rc ){
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
    }
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P3
**
** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
** the filtered result set is empty.
**
** P3 is either NULL or a string that was generated by the xBestIndex
** method of the module.  The interpretation of the P3 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
** by P1.  The integer query plan parameter to xFilter is the top of the
** stack.  Next down on the stack is the argc parameter.  Beneath the
** next of stack are argc additional parameters which are passed to
** xFilter as argv. The topmost parameter (i.e. 3rd element popped from







|




|
|







5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
    }
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P4
**
** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
** the filtered result set is empty.
**
** P4 is either NULL or a string that was generated by the xBestIndex
** method of the module.  The interpretation of the P4 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
** by P1.  The integer query plan parameter to xFilter is the top of the
** stack.  Next down on the stack is the argc parameter.  Beneath the
** next of stack are argc additional parameters which are passed to
** xFilter as argv. The topmost parameter (i.e. 3rd element popped from
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
    for(i = 0; i<nArg; i++){
      apArg[i] = &pTos[i+1-2-nArg];
      storeTypeInfo(apArg[i], 0);
    }

    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    p->inVtabMethod = 1;
    rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3.p, nArg, apArg);
    p->inVtabMethod = 0;
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pCur->pVtabCursor);
    }
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;

    if( res ){







|







5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
    for(i = 0; i<nArg; i++){
      apArg[i] = &pTos[i+1-2-nArg];
      storeTypeInfo(apArg[i], 0);
    }

    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    p->inVtabMethod = 1;
    rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p4.p, nArg, apArg);
    p->inVtabMethod = 0;
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pCur->pVtabCursor);
    }
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;

    if( res ){
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
  }

  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename * * P3
**
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** on the top of the stack is popped and passed as the zName argument
** to the xRename method.
*/
case OP_VRename: {   /* no-push */
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3.p);
  assert( pVtab->pModule->xRename );

  Stringify(pTos, encoding);

  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  sqlite3VtabLock(pVtab);
  rc = pVtab->pModule->xRename(pVtab, pTos->z);
  sqlite3VtabUnlock(db, pVtab);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;

  popStack(&pTos, 1);
  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3
**
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are taken from the stack to pass to the xUpdate invocation. The
** value on the top of the stack corresponds to the p2th element 
** of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
** The argv[0] element (which corresponds to the P2-th element down







|

|





|
















|

|







5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
  }

  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename * * P4
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** on the top of the stack is popped and passed as the zName argument
** to the xRename method.
*/
case OP_VRename: {   /* no-push */
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p4.p);
  assert( pVtab->pModule->xRename );

  Stringify(pTos, encoding);

  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  sqlite3VtabLock(pVtab);
  rc = pVtab->pModule->xRename(pVtab, pTos->z);
  sqlite3VtabUnlock(db, pVtab);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;

  popStack(&pTos, 1);
  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P4
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are taken from the stack to pass to the xUpdate invocation. The
** value on the top of the stack corresponds to the p2th element 
** of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
** The argv[0] element (which corresponds to the P2-th element down
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid() 
** is set to the value of the rowid for the row just inserted.
*/
case OP_VUpdate: {   /* no-push */
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3.p);
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
  int nArg = pOp->p2;
  assert( pOp->p3type==P3_VTAB );
  if( pModule->xUpdate==0 ){
    sqlite3SetString(&p->zErrMsg, "read-only table", 0);
    rc = SQLITE_ERROR;
  }else{
    int i;
    sqlite_int64 rowid;
    Mem **apArg = p->apArg;







|


|







5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid() 
** is set to the value of the rowid for the row just inserted.
*/
case OP_VUpdate: {   /* no-push */
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p4.p);
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
  int nArg = pOp->p2;
  assert( pOp->p4type==P4_VTAB );
  if( pModule->xUpdate==0 ){
    sqlite3SetString(&p->zErrMsg, "read-only table", 0);
    rc = SQLITE_ERROR;
  }else{
    int i;
    sqlite_int64 rowid;
    Mem **apArg = p->apArg;
Changes to src/vdbe.h.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42

43
44
45
46
47
48
49
50
51
52
53
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.117 2008/01/02 17:25:55 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines
** in the source file sqliteVdbe.c are allowed to see the insides
** of this structure.
*/
typedef struct Vdbe Vdbe;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {
  u8 opcode;          /* What operation to perform */
  char p3type;        /* One of the P3_xxx constants defined below */
  char p4type;        /* One of the P3_xxx constants for p4 */

  u8 p5;              /* Fifth parameter is an unsigned character */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */

  union {             /* Third and forth parameters */
    int i;              /* Integer value if p3type==P3_INT32 */
    char *p;            /* A pointer for all other value sof p3type */
  } p3, p4;
#ifdef SQLITE_DEBUG
  char *zComment;     /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;            /* Number of times this instruction was executed */
  long long cycles;   /* Total time spend executing this instruction */
#endif







|



















<
|
>



>
|
|

|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.118 2008/01/03 00:01:25 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines
** in the source file sqliteVdbe.c are allowed to see the insides
** of this structure.
*/
typedef struct Vdbe Vdbe;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {
  u8 opcode;          /* What operation to perform */

  char p4type;        /* One of the P4_xxx constants for p4 */
  u8 flags;           /* Flags for internal use */
  u8 p5;              /* Fifth parameter is an unsigned character */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  int p3;             /* The third parameter */
  union {             /* forth parameter */
    int i;              /* Integer value if p3type==P4_INT32 */
    char *p;            /* A pointer for all other value sof p3type */
  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;     /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;            /* Number of times this instruction was executed */
  long long cycles;   /* Total time spend executing this instruction */
#endif
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
  char *p3;           /* Third parameter */
};
typedef struct VdbeOpList VdbeOpList;

/*
** Allowed values of VdbeOp.p3type
*/
#define P3_NOTUSED    0   /* The P3 parameter is not used */
#define P3_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P3_STATIC   (-2)  /* Pointer to a static string */
#define P3_COLLSEQ  (-4)  /* P3 is a pointer to a CollSeq structure */
#define P3_FUNCDEF  (-5)  /* P3 is a pointer to a FuncDef structure */
#define P3_KEYINFO  (-6)  /* P3 is a pointer to a KeyInfo structure */
#define P3_VDBEFUNC (-7)  /* P3 is a pointer to a VdbeFunc structure */
#define P3_MEM      (-8)  /* P3 is a pointer to a Mem*    structure */
#define P3_TRANSIENT (-9) /* P3 is a pointer to a transient string */
#define P3_VTAB     (-10) /* P3 is a pointer to an sqlite3_vtab structure */
#define P3_MPRINTF  (-11) /* P3 is a string obtained from sqlite3_mprintf() */
#define P3_REAL     (-12) /* P3 is a 64-bit floating point value */
#define P3_INT64    (-13) /* P3 is a 64-bit signed integer */
#define P3_INT32    (-14) /* P3 is a 32-bit signed integer */

/* When adding a P3 argument using P3_KEYINFO, a copy of the KeyInfo structure
** is made.  That copy is freed when the Vdbe is finalized.  But if the
** argument is P3_KEYINFO_HANDOFF, the passed in pointer is used.  It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc().  But no copy is made and the calling
** function should *not* try to free the KeyInfo.
*/
#define P3_KEYINFO_HANDOFF (-9)

/*
** The Vdbe.aColName array contains 5n Mem structures, where n is the 
** number of columns of data returned by the statement.
*/
#define COLNAME_NAME     0
#define COLNAME_DECLTYPE 1







|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|




|







66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  char *p3;           /* Third parameter */
};
typedef struct VdbeOpList VdbeOpList;

/*
** Allowed values of VdbeOp.p3type
*/
#define P4_NOTUSED    0   /* The P4 parameter is not used */
#define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P4_STATIC   (-2)  /* Pointer to a static string */
#define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
#define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
#define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */
#define P4_VDBEFUNC (-7)  /* P4 is a pointer to a VdbeFunc structure */
#define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */

