/*
** 2004 April 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements an external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"
/*
** The header string that appears at the beginning of every
** SQLite database.
*/
static const char zMagicHeader[] = SQLITE_FILE_HEADER;
/*
** Set this global variable to 1 to enable tracing using the TRACE
** macro.
*/
#if 0
int sqlite3BtreeTrace=1; /* True to enable tracing */
# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
#else
# define TRACE(X)
#endif
/*
** Extract a 2-byte big-endian integer from an array of unsigned bytes.
** But if the value is zero, make it 65536.
**
** This routine is used to extract the "offset to cell content area" value
** from the header of a btree page. If the page size is 65536 and the page
** is empty, the offset should be 65536, but the 2-byte value stores zero.
** This routine makes the necessary adjustment to 65536.
*/
#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
/*
** Values passed as the 5th argument to allocateBtreePage()
*/
#define BTALLOC_ANY 0 /* Allocate any page */
#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
/*
** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
** defined, or 0 if it is. For example:
**
** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
#define IfNotOmitAV(expr) (expr)
#else
#define IfNotOmitAV(expr) 0
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** A list of BtShared objects that are eligible for participation
** in shared cache. This variable has file scope during normal builds,
** but the test harness needs to access it so we make it global for
** test builds.
**
** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
*/
#ifdef SQLITE_TEST
BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
#else
static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
#endif
#endif /* SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Enable or disable the shared pager and schema features.
**
** This routine has no effect on existing database connections.
** The shared cache setting effects only future calls to
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
*/
int sqlite3_enable_shared_cache(int enable){
sqlite3GlobalConfig.sharedCacheEnabled = enable;
return SQLITE_OK;
}
#endif
#ifdef SQLITE_OMIT_SHARED_CACHE
/*
** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
** and clearAllSharedCacheTableLocks()
** manipulate entries in the BtShared.pLock linked list used to store
** shared-cache table level locks. If the library is compiled with the
** shared-cache feature disabled, then there is only ever one user
** of each BtShared structure and so this locking is not necessary.
** So define the lock related functions as no-ops.
*/
#define querySharedCacheTableLock(a,b,c) SQLITE_OK
#define setSharedCacheTableLock(a,b,c) SQLITE_OK
#define clearAllSharedCacheTableLocks(a)
#define downgradeAllSharedCacheTableLocks(a)
#define hasSharedCacheTableLock(a,b,c,d) 1
#define hasReadConflicts(a, b) 0
#endif
#ifdef SQLITE_DEBUG
/*
** Return and reset the seek counter for a Btree object.
*/
sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
u64 n = pBt->nSeek;
pBt->nSeek = 0;
return n;
}
#endif
/*
** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
** (MemPage*) as an argument. The (MemPage*) must not be NULL.
**
** If SQLITE_DEBUG is not defined, then this macro is equivalent to
** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
** with the page number and filename associated with the (MemPage*).
*/
#ifdef SQLITE_DEBUG
int corruptPageError(int lineno, MemPage *p){
char *zMsg;
sqlite3BeginBenignMalloc();
zMsg = sqlite3_mprintf("database corruption page %u of %s",
p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
);
sqlite3EndBenignMalloc();
if( zMsg ){
sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
}
sqlite3_free(zMsg);
return SQLITE_CORRUPT_BKPT;
}
# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
#else
# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
#ifdef SQLITE_DEBUG
/*
**** This function is only used as part of an assert() statement. ***
**
** Check to see if pBtree holds the required locks to read or write to the
** table with root page iRoot. Return 1 if it does and 0 if not.
**
** For example, when writing to a table with root-page iRoot via
** Btree connection pBtree:
**
** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
**
** When writing to an index that resides in a sharable database, the
** caller should have first obtained a lock specifying the root page of
** the corresponding table. This makes things a bit more complicated,
** as this module treats each table as a separate structure. To determine
** the table corresponding to the index being written, this
** function has to search through the database schema.
**
** Instead of a lock on the table/index rooted at page iRoot, the caller may
** hold a write-lock on the schema table (root page 1). This is also
** acceptable.
*/
static int hasSharedCacheTableLock(
Btree *pBtree, /* Handle that must hold lock */
Pgno iRoot, /* Root page of b-tree */
int isIndex, /* True if iRoot is the root of an index b-tree */
int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
){
Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
Pgno iTab = 0;
BtLock *pLock;
/* If this database is not shareable, or if the client is reading
** and has the read-uncommitted flag set, then no lock is required.
** Return true immediately.
*/
if( (pBtree->sharable==0)
|| (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
){
return 1;
}
/* If the client is reading or writing an index and the schema is
** not loaded, then it is too difficult to actually check to see if
** the correct locks are held. So do not bother - just return true.
** This case does not come up very often anyhow.
*/
if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
return 1;
}
/* Figure out the root-page that the lock should be held on. For table
** b-trees, this is just the root page of the b-tree being read or
** written. For index b-trees, it is the root page of the associated
** table. */
if( isIndex ){
HashElem *p;
int bSeen = 0;
for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
Index *pIdx = (Index *)sqliteHashData(p);
if( pIdx->tnum==iRoot ){
if( bSeen ){
/* Two or more indexes share the same root page. There must
** be imposter tables. So just return true. The assert is not
** useful in that case. */
return 1;
}
iTab = pIdx->pTable->tnum;
bSeen = 1;
}
}
}else{
iTab = iRoot;
}
/* Search for the required lock. Either a write-lock on root-page iTab, a
** write-lock on the schema table, or (if the client is reading) a
** read-lock on iTab will suffice. Return 1 if any of these are found. */
for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
if( pLock->pBtree==pBtree
&& (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
&& pLock->eLock>=eLockType
){
return 1;
}
}
/* Failed to find the required lock. */
return 0;
}
#endif /* SQLITE_DEBUG */
#ifdef SQLITE_DEBUG
/*
**** This function may be used as part of assert() statements only. ****
**
** Return true if it would be illegal for pBtree to write into the
** table or index rooted at iRoot because other shared connections are
** simultaneously reading that same table or index.
**
** It is illegal for pBtree to write if some other Btree object that
** shares the same BtShared object is currently reading or writing
** the iRoot table. Except, if the other Btree object has the
** read-uncommitted flag set, then it is OK for the other object to
** have a read cursor.
**
** For example, before writing to any part of the table or index
** rooted at page iRoot, one should call:
**
** assert( !hasReadConflicts(pBtree, iRoot) );
*/
static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
BtCursor *p;
for(p=pBtree->pBt->pCursor; p; p=p->pNext){
if( p->pgnoRoot==iRoot
&& p->pBtree!=pBtree
&& 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
){
return 1;
}
}
return 0;
}
#endif /* #ifdef SQLITE_DEBUG */
/*
** Query to see if Btree handle p may obtain a lock of type eLock
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
** SQLITE_OK if the lock may be obtained (by calling
** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
*/
static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
BtShared *pBt = p->pBt;
BtLock *pIter;
assert( sqlite3BtreeHoldsMutex(p) );
assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
assert( p->db!=0 );
assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
/* If requesting a write-lock, then the Btree must have an open write
** transaction on this file. And, obviously, for this to be so there
** must be an open write transaction on the file itself.
*/
assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
/* This routine is a no-op if the shared-cache is not enabled */
if( !p->sharable ){
return SQLITE_OK;
}
/* If some other connection is holding an exclusive lock, the
** requested lock may not be obtained.
*/
if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
return SQLITE_LOCKED_SHAREDCACHE;
}
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
/* The condition (pIter->eLock!=eLock) in the following if(...)
** statement is a simplification of:
**
** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
**
** since we know that if eLock==WRITE_LOCK, then no other connection
** may hold a WRITE_LOCK on any table in this file (since there can
** only be a single writer).
*/
assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
if( eLock==WRITE_LOCK ){
assert( p==pBt->pWriter );
pBt->btsFlags |= BTS_PENDING;
}
return SQLITE_LOCKED_SHAREDCACHE;
}
}
return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or
** WRITE_LOCK.
**
** This function assumes the following:
**
** (a) The specified Btree object p is connected to a sharable
** database (one with the BtShared.sharable flag set), and
**
** (b) No other Btree objects hold a lock that conflicts
** with the requested lock (i.e. querySharedCacheTableLock() has
** already been called and returned SQLITE_OK).
**
** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
** is returned if a malloc attempt fails.
*/
static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
BtShared *pBt = p->pBt;
BtLock *pLock = 0;
BtLock *pIter;
assert( sqlite3BtreeHoldsMutex(p) );
assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
assert( p->db!=0 );
/* A connection with the read-uncommitted flag set will never try to
** obtain a read-lock using this function. The only read-lock obtained
** by a connection in read-uncommitted mode is on the sqlite_schema
** table, and that lock is obtained in BtreeBeginTrans(). */
assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
/* This function should only be called on a sharable b-tree after it
** has been determined that no other b-tree holds a conflicting lock. */
assert( p->sharable );
assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
/* First search the list for an existing lock on this table. */
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
if( pIter->iTable==iTable && pIter->pBtree==p ){
pLock = pIter;
break;
}
}
/* If the above search did not find a BtLock struct associating Btree p
** with table iTable, allocate one and link it into the list.
*/
if( !pLock ){
pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
if( !pLock ){
return SQLITE_NOMEM_BKPT;
}
pLock->iTable = iTable;
pLock->pBtree = p;
pLock->pNext = pBt->pLock;
pBt->pLock = pLock;
}
/* Set the BtLock.eLock variable to the maximum of the current lock
** and the requested lock. This means if a write-lock was already held
** and a read-lock requested, we don't incorrectly downgrade the lock.
*/
assert( WRITE_LOCK>READ_LOCK );
if( eLock>pLock->eLock ){
pLock->eLock = eLock;
}
return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Release all the table locks (locks obtained via calls to
** the setSharedCacheTableLock() procedure) held by Btree object p.
**
** This function assumes that Btree p has an open read or write
** transaction. If it does not, then the BTS_PENDING flag
** may be incorrectly cleared.
*/
static void clearAllSharedCacheTableLocks(Btree *p){
BtShared *pBt = p->pBt;
BtLock **ppIter = &pBt->pLock;
assert( sqlite3BtreeHoldsMutex(p) );
assert( p->sharable || 0==*ppIter );
assert( p->inTrans>0 );
while( *ppIter ){
BtLock *pLock = *ppIter;
assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
assert( pLock->pBtree->inTrans>=pLock->eLock );
if( pLock->pBtree==p ){
*ppIter = pLock->pNext;
assert( pLock->iTable!=1 || pLock==&p->lock );
if( pLock->iTable!=1 ){
sqlite3_free(pLock);
}
}else{
ppIter = &pLock->pNext;
}
}
assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
if( pBt->pWriter==p ){
pBt->pWriter = 0;
pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
}else if( pBt->nTransaction==2 ){
/* This function is called when Btree p is concluding its
** transaction. If there currently exists a writer, and p is not
** that writer, then the number of locks held by connections other
** than the writer must be about to drop to zero. In this case
** set the BTS_PENDING flag to 0.
**
** If there is not currently a writer, then BTS_PENDING must
** be zero already. So this next line is harmless in that case.
*/
pBt->btsFlags &= ~BTS_PENDING;
}
}
/*
** This function changes all write-locks held by Btree p into read-locks.
*/
static void downgradeAllSharedCacheTableLocks(Btree *p){
BtShared *pBt = p->pBt;
if( pBt->pWriter==p ){
BtLock *pLock;
pBt->pWriter = 0;
pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
pLock->eLock = READ_LOCK;
}
}
}
#endif /* SQLITE_OMIT_SHARED_CACHE */
static void releasePage(MemPage *pPage); /* Forward reference */
static void releasePageOne(MemPage *pPage); /* Forward reference */
static void releasePageNotNull(MemPage *pPage); /* Forward reference */
/*
***** This routine is used inside of assert() only ****
**
** Verify that the cursor holds the mutex on its BtShared
*/
#ifdef SQLITE_DEBUG
static int cursorHoldsMutex(BtCursor *p){
return sqlite3_mutex_held(p->pBt->mutex);
}
/* Verify that the cursor and the BtShared agree about what is the current
** database connetion. This is important in shared-cache mode. If the database
** connection pointers get out-of-sync, it is possible for routines like
** btreeInitPage() to reference an stale connection pointer that references a
** a connection that has already closed. This routine is used inside assert()
** statements only and for the purpose of double-checking that the btree code
** does keep the database connection pointers up-to-date.
*/
static int cursorOwnsBtShared(BtCursor *p){
assert( cursorHoldsMutex(p) );
return (p->pBtree->db==p->pBt->db);
}
#endif
/*
** Invalidate the overflow cache of the cursor passed as the first argument.
** on the shared btree structure pBt.
*/
#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
/*
** Invalidate the overflow page-list cache for all cursors opened
** on the shared btree structure pBt.
*/
static void invalidateAllOverflowCache(BtShared *pBt){
BtCursor *p;
assert( sqlite3_mutex_held(pBt->mutex) );
for(p=pBt->pCursor; p; p=p->pNext){
invalidateOverflowCache(p);
}
}
#ifndef SQLITE_OMIT_INCRBLOB
/*
** This function is called before modifying the contents of a table
** to invalidate any incrblob cursors that are open on the
** row or one of the rows being modified.
**
** If argument isClearTable is true, then the entire contents of the
** table is about to be deleted. In this case invalidate all incrblob
** cursors open on any row within the table with root-page pgnoRoot.
**
** Otherwise, if argument isClearTable is false, then the row with
** rowid iRow is being replaced or deleted. In this case invalidate
** only those incrblob cursors open on that specific row.
*/
static void invalidateIncrblobCursors(
Btree *pBtree, /* The database file to check */
Pgno pgnoRoot, /* The table that might be changing */
i64 iRow, /* The rowid that might be changing */
int isClearTable /* True if all rows are being deleted */
){
BtCursor *p;
assert( pBtree->hasIncrblobCur );
assert( sqlite3BtreeHoldsMutex(pBtree) );
pBtree->hasIncrblobCur = 0;
for(p=pBtree->pBt->pCursor; p; p=p->pNext){
if( (p->curFlags & BTCF_Incrblob)!=0 ){
pBtree->hasIncrblobCur = 1;
if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
p->eState = CURSOR_INVALID;
}
}
}
}
#else
/* Stub function when INCRBLOB is omitted */
#define invalidateIncrblobCursors(w,x,y,z)
#endif /* SQLITE_OMIT_INCRBLOB */
/*
** Set bit pgno of the BtShared.pHasContent bitvec. This is called
** when a page that previously contained data becomes a free-list leaf
** page.
**
** The BtShared.pHasContent bitvec exists to work around an obscure
** bug caused by the interaction of two useful IO optimizations surrounding
** free-list leaf pages:
**
** 1) When all data is deleted from a page and the page becomes
** a free-list leaf page, the page is not written to the database
** (as free-list leaf pages contain no meaningful data). Sometimes
** such a page is not even journalled (as it will not be modified,
** why bother journalling it?).
**
** 2) When a free-list leaf page is reused, its content is not read
** from the database or written to the journal file (why should it
** be, if it is not at all meaningful?).
**
** By themselves, these optimizations work fine and provide a handy
** performance boost to bulk delete or insert operations. However, if
** a page is moved to the free-list and then reused within the same
** transaction, a problem comes up. If the page is not journalled when
** it is moved to the free-list and it is also not journalled when it
** is extracted from the free-list and reused, then the original data
** may be lost. In the event of a rollback, it may not be possible
** to restore the database to its original configuration.
**
** The solution is the BtShared.pHasContent bitvec. Whenever a page is
** moved to become a free-list leaf page, the corresponding bit is
** set in the bitvec. Whenever a leaf page is extracted from the free-list,
** optimization 2 above is omitted if the corresponding bit is already
** set in BtShared.pHasContent. The contents of the bitvec are cleared
** at the end of every transaction.
*/
static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
int rc = SQLITE_OK;
if( !pBt->pHasContent ){
assert( pgno<=pBt->nPage );
pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
if( !pBt->pHasContent ){
rc = SQLITE_NOMEM_BKPT;
}
}
if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
}
return rc;
}
/*
** Query the BtShared.pHasContent vector.
**
** This function is called when a free-list leaf page is removed from the
** free-list for reuse. It returns false if it is safe to retrieve the
** page from the pager layer with the 'no-content' flag set. True otherwise.
*/
static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
Bitvec *p = pBt->pHasContent;
return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
}
/*
** Clear (destroy) the BtShared.pHasContent bitvec. This should be
** invoked at the conclusion of each write-transaction.
*/
static void btreeClearHasContent(BtShared *pBt){
sqlite3BitvecDestroy(pBt->pHasContent);
pBt->pHasContent = 0;
}
/*
** Release all of the apPage[] pages for a cursor.
*/
static void btreeReleaseAllCursorPages(BtCursor *pCur){
int i;
if( pCur->iPage>=0 ){
for(i=0; i<pCur->iPage; i++){
releasePageNotNull(pCur->apPage[i]);
}
releasePageNotNull(pCur->pPage);
pCur->iPage = -1;
}
}
/*
** The cursor passed as the only argument must point to a valid entry
** when this function is called (i.e. have eState==CURSOR_VALID). This
** function saves the current cursor key in variables pCur->nKey and
** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
** code otherwise.
**
** If the cursor is open on an intkey table, then the integer key
** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
** set to point to a malloced buffer pCur->nKey bytes in size containing
** the key.
*/
static int saveCursorKey(BtCursor *pCur){
int rc = SQLITE_OK;
assert( CURSOR_VALID==pCur->eState );
assert( 0==pCur->pKey );
assert( cursorHoldsMutex(pCur) );
if( pCur->curIntKey ){
/* Only the rowid is required for a table btree */
pCur->nKey = sqlite3BtreeIntegerKey(pCur);
}else{
/* For an index btree, save the complete key content. It is possible
** that the current key is corrupt. In that case, it is possible that
** the sqlite3VdbeRecordUnpack() function may overread the buffer by
** up to the size of 1 varint plus 1 8-byte value when the cursor
** position is restored. Hence the 17 bytes of padding allocated
** below. */
void *pKey;
pCur->nKey = sqlite3BtreePayloadSize(pCur);
pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
if( pKey ){
rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
if( rc==SQLITE_OK ){
memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
pCur->pKey = pKey;
}else{
sqlite3_free(pKey);
}
}else{
rc = SQLITE_NOMEM_BKPT;
}
}
assert( !pCur->curIntKey || !pCur->pKey );
return rc;
}
/*
** Save the current cursor position in the variables BtCursor.nKey
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
**
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
** prior to calling this routine.
*/
static int saveCursorPosition(BtCursor *pCur){
int rc;
assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
assert( 0==pCur->pKey );
assert( cursorHoldsMutex(pCur) );
if( pCur->curFlags & BTCF_Pinned ){
return SQLITE_CONSTRAINT_PINNED;
}
if( pCur->eState==CURSOR_SKIPNEXT ){
pCur->eState = CURSOR_VALID;
}else{
pCur->skipNext = 0;
}
rc = saveCursorKey(pCur);
if( rc==SQLITE_OK ){
btreeReleaseAllCursorPages(pCur);
pCur->eState = CURSOR_REQUIRESEEK;
}
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
return rc;
}
/* Forward reference */
static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
/*
** Save the positions of all cursors (except pExcept) that are open on
** the table with root-page iRoot. "Saving the cursor position" means that
** the location in the btree is remembered in such a way that it can be
** moved back to the same spot after the btree has been modified. This
** routine is called just before cursor pExcept is used to modify the
** table, for example in BtreeDelete() or BtreeInsert().
**
** If there are two or more cursors on the same btree, then all such
** cursors should have their BTCF_Multiple flag set. The btreeCursor()
** routine enforces that rule. This routine only needs to be called in
** the uncommon case when pExpect has the BTCF_Multiple flag set.
**
** If pExpect!=NULL and if no other cursors are found on the same root-page,
** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
** pointless call to this routine.
**
** Implementation note: This routine merely checks to see if any cursors
** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
** event that cursors are in need to being saved.
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
BtCursor *p;
assert( sqlite3_mutex_held(pBt->mutex) );
assert( pExcept==0 || pExcept->pBt==pBt );
for(p=pBt->pCursor; p; p=p->pNext){
if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
}
if( p ) return saveCursorsOnList(p, iRoot, pExcept);
if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
return SQLITE_OK;
}
/* This helper routine to saveAllCursors does the actual work of saving
** the cursors if and when a cursor is found that actually requires saving.
** The common case is that no cursors need to be saved, so this routine is
** broken out from its caller to avoid unnecessary stack pointer movement.
*/
static int SQLITE_NOINLINE saveCursorsOnList(
BtCursor *p, /* The first cursor that needs saving */
Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
BtCursor *pExcept /* Do not save this cursor */
){
do{
if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
int rc = saveCursorPosition(p);
if( SQLITE_OK!=rc ){
return rc;
}
}else{
testcase( p->iPage>=0 );
btreeReleaseAllCursorPages(p);
}
}
p = p->pNext;
}while( p );
return SQLITE_OK;
}
/*
** Clear the current cursor position.
*/
void sqlite3BtreeClearCursor(BtCursor *pCur){
assert( cursorHoldsMutex(pCur) );
sqlite3_free(pCur->pKey);
pCur->pKey = 0;
pCur->eState = CURSOR_INVALID;
}
/*
** In this version of BtreeMoveto, pKey is a packed index record
** such as is generated by the OP_MakeRecord opcode. Unpack the
** record and then call sqlite3BtreeIndexMoveto() to do the work.
*/
static int btreeMoveto(
BtCursor *pCur, /* Cursor open on the btree to be searched */
const void *pKey, /* Packed key if the btree is an index */
i64 nKey, /* Integer key for tables. Size of pKey for indices */
int bias, /* Bias search to the high end */
int *pRes /* Write search results here */
){
int rc; /* Status code */
UnpackedRecord *pIdxKey; /* Unpacked index key */
if( pKey ){
KeyInfo *pKeyInfo = pCur->pKeyInfo;
assert( nKey==(i64)(int)nKey );
pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
rc = SQLITE_CORRUPT_BKPT;
}else{
rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
}
sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
}else{
pIdxKey = 0;
rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
}
return rc;
}
/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
int rc;
int skipNext = 0;
assert( cursorOwnsBtShared(pCur) );
assert( pCur->eState>=CURSOR_REQUIRESEEK );
if( pCur->eState==CURSOR_FAULT ){
return pCur->skipNext;
}
pCur->eState = CURSOR_INVALID;
if( sqlite3FaultSim(410) ){
rc = SQLITE_IOERR;
}else{
rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
}
if( rc==SQLITE_OK ){
sqlite3_free(pCur->pKey);
pCur->pKey = 0;
assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
if( skipNext ) pCur->skipNext = skipNext;
if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
pCur->eState = CURSOR_SKIPNEXT;
}
}
return rc;
}
#define restoreCursorPosition(p) \
(p->eState>=CURSOR_REQUIRESEEK ? \
btreeRestoreCursorPosition(p) : \
SQLITE_OK)
/*
** Determine whether or not a cursor has moved from the position where
** it was last placed, or has been invalidated for any other reason.
** Cursors can move when the row they are pointing at is deleted out
** from under them, for example. Cursor might also move if a btree
** is rebalanced.
**
** Calling this routine with a NULL cursor pointer returns false.
**
** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
** back to where it ought to be if this routine returns true.
*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
assert( EIGHT_BYTE_ALIGNMENT(pCur)
|| pCur==sqlite3BtreeFakeValidCursor() );
assert( offsetof(BtCursor, eState)==0 );
assert( sizeof(pCur->eState)==1 );
return CURSOR_VALID != *(u8*)pCur;
}
/*
** Return a pointer to a fake BtCursor object that will always answer
** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
** cursor returned must not be used with any other Btree interface.
*/
BtCursor *sqlite3BtreeFakeValidCursor(void){
static u8 fakeCursor = CURSOR_VALID;
assert( offsetof(BtCursor, eState)==0 );
return (BtCursor*)&fakeCursor;
}
/*
** This routine restores a cursor back to its original position after it
** has been moved by some outside activity (such as a btree rebalance or
** a row having been deleted out from under the cursor).
**
** On success, the *pDifferentRow parameter is false if the cursor is left
** pointing at exactly the same row. *pDifferntRow is the row the cursor
** was pointing to has been deleted, forcing the cursor to point to some
** nearby row.
**
** This routine should only be called for a cursor that just returned
** TRUE from sqlite3BtreeCursorHasMoved().
*/
int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
int rc;
assert( pCur!=0 );
assert( pCur->eState!=CURSOR_VALID );
rc = restoreCursorPosition(pCur);
if( rc ){
*pDifferentRow = 1;
return rc;
}
if( pCur->eState!=CURSOR_VALID ){
*pDifferentRow = 1;
}else{
*pDifferentRow = 0;
}
return SQLITE_OK;
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
/*
** Provide hints to the cursor. The particular hint given (and the type
** and number of the varargs parameters) is determined by the eHintType
** parameter. See the definitions of the BTREE_HINT_* macros for details.
*/
void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
/* Used only by system that substitute their own storage engine */
#ifdef SQLITE_DEBUG
if( ALWAYS(eHintType==BTREE_HINT_RANGE) ){
va_list ap;
Expr *pExpr;
Walker w;
memset(&w, 0, sizeof(w));
w.xExprCallback = sqlite3CursorRangeHintExprCheck;
va_start(ap, eHintType);
pExpr = va_arg(ap, Expr*);
w.u.aMem = va_arg(ap, Mem*);
va_end(ap);
assert( pExpr!=0 );
assert( w.u.aMem!=0 );
sqlite3WalkExpr(&w, pExpr);
}
#endif /* SQLITE_DEBUG */
}
#endif /* SQLITE_ENABLE_CURSOR_HINTS */
/*
** Provide flag hints to the cursor.
*/
void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
pCur->hints = x;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
**
** Return 0 (not a valid page) for pgno==1 since there is
** no pointer map associated with page 1. The integrity_check logic
** requires that ptrmapPageno(*,1)!=1.
*/
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
int nPagesPerMapPage;
Pgno iPtrMap, ret;
assert( sqlite3_mutex_held(pBt->mutex) );
if( pgno<2 ) return 0;
nPagesPerMapPage = (pBt->usableSize/5)+1;
iPtrMap = (pgno-2)/nPagesPerMapPage;
ret = (iPtrMap*nPagesPerMapPage) + 2;
if( ret==PENDING_BYTE_PAGE(pBt) ){
ret++;
}
return ret;
}
/*
** Write an entry into the pointer map.
**
** This routine updates the pointer map entry for page number 'key'
** so that it maps to type 'eType' and parent page number 'pgno'.
**
** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
** a no-op. If an error occurs, the appropriate error code is written
** into *pRC.
*/
static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
DbPage *pDbPage; /* The pointer map page */
u8 *pPtrmap; /* The pointer map data */
Pgno iPtrmap; /* The pointer map page number */
int offset; /* Offset in pointer map page */
int rc; /* Return code from subfunctions */
if( *pRC ) return;
assert( sqlite3_mutex_held(pBt->mutex) );
/* The super-journal page number must never be used as a pointer map page */
assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
assert( pBt->autoVacuum );
if( key==0 ){
*pRC = SQLITE_CORRUPT_BKPT;
return;
}
iPtrmap = PTRMAP_PAGENO(pBt, key);
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
if( rc!=SQLITE_OK ){
*pRC = rc;
return;
}
if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
/* The first byte of the extra data is the MemPage.isInit byte.