/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made.  That copy is freed when the Vdbe is finalized.  But if the
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used.  It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc().  But no copy is made and the calling
** function should *not* try to free the KeyInfo.
*/
#define P4_KEYINFO_HANDOFF (-9)

/*
** The Vdbe.aColName array contains 5n Mem structures, where n is the 
** number of columns of data returned by the statement.
*/
#define COLNAME_NAME     0
#define COLNAME_DECLTYPE 1
119
120
121
122
123
124
125
126

127
128

129
130
131
132
133
134
135
136
137
138
139
140
141
#include "opcodes.h"

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
*/
Vdbe *sqlite3VdbeCreate(sqlite3*);
int sqlite3VdbeAddOp(Vdbe*,int,int,int);

int sqlite3VdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
int sqlite3VdbeOp3Int(Vdbe*,int,int,int,int);

int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);







|
>
|
|
>





|







120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include "opcodes.h"

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
*/
Vdbe *sqlite3VdbeCreate(sqlite3*);
int sqlite3VdbeAddOp0(Vdbe*,int);
int sqlite3VdbeAddOp1(Vdbe*,int,int);
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
Changes to src/vdbeapi.c.
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

#ifndef SQLITE_OMIT_TRACE
    /* Invoke the trace callback if there is one
    */
    if( db->xTrace && !db->init.busy ){
      assert( p->nOp>0 );
      assert( p->aOp[p->nOp-1].opcode==OP_Noop );
      assert( p->aOp[p->nOp-1].p3.p!=0 );
      assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
      sqlite3SafetyOff(db);
      db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3.p);
      if( sqlite3SafetyOn(db) ){
        p->rc = SQLITE_MISUSE;
        return SQLITE_MISUSE;
      }
    }
    if( db->xProfile && !db->init.busy ){
      double rNow;
      sqlite3OsCurrentTime(db->pVfs, &rNow);
      p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
    }
#endif

    /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
    ** on in debugging mode.
    */
#ifdef SQLITE_DEBUG
    if( (db->flags & SQLITE_SqlTrace)!=0 ){
      sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3.p);
    }
#endif /* SQLITE_DEBUG */

    db->activeVdbeCnt++;
    p->pc = 0;
  }
#ifndef SQLITE_OMIT_EXPLAIN







|
|

|

















|







289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

#ifndef SQLITE_OMIT_TRACE
    /* Invoke the trace callback if there is one
    */
    if( db->xTrace && !db->init.busy ){
      assert( p->nOp>0 );
      assert( p->aOp[p->nOp-1].opcode==OP_Noop );
      assert( p->aOp[p->nOp-1].p4.p!=0 );
      assert( p->aOp[p->nOp-1].p4type==P4_DYNAMIC );
      sqlite3SafetyOff(db);
      db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p4.p);
      if( sqlite3SafetyOn(db) ){
        p->rc = SQLITE_MISUSE;
        return SQLITE_MISUSE;
      }
    }
    if( db->xProfile && !db->init.busy ){
      double rNow;
      sqlite3OsCurrentTime(db->pVfs, &rNow);
      p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
    }
#endif

    /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
    ** on in debugging mode.
    */
#ifdef SQLITE_DEBUG
    if( (db->flags & SQLITE_SqlTrace)!=0 ){
      sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p4.p);
    }
#endif /* SQLITE_DEBUG */

    db->activeVdbeCnt++;
    p->pc = 0;
  }
#ifndef SQLITE_OMIT_EXPLAIN
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    double rNow;
    u64 elapseTime;

    sqlite3OsCurrentTime(db->pVfs, &rNow);
    elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
    assert( p->nOp>0 );
    assert( p->aOp[p->nOp-1].opcode==OP_Noop );
    assert( p->aOp[p->nOp-1].p3.p!=0 );
    assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
    db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3.p, elapseTime);
  }
#endif

  sqlite3Error(p->db, rc, 0);
  p->rc = sqlite3ApiExit(p->db, p->rc);
end_of_step:
  assert( (rc&0xff)==rc );







|
|
|







341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    double rNow;
    u64 elapseTime;

    sqlite3OsCurrentTime(db->pVfs, &rNow);
    elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
    assert( p->nOp>0 );
    assert( p->aOp[p->nOp-1].opcode==OP_Noop );
    assert( p->aOp[p->nOp-1].p4.p!=0 );
    assert( p->aOp[p->nOp-1].p4type==P4_DYNAMIC );
    db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p4.p, elapseTime);
  }
#endif

  sqlite3Error(p->db, rc, 0);
  p->rc = sqlite3ApiExit(p->db, p->rc);
end_of_step:
  assert( (rc&0xff)==rc );
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    sqlite3_mutex_enter(p->db->mutex);
    if( !p->okVar ){
      int j;
      Op *pOp;
      for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
        if( pOp->opcode==OP_Variable ){
          assert( pOp->p1>0 && pOp->p1<=p->nVar );
          p->azVar[pOp->p1-1] = pOp->p3.p;
        }
      }
      p->okVar = 1;
    }
    sqlite3_mutex_leave(p->db->mutex);
  }
}







|







997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    sqlite3_mutex_enter(p->db->mutex);
    if( !p->okVar ){
      int j;
      Op *pOp;
      for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
        if( pOp->opcode==OP_Variable ){
          assert( pOp->p1>0 && pOp->p1<=p->nVar );
          p->azVar[pOp->p1-1] = pOp->p4.p;
        }
      }
      p->okVar = 1;
    }
    sqlite3_mutex_leave(p->db->mutex);
  }
}
Changes to src/vdbeaux.c.
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162


163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178

179
180
181
182
183
184

185
186


187
188
189
190
191
192
193
194
195
196
197
198
199
200
**
** Parameters:
**
**    p               Pointer to the VDBE
**
**    op              The opcode for this instruction
**
**    p1, p2          First two of the three possible operands.
**
** Use the sqlite3VdbeResolveLabel() function to fix an address and
** the sqlite3VdbeChangeP3() function to change the value of the P3
** operand.
*/
int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
  int i;
  VdbeOp *pOp;

  i = p->nOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->nOpAlloc<=i ){
    resizeOpArray(p, p->nOpAlloc*2 + 100);
    if( p->db->mallocFailed ){
      return 0;
    }
  }
  p->nOp++;
  pOp = &p->aOp[i];
  pOp->opcode = op;
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3.p = 0;

  pOp->p3type = P3_NOTUSED;
  p->expired = 0;
#ifdef SQLITE_DEBUG
  if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
  return i;
}



/*
** Add an opcode that includes the p3 value as a pointer.
*/
int sqlite3VdbeOp3(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */
  int p1, int p2,     /* P1 and P2 operands */
  const char *zP3,    /* The P3 operand */
  int p3type          /* P3 operand type */
){
  int addr = sqlite3VdbeAddOp(p, op, p1, p2);

  sqlite3VdbeChangeP3(p, addr, zP3, p3type);
  return addr;
}


/*
** Add an opcode that includes the p3 value as an integer.
*/
int sqlite3VdbeOp3Int(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */

  int p1, int p2,     /* P1 and P2 operands */
  int p3              /* The P3 operand */


){
  int addr = sqlite3VdbeAddOp(p, op, p1, p2);
  if( !p->db->mallocFailed ){
    Op *pOp = &p->aOp[addr];
    pOp->p3.i = p3;
    pOp->p3type = P3_INT32;
  }
  return addr;
}