** If that byte is set, it means this page is also being used
** as a btree page. */
*pRC = SQLITE_CORRUPT_BKPT;
goto ptrmap_exit;
}
offset = PTRMAP_PTROFFSET(iPtrmap, key);
if( offset<0 ){
*pRC = SQLITE_CORRUPT_BKPT;
goto ptrmap_exit;
}
assert( offset <= (int)pBt->usableSize-5 );
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
TRACE(("PTRMAP_UPDATE: %u->(%u,%u)\n", key, eType, parent));
*pRC= rc = sqlite3PagerWrite(pDbPage);
if( rc==SQLITE_OK ){
pPtrmap[offset] = eType;
put4byte(&pPtrmap[offset+1], parent);
}
}
ptrmap_exit:
sqlite3PagerUnref(pDbPage);
}
/*
** Read an entry from the pointer map.
**
** This routine retrieves the pointer map entry for page 'key', writing
** the type and parent page number to *pEType and *pPgno respectively.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
DbPage *pDbPage; /* The pointer map page */
int iPtrmap; /* Pointer map page index */
u8 *pPtrmap; /* Pointer map page data */
int offset; /* Offset of entry in pointer map */
int rc;
assert( sqlite3_mutex_held(pBt->mutex) );
iPtrmap = PTRMAP_PAGENO(pBt, key);
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
if( rc!=0 ){
return rc;
}
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
offset = PTRMAP_PTROFFSET(iPtrmap, key);
if( offset<0 ){
sqlite3PagerUnref(pDbPage);
return SQLITE_CORRUPT_BKPT;
}
assert( offset <= (int)pBt->usableSize-5 );
assert( pEType!=0 );
*pEType = pPtrmap[offset];
if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
sqlite3PagerUnref(pDbPage);
if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
return SQLITE_OK;
}
#else /* if defined SQLITE_OMIT_AUTOVACUUM */
#define ptrmapPut(w,x,y,z,rc)
#define ptrmapGet(w,x,y,z) SQLITE_OK
#define ptrmapPutOvflPtr(x, y, z, rc)
#endif
/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** findCellPastPtr() does the same except it skips past the initial
** 4-byte child pointer found on interior pages, if there is one.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
#define findCellPastPtr(P,I) \
((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
/*
** This is common tail processing for btreeParseCellPtr() and
** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
** on a single B-tree page. Make necessary adjustments to the CellInfo
** structure.
*/
static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
MemPage *pPage, /* Page containing the cell */
u8 *pCell, /* Pointer to the cell text. */
CellInfo *pInfo /* Fill in this structure */
){
/* If the payload will not fit completely on the local page, we have
** to decide how much to store locally and how much to spill onto
** overflow pages. The strategy is to minimize the amount of unused
** space on overflow pages while keeping the amount of local storage
** in between minLocal and maxLocal.
**
** Warning: changing the way overflow payload is distributed in any
** way will result in an incompatible file format.
*/
int minLocal; /* Minimum amount of payload held locally */
int maxLocal; /* Maximum amount of payload held locally */
int surplus; /* Overflow payload available for local storage */
minLocal = pPage->minLocal;
maxLocal = pPage->maxLocal;
surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
testcase( surplus==maxLocal );
testcase( surplus==maxLocal+1 );
if( surplus <= maxLocal ){
pInfo->nLocal = (u16)surplus;
}else{
pInfo->nLocal = (u16)minLocal;
}
pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
}
/*
** Given a record with nPayload bytes of payload stored within btree
** page pPage, return the number of bytes of payload stored locally.
*/
static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
int maxLocal; /* Maximum amount of payload held locally */
maxLocal = pPage->maxLocal;
if( nPayload<=maxLocal ){
return nPayload;
}else{
int minLocal; /* Minimum amount of payload held locally */
int surplus; /* Overflow payload available for local storage */
minLocal = pPage->minLocal;
surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
return ( surplus <= maxLocal ) ? surplus : minLocal;
}
}
/*
** The following routines are implementations of the MemPage.xParseCell()
** method.
**
** Parse a cell content block and fill in the CellInfo structure.
**
** btreeParseCellPtr() => table btree leaf nodes
** btreeParseCellNoPayload() => table btree internal nodes
** btreeParseCellPtrIndex() => index btree nodes
**
** There is also a wrapper function btreeParseCell() that works for
** all MemPage types and that references the cell by index rather than
** by pointer.
*/
static void btreeParseCellPtrNoPayload(
MemPage *pPage, /* Page containing the cell */
u8 *pCell, /* Pointer to the cell text. */
CellInfo *pInfo /* Fill in this structure */
){
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( pPage->leaf==0 );
assert( pPage->childPtrSize==4 );
#ifndef SQLITE_DEBUG
UNUSED_PARAMETER(pPage);
#endif
pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
pInfo->nPayload = 0;
pInfo->nLocal = 0;
pInfo->pPayload = 0;
return;
}
static void btreeParseCellPtr(
MemPage *pPage, /* Page containing the cell */
u8 *pCell, /* Pointer to the cell text. */
CellInfo *pInfo /* Fill in this structure */
){
u8 *pIter; /* For scanning through pCell */
u32 nPayload; /* Number of bytes of cell payload */
u64 iKey; /* Extracted Key value */
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( pPage->leaf==0 || pPage->leaf==1 );
assert( pPage->intKeyLeaf );
assert( pPage->childPtrSize==0 );
pIter = pCell;
/* The next block of code is equivalent to:
**
** pIter += getVarint32(pIter, nPayload);
**
** The code is inlined to avoid a function call.
*/
nPayload = *pIter;
if( nPayload>=0x80 ){
u8 *pEnd = &pIter[8];
nPayload &= 0x7f;
do{
nPayload = (nPayload<<7) | (*++pIter & 0x7f);
}while( (*pIter)>=0x80 && pIter<pEnd );
}
pIter++;
/* The next block of code is equivalent to:
**
** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
**
** The code is inlined and the loop is unrolled for performance.
** This routine is a high-runner.
*/
iKey = *pIter;
if( iKey>=0x80 ){
u8 x;
iKey = (iKey<<7) ^ (x = *++pIter);
if( x>=0x80 ){
iKey = (iKey<<7) ^ (x = *++pIter);
if( x>=0x80 ){
iKey = (iKey<<7) ^ 0x10204000 ^ (x = *++pIter);
if( x>=0x80 ){
iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
if( x>=0x80 ){
iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
if( x>=0x80 ){
iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
if( x>=0x80 ){
iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
if( x>=0x80 ){
iKey = (iKey<<8) ^ 0x8000 ^ (*++pIter);
}
}
}
}
}
}else{
iKey ^= 0x204000;
}
}else{
iKey ^= 0x4000;
}
}
pIter++;
pInfo->nKey = *(i64*)&iKey;
pInfo->nPayload = nPayload;
pInfo->pPayload = pIter;
testcase( nPayload==pPage->maxLocal );
testcase( nPayload==(u32)pPage->maxLocal+1 );
if( nPayload<=pPage->maxLocal ){
/* This is the (easy) common case where the entire payload fits
** on the local page. No overflow is required.
*/
pInfo->nSize = nPayload + (u16)(pIter - pCell);
if( pInfo->nSize<4 ) pInfo->nSize = 4;
pInfo->nLocal = (u16)nPayload;
}else{
btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
}
}
static void btreeParseCellPtrIndex(
MemPage *pPage, /* Page containing the cell */
u8 *pCell, /* Pointer to the cell text. */
CellInfo *pInfo /* Fill in this structure */
){
u8 *pIter; /* For scanning through pCell */
u32 nPayload; /* Number of bytes of cell payload */
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( pPage->leaf==0 || pPage->leaf==1 );
assert( pPage->intKeyLeaf==0 );
pIter = pCell + pPage->childPtrSize;
nPayload = *pIter;
if( nPayload>=0x80 ){
u8 *pEnd = &pIter[8];
nPayload &= 0x7f;
do{
nPayload = (nPayload<<7) | (*++pIter & 0x7f);
}while( *(pIter)>=0x80 && pIter<pEnd );
}
pIter++;
pInfo->nKey = nPayload;
pInfo->nPayload = nPayload;
pInfo->pPayload = pIter;
testcase( nPayload==pPage->maxLocal );
testcase( nPayload==(u32)pPage->maxLocal+1 );
if( nPayload<=pPage->maxLocal ){
/* This is the (easy) common case where the entire payload fits
** on the local page. No overflow is required.
*/
pInfo->nSize = nPayload + (u16)(pIter - pCell);
if( pInfo->nSize<4 ) pInfo->nSize = 4;
pInfo->nLocal = (u16)nPayload;
}else{
btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
}
}
static void btreeParseCell(
MemPage *pPage, /* Page containing the cell */
int iCell, /* The cell index. First cell is 0 */
CellInfo *pInfo /* Fill in this structure */
){
pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
}
/*
** The following routines are implementations of the MemPage.xCellSize
** method.
**
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page. The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
**
** cellSizePtrNoPayload() => table internal nodes
** cellSizePtrTableLeaf() => table leaf nodes
** cellSizePtr() => index internal nodes
** cellSizeIdxLeaf() => index leaf nodes
*/
static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
u8 *pEnd; /* End mark for a varint */
u32 nSize; /* Size value to return */
#ifdef SQLITE_DEBUG
/* The value returned by this function should always be the same as
** the (CellInfo.nSize) value found by doing a full parse of the
** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
** this function verifies that this invariant is not violated. */
CellInfo debuginfo;
pPage->xParseCell(pPage, pCell, &debuginfo);
#endif
assert( pPage->childPtrSize==4 );
nSize = *pIter;
if( nSize>=0x80 ){
pEnd = &pIter[8];
nSize &= 0x7f;
do{
nSize = (nSize<<7) | (*++pIter & 0x7f);
}while( *(pIter)>=0x80 && pIter<pEnd );
}
pIter++;
testcase( nSize==pPage->maxLocal );
testcase( nSize==(u32)pPage->maxLocal+1 );
if( nSize<=pPage->maxLocal ){
nSize += (u32)(pIter - pCell);
assert( nSize>4 );
}else{
int minLocal = pPage->minLocal;
nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
testcase( nSize==pPage->maxLocal );
testcase( nSize==(u32)pPage->maxLocal+1 );
if( nSize>pPage->maxLocal ){
nSize = minLocal;
}
nSize += 4 + (u16)(pIter - pCell);
}
assert( nSize==debuginfo.nSize || CORRUPT_DB );
return (u16)nSize;
}
static u16 cellSizePtrIdxLeaf(MemPage *pPage, u8 *pCell){
u8 *pIter = pCell; /* For looping over bytes of pCell */
u8 *pEnd; /* End mark for a varint */
u32 nSize; /* Size value to return */
#ifdef SQLITE_DEBUG
/* The value returned by this function should always be the same as
** the (CellInfo.nSize) value found by doing a full parse of the
** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
** this function verifies that this invariant is not violated. */
CellInfo debuginfo;
pPage->xParseCell(pPage, pCell, &debuginfo);
#endif
assert( pPage->childPtrSize==0 );
nSize = *pIter;
if( nSize>=0x80 ){
pEnd = &pIter[8];
nSize &= 0x7f;
do{
nSize = (nSize<<7) | (*++pIter & 0x7f);
}while( *(pIter)>=0x80 && pIter<pEnd );
}
pIter++;
testcase( nSize==pPage->maxLocal );
testcase( nSize==(u32)pPage->maxLocal+1 );
if( nSize<=pPage->maxLocal ){
nSize += (u32)(pIter - pCell);
if( nSize<4 ) nSize = 4;
}else{
int minLocal = pPage->minLocal;
nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
testcase( nSize==pPage->maxLocal );
testcase( nSize==(u32)pPage->maxLocal+1 );
if( nSize>pPage->maxLocal ){
nSize = minLocal;
}
nSize += 4 + (u16)(pIter - pCell);
}
assert( nSize==debuginfo.nSize || CORRUPT_DB );
return (u16)nSize;
}
static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
u8 *pEnd; /* End mark for a varint */
#ifdef SQLITE_DEBUG
/* The value returned by this function should always be the same as
** the (CellInfo.nSize) value found by doing a full parse of the
** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
** this function verifies that this invariant is not violated. */
CellInfo debuginfo;
pPage->xParseCell(pPage, pCell, &debuginfo);
#else
UNUSED_PARAMETER(pPage);
#endif
assert( pPage->childPtrSize==4 );
pEnd = pIter + 9;
while( (*pIter++)&0x80 && pIter<pEnd );
assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
return (u16)(pIter - pCell);
}
static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
u8 *pIter = pCell; /* For looping over bytes of pCell */
u8 *pEnd; /* End mark for a varint */
u32 nSize; /* Size value to return */
#ifdef SQLITE_DEBUG
/* The value returned by this function should always be the same as
** the (CellInfo.nSize) value found by doing a full parse of the
** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
** this function verifies that this invariant is not violated. */
CellInfo debuginfo;
pPage->xParseCell(pPage, pCell, &debuginfo);
#endif
nSize = *pIter;
if( nSize>=0x80 ){
pEnd = &pIter[8];
nSize &= 0x7f;
do{
nSize = (nSize<<7) | (*++pIter & 0x7f);
}while( *(pIter)>=0x80 && pIter<pEnd );
}
pIter++;
/* pIter now points at the 64-bit integer key value, a variable length
** integer. The following block moves pIter to point at the first byte
** past the end of the key value. */
if( (*pIter++)&0x80
&& (*pIter++)&0x80
&& (*pIter++)&0x80
&& (*pIter++)&0x80
&& (*pIter++)&0x80
&& (*pIter++)&0x80
&& (*pIter++)&0x80
&& (*pIter++)&0x80 ){ pIter++; }
testcase( nSize==pPage->maxLocal );
testcase( nSize==(u32)pPage->maxLocal+1 );
if( nSize<=pPage->maxLocal ){
nSize += (u32)(pIter - pCell);
if( nSize<4 ) nSize = 4;
}else{
int minLocal = pPage->minLocal;
nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
testcase( nSize==pPage->maxLocal );
testcase( nSize==(u32)pPage->maxLocal+1 );
if( nSize>pPage->maxLocal ){
nSize = minLocal;
}
nSize += 4 + (u16)(pIter - pCell);
}
assert( nSize==debuginfo.nSize || CORRUPT_DB );
return (u16)nSize;
}
#ifdef SQLITE_DEBUG
/* This variation on cellSizePtr() is used inside of assert() statements
** only. */
static u16 cellSize(MemPage *pPage, int iCell){
return pPage->xCellSize(pPage, findCell(pPage, iCell));
}
#endif
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** The cell pCell is currently part of page pSrc but will ultimately be part
** of pPage. (pSrc and pPage are often the same.) If pCell contains a
** pointer to an overflow page, insert an entry into the pointer-map for
** the overflow page that will be valid after pCell has been moved to pPage.
*/
static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
CellInfo info;
if( *pRC ) return;
assert( pCell!=0 );
pPage->xParseCell(pPage, pCell, &info);
if( info.nLocal<info.nPayload ){
Pgno ovfl;
if( SQLITE_OVERFLOW(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
testcase( pSrc!=pPage );
*pRC = SQLITE_CORRUPT_BKPT;
return;
}
ovfl = get4byte(&pCell[info.nSize-4]);
ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
}
}
#endif
/*
** Defragment the page given. This routine reorganizes cells within the
** page so that there are no free-blocks on the free-block list.
**
** Parameter nMaxFrag is the maximum amount of fragmented space that may be
** present in the page after this routine returns.
**
** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
** b-tree page so that there are no freeblocks or fragment bytes, all
** unused bytes are contained in the unallocated space region, and all
** cells are packed tightly at the end of the page.
*/
static int defragmentPage(MemPage *pPage, int nMaxFrag){
int i; /* Loop counter */
int pc; /* Address of the i-th cell */
int hdr; /* Offset to the page header */
int size; /* Size of a cell */
int usableSize; /* Number of usable bytes on a page */
int cellOffset; /* Offset to the cell pointer array */
int cbrk; /* Offset to the cell content area */
int nCell; /* Number of cells on the page */
unsigned char *data; /* The page data */
unsigned char *temp; /* Temp area for cell content */
unsigned char *src; /* Source of content */
int iCellFirst; /* First allowable cell index */
int iCellLast; /* Last possible cell index */
int iCellStart; /* First cell offset in input */
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( pPage->pBt!=0 );
assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
assert( pPage->nOverflow==0 );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
data = pPage->aData;
hdr = pPage->hdrOffset;
cellOffset = pPage->cellOffset;
nCell = pPage->nCell;
assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
iCellFirst = cellOffset + 2*nCell;
usableSize = pPage->pBt->usableSize;
/* This block handles pages with two or fewer free blocks and nMaxFrag
** or fewer fragmented bytes. In this case it is faster to move the
** two (or one) blocks of cells using memmove() and add the required
** offsets to each pointer in the cell-pointer array than it is to
** reconstruct the entire page. */
if( (int)data[hdr+7]<=nMaxFrag ){
int iFree = get2byte(&data[hdr+1]);
if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
if( iFree ){
int iFree2 = get2byte(&data[iFree]);
if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
u8 *pEnd = &data[cellOffset + nCell*2];
u8 *pAddr;
int sz2 = 0;
int sz = get2byte(&data[iFree+2]);
int top = get2byte(&data[hdr+5]);
if( top>=iFree ){
return SQLITE_CORRUPT_PAGE(pPage);
}
if( iFree2 ){
if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
sz2 = get2byte(&data[iFree2+2]);
if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
sz += sz2;
}else if( iFree+sz>usableSize ){
return SQLITE_CORRUPT_PAGE(pPage);
}
cbrk = top+sz;
assert( cbrk+(iFree-top) <= usableSize );
memmove(&data[cbrk], &data[top], iFree-top);
for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
pc = get2byte(pAddr);
if( pc<iFree ){ put2byte(pAddr, pc+sz); }
else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
}
goto defragment_out;
}
}
}
cbrk = usableSize;
iCellLast = usableSize - 4;
iCellStart = get2byte(&data[hdr+5]);
if( nCell>0 ){
temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
memcpy(temp, data, usableSize);
src = temp;
for(i=0; i<nCell; i++){
u8 *pAddr; /* The i-th cell pointer */
pAddr = &data[cellOffset + i*2];
pc = get2byte(pAddr);
testcase( pc==iCellFirst );
testcase( pc==iCellLast );
/* These conditions have already been verified in btreeInitPage()
** if PRAGMA cell_size_check=ON.
*/
if( pc>iCellLast ){
return SQLITE_CORRUPT_PAGE(pPage);
}
assert( pc>=0 && pc<=iCellLast );
size = pPage->xCellSize(pPage, &src[pc]);
cbrk -= size;
if( cbrk<iCellStart || pc+size>usableSize ){
return SQLITE_CORRUPT_PAGE(pPage);
}
assert( cbrk+size<=usableSize && cbrk>=iCellStart );
testcase( cbrk+size==usableSize );
testcase( pc+size==usableSize );
put2byte(pAddr, cbrk);
memcpy(&data[cbrk], &src[pc], size);
}
}
data[hdr+7] = 0;
defragment_out:
assert( pPage->nFree>=0 );
if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
return SQLITE_CORRUPT_PAGE(pPage);
}
assert( cbrk>=iCellFirst );
put2byte(&data[hdr+5], cbrk);
data[hdr+1] = 0;
data[hdr+2] = 0;
memset(&data[iCellFirst], 0, cbrk-iCellFirst);
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
return SQLITE_OK;
}
/*
** Search the free-list on page pPg for space to store a cell nByte bytes in
** size. If one can be found, return a pointer to the space and remove it
** from the free-list.
**
** If no suitable space can be found on the free-list, return NULL.
**
** This function may detect corruption within pPg. If corruption is
** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
**
** Slots on the free list that are between 1 and 3 bytes larger than nByte
** will be ignored if adding the extra space to the fragmentation count
** causes the fragmentation count to exceed 60.
*/
static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
const int hdr = pPg->hdrOffset; /* Offset to page header */
u8 * const aData = pPg->aData; /* Page data */
int iAddr = hdr + 1; /* Address of ptr to pc */
u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */
int pc = get2byte(pTmp); /* Address of a free slot */
int x; /* Excess size of the slot */
int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
int size; /* Size of the free slot */
assert( pc>0 );
while( pc<=maxPC ){
/* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
** freeblock form a big-endian integer which is the size of the freeblock
** in bytes, including the 4-byte header. */
pTmp = &aData[pc+2];
size = get2byte(pTmp);
if( (x = size - nByte)>=0 ){
testcase( x==4 );
testcase( x==3 );
if( x<4 ){
/* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
** number of bytes in fragments may not exceed 60. */
if( aData[hdr+7]>57 ) return 0;
/* Remove the slot from the free-list. Update the number of
** fragmented bytes within the page. */
memcpy(&aData[iAddr], &aData[pc], 2);
aData[hdr+7] += (u8)x;
return &aData[pc];
}else if( x+pc > maxPC ){
/* This slot extends off the end of the usable part of the page */
*pRc = SQLITE_CORRUPT_PAGE(pPg);
return 0;
}else{
/* The slot remains on the free-list. Reduce its size to account
** for the portion used by the new allocation. */
put2byte(&aData[pc+2], x);
}
return &aData[pc + x];
}
iAddr = pc;
pTmp = &aData[pc];
pc = get2byte(pTmp);
if( pc<=iAddr ){
if( pc ){
/* The next slot in the chain comes before the current slot */
*pRc = SQLITE_CORRUPT_PAGE(pPg);
}
return 0;
}
}
if( pc>maxPC+nByte-4 ){
/* The free slot chain extends off the end of the page */
*pRc = SQLITE_CORRUPT_PAGE(pPg);
}
return 0;
}
/*
** Allocate nByte bytes of space from within the B-Tree page passed
** as the first argument. Write into *pIdx the index into pPage->aData[]
** of the first byte of allocated space. Return either SQLITE_OK or
** an error code (usually SQLITE_CORRUPT).
**
** The caller guarantees that there is sufficient space to make the
** allocation. This routine might need to defragment in order to bring
** all the space together, however. This routine will avoid using
** the first two bytes past the cell pointer area since presumably this
** allocation is being made in order to insert a new cell, so we will
** also end up needing a new cell pointer.
*/
static SQLITE_INLINE int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
u8 * const data = pPage->aData; /* Local cache of pPage->aData */
int top; /* First byte of cell content area */
int rc = SQLITE_OK; /* Integer return code */
u8 *pTmp; /* Temp ptr into data[] */
int gap; /* First byte of gap between cell pointers and cell content */
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( pPage->pBt );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( nByte>=0 ); /* Minimum cell size is 4 */
assert( pPage->nFree>=nByte );
assert( pPage->nOverflow==0 );
assert( nByte < (int)(pPage->pBt->usableSize-8) );
assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
gap = pPage->cellOffset + 2*pPage->nCell;
assert( gap<=65536 );
/* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
** and the reserved space is zero (the usual value for reserved space)
** then the cell content offset of an empty page wants to be 65536.
** However, that integer is too large to be stored in a 2-byte unsigned
** integer, so a value of 0 is used in its place. */
pTmp = &data[hdr+5];
top = get2byte(pTmp);
if( gap>top ){
if( top==0 && pPage->pBt->usableSize==65536 ){
top = 65536;
}else{
return SQLITE_CORRUPT_PAGE(pPage);
}
}else if( top>(int)pPage->pBt->usableSize ){
return SQLITE_CORRUPT_PAGE(pPage);
}
/* If there is enough space between gap and top for one more cell pointer,
** and if the freelist is not empty, then search the
** freelist looking for a slot big enough to satisfy the request.
*/
testcase( gap+2==top );
testcase( gap+1==top );
testcase( gap==top );
if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
if( pSpace ){
int g2;
assert( pSpace+nByte<=data+pPage->pBt->usableSize );
*pIdx = g2 = (int)(pSpace-data);
if( g2<=gap ){
return SQLITE_CORRUPT_PAGE(pPage);
}else{
return SQLITE_OK;
}
}else if( rc ){
return rc;
}
}
/* The request could not be fulfilled using a freelist slot. Check
** to see if defragmentation is necessary.
*/
testcase( gap+2+nByte==top );
if( gap+2+nByte>top ){
assert( pPage->nCell>0 || CORRUPT_DB );
assert( pPage->nFree>=0 );
rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
if( rc ) return rc;
top = get2byteNotZero(&data[hdr+5]);
assert( gap+2+nByte<=top );
}
/* Allocate memory from the gap in between the cell pointer array
** and the cell content area. The btreeComputeFreeSpace() call has already
** validated the freelist. Given that the freelist is valid, there
** is no way that the allocation can extend off the end of the page.
** The assert() below verifies the previous sentence.
*/
top -= nByte;
put2byte(&data[hdr+5], top);
assert( top+nByte <= (int)pPage->pBt->usableSize );
*pIdx = top;
return SQLITE_OK;
}
/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aData[iStart]
** and the size of the block is iSize bytes.
**
** Adjacent freeblocks are coalesced.
**
** Even though the freeblock list was checked by btreeComputeFreeSpace(),
** that routine will not detect overlap between cells or freeblocks. Nor
** does it detect cells or freeblocks that encroach into the reserved bytes
** at the end of the page. So do additional corruption checks inside this
** routine and return SQLITE_CORRUPT if any problems are found.
*/
static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
u16 iPtr; /* Address of ptr to next freeblock */
u16 iFreeBlk; /* Address of the next freeblock */
u8 hdr; /* Page header size. 0 or 100 */
u8 nFrag = 0; /* Reduction in fragmentation */
u16 iOrigSize = iSize; /* Original value of iSize */
u16 x; /* Offset to cell content area */
u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
unsigned char *data = pPage->aData; /* Page content */
u8 *pTmp; /* Temporary ptr into data[] */
assert( pPage->pBt!=0 );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( iSize>=4 ); /* Minimum cell size is 4 */
assert( CORRUPT_DB || iStart<=pPage->pBt->usableSize-4 );
/* The list of freeblocks must be in ascending order. Find the
** spot on the list where iStart should be inserted.
*/
hdr = pPage->hdrOffset;
iPtr = hdr + 1;
if( data[iPtr+1]==0 && data[iPtr]==0 ){
iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
}else{
while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
if( iFreeBlk<=iPtr ){
if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
return SQLITE_CORRUPT_PAGE(pPage);
}
iPtr = iFreeBlk;
}
if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
return SQLITE_CORRUPT_PAGE(pPage);
}
assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
/* At this point:
** iFreeBlk: First freeblock after iStart, or zero if none
** iPtr: The address of a pointer to iFreeBlk
**
** Check to see if iFreeBlk should be coalesced onto the end of iStart.
*/
if( iFreeBlk && iEnd+3>=iFreeBlk ){
nFrag = iFreeBlk - iEnd;
if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
if( iEnd > pPage->pBt->usableSize ){
return SQLITE_CORRUPT_PAGE(pPage);
}
iSize = iEnd - iStart;
iFreeBlk = get2byte(&data[iFreeBlk]);
}
/* If iPtr is another freeblock (that is, if iPtr is not the freelist
** pointer in the page header) then check to see if iStart should be
** coalesced onto the end of iPtr.
*/
if( iPtr>hdr+1 ){
int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
if( iPtrEnd+3>=iStart ){
if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
nFrag += iStart - iPtrEnd;
iSize = iEnd - iPtr;
iStart = iPtr;
}
}
if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
data[hdr+7] -= nFrag;
}
pTmp = &data[hdr+5];
x = get2byte(pTmp);
if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
/* Overwrite deleted information with zeros when the secure_delete
** option is enabled */
memset(&data[iStart], 0, iSize);
}
if( iStart<=x ){
/* The new freeblock is at the beginning of the cell content area,
** so just extend the cell content area rather than create another
** freelist entry */
if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
put2byte(&data[hdr+1], iFreeBlk);
put2byte(&data[hdr+5], iEnd);
}else{
/* Insert the new freeblock into the freelist */
put2byte(&data[iPtr], iStart);
put2byte(&data[iStart], iFreeBlk);
put2byte(&data[iStart+2], iSize);
}
pPage->nFree += iOrigSize;
return SQLITE_OK;
}
/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
**
** Only the following combinations are supported. Anything different
** indicates a corrupt database files:
**
** PTF_ZERODATA (0x02, 2)
** PTF_LEAFDATA | PTF_INTKEY (0x05, 5)
** PTF_ZERODATA | PTF_LEAF (0x0a, 10)
** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13)
*/
static int decodeFlags(MemPage *pPage, int flagByte){
BtShared *pBt; /* A copy of pPage->pBt */
assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
pBt = pPage->pBt;
pPage->max1bytePayload = pBt->max1bytePayload;
if( flagByte>=(PTF_ZERODATA | PTF_LEAF) ){
pPage->childPtrSize = 0;
pPage->leaf = 1;
if( flagByte==(PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF) ){
pPage->intKeyLeaf = 1;
pPage->xCellSize = cellSizePtrTableLeaf;
pPage->xParseCell = btreeParseCellPtr;
pPage->intKey = 1;
pPage->maxLocal = pBt->maxLeaf;
pPage->minLocal = pBt->minLeaf;
}else if( flagByte==(PTF_ZERODATA | PTF_LEAF) ){
pPage->intKey = 0;
pPage->intKeyLeaf = 0;
pPage->xCellSize = cellSizePtrIdxLeaf;
pPage->xParseCell = btreeParseCellPtrIndex;
pPage->maxLocal = pBt->maxLocal;
pPage->minLocal = pBt->minLocal;
}else{
pPage->intKey = 0;
pPage->intKeyLeaf = 0;
pPage->xCellSize = cellSizePtrIdxLeaf;
pPage->xParseCell = btreeParseCellPtrIndex;
return SQLITE_CORRUPT_PAGE(pPage);
}
}else{
pPage->childPtrSize = 4;
pPage->leaf = 0;
if( flagByte==(PTF_ZERODATA) ){
pPage->intKey = 0;
pPage->intKeyLeaf = 0;
pPage->xCellSize = cellSizePtr;
pPage->xParseCell = btreeParseCellPtrIndex;
pPage->maxLocal = pBt->maxLocal;
pPage->minLocal = pBt->minLocal;
}else if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
pPage->intKeyLeaf = 0;
pPage->xCellSize = cellSizePtrNoPayload;
pPage->xParseCell = btreeParseCellPtrNoPayload;
pPage->intKey = 1;
pPage->maxLocal = pBt->maxLeaf;
pPage->minLocal = pBt->minLeaf;
}else{
pPage->intKey = 0;
pPage->intKeyLeaf = 0;
pPage->xCellSize = cellSizePtr;
pPage->xParseCell = btreeParseCellPtrIndex;
return SQLITE_CORRUPT_PAGE(pPage);
}
}
return SQLITE_OK;
}
/*
** Compute the amount of freespace on the page. In other words, fill
** in the pPage->nFree field.
*/
static int btreeComputeFreeSpace(MemPage *pPage){
int pc; /* Address of a freeblock within pPage->aData[] */
u8 hdr; /* Offset to beginning of page header */
u8 *data; /* Equal to pPage->aData */
int usableSize; /* Amount of usable space on each page */
int nFree; /* Number of unused bytes on the page */
int top; /* First byte of the cell content area */
int iCellFirst; /* First allowable cell or freeblock offset */
int iCellLast; /* Last possible cell or freeblock offset */
assert( pPage->pBt!=0 );
assert( pPage->pBt->db!=0 );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
assert( pPage->isInit==1 );
assert( pPage->nFree<0 );
usableSize = pPage->pBt->usableSize;
hdr = pPage->hdrOffset;
data = pPage->aData;
/* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
** the start of the cell content area. A zero value for this integer is
** interpreted as 65536. */
top = get2byteNotZero(&data[hdr+5]);
iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
iCellLast = usableSize - 4;
/* Compute the total free space on the page
** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
** start of the first freeblock on the page, or is zero if there are no
** freeblocks. */
pc = get2byte(&data[hdr+1]);
nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
if( pc>0 ){
u32 next, size;
if( pc<top ){
/* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
** always be at least one cell before the first freeblock.
*/
return SQLITE_CORRUPT_PAGE(pPage);
}
while( 1 ){
if( pc>iCellLast ){
/* Freeblock off the end of the page */
return SQLITE_CORRUPT_PAGE(pPage);
}
next = get2byte(&data[pc]);
size = get2byte(&data[pc+2]);
nFree = nFree + size;
if( next<=pc+size+3 ) break;
pc = next;
}
if( next>0 ){
/* Freeblock not in ascending order */
return SQLITE_CORRUPT_PAGE(pPage);
}
if( pc+size>(unsigned int)usableSize ){
/* Last freeblock extends past page end */
return SQLITE_CORRUPT_PAGE(pPage);
}
}
/* At this point, nFree contains the sum of the offset to the start
** of the cell-content area plus the number of free bytes within
** the cell-content area. If this is greater than the usable-size
** of the page, then the page must be corrupted. This check also
** serves to verify that the offset to the start of the cell-content
** area, according to the page header, lies within the page.
*/
if( nFree>usableSize || nFree<iCellFirst ){
return SQLITE_CORRUPT_PAGE(pPage);
}
pPage->nFree = (u16)(nFree - iCellFirst);
return SQLITE_OK;
}
/*
** Do additional sanity check after btreeInitPage() if
** PRAGMA cell_size_check=ON
*/
static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
int iCellFirst; /* First allowable cell or freeblock offset */
int iCellLast; /* Last possible cell or freeblock offset */
int i; /* Index into the cell pointer array */
int sz; /* Size of a cell */
int pc; /* Address of a freeblock within pPage->aData[] */
u8 *data; /* Equal to pPage->aData */
int usableSize; /* Maximum usable space on the page */
int cellOffset; /* Start of cell content area */
iCellFirst = pPage->cellOffset + 2*pPage->nCell;
usableSize = pPage->pBt->usableSize;
iCellLast = usableSize - 4;
data = pPage->aData;
cellOffset = pPage->cellOffset;
if( !pPage->leaf ) iCellLast--;
for(i=0; i<pPage->nCell; i++){
pc = get2byteAligned(&data[cellOffset+i*2]);
testcase( pc==iCellFirst );
testcase( pc==iCellLast );
if( pc<iCellFirst || pc>iCellLast ){
return SQLITE_CORRUPT_PAGE(pPage);
}
sz = pPage->xCellSize(pPage, &data[pc]);
testcase( pc+sz==usableSize );
if( pc+sz>usableSize ){
return SQLITE_CORRUPT_PAGE(pPage);
}
}
return SQLITE_OK;
}
/*
** Initialize the auxiliary information for a disk block.
**
** Return SQLITE_OK on success. If we see that the page does
** not contain a well-formed database page, then return
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed. It only shows that
** we failed to detect any corruption.
*/
static int btreeInitPage(MemPage *pPage){
u8 *data; /* Equal to pPage->aData */
BtShared *pBt; /* The main btree structure */
assert( pPage->pBt!=0 );
assert( pPage->pBt->db!=0 );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
assert( pPage->isInit==0 );
pBt = pPage->pBt;
data = pPage->aData + pPage->hdrOffset;
/* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
** the b-tree page type. */
if( decodeFlags(pPage, data[0]) ){
return SQLITE_CORRUPT_PAGE(pPage);
}
assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
pPage->maskPage = (u16)(pBt->pageSize - 1);
pPage->nOverflow = 0;
pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
pPage->aCellIdx = data + pPage->childPtrSize + 8;
pPage->aDataEnd = pPage->aData + pBt->pageSize;
pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
/* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
** number of cells on the page. */
pPage->nCell = get2byte(&data[3]);
if( pPage->nCell>MX_CELL(pBt) ){
/* To many cells for a single page. The page must be corrupt */
return SQLITE_CORRUPT_PAGE(pPage);
}
testcase( pPage->nCell==MX_CELL(pBt) );
/* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
** possible for a root page of a table that contains no rows) then the
** offset to the cell content area will equal the page size minus the
** bytes of reserved space. */
assert( pPage->nCell>0
|| get2byteNotZero(&data[5])==(int)pBt->usableSize
|| CORRUPT_DB );
pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
pPage->isInit = 1;
if( pBt->db->flags & SQLITE_CellSizeCk ){
return btreeCellSizeCheck(pPage);
}
return SQLITE_OK;
}
/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(MemPage *pPage, int flags){
unsigned char *data = pPage->aData;
BtShared *pBt = pPage->pBt;
u8 hdr = pPage->hdrOffset;
u16 first;
assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
assert( sqlite3PagerGetData(pPage->pDbPage) == data );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( sqlite3_mutex_held(pBt->mutex) );
if( pBt->btsFlags & BTS_FAST_SECURE ){
memset(&data[hdr], 0, pBt->usableSize - hdr);
}
data[hdr] = (char)flags;
first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
memset(&data[hdr+1], 0, 4);
data[hdr+7] = 0;
put2byte(&data[hdr+5], pBt->usableSize);
pPage->nFree = (u16)(pBt->usableSize - first);
decodeFlags(pPage, flags);
pPage->cellOffset = first;
pPage->aDataEnd = &data[pBt->pageSize];
pPage->aCellIdx = &data[first];
pPage->aDataOfst = &data[pPage->childPtrSize];
pPage->nOverflow = 0;
assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
pPage->maskPage = (u16)(pBt->pageSize - 1);
pPage->nCell = 0;
pPage->isInit = 1;
}
/*
** Convert a DbPage obtained from the pager into a MemPage used by
** the btree layer.
*/
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
if( pgno!=pPage->pgno ){
pPage->aData = sqlite3PagerGetData(pDbPage);
pPage->pDbPage = pDbPage;
pPage->pBt = pBt;
pPage->pgno = pgno;
pPage->hdrOffset = pgno==1 ? 100 : 0;
}
assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
return pPage;
}
/*
** Get a page from the pager. Initialize the MemPage.pBt and
** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
**
** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
** about the content of the page at this time. So do not go to the disk
** to fetch the content. Just fill in the content with zeros for now.
** If in the future we call sqlite3PagerWrite() on this page, that
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
static int btreeGetPage(
BtShared *pBt, /* The btree */
Pgno pgno, /* Number of the page to fetch */
MemPage **ppPage, /* Return the page in this parameter */
int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
){
int rc;
DbPage *pDbPage;
assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
assert( sqlite3_mutex_held(pBt->mutex) );
rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
if( rc ) return rc;
*ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
return SQLITE_OK;
}
/*
** Retrieve a page from the pager cache. If the requested page is not
** already in the pager cache return NULL. Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
*/
static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
DbPage *pDbPage;
assert( sqlite3_mutex_held(pBt->mutex) );
pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
if( pDbPage ){
return btreePageFromDbPage(pDbPage, pgno, pBt);
}
return 0;
}
/*
** Return the size of the database file in pages. If there is any kind of
** error, return ((unsigned int)-1).
*/
static Pgno btreePagecount(BtShared *pBt){
return pBt->nPage;
}
Pgno sqlite3BtreeLastPage(Btree *p){
assert( sqlite3BtreeHoldsMutex(p) );
return btreePagecount(p->pBt);
}
/*
** Get a page from the pager and initialize it.
*/
static int getAndInitPage(
BtShared *pBt, /* The database file */
Pgno pgno, /* Number of the page to get */
MemPage **ppPage, /* Write the page pointer here */
int bReadOnly /* True for a read-only page */
){
int rc;
DbPage *pDbPage;
MemPage *pPage;
assert( sqlite3_mutex_held(pBt->mutex) );
if( pgno>btreePagecount(pBt) ){
*ppPage = 0;
return SQLITE_CORRUPT_BKPT;
}
rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
if( rc ){
*ppPage = 0;
return rc;
}
pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
if( pPage->isInit==0 ){
btreePageFromDbPage(pDbPage, pgno, pBt);
rc = btreeInitPage(pPage);
if( rc!=SQLITE_OK ){
releasePage(pPage);
*ppPage = 0;
return rc;
}
}
assert( pPage->pgno==pgno || CORRUPT_DB );
assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
*ppPage = pPage;
return SQLITE_OK;
}
/*
** Release a MemPage. This should be called once for each prior
** call to btreeGetPage.
**
** Page1 is a special case and must be released using releasePageOne().
*/
static void releasePageNotNull(MemPage *pPage){
assert( pPage->aData );
assert( pPage->pBt );
assert( pPage->pDbPage!=0 );
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
sqlite3PagerUnrefNotNull(pPage->pDbPage);
}
static void releasePage(MemPage *pPage){
if( pPage ) releasePageNotNull(pPage);
}
static void releasePageOne(MemPage *pPage){
assert( pPage!=0 );
assert( pPage->aData );
assert( pPage->pBt );
assert( pPage->pDbPage!=0 );
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
sqlite3PagerUnrefPageOne(pPage->pDbPage);
}
/*
** Get an unused page.
**
** This works just like btreeGetPage() with the addition:
**
** * If the page is already in use for some other purpose, immediately
** release it and return an SQLITE_CURRUPT error.
** * Make sure the isInit flag is clear
*/
static int btreeGetUnusedPage(
BtShared *pBt, /* The btree */
Pgno pgno, /* Number of the page to fetch */
MemPage **ppPage, /* Return the page in this parameter */
int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
){
int rc = btreeGetPage(pBt, pgno, ppPage, flags);
if( rc==SQLITE_OK ){
if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
releasePage(*ppPage);
*ppPage = 0;
return SQLITE_CORRUPT_BKPT;
}
(*ppPage)->isInit = 0;
}else{
*ppPage = 0;
}
return rc;
}
/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
**
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
static void pageReinit(DbPage *pData){
MemPage *pPage;
pPage = (MemPage *)sqlite3PagerGetExtra(pData);
assert( sqlite3PagerPageRefcount(pData)>0 );
if( pPage->isInit ){
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
pPage->isInit = 0;
if( sqlite3PagerPageRefcount(pData)>1 ){
/* pPage might not be a btree page; it might be an overflow page
** or ptrmap page or a free page. In those cases, the following
** call to btreeInitPage() will likely return SQLITE_CORRUPT.
** But no harm is done by this. And it is very important that
** btreeInitPage() be called on every btree page so we make
** the call for every page that comes in for re-initializing. */
btreeInitPage(pPage);
}
}
}
/*
** Invoke the busy handler for a btree.
*/
static int btreeInvokeBusyHandler(void *pArg){
BtShared *pBt = (BtShared*)pArg;
assert( pBt->db );
assert( sqlite3_mutex_held(pBt->db->mutex) );
return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
}
/*
** Open a database file.
**
** zFilename is the name of the database file. If zFilename is NULL
** then an ephemeral database is created. The ephemeral database might
** be exclusively in memory, or it might use a disk-based memory cache.
** Either way, the ephemeral database will be automatically deleted
** when sqlite3BtreeClose() is called.
**
** If zFilename is ":memory:" then an in-memory database is created
** that is automatically destroyed when it is closed.
**
** The "flags" parameter is a bitmask that might contain bits like
** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
**
** If the database is already opened in the same database connection
** and we are in shared cache mode, then the open will fail with an
** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
** objects in the same database connection since doing so will lead
** to problems with locking.
*/
int sqlite3BtreeOpen(
sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
const char *zFilename, /* Name of the file containing the BTree database */
sqlite3 *db, /* Associated database handle */
Btree **ppBtree, /* Pointer to new Btree object written here */
int flags, /* Options */
int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
){
BtShared *pBt = 0; /* Shared part of btree structure */
Btree *p; /* Handle to return */
sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
int rc = SQLITE_OK; /* Result code from this function */
u8 nReserve; /* Byte of unused space on each page */
unsigned char zDbHeader[100]; /* Database header content */
/* True if opening an ephemeral, temporary database */
const int isTempDb = zFilename==0 || zFilename[0]==0;
/* Set the variable isMemdb to true for an in-memory database, or
** false for a file-based database.
*/
#ifdef SQLITE_OMIT_MEMORYDB
const int isMemdb = 0;
#else
const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
|| (isTempDb && sqlite3TempInMemory(db))
|| (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
#endif
assert( db!=0 );
assert( pVfs!=0 );
assert( sqlite3_mutex_held(db->mutex) );
assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
/* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
/* A BTREE_SINGLE database is always a temporary and/or ephemeral */
assert( (flags & BTREE_SINGLE)==0 || isTempDb );
if( isMemdb ){
flags |= BTREE_MEMORY;
}
if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
}
p = sqlite3MallocZero(sizeof(Btree));
if( !p ){
return SQLITE_NOMEM_BKPT;
}
p->inTrans = TRANS_NONE;
p->db = db;
#ifndef SQLITE_OMIT_SHARED_CACHE
p->lock.pBtree = p;
p->lock.iTable = 1;
#endif
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
/*
** If this Btree is a candidate for shared cache, try to find an
** existing BtShared object that we can share with
*/
if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
int nFilename = sqlite3Strlen30(zFilename)+1;
int nFullPathname = pVfs->mxPathname+1;
char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
p->sharable = 1;
if( !zFullPathname ){
sqlite3_free(p);
return SQLITE_NOMEM_BKPT;
}
if( isMemdb ){
memcpy(zFullPathname, zFilename, nFilename);
}else{
rc = sqlite3OsFullPathname(pVfs, zFilename,
nFullPathname, zFullPathname);
if( rc ){
if( rc==SQLITE_OK_SYMLINK ){
rc = SQLITE_OK;
}else{
sqlite3_free(zFullPathname);
sqlite3_free(p);
return rc;
}
}
}
#if SQLITE_THREADSAFE
mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
sqlite3_mutex_enter(mutexOpen);
mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
sqlite3_mutex_enter(mutexShared);
#endif
for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
assert( pBt->nRef>0 );
if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
&& sqlite3PagerVfs(pBt->pPager)==pVfs ){
int iDb;
for(iDb=db->nDb-1; iDb>=0; iDb--){
Btree *pExisting = db->aDb[iDb].pBt;
if( pExisting && pExisting->pBt==pBt ){
sqlite3_mutex_leave(mutexShared);
sqlite3_mutex_leave(mutexOpen);
sqlite3_free(zFullPathname);
sqlite3_free(p);
return SQLITE_CONSTRAINT;
}
}
p->pBt = pBt;
pBt->nRef++;
break;
}
}
sqlite3_mutex_leave(mutexShared);
sqlite3_free(zFullPathname);
}
#ifdef SQLITE_DEBUG
else{
/* In debug mode, we mark all persistent databases as sharable
** even when they are not. This exercises the locking code and
** gives more opportunity for asserts(sqlite3_mutex_held())
** statements to find locking problems.
*/
p->sharable = 1;
}
#endif
}
#endif
if( pBt==0 ){
/*
** The following asserts make sure that structures used by the btree are
** the right size. This is to guard against size changes that result
** when compiling on a different architecture.
*/
assert( sizeof(i64)==8 );
assert( sizeof(u64)==8 );
assert( sizeof(u32)==4 );
assert( sizeof(u16)==2 );
assert( sizeof(Pgno)==4 );
/* Suppress false-positive compiler warning from PVS-Studio */
memset(&zDbHeader[16], 0, 8);
pBt = sqlite3MallocZero( sizeof(*pBt) );
if( pBt==0 ){
rc = SQLITE_NOMEM_BKPT;
goto btree_open_out;
}
rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
sizeof(MemPage), flags, vfsFlags, pageReinit);
if( rc==SQLITE_OK ){
sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
}
if( rc!=SQLITE_OK ){
goto btree_open_out;
}
pBt->openFlags = (u8)flags;
pBt->db = db;
sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
p->pBt = pBt;
pBt->pCursor = 0;
pBt->pPage1 = 0;
if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
#if defined(SQLITE_SECURE_DELETE)
pBt->btsFlags |= BTS_SECURE_DELETE;
#elif defined(SQLITE_FAST_SECURE_DELETE)
pBt->btsFlags |= BTS_OVERWRITE;
#endif
/* EVIDENCE-OF: R-51873-39618 The page size for a database file is
** determined by the 2-byte integer located at an offset of 16 bytes from
** the beginning of the database file. */
pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
|| ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the magic name ":memory:" will create an in-memory database, then
** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
** regular file-name. In this case the auto-vacuum applies as per normal.
*/
if( zFilename && !isMemdb ){
pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
}
#endif
nReserve = 0;
}else{
/* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
** determined by the one-byte unsigned integer found at an offset of 20
** into the database file header. */
nReserve = zDbHeader[20];
pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
}
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
if( rc ) goto btree_open_out;
pBt->usableSize = pBt->pageSize - nReserve;
assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
/* Add the new BtShared object to the linked list sharable BtShareds.
*/
pBt->nRef = 1;
if( p->sharable ){
MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
if( pBt->mutex==0 ){
rc = SQLITE_NOMEM_BKPT;
goto btree_open_out;
}
}
sqlite3_mutex_enter(mutexShared);
pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
sqlite3_mutex_leave(mutexShared);
}
#endif
}
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
/* If the new Btree uses a sharable pBtShared, then link the new
** Btree into the list of all sharable Btrees for the same connection.
** The list is kept in ascending order by pBt address.
*/
if( p->sharable ){
int i;
Btree *pSib;
for(i=0; i<db->nDb; i++){
if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
while( pSib->pPrev ){ pSib = pSib->pPrev; }
if( (uptr)p->pBt<(uptr)pSib->pBt ){
p->pNext = pSib;
p->pPrev = 0;
pSib->pPrev = p;
}else{
while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
pSib = pSib->pNext;
}
p->pNext = pSib->pNext;
p->pPrev = pSib;
if( p->pNext ){
p->pNext->pPrev = p;
}
pSib->pNext = p;
}
break;
}
}
}
#endif
*ppBtree = p;
btree_open_out:
if( rc!=SQLITE_OK ){
if( pBt && pBt->pPager ){
sqlite3PagerClose(pBt->pPager, 0);
}
sqlite3_free(pBt);
sqlite3_free(p);
*ppBtree = 0;
}else{
sqlite3_file *pFile;
/* If the B-Tree was successfully opened, set the pager-cache size to the
** default value. Except, when opening on an existing shared pager-cache,
** do not change the pager-cache size.
*/
if( sqlite3BtreeSchema(p, 0, 0)==0 ){
sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
}
pFile = sqlite3PagerFile(pBt->pPager);
if( pFile->pMethods ){
sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
}
}
if( mutexOpen ){
assert( sqlite3_mutex_held(mutexOpen) );
sqlite3_mutex_leave(mutexOpen);
}
assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
return rc;
}
/*
** Decrement the BtShared.nRef counter. When it reaches zero,
** remove the BtShared structure from the sharing list. Return
** true if the BtShared.nRef counter reaches zero and return
** false if it is still positive.
*/
static int removeFromSharingList(BtShared *pBt){
#ifndef SQLITE_OMIT_SHARED_CACHE
MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
BtShared *pList;
int removed = 0;
assert( sqlite3_mutex_notheld(pBt->mutex) );
MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
sqlite3_mutex_enter(pMainMtx);
pBt->nRef--;
if( pBt->nRef<=0 ){
if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
}else{
pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
while( ALWAYS(pList) && pList->pNext!=pBt ){
pList=pList->pNext;
}
if( ALWAYS(pList) ){
pList->pNext = pBt->pNext;
}
}
if( SQLITE_THREADSAFE ){
sqlite3_mutex_free(pBt->mutex);
}
removed = 1;
}
sqlite3_mutex_leave(pMainMtx);
return removed;
#else
return 1;
#endif
}
/*
** Make sure pBt->pTmpSpace points to an allocation of
** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
** pointer.
*/
static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
assert( pBt!=0 );
assert( pBt->pTmpSpace==0 );
/* This routine is called only by btreeCursor() when allocating the
** first write cursor for the BtShared object */
assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
if( pBt->pTmpSpace==0 ){
BtCursor *pCur = pBt->pCursor;
pBt->pCursor = pCur->pNext; /* Unlink the cursor */
memset(pCur, 0, sizeof(*pCur));
return SQLITE_NOMEM_BKPT;
}
/* One of the uses of pBt->pTmpSpace is to format cells before
** inserting them into a leaf page (function fillInCell()). If
** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
** by the various routines that manipulate binary cells. Which
** can mean that fillInCell() only initializes the first 2 or 3
** bytes of pTmpSpace, but that the first 4 bytes are copied from
** it into a database page. This is not actually a problem, but it
** does cause a valgrind error when the 1 or 2 bytes of uninitialized
** data is passed to system call write(). So to avoid this error,
** zero the first 4 bytes of temp space here.
**
** Also: Provide four bytes of initialized space before the
** beginning of pTmpSpace as an area available to prepend the
** left-child pointer to the beginning of a cell.
*/
memset(pBt->pTmpSpace, 0, 8);
pBt->pTmpSpace += 4;
return SQLITE_OK;
}
/*
** Free the pBt->pTmpSpace allocation
*/
static void freeTempSpace(BtShared *pBt){
if( pBt->pTmpSpace ){
pBt->pTmpSpace -= 4;
sqlite3PageFree(pBt->pTmpSpace);
pBt->pTmpSpace = 0;
}
}
/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
BtShared *pBt = p->pBt;
/* Close all cursors opened via this handle. */
assert( sqlite3_mutex_held(p->db->mutex) );
sqlite3BtreeEnter(p);
/* Verify that no other cursors have this Btree open */
#ifdef SQLITE_DEBUG
{
BtCursor *pCur = pBt->pCursor;
while( pCur ){
BtCursor *pTmp = pCur;
pCur = pCur->pNext;
assert( pTmp->pBtree!=p );
}
}
#endif
/* Rollback any active transaction and free the handle structure.
** The call to sqlite3BtreeRollback() drops any table-locks held by
** this handle.
*/
sqlite3BtreeRollback(p, SQLITE_OK, 0);
sqlite3BtreeLeave(p);
/* If there are still other outstanding references to the shared-btree
** structure, return now. The remainder of this procedure cleans
** up the shared-btree.
*/
assert( p->wantToLock==0 && p->locked==0 );
if( !p->sharable || removeFromSharingList(pBt) ){
/* The pBt is no longer on the sharing list, so we can access
** it without having to hold the mutex.
**
** Clean out and delete the BtShared object.
*/
assert( !pBt->pCursor );
sqlite3PagerClose(pBt->pPager, p->db);
if( pBt->xFreeSchema && pBt->pSchema ){
pBt->xFreeSchema(pBt->pSchema);
}
sqlite3DbFree(0, pBt->pSchema);
freeTempSpace(pBt);
sqlite3_free(pBt);
}
#ifndef SQLITE_OMIT_SHARED_CACHE
assert( p->wantToLock==0 );
assert( p->locked==0 );
if( p->pPrev ) p->pPrev->pNext = p->pNext;
if( p->pNext ) p->pNext->pPrev = p->pPrev;
#endif
sqlite3_free(p);
return SQLITE_OK;
}
/*
** Change the "soft" limit on the number of pages in the cache.
** Unused and unmodified pages will be recycled when the number of
** pages in the cache exceeds this soft limit. But the size of the
** cache is allowed to grow larger than this limit if it contains
** dirty pages or pages still in active use.
*/
int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
BtShared *pBt = p->pBt;
assert( sqlite3_mutex_held(p->db->mutex) );
sqlite3BtreeEnter(p);
sqlite3PagerSetCachesize(pBt->pPager, mxPage);
sqlite3BtreeLeave(p);
return SQLITE_OK;
}
/*
** Change the "spill" limit on the number of pages in the cache.
** If the number of pages exceeds this limit during a write transaction,
** the pager might attempt to "spill" pages to the journal early in
** order to free up memory.
**
** The value returned is the current spill size. If zero is passed
** as an argument, no changes are made to the spill size setting, so
** using mxPage of 0 is a way to query the current spill size.
*/
int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
BtShared *pBt = p->pBt;
int res;
assert( sqlite3_mutex_held(p->db->mutex) );
sqlite3BtreeEnter(p);
res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
sqlite3BtreeLeave(p);
return res;
}
#if SQLITE_MAX_MMAP_SIZE>0
/*
** Change the limit on the amount of the database file that may be
** memory mapped.
*/
int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
BtShared *pBt = p->pBt;
assert( sqlite3_mutex_held(p->db->mutex) );
sqlite3BtreeEnter(p);
sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
sqlite3BtreeLeave(p);
return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */
/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures. Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage) Level 2 is the default. There
** is a very low but non-zero probability of damage. Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetPagerFlags(
Btree *p, /* The btree to set the safety level on */
unsigned pgFlags /* Various PAGER_* flags */
){
BtShared *pBt = p->pBt;
assert( sqlite3_mutex_held(p->db->mutex) );
sqlite3BtreeEnter(p);
sqlite3PagerSetFlags(pBt->pPager, pgFlags);
sqlite3BtreeLeave(p);
return SQLITE_OK;
}
#endif
/*
** Change the default pages size and the number of reserved bytes per page.
** Or, if the page size has already been fixed, return SQLITE_READONLY
** without changing anything.
**
** The page size must be a power of 2 between 512 and 65536. If the page
** size supplied does not meet this constraint then the page size is not
** changed.
**
** Page sizes are constrained to be a power of two so that the region
** of the database file used for locking (beginning at PENDING_BYTE,
** the first byte past the 1GB boundary, 0x40000000) needs to occur
** at the beginning of a page.
**
** If parameter nReserve is less than zero, then the number of reserved
** bytes per page is left unchanged.
**
** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
** and autovacuum mode can no longer be changed.
*/
int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
int rc = SQLITE_OK;
int x;
BtShared *pBt = p->pBt;
assert( nReserve>=0 && nReserve<=255 );
sqlite3BtreeEnter(p);
pBt->nReserveWanted = nReserve;
x = pBt->pageSize - pBt->usableSize;
if( nReserve<x ) nReserve = x;
if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
sqlite3BtreeLeave(p);
return SQLITE_READONLY;
}
assert( nReserve>=0 && nReserve<=255 );
if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
((pageSize-1)&pageSize)==0 ){
assert( (pageSize & 7)==0 );
assert( !pBt->pCursor );
if( nReserve>32 && pageSize==512 ) pageSize = 1024;
pBt->pageSize = (u32)pageSize;
freeTempSpace(pBt);
}
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
pBt->usableSize = pBt->pageSize - (u16)nReserve;
if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
sqlite3BtreeLeave(p);
return rc;
}
/*
** Return the currently defined page size
*/
int sqlite3BtreeGetPageSize(Btree *p){
return p->pBt->pageSize;
}
/*
** This function is similar to sqlite3BtreeGetReserve(), except that it
** may only be called if it is guaranteed that the b-tree mutex is already
** held.
**
** This is useful in one special case in the backup API code where it is
** known that the shared b-tree mutex is held, but the mutex on the
** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
** were to be called, it might collide with some other operation on the
** database handle that owns *p, causing undefined behavior.
*/
int sqlite3BtreeGetReserveNoMutex(Btree *p){
int n;
assert( sqlite3_mutex_held(p->pBt->mutex) );
n = p->pBt->pageSize - p->pBt->usableSize;
return n;
}
/*
** Return the number of bytes of space at the end of every page that
** are intentionally left unused. This is the "reserved" space that is
** sometimes used by extensions.
**
** The value returned is the larger of the current reserve size and
** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
** The amount of reserve can only grow - never shrink.
*/
int sqlite3BtreeGetRequestedReserve(Btree *p){
int n1, n2;
sqlite3BtreeEnter(p);
n1 = (int)p->pBt->nReserveWanted;
n2 = sqlite3BtreeGetReserveNoMutex(p);
sqlite3BtreeLeave(p);
return n1>n2 ? n1 : n2;
}
/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
Pgno n;
sqlite3BtreeEnter(p);
n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
sqlite3BtreeLeave(p);
return n;
}
/*
** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
**
** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
** newFlag==(-1) No changes
**
** This routine acts as a query if newFlag is less than zero
**
** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
** freelist leaf pages are not written back to the database. Thus in-page
** deleted content is cleared, but freelist deleted content is not.
**
** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
** that freelist leaf pages are written back into the database, increasing
** the amount of disk I/O.
*/
int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
int b;
if( p==0 ) return 0;
sqlite3BtreeEnter(p);
assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
if( newFlag>=0 ){
p->pBt->btsFlags &= ~BTS_FAST_SECURE;
p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
}
b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
sqlite3BtreeLeave(p);
return b;
}
/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
#ifdef SQLITE_OMIT_AUTOVACUUM
return SQLITE_READONLY;
#else
BtShared *pBt = p->pBt;
int rc = SQLITE_OK;
u8 av = (u8)autoVacuum;
sqlite3BtreeEnter(p);
if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
rc = SQLITE_READONLY;
}else{
pBt->autoVacuum = av ?1:0;
pBt->incrVacuum = av==2 ?1:0;
}
sqlite3BtreeLeave(p);
return rc;
#endif
}
/*
** Return the value of the 'auto-vacuum' property. If auto-vacuum is
** enabled 1 is returned. Otherwise 0.
*/
int sqlite3BtreeGetAutoVacuum(Btree *p){
#ifdef SQLITE_OMIT_AUTOVACUUM
return BTREE_AUTOVACUUM_NONE;
#else
int rc;
sqlite3BtreeEnter(p);
rc = (
(!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
(!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
BTREE_AUTOVACUUM_INCR
);
sqlite3BtreeLeave(p);
return rc;
#endif
}
/*
** If the user has not set the safety-level for this database connection
** using "PRAGMA synchronous", and if the safety-level is not already
** set to the value passed to this function as the second parameter,
** set it so.
*/
#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
&& !defined(SQLITE_OMIT_WAL)
static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
sqlite3 *db;
Db *pDb;
if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
if( pDb->bSyncSet==0
&& pDb->safety_level!=safety_level
&& pDb!=&db->aDb[1]
){
pDb->safety_level = safety_level;
sqlite3PagerSetFlags(pBt->pPager,
pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
}
}
}
#else
# define setDefaultSyncFlag(pBt,safety_level)
#endif
/* Forward declaration */
static int newDatabase(BtShared*);
/*
** Get a reference to pPage1 of the database file. This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success. If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
** is returned if we run out of memory.
*/
static int lockBtree(BtShared *pBt){
int rc; /* Result code from subfunctions */
MemPage *pPage1; /* Page 1 of the database file */
u32 nPage; /* Number of pages in the database */
u32 nPageFile = 0; /* Number of pages in the database file */
assert( sqlite3_mutex_held(pBt->mutex) );
assert( pBt->pPage1==0 );
rc = sqlite3PagerSharedLock(pBt->pPager);
if( rc!=SQLITE_OK ) return rc;
rc = btreeGetPage(pBt, 1, &pPage1, 0);
if( rc!=SQLITE_OK ) return rc;
/* Do some checking to help insure the file we opened really is
** a valid database file.
*/
nPage = get4byte(28+(u8*)pPage1->aData);
sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
nPage = nPageFile;
}
if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
nPage = 0;
}
if( nPage>0 ){
u32 pageSize;
u32 usableSize;
u8 *page1 = pPage1->aData;
rc = SQLITE_NOTADB;
/* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
** 61 74 20 33 00. */
if( memcmp(page1, zMagicHeader, 16)!=0 ){
goto page1_init_failed;
}
#ifdef SQLITE_OMIT_WAL
if( page1[18]>1 ){
pBt->btsFlags |= BTS_READ_ONLY;
}
if( page1[19]>1 ){
goto page1_init_failed;
}
#else
if( page1[18]>2 ){
pBt->btsFlags |= BTS_READ_ONLY;
}
if( page1[19]>2 ){
goto page1_init_failed;
}
/* If the read version is set to 2, this database should be accessed
** in WAL mode. If the log is not already open, open it now. Then
** return SQLITE_OK and return without populating BtShared.pPage1.
** The caller detects this and calls this function again. This is
** required as the version of page 1 currently in the page1 buffer
** may not be the latest version - there may be a newer one in the log
** file.
*/
if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
int isOpen = 0;
rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
if( rc!=SQLITE_OK ){
goto page1_init_failed;
}else{
setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
if( isOpen==0 ){
releasePageOne(pPage1);
return SQLITE_OK;
}
}
rc = SQLITE_NOTADB;
}else{
setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
}
#endif
/* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
** fractions and the leaf payload fraction values must be 64, 32, and 32.
**
** The original design allowed these amounts to vary, but as of
** version 3.6.0, we require them to be fixed.
*/
if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
goto page1_init_failed;
}
/* EVIDENCE-OF: R-51873-39618 The page size for a database file is
** determined by the 2-byte integer located at an offset of 16 bytes from
** the beginning of the database file. */
pageSize = (page1[16]<<8) | (page1[17]<<16);
/* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
** between 512 and 65536 inclusive. */
if( ((pageSize-1)&pageSize)!=0
|| pageSize>SQLITE_MAX_PAGE_SIZE
|| pageSize<=256
){
goto page1_init_failed;
}
assert( (pageSize & 7)==0 );
/* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
** integer at offset 20 is the number of bytes of space at the end of
** each page to reserve for extensions.
**
** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
** determined by the one-byte unsigned integer found at an offset of 20
** into the database file header. */
usableSize = pageSize - page1[20];
if( (u32)pageSize!=pBt->pageSize ){
/* After reading the first page of the database assuming a page size
** of BtShared.pageSize, we have discovered that the page-size is
** actually pageSize. Unlock the database, leave pBt->pPage1 at
** zero and return SQLITE_OK. The caller will call this function
** again with the correct page-size.
*/
releasePageOne(pPage1);
pBt->usableSize = usableSize;
pBt->pageSize = pageSize;
pBt->btsFlags |= BTS_PAGESIZE_FIXED;
freeTempSpace(pBt);
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
pageSize-usableSize);
return rc;
}
if( nPage>nPageFile ){
if( sqlite3WritableSchema(pBt->db)==0 ){
rc = SQLITE_CORRUPT_BKPT;
goto page1_init_failed;
}else{
nPage = nPageFile;
}
}
/* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
** be less than 480. In other words, if the page size is 512, then the
** reserved space size cannot exceed 32. */
if( usableSize<480 ){
goto page1_init_failed;
}
pBt->btsFlags |= BTS_PAGESIZE_FIXED;
pBt->pageSize = pageSize;
pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
#endif
}
/* maxLocal is the maximum amount of payload to store locally for
** a cell. Make sure it is small enough so that at least minFanout
** cells can will fit on one page. We assume a 10-byte page header.
** Besides the payload, the cell must store:
** 2-byte pointer to the cell
** 4-byte child pointer
** 9-byte nKey value
** 4-byte nData value
** 4-byte overflow page pointer
** So a cell consists of a 2-byte pointer, a header which is as much as
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
** page pointer.
*/
pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
pBt->maxLeaf = (u16)(pBt->usableSize - 35);
pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
if( pBt->maxLocal>127 ){
pBt->max1bytePayload = 127;
}else{
pBt->max1bytePayload = (u8)pBt->maxLocal;
}
assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
pBt->pPage1 = pPage1;
pBt->nPage = nPage;
return SQLITE_OK;
page1_init_failed:
releasePageOne(pPage1);
pBt->pPage1 = 0;
return rc;
}
#ifndef NDEBUG
/*
** Return the number of cursors open on pBt. This is for use
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
**
** Only write cursors are counted if wrOnly is true. If wrOnly is
** false then all cursors are counted.
**
** For the purposes of this routine, a cursor is any cursor that
** is capable of reading or writing to the database. Cursors that
** have been tripped into the CURSOR_FAULT state are not counted.
*/
static int countValidCursors(BtShared *pBt, int wrOnly){
BtCursor *pCur;
int r = 0;
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
&& pCur->eState!=CURSOR_FAULT ) r++;
}
return r;
}
#endif
/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which
** has the effect of releasing the read lock.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(BtShared *pBt){
assert( sqlite3_mutex_held(pBt->mutex) );
assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
MemPage *pPage1 = pBt->pPage1;
assert( pPage1->aData );
assert( sqlite3PagerRefcount(pBt->pPager)==1 );
pBt->pPage1 = 0;
releasePageOne(pPage1);
}
}
/*
** If pBt points to an empty file then convert that empty file
** into a new empty database by initializing the first page of
** the database.
*/
static int newDatabase(BtShared *pBt){
MemPage *pP1;
unsigned char *data;
int rc;
assert( sqlite3_mutex_held(pBt->mutex) );
if( pBt->nPage>0 ){
return SQLITE_OK;
}
pP1 = pBt->pPage1;
assert( pP1!=0 );
data = pP1->aData;
rc = sqlite3PagerWrite(pP1->pDbPage);
if( rc ) return rc;
memcpy(data, zMagicHeader, sizeof(zMagicHeader));
assert( sizeof(zMagicHeader)==16 );
data[16] = (u8)((pBt->pageSize>>8)&0xff);
data[17] = (u8)((pBt->pageSize>>16)&0xff);
data[18] = 1;
data[19] = 1;
assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
data[20] = (u8)(pBt->pageSize - pBt->usableSize);
data[21] = 64;
data[22] = 32;
data[23] = 32;
memset(&data[24], 0, 100-24);
zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
put4byte(&data[36 + 4*4], pBt->autoVacuum);
put4byte(&data[36 + 7*4], pBt->incrVacuum);
#endif
pBt->nPage = 1;
data[31] = 1;
return SQLITE_OK;