/*
** Create a new symbolic label for an instruction that has yet to be
** coded.  The symbolic label is really just a negative number.  The
** label can be used as the P2 value of an operation.  Later, when







|


|


|
















|
>
|






>
>
|
<
<
<
|
<
<
<
<
<
<
|
>
|
|


>

|

|


>
|
|
>
>

|
<
|
<
<
<







125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166



167






168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188



189
190
191
192
193
194
195
**
** Parameters:
**
**    p               Pointer to the VDBE
**
**    op              The opcode for this instruction
**
**    p1, p2, p3      Operands
**
** Use the sqlite3VdbeResolveLabel() function to fix an address and
** the sqlite3VdbeChangeP4() function to change the value of the P4
** operand.
*/
int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
  int i;
  VdbeOp *pOp;

  i = p->nOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->nOpAlloc<=i ){
    resizeOpArray(p, p->nOpAlloc*2 + 100);
    if( p->db->mallocFailed ){
      return 0;
    }
  }
  p->nOp++;
  pOp = &p->aOp[i];
  pOp->opcode = op;
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;
  p->expired = 0;
#ifdef SQLITE_DEBUG
  if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
  return i;
}
int sqlite3VdbeAddOp0(Vdbe *p, int op){
  return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
}



int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){






  return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
}
int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
  return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
}


/*
** Add an opcode that includes the p4 value as a pointer.
*/
int sqlite3VdbeAddOp4(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */
  int p1,             /* The P1 operand */
  int p2,             /* The P2 operand */
  int p3,             /* The P3 operand */
  const char *zP4,    /* The P4 operand */
  int p4type          /* P4 operand type */
){
  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);

  sqlite3VdbeChangeP4(p, addr, zP4, p4type);



  return addr;
}

/*
** Create a new symbolic label for an instruction that has yet to be
** coded.  The symbolic label is really just a negative number.  The
** label can be used as the P2 value of an operation.  Later, when
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    VdbeOpList const *pIn = aOp;
    for(i=0; i<nOp; i++, pIn++){
      int p2 = pIn->p2;
      VdbeOp *pOut = &p->aOp[i+addr];
      pOut->opcode = pIn->opcode;
      pOut->p1 = pIn->p1;
      pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
      pOut->p3.p = pIn->p3;
      pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
#ifdef SQLITE_DEBUG
      if( sqlite3_vdbe_addop_trace ){
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;







|
|







393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    VdbeOpList const *pIn = aOp;
    for(i=0; i<nOp; i++, pIn++){
      int p2 = pIn->p2;
      VdbeOp *pOut = &p->aOp[i+addr];
      pOut->opcode = pIn->opcode;
      pOut->p1 = pIn->p1;
      pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
      pOut->p4.p = pIn->p3;
      pOut->p4type = pIn->p3 ? P4_STATIC : P4_NOTUSED;
#ifdef SQLITE_DEBUG
      if( sqlite3_vdbe_addop_trace ){
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
static void freeEphemeralFunction(FuncDef *pDef){
  if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
    sqlite3_free(pDef);
  }
}

/*
** Delete a P3 value if necessary.
*/
static void freeP3(int p3type, void *p3){
  if( p3 ){
    switch( p3type ){
      case P3_REAL:
      case P3_INT64:
      case P3_MPRINTF:
      case P3_DYNAMIC:
      case P3_KEYINFO:
      case P3_KEYINFO_HANDOFF: {
        sqlite3_free(p3);
        break;
      }
      case P3_VDBEFUNC: {
        VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
        freeEphemeralFunction(pVdbeFunc->pFunc);
        sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
        sqlite3_free(pVdbeFunc);
        break;
      }
      case P3_FUNCDEF: {
        freeEphemeralFunction((FuncDef*)p3);
        break;
      }
      case P3_MEM: {
        sqlite3ValueFree((sqlite3_value*)p3);
        break;
      }
    }
  }
}


/*
** Change N opcodes starting at addr to No-ops.
*/
void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
  if( p && p->aOp ){
    VdbeOp *pOp = &p->aOp[addr];
    while( N-- ){
      freeP3(pOp->p3type, pOp->p3.p);
      memset(pOp, 0, sizeof(pOp[0]));
      pOp->opcode = OP_Noop;
      pOp++;
    }
  }
}

/*
** Change the value of the P3 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqlite3_malloc().
** A value of n==0 means copy bytes of zP3 up to and including the
** first null byte.  If n>0 then copy n+1 bytes of zP3.
**
** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
** A copy is made of the KeyInfo structure into memory obtained from
** sqlite3_malloc, to be freed when the Vdbe is finalized.
** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
** stored in memory that the caller has obtained from sqlite3_malloc. The 
** caller should not free the allocation, it will be freed when the Vdbe is
** finalized.
** 
** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
** If addr<0 then change P3 on the most recently inserted instruction.
*/
void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
  Op *pOp;
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
  if( p==0 || p->aOp==0 || p->db->mallocFailed ){
    if (n != P3_KEYINFO) {
      freeP3(n, (void*)*(char**)&zP3);
    }
    return;
  }
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  freeP3(pOp->p3type, pOp->p3.p);
  pOp->p3.p = 0;
  if( zP3==0 ){
    pOp->p3.p = 0;
    pOp->p3type = P3_NOTUSED;
  }else if( n==P3_KEYINFO ){
    KeyInfo *pKeyInfo;
    int nField, nByte;

    nField = ((KeyInfo*)zP3)->nField;
    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
    pKeyInfo = sqlite3_malloc( nByte );
    pOp->p3.p = (char*)pKeyInfo;
    if( pKeyInfo ){
      unsigned char *aSortOrder;
      memcpy(pKeyInfo, zP3, nByte);
      aSortOrder = pKeyInfo->aSortOrder;
      if( aSortOrder ){
        pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
        memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
      }
      pOp->p3type = P3_KEYINFO;
    }else{
      p->db->mallocFailed = 1;
      pOp->p3type = P3_NOTUSED;
    }
  }else if( n==P3_KEYINFO_HANDOFF ){
    pOp->p3.p = (char*)zP3;
    pOp->p3type = P3_KEYINFO;
  }else if( n<0 ){
    pOp->p3.p = (char*)zP3;
    pOp->p3type = n;
  }else{
    if( n==0 ) n = strlen(zP3);
    pOp->p3.p = sqlite3DbStrNDup(p->db, zP3, n);
    pOp->p3type = P3_DYNAMIC;
  }
}

#ifndef NDEBUG
/*
** Change the comment on the the most recently coded instruction.
*/







|

|

|
|
|
|
|
|
|



|






|



|















|








|




|

|
|

|


|




|



|

|



|
|








|
|
|
|
|
|



|


|


|





|


|

|
|
|

|
|

|
|
|







451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
static void freeEphemeralFunction(FuncDef *pDef){
  if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
    sqlite3_free(pDef);
  }
}

/*
** Delete a P4 value if necessary.
*/
static void freeP4(int p4type, void *p3){
  if( p3 ){
    switch( p4type ){
      case P4_REAL:
      case P4_INT64:
      case P4_MPRINTF:
      case P4_DYNAMIC:
      case P4_KEYINFO:
      case P4_KEYINFO_HANDOFF: {
        sqlite3_free(p3);
        break;
      }
      case P4_VDBEFUNC: {
        VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
        freeEphemeralFunction(pVdbeFunc->pFunc);
        sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
        sqlite3_free(pVdbeFunc);
        break;
      }
      case P4_FUNCDEF: {
        freeEphemeralFunction((FuncDef*)p3);
        break;
      }
      case P4_MEM: {
        sqlite3ValueFree((sqlite3_value*)p3);
        break;
      }
    }
  }
}


/*
** Change N opcodes starting at addr to No-ops.
*/
void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
  if( p && p->aOp ){
    VdbeOp *pOp = &p->aOp[addr];
    while( N-- ){
      freeP4(pOp->p4type, pOp->p4.p);
      memset(pOp, 0, sizeof(pOp[0]));
      pOp->opcode = OP_Noop;
      pOp++;
    }
  }
}