}
/*
** Initialize the first page of the database file (creating a database
** consisting of a single page and no schema objects). Return SQLITE_OK
** if successful, or an SQLite error code otherwise.
*/
int sqlite3BtreeNewDb(Btree *p){
int rc;
sqlite3BtreeEnter(p);
p->pBt->nPage = 0;
rc = newDatabase(p->pBt);
sqlite3BtreeLeave(p);
return rc;
}
/*
** Attempt to start a new transaction. A write-transaction
** is started if the second argument is nonzero, otherwise a read-
** transaction. If the second argument is 2 or more and exclusive
** transaction is started, meaning that no other process is allowed
** to access the database. A preexisting transaction may not be
** upgraded to exclusive by calling this routine a second time - the
** exclusivity flag only works for a new transaction.
**
** A write-transaction must be started before attempting any
** changes to the database. None of the following routines
** will work unless a transaction is started first:
**
** sqlite3BtreeCreateTable()
** sqlite3BtreeCreateIndex()
** sqlite3BtreeClearTable()
** sqlite3BtreeDropTable()
** sqlite3BtreeInsert()
** sqlite3BtreeDelete()
** sqlite3BtreeUpdateMeta()
**
** If an initial attempt to acquire the lock fails because of lock contention
** and the database was previously unlocked, then invoke the busy handler
** if there is one. But if there was previously a read-lock, do not
** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
** returned when there is already a read-lock in order to avoid a deadlock.
**
** Suppose there are two processes A and B. A has a read lock and B has
** a reserved lock. B tries to promote to exclusive but is blocked because
** of A's read lock. A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress. By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
static SQLITE_NOINLINE int btreeBeginTrans(
Btree *p, /* The btree in which to start the transaction */
int wrflag, /* True to start a write transaction */
int *pSchemaVersion /* Put schema version number here, if not NULL */
){
BtShared *pBt = p->pBt;
Pager *pPager = pBt->pPager;
int rc = SQLITE_OK;
sqlite3BtreeEnter(p);
btreeIntegrity(p);
/* If the btree is already in a write-transaction, or it
** is already in a read-transaction and a read-transaction
** is requested, this is a no-op.
*/
if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
goto trans_begun;
}
assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
if( (p->db->flags & SQLITE_ResetDatabase)
&& sqlite3PagerIsreadonly(pPager)==0
){
pBt->btsFlags &= ~BTS_READ_ONLY;
}
/* Write transactions are not possible on a read-only database */
if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
rc = SQLITE_READONLY;
goto trans_begun;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
{
sqlite3 *pBlock = 0;
/* If another database handle has already opened a write transaction
** on this shared-btree structure and a second write transaction is
** requested, return SQLITE_LOCKED.
*/
if( (wrflag && pBt->inTransaction==TRANS_WRITE)
|| (pBt->btsFlags & BTS_PENDING)!=0
){
pBlock = pBt->pWriter->db;
}else if( wrflag>1 ){
BtLock *pIter;
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
if( pIter->pBtree!=p ){
pBlock = pIter->pBtree->db;
break;
}
}
}
if( pBlock ){
sqlite3ConnectionBlocked(p->db, pBlock);
rc = SQLITE_LOCKED_SHAREDCACHE;
goto trans_begun;
}
}
#endif
/* Any read-only or read-write transaction implies a read-lock on
** page 1. So if some other shared-cache client already has a write-lock
** on page 1, the transaction cannot be opened. */
rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
if( SQLITE_OK!=rc ) goto trans_begun;
pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
do {
sqlite3PagerWalDb(pPager, p->db);
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
/* If transitioning from no transaction directly to a write transaction,
** block for the WRITER lock first if possible. */
if( pBt->pPage1==0 && wrflag ){
assert( pBt->inTransaction==TRANS_NONE );
rc = sqlite3PagerWalWriteLock(pPager, 1);
if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
}
#endif
/* Call lockBtree() until either pBt->pPage1 is populated or
** lockBtree() returns something other than SQLITE_OK. lockBtree()
** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
** reading page 1 it discovers that the page-size of the database
** file is not pBt->pageSize. In this case lockBtree() will update
** pBt->pageSize to the page-size of the file on disk.
*/
while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
if( rc==SQLITE_OK && wrflag ){
if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
rc = SQLITE_READONLY;
}else{
rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
if( rc==SQLITE_OK ){
rc = newDatabase(pBt);
}else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
/* if there was no transaction opened when this function was
** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
** code to SQLITE_BUSY. */
rc = SQLITE_BUSY;
}
}
}
if( rc!=SQLITE_OK ){
(void)sqlite3PagerWalWriteLock(pPager, 0);
unlockBtreeIfUnused(pBt);
}
}while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
btreeInvokeBusyHandler(pBt) );
sqlite3PagerWalDb(pPager, 0);
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
#endif
if( rc==SQLITE_OK ){
if( p->inTrans==TRANS_NONE ){
pBt->nTransaction++;
#ifndef SQLITE_OMIT_SHARED_CACHE
if( p->sharable ){
assert( p->lock.pBtree==p && p->lock.iTable==1 );
p->lock.eLock = READ_LOCK;
p->lock.pNext = pBt->pLock;
pBt->pLock = &p->lock;
}
#endif
}
p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
if( p->inTrans>pBt->inTransaction ){
pBt->inTransaction = p->inTrans;
}
if( wrflag ){
MemPage *pPage1 = pBt->pPage1;
#ifndef SQLITE_OMIT_SHARED_CACHE
assert( !pBt->pWriter );
pBt->pWriter = p;
pBt->btsFlags &= ~BTS_EXCLUSIVE;
if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
#endif
/* If the db-size header field is incorrect (as it may be if an old
** client has been writing the database file), update it now. Doing
** this sooner rather than later means the database size can safely
** re-read the database size from page 1 if a savepoint or transaction
** rollback occurs within the transaction.
*/
if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
rc = sqlite3PagerWrite(pPage1->pDbPage);
if( rc==SQLITE_OK ){
put4byte(&pPage1->aData[28], pBt->nPage);
}
}
}
}
trans_begun:
if( rc==SQLITE_OK ){
if( pSchemaVersion ){
*pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
}
if( wrflag ){
/* This call makes sure that the pager has the correct number of
** open savepoints. If the second parameter is greater than 0 and
** the sub-journal is not already open, then it will be opened here.
*/
rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
}
}
btreeIntegrity(p);
sqlite3BtreeLeave(p);
return rc;
}
int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
BtShared *pBt;
if( p->sharable
|| p->inTrans==TRANS_NONE
|| (p->inTrans==TRANS_READ && wrflag!=0)
){
return btreeBeginTrans(p,wrflag,pSchemaVersion);
}
pBt = p->pBt;
if( pSchemaVersion ){
*pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
}
if( wrflag ){
/* This call makes sure that the pager has the correct number of
** open savepoints. If the second parameter is greater than 0 and
** the sub-journal is not already open, then it will be opened here.
*/
return sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
}else{
return SQLITE_OK;
}
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Set the pointer-map entries for all children of page pPage. Also, if
** pPage contains cells that point to overflow pages, set the pointer
** map entries for the overflow pages as well.
*/
static int setChildPtrmaps(MemPage *pPage){
int i; /* Counter variable */
int nCell; /* Number of cells in page pPage */
int rc; /* Return code */
BtShared *pBt = pPage->pBt;
Pgno pgno = pPage->pgno;
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
if( rc!=SQLITE_OK ) return rc;
nCell = pPage->nCell;
for(i=0; i<nCell; i++){
u8 *pCell = findCell(pPage, i);
ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
if( !pPage->leaf ){
Pgno childPgno = get4byte(pCell);
ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
}
}
if( !pPage->leaf ){
Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
}
return rc;
}
/*
** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
** that it points to iTo. Parameter eType describes the type of pointer to
** be modified, as follows:
**
** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
** page of pPage.
**
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
** page pointed to by one of the cells on pPage.
**
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
** overflow page in the list.
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
if( eType==PTRMAP_OVERFLOW2 ){
/* The pointer is always the first 4 bytes of the page in this case. */
if( get4byte(pPage->aData)!=iFrom ){
return SQLITE_CORRUPT_PAGE(pPage);
}
put4byte(pPage->aData, iTo);
}else{
int i;
int nCell;
int rc;
rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
if( rc ) return rc;
nCell = pPage->nCell;
for(i=0; i<nCell; i++){
u8 *pCell = findCell(pPage, i);
if( eType==PTRMAP_OVERFLOW1 ){
CellInfo info;
pPage->xParseCell(pPage, pCell, &info);
if( info.nLocal<info.nPayload ){
if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
return SQLITE_CORRUPT_PAGE(pPage);
}
if( iFrom==get4byte(pCell+info.nSize-4) ){
put4byte(pCell+info.nSize-4, iTo);
break;
}
}
}else{
if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){
return SQLITE_CORRUPT_PAGE(pPage);
}
if( get4byte(pCell)==iFrom ){
put4byte(pCell, iTo);
break;
}
}
}
if( i==nCell ){
if( eType!=PTRMAP_BTREE ||
get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
return SQLITE_CORRUPT_PAGE(pPage);
}
put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
}
}
return SQLITE_OK;
}
/*
** Move the open database page pDbPage to location iFreePage in the
** database. The pDbPage reference remains valid.
**
** The isCommit flag indicates that there is no need to remember that
** the journal needs to be sync()ed before database page pDbPage->pgno
** can be written to. The caller has already promised not to write to that
** page.
*/
static int relocatePage(
BtShared *pBt, /* Btree */
MemPage *pDbPage, /* Open page to move */
u8 eType, /* Pointer map 'type' entry for pDbPage */
Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
Pgno iFreePage, /* The location to move pDbPage to */
int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
){
MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
Pgno iDbPage = pDbPage->pgno;
Pager *pPager = pBt->pPager;
int rc;
assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
assert( sqlite3_mutex_held(pBt->mutex) );
assert( pDbPage->pBt==pBt );
if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
/* Move page iDbPage from its current location to page number iFreePage */
TRACE(("AUTOVACUUM: Moving %u to free page %u (ptr page %u type %u)\n",
iDbPage, iFreePage, iPtrPage, eType));
rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
if( rc!=SQLITE_OK ){
return rc;
}
pDbPage->pgno = iFreePage;
/* If pDbPage was a btree-page, then it may have child pages and/or cells
** that point to overflow pages. The pointer map entries for all these
** pages need to be changed.
**
** If pDbPage is an overflow page, then the first 4 bytes may store a
** pointer to a subsequent overflow page. If this is the case, then
** the pointer map needs to be updated for the subsequent overflow page.
*/
if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
rc = setChildPtrmaps(pDbPage);
if( rc!=SQLITE_OK ){
return rc;
}
}else{
Pgno nextOvfl = get4byte(pDbPage->aData);
if( nextOvfl!=0 ){
ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
if( rc!=SQLITE_OK ){
return rc;
}
}
}
/* Fix the database pointer on page iPtrPage that pointed at iDbPage so
** that it points at iFreePage. Also fix the pointer map entry for
** iPtrPage.
*/
if( eType!=PTRMAP_ROOTPAGE ){
rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
if( rc!=SQLITE_OK ){
return rc;
}
rc = sqlite3PagerWrite(pPtrPage->pDbPage);
if( rc!=SQLITE_OK ){
releasePage(pPtrPage);
return rc;
}
rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
releasePage(pPtrPage);
if( rc==SQLITE_OK ){
ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
}
}
return rc;
}
/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
/*
** Perform a single step of an incremental-vacuum. If successful, return
** SQLITE_OK. If there is no work to do (and therefore no point in
** calling this function again), return SQLITE_DONE. Or, if an error
** occurs, return some other error code.
**
** More specifically, this function attempts to re-organize the database so
** that the last page of the file currently in use is no longer in use.
**
** Parameter nFin is the number of pages that this database would contain
** were this function called until it returns SQLITE_DONE.
**
** If the bCommit parameter is non-zero, this function assumes that the
** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
** or an error. bCommit is passed true for an auto-vacuum-on-commit
** operation, or false for an incremental vacuum.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
Pgno nFreeList; /* Number of pages still on the free-list */
int rc;
assert( sqlite3_mutex_held(pBt->mutex) );
assert( iLastPg>nFin );
if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
u8 eType;
Pgno iPtrPage;
nFreeList = get4byte(&pBt->pPage1->aData[36]);
if( nFreeList==0 ){
return SQLITE_DONE;
}
rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
if( rc!=SQLITE_OK ){
return rc;
}
if( eType==PTRMAP_ROOTPAGE ){
return SQLITE_CORRUPT_BKPT;
}
if( eType==PTRMAP_FREEPAGE ){
if( bCommit==0 ){
/* Remove the page from the files free-list. This is not required
** if bCommit is non-zero. In that case, the free-list will be
** truncated to zero after this function returns, so it doesn't
** matter if it still contains some garbage entries.
*/
Pgno iFreePg;
MemPage *pFreePg;
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
if( rc!=SQLITE_OK ){
return rc;
}
assert( iFreePg==iLastPg );
releasePage(pFreePg);
}
} else {
Pgno iFreePg; /* Index of free page to move pLastPg to */
MemPage *pLastPg;
u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
if( rc!=SQLITE_OK ){
return rc;
}
/* If bCommit is zero, this loop runs exactly once and page pLastPg
** is swapped with the first free page pulled off the free list.
**
** On the other hand, if bCommit is greater than zero, then keep
** looping until a free-page located within the first nFin pages
** of the file is found.
*/
if( bCommit==0 ){
eMode = BTALLOC_LE;
iNear = nFin;
}
do {
MemPage *pFreePg;
Pgno dbSize = btreePagecount(pBt);
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
if( rc!=SQLITE_OK ){
releasePage(pLastPg);
return rc;
}
releasePage(pFreePg);
if( iFreePg>dbSize ){
releasePage(pLastPg);
return SQLITE_CORRUPT_BKPT;
}
}while( bCommit && iFreePg>nFin );
assert( iFreePg<iLastPg );
rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
releasePage(pLastPg);
if( rc!=SQLITE_OK ){
return rc;
}
}
}
if( bCommit==0 ){
do {
iLastPg--;
}while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
pBt->bDoTruncate = 1;
pBt->nPage = iLastPg;
}
return SQLITE_OK;
}
/*
** The database opened by the first argument is an auto-vacuum database
** nOrig pages in size containing nFree free pages. Return the expected
** size of the database in pages following an auto-vacuum operation.
*/
static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
int nEntry; /* Number of entries on one ptrmap page */
Pgno nPtrmap; /* Number of PtrMap pages to be freed */
Pgno nFin; /* Return value */
nEntry = pBt->usableSize/5;
nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
nFin = nOrig - nFree - nPtrmap;
if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
nFin--;
}
while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
nFin--;
}
return nFin;
}
/*
** A write-transaction must be opened before calling this function.
** It performs a single unit of work towards an incremental vacuum.
**
** If the incremental vacuum is finished after this function has run,
** SQLITE_DONE is returned. If it is not finished, but no error occurred,
** SQLITE_OK is returned. Otherwise an SQLite error code.
*/
int sqlite3BtreeIncrVacuum(Btree *p){
int rc;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
if( !pBt->autoVacuum ){
rc = SQLITE_DONE;
}else{
Pgno nOrig = btreePagecount(pBt);
Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
Pgno nFin = finalDbSize(pBt, nOrig, nFree);
if( nOrig<nFin || nFree>=nOrig ){
rc = SQLITE_CORRUPT_BKPT;
}else if( nFree>0 ){
rc = saveAllCursors(pBt, 0, 0);
if( rc==SQLITE_OK ){
invalidateAllOverflowCache(pBt);
rc = incrVacuumStep(pBt, nFin, nOrig, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
put4byte(&pBt->pPage1->aData[28], pBt->nPage);
}
}else{
rc = SQLITE_DONE;
}
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** This routine is called prior to sqlite3PagerCommit when a transaction
** is committed for an auto-vacuum database.
*/
static int autoVacuumCommit(Btree *p){
int rc = SQLITE_OK;
Pager *pPager;
BtShared *pBt;
sqlite3 *db;
VVA_ONLY( int nRef );
assert( p!=0 );
pBt = p->pBt;
pPager = pBt->pPager;
VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
assert( sqlite3_mutex_held(pBt->mutex) );
invalidateAllOverflowCache(pBt);
assert(pBt->autoVacuum);
if( !pBt->incrVacuum ){
Pgno nFin; /* Number of pages in database after autovacuuming */
Pgno nFree; /* Number of pages on the freelist initially */
Pgno nVac; /* Number of pages to vacuum */
Pgno iFree; /* The next page to be freed */
Pgno nOrig; /* Database size before freeing */
nOrig = btreePagecount(pBt);
if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
/* It is not possible to create a database for which the final page
** is either a pointer-map page or the pending-byte page. If one
** is encountered, this indicates corruption.
*/
return SQLITE_CORRUPT_BKPT;
}
nFree = get4byte(&pBt->pPage1->aData[36]);
db = p->db;
if( db->xAutovacPages ){
int iDb;
for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
if( db->aDb[iDb].pBt==p ) break;
}
nVac = db->xAutovacPages(
db->pAutovacPagesArg,
db->aDb[iDb].zDbSName,
nOrig,
nFree,
pBt->pageSize
);
if( nVac>nFree ){
nVac = nFree;
}
if( nVac==0 ){
return SQLITE_OK;
}
}else{
nVac = nFree;
}
nFin = finalDbSize(pBt, nOrig, nVac);
if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
if( nFin<nOrig ){
rc = saveAllCursors(pBt, 0, 0);
}
for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
}
if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
if( nVac==nFree ){
put4byte(&pBt->pPage1->aData[32], 0);
put4byte(&pBt->pPage1->aData[36], 0);
}
put4byte(&pBt->pPage1->aData[28], nFin);
pBt->bDoTruncate = 1;
pBt->nPage = nFin;
}
if( rc!=SQLITE_OK ){
sqlite3PagerRollback(pPager);
}
}
assert( nRef>=sqlite3PagerRefcount(pPager) );
return rc;
}
#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
# define setChildPtrmaps(x) SQLITE_OK
#endif
/*
** This routine does the first phase of a two-phase commit. This routine
** causes a rollback journal to be created (if it does not already exist)
** and populated with enough information so that if a power loss occurs
** the database can be restored to its original state by playing back
** the journal. Then the contents of the journal are flushed out to
** the disk. After the journal is safely on oxide, the changes to the
** database are written into the database file and flushed to oxide.
** At the end of this call, the rollback journal still exists on the
** disk and we are still holding all locks, so the transaction has not
** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
** commit process.
**
** This call is a no-op if no write-transaction is currently active on pBt.
**
** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
** the name of a super-journal file that should be written into the
** individual journal file, or is NULL, indicating no super-journal file
** (single database transaction).
**
** When this is called, the super-journal should already have been
** created, populated with this journal pointer and synced to disk.
**
** Once this is routine has returned, the only thing required to commit
** the write-transaction for this database file is to delete the journal.
*/
int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
int rc = SQLITE_OK;
if( p->inTrans==TRANS_WRITE ){
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
rc = autoVacuumCommit(p);
if( rc!=SQLITE_OK ){
sqlite3BtreeLeave(p);
return rc;
}
}
if( pBt->bDoTruncate ){
sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
}
#endif
rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
sqlite3BtreeLeave(p);
}
return rc;
}
/*
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
** at the conclusion of a transaction.
*/
static void btreeEndTransaction(Btree *p){
BtShared *pBt = p->pBt;
sqlite3 *db = p->db;
assert( sqlite3BtreeHoldsMutex(p) );
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->bDoTruncate = 0;
#endif
if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
/* If there are other active statements that belong to this database
** handle, downgrade to a read-only transaction. The other statements
** may still be reading from the database. */
downgradeAllSharedCacheTableLocks(p);
p->inTrans = TRANS_READ;
}else{
/* If the handle had any kind of transaction open, decrement the
** transaction count of the shared btree. If the transaction count
** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
** call below will unlock the pager. */
if( p->inTrans!=TRANS_NONE ){
clearAllSharedCacheTableLocks(p);
pBt->nTransaction--;
if( 0==pBt->nTransaction ){
pBt->inTransaction = TRANS_NONE;
}
}
/* Set the current transaction state to TRANS_NONE and unlock the
** pager if this call closed the only read or write transaction. */
p->inTrans = TRANS_NONE;
unlockBtreeIfUnused(pBt);
}
btreeIntegrity(p);
}
/*
** Commit the transaction currently in progress.
**
** This routine implements the second phase of a 2-phase commit. The
** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
** routine did all the work of writing information out to disk and flushing the
** contents so that they are written onto the disk platter. All this
** routine has to do is delete or truncate or zero the header in the
** the rollback journal (which causes the transaction to commit) and
** drop locks.
**
** Normally, if an error occurs while the pager layer is attempting to
** finalize the underlying journal file, this function returns an error and
** the upper layer will attempt a rollback. However, if the second argument
** is non-zero then this b-tree transaction is part of a multi-file
** transaction. In this case, the transaction has already been committed
** (by deleting a super-journal file) and the caller will ignore this
** functions return code. So, even if an error occurs in the pager layer,
** reset the b-tree objects internal state to indicate that the write
** transaction has been closed. This is quite safe, as the pager will have
** transitioned to the error state.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
sqlite3BtreeEnter(p);
btreeIntegrity(p);
/* If the handle has a write-transaction open, commit the shared-btrees
** transaction and set the shared state to TRANS_READ.
*/
if( p->inTrans==TRANS_WRITE ){
int rc;
BtShared *pBt = p->pBt;
assert( pBt->inTransaction==TRANS_WRITE );
assert( pBt->nTransaction>0 );
rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
if( rc!=SQLITE_OK && bCleanup==0 ){
sqlite3BtreeLeave(p);
return rc;
}
p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
pBt->inTransaction = TRANS_READ;
btreeClearHasContent(pBt);
}
btreeEndTransaction(p);
sqlite3BtreeLeave(p);
return SQLITE_OK;
}
/*
** Do both phases of a commit.
*/
int sqlite3BtreeCommit(Btree *p){
int rc;
sqlite3BtreeEnter(p);
rc = sqlite3BtreeCommitPhaseOne(p, 0);
if( rc==SQLITE_OK ){
rc = sqlite3BtreeCommitPhaseTwo(p, 0);
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** This routine sets the state to CURSOR_FAULT and the error
** code to errCode for every cursor on any BtShared that pBtree
** references. Or if the writeOnly flag is set to 1, then only
** trip write cursors and leave read cursors unchanged.
**
** Every cursor is a candidate to be tripped, including cursors
** that belong to other database connections that happen to be
** sharing the cache with pBtree.
**
** This routine gets called when a rollback occurs. If the writeOnly
** flag is true, then only write-cursors need be tripped - read-only
** cursors save their current positions so that they may continue
** following the rollback. Or, if writeOnly is false, all cursors are
** tripped. In general, writeOnly is false if the transaction being
** rolled back modified the database schema. In this case b-tree root
** pages may be moved or deleted from the database altogether, making
** it unsafe for read cursors to continue.
**
** If the writeOnly flag is true and an error is encountered while
** saving the current position of a read-only cursor, all cursors,
** including all read-cursors are tripped.
**
** SQLITE_OK is returned if successful, or if an error occurs while
** saving a cursor position, an SQLite error code.
*/
int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
BtCursor *p;
int rc = SQLITE_OK;
assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
if( pBtree ){
sqlite3BtreeEnter(pBtree);
for(p=pBtree->pBt->pCursor; p; p=p->pNext){
if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
rc = saveCursorPosition(p);
if( rc!=SQLITE_OK ){
(void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
break;
}
}
}else{
sqlite3BtreeClearCursor(p);
p->eState = CURSOR_FAULT;
p->skipNext = errCode;
}
btreeReleaseAllCursorPages(p);
}
sqlite3BtreeLeave(pBtree);
}
return rc;
}
/*
** Set the pBt->nPage field correctly, according to the current
** state of the database. Assume pBt->pPage1 is valid.
*/
static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
int nPage = get4byte(&pPage1->aData[28]);
testcase( nPage==0 );
if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
testcase( pBt->nPage!=(u32)nPage );
pBt->nPage = nPage;
}
/*
** Rollback the transaction in progress.
**
** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
** Only write cursors are tripped if writeOnly is true but all cursors are
** tripped if writeOnly is false. Any attempt to use
** a tripped cursor will result in an error.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
int rc;
BtShared *pBt = p->pBt;
MemPage *pPage1;
assert( writeOnly==1 || writeOnly==0 );
assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
sqlite3BtreeEnter(p);
if( tripCode==SQLITE_OK ){
rc = tripCode = saveAllCursors(pBt, 0, 0);
if( rc ) writeOnly = 0;
}else{
rc = SQLITE_OK;
}
if( tripCode ){
int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
if( rc2!=SQLITE_OK ) rc = rc2;
}
btreeIntegrity(p);
if( p->inTrans==TRANS_WRITE ){
int rc2;
assert( TRANS_WRITE==pBt->inTransaction );
rc2 = sqlite3PagerRollback(pBt->pPager);
if( rc2!=SQLITE_OK ){
rc = rc2;
}
/* The rollback may have destroyed the pPage1->aData value. So
** call btreeGetPage() on page 1 again to make
** sure pPage1->aData is set correctly. */
if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
btreeSetNPage(pBt, pPage1);
releasePageOne(pPage1);
}
assert( countValidCursors(pBt, 1)==0 );
pBt->inTransaction = TRANS_READ;
btreeClearHasContent(pBt);
}
btreeEndTransaction(p);
sqlite3BtreeLeave(p);
return rc;
}
/*
** Start a statement subtransaction. The subtransaction can be rolled
** back independently of the main transaction. You must start a transaction
** before starting a subtransaction. The subtransaction is ended automatically
** if the main transaction commits or rolls back.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block. If a constraint
** error occurs within the statement, the effect of that one statement
** can be rolled back without having to rollback the entire transaction.
**
** A statement sub-transaction is implemented as an anonymous savepoint. The
** value passed as the second parameter is the total number of savepoints,
** including the new anonymous savepoint, open on the B-Tree. i.e. if there
** are no active savepoints and no other statement-transactions open,
** iStatement is 1. This anonymous savepoint can be released or rolled back
** using the sqlite3BtreeSavepoint() function.
*/
int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
int rc;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
assert( p->inTrans==TRANS_WRITE );
assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
assert( iStatement>0 );
assert( iStatement>p->db->nSavepoint );
assert( pBt->inTransaction==TRANS_WRITE );
/* At the pager level, a statement transaction is a savepoint with
** an index greater than all savepoints created explicitly using
** SQL statements. It is illegal to open, release or rollback any
** such savepoints while the statement transaction savepoint is active.
*/
rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
sqlite3BtreeLeave(p);
return rc;
}
/*
** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
** or SAVEPOINT_RELEASE. This function either releases or rolls back the
** savepoint identified by parameter iSavepoint, depending on the value
** of op.
**
** Normally, iSavepoint is greater than or equal to zero. However, if op is
** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
** contents of the entire transaction are rolled back. This is different
** from a normal transaction rollback, as no locks are released and the
** transaction remains open.
*/
int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
int rc = SQLITE_OK;
if( p && p->inTrans==TRANS_WRITE ){
BtShared *pBt = p->pBt;
assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
sqlite3BtreeEnter(p);
if( op==SAVEPOINT_ROLLBACK ){
rc = saveAllCursors(pBt, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
}
if( rc==SQLITE_OK ){
if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
pBt->nPage = 0;
}
rc = newDatabase(pBt);
btreeSetNPage(pBt, pBt->pPage1);
/* pBt->nPage might be zero if the database was corrupt when
** the transaction was started. Otherwise, it must be at least 1. */
assert( CORRUPT_DB || pBt->nPage>0 );
}
sqlite3BtreeLeave(p);
}
return rc;
}
/*
** Create a new cursor for the BTree whose root is on the page
** iTable. If a read-only cursor is requested, it is assumed that
** the caller already has at least a read-only transaction open
** on the database already. If a write-cursor is requested, then
** the caller is assumed to have an open write transaction.
**
** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
** can be used for reading or for writing if other conditions for writing
** are also met. These are the conditions that must be met in order
** for writing to be allowed:
**
** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
**
** 2: Other database connections that share the same pager cache
** but which are not in the READ_UNCOMMITTED state may not have
** cursors open with wrFlag==0 on the same table. Otherwise
** the changes made by this write cursor would be visible to
** the read cursors in the other database connection.
**
** 3: The database must be writable (not on read-only media)
**
** 4: There must be an active transaction.
**
** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
** is set. If FORDELETE is set, that is a hint to the implementation that
** this cursor will only be used to seek to and delete entries of an index
** as part of a larger DELETE statement. The FORDELETE hint is not used by
** this implementation. But in a hypothetical alternative storage engine
** in which index entries are automatically deleted when corresponding table
** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
** operations on this cursor can be no-ops and all READ operations can
** return a null row (2-bytes: 0x01 0x00).
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree. If it is not, then the cursor acquired
** will not work correctly.
**
** It is assumed that the sqlite3BtreeCursorZero() has been called
** on pCur to initialize the memory space prior to invoking this routine.
*/
static int btreeCursor(
Btree *p, /* The btree */
Pgno iTable, /* Root page of table to open */
int wrFlag, /* 1 to write. 0 read-only */
struct KeyInfo *pKeyInfo, /* First arg to comparison function */
BtCursor *pCur /* Space for new cursor */
){
BtShared *pBt = p->pBt; /* Shared b-tree handle */
BtCursor *pX; /* Looping over other all cursors */
assert( sqlite3BtreeHoldsMutex(p) );
assert( wrFlag==0
|| wrFlag==BTREE_WRCSR
|| wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
);
/* The following assert statements verify that if this is a sharable
** b-tree database, the connection is holding the required table locks,
** and that no other connection has any open cursor that conflicts with
** this lock. The iTable<1 term disables the check for corrupt schemas. */
assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
|| iTable<1 );
assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
/* Assert that the caller has opened the required transaction. */
assert( p->inTrans>TRANS_NONE );
assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
assert( pBt->pPage1 && pBt->pPage1->aData );
assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
if( iTable<=1 ){
if( iTable<1 ){
return SQLITE_CORRUPT_BKPT;
}else if( btreePagecount(pBt)==0 ){
assert( wrFlag==0 );
iTable = 0;
}
}
/* Now that no other errors can occur, finish filling in the BtCursor
** variables and link the cursor into the BtShared list. */
pCur->pgnoRoot = iTable;
pCur->iPage = -1;
pCur->pKeyInfo = pKeyInfo;
pCur->pBtree = p;
pCur->pBt = pBt;
pCur->curFlags = 0;
/* If there are two or more cursors on the same btree, then all such
** cursors *must* have the BTCF_Multiple flag set. */
for(pX=pBt->pCursor; pX; pX=pX->pNext){
if( pX->pgnoRoot==iTable ){
pX->curFlags |= BTCF_Multiple;
pCur->curFlags = BTCF_Multiple;
}
}
pCur->eState = CURSOR_INVALID;
pCur->pNext = pBt->pCursor;
pBt->pCursor = pCur;
if( wrFlag ){
pCur->curFlags |= BTCF_WriteFlag;
pCur->curPagerFlags = 0;
if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
}else{
pCur->curPagerFlags = PAGER_GET_READONLY;
}
return SQLITE_OK;
}
static int btreeCursorWithLock(
Btree *p, /* The btree */
Pgno iTable, /* Root page of table to open */
int wrFlag, /* 1 to write. 0 read-only */
struct KeyInfo *pKeyInfo, /* First arg to comparison function */
BtCursor *pCur /* Space for new cursor */
){
int rc;
sqlite3BtreeEnter(p);
rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
sqlite3BtreeLeave(p);
return rc;
}
int sqlite3BtreeCursor(
Btree *p, /* The btree */
Pgno iTable, /* Root page of table to open */
int wrFlag, /* 1 to write. 0 read-only */
struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
BtCursor *pCur /* Write new cursor here */
){
if( p->sharable ){
return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
}else{
return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
}
}
/*
** Return the size of a BtCursor object in bytes.
**
** This interfaces is needed so that users of cursors can preallocate
** sufficient storage to hold a cursor. The BtCursor object is opaque
** to users so they cannot do the sizeof() themselves - they must call
** this routine.
*/
int sqlite3BtreeCursorSize(void){
return ROUND8(sizeof(BtCursor));
}
/*
** Initialize memory that will be converted into a BtCursor object.
**
** The simple approach here would be to memset() the entire object
** to zero. But it turns out that the apPage[] and aiIdx[] arrays
** do not need to be zeroed and they are large, so we can save a lot
** of run-time by skipping the initialization of those elements.
*/
void sqlite3BtreeCursorZero(BtCursor *p){
memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
}
/*
** Close a cursor. The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
Btree *pBtree = pCur->pBtree;
if( pBtree ){
BtShared *pBt = pCur->pBt;
sqlite3BtreeEnter(pBtree);
assert( pBt->pCursor!=0 );
if( pBt->pCursor==pCur ){
pBt->pCursor = pCur->pNext;
}else{
BtCursor *pPrev = pBt->pCursor;
do{
if( pPrev->pNext==pCur ){
pPrev->pNext = pCur->pNext;
break;
}
pPrev = pPrev->pNext;
}while( ALWAYS(pPrev) );
}
btreeReleaseAllCursorPages(pCur);
unlockBtreeIfUnused(pBt);
sqlite3_free(pCur->aOverflow);
sqlite3_free(pCur->pKey);
if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
/* Since the BtShared is not sharable, there is no need to
** worry about the missing sqlite3BtreeLeave() call here. */
assert( pBtree->sharable==0 );
sqlite3BtreeClose(pBtree);
}else{
sqlite3BtreeLeave(pBtree);
}
pCur->pBtree = 0;
}
return SQLITE_OK;
}
/*
** Make sure the BtCursor* given in the argument has a valid
** BtCursor.info structure. If it is not already valid, call
** btreeParseCell() to fill it in.
**
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to btreeParseCell().
*/
#ifndef NDEBUG
static int cellInfoEqual(CellInfo *a, CellInfo *b){
if( a->nKey!=b->nKey ) return 0;
if( a->pPayload!=b->pPayload ) return 0;
if( a->nPayload!=b->nPayload ) return 0;
if( a->nLocal!=b->nLocal ) return 0;
if( a->nSize!=b->nSize ) return 0;
return 1;
}
static void assertCellInfo(BtCursor *pCur){
CellInfo info;
memset(&info, 0, sizeof(info));
btreeParseCell(pCur->pPage, pCur->ix, &info);
assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
}
#else
#define assertCellInfo(x)
#endif
static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
if( pCur->info.nSize==0 ){
pCur->curFlags |= BTCF_ValidNKey;
btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
}else{
assertCellInfo(pCur);
}
}
#ifndef NDEBUG /* The next routine used only within assert() statements */
/*
** Return true if the given BtCursor is valid. A valid cursor is one
** that is currently pointing to a row in a (non-empty) table.
** This is a verification routine is used only within assert() statements.
*/
int sqlite3BtreeCursorIsValid(BtCursor *pCur){
return pCur && pCur->eState==CURSOR_VALID;
}
#endif /* NDEBUG */
int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
assert( pCur!=0 );
return pCur->eState==CURSOR_VALID;
}
/*
** Return the value of the integer key or "rowid" for a table btree.
** This routine is only valid for a cursor that is pointing into a
** ordinary table btree. If the cursor points to an index btree or
** is invalid, the result of this routine is undefined.
*/
i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
assert( pCur->curIntKey );
getCellInfo(pCur);
return pCur->info.nKey;
}
/*
** Pin or unpin a cursor.
*/
void sqlite3BtreeCursorPin(BtCursor *pCur){
assert( (pCur->curFlags & BTCF_Pinned)==0 );
pCur->curFlags |= BTCF_Pinned;
}
void sqlite3BtreeCursorUnpin(BtCursor *pCur){
assert( (pCur->curFlags & BTCF_Pinned)!=0 );
pCur->curFlags &= ~BTCF_Pinned;
}
/*
** Return the offset into the database file for the start of the
** payload to which the cursor is pointing.
*/
i64 sqlite3BtreeOffset(BtCursor *pCur){
assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
getCellInfo(pCur);
return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
(i64)(pCur->info.pPayload - pCur->pPage->aData);
}
/*
** Return the number of bytes of payload for the entry that pCur is
** currently pointing to. For table btrees, this will be the amount
** of data. For index btrees, this will be the size of the key.
**
** The caller must guarantee that the cursor is pointing to a non-NULL
** valid entry. In other words, the calling procedure must guarantee
** that the cursor has Cursor.eState==CURSOR_VALID.
*/
u32 sqlite3BtreePayloadSize(BtCursor *pCur){
assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
getCellInfo(pCur);
return pCur->info.nPayload;
}
/*
** Return an upper bound on the size of any record for the table
** that the cursor is pointing into.
**
** This is an optimization. Everything will still work if this
** routine always returns 2147483647 (which is the largest record
** that SQLite can handle) or more. But returning a smaller value might
** prevent large memory allocations when trying to interpret a
** corrupt database.
**
** The current implementation merely returns the size of the underlying
** database file.
*/
sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
}
/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the
** linked list of overflow pages. If possible, it uses the auto-vacuum
** pointer-map data instead of reading the content of page ovfl to do so.
**
** If an error occurs an SQLite error code is returned. Otherwise:
**
** The page number of the next overflow page in the linked list is
** written to *pPgnoNext. If page ovfl is the last page in its linked
** list, *pPgnoNext is set to zero.
**
** If ppPage is not NULL, and a reference to the MemPage object corresponding
** to page number pOvfl was obtained, then *ppPage is set to point to that
** reference. It is the responsibility of the caller to call releasePage()
** on *ppPage to free the reference. In no reference was obtained (because
** the pointer-map was used to obtain the value for *pPgnoNext), then
** *ppPage is set to zero.
*/
static int getOverflowPage(
BtShared *pBt, /* The database file */
Pgno ovfl, /* Current overflow page number */
MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
Pgno *pPgnoNext /* OUT: Next overflow page number */
){
Pgno next = 0;
MemPage *pPage = 0;
int rc = SQLITE_OK;
assert( sqlite3_mutex_held(pBt->mutex) );
assert(pPgnoNext);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* Try to find the next page in the overflow list using the
** autovacuum pointer-map pages. Guess that the next page in
** the overflow list is page number (ovfl+1). If that guess turns
** out to be wrong, fall back to loading the data of page
** number ovfl to determine the next page number.
*/
if( pBt->autoVacuum ){
Pgno pgno;
Pgno iGuess = ovfl+1;
u8 eType;
while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
iGuess++;
}
if( iGuess<=btreePagecount(pBt) ){
rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
next = iGuess;
rc = SQLITE_DONE;
}
}
}
#endif
assert( next==0 || rc==SQLITE_DONE );
if( rc==SQLITE_OK ){
rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
assert( rc==SQLITE_OK || pPage==0 );
if( rc==SQLITE_OK ){
next = get4byte(pPage->aData);
}
}
*pPgnoNext = next;
if( ppPage ){
*ppPage = pPage;
}else{
releasePage(pPage);
}
return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}
/*
** Copy data from a buffer to a page, or from a page to a buffer.
**
** pPayload is a pointer to data stored on database page pDbPage.
** If argument eOp is false, then nByte bytes of data are copied
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
** of data are copied from the buffer pBuf to pPayload.
**
** SQLITE_OK is returned on success, otherwise an error code.
*/
static int copyPayload(
void *pPayload, /* Pointer to page data */
void *pBuf, /* Pointer to buffer */
int nByte, /* Number of bytes to copy */
int eOp, /* 0 -> copy from page, 1 -> copy to page */
DbPage *pDbPage /* Page containing pPayload */
){
if( eOp ){
/* Copy data from buffer to page (a write operation) */
int rc = sqlite3PagerWrite(pDbPage);
if( rc!=SQLITE_OK ){
return rc;
}
memcpy(pPayload, pBuf, nByte);
}else{
/* Copy data from page to buffer (a read operation) */
memcpy(pBuf, pPayload, nByte);
}
return SQLITE_OK;
}
/*
** This function is used to read or overwrite payload information
** for the entry that the pCur cursor is pointing to. The eOp
** argument is interpreted as follows:
**
** 0: The operation is a read. Populate the overflow cache.
** 1: The operation is a write. Populate the overflow cache.
**
** A total of "amt" bytes are read or written beginning at "offset".
** Data is read to or from the buffer pBuf.
**
** The content being read or written might appear on the main page
** or be scattered out on multiple overflow pages.
**
** If the current cursor entry uses one or more overflow pages
** this function may allocate space for and lazily populate
** the overflow page-list cache array (BtCursor.aOverflow).
** Subsequent calls use this cache to make seeking to the supplied offset
** more efficient.
**
** Once an overflow page-list cache has been allocated, it must be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
**
** * An incremental vacuum,
** * A commit in auto_vacuum="full" mode,
** * Creating a table (may require moving an overflow page).
*/
static int accessPayload(
BtCursor *pCur, /* Cursor pointing to entry to read from */
u32 offset, /* Begin reading this far into payload */
u32 amt, /* Read this many bytes */
unsigned char *pBuf, /* Write the bytes into this buffer */
int eOp /* zero to read. non-zero to write. */
){
unsigned char *aPayload;
int rc = SQLITE_OK;
int iIdx = 0;
MemPage *pPage = pCur->pPage; /* Btree page of current entry */
BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
#endif
assert( pPage );
assert( eOp==0 || eOp==1 );
assert( pCur->eState==CURSOR_VALID );
if( pCur->ix>=pPage->nCell ){
return SQLITE_CORRUPT_PAGE(pPage);
}
assert( cursorHoldsMutex(pCur) );
getCellInfo(pCur);
aPayload = pCur->info.pPayload;
assert( offset+amt <= pCur->info.nPayload );
assert( aPayload > pPage->aData );
if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
/* Trying to read or write past the end of the data is an error. The
** conditional above is really:
** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
** but is recast into its current form to avoid integer overflow problems
*/
return SQLITE_CORRUPT_PAGE(pPage);
}
/* Check if data must be read/written to/from the btree page itself. */
if( offset<pCur->info.nLocal ){
int a = amt;
if( a+offset>pCur->info.nLocal ){
a = pCur->info.nLocal - offset;
}
rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
offset = 0;
pBuf += a;
amt -= a;
}else{
offset -= pCur->info.nLocal;
}
if( rc==SQLITE_OK && amt>0 ){
const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
Pgno nextPage;
nextPage = get4byte(&aPayload[pCur->info.nLocal]);
/* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
**
** The aOverflow[] array is sized at one entry for each overflow page
** in the overflow chain. The page number of the first overflow page is
** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
** means "not yet known" (the cache is lazily populated).
*/
if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
if( pCur->aOverflow==0
|| nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
){
Pgno *aNew = (Pgno*)sqlite3Realloc(
pCur->aOverflow, nOvfl*2*sizeof(Pgno)
);
if( aNew==0 ){
return SQLITE_NOMEM_BKPT;
}else{
pCur->aOverflow = aNew;
}
}
memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
pCur->curFlags |= BTCF_ValidOvfl;
}else{
/* If the overflow page-list cache has been allocated and the
** entry for the first required overflow page is valid, skip
** directly to it.
*/
if( pCur->aOverflow[offset/ovflSize] ){
iIdx = (offset/ovflSize);
nextPage = pCur->aOverflow[iIdx];
offset = (offset%ovflSize);
}
}
assert( rc==SQLITE_OK && amt>0 );
while( nextPage ){
/* If required, populate the overflow page-list cache. */
if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
assert( pCur->aOverflow[iIdx]==0
|| pCur->aOverflow[iIdx]==nextPage
|| CORRUPT_DB );
pCur->aOverflow[iIdx] = nextPage;
if( offset>=ovflSize ){
/* The only reason to read this page is to obtain the page
** number for the next page in the overflow chain. The page
** data is not required. So first try to lookup the overflow
** page-list cache, if any, then fall back to the getOverflowPage()
** function.
*/
assert( pCur->curFlags & BTCF_ValidOvfl );
assert( pCur->pBtree->db==pBt->db );
if( pCur->aOverflow[iIdx+1] ){
nextPage = pCur->aOverflow[iIdx+1];
}else{
rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
}
offset -= ovflSize;
}else{
/* Need to read this page properly. It contains some of the
** range of data that is being read (eOp==0) or written (eOp!=0).
*/
int a = amt;
if( a + offset > ovflSize ){
a = ovflSize - offset;
}
#ifdef SQLITE_DIRECT_OVERFLOW_READ
/* If all the following are true:
**
** 1) this is a read operation, and
** 2) data is required from the start of this overflow page, and
** 3) there are no dirty pages in the page-cache
** 4) the database is file-backed, and
** 5) the page is not in the WAL file
** 6) at least 4 bytes have already been read into the output buffer
**
** then data can be read directly from the database file into the
** output buffer, bypassing the page-cache altogether. This speeds
** up loading large records that span many overflow pages.
*/
if( eOp==0 /* (1) */
&& offset==0 /* (2) */
&& sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
&& &pBuf[-4]>=pBufStart /* (6) */
){
sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
u8 aSave[4];
u8 *aWrite = &pBuf[-4];
assert( aWrite>=pBufStart ); /* due to (6) */
memcpy(aSave, aWrite, 4);
rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
nextPage = get4byte(aWrite);
memcpy(aWrite, aSave, 4);
}else
#endif
{
DbPage *pDbPage;
rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
(eOp==0 ? PAGER_GET_READONLY : 0)
);
if( rc==SQLITE_OK ){
aPayload = sqlite3PagerGetData(pDbPage);
nextPage = get4byte(aPayload);
rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
sqlite3PagerUnref(pDbPage);
offset = 0;
}
}
amt -= a;
if( amt==0 ) return rc;
pBuf += a;
}
if( rc ) break;
iIdx++;
}
}
if( rc==SQLITE_OK && amt>0 ){
/* Overflow chain ends prematurely */
return SQLITE_CORRUPT_PAGE(pPage);
}
return rc;
}
/*
** Read part of the payload for the row at which that cursor pCur is currently
** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
** begins at "offset".
**
** pCur can be pointing to either a table or an index b-tree.
** If pointing to a table btree, then the content section is read. If
** pCur is pointing to an index b-tree then the key section is read.
**
** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
** cursor might be invalid or might need to be restored before being read.
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong. An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
assert( pCur->iPage>=0 && pCur->pPage );
return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}
/*
** This variant of sqlite3BtreePayload() works even if the cursor has not
** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
** interface.
*/
#ifndef SQLITE_OMIT_INCRBLOB
static SQLITE_NOINLINE int accessPayloadChecked(
BtCursor *pCur,
u32 offset,
u32 amt,
void *pBuf
){
int rc;
if ( pCur->eState==CURSOR_INVALID ){
return SQLITE_ABORT;
}
assert( cursorOwnsBtShared(pCur) );
rc = btreeRestoreCursorPosition(pCur);
return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
}
int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
if( pCur->eState==CURSOR_VALID ){
assert( cursorOwnsBtShared(pCur) );
return accessPayload(pCur, offset, amt, pBuf, 0);
}else{
return accessPayloadChecked(pCur, offset, amt, pBuf);
}
}
#endif /* SQLITE_OMIT_INCRBLOB */
/*
** Return a pointer to payload information from the entry that the
** pCur cursor is pointing to. The pointer is to the beginning of
** the key if index btrees (pPage->intKey==0) and is the data for
** table btrees (pPage->intKey==1). The number of bytes of available
** key/data is written into *pAmt. If *pAmt==0, then the value
** returned will not be a valid pointer.
**
** This routine is an optimization. It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages. When that is so, this routine can be used to access the
** key and data without making a copy. If the key and/or data spills
** onto overflow pages, then accessPayload() must be used to reassemble
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database. The data might change or move the next time
** any btree routine is called.
*/
static const void *fetchPayload(
BtCursor *pCur, /* Cursor pointing to entry to read from */
u32 *pAmt /* Write the number of available bytes here */
){
int amt;
assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
assert( pCur->eState==CURSOR_VALID );
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
assert( cursorOwnsBtShared(pCur) );
assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
assert( pCur->info.nSize>0 );
assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
amt = pCur->info.nLocal;
if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
/* There is too little space on the page for the expected amount
** of local content. Database must be corrupt. */
assert( CORRUPT_DB );
amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
}
*pAmt = (u32)amt;
return (void*)pCur->info.pPayload;
}
/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page. Write the number of available bytes into *pAmt.
**
** The pointer returned is ephemeral. The key/data may move
** or be destroyed on the next call to any Btree routine,
** including calls from other threads against the same cache.
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
return fetchPayload(pCur, pAmt);
}
/*
** Move the cursor down to a new child page. The newPgno argument is the
** page number of the child page to move to.
**
** This function returns SQLITE_CORRUPT if the page-header flags field of
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
int rc;
assert( cursorOwnsBtShared(pCur) );
assert( pCur->eState==CURSOR_VALID );
assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
assert( pCur->iPage>=0 );
if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
return SQLITE_CORRUPT_BKPT;
}
pCur->info.nSize = 0;
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
pCur->aiIdx[pCur->iPage] = pCur->ix;
pCur->apPage[pCur->iPage] = pCur->pPage;
pCur->ix = 0;
pCur->iPage++;
rc = getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur->curPagerFlags);
assert( pCur->pPage!=0 || rc!=SQLITE_OK );
if( rc==SQLITE_OK
&& (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey)
){
releasePage(pCur->pPage);
rc = SQLITE_CORRUPT_PGNO(newPgno);
}
if( rc ){
pCur->pPage = pCur->apPage[--pCur->iPage];
}
return rc;
}
#ifdef SQLITE_DEBUG
/*
** Page pParent is an internal (non-leaf) tree page. This function
** asserts that page number iChild is the left-child if the iIdx'th
** cell in page pParent. Or, if iIdx is equal to the total number of
** cells in pParent, that page number iChild is the right-child of
** the page.
*/
static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
if( CORRUPT_DB ) return; /* The conditions tested below might not be true
** in a corrupt database */
assert( iIdx<=pParent->nCell );
if( iIdx==pParent->nCell ){
assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
}else{
assert( get4byte(findCell(pParent, iIdx))==iChild );
}
}
#else
# define assertParentIndex(x,y,z)
#endif
/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from. If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
MemPage *pLeaf;
assert( cursorOwnsBtShared(pCur) );
assert( pCur->eState==CURSOR_VALID );
assert( pCur->iPage>0 );
assert( pCur->pPage );
assertParentIndex(
pCur->apPage[pCur->iPage-1],
pCur->aiIdx[pCur->iPage-1],
pCur->pPage->pgno
);
testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
pCur->info.nSize = 0;
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
pCur->ix = pCur->aiIdx[pCur->iPage-1];
pLeaf = pCur->pPage;
pCur->pPage = pCur->apPage[--pCur->iPage];
releasePageNotNull(pLeaf);
}
/*
** Move the cursor to point to the root page of its b-tree structure.
**
** If the table has a virtual root page, then the cursor is moved to point
** to the virtual root page instead of the actual root page. A table has a
** virtual root page when the actual root page contains no cells and a
** single child page. This can only happen with the table rooted at page 1.
**
** If the b-tree structure is empty, the cursor state is set to
** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
** the cursor is set to point to the first cell located on the root
** (or virtual root) page and the cursor state is set to CURSOR_VALID.
**
** If this function returns successfully, it may be assumed that the
** page-header flags indicate that the [virtual] root-page is the expected
** kind of b-tree page (i.e. if when opening the cursor the caller did not
** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
** indicating a table b-tree, or if the caller did specify a KeyInfo
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
MemPage *pRoot;
int rc = SQLITE_OK;
assert( cursorOwnsBtShared(pCur) );
assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
if( pCur->iPage>=0 ){
if( pCur->iPage ){
releasePageNotNull(pCur->pPage);
while( --pCur->iPage ){
releasePageNotNull(pCur->apPage[pCur->iPage]);
}
pRoot = pCur->pPage = pCur->apPage[0];
goto skip_init;
}
}else if( pCur->pgnoRoot==0 ){
pCur->eState = CURSOR_INVALID;
return SQLITE_EMPTY;
}else{
assert( pCur->iPage==(-1) );
if( pCur->eState>=CURSOR_REQUIRESEEK ){
if( pCur->eState==CURSOR_FAULT ){
assert( pCur->skipNext!=SQLITE_OK );
return pCur->skipNext;
}
sqlite3BtreeClearCursor(pCur);
}
rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage,
pCur->curPagerFlags);
if( rc!=SQLITE_OK ){
pCur->eState = CURSOR_INVALID;
return rc;
}
pCur->iPage = 0;
pCur->curIntKey = pCur->pPage->intKey;
}
pRoot = pCur->pPage;
assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
/* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
** NULL, the caller expects a table b-tree. If this is not the case,
** return an SQLITE_CORRUPT error.
**
** Earlier versions of SQLite assumed that this test could not fail
** if the root page was already loaded when this function was called (i.e.
** if pCur->iPage>=0). But this is not so if the database is corrupted
** in such a way that page pRoot is linked into a second b-tree table
** (or the freelist). */
assert( pRoot->intKey==1 || pRoot->intKey==0 );
if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
return SQLITE_CORRUPT_PAGE(pCur->pPage);
}
skip_init:
pCur->ix = 0;
pCur->info.nSize = 0;
pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
if( pRoot->nCell>0 ){
pCur->eState = CURSOR_VALID;
}else if( !pRoot->leaf ){
Pgno subpage;
if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
pCur->eState = CURSOR_VALID;
rc = moveToChild(pCur, subpage);
}else{
pCur->eState = CURSOR_INVALID;
rc = SQLITE_EMPTY;
}
return rc;
}
/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
**
** The left-most leaf is the one with the smallest key - the first
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
Pgno pgno;
int rc = SQLITE_OK;
MemPage *pPage;
assert( cursorOwnsBtShared(pCur) );
assert( pCur->eState==CURSOR_VALID );
while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
assert( pCur->ix<pPage->nCell );
pgno = get4byte(findCell(pPage, pCur->ix));
rc = moveToChild(pCur, pgno);
}
return rc;
}
/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing. Notice the difference
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
**
** The right-most entry is the one with the largest key - the last
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
Pgno pgno;
int rc = SQLITE_OK;
MemPage *pPage = 0;
assert( cursorOwnsBtShared(pCur) );
assert( pCur->eState==CURSOR_VALID );
while( !(pPage = pCur->pPage)->leaf ){
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
pCur->ix = pPage->nCell;
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
}
pCur->ix = pPage->nCell-1;
assert( pCur->info.nSize==0 );
assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
return SQLITE_OK;
}
/* Move the cursor to the first entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
int rc;
assert( cursorOwnsBtShared(pCur) );
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
rc = moveToRoot(pCur);
if( rc==SQLITE_OK ){
assert( pCur->pPage->nCell>0 );
*pRes = 0;
rc = moveToLeftmost(pCur);
}else if( rc==SQLITE_EMPTY ){
assert( pCur->pgnoRoot==0 || (pCur->pPage!=0 && pCur->pPage->nCell==0) );
*pRes = 1;
rc = SQLITE_OK;
}
return rc;
}
/* Move the cursor to the last entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
static SQLITE_NOINLINE int btreeLast(BtCursor *pCur, int *pRes){
int rc = moveToRoot(pCur);
if( rc==SQLITE_OK ){
assert( pCur->eState==CURSOR_VALID );
*pRes = 0;
rc = moveToRightmost(pCur);
if( rc==SQLITE_OK ){
pCur->curFlags |= BTCF_AtLast;
}else{
pCur->curFlags &= ~BTCF_AtLast;
}
}else if( rc==SQLITE_EMPTY ){
assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
*pRes = 1;
rc = SQLITE_OK;
}
return rc;
}
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
assert( cursorOwnsBtShared(pCur) );
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
/* If the cursor already points to the last entry, this is a no-op. */
if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
#ifdef SQLITE_DEBUG
/* This block serves to assert() that the cursor really does point
** to the last entry in the b-tree. */
int ii;
for(ii=0; ii<pCur->iPage; ii++){
assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
}
assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
testcase( pCur->ix!=pCur->pPage->nCell-1 );
/* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
assert( pCur->pPage->leaf );
#endif
*pRes = 0;
return SQLITE_OK;
}
return btreeLast(pCur, pRes);
}
/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
** table near the key intKey. Return a success code.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present. The cursor might point to an entry that comes
** before or after the key.
**
** An integer is written into *pRes which is the result of
** comparing the key with the entry to which the cursor is
** pointing. The meaning of the integer written into
** *pRes is as follows:
**
** *pRes<0 The cursor is left pointing at an entry that
** is smaller than intKey or if the table is empty
** and the cursor is therefore left point to nothing.
**
** *pRes==0 The cursor is left pointing at an entry that
** exactly matches intKey.
**
** *pRes>0 The cursor is left pointing at an entry that
** is larger than intKey.
*/
int sqlite3BtreeTableMoveto(
BtCursor *pCur, /* The cursor to be moved */
i64 intKey, /* The table key */
int biasRight, /* If true, bias the search to the high end */
int *pRes /* Write search results here */
){
int rc;
assert( cursorOwnsBtShared(pCur) );
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
assert( pRes );
assert( pCur->pKeyInfo==0 );
assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
/* If the cursor is already positioned at the point we are trying
** to move to, then just return without doing any work */
if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
if( pCur->info.nKey==intKey ){
*pRes = 0;
return SQLITE_OK;
}
if( pCur->info.nKey<intKey ){
if( (pCur->curFlags & BTCF_AtLast)!=0 ){
*pRes = -1;
return SQLITE_OK;
}
/* If the requested key is one more than the previous key, then
** try to get there using sqlite3BtreeNext() rather than a full
** binary search. This is an optimization only. The correct answer
** is still obtained without this case, only a little more slowly. */
if( pCur->info.nKey+1==intKey ){
*pRes = 0;
rc = sqlite3BtreeNext(pCur, 0);
if( rc==SQLITE_OK ){
getCellInfo(pCur);
if( pCur->info.nKey==intKey ){
return SQLITE_OK;
}
}else if( rc!=SQLITE_DONE ){
return rc;
}
}
}
}
#ifdef SQLITE_DEBUG
pCur->pBtree->nSeek++; /* Performance measurement during testing */
#endif
rc = moveToRoot(pCur);
if( rc ){
if( rc==SQLITE_EMPTY ){
assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
*pRes = -1;
return SQLITE_OK;
}
return rc;
}
assert( pCur->pPage );
assert( pCur->pPage->isInit );
assert( pCur->eState==CURSOR_VALID );
assert( pCur->pPage->nCell > 0 );
assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
assert( pCur->curIntKey );
for(;;){
int lwr, upr, idx, c;
Pgno chldPg;
MemPage *pPage = pCur->pPage;
u8 *pCell; /* Pointer to current cell in pPage */
/* pPage->nCell must be greater than zero. If this is the root-page
** the cursor would have been INVALID above and this for(;;) loop
** not run. If this is not the root-page, then the moveToChild() routine
** would have already detected db corruption. Similarly, pPage must
** be the right kind (index or table) of b-tree page. Otherwise
** a moveToChild() or moveToRoot() call would have detected corruption. */
assert( pPage->nCell>0 );
assert( pPage->intKey );
lwr = 0;
upr = pPage->nCell-1;
assert( biasRight==0 || biasRight==1 );
idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
for(;;){
i64 nCellKey;
pCell = findCellPastPtr(pPage, idx);
if( pPage->intKeyLeaf ){
while( 0x80 <= *(pCell++) ){
if( pCell>=pPage->aDataEnd ){
return SQLITE_CORRUPT_PAGE(pPage);
}
}
}
getVarint(pCell, (u64*)&nCellKey);
if( nCellKey<intKey ){
lwr = idx+1;
if( lwr>upr ){ c = -1; break; }
}else if( nCellKey>intKey ){
upr = idx-1;
if( lwr>upr ){ c = +1; break; }
}else{
assert( nCellKey==intKey );
pCur->ix = (u16)idx;
if( !pPage->leaf ){
lwr = idx;
goto moveto_table_next_layer;
}else{
pCur->curFlags |= BTCF_ValidNKey;
pCur->info.nKey = nCellKey;
pCur->info.nSize = 0;
*pRes = 0;
return SQLITE_OK;
}
}
assert( lwr+upr>=0 );
idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
}
assert( lwr==upr+1 || !pPage->leaf );
assert( pPage->isInit );
if( pPage->leaf ){
assert( pCur->ix<pCur->pPage->nCell );
pCur->ix = (u16)idx;
*pRes = c;
rc = SQLITE_OK;
goto moveto_table_finish;
}
moveto_table_next_layer:
if( lwr>=pPage->nCell ){
chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
}else{
chldPg = get4byte(findCell(pPage, lwr));
}
pCur->ix = (u16)lwr;
rc = moveToChild(pCur, chldPg);
if( rc ) break;
}
moveto_table_finish:
pCur->info.nSize = 0;
assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
return rc;
}
/*
** Compare the "idx"-th cell on the page the cursor pCur is currently
** pointing to to pIdxKey using xRecordCompare. Return negative or
** zero if the cell is less than or equal pIdxKey. Return positive
** if unknown.
**
** Return value negative: Cell at pCur[idx] less than pIdxKey
**
** Return value is zero: Cell at pCur[idx] equals pIdxKey
**
** Return value positive: Nothing is known about the relationship
** of the cell at pCur[idx] and pIdxKey.
**
** This routine is part of an optimization. It is always safe to return
** a positive value as that will cause the optimization to be skipped.
*/
static int indexCellCompare(
BtCursor *pCur,
int idx,
UnpackedRecord *pIdxKey,
RecordCompare xRecordCompare
){
MemPage *pPage = pCur->pPage;
int c;
int nCell; /* Size of the pCell cell in bytes */
u8 *pCell = findCellPastPtr(pPage, idx);
nCell = pCell[0];
if( nCell<=pPage->max1bytePayload ){
/* This branch runs if the record-size field of the cell is a
** single byte varint and the record fits entirely on the main
** b-tree page. */
testcase( pCell+nCell+1==pPage->aDataEnd );
c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
}else if( !(pCell[1] & 0x80)
&& (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
){
/* The record-size field is a 2 byte varint and the record
** fits entirely on the main b-tree page. */
testcase( pCell+nCell+2==pPage->aDataEnd );
c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
}else{
/* If the record extends into overflow pages, do not attempt
** the optimization. */
c = 99;
}
return c;
}
/*
** Return true (non-zero) if pCur is current pointing to the last
** page of a table.
*/
static int cursorOnLastPage(BtCursor *pCur){
int i;
assert( pCur->eState==CURSOR_VALID );
for(i=0; i<pCur->iPage; i++){
MemPage *pPage = pCur->apPage[i];
if( pCur->aiIdx[i]<pPage->nCell ) return 0;
}
return 1;
}
/* Move the cursor so that it points to an entry in an index table
** near the key pIdxKey. Return a success code.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present. The cursor might point to an entry that comes
** before or after the key.
**
** An integer is written into *pRes which is the result of
** comparing the key with the entry to which the cursor is
** pointing. The meaning of the integer written into
** *pRes is as follows:
**
** *pRes<0 The cursor is left pointing at an entry that
** is smaller than pIdxKey or if the table is empty
** and the cursor is therefore left point to nothing.
**
** *pRes==0 The cursor is left pointing at an entry that
** exactly matches pIdxKey.
**
** *pRes>0 The cursor is left pointing at an entry that
** is larger than pIdxKey.
**
** The pIdxKey->eqSeen field is set to 1 if there
** exists an entry in the table that exactly matches pIdxKey.
*/
int sqlite3BtreeIndexMoveto(
BtCursor *pCur, /* The cursor to be moved */
UnpackedRecord *pIdxKey, /* Unpacked index key */
int *pRes /* Write search results here */
){
int rc;
RecordCompare xRecordCompare;
assert( cursorOwnsBtShared(pCur) );
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
assert( pRes );
assert( pCur->pKeyInfo!=0 );
#ifdef SQLITE_DEBUG
pCur->pBtree->nSeek++; /* Performance measurement during testing */
#endif
xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
pIdxKey->errCode = 0;
assert( pIdxKey->default_rc==1
|| pIdxKey->default_rc==0
|| pIdxKey->default_rc==-1
);
/* Check to see if we can skip a lot of work. Two cases:
**
** (1) If the cursor is already pointing to the very last cell
** in the table and the pIdxKey search key is greater than or
** equal to that last cell, then no movement is required.
**
** (2) If the cursor is on the last page of the table and the first
** cell on that last page is less than or equal to the pIdxKey
** search key, then we can start the search on the current page
** without needing to go back to root.
*/
if( pCur->eState==CURSOR_VALID
&& pCur->pPage->leaf
&& cursorOnLastPage(pCur)
){
int c;
if( pCur->ix==pCur->pPage->nCell-1
&& (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
&& pIdxKey->errCode==SQLITE_OK
){
*pRes = c;
return SQLITE_OK; /* Cursor already pointing at the correct spot */
}
if( pCur->iPage>0
&& indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
&& pIdxKey->errCode==SQLITE_OK
){
pCur->curFlags &= ~BTCF_ValidOvfl;
if( !pCur->pPage->isInit ){
return SQLITE_CORRUPT_BKPT;
}
goto bypass_moveto_root; /* Start search on the current page */
}
pIdxKey->errCode = SQLITE_OK;
}
rc = moveToRoot(pCur);
if( rc ){
if( rc==SQLITE_EMPTY ){
assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
*pRes = -1;
return SQLITE_OK;
}
return rc;
}
bypass_moveto_root:
assert( pCur->pPage );
assert( pCur->pPage->isInit );
assert( pCur->eState==CURSOR_VALID );
assert( pCur->pPage->nCell > 0 );
assert( pCur->curIntKey==0 );
assert( pIdxKey!=0 );
for(;;){
int lwr, upr, idx, c;
Pgno chldPg;
MemPage *pPage = pCur->pPage;
u8 *pCell; /* Pointer to current cell in pPage */
/* pPage->nCell must be greater than zero. If this is the root-page
** the cursor would have been INVALID above and this for(;;) loop
** not run. If this is not the root-page, then the moveToChild() routine
** would have already detected db corruption. Similarly, pPage must
** be the right kind (index or table) of b-tree page. Otherwise
** a moveToChild() or moveToRoot() call would have detected corruption. */
assert( pPage->nCell>0 );
assert( pPage->intKey==0 );
lwr = 0;
upr = pPage->nCell-1;
idx = upr>>1; /* idx = (lwr+upr)/2; */
for(;;){
int nCell; /* Size of the pCell cell in bytes */
pCell = findCellPastPtr(pPage, idx);
/* The maximum supported page-size is 65536 bytes. This means that
** the maximum number of record bytes stored on an index B-Tree
** page is less than 16384 bytes and may be stored as a 2-byte
** varint. This information is used to attempt to avoid parsing
** the entire cell by checking for the cases where the record is
** stored entirely within the b-tree page by inspecting the first
** 2 bytes of the cell.
*/
nCell = pCell[0];
if( nCell<=pPage->max1bytePayload ){
/* This branch runs if the record-size field of the cell is a
** single byte varint and the record fits entirely on the main
** b-tree page. */
testcase( pCell+nCell+1==pPage->aDataEnd );
c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
}else if( !(pCell[1] & 0x80)
&& (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
){
/* The record-size field is a 2 byte varint and the record
** fits entirely on the main b-tree page. */
testcase( pCell+nCell+2==pPage->aDataEnd );
c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
}else{
/* The record flows over onto one or more overflow pages. In
** this case the whole cell needs to be parsed, a buffer allocated
** and accessPayload() used to retrieve the record into the
** buffer before VdbeRecordCompare() can be called.
**
** If the record is corrupt, the xRecordCompare routine may read
** up to two varints past the end of the buffer. An extra 18
** bytes of padding is allocated at the end of the buffer in
** case this happens. */
void *pCellKey;
u8 * const pCellBody = pCell - pPage->childPtrSize;
const int nOverrun = 18; /* Size of the overrun padding */
pPage->xParseCell(pPage, pCellBody, &pCur->info);
nCell = (int)pCur->info.nKey;
testcase( nCell<0 ); /* True if key size is 2^32 or more */
testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
testcase( nCell==2 ); /* Minimum legal index key size */
if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
rc = SQLITE_CORRUPT_PAGE(pPage);
goto moveto_index_finish;
}
pCellKey = sqlite3Malloc( nCell+nOverrun );
if( pCellKey==0 ){
rc = SQLITE_NOMEM_BKPT;
goto moveto_index_finish;
}
pCur->ix = (u16)idx;
rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
pCur->curFlags &= ~BTCF_ValidOvfl;
if( rc ){
sqlite3_free(pCellKey);
goto moveto_index_finish;
}
c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
sqlite3_free(pCellKey);
}
assert(
(pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
&& (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
);
if( c<0 ){
lwr = idx+1;
}else if( c>0 ){
upr = idx-1;
}else{
assert( c==0 );
*pRes = 0;
rc = SQLITE_OK;
pCur->ix = (u16)idx;
if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
goto moveto_index_finish;
}
if( lwr>upr ) break;
assert( lwr+upr>=0 );
idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
}
assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
assert( pPage->isInit );
if( pPage->leaf ){
assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
pCur->ix = (u16)idx;
*pRes = c;
rc = SQLITE_OK;
goto moveto_index_finish;
}
if( lwr>=pPage->nCell ){
chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
}else{
chldPg = get4byte(findCell(pPage, lwr));
}
/* This block is similar to an in-lined version of:
**
** pCur->ix = (u16)lwr;
** rc = moveToChild(pCur, chldPg);
** if( rc ) break;
*/
pCur->info.nSize = 0;
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
return SQLITE_CORRUPT_BKPT;
}
pCur->aiIdx[pCur->iPage] = (u16)lwr;
pCur->apPage[pCur->iPage] = pCur->pPage;
pCur->ix = 0;
pCur->iPage++;
rc = getAndInitPage(pCur->pBt, chldPg, &pCur->pPage, pCur->curPagerFlags);
if( rc==SQLITE_OK
&& (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey)
){
releasePage(pCur->pPage);
rc = SQLITE_CORRUPT_PGNO(chldPg);
}
if( rc ){
pCur->pPage = pCur->apPage[--pCur->iPage];
break;
}
/*
***** End of in-lined moveToChild() call */
}
moveto_index_finish:
pCur->info.nSize = 0;
assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
return rc;
}
/*
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite3BtreeNext() moves
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry. TRUE is also returned if the table is empty.
*/
int sqlite3BtreeEof(BtCursor *pCur){
/* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
** have been deleted? This API will need to change to return an error code
** as well as the boolean result value.
*/
return (CURSOR_VALID!=pCur->eState);
}
/*
** Return an estimate for the number of rows in the table that pCur is
** pointing to. Return a negative number if no estimate is currently
** available.
*/
i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
i64 n;
u8 i;
assert( cursorOwnsBtShared(pCur) );
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
/* Currently this interface is only called by the OP_IfSmaller
** opcode, and it that case the cursor will always be valid and
** will always point to a leaf node. */
if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
if( NEVER(pCur->pPage->leaf==0) ) return -1;
n = pCur->pPage->nCell;
for(i=0; i<pCur->iPage; i++){
n *= pCur->apPage[i]->nCell;
}
return n;
}
/*
** Advance the cursor to the next entry in the database.
** Return value:
**
** SQLITE_OK success
** SQLITE_DONE cursor is already pointing at the last element
** otherwise some kind of error occurred
**
** The main entry point is sqlite3BtreeNext(). That routine is optimized
** for the common case of merely incrementing the cell counter BtCursor.aiIdx
** to the next cell on the current page. The (slower) btreeNext() helper
** routine is called when it is necessary to move to a different page or
** to restore the cursor.
**
** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
** cursor corresponds to an SQL index and this routine could have been
** skipped if the SQL index had been a unique index. The F argument
** is a hint to the implement. SQLite btree implementation does not use
** this hint, but COMDB2 does.
*/
static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
int rc;
int idx;
MemPage *pPage;
assert( cursorOwnsBtShared(pCur) );
if( pCur->eState!=CURSOR_VALID ){
assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
rc = restoreCursorPosition(pCur);
if( rc!=SQLITE_OK ){
return rc;
}
if( CURSOR_INVALID==pCur->eState ){
return SQLITE_DONE;
}
if( pCur->eState==CURSOR_SKIPNEXT ){
pCur->eState = CURSOR_VALID;
if( pCur->skipNext>0 ) return SQLITE_OK;
}
}
pPage = pCur->pPage;
idx = ++pCur->ix;
if( sqlite3FaultSim(412) ) pPage->isInit = 0;
if( !pPage->isInit ){
return SQLITE_CORRUPT_BKPT;
}
if( idx>=pPage->nCell ){
if( !pPage->leaf ){
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
if( rc ) return rc;
return moveToLeftmost(pCur);
}
do{
if( pCur->iPage==0 ){
pCur->eState = CURSOR_INVALID;
return SQLITE_DONE;
}
moveToParent(pCur);
pPage = pCur->pPage;
}while( pCur->ix>=pPage->nCell );
if( pPage->intKey ){
return sqlite3BtreeNext(pCur, 0);
}else{
return SQLITE_OK;
}
}
if( pPage->leaf ){
return SQLITE_OK;
}else{
return moveToLeftmost(pCur);
}
}
int sqlite3BtreeNext(BtCursor *pCur, int flags){
MemPage *pPage;
UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
assert( cursorOwnsBtShared(pCur) );
assert( flags==0 || flags==1 );
pCur->info.nSize = 0;
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
pPage = pCur->pPage;
if( (++pCur->ix)>=pPage->nCell ){
pCur->ix--;
return btreeNext(pCur);
}
if( pPage->leaf ){
return SQLITE_OK;
}else{
return moveToLeftmost(pCur);
}
}
/*
** Step the cursor to the back to the previous entry in the database.
** Return values:
**
** SQLITE_OK success
** SQLITE_DONE the cursor is already on the first element of the table
** otherwise some kind of error occurred
**
** The main entry point is sqlite3BtreePrevious(). That routine is optimized
** for the common case of merely decrementing the cell counter BtCursor.aiIdx
** to the previous cell on the current page. The (slower) btreePrevious()
** helper routine is called when it is necessary to move to a different page
** or to restore the cursor.
**
** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
** the cursor corresponds to an SQL index and this routine could have been
** skipped if the SQL index had been a unique index. The F argument is a
** hint to the implement. The native SQLite btree implementation does not
** use this hint, but COMDB2 does.
*/
static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
int rc;
MemPage *pPage;
assert( cursorOwnsBtShared(pCur) );
assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
assert( pCur->info.nSize==0 );
if( pCur->eState!=CURSOR_VALID ){
rc = restoreCursorPosition(pCur);
if( rc!=SQLITE_OK ){
return rc;
}
if( CURSOR_INVALID==pCur->eState ){
return SQLITE_DONE;
}
if( CURSOR_SKIPNEXT==pCur->eState ){
pCur->eState = CURSOR_VALID;
if( pCur->skipNext<0 ) return SQLITE_OK;
}
}
pPage = pCur->pPage;
assert( pPage->isInit );
if( !pPage->leaf ){
int idx = pCur->ix;
rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
if( rc ) return rc;
rc = moveToRightmost(pCur);
}else{
while( pCur->ix==0 ){
if( pCur->iPage==0 ){
pCur->eState = CURSOR_INVALID;
return SQLITE_DONE;
}
moveToParent(pCur);
}
assert( pCur->info.nSize==0 );
assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
pCur->ix--;
pPage = pCur->pPage;
if( pPage->intKey && !pPage->leaf ){
rc = sqlite3BtreePrevious(pCur, 0);
}else{
rc = SQLITE_OK;
}
}
return rc;
}
int sqlite3BtreePrevious(BtCursor *pCur, int flags){
assert( cursorOwnsBtShared(pCur) );
assert( flags==0 || flags==1 );
UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
pCur->info.nSize = 0;
if( pCur->eState!=CURSOR_VALID
|| pCur->ix==0
|| pCur->pPage->leaf==0
){
return btreePrevious(pCur);
}
pCur->ix--;
return SQLITE_OK;
}
/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
** has already been called on the new page.) The new page has also
** been referenced and the calling routine is responsible for calling
** sqlite3PagerUnref() on the new page when it is done.
**
** SQLITE_OK is returned on success. Any other return value indicates
** an error. *ppPage is set to NULL in the event of an error.
**
** If the "nearby" parameter is not 0, then an effort is made to
** locate a page close to the page number "nearby". This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
** anywhere on the free-list, then it is guaranteed to be returned. If
** eMode is BTALLOC_LT then the page returned will be less than or equal
** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
** are no restrictions on which page is returned.
*/
static int allocateBtreePage(
BtShared *pBt, /* The btree */
MemPage **ppPage, /* Store pointer to the allocated page here */
Pgno *pPgno, /* Store the page number here */
Pgno nearby, /* Search for a page near this one */
u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
){
MemPage *pPage1;
int rc;
u32 n; /* Number of pages on the freelist */
u32 k; /* Number of leaves on the trunk of the freelist */
MemPage *pTrunk = 0;
MemPage *pPrevTrunk = 0;
Pgno mxPage; /* Total size of the database file */
assert( sqlite3_mutex_held(pBt->mutex) );
assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
pPage1 = pBt->pPage1;
mxPage = btreePagecount(pBt);
/* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36
** stores the total number of pages on the freelist. */
n = get4byte(&pPage1->aData[36]);
testcase( n==mxPage-1 );
if( n>=mxPage ){
return SQLITE_CORRUPT_BKPT;
}
if( n>0 ){
/* There are pages on the freelist. Reuse one of those pages. */
Pgno iTrunk;
u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
u32 nSearch = 0; /* Count of the number of search attempts */
/* If eMode==BTALLOC_EXACT and a query of the pointer-map
** shows that the page 'nearby' is somewhere on the free-list, then
** the entire-list will be searched for that page.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
if( eMode==BTALLOC_EXACT ){
if( nearby<=mxPage ){
u8 eType;
assert( nearby>0 );
assert( pBt->autoVacuum );
rc = ptrmapGet(pBt, nearby, &eType, 0);
if( rc ) return rc;
if( eType==PTRMAP_FREEPAGE ){
searchList = 1;
}
}
}else if( eMode==BTALLOC_LE ){
searchList = 1;
}
#endif
/* Decrement the free-list count by 1. Set iTrunk to the index of the
** first free-list trunk page. iPrevTrunk is initially 1.
*/
rc = sqlite3PagerWrite(pPage1->pDbPage);
if( rc ) return rc;
put4byte(&pPage1->aData[36], n-1);
/* The code within this loop is run only once if the 'searchList' variable
** is not true. Otherwise, it runs once for each trunk-page on the
** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
*/
do {
pPrevTrunk = pTrunk;
if( pPrevTrunk ){
/* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
** is the page number of the next freelist trunk page in the list or
** zero if this is the last freelist trunk page. */
iTrunk = get4byte(&pPrevTrunk->aData[0]);
}else{
/* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
** stores the page number of the first page of the freelist, or zero if
** the freelist is empty. */
iTrunk = get4byte(&pPage1->aData[32]);
}
testcase( iTrunk==mxPage );
if( iTrunk>mxPage || nSearch++ > n ){
rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
}else{
rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
}
if( rc ){
pTrunk = 0;
goto end_allocate_page;
}
assert( pTrunk!=0 );
assert( pTrunk->aData!=0 );
/* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
** is the number of leaf page pointers to follow. */
k = get4byte(&pTrunk->aData[4]);
if( k==0 && !searchList ){
/* The trunk has no leaves and the list is not being searched.
** So extract the trunk page itself and use it as the newly
** allocated page */
assert( pPrevTrunk==0 );
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if( rc ){
goto end_allocate_page;
}
*pPgno = iTrunk;
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
*ppPage = pTrunk;
pTrunk = 0;
TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1));
}else if( k>(u32)(pBt->usableSize/4 - 2) ){
/* Value of k is out of range. Database corruption */
rc = SQLITE_CORRUPT_PGNO(iTrunk);
goto end_allocate_page;
#ifndef SQLITE_OMIT_AUTOVACUUM
}else if( searchList
&& (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
){
/* The list is being searched and this trunk page is the page
** to allocate, regardless of whether it has leaves.
*/
*pPgno = iTrunk;
*ppPage = pTrunk;
searchList = 0;
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if( rc ){
goto end_allocate_page;
}
if( k==0 ){
if( !pPrevTrunk ){
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
}else{
rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
if( rc!=SQLITE_OK ){
goto end_allocate_page;
}
memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
}
}else{
/* The trunk page is required by the caller but it contains
** pointers to free-list leaves. The first leaf becomes a trunk
** page in this case.
*/
MemPage *pNewTrunk;
Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
if( iNewTrunk>mxPage ){
rc = SQLITE_CORRUPT_PGNO(iTrunk);
goto end_allocate_page;
}
testcase( iNewTrunk==mxPage );
rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
if( rc!=SQLITE_OK ){
goto end_allocate_page;
}
rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
if( rc!=SQLITE_OK ){
releasePage(pNewTrunk);
goto end_allocate_page;
}
memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
put4byte(&pNewTrunk->aData[4], k-1);
memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
releasePage(pNewTrunk);
if( !pPrevTrunk ){
assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
put4byte(&pPage1->aData[32], iNewTrunk);
}else{
rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
if( rc ){
goto end_allocate_page;
}
put4byte(&pPrevTrunk->aData[0], iNewTrunk);
}
}
pTrunk = 0;
TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1));
#endif
}else if( k>0 ){
/* Extract a leaf from the trunk */
u32 closest;
Pgno iPage;
unsigned char *aData = pTrunk->aData;
if( nearby>0 ){
u32 i;
closest = 0;
if( eMode==BTALLOC_LE ){
for(i=0; i<k; i++){
iPage = get4byte(&aData[8+i*4]);
if( iPage<=nearby ){
closest = i;
break;
}
}
}else{
int dist;
dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
for(i=1; i<k; i++){
int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
if( d2<dist ){
closest = i;
dist = d2;
}
}
}
}else{
closest = 0;
}
iPage = get4byte(&aData[8+closest*4]);
testcase( iPage==mxPage );
if( iPage>mxPage || iPage<2 ){
rc = SQLITE_CORRUPT_PGNO(iTrunk);
goto end_allocate_page;
}
testcase( iPage==mxPage );
if( !searchList
|| (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
){
int noContent;
*pPgno = iPage;
TRACE(("ALLOCATE: %u was leaf %u of %u on trunk %u"
": %u more free pages\n",
*pPgno, closest+1, k, pTrunk->pgno, n-1));
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if( rc ) goto end_allocate_page;
if( closest<k-1 ){
memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
}
put4byte(&aData[4], k-1);
noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
if( rc==SQLITE_OK ){
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
if( rc!=SQLITE_OK ){
releasePage(*ppPage);
*ppPage = 0;
}
}
searchList = 0;
}
}
releasePage(pPrevTrunk);
pPrevTrunk = 0;
}while( searchList );
}else{
/* There are no pages on the freelist, so append a new page to the
** database image.
**
** Normally, new pages allocated by this block can be requested from the
** pager layer with the 'no-content' flag set. This prevents the pager
** from trying to read the pages content from disk. However, if the
** current transaction has already run one or more incremental-vacuum
** steps, then the page we are about to allocate may contain content
** that is required in the event of a rollback. In this case, do
** not set the no-content flag. This causes the pager to load and journal
** the current page content before overwriting it.
**
** Note that the pager will not actually attempt to load or journal
** content for any page that really does lie past the end of the database
** file on disk. So the effects of disabling the no-content optimization
** here are confined to those pages that lie between the end of the
** database image and the end of the database file.
*/
int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
if( rc ) return rc;
pBt->nPage++;
if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
/* If *pPgno refers to a pointer-map page, allocate two new pages
** at the end of the file instead of one. The first allocated page
** becomes a new pointer-map page, the second is used by the caller.
*/
MemPage *pPg = 0;
TRACE(("ALLOCATE: %u from end of file (pointer-map page)\n", pBt->nPage));
assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
if( rc==SQLITE_OK ){
rc = sqlite3PagerWrite(pPg->pDbPage);
releasePage(pPg);
}
if( rc ) return rc;
pBt->nPage++;
if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
}
#endif
put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
*pPgno = pBt->nPage;
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
if( rc ) return rc;
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
if( rc!=SQLITE_OK ){
releasePage(*ppPage);
*ppPage = 0;
}
TRACE(("ALLOCATE: %u from end of file\n", *pPgno));
}
assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
end_allocate_page:
releasePage(pTrunk);
releasePage(pPrevTrunk);
assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
return rc;
}
/*
** This function is used to add page iPage to the database file free-list.
** It is assumed that the page is not already a part of the free-list.
**
** The value passed as the second argument to this function is optional.
** If the caller happens to have a pointer to the MemPage object
** corresponding to page iPage handy, it may pass it as the second value.
** Otherwise, it may pass NULL.
**
** If a pointer to a MemPage object is passed as the second argument,
** its reference count is not altered by this function.
*/
static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
MemPage *pTrunk = 0; /* Free-list trunk page */
Pgno iTrunk = 0; /* Page number of free-list trunk page */
MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
MemPage *pPage; /* Page being freed. May be NULL. */
int rc; /* Return Code */
u32 nFree; /* Initial number of pages on free-list */
assert( sqlite3_mutex_held(pBt->mutex) );
assert( CORRUPT_DB || iPage>1 );
assert( !pMemPage || pMemPage->pgno==iPage );
if( iPage<2 || iPage>pBt->nPage ){
return SQLITE_CORRUPT_BKPT;
}
if( pMemPage ){
pPage = pMemPage;
sqlite3PagerRef(pPage->pDbPage);
}else{
pPage = btreePageLookup(pBt, iPage);
}
/* Increment the free page count on pPage1 */
rc = sqlite3PagerWrite(pPage1->pDbPage);
if( rc ) goto freepage_out;
nFree = get4byte(&pPage1->aData[36]);
put4byte(&pPage1->aData[36], nFree+1);
if( pBt->btsFlags & BTS_SECURE_DELETE ){
/* If the secure_delete option is enabled, then
** always fully overwrite deleted information with zeros.
*/
if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
|| ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
){
goto freepage_out;
}
memset(pPage->aData, 0, pPage->pBt->pageSize);
}
/* If the database supports auto-vacuum, write an entry in the pointer-map
** to indicate that the page is free.
*/
if( ISAUTOVACUUM(pBt) ){
ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
if( rc ) goto freepage_out;
}
/* Now manipulate the actual database free-list structure. There are two
** possibilities. If the free-list is currently empty, or if the first
** trunk page in the free-list is full, then this page will become a
** new free-list trunk page. Otherwise, it will become a leaf of the
** first trunk page in the current free-list. This block tests if it
** is possible to add the page as a new free-list leaf.
*/
if( nFree!=0 ){
u32 nLeaf; /* Initial number of leaf cells on trunk page */
iTrunk = get4byte(&pPage1->aData[32]);
if( iTrunk>btreePagecount(pBt) ){
rc = SQLITE_CORRUPT_BKPT;
goto freepage_out;
}
rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
if( rc!=SQLITE_OK ){
goto freepage_out;
}
nLeaf = get4byte(&pTrunk->aData[4]);
assert( pBt->usableSize>32 );
if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
rc = SQLITE_CORRUPT_BKPT;
goto freepage_out;
}
if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
/* In this case there is room on the trunk page to insert the page
** being freed as a new leaf.
**
** Note that the trunk page is not really full until it contains
** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
** coded. But due to a coding error in versions of SQLite prior to
** 3.6.0, databases with freelist trunk pages holding more than
** usableSize/4 - 8 entries will be reported as corrupt. In order
** to maintain backwards compatibility with older versions of SQLite,
** we will continue to restrict the number of entries to usableSize/4 - 8
** for now. At some point in the future (once everyone has upgraded
** to 3.6.0 or later) we should consider fixing the conditional above
** to read "usableSize/4-2" instead of "usableSize/4-8".
**
** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
** avoid using the last six entries in the freelist trunk page array in
** order that database files created by newer versions of SQLite can be
** read by older versions of SQLite.
*/
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if( rc==SQLITE_OK ){
put4byte(&pTrunk->aData[4], nLeaf+1);
put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
sqlite3PagerDontWrite(pPage->pDbPage);
}
rc = btreeSetHasContent(pBt, iPage);
}
TRACE(("FREE-PAGE: %u leaf on trunk page %u\n",pPage->pgno,pTrunk->pgno));
goto freepage_out;
}
}
/* If control flows to this point, then it was not possible to add the
** the page being freed as a leaf page of the first trunk in the free-list.
** Possibly because the free-list is empty, or possibly because the
** first trunk in the free-list is full. Either way, the page being freed
** will become the new first trunk page in the free-list.
*/
if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
goto freepage_out;
}
rc = sqlite3PagerWrite(pPage->pDbPage);
if( rc!=SQLITE_OK ){
goto freepage_out;
}
put4byte(pPage->aData, iTrunk);
put4byte(&pPage->aData[4], 0);
put4byte(&pPage1->aData[32], iPage);
TRACE(("FREE-PAGE: %u new trunk page replacing %u\n", pPage->pgno, iTrunk));
freepage_out:
if( pPage ){
pPage->isInit = 0;
}
releasePage(pPage);
releasePage(pTrunk);
return rc;
}
static void freePage(MemPage *pPage, int *pRC){
if( (*pRC)==SQLITE_OK ){
*pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
}
}
/*
** Free the overflow pages associated with the given Cell.
*/
static SQLITE_NOINLINE int clearCellOverflow(
MemPage *pPage, /* The page that contains the Cell */
unsigned char *pCell, /* First byte of the Cell */
CellInfo *pInfo /* Size information about the cell */
){
BtShared *pBt;
Pgno ovflPgno;
int rc;
int nOvfl;
u32 ovflPageSize;
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( pInfo->nLocal!=pInfo->nPayload );
testcase( pCell + pInfo->nSize == pPage->aDataEnd );
testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
if( pCell + pInfo->nSize > pPage->aDataEnd ){
/* Cell extends past end of page */
return SQLITE_CORRUPT_PAGE(pPage);
}
ovflPgno = get4byte(pCell + pInfo->nSize - 4);
pBt = pPage->pBt;
assert( pBt->usableSize > 4 );
ovflPageSize = pBt->usableSize - 4;
nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
assert( nOvfl>0 ||
(CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
);
while( nOvfl-- ){
Pgno iNext = 0;
MemPage *pOvfl = 0;
if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
/* 0 is not a legal page number and page 1 cannot be an
** overflow page. Therefore if ovflPgno<2 or past the end of the
** file the database must be corrupt. */
return SQLITE_CORRUPT_BKPT;
}
if( nOvfl ){
rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
if( rc ) return rc;
}
if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
&& sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
){
/* There is no reason any cursor should have an outstanding reference
** to an overflow page belonging to a cell that is being deleted/updated.
** So if there exists more than one reference to this page, then it
** must not really be an overflow page and the database must be corrupt.
** It is helpful to detect this before calling freePage2(), as
** freePage2() may zero the page contents if secure-delete mode is
** enabled. If this 'overflow' page happens to be a page that the
** caller is iterating through or using in some other way, this
** can be problematic.
*/
rc = SQLITE_CORRUPT_BKPT;
}else{
rc = freePage2(pBt, pOvfl, ovflPgno);
}
if( pOvfl ){
sqlite3PagerUnref(pOvfl->pDbPage);
}
if( rc ) return rc;
ovflPgno = iNext;
}
return SQLITE_OK;
}
/* Call xParseCell to compute the size of a cell. If the cell contains
** overflow, then invoke cellClearOverflow to clear out that overflow.
** Store the result code (SQLITE_OK or some error code) in rc.
**
** Implemented as macro to force inlining for performance.
*/
#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
pPage->xParseCell(pPage, pCell, &sInfo); \
if( sInfo.nLocal!=sInfo.nPayload ){ \
rc = clearCellOverflow(pPage, pCell, &sInfo); \
}else{ \
rc = SQLITE_OK; \
}
/*
** Create the byte sequence used to represent a cell on page pPage
** and write that byte sequence into pCell[]. Overflow pages are
** allocated and filled in as necessary. The calling procedure
** is responsible for making sure sufficient space has been allocated
** for pCell[].
**
** Note that pCell does not necessary need to point to the pPage->aData
** area. pCell might point to some temporary storage. The cell will
** be constructed in this temporary area then copied into pPage->aData
** later.
*/
static int fillInCell(
MemPage *pPage, /* The page that contains the cell */
unsigned char *pCell, /* Complete text of the cell */
const BtreePayload *pX, /* Payload with which to construct the cell */
int *pnSize /* Write cell size here */
){
int nPayload;
const u8 *pSrc;
int nSrc, n, rc, mn;
int spaceLeft;
MemPage *pToRelease;
unsigned char *pPrior;
unsigned char *pPayload;
BtShared *pBt;
Pgno pgnoOvfl;
int nHeader;
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
/* pPage is not necessarily writeable since pCell might be auxiliary
** buffer space that is separate from the pPage buffer area */
assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
|| sqlite3PagerIswriteable(pPage->pDbPage) );
/* Fill in the header. */
nHeader = pPage->childPtrSize;
if( pPage->intKey ){
nPayload = pX->nData + pX->nZero;
pSrc = pX->pData;
nSrc = pX->nData;
assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
nHeader += putVarint32(&pCell[nHeader], nPayload);
nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
}else{
assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
nSrc = nPayload = (int)pX->nKey;
pSrc = pX->pKey;
nHeader += putVarint32(&pCell[nHeader], nPayload);
}
/* Fill in the payload */
pPayload = &pCell[nHeader];
if( nPayload<=pPage->maxLocal ){
/* This is the common case where everything fits on the btree page
** and no overflow pages are required. */
n = nHeader + nPayload;
testcase( n==3 );
testcase( n==4 );
if( n<4 ) n = 4;
*pnSize = n;
assert( nSrc<=nPayload );
testcase( nSrc<nPayload );
memcpy(pPayload, pSrc, nSrc);
memset(pPayload+nSrc, 0, nPayload-nSrc);
return SQLITE_OK;
}
/* If we reach this point, it means that some of the content will need
** to spill onto overflow pages.
*/
mn = pPage->minLocal;
n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
testcase( n==pPage->maxLocal );
testcase( n==pPage->maxLocal+1 );
if( n > pPage->maxLocal ) n = mn;
spaceLeft = n;
*pnSize = n + nHeader + 4;
pPrior = &pCell[nHeader+n];
pToRelease = 0;
pgnoOvfl = 0;
pBt = pPage->pBt;
/* At this point variables should be set as follows:
**
** nPayload Total payload size in bytes
** pPayload Begin writing payload here
** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
** that means content must spill into overflow pages.
** *pnSize Size of the local cell (not counting overflow pages)
** pPrior Where to write the pgno of the first overflow page
**
** Use a call to btreeParseCellPtr() to verify that the values above
** were computed correctly.
*/
#ifdef SQLITE_DEBUG
{
CellInfo info;
pPage->xParseCell(pPage, pCell, &info);
assert( nHeader==(int)(info.pPayload - pCell) );
assert( info.nKey==pX->nKey );
assert( *pnSize == info.nSize );
assert( spaceLeft == info.nLocal );
}
#endif
/* Write the payload into the local Cell and any extra into overflow pages */
while( 1 ){
n = nPayload;
if( n>spaceLeft ) n = spaceLeft;
/* If pToRelease is not zero than pPayload points into the data area
** of pToRelease. Make sure pToRelease is still writeable. */
assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
/* If pPayload is part of the data area of pPage, then make sure pPage
** is still writeable */
assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
|| sqlite3PagerIswriteable(pPage->pDbPage) );
if( nSrc>=n ){
memcpy(pPayload, pSrc, n);
}else if( nSrc>0 ){
n = nSrc;
memcpy(pPayload, pSrc, n);
}else{
memset(pPayload, 0, n);
}
nPayload -= n;
if( nPayload<=0 ) break;
pPayload += n;
pSrc += n;
nSrc -= n;
spaceLeft -= n;
if( spaceLeft==0 ){
MemPage *pOvfl = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
if( pBt->autoVacuum ){
do{
pgnoOvfl++;
} while(
PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
);
}
#endif
rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the database supports auto-vacuum, and the second or subsequent