/*
** Change the value of the P4 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P4 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqlite3_malloc().
** A value of n==0 means copy bytes of zP4 up to and including the
** first null byte.  If n>0 then copy n+1 bytes of zP4.
**
** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
** A copy is made of the KeyInfo structure into memory obtained from
** sqlite3_malloc, to be freed when the Vdbe is finalized.
** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
** stored in memory that the caller has obtained from sqlite3_malloc. The 
** caller should not free the allocation, it will be freed when the Vdbe is
** finalized.
** 
** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
** If addr<0 then change P4 on the most recently inserted instruction.
*/
void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
  Op *pOp;
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
  if( p==0 || p->aOp==0 || p->db->mallocFailed ){
    if (n != P4_KEYINFO) {
      freeP4(n, (void*)*(char**)&zP4);
    }
    return;
  }
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  freeP4(pOp->p4type, pOp->p4.p);
  pOp->p4.p = 0;
  if( zP4==0 ){
    pOp->p4.p = 0;
    pOp->p4type = P4_NOTUSED;
  }else if( n==P4_KEYINFO ){
    KeyInfo *pKeyInfo;
    int nField, nByte;

    nField = ((KeyInfo*)zP4)->nField;
    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
    pKeyInfo = sqlite3_malloc( nByte );
    pOp->p4.p = (char*)pKeyInfo;
    if( pKeyInfo ){
      unsigned char *aSortOrder;
      memcpy(pKeyInfo, zP4, nByte);
      aSortOrder = pKeyInfo->aSortOrder;
      if( aSortOrder ){
        pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
        memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
      }
      pOp->p4type = P4_KEYINFO;
    }else{
      p->db->mallocFailed = 1;
      pOp->p4type = P4_NOTUSED;
    }
  }else if( n==P4_KEYINFO_HANDOFF ){
    pOp->p4.p = (char*)zP4;
    pOp->p4type = P4_KEYINFO;
  }else if( n<0 ){
    pOp->p4.p = (char*)zP4;
    pOp->p4type = n;
  }else{
    if( n==0 ) n = strlen(zP4);
    pOp->p4.p = sqlite3DbStrNDup(p->db, zP4, n);
    pOp->p4type = P4_DYNAMIC;
  }
}

#ifndef NDEBUG
/*
** Change the comment on the the most recently coded instruction.
*/
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
  assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
  return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
}

#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Compute a string that describes the P3 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP3(Op *pOp, char *zTemp, int nTemp){
  char *zP3 = zTemp;
  int nP3;
  assert( nTemp>=20 );
  switch( pOp->p3type ){
    case P3_KEYINFO: {
      int i, j;
      KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3.p;
      sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
      i = strlen(zTemp);
      for(j=0; j<pKeyInfo->nField; j++){
        CollSeq *pColl = pKeyInfo->aColl[j];
        if( pColl ){
          int n = strlen(pColl->zName);
          if( i+n>nTemp-6 ){







|


|
|
|

|
|

|







604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
  assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
  return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
}

#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
  char *zP4 = zTemp;
  int nP4;
  assert( nTemp>=20 );
  switch( pOp->p4type ){
    case P4_KEYINFO: {
      int i, j;
      KeyInfo *pKeyInfo = (KeyInfo*)pOp->p4.p;
      sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
      i = strlen(zTemp);
      for(j=0; j<pKeyInfo->nField; j++){
        CollSeq *pColl = pKeyInfo->aColl[j];
        if( pColl ){
          int n = strlen(pColl->zName);
          if( i+n>nTemp-6 ){
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        }
      }
      zTemp[i++] = ')';
      zTemp[i] = 0;
      assert( i<nTemp );
      break;
    }
    case P3_COLLSEQ: {
      CollSeq *pColl = (CollSeq*)pOp->p3.p;
      sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
      break;
    }
    case P3_FUNCDEF: {
      FuncDef *pDef = (FuncDef*)pOp->p3.p;
      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
    case P3_INT64: {
      sqlite3_snprintf(nTemp, zTemp, "%lld", *(sqlite3_int64*)pOp->p3.p);
      break;
    }
    case P3_INT32: {
      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p3.i);
      break;
    }
    case P3_REAL: {
      sqlite3_snprintf(nTemp, zTemp, "%.16g", *(double*)pOp->p3.p);
      break;
    }
    case P3_MEM: {
      Mem *pMem = (Mem*)pOp->p3.p;
      if( pMem->flags & MEM_Str ){
        zP3 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
      }else if( pMem->flags & MEM_Null ){
        sqlite3_snprintf(nTemp, zTemp, "NULL");
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P3_VTAB: {
      sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3.p;
      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
      break;
    }
#endif
    default: {
      zP3 = pOp->p3.p;
      if( zP3==0 || pOp->opcode==OP_Noop ){
        zP3 = zTemp;
        zTemp[0] = 0;
      }
    }
  }
  assert( zP3!=0 );
#ifdef SQLITE_DEBUG
  if( pOp->zComment && zP3==zTemp && (nP3 = strlen(zP3))<nTemp ){
    sqlite3_snprintf(nTemp-nP3, &zP3[nP3], "%s# %s",
                     nP3>0 ? " " : "", pOp->zComment);
  }
#endif
  return zP3;
}
#endif

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
*/







|
|



|
|



|
|


|
|


|
|


|
|

|










|
|





|
|
|




|

|
|
|


|







641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
        }
      }
      zTemp[i++] = ')';
      zTemp[i] = 0;
      assert( i<nTemp );
      break;
    }
    case P4_COLLSEQ: {
      CollSeq *pColl = (CollSeq*)pOp->p4.p;
      sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = (FuncDef*)pOp->p4.p;
      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
    case P4_INT64: {
      sqlite3_snprintf(nTemp, zTemp, "%lld", *(sqlite3_int64*)pOp->p4.p);
      break;
    }
    case P4_INT32: {
      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
      break;
    }
    case P4_REAL: {
      sqlite3_snprintf(nTemp, zTemp, "%.16g", *(double*)pOp->p4.p);
      break;
    }
    case P4_MEM: {
      Mem *pMem = (Mem*)pOp->p4.p;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
      }else if( pMem->flags & MEM_Null ){
        sqlite3_snprintf(nTemp, zTemp, "NULL");
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p4.p;
      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
      break;
    }
#endif
    default: {
      zP4 = pOp->p4.p;
      if( zP4==0 || pOp->opcode==OP_Noop ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }
    }
  }
  assert( zP4!=0 );
#ifdef SQLITE_DEBUG
  if( pOp->zComment && zP4==zTemp && (nP4 = strlen(zP4))<nTemp ){
    sqlite3_snprintf(nTemp-nP4, &zP4[nP4], "%s# %s",
                     nP4>0 ? " " : "", pOp->zComment);
  }
#endif
  return zP4;
}
#endif

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
*/
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748


#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode.  This routine is used for debugging only.
*/
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
  char *zP3;
  char zPtr[50];
  static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
  if( pOut==0 ) pOut = stdout;
  zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
  fprintf(pOut, zFormat1,
      pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, zP3);
  fflush(pOut);
}
#endif

/*
** Release an array of N Mem elements
*/







|



|

|







723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743


#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode.  This routine is used for debugging only.
*/
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
  char *zP4;
  char zPtr[50];
  static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
  if( pOut==0 ) pOut = stdout;
  zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
  fprintf(pOut, zFormat1,
      pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, zP4);
  fflush(pOut);
}
#endif

/*
** Release an array of N Mem elements
*/
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    pMem++;

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p2;                          /* P2 */
    pMem->type = SQLITE_INTEGER;
    pMem++;

    pMem->flags = MEM_Ephem|MEM_Str|MEM_Term;     /* P3 */
    pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
    assert( pMem->z!=0 );
    pMem->n = strlen(pMem->z);
    pMem->type = SQLITE_TEXT;
    pMem->enc = SQLITE_UTF8;

    p->nResColumn = 5 - 2*(p->explain-1);
    p->pTos = pMem;







|
|







811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
    pMem++;

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p2;                          /* P2 */
    pMem->type = SQLITE_INTEGER;
    pMem++;

    pMem->flags = MEM_Ephem|MEM_Str|MEM_Term;     /* P4 */
    pMem->z = displayP4(pOp, pMem->zShort, sizeof(pMem->zShort));
    assert( pMem->z!=0 );
    pMem->n = strlen(pMem->z);
    pMem->type = SQLITE_TEXT;
    pMem->enc = SQLITE_UTF8;

    p->nResColumn = 5 - 2*(p->explain-1);
    p->pTos = pMem;
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
** Print the SQL that was used to generate a VDBE program.
*/
void sqlite3VdbePrintSql(Vdbe *p){
  int nOp = p->nOp;
  VdbeOp *pOp;
  if( nOp<1 ) return;
  pOp = &p->aOp[nOp-1];
  if( pOp->opcode==OP_Noop && pOp->p3.p!=0 ){
    const char *z = pOp->p3.p;
    while( isspace(*(u8*)z) ) z++;
    printf("SQL: [%s]\n", z);
  }
}
#endif

#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** Print an IOTRACE message showing SQL content.
*/
void sqlite3VdbeIOTraceSql(Vdbe *p){
  int nOp = p->nOp;
  VdbeOp *pOp;
  if( sqlite3_io_trace==0 ) return;
  if( nOp<1 ) return;
  pOp = &p->aOp[nOp-1];
  if( pOp->opcode==OP_Noop && pOp->p3.p!=0 ){
    int i, j;
    char z[1000];
    sqlite3_snprintf(sizeof(z), z, "%s", pOp->p3.p);
    for(i=0; isspace((unsigned char)z[i]); i++){}
    for(j=0; z[i]; i++){
      if( isspace((unsigned char)z[i]) ){
        if( z[i-1]!=' ' ){
          z[j++] = ' ';
        }
      }else{







|
|
















|


|







836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
** Print the SQL that was used to generate a VDBE program.
*/
void sqlite3VdbePrintSql(Vdbe *p){
  int nOp = p->nOp;
  VdbeOp *pOp;
  if( nOp<1 ) return;
  pOp = &p->aOp[nOp-1];
  if( pOp->opcode==OP_Noop && pOp->p4.p!=0 ){
    const char *z = pOp->p4.p;
    while( isspace(*(u8*)z) ) z++;
    printf("SQL: [%s]\n", z);
  }
}
#endif

#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** Print an IOTRACE message showing SQL content.
*/
void sqlite3VdbeIOTraceSql(Vdbe *p){
  int nOp = p->nOp;
  VdbeOp *pOp;
  if( sqlite3_io_trace==0 ) return;
  if( nOp<1 ) return;
  pOp = &p->aOp[nOp-1];
  if( pOp->opcode==OP_Noop && pOp->p4.p!=0 ){
    int i, j;
    char z[1000];
    sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.p);
    for(i=0; isspace((unsigned char)z[i]); i++){}
    for(j=0; z[i]; i++){
      if( isspace((unsigned char)z[i]) ){
        if( z[i-1]!=' ' ){
          z[j++] = ' ';
        }
      }else{
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

/*
** Set the name of the idx'th column to be returned by the SQL statement.
** zName must be a pointer to a nul terminated string.
**
** This call must be made after a call to sqlite3VdbeSetNumCols().
**
** If N==P3_STATIC  it means that zName is a pointer to a constant static
** string and we can just copy the pointer. If it is P3_DYNAMIC, then 
** the string is freed using sqlite3_free() when the vdbe is finished with
** it. Otherwise, N bytes of zName are copied.
*/
int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
  int rc;
  Mem *pColName;
  assert( idx<p->nResColumn );
  assert( var<COLNAME_N );
  if( p->db->mallocFailed ) return SQLITE_NOMEM;
  assert( p->aColName!=0 );
  pColName = &(p->aColName[idx+var*p->nResColumn]);
  if( N==P3_DYNAMIC || N==P3_STATIC ){
    rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
  }else{
    rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
  }
  if( rc==SQLITE_OK && N==P3_DYNAMIC ){
    pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
    pColName->xDel = 0;
  }
  return rc;
}

/*







|
|











|




|







1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

/*
** Set the name of the idx'th column to be returned by the SQL statement.
** zName must be a pointer to a nul terminated string.
**
** This call must be made after a call to sqlite3VdbeSetNumCols().
**
** If N==P4_STATIC  it means that zName is a pointer to a constant static
** string and we can just copy the pointer. If it is P4_DYNAMIC, then 
** the string is freed using sqlite3_free() when the vdbe is finished with
** it. Otherwise, N bytes of zName are copied.
*/
int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
  int rc;
  Mem *pColName;
  assert( idx<p->nResColumn );
  assert( var<COLNAME_N );
  if( p->db->mallocFailed ) return SQLITE_NOMEM;
  assert( p->aColName!=0 );
  pColName = &(p->aColName[idx+var*p->nResColumn]);
  if( N==P4_DYNAMIC || N==P4_STATIC ){
    rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
  }else{
    rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
  }
  if( rc==SQLITE_OK && N==P4_DYNAMIC ){
    pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
    pColName->xDel = 0;
  }
  return rc;
}

/*
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
  }
  if( p->pNext ){
    p->pNext->pPrev = p->pPrev;
  }
  if( p->aOp ){
    Op *pOp = p->aOp;
    for(i=0; i<p->nOp; i++, pOp++){
      freeP3(pOp->p3type, pOp->p3.p);
#ifdef SQLITE_DEBUG
      sqlite3_free(pOp->zComment);
#endif     
    }
    sqlite3_free(p->aOp);
  }
  releaseMemArray(p->aVar, p->nVar);







|







1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
  }
  if( p->pNext ){
    p->pNext->pPrev = p->pPrev;
  }
  if( p->aOp ){
    Op *pOp = p->aOp;
    for(i=0; i<p->nOp; i++, pOp++){
      freeP4(pOp->p4type, pOp->p4.p);
#ifdef SQLITE_DEBUG
      sqlite3_free(pOp->zComment);
#endif     
    }
    sqlite3_free(p->aOp);
  }
  releaseMemArray(p->aVar, p->nVar);
Changes to src/vtab.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2006 June 10
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to help implement virtual tables.
**
** $Id: vtab.c,v 1.59 2007/09/20 11:32:18 rse Exp $
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#include "sqliteInt.h"

static int createModule(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2006 June 10
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to help implement virtual tables.
**
** $Id: vtab.c,v 1.60 2008/01/03 00:01:25 drh Exp $
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#include "sqliteInt.h"

static int createModule(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
274
275
276
277
278
279
280
281
282
283

284
285
286
287
288
289
290
291
      pTab->zName,
      zStmt
    );
    sqlite3_free(zStmt);
    v = sqlite3GetVdbe(pParse);
    sqlite3ChangeCookie(db, v, iDb);

    sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
    zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
    sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 1, zWhere, P3_DYNAMIC);

    sqlite3VdbeOp3(v, OP_VCreate, iDb, 0, pTab->zName, strlen(pTab->zName) + 1);
  }

  /* If we are rereading the sqlite_master table create the in-memory
  ** record of the table. If the module has already been registered,
  ** also call the xConnect method here.
  */
  else {







|

|
>
|







274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
      pTab->zName,
      zStmt
    );
    sqlite3_free(zStmt);
    v = sqlite3GetVdbe(pParse);
    sqlite3ChangeCookie(db, v, iDb);

    sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
    zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
    sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 
                         pTab->zName, strlen(pTab->zName) + 1);
  }

  /* If we are rereading the sqlite_master table create the in-memory
  ** record of the table. If the module has already been registered,
  ** also call the xConnect method here.
  */
  else {
Changes to src/where.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.267 2008/01/02 00:34:37 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.268 2008/01/03 00:01:26 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
** problem.
*/
static void buildIndexProbe(
  Vdbe *v,        /* Generate code into this VM */
  int nColumn,    /* The number of columns to check for NULL */
  Index *pIdx     /* Index that we will be searching */
){
  sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
  sqlite3IndexAffinityStr(v, pIdx);
}