** overflow page is being allocated, add an entry to the pointer-map
** for that page now.
**
** If this is the first overflow page, then write a partial entry
** to the pointer-map. If we write nothing to this pointer-map slot,
** then the optimistic overflow chain processing in clearCell()
** may misinterpret the uninitialized values and delete the
** wrong pages from the database.
*/
if( pBt->autoVacuum && rc==SQLITE_OK ){
u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
if( rc ){
releasePage(pOvfl);
}
}
#endif
if( rc ){
releasePage(pToRelease);
return rc;
}
/* If pToRelease is not zero than pPrior points into the data area
** of pToRelease. Make sure pToRelease is still writeable. */
assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
/* If pPrior is part of the data area of pPage, then make sure pPage
** is still writeable */
assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
|| sqlite3PagerIswriteable(pPage->pDbPage) );
put4byte(pPrior, pgnoOvfl);
releasePage(pToRelease);
pToRelease = pOvfl;
pPrior = pOvfl->aData;
put4byte(pPrior, 0);
pPayload = &pOvfl->aData[4];
spaceLeft = pBt->usableSize - 4;
}
}
releasePage(pToRelease);
return SQLITE_OK;
}
/*
** Remove the i-th cell from pPage. This routine effects pPage only.
** The cell content is not freed or deallocated. It is assumed that
** the cell content has been copied someplace else. This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
u32 pc; /* Offset to cell content of cell being deleted */
u8 *data; /* pPage->aData */
u8 *ptr; /* Used to move bytes around within data[] */
int rc; /* The return code */
int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
if( *pRC ) return;
assert( idx>=0 );
assert( idx<pPage->nCell );
assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( pPage->nFree>=0 );
data = pPage->aData;
ptr = &pPage->aCellIdx[2*idx];
assert( pPage->pBt->usableSize > (u32)(ptr-data) );
pc = get2byte(ptr);
hdr = pPage->hdrOffset;
testcase( pc==(u32)get2byte(&data[hdr+5]) );
testcase( pc+sz==pPage->pBt->usableSize );
if( pc+sz > pPage->pBt->usableSize ){
*pRC = SQLITE_CORRUPT_BKPT;
return;
}
rc = freeSpace(pPage, pc, sz);
if( rc ){
*pRC = rc;
return;
}
pPage->nCell--;
if( pPage->nCell==0 ){
memset(&data[hdr+1], 0, 4);
data[hdr+7] = 0;
put2byte(&data[hdr+5], pPage->pBt->usableSize);
pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
- pPage->childPtrSize - 8;
}else{
memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
put2byte(&data[hdr+3], pPage->nCell);
pPage->nFree += 2;
}
}
/*
** Insert a new cell on pPage at cell index "i". pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there. If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null. Regardless of pTemp, allocate a new entry
** in pPage->apOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index.
** Allocating a new entry in pPage->aCell[] implies that
** pPage->nOverflow is incremented.
**
** The insertCellFast() routine below works exactly the same as
** insertCell() except that it lacks the pTemp and iChild parameters
** which are assumed zero. Other than that, the two routines are the
** same.
**
** Fixes or enhancements to this routine should be reflected in
** insertCellFast()!
*/
static int insertCell(
MemPage *pPage, /* Page into which we are copying */
int i, /* New cell becomes the i-th cell of the page */
u8 *pCell, /* Content of the new cell */
int sz, /* Bytes of content in pCell */
u8 *pTemp, /* Temp storage space for pCell, if needed */
Pgno iChild /* If non-zero, replace first 4 bytes with this value */
){
int idx = 0; /* Where to write new cell content in data[] */
int j; /* Loop counter */
u8 *data; /* The content of the whole page */
u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
assert( MX_CELL(pPage->pBt)<=10921 );
assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
assert( pPage->nFree>=0 );
assert( iChild>0 );
if( pPage->nOverflow || sz+2>pPage->nFree ){
if( pTemp ){
memcpy(pTemp, pCell, sz);
pCell = pTemp;
}
put4byte(pCell, iChild);
j = pPage->nOverflow++;
/* Comparison against ArraySize-1 since we hold back one extra slot
** as a contingency. In other words, never need more than 3 overflow
** slots but 4 are allocated, just to be safe. */
assert( j < ArraySize(pPage->apOvfl)-1 );
pPage->apOvfl[j] = pCell;
pPage->aiOvfl[j] = (u16)i;
/* When multiple overflows occur, they are always sequential and in
** sorted order. This invariants arise because multiple overflows can
** only occur when inserting divider cells into the parent page during
** balancing, and the dividers are adjacent and sorted.
*/
assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
}else{
int rc = sqlite3PagerWrite(pPage->pDbPage);
if( NEVER(rc!=SQLITE_OK) ){
return rc;
}
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
data = pPage->aData;
assert( &data[pPage->cellOffset]==pPage->aCellIdx );
rc = allocateSpace(pPage, sz, &idx);
if( rc ){ return rc; }
/* The allocateSpace() routine guarantees the following properties
** if it returns successfully */
assert( idx >= 0 );
assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
assert( idx+sz <= (int)pPage->pBt->usableSize );
pPage->nFree -= (u16)(2 + sz);
/* In a corrupt database where an entry in the cell index section of
** a btree page has a value of 3 or less, the pCell value might point
** as many as 4 bytes in front of the start of the aData buffer for
** the source page. Make sure this does not cause problems by not
** reading the first 4 bytes */
memcpy(&data[idx+4], pCell+4, sz-4);
put4byte(&data[idx], iChild);
pIns = pPage->aCellIdx + i*2;
memmove(pIns+2, pIns, 2*(pPage->nCell - i));
put2byte(pIns, idx);
pPage->nCell++;
/* increment the cell count */
if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pPage->pBt->autoVacuum ){
int rc2 = SQLITE_OK;
/* The cell may contain a pointer to an overflow page. If so, write
** the entry for the overflow page into the pointer map.
*/
ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2);
if( rc2 ) return rc2;
}
#endif
}
return SQLITE_OK;
}
/*
** This variant of insertCell() assumes that the pTemp and iChild
** parameters are both zero. Use this variant in sqlite3BtreeInsert()
** for performance improvement, and also so that this variant is only
** called from that one place, and is thus inlined, and thus runs must
** faster.
**
** Fixes or enhancements to this routine should be reflected into
** the insertCell() routine.
*/
static int insertCellFast(
MemPage *pPage, /* Page into which we are copying */
int i, /* New cell becomes the i-th cell of the page */
u8 *pCell, /* Content of the new cell */
int sz /* Bytes of content in pCell */
){
int idx = 0; /* Where to write new cell content in data[] */
int j; /* Loop counter */
u8 *data; /* The content of the whole page */
u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
assert( MX_CELL(pPage->pBt)<=10921 );
assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
assert( pPage->nFree>=0 );
assert( pPage->nOverflow==0 );
if( sz+2>pPage->nFree ){
j = pPage->nOverflow++;
/* Comparison against ArraySize-1 since we hold back one extra slot
** as a contingency. In other words, never need more than 3 overflow
** slots but 4 are allocated, just to be safe. */
assert( j < ArraySize(pPage->apOvfl)-1 );
pPage->apOvfl[j] = pCell;
pPage->aiOvfl[j] = (u16)i;
/* When multiple overflows occur, they are always sequential and in
** sorted order. This invariants arise because multiple overflows can
** only occur when inserting divider cells into the parent page during
** balancing, and the dividers are adjacent and sorted.
*/
assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
}else{
int rc = sqlite3PagerWrite(pPage->pDbPage);
if( rc!=SQLITE_OK ){
return rc;
}
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
data = pPage->aData;
assert( &data[pPage->cellOffset]==pPage->aCellIdx );
rc = allocateSpace(pPage, sz, &idx);
if( rc ){ return rc; }
/* The allocateSpace() routine guarantees the following properties
** if it returns successfully */
assert( idx >= 0 );
assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
assert( idx+sz <= (int)pPage->pBt->usableSize );
pPage->nFree -= (u16)(2 + sz);
memcpy(&data[idx], pCell, sz);
pIns = pPage->aCellIdx + i*2;
memmove(pIns+2, pIns, 2*(pPage->nCell - i));
put2byte(pIns, idx);
pPage->nCell++;
/* increment the cell count */
if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pPage->pBt->autoVacuum ){
int rc2 = SQLITE_OK;
/* The cell may contain a pointer to an overflow page. If so, write
** the entry for the overflow page into the pointer map.
*/
ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2);
if( rc2 ) return rc2;
}
#endif
}
return SQLITE_OK;
}
/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation. NN is the number of neighbors on either side
** of the page that participate in the balancing operation. NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course). Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
**
** (Later:) The description above makes it seem as if these values are
** tunable - as if you could change them and recompile and it would all work.
** But that is unlikely. NB has been 3 since the inception of SQLite and
** we have never tested any other value.
*/
#define NN 1 /* Number of neighbors on either side of pPage */
#define NB 3 /* (NN*2+1): Total pages involved in the balance */
/*
** A CellArray object contains a cache of pointers and sizes for a
** consecutive sequence of cells that might be held on multiple pages.
**
** The cells in this array are the divider cell or cells from the pParent
** page plus up to three child pages. There are a total of nCell cells.
**
** pRef is a pointer to one of the pages that contributes cells. This is
** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
** which should be common to all pages that contribute cells to this array.
**
** apCell[] and szCell[] hold, respectively, pointers to the start of each
** cell and the size of each cell. Some of the apCell[] pointers might refer
** to overflow cells. In other words, some apCel[] pointers might not point
** to content area of the pages.
**
** A szCell[] of zero means the size of that cell has not yet been computed.
**
** The cells come from as many as four different pages:
**
** -----------
** | Parent |
** -----------
** / | \
** / | \
** --------- --------- ---------
** |Child-1| |Child-2| |Child-3|
** --------- --------- ---------
**
** The order of cells is in the array is for an index btree is:
**
** 1. All cells from Child-1 in order
** 2. The first divider cell from Parent
** 3. All cells from Child-2 in order
** 4. The second divider cell from Parent
** 5. All cells from Child-3 in order
**
** For a table-btree (with rowids) the items 2 and 4 are empty because
** content exists only in leaves and there are no divider cells.
**
** For an index btree, the apEnd[] array holds pointer to the end of page
** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
** respectively. The ixNx[] array holds the number of cells contained in
** each of these 5 stages, and all stages to the left. Hence:
**
** ixNx[0] = Number of cells in Child-1.
** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
** ixNx[4] = Total number of cells.
**
** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
** are used and they point to the leaf pages only, and the ixNx value are:
**
** ixNx[0] = Number of cells in Child-1.
** ixNx[1] = Number of cells in Child-1 and Child-2.
** ixNx[2] = Total number of cells.
**
** Sometimes when deleting, a child page can have zero cells. In those
** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
** entries, shift down. The end result is that each ixNx[] entry should
** be larger than the previous
*/
typedef struct CellArray CellArray;
struct CellArray {
int nCell; /* Number of cells in apCell[] */
MemPage *pRef; /* Reference page */
u8 **apCell; /* All cells begin balanced */
u16 *szCell; /* Local size of all cells in apCell[] */
u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
};
/*
** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
** computed.
*/
static void populateCellCache(CellArray *p, int idx, int N){
MemPage *pRef = p->pRef;
u16 *szCell = p->szCell;
assert( idx>=0 && idx+N<=p->nCell );
while( N>0 ){
assert( p->apCell[idx]!=0 );
if( szCell[idx]==0 ){
szCell[idx] = pRef->xCellSize(pRef, p->apCell[idx]);
}else{
assert( CORRUPT_DB ||
szCell[idx]==pRef->xCellSize(pRef, p->apCell[idx]) );
}
idx++;
N--;
}
}
/*
** Return the size of the Nth element of the cell array
*/
static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
assert( N>=0 && N<p->nCell );
assert( p->szCell[N]==0 );
p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
return p->szCell[N];
}
static u16 cachedCellSize(CellArray *p, int N){
assert( N>=0 && N<p->nCell );
if( p->szCell[N] ) return p->szCell[N];
return computeCellSize(p, N);
}
/*
** Array apCell[] contains pointers to nCell b-tree page cells. The
** szCell[] array contains the size in bytes of each cell. This function
** replaces the current contents of page pPg with the contents of the cell
** array.
**
** Some of the cells in apCell[] may currently be stored in pPg. This
** function works around problems caused by this by making a copy of any
** such cells before overwriting the page data.
**
** The MemPage.nFree field is invalidated by this function. It is the
** responsibility of the caller to set it correctly.
*/
static int rebuildPage(
CellArray *pCArray, /* Content to be added to page pPg */
int iFirst, /* First cell in pCArray to use */
int nCell, /* Final number of cells on page */
MemPage *pPg /* The page to be reconstructed */
){
const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
u8 * const aData = pPg->aData; /* Pointer to data for pPg */
const int usableSize = pPg->pBt->usableSize;
u8 * const pEnd = &aData[usableSize];
int i = iFirst; /* Which cell to copy from pCArray*/
u32 j; /* Start of cell content area */
int iEnd = i+nCell; /* Loop terminator */
u8 *pCellptr = pPg->aCellIdx;
u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
u8 *pData;
int k; /* Current slot in pCArray->apEnd[] */
u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
assert( i<iEnd );
j = get2byte(&aData[hdr+5]);
if( j>(u32)usableSize ){ j = 0; }
memcpy(&pTmp[j], &aData[j], usableSize - j);
for(k=0; ALWAYS(k<NB*2) && pCArray->ixNx[k]<=i; k++){}
pSrcEnd = pCArray->apEnd[k];
pData = pEnd;
while( 1/*exit by break*/ ){
u8 *pCell = pCArray->apCell[i];
u16 sz = pCArray->szCell[i];
assert( sz>0 );
if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
pCell = &pTmp[pCell - aData];
}else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
&& (uptr)(pCell)<(uptr)pSrcEnd
){
return SQLITE_CORRUPT_BKPT;
}
pData -= sz;
put2byte(pCellptr, (pData - aData));
pCellptr += 2;
if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
memmove(pData, pCell, sz);
assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
i++;
if( i>=iEnd ) break;
if( pCArray->ixNx[k]<=i ){
k++;
pSrcEnd = pCArray->apEnd[k];
}
}
/* The pPg->nFree field is now set incorrectly. The caller will fix it. */
pPg->nCell = nCell;
pPg->nOverflow = 0;
put2byte(&aData[hdr+1], 0);
put2byte(&aData[hdr+3], pPg->nCell);
put2byte(&aData[hdr+5], pData - aData);
aData[hdr+7] = 0x00;
return SQLITE_OK;
}
/*
** The pCArray objects contains pointers to b-tree cells and the cell sizes.
** This function attempts to add the cells stored in the array to page pPg.
** If it cannot (because the page needs to be defragmented before the cells
** will fit), non-zero is returned. Otherwise, if the cells are added
** successfully, zero is returned.
**
** Argument pCellptr points to the first entry in the cell-pointer array
** (part of page pPg) to populate. After cell apCell[0] is written to the
** page body, a 16-bit offset is written to pCellptr. And so on, for each
** cell in the array. It is the responsibility of the caller to ensure
** that it is safe to overwrite this part of the cell-pointer array.
**
** When this function is called, *ppData points to the start of the
** content area on page pPg. If the size of the content area is extended,
** *ppData is updated to point to the new start of the content area
** before returning.
**
** Finally, argument pBegin points to the byte immediately following the
** end of the space required by this page for the cell-pointer area (for
** all cells - not just those inserted by the current call). If the content
** area must be extended to before this point in order to accommodate all
** cells in apCell[], then the cells do not fit and non-zero is returned.
*/
static int pageInsertArray(
MemPage *pPg, /* Page to add cells to */
u8 *pBegin, /* End of cell-pointer array */
u8 **ppData, /* IN/OUT: Page content-area pointer */
u8 *pCellptr, /* Pointer to cell-pointer area */
int iFirst, /* Index of first cell to add */
int nCell, /* Number of cells to add to pPg */
CellArray *pCArray /* Array of cells */
){
int i = iFirst; /* Loop counter - cell index to insert */
u8 *aData = pPg->aData; /* Complete page */
u8 *pData = *ppData; /* Content area. A subset of aData[] */
int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
int k; /* Current slot in pCArray->apEnd[] */
u8 *pEnd; /* Maximum extent of cell data */
assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
if( iEnd<=iFirst ) return 0;
for(k=0; ALWAYS(k<NB*2) && pCArray->ixNx[k]<=i ; k++){}
pEnd = pCArray->apEnd[k];
while( 1 /*Exit by break*/ ){
int sz, rc;
u8 *pSlot;
assert( pCArray->szCell[i]!=0 );
sz = pCArray->szCell[i];
if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
if( (pData - pBegin)<sz ) return 1;
pData -= sz;
pSlot = pData;
}
/* pSlot and pCArray->apCell[i] will never overlap on a well-formed
** database. But they might for a corrupt database. Hence use memmove()
** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
assert( (pSlot+sz)<=pCArray->apCell[i]
|| pSlot>=(pCArray->apCell[i]+sz)
|| CORRUPT_DB );
if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
&& (uptr)(pCArray->apCell[i])<(uptr)pEnd
){
assert( CORRUPT_DB );
(void)SQLITE_CORRUPT_BKPT;
return 1;
}
memmove(pSlot, pCArray->apCell[i], sz);
put2byte(pCellptr, (pSlot - aData));
pCellptr += 2;
i++;
if( i>=iEnd ) break;
if( pCArray->ixNx[k]<=i ){
k++;
pEnd = pCArray->apEnd[k];
}
}
*ppData = pData;
return 0;
}
/*
** The pCArray object contains pointers to b-tree cells and their sizes.
**
** This function adds the space associated with each cell in the array
** that is currently stored within the body of pPg to the pPg free-list.
** The cell-pointers and other fields of the page are not updated.
**
** This function returns the total number of cells added to the free-list.
*/
static int pageFreeArray(
MemPage *pPg, /* Page to edit */
int iFirst, /* First cell to delete */
int nCell, /* Cells to delete */
CellArray *pCArray /* Array of cells */
){
u8 * const aData = pPg->aData;
u8 * const pEnd = &aData[pPg->pBt->usableSize];
u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
int nRet = 0;
int i, j;
int iEnd = iFirst + nCell;
int nFree = 0;
int aOfst[10];
int aAfter[10];
for(i=iFirst; i<iEnd; i++){
u8 *pCell = pCArray->apCell[i];
if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
int sz;
int iAfter;
int iOfst;
/* No need to use cachedCellSize() here. The sizes of all cells that
** are to be freed have already been computing while deciding which
** cells need freeing */
sz = pCArray->szCell[i]; assert( sz>0 );
iOfst = (u16)(pCell - aData);
iAfter = iOfst+sz;
for(j=0; j<nFree; j++){
if( aOfst[j]==iAfter ){
aOfst[j] = iOfst;
break;
}else if( aAfter[j]==iOfst ){
aAfter[j] = iAfter;
break;
}
}
if( j>=nFree ){
if( nFree>=(int)(sizeof(aOfst)/sizeof(aOfst[0])) ){
for(j=0; j<nFree; j++){
freeSpace(pPg, aOfst[j], aAfter[j]-aOfst[j]);
}
nFree = 0;
}
aOfst[nFree] = iOfst;
aAfter[nFree] = iAfter;
if( &aData[iAfter]>pEnd ) return 0;
nFree++;
}
nRet++;
}
}
for(j=0; j<nFree; j++){
freeSpace(pPg, aOfst[j], aAfter[j]-aOfst[j]);
}
return nRet;
}
/*
** pCArray contains pointers to and sizes of all cells in the page being
** balanced. The current page, pPg, has pPg->nCell cells starting with
** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
** starting at apCell[iNew].
**
** This routine makes the necessary adjustments to pPg so that it contains
** the correct cells after being balanced.
**
** The pPg->nFree field is invalid when this function returns. It is the
** responsibility of the caller to set it correctly.
*/
static int editPage(
MemPage *pPg, /* Edit this page */
int iOld, /* Index of first cell currently on page */
int iNew, /* Index of new first cell on page */
int nNew, /* Final number of cells on page */
CellArray *pCArray /* Array of cells and sizes */
){
u8 * const aData = pPg->aData;
const int hdr = pPg->hdrOffset;
u8 *pBegin = &pPg->aCellIdx[nNew * 2];
int nCell = pPg->nCell; /* Cells stored on pPg */
u8 *pData;
u8 *pCellptr;
int i;
int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
int iNewEnd = iNew + nNew;
#ifdef SQLITE_DEBUG
u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
memcpy(pTmp, aData, pPg->pBt->usableSize);
#endif
/* Remove cells from the start and end of the page */
assert( nCell>=0 );
if( iOld<iNew ){
int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
nCell -= nShift;
}
if( iNewEnd < iOldEnd ){
int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
assert( nCell>=nTail );
nCell -= nTail;
}
pData = &aData[get2byte(&aData[hdr+5])];
if( pData<pBegin ) goto editpage_fail;
if( NEVER(pData>pPg->aDataEnd) ) goto editpage_fail;
/* Add cells to the start of the page */
if( iNew<iOld ){
int nAdd = MIN(nNew,iOld-iNew);
assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
assert( nAdd>=0 );
pCellptr = pPg->aCellIdx;
memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
if( pageInsertArray(
pPg, pBegin, &pData, pCellptr,
iNew, nAdd, pCArray
) ) goto editpage_fail;
nCell += nAdd;
}
/* Add any overflow cells */
for(i=0; i<pPg->nOverflow; i++){
int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
if( iCell>=0 && iCell<nNew ){
pCellptr = &pPg->aCellIdx[iCell * 2];
if( nCell>iCell ){
memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
}
nCell++;
cachedCellSize(pCArray, iCell+iNew);
if( pageInsertArray(
pPg, pBegin, &pData, pCellptr,
iCell+iNew, 1, pCArray
) ) goto editpage_fail;
}
}
/* Append cells to the end of the page */
assert( nCell>=0 );
pCellptr = &pPg->aCellIdx[nCell*2];
if( pageInsertArray(
pPg, pBegin, &pData, pCellptr,
iNew+nCell, nNew-nCell, pCArray
) ) goto editpage_fail;
pPg->nCell = nNew;
pPg->nOverflow = 0;
put2byte(&aData[hdr+3], pPg->nCell);
put2byte(&aData[hdr+5], pData - aData);
#ifdef SQLITE_DEBUG
for(i=0; i<nNew && !CORRUPT_DB; i++){
u8 *pCell = pCArray->apCell[i+iNew];
int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
pCell = &pTmp[pCell - aData];
}
assert( 0==memcmp(pCell, &aData[iOff],
pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
}
#endif
return SQLITE_OK;
editpage_fail:
/* Unable to edit this page. Rebuild it from scratch instead. */
populateCellCache(pCArray, iNew, nNew);
return rebuildPage(pCArray, iNew, nNew, pPg);
}
#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying to balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page. This leaves the right side of the tree somewhat
** unbalanced. But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up. On average.
**
** pPage is the leaf page which is the right-most page in the tree.
** pParent is its parent. pPage must have a single overflow entry
** which is also the right-most entry on the page.
**
** The pSpace buffer is used to store a temporary copy of the divider
** cell that will be inserted into pParent. Such a cell consists of a 4
** byte page number followed by a variable length integer. In other
** words, at most 13 bytes. Hence the pSpace buffer must be at
** least 13 bytes in size.
*/
static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
BtShared *const pBt = pPage->pBt; /* B-Tree Database */
MemPage *pNew; /* Newly allocated page */
int rc; /* Return Code */
Pgno pgnoNew; /* Page number of pNew */
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
assert( pPage->nOverflow==1 );
if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
assert( pPage->nFree>=0 );
assert( pParent->nFree>=0 );
/* Allocate a new page. This page will become the right-sibling of
** pPage. Make the parent page writable, so that the new divider cell
** may be inserted. If both these operations are successful, proceed.
*/
rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
if( rc==SQLITE_OK ){
u8 *pOut = &pSpace[4];
u8 *pCell = pPage->apOvfl[0];
u16 szCell = pPage->xCellSize(pPage, pCell);
u8 *pStop;
CellArray b;
assert( sqlite3PagerIswriteable(pNew->pDbPage) );
assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
b.nCell = 1;
b.pRef = pPage;
b.apCell = &pCell;
b.szCell = &szCell;
b.apEnd[0] = pPage->aDataEnd;
b.ixNx[0] = 2;
rc = rebuildPage(&b, 0, 1, pNew);
if( NEVER(rc) ){
releasePage(pNew);
return rc;
}
pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
/* If this is an auto-vacuum database, update the pointer map
** with entries for the new page, and any pointer from the
** cell on the page to an overflow page. If either of these
** operations fails, the return code is set, but the contents
** of the parent page are still manipulated by the code below.
** That is Ok, at this point the parent page is guaranteed to
** be marked as dirty. Returning an error code will cause a
** rollback, undoing any changes made to the parent page.
*/
if( ISAUTOVACUUM(pBt) ){
ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
if( szCell>pNew->minLocal ){
ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
}
}
/* Create a divider cell to insert into pParent. The divider cell
** consists of a 4-byte page number (the page number of pPage) and
** a variable length key value (which must be the same value as the
** largest key on pPage).
**
** To find the largest key value on pPage, first find the right-most
** cell on pPage. The first two fields of this cell are the
** record-length (a variable length integer at most 32-bits in size)
** and the key value (a variable length integer, may have any value).
** The first of the while(...) loops below skips over the record-length
** field. The second while(...) loop copies the key value from the
** cell on pPage into the pSpace buffer.
*/
pCell = findCell(pPage, pPage->nCell-1);
pStop = &pCell[9];
while( (*(pCell++)&0x80) && pCell<pStop );
pStop = &pCell[9];
while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
/* Insert the new divider cell into pParent. */
if( rc==SQLITE_OK ){
rc = insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
0, pPage->pgno);
}
/* Set the right-child pointer of pParent to point to the new page. */
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
/* Release the reference to the new page. */
releasePage(pNew);
}
return rc;
}
#endif /* SQLITE_OMIT_QUICKBALANCE */
#if 0
/*
** This function does not contribute anything to the operation of SQLite.
** it is sometimes activated temporarily while debugging code responsible
** for setting pointer-map entries.
*/
static int ptrmapCheckPages(MemPage **apPage, int nPage){
int i, j;
for(i=0; i<nPage; i++){
Pgno n;
u8 e;
MemPage *pPage = apPage[i];
BtShared *pBt = pPage->pBt;
assert( pPage->isInit );
for(j=0; j<pPage->nCell; j++){
CellInfo info;
u8 *z;
z = findCell(pPage, j);
pPage->xParseCell(pPage, z, &info);
if( info.nLocal<info.nPayload ){
Pgno ovfl = get4byte(&z[info.nSize-4]);
ptrmapGet(pBt, ovfl, &e, &n);
assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
}
if( !pPage->leaf ){
Pgno child = get4byte(z);
ptrmapGet(pBt, child, &e, &n);
assert( n==pPage->pgno && e==PTRMAP_BTREE );
}
}
if( !pPage->leaf ){
Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
ptrmapGet(pBt, child, &e, &n);
assert( n==pPage->pgno && e==PTRMAP_BTREE );
}
}
return 1;
}
#endif
/*
** This function is used to copy the contents of the b-tree node stored
** on page pFrom to page pTo. If page pFrom was not a leaf page, then
** the pointer-map entries for each child page are updated so that the
** parent page stored in the pointer map is page pTo. If pFrom contained
** any cells with overflow page pointers, then the corresponding pointer
** map entries are also updated so that the parent page is page pTo.
**
** If pFrom is currently carrying any overflow cells (entries in the
** MemPage.apOvfl[] array), they are not copied to pTo.
**
** Before returning, page pTo is reinitialized using btreeInitPage().
**
** The performance of this function is not critical. It is only used by
** the balance_shallower() and balance_deeper() procedures, neither of
** which are called often under normal circumstances.
*/
static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
if( (*pRC)==SQLITE_OK ){
BtShared * const pBt = pFrom->pBt;
u8 * const aFrom = pFrom->aData;
u8 * const aTo = pTo->aData;
int const iFromHdr = pFrom->hdrOffset;
int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
int rc;
int iData;
assert( pFrom->isInit );
assert( pFrom->nFree>=iToHdr );
assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
/* Copy the b-tree node content from page pFrom to page pTo. */
iData = get2byte(&aFrom[iFromHdr+5]);
memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
/* Reinitialize page pTo so that the contents of the MemPage structure
** match the new data. The initialization of pTo can actually fail under
** fairly obscure circumstances, even though it is a copy of initialized
** page pFrom.
*/
pTo->isInit = 0;
rc = btreeInitPage(pTo);
if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
if( rc!=SQLITE_OK ){
*pRC = rc;
return;
}
/* If this is an auto-vacuum database, update the pointer-map entries
** for any b-tree or overflow pages that pTo now contains the pointers to.
*/
if( ISAUTOVACUUM(pBt) ){
*pRC = setChildPtrmaps(pTo);
}
}
}
/*
** This routine redistributes cells on the iParentIdx'th child of pParent
** (hereafter "the page") and up to 2 siblings so that all pages have about the
** same amount of free space. Usually a single sibling on either side of the
** page are used in the balancing, though both siblings might come from one
** side if the page is the first or last child of its parent. If the page
** has fewer than 2 siblings (something which can only happen if the page
** is a root page or a child of a root page) then all available siblings
** participate in the balancing.
**
** The number of siblings of the page might be increased or decreased by
** one or two in an effort to keep pages nearly full but not over full.
**
** Note that when this routine is called, some of the cells on the page
** might not actually be stored in MemPage.aData[]. This can happen
** if the page is overfull. This routine ensures that all cells allocated
** to the page and its siblings fit into MemPage.aData[] before returning.
**
** In the course of balancing the page and its siblings, cells may be
** inserted into or removed from the parent page (pParent). Doing so
** may cause the parent page to become overfull or underfull. If this
** happens, it is the responsibility of the caller to invoke the correct
** balancing routine to fix this problem (see the balance() routine).
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
**
** The third argument to this function, aOvflSpace, is a pointer to a
** buffer big enough to hold one page. If while inserting cells into the parent
** page (pParent) the parent page becomes overfull, this buffer is
** used to store the parent's overflow cells. Because this function inserts
** a maximum of four divider cells into the parent page, and the maximum
** size of a cell stored within an internal node is always less than 1/4
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
** enough for all overflow cells.
**
** If aOvflSpace is set to a null pointer, this function returns
** SQLITE_NOMEM.
*/
static int balance_nonroot(
MemPage *pParent, /* Parent page of siblings being balanced */
int iParentIdx, /* Index of "the page" in pParent */
u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
int isRoot, /* True if pParent is a root-page */
int bBulk /* True if this call is part of a bulk load */
){
BtShared *pBt; /* The whole database */
int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
int nNew = 0; /* Number of pages in apNew[] */
int nOld; /* Number of pages in apOld[] */
int i, j, k; /* Loop counters */
int nxDiv; /* Next divider slot in pParent->aCell[] */
int rc = SQLITE_OK; /* The return code */
u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
int usableSpace; /* Bytes in pPage beyond the header */
int pageFlags; /* Value of pPage->aData[0] */
int iSpace1 = 0; /* First unused byte of aSpace1[] */
int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
int szScratch; /* Size of scratch memory requested */
MemPage *apOld[NB]; /* pPage and up to two siblings */
MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
u8 *pRight; /* Location in parent of right-sibling pointer */
u8 *apDiv[NB-1]; /* Divider cells in pParent */
int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
int cntOld[NB+2]; /* Old index in b.apCell[] */
int szNew[NB+2]; /* Combined size of cells placed on i-th page */
u8 *aSpace1; /* Space for copies of dividers cells */
Pgno pgno; /* Temp var to store a page number in */
u8 abDone[NB+2]; /* True after i'th new page is populated */
Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
CellArray b; /* Parsed information on cells being balanced */
memset(abDone, 0, sizeof(abDone));
memset(&b, 0, sizeof(b));
pBt = pParent->pBt;
assert( sqlite3_mutex_held(pBt->mutex) );
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
/* At this point pParent may have at most one overflow cell. And if
** this overflow cell is present, it must be the cell with
** index iParentIdx. This scenario comes about when this function
** is called (indirectly) from sqlite3BtreeDelete().
*/
assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
if( !aOvflSpace ){
return SQLITE_NOMEM_BKPT;
}
assert( pParent->nFree>=0 );
/* Find the sibling pages to balance. Also locate the cells in pParent
** that divide the siblings. An attempt is made to find NN siblings on
** either side of pPage. More siblings are taken from one side, however,
** if there are fewer than NN siblings on the other side. If pParent
** has NB or fewer children then all children of pParent are taken.
**
** This loop also drops the divider cells from the parent page. This
** way, the remainder of the function does not have to deal with any
** overflow cells in the parent page, since if any existed they will
** have already been removed.
*/
i = pParent->nOverflow + pParent->nCell;
if( i<2 ){
nxDiv = 0;
}else{
assert( bBulk==0 || bBulk==1 );
if( iParentIdx==0 ){
nxDiv = 0;
}else if( iParentIdx==i ){
nxDiv = i-2+bBulk;
}else{
nxDiv = iParentIdx-1;
}
i = 2-bBulk;
}
nOld = i+1;
if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
pRight = &pParent->aData[pParent->hdrOffset+8];
}else{
pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
}
pgno = get4byte(pRight);
while( 1 ){
if( rc==SQLITE_OK ){
rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
}
if( rc ){
memset(apOld, 0, (i+1)*sizeof(MemPage*));
goto balance_cleanup;
}
if( apOld[i]->nFree<0 ){
rc = btreeComputeFreeSpace(apOld[i]);
if( rc ){
memset(apOld, 0, (i)*sizeof(MemPage*));
goto balance_cleanup;
}
}
nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
if( (i--)==0 ) break;
if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
apDiv[i] = pParent->apOvfl[0];
pgno = get4byte(apDiv[i]);
szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
pParent->nOverflow = 0;
}else{
apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
pgno = get4byte(apDiv[i]);
szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
/* Drop the cell from the parent page. apDiv[i] still points to
** the cell within the parent, even though it has been dropped.
** This is safe because dropping a cell only overwrites the first
** four bytes of it, and this function does not need the first
** four bytes of the divider cell. So the pointer is safe to use
** later on.
**
** But not if we are in secure-delete mode. In secure-delete mode,
** the dropCell() routine will overwrite the entire cell with zeroes.
** In this case, temporarily copy the cell into the aOvflSpace[]
** buffer. It will be copied out again as soon as the aSpace[] buffer
** is allocated. */
if( pBt->btsFlags & BTS_FAST_SECURE ){
int iOff;
/* If the following if() condition is not true, the db is corrupted.