/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 







|







1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
** problem.
*/
static void buildIndexProbe(
  Vdbe *v,        /* Generate code into this VM */
  int nColumn,    /* The number of columns to check for NULL */
  Index *pIdx     /* Index that we will be searching */
){
  sqlite3VdbeAddOp2(v, OP_MakeRecord, nColumn, 0);
  sqlite3IndexAffinityStr(v, pIdx);
}


/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
  WhereLevel *pLevel  /* When level of the FROM clause we are working on */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  if( pX->op==TK_EQ ){
    sqlite3ExprCode(pParse, pX->pRight);
  }else if( pX->op==TK_ISNULL ){
    sqlite3VdbeAddOp(v, OP_Null, 0, 0);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;

    assert( pX->op==TK_IN );
    eType = sqlite3FindInIndex(pParse, pX, 1);
    iTab = pX->iTable;
    sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
    VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
    if( pLevel->nIn==0 ){
      pLevel->nxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->nIn++;
    pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
                                    sizeof(pLevel->aInLoop[0])*pLevel->nIn);
    pIn = pLevel->aInLoop;
    if( pIn ){
      int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column);
      pIn += pLevel->nIn - 1;
      pIn->iCur = iTab;
      pIn->topAddr = sqlite3VdbeAddOp(v, op, iTab, 0);
      sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
    }else{
      pLevel->nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);
}







|









|












|
|







1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
  WhereLevel *pLevel  /* When level of the FROM clause we are working on */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  if( pX->op==TK_EQ ){
    sqlite3ExprCode(pParse, pX->pRight);
  }else if( pX->op==TK_ISNULL ){
    sqlite3VdbeAddOp2(v, OP_Null, 0, 0);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;

    assert( pX->op==TK_IN );
    eType = sqlite3FindInIndex(pParse, pX, 1);
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
    VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
    if( pLevel->nIn==0 ){
      pLevel->nxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->nIn++;
    pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
                                    sizeof(pLevel->aInLoop[0])*pLevel->nIn);
    pIn = pLevel->aInLoop;
    if( pIn ){
      int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column);
      pIn += pLevel->nIn - 1;
      pIn->iCur = iTab;
      pIn->topAddr = sqlite3VdbeAddOp2(v, op, iTab, 0);
      sqlite3VdbeAddOp2(v, OP_IsNull, -1, 0);
    }else{
      pLevel->nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);
}
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
  for(j=0; j<nEq; j++){
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
    if( pTerm==0 ) break;
    assert( (pTerm->flags & TERM_CODED)==0 );
    codeEqualityTerm(pParse, pTerm, pLevel);
    if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
      sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
    }
    if( termsInMem ){
      sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
    }
  }

  /* Make sure all the constraint values are on the top of the stack
  */
  if( termsInMem ){
    for(j=0; j<nEq; j++){
      sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
    }
  }
}

#if defined(SQLITE_TEST)
/*
** The following variable holds a text description of query plan generated







|


|







|







1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
  for(j=0; j<nEq; j++){
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
    if( pTerm==0 ) break;
    assert( (pTerm->flags & TERM_CODED)==0 );
    codeEqualityTerm(pParse, pTerm, pLevel);
    if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
      sqlite3VdbeAddOp2(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
    }
    if( termsInMem ){
      sqlite3VdbeAddOp2(v, OP_MemStore, pLevel->iMem+j+1, 1);
    }
  }

  /* Make sure all the constraint values are on the top of the stack
  */
  if( termsInMem ){
    for(j=0; j<nEq; j++){
      sqlite3VdbeAddOp2(v, OP_MemLoad, pLevel->iMem+j+1, 0);
    }
  }
}

#if defined(SQLITE_TEST)
/*
** The following variable holds a text description of query plan generated
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194

2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
        zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
                    pBestIdx->idxNum, pBestIdx->idxStr);
      }
#endif
      if( pLevel->flags & WHERE_ORDERBY ){
        zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
      }
      sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
    }
#endif /* SQLITE_OMIT_EXPLAIN */
    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;
    iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
    if( pTab->isEphem || pTab->pSelect ) continue;
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( pLevel->pBestIdx ){
      int iCur = pTabItem->iCursor;

      sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
    }else
#endif
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
      if( pTab->nCol<(sizeof(Bitmask)*8) ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
        assert( n<=pTab->nCol );
      }
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }
    pLevel->iTabCur = pTabItem->iCursor;
    if( (pIx = pLevel->pIdx)!=0 ){
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
      assert( pIx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
      VdbeComment((v, "%s", pIx->zName));
      sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
                     (char*)pKey, P3_KEYINFO_HANDOFF);
      sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
    }
    sqlite3CodeVerifySchema(pParse, iDb);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM







|









>
|


















|

|
|
|







2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
        zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
                    pBestIdx->idxNum, pBestIdx->idxStr);
      }
#endif
      if( pLevel->flags & WHERE_ORDERBY ){
        zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
      }
      sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
    }
#endif /* SQLITE_OMIT_EXPLAIN */
    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;
    iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
    if( pTab->isEphem || pTab->pSelect ) continue;
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( pLevel->pBestIdx ){
      int iCur = pTabItem->iCursor;
      sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
                        (const char*)pTab->pVtab, P4_VTAB);
    }else
#endif
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
      if( pTab->nCol<(sizeof(Bitmask)*8) ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
        assert( n<=pTab->nCol );
      }
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }
    pLevel->iTabCur = pTabItem->iCursor;
    if( (pIx = pLevel->pIdx)!=0 ){
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
      assert( pIx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Integer, iDb, 0);
      VdbeComment((v, "%s", pIx->zName));
      sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, 0,
                        (char*)pKey, P4_KEYINFO_HANDOFF);
      sqlite3VdbeAddOp2(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
    }
    sqlite3CodeVerifySchema(pParse, iDb);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
    /* If this is the right table of a LEFT OUTER JOIN, allocate and
    ** initialize a memory cell that records if this table matches any
    ** row of the left table of the join.
    */
    if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
      if( !pParse->nMem ) pParse->nMem++;
      pLevel->iLeftJoin = pParse->nMem++;
      sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
      VdbeComment((v, "init LEFT JOIN no-match flag"));
    }

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( pLevel->pBestIdx ){
      /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
      **          to access the data.







|







2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
    /* If this is the right table of a LEFT OUTER JOIN, allocate and
    ** initialize a memory cell that records if this table matches any
    ** row of the left table of the join.
    */
    if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
      if( !pParse->nMem ) pParse->nMem++;
      pLevel->iLeftJoin = pParse->nMem++;
      sqlite3VdbeAddOp2(v, OP_MemInt, 0, pLevel->iLeftJoin);
      VdbeComment((v, "init LEFT JOIN no-match flag"));
    }

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( pLevel->pBestIdx ){
      /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
      **          to access the data.
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
            int iTerm = aConstraint[k].iTermOffset;
            sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
            break;
          }
        }
        if( k==nConstraint ) break;
      }
      sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
      sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
      sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
                      pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
      pBestIdx->needToFreeIdxStr = 0;
      for(j=0; j<pBestIdx->nConstraint; j++){
        if( aUsage[j].omit ){
          int iTerm = aConstraint[j].iTermOffset;
          disableTerm(pLevel, &wc.a[iTerm]);
        }
      }







|
|
|
|







2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
            int iTerm = aConstraint[k].iTermOffset;
            sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
            break;
          }
        }
        if( k==nConstraint ) break;
      }
      sqlite3VdbeAddOp2(v, OP_Integer, j-1, 0);
      sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, 0);
      sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, 0, pBestIdx->idxStr,
                        pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
      pBestIdx->needToFreeIdxStr = 0;
      for(j=0; j<pBestIdx->nConstraint; j++){
        if( aUsage[j].omit ){
          int iTerm = aConstraint[j].iTermOffset;
          disableTerm(pLevel, &wc.a[iTerm]);
        }
      }
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
      pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
      assert( pTerm!=0 );
      assert( pTerm->pExpr!=0 );
      assert( pTerm->leftCursor==iCur );
      assert( omitTable==0 );
      codeEqualityTerm(pParse, pTerm, pLevel);
      nxt = pLevel->nxt;
      sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt);
      sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt);
      VdbeComment((v, "pk"));
      pLevel->op = OP_Noop;
    }else if( pLevel->flags & WHERE_ROWID_RANGE ){
      /* Case 2:  We have an inequality comparison against the ROWID field.
      */
      int testOp = OP_Noop;
      int start;







|
|







2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
      pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
      assert( pTerm!=0 );
      assert( pTerm->pExpr!=0 );
      assert( pTerm->leftCursor==iCur );
      assert( omitTable==0 );
      codeEqualityTerm(pParse, pTerm, pLevel);
      nxt = pLevel->nxt;
      sqlite3VdbeAddOp2(v, OP_MustBeInt, 1, nxt);
      sqlite3VdbeAddOp2(v, OP_NotExists, iCur, nxt);
      VdbeComment((v, "pk"));
      pLevel->op = OP_Noop;
    }else if( pLevel->flags & WHERE_ROWID_RANGE ){
      /* Case 2:  We have an inequality comparison against the ROWID field.
      */
      int testOp = OP_Noop;
      int start;
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
      }
      if( pStart ){
        Expr *pX;
        pX = pStart->pExpr;
        assert( pX!=0 );
        assert( pStart->leftCursor==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
        sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
        VdbeComment((v, "pk"));
        disableTerm(pLevel, pStart);
      }else{
        sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
      }
      if( pEnd ){
        Expr *pX;
        pX = pEnd->pExpr;
        assert( pX!=0 );
        assert( pEnd->leftCursor==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        pLevel->iMem = pParse->nMem++;
        sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        if( pX->op==TK_LT || pX->op==TK_GT ){
          testOp = bRev ? OP_Le : OP_Ge;
        }else{
          testOp = bRev ? OP_Lt : OP_Gt;
        }
        disableTerm(pLevel, pEnd);
      }
      start = sqlite3VdbeCurrentAddr(v);
      pLevel->op = bRev ? OP_Prev : OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
        sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);
      }
    }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
      /* Case 3: The WHERE clause term that refers to the right-most
      **         column of the index is an inequality.  For example, if
      **         the index is on (x,y,z) and the WHERE clause is of the
      **         form "x=5 AND y<10" then this case is used.  Only the
      **         right-most column can be an inequality - the rest must







|
|



|








|












|
|
|







2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
      }
      if( pStart ){
        Expr *pX;
        pX = pStart->pExpr;
        assert( pX!=0 );
        assert( pStart->leftCursor==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp2(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
        sqlite3VdbeAddOp2(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
        VdbeComment((v, "pk"));
        disableTerm(pLevel, pStart);
      }else{
        sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
      }
      if( pEnd ){
        Expr *pX;
        pX = pEnd->pExpr;
        assert( pX!=0 );
        assert( pEnd->leftCursor==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        pLevel->iMem = pParse->nMem++;
        sqlite3VdbeAddOp2(v, OP_MemStore, pLevel->iMem, 1);
        if( pX->op==TK_LT || pX->op==TK_GT ){
          testOp = bRev ? OP_Le : OP_Ge;
        }else{
          testOp = bRev ? OP_Lt : OP_Gt;
        }
        disableTerm(pLevel, pEnd);
      }
      start = sqlite3VdbeCurrentAddr(v);
      pLevel->op = bRev ? OP_Prev : OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp2(v, OP_Rowid, iCur, 0);
        sqlite3VdbeAddOp2(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp2(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);
      }
    }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
      /* Case 3: The WHERE clause term that refers to the right-most
      **         column of the index is an inequality.  For example, if
      **         the index is on (x,y,z) and the WHERE clause is of the
      **         form "x=5 AND y<10" then this case is used.  Only the
      **         right-most column can be an inequality - the rest must
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady);

      /* Duplicate the equality term values because they will all be
      ** used twice: once to make the termination key and once to make the
      ** start key.
      */
      for(j=0; j<nEq; j++){
        sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
      }

      /* Figure out what comparison operators to use for top and bottom 
      ** search bounds. For an ascending index, the bottom bound is a > or >=
      ** operator and the top bound is a < or <= operator.  For a descending
      ** index the operators are reversed.
      */







|







2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady);

      /* Duplicate the equality term values because they will all be
      ** used twice: once to make the termination key and once to make the
      ** start key.
      */
      for(j=0; j<nEq; j++){
        sqlite3VdbeAddOp2(v, OP_Dup, nEq-1, 0);
      }

      /* Figure out what comparison operators to use for top and bottom 
      ** search bounds. For an ascending index, the bottom bound is a > or >=
      ** operator and the top bound is a < or <= operator.  For a descending
      ** index the operators are reversed.
      */
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt);
        topEq = pTerm->eOperator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
        testOp = OP_IdxGE;
      }else{
        testOp = nEq>0 ? OP_IdxGE : OP_Noop;
        topEq = 1;
      }
      if( testOp!=OP_Noop ){
        int nCol = nEq + topLimit;
        pLevel->iMem = pParse->nMem++;
        buildIndexProbe(v, nCol, pIdx);
        if( bRev ){
          int op = topEq ? OP_MoveLe : OP_MoveLt;
          sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
        }else{
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        }
      }else if( bRev ){
        sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
      }

      /* Generate the start key.  This is the key that defines the lower
      ** bound on the search.  There is no start key if there are no
      ** equality terms and if there is no "X>..." term.  In
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( btmLimit ){
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
        btmEq = pTerm->eOperator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
      }else{
        btmEq = 1;
      }
      if( nEq>0 || btmLimit ){
        int nCol = nEq + btmLimit;
        buildIndexProbe(v, nCol, pIdx);
        if( bRev ){
          pLevel->iMem = pParse->nMem++;
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
          testOp = OP_IdxLT;
        }else{
          int op = btmEq ? OP_MoveGe : OP_MoveGt;
          sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
        }
      }else if( bRev ){
        testOp = OP_Noop;
      }else{
        sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
      }

      /* Generate the the top of the loop.  If there is a termination
      ** key we have to test for that key and abort at the top of the
      ** loop.
      */
      start = sqlite3VdbeCurrentAddr(v);
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt);
        if( (topEq && !bRev) || (!btmEq && bRev) ){
          sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
        }
      }
      if( topLimit | btmLimit ){
        sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
        sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
      }
      if( !omitTable ){
        sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
        sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
      }

      /* Record the instruction used to terminate the loop.
      */
      pLevel->op = bRev ? OP_Prev : OP_Next;
      pLevel->p1 = iIdxCur;
      pLevel->p2 = start;







|













|

|


|



















|










|



|




|








|
|

|



|
|


|
|







2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp2(v, OP_IsNull, -(nEq*2+1), nxt);
        topEq = pTerm->eOperator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
        testOp = OP_IdxGE;
      }else{
        testOp = nEq>0 ? OP_IdxGE : OP_Noop;
        topEq = 1;
      }
      if( testOp!=OP_Noop ){
        int nCol = nEq + topLimit;
        pLevel->iMem = pParse->nMem++;
        buildIndexProbe(v, nCol, pIdx);
        if( bRev ){
          int op = topEq ? OP_MoveLe : OP_MoveLt;
          sqlite3VdbeAddOp2(v, op, iIdxCur, nxt);
        }else{
          sqlite3VdbeAddOp2(v, OP_MemStore, pLevel->iMem, 1);
        }
      }else if( bRev ){
        sqlite3VdbeAddOp2(v, OP_Last, iIdxCur, brk);
      }

      /* Generate the start key.  This is the key that defines the lower
      ** bound on the search.  There is no start key if there are no
      ** equality terms and if there is no "X>..." term.  In
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( btmLimit ){
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp2(v, OP_IsNull, -(nEq+1), nxt);
        btmEq = pTerm->eOperator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
      }else{
        btmEq = 1;
      }
      if( nEq>0 || btmLimit ){
        int nCol = nEq + btmLimit;
        buildIndexProbe(v, nCol, pIdx);
        if( bRev ){
          pLevel->iMem = pParse->nMem++;
          sqlite3VdbeAddOp2(v, OP_MemStore, pLevel->iMem, 1);
          testOp = OP_IdxLT;
        }else{
          int op = btmEq ? OP_MoveGe : OP_MoveGt;
          sqlite3VdbeAddOp2(v, op, iIdxCur, nxt);
        }
      }else if( bRev ){
        testOp = OP_Noop;
      }else{
        sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, brk);
      }

      /* Generate the the top of the loop.  If there is a termination
      ** key we have to test for that key and abort at the top of the
      ** loop.
      */
      start = sqlite3VdbeCurrentAddr(v);
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp2(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp2(v, testOp, iIdxCur, nxt);
        if( (topEq && !bRev) || (!btmEq && bRev) ){
          sqlite3VdbeChangeP4(v, -1, "+", P4_STATIC);
        }
      }
      if( topLimit | btmLimit ){
        sqlite3VdbeAddOp2(v, OP_Column, iIdxCur, nEq);
        sqlite3VdbeAddOp2(v, OP_IsNull, 1, cont);
      }
      if( !omitTable ){
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, 0);
        sqlite3VdbeAddOp2(v, OP_MoveGe, iCur, 0);
      }

      /* Record the instruction used to terminate the loop.
      */
      pLevel->op = bRev ? OP_Prev : OP_Next;
      pLevel->p1 = iIdxCur;
      pLevel->p2 = start;
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
      nxt = pLevel->nxt;

      /* Generate a single key that will be used to both start and terminate
      ** the search
      */
      buildIndexProbe(v, nEq, pIdx);
      sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);

      /* Generate code (1) to move to the first matching element of the table.
      ** Then generate code (2) that jumps to "nxt" after the cursor is past
      ** the last matching element of the table.  The code (1) is executed
      ** once to initialize the search, the code (2) is executed before each
      ** iteration of the scan to see if the scan has finished. */
      if( bRev ){
        /* Scan in reverse order */
        sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt);
        start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt);
        pLevel->op = OP_Prev;
      }else{
        /* Scan in the forward order */
        sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt);
        start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC);
        pLevel->op = OP_Next;
      }
      if( !omitTable ){
        sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
        sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
      }
      pLevel->p1 = iIdxCur;
      pLevel->p2 = start;
    }else{
      /* Case 5:  There is no usable index.  We must do a complete
      **          scan of the entire table.
      */
      assert( omitTable==0 );
      assert( bRev==0 );
      pLevel->op = OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
    }
    notReady &= ~getMask(&maskSet, iCur);
    sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
      Expr *pE;
      if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;







|








|
|
|



|
|
|



|
|











|


|







2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
      nxt = pLevel->nxt;

      /* Generate a single key that will be used to both start and terminate
      ** the search
      */
      buildIndexProbe(v, nEq, pIdx);
      sqlite3VdbeAddOp2(v, OP_MemStore, pLevel->iMem, 0);

      /* Generate code (1) to move to the first matching element of the table.
      ** Then generate code (2) that jumps to "nxt" after the cursor is past
      ** the last matching element of the table.  The code (1) is executed
      ** once to initialize the search, the code (2) is executed before each
      ** iteration of the scan to see if the scan has finished. */
      if( bRev ){
        /* Scan in reverse order */
        sqlite3VdbeAddOp2(v, OP_MoveLe, iIdxCur, nxt);
        start = sqlite3VdbeAddOp2(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp2(v, OP_IdxLT, iIdxCur, nxt);
        pLevel->op = OP_Prev;
      }else{
        /* Scan in the forward order */
        sqlite3VdbeAddOp2(v, OP_MoveGe, iIdxCur, nxt);
        start = sqlite3VdbeAddOp2(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp4(v, OP_IdxGE, iIdxCur, nxt, 0, "+", P4_STATIC);
        pLevel->op = OP_Next;
      }
      if( !omitTable ){
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, 0);
        sqlite3VdbeAddOp2(v, OP_MoveGe, iCur, 0);
      }
      pLevel->p1 = iIdxCur;
      pLevel->p2 = start;
    }else{
      /* Case 5:  There is no usable index.  We must do a complete
      **          scan of the entire table.
      */
      assert( omitTable==0 );
      assert( bRev==0 );
      pLevel->op = OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
    }
    notReady &= ~getMask(&maskSet, iCur);
    sqlite3VdbeAddOp2(v, OP_StackDepth, -1, 0);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
      Expr *pE;
      if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
    }

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
      VdbeComment((v, "record LEFT JOIN hit"));
      for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
        if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
        if( (pTerm->prereqAll & notReady)!=0 ) continue;
        assert( pTerm->pExpr );
        sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
        pTerm->flags |= TERM_CODED;







|







2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
    }

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_MemInt, 1, pLevel->iLeftJoin);
      VdbeComment((v, "record LEFT JOIN hit"));
      for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
        if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
        if( (pTerm->prereqAll & notReady)!=0 ) continue;
        assert( pTerm->pExpr );
        sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
        pTerm->flags |= TERM_CODED;
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746

  /* Generate loop termination code.
  */
  for(i=pTabList->nSrc-1; i>=0; i--){
    pLevel = &pWInfo->a[i];
    sqlite3VdbeResolveLabel(v, pLevel->cont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
    }
    if( pLevel->nIn ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->nxt);
      for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->topAddr+1);
        sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr);
        sqlite3VdbeJumpHere(v, pIn->topAddr-1);
      }
      sqlite3_free(pLevel->aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->brk);
    if( pLevel->iLeftJoin ){
      int addr;
      addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
      sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
      if( pLevel->iIdxCur>=0 ){
        sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
      }
      sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
      sqlite3VdbeJumpHere(v, addr);
    }
  }

  /* The "break" point is here, just past the end of the outer loop.
  ** Set it.
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( pTab->isEphem || pTab->pSelect ) continue;
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
    }
    if( pLevel->pIdx!=0 ){
      sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
    }

    /* If this scan uses an index, make code substitutions to read data
    ** from the index in preference to the table. Sometimes, this means
    ** the table need never be read from. This is a performance boost,
    ** as the vdbe level waits until the table is read before actually
    ** seeking the table cursor to the record corresponding to the current







|







|







|
|

|

|

















|


|







2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747

  /* Generate loop termination code.
  */
  for(i=pTabList->nSrc-1; i>=0; i--){
    pLevel = &pWInfo->a[i];
    sqlite3VdbeResolveLabel(v, pLevel->cont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
    }
    if( pLevel->nIn ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->nxt);
      for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->topAddr+1);
        sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
        sqlite3VdbeJumpHere(v, pIn->topAddr-1);
      }
      sqlite3_free(pLevel->aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->brk);
    if( pLevel->iLeftJoin ){
      int addr;
      addr = sqlite3VdbeAddOp2(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
      sqlite3VdbeAddOp2(v, OP_NullRow, pTabList->a[i].iCursor, 0);
      if( pLevel->iIdxCur>=0 ){
        sqlite3VdbeAddOp2(v, OP_NullRow, pLevel->iIdxCur, 0);
      }
      sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
      sqlite3VdbeJumpHere(v, addr);
    }
  }

  /* The "break" point is here, just past the end of the outer loop.
  ** Set it.
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( pTab->isEphem || pTab->pSelect ) continue;
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3VdbeAddOp2(v, OP_Close, pTabItem->iCursor, 0);
    }
    if( pLevel->pIdx!=0 ){
      sqlite3VdbeAddOp2(v, OP_Close, pLevel->iIdxCur, 0);
    }

    /* If this scan uses an index, make code substitutions to read data
    ** from the index in preference to the table. Sometimes, this means
    ** the table need never be read from. This is a performance boost,
    ** as the vdbe level waits until the table is read before actually
    ** seeking the table cursor to the record corresponding to the current