** The call to dropCell() below will detect this. */
iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
if( (iOff+szNew[i])<=(int)pBt->usableSize ){
memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
}
}
dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
}
}
/* Make nMaxCells a multiple of 4 in order to preserve 8-byte
** alignment */
nMaxCells = (nMaxCells + 3)&~3;
/*
** Allocate space for memory structures
*/
szScratch =
nMaxCells*sizeof(u8*) /* b.apCell */
+ nMaxCells*sizeof(u16) /* b.szCell */
+ pBt->pageSize; /* aSpace1 */
assert( szScratch<=7*(int)pBt->pageSize );
b.apCell = sqlite3StackAllocRaw(0, szScratch );
if( b.apCell==0 ){
rc = SQLITE_NOMEM_BKPT;
goto balance_cleanup;
}
b.szCell = (u16*)&b.apCell[nMaxCells];
aSpace1 = (u8*)&b.szCell[nMaxCells];
assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
/*
** Load pointers to all cells on sibling pages and the divider cells
** into the local b.apCell[] array. Make copies of the divider cells
** into space obtained from aSpace1[]. The divider cells have already
** been removed from pParent.
**
** If the siblings are on leaf pages, then the child pointers of the
** divider cells are stripped from the cells before they are copied
** into aSpace1[]. In this way, all cells in b.apCell[] are without
** child pointers. If siblings are not leaves, then all cell in
** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
** are alike.
**
** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
** leafData: 1 if pPage holds key+data and pParent holds only keys.
*/
b.pRef = apOld[0];
leafCorrection = b.pRef->leaf*4;
leafData = b.pRef->intKeyLeaf;
for(i=0; i<nOld; i++){
MemPage *pOld = apOld[i];
int limit = pOld->nCell;
u8 *aData = pOld->aData;
u16 maskPage = pOld->maskPage;
u8 *piCell = aData + pOld->cellOffset;
u8 *piEnd;
VVA_ONLY( int nCellAtStart = b.nCell; )
/* Verify that all sibling pages are of the same "type" (table-leaf,
** table-interior, index-leaf, or index-interior).
*/
if( pOld->aData[0]!=apOld[0]->aData[0] ){
rc = SQLITE_CORRUPT_BKPT;
goto balance_cleanup;
}
/* Load b.apCell[] with pointers to all cells in pOld. If pOld
** contains overflow cells, include them in the b.apCell[] array
** in the correct spot.
**
** Note that when there are multiple overflow cells, it is always the
** case that they are sequential and adjacent. This invariant arises
** because multiple overflows can only occurs when inserting divider
** cells into a parent on a prior balance, and divider cells are always
** adjacent and are inserted in order. There is an assert() tagged
** with "NOTE 1" in the overflow cell insertion loop to prove this
** invariant.
**
** This must be done in advance. Once the balance starts, the cell
** offset section of the btree page will be overwritten and we will no
** long be able to find the cells if a pointer to each cell is not saved
** first.
*/
memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
if( pOld->nOverflow>0 ){
if( NEVER(limit<pOld->aiOvfl[0]) ){
rc = SQLITE_CORRUPT_BKPT;
goto balance_cleanup;
}
limit = pOld->aiOvfl[0];
for(j=0; j<limit; j++){
b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
piCell += 2;
b.nCell++;
}
for(k=0; k<pOld->nOverflow; k++){
assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
b.apCell[b.nCell] = pOld->apOvfl[k];
b.nCell++;
}
}
piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
while( piCell<piEnd ){
assert( b.nCell<nMaxCells );
b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
piCell += 2;
b.nCell++;
}
assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
cntOld[i] = b.nCell;
if( i<nOld-1 && !leafData){
u16 sz = (u16)szNew[i];
u8 *pTemp;
assert( b.nCell<nMaxCells );
b.szCell[b.nCell] = sz;
pTemp = &aSpace1[iSpace1];
iSpace1 += sz;
assert( sz<=pBt->maxLocal+23 );
assert( iSpace1 <= (int)pBt->pageSize );
memcpy(pTemp, apDiv[i], sz);
b.apCell[b.nCell] = pTemp+leafCorrection;
assert( leafCorrection==0 || leafCorrection==4 );
b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
if( !pOld->leaf ){
assert( leafCorrection==0 );
assert( pOld->hdrOffset==0 || CORRUPT_DB );
/* The right pointer of the child page pOld becomes the left
** pointer of the divider cell */
memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
}else{
assert( leafCorrection==4 );
while( b.szCell[b.nCell]<4 ){
/* Do not allow any cells smaller than 4 bytes. If a smaller cell
** does exist, pad it with 0x00 bytes. */
assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
aSpace1[iSpace1++] = 0x00;
b.szCell[b.nCell]++;
}
}
b.nCell++;
}
}
/*
** Figure out the number of pages needed to hold all b.nCell cells.
** Store this number in "k". Also compute szNew[] which is the total
** size of all cells on the i-th page and cntNew[] which is the index
** in b.apCell[] of the cell that divides page i from page i+1.
** cntNew[k] should equal b.nCell.
**
** Values computed by this block:
**
** k: The total number of sibling pages
** szNew[i]: Spaced used on the i-th sibling page.
** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
** the right of the i-th sibling page.
** usableSpace: Number of bytes of space available on each sibling.
**
*/
usableSpace = pBt->usableSize - 12 + leafCorrection;
for(i=k=0; i<nOld; i++, k++){
MemPage *p = apOld[i];
b.apEnd[k] = p->aDataEnd;
b.ixNx[k] = cntOld[i];
if( k && b.ixNx[k]==b.ixNx[k-1] ){
k--; /* Omit b.ixNx[] entry for child pages with no cells */
}
if( !leafData ){
k++;
b.apEnd[k] = pParent->aDataEnd;
b.ixNx[k] = cntOld[i]+1;
}
assert( p->nFree>=0 );
szNew[i] = usableSpace - p->nFree;
for(j=0; j<p->nOverflow; j++){
szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
}
cntNew[i] = cntOld[i];
}
k = nOld;
for(i=0; i<k; i++){
int sz;
while( szNew[i]>usableSpace ){
if( i+1>=k ){
k = i+2;
if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
szNew[k-1] = 0;
cntNew[k-1] = b.nCell;
}
sz = 2 + cachedCellSize(&b, cntNew[i]-1);
szNew[i] -= sz;
if( !leafData ){
if( cntNew[i]<b.nCell ){
sz = 2 + cachedCellSize(&b, cntNew[i]);
}else{
sz = 0;
}
}
szNew[i+1] += sz;
cntNew[i]--;
}
while( cntNew[i]<b.nCell ){
sz = 2 + cachedCellSize(&b, cntNew[i]);
if( szNew[i]+sz>usableSpace ) break;
szNew[i] += sz;
cntNew[i]++;
if( !leafData ){
if( cntNew[i]<b.nCell ){
sz = 2 + cachedCellSize(&b, cntNew[i]);
}else{
sz = 0;
}
}
szNew[i+1] -= sz;
}
if( cntNew[i]>=b.nCell ){
k = i+1;
}else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
rc = SQLITE_CORRUPT_BKPT;
goto balance_cleanup;
}
}
/*
** The packing computed by the previous block is biased toward the siblings
** on the left side (siblings with smaller keys). The left siblings are
** always nearly full, while the right-most sibling might be nearly empty.
** The next block of code attempts to adjust the packing of siblings to
** get a better balance.
**
** This adjustment is more than an optimization. The packing above might
** be so out of balance as to be illegal. For example, the right-most
** sibling might be completely empty. This adjustment is not optional.
*/
for(i=k-1; i>0; i--){
int szRight = szNew[i]; /* Size of sibling on the right */
int szLeft = szNew[i-1]; /* Size of sibling on the left */
int r; /* Index of right-most cell in left sibling */
int d; /* Index of first cell to the left of right sibling */
r = cntNew[i-1] - 1;
d = r + 1 - leafData;
(void)cachedCellSize(&b, d);
do{
int szR, szD;
assert( d<nMaxCells );
assert( r<nMaxCells );
szR = cachedCellSize(&b, r);
szD = b.szCell[d];
if( szRight!=0
&& (bBulk || szRight+szD+2 > szLeft-(szR+(i==k-1?0:2)))){
break;
}
szRight += szD + 2;
szLeft -= szR + 2;
cntNew[i-1] = r;
r--;
d--;
}while( r>=0 );
szNew[i] = szRight;
szNew[i-1] = szLeft;
if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
rc = SQLITE_CORRUPT_BKPT;
goto balance_cleanup;
}
}
/* Sanity check: For a non-corrupt database file one of the following
** must be true:
** (1) We found one or more cells (cntNew[0])>0), or
** (2) pPage is a virtual root page. A virtual root page is when
** the real root page is page 1 and we are the only child of
** that page.
*/
assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
TRACE(("BALANCE: old: %u(nc=%u) %u(nc=%u) %u(nc=%u)\n",
apOld[0]->pgno, apOld[0]->nCell,
nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
));
/*
** Allocate k new pages. Reuse old pages where possible.
*/
pageFlags = apOld[0]->aData[0];
for(i=0; i<k; i++){
MemPage *pNew;
if( i<nOld ){
pNew = apNew[i] = apOld[i];
apOld[i] = 0;
rc = sqlite3PagerWrite(pNew->pDbPage);
nNew++;
if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
&& rc==SQLITE_OK
){
rc = SQLITE_CORRUPT_BKPT;
}
if( rc ) goto balance_cleanup;
}else{
assert( i>0 );
rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
if( rc ) goto balance_cleanup;
zeroPage(pNew, pageFlags);
apNew[i] = pNew;
nNew++;
cntOld[i] = b.nCell;
/* Set the pointer-map entry for the new sibling page. */
if( ISAUTOVACUUM(pBt) ){
ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
if( rc!=SQLITE_OK ){
goto balance_cleanup;
}
}
}
}
/*
** Reassign page numbers so that the new pages are in ascending order.
** This helps to keep entries in the disk file in order so that a scan
** of the table is closer to a linear scan through the file. That in turn
** helps the operating system to deliver pages from the disk more rapidly.
**
** An O(N*N) sort algorithm is used, but since N is never more than NB+2
** (5), that is not a performance concern.
**
** When NB==3, this one optimization makes the database about 25% faster
** for large insertions and deletions.
*/
for(i=0; i<nNew; i++){
aPgno[i] = apNew[i]->pgno;
assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE );
assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY );
}
for(i=0; i<nNew-1; i++){
int iB = i;
for(j=i+1; j<nNew; j++){
if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j;
}
/* If apNew[i] has a page number that is bigger than any of the
** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
** entry that has the smallest page number (which we know to be
** entry apNew[iB]).
*/
if( iB!=i ){
Pgno pgnoA = apNew[i]->pgno;
Pgno pgnoB = apNew[iB]->pgno;
Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1;
u16 fgA = apNew[i]->pDbPage->flags;
u16 fgB = apNew[iB]->pDbPage->flags;
sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB);
sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA);
sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB);
apNew[i]->pgno = pgnoB;
apNew[iB]->pgno = pgnoA;
}
}
TRACE(("BALANCE: new: %u(%u nc=%u) %u(%u nc=%u) %u(%u nc=%u) "
"%u(%u nc=%u) %u(%u nc=%u)\n",
apNew[0]->pgno, szNew[0], cntNew[0],
nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
));
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
assert( nNew>=1 && nNew<=ArraySize(apNew) );
assert( apNew[nNew-1]!=0 );
put4byte(pRight, apNew[nNew-1]->pgno);
/* If the sibling pages are not leaves, ensure that the right-child pointer
** of the right-most new sibling page is set to the value that was
** originally in the same field of the right-most old sibling page. */
if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
}
/* Make any required updates to pointer map entries associated with
** cells stored on sibling pages following the balance operation. Pointer
** map entries associated with divider cells are set by the insertCell()
** routine. The associated pointer map entries are:
**
** a) if the cell contains a reference to an overflow chain, the
** entry associated with the first page in the overflow chain, and
**
** b) if the sibling pages are not leaves, the child page associated
** with the cell.
**
** If the sibling pages are not leaves, then the pointer map entry
** associated with the right-child of each sibling may also need to be
** updated. This happens below, after the sibling pages have been
** populated, not here.
*/
if( ISAUTOVACUUM(pBt) ){
MemPage *pOld;
MemPage *pNew = pOld = apNew[0];
int cntOldNext = pNew->nCell + pNew->nOverflow;
int iNew = 0;
int iOld = 0;
for(i=0; i<b.nCell; i++){
u8 *pCell = b.apCell[i];
while( i==cntOldNext ){
iOld++;
assert( iOld<nNew || iOld<nOld );
assert( iOld>=0 && iOld<NB );
pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
}
if( i==cntNew[iNew] ){
pNew = apNew[++iNew];
if( !leafData ) continue;
}
/* Cell pCell is destined for new sibling page pNew. Originally, it
** was either part of sibling page iOld (possibly an overflow cell),
** or else the divider cell to the left of sibling page iOld. So,
** if sibling page iOld had the same page number as pNew, and if
** pCell really was a part of sibling page iOld (not a divider or
** overflow cell), we can skip updating the pointer map entries. */
if( iOld>=nNew
|| pNew->pgno!=aPgno[iOld]
|| !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
){
if( !leafCorrection ){
ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
}
if( cachedCellSize(&b,i)>pNew->minLocal ){
ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
}
if( rc ) goto balance_cleanup;
}
}
}
/* Insert new divider cells into pParent. */
for(i=0; i<nNew-1; i++){
u8 *pCell;
u8 *pTemp;
int sz;
u8 *pSrcEnd;
MemPage *pNew = apNew[i];
j = cntNew[i];
assert( j<nMaxCells );
assert( b.apCell[j]!=0 );
pCell = b.apCell[j];
sz = b.szCell[j] + leafCorrection;
pTemp = &aOvflSpace[iOvflSpace];
if( !pNew->leaf ){
memcpy(&pNew->aData[8], pCell, 4);
}else if( leafData ){
/* If the tree is a leaf-data tree, and the siblings are leaves,
** then there is no divider cell in b.apCell[]. Instead, the divider
** cell consists of the integer key for the right-most cell of
** the sibling-page assembled above only.
*/
CellInfo info;
j--;
pNew->xParseCell(pNew, b.apCell[j], &info);
pCell = pTemp;
sz = 4 + putVarint(&pCell[4], info.nKey);
pTemp = 0;
}else{
pCell -= 4;
/* Obscure case for non-leaf-data trees: If the cell at pCell was
** previously stored on a leaf node, and its reported size was 4
** bytes, then it may actually be smaller than this
** (see btreeParseCellPtr(), 4 bytes is the minimum size of
** any cell). But it is important to pass the correct size to
** insertCell(), so reparse the cell now.
**
** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
** and WITHOUT ROWID tables with exactly one column which is the
** primary key.
*/
if( b.szCell[j]==4 ){
assert(leafCorrection==4);
sz = pParent->xCellSize(pParent, pCell);
}
}
iOvflSpace += sz;
assert( sz<=pBt->maxLocal+23 );
assert( iOvflSpace <= (int)pBt->pageSize );
for(k=0; ALWAYS(k<NB*2) && b.ixNx[k]<=j; k++){}
pSrcEnd = b.apEnd[k];
if( SQLITE_OVERFLOW(pSrcEnd, pCell, pCell+sz) ){
rc = SQLITE_CORRUPT_BKPT;
goto balance_cleanup;
}
rc = insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno);
if( rc!=SQLITE_OK ) goto balance_cleanup;
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
}
/* Now update the actual sibling pages. The order in which they are updated
** is important, as this code needs to avoid disrupting any page from which
** cells may still to be read. In practice, this means:
**
** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
** then it is not safe to update page apNew[iPg] until after
** the left-hand sibling apNew[iPg-1] has been updated.
**
** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
** then it is not safe to update page apNew[iPg] until after
** the right-hand sibling apNew[iPg+1] has been updated.
**
** If neither of the above apply, the page is safe to update.
**
** The iPg value in the following loop starts at nNew-1 goes down
** to 0, then back up to nNew-1 again, thus making two passes over
** the pages. On the initial downward pass, only condition (1) above
** needs to be tested because (2) will always be true from the previous
** step. On the upward pass, both conditions are always true, so the
** upwards pass simply processes pages that were missed on the downward
** pass.
*/
for(i=1-nNew; i<nNew; i++){
int iPg = i<0 ? -i : i;
assert( iPg>=0 && iPg<nNew );
assert( iPg>=1 || i>=0 );
assert( iPg<ArraySize(cntOld) );
if( abDone[iPg] ) continue; /* Skip pages already processed */
if( i>=0 /* On the upwards pass, or... */
|| cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
){
int iNew;
int iOld;
int nNewCell;
/* Verify condition (1): If cells are moving left, update iPg
** only after iPg-1 has already been updated. */
assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
/* Verify condition (2): If cells are moving right, update iPg
** only after iPg+1 has already been updated. */
assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
if( iPg==0 ){
iNew = iOld = 0;
nNewCell = cntNew[0];
}else{
iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
iNew = cntNew[iPg-1] + !leafData;
nNewCell = cntNew[iPg] - iNew;
}
rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
if( rc ) goto balance_cleanup;
abDone[iPg]++;
apNew[iPg]->nFree = usableSpace-szNew[iPg];
assert( apNew[iPg]->nOverflow==0 );
assert( apNew[iPg]->nCell==nNewCell );
}
}
/* All pages have been processed exactly once */
assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
assert( nOld>0 );
assert( nNew>0 );
if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
/* The root page of the b-tree now contains no cells. The only sibling
** page is the right-child of the parent. Copy the contents of the
** child page into the parent, decreasing the overall height of the
** b-tree structure by one. This is described as the "balance-shallower"
** sub-algorithm in some documentation.
**
** If this is an auto-vacuum database, the call to copyNodeContent()
** sets all pointer-map entries corresponding to database image pages
** for which the pointer is stored within the content being copied.
**
** It is critical that the child page be defragmented before being
** copied into the parent, because if the parent is page 1 then it will
** by smaller than the child due to the database header, and so all the
** free space needs to be up front.
*/
assert( nNew==1 || CORRUPT_DB );
rc = defragmentPage(apNew[0], -1);
testcase( rc!=SQLITE_OK );
assert( apNew[0]->nFree ==
(get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
- apNew[0]->nCell*2)
|| rc!=SQLITE_OK
);
copyNodeContent(apNew[0], pParent, &rc);
freePage(apNew[0], &rc);
}else if( ISAUTOVACUUM(pBt) && !leafCorrection ){
/* Fix the pointer map entries associated with the right-child of each
** sibling page. All other pointer map entries have already been taken
** care of. */
for(i=0; i<nNew; i++){
u32 key = get4byte(&apNew[i]->aData[8]);
ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
}
}
assert( pParent->isInit );
TRACE(("BALANCE: finished: old=%u new=%u cells=%u\n",
nOld, nNew, b.nCell));
/* Free any old pages that were not reused as new pages.
*/
for(i=nNew; i<nOld; i++){
freePage(apOld[i], &rc);
}
#if 0
if( ISAUTOVACUUM(pBt) && rc==SQLITE_OK && apNew[0]->isInit ){
/* The ptrmapCheckPages() contains assert() statements that verify that
** all pointer map pages are set correctly. This is helpful while
** debugging. This is usually disabled because a corrupt database may
** cause an assert() statement to fail. */
ptrmapCheckPages(apNew, nNew);
ptrmapCheckPages(&pParent, 1);
}
#endif
/*
** Cleanup before returning.
*/
balance_cleanup:
sqlite3StackFree(0, b.apCell);
for(i=0; i<nOld; i++){
releasePage(apOld[i]);
}
for(i=0; i<nNew; i++){
releasePage(apNew[i]);
}
return rc;
}
/*
** This function is called when the root page of a b-tree structure is
** overfull (has one or more overflow pages).
**
** A new child page is allocated and the contents of the current root
** page, including overflow cells, are copied into the child. The root
** page is then overwritten to make it an empty page with the right-child
** pointer pointing to the new page.
**
** Before returning, all pointer-map entries corresponding to pages
** that the new child-page now contains pointers to are updated. The
** entry corresponding to the new right-child pointer of the root
** page is also updated.
**
** If successful, *ppChild is set to contain a reference to the child
** page and SQLITE_OK is returned. In this case the caller is required
** to call releasePage() on *ppChild exactly once. If an error occurs,
** an error code is returned and *ppChild is set to 0.
*/
static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
int rc; /* Return value from subprocedures */
MemPage *pChild = 0; /* Pointer to a new child page */
Pgno pgnoChild = 0; /* Page number of the new child page */
BtShared *pBt = pRoot->pBt; /* The BTree */
assert( pRoot->nOverflow>0 );
assert( sqlite3_mutex_held(pBt->mutex) );
/* Make pRoot, the root page of the b-tree, writable. Allocate a new
** page that will become the new right-child of pPage. Copy the contents
** of the node stored on pRoot into the new child page.
*/
rc = sqlite3PagerWrite(pRoot->pDbPage);
if( rc==SQLITE_OK ){
rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
copyNodeContent(pRoot, pChild, &rc);
if( ISAUTOVACUUM(pBt) ){
ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
}
}
if( rc ){
*ppChild = 0;
releasePage(pChild);
return rc;
}
assert( sqlite3PagerIswriteable(pChild->pDbPage) );
assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
TRACE(("BALANCE: copy root %u into %u\n", pRoot->pgno, pChild->pgno));
/* Copy the overflow cells from pRoot to pChild */
memcpy(pChild->aiOvfl, pRoot->aiOvfl,
pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
memcpy(pChild->apOvfl, pRoot->apOvfl,
pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
pChild->nOverflow = pRoot->nOverflow;
/* Zero the contents of pRoot. Then install pChild as the right-child. */
zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
*ppChild = pChild;
return SQLITE_OK;
}
/*
** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
** on the same B-tree as pCur.
**
** This can occur if a database is corrupt with two or more SQL tables
** pointing to the same b-tree. If an insert occurs on one SQL table
** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
** table linked to the same b-tree. If the secondary insert causes a
** rebalance, that can change content out from under the cursor on the
** first SQL table, violating invariants on the first insert.
*/
static int anotherValidCursor(BtCursor *pCur){
BtCursor *pOther;
for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
if( pOther!=pCur
&& pOther->eState==CURSOR_VALID
&& pOther->pPage==pCur->pPage
){
return SQLITE_CORRUPT_BKPT;
}
}
return SQLITE_OK;
}
/*
** The page that pCur currently points to has just been modified in
** some way. This function figures out if this modification means the
** tree needs to be balanced, and if so calls the appropriate balancing
** routine. Balancing routines are:
**
** balance_quick()
** balance_deeper()
** balance_nonroot()
*/
static int balance(BtCursor *pCur){
int rc = SQLITE_OK;
u8 aBalanceQuickSpace[13];
u8 *pFree = 0;
VVA_ONLY( int balance_quick_called = 0 );
VVA_ONLY( int balance_deeper_called = 0 );
do {
int iPage;
MemPage *pPage = pCur->pPage;
if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
/* No rebalance required as long as:
** (1) There are no overflow cells
** (2) The amount of free space on the page is less than 2/3rds of
** the total usable space on the page. */
break;
}else if( (iPage = pCur->iPage)==0 ){
if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
/* The root page of the b-tree is overfull. In this case call the
** balance_deeper() function to create a new child for the root-page
** and copy the current contents of the root-page to it. The
** next iteration of the do-loop will balance the child page.
*/
assert( balance_deeper_called==0 );
VVA_ONLY( balance_deeper_called++ );
rc = balance_deeper(pPage, &pCur->apPage[1]);
if( rc==SQLITE_OK ){
pCur->iPage = 1;
pCur->ix = 0;
pCur->aiIdx[0] = 0;
pCur->apPage[0] = pPage;
pCur->pPage = pCur->apPage[1];
assert( pCur->pPage->nOverflow );
}
}else{
break;
}
}else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){
/* The page being written is not a root page, and there is currently
** more than one reference to it. This only happens if the page is one
** of its own ancestor pages. Corruption. */
rc = SQLITE_CORRUPT_BKPT;
}else{
MemPage * const pParent = pCur->apPage[iPage-1];
int const iIdx = pCur->aiIdx[iPage-1];
rc = sqlite3PagerWrite(pParent->pDbPage);
if( rc==SQLITE_OK && pParent->nFree<0 ){
rc = btreeComputeFreeSpace(pParent);
}
if( rc==SQLITE_OK ){
#ifndef SQLITE_OMIT_QUICKBALANCE
if( pPage->intKeyLeaf
&& pPage->nOverflow==1
&& pPage->aiOvfl[0]==pPage->nCell
&& pParent->pgno!=1
&& pParent->nCell==iIdx
){
/* Call balance_quick() to create a new sibling of pPage on which
** to store the overflow cell. balance_quick() inserts a new cell
** into pParent, which may cause pParent overflow. If this
** happens, the next iteration of the do-loop will balance pParent
** use either balance_nonroot() or balance_deeper(). Until this
** happens, the overflow cell is stored in the aBalanceQuickSpace[]
** buffer.
**
** The purpose of the following assert() is to check that only a
** single call to balance_quick() is made for each call to this
** function. If this were not verified, a subtle bug involving reuse
** of the aBalanceQuickSpace[] might sneak in.
*/
assert( balance_quick_called==0 );
VVA_ONLY( balance_quick_called++ );
rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
}else
#endif
{
/* In this case, call balance_nonroot() to redistribute cells
** between pPage and up to 2 of its sibling pages. This involves
** modifying the contents of pParent, which may cause pParent to
** become overfull or underfull. The next iteration of the do-loop
** will balance the parent page to correct this.
**
** If the parent page becomes overfull, the overflow cell or cells
** are stored in the pSpace buffer allocated immediately below.
** A subsequent iteration of the do-loop will deal with this by
** calling balance_nonroot() (balance_deeper() may be called first,
** but it doesn't deal with overflow cells - just moves them to a
** different page). Once this subsequent call to balance_nonroot()
** has completed, it is safe to release the pSpace buffer used by
** the previous call, as the overflow cell data will have been
** copied either into the body of a database page or into the new
** pSpace buffer passed to the latter call to balance_nonroot().
*/
u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
pCur->hints&BTREE_BULKLOAD);
if( pFree ){
/* If pFree is not NULL, it points to the pSpace buffer used
** by a previous call to balance_nonroot(). Its contents are
** now stored either on real database pages or within the
** new pSpace buffer, so it may be safely freed here. */
sqlite3PageFree(pFree);
}
/* The pSpace buffer will be freed after the next call to
** balance_nonroot(), or just before this function returns, whichever
** comes first. */
pFree = pSpace;
}
}
pPage->nOverflow = 0;
/* The next iteration of the do-loop balances the parent page. */
releasePage(pPage);
pCur->iPage--;
assert( pCur->iPage>=0 );
pCur->pPage = pCur->apPage[pCur->iPage];
}
}while( rc==SQLITE_OK );
if( pFree ){
sqlite3PageFree(pFree);
}
return rc;
}
/* Overwrite content from pX into pDest. Only do the write if the
** content is different from what is already there.
*/
static int btreeOverwriteContent(
MemPage *pPage, /* MemPage on which writing will occur */
u8 *pDest, /* Pointer to the place to start writing */
const BtreePayload *pX, /* Source of data to write */
int iOffset, /* Offset of first byte to write */
int iAmt /* Number of bytes to be written */
){
int nData = pX->nData - iOffset;
if( nData<=0 ){
/* Overwriting with zeros */
int i;
for(i=0; i<iAmt && pDest[i]==0; i++){}
if( i<iAmt ){
int rc = sqlite3PagerWrite(pPage->pDbPage);
if( rc ) return rc;
memset(pDest + i, 0, iAmt - i);
}
}else{
if( nData<iAmt ){
/* Mixed read data and zeros at the end. Make a recursive call
** to write the zeros then fall through to write the real data */
int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
iAmt-nData);
if( rc ) return rc;
iAmt = nData;
}
if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
int rc = sqlite3PagerWrite(pPage->pDbPage);
if( rc ) return rc;
/* In a corrupt database, it is possible for the source and destination
** buffers to overlap. This is harmless since the database is already
** corrupt but it does cause valgrind and ASAN warnings. So use
** memmove(). */
memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
}
}
return SQLITE_OK;
}
/*
** Overwrite the cell that cursor pCur is pointing to with fresh content
** contained in pX. In this variant, pCur is pointing to an overflow
** cell.
*/
static SQLITE_NOINLINE int btreeOverwriteOverflowCell(
BtCursor *pCur, /* Cursor pointing to cell to overwrite */
const BtreePayload *pX /* Content to write into the cell */
){
int iOffset; /* Next byte of pX->pData to write */
int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
int rc; /* Return code */
MemPage *pPage = pCur->pPage; /* Page being written */
BtShared *pBt; /* Btree */
Pgno ovflPgno; /* Next overflow page to write */
u32 ovflPageSize; /* Size to write on overflow page */
assert( pCur->info.nLocal<nTotal ); /* pCur is an overflow cell */
/* Overwrite the local portion first */
rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
0, pCur->info.nLocal);
if( rc ) return rc;
/* Now overwrite the overflow pages */
iOffset = pCur->info.nLocal;
assert( nTotal>=0 );
assert( iOffset>=0 );
ovflPgno = get4byte(pCur->info.pPayload + iOffset);
pBt = pPage->pBt;
ovflPageSize = pBt->usableSize - 4;
do{
rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
if( rc ) return rc;
if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
rc = SQLITE_CORRUPT_BKPT;
}else{
if( iOffset+ovflPageSize<(u32)nTotal ){
ovflPgno = get4byte(pPage->aData);
}else{
ovflPageSize = nTotal - iOffset;
}
rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
iOffset, ovflPageSize);
}
sqlite3PagerUnref(pPage->pDbPage);
if( rc ) return rc;
iOffset += ovflPageSize;
}while( iOffset<nTotal );
return SQLITE_OK;
}
/*
** Overwrite the cell that cursor pCur is pointing to with fresh content
** contained in pX.
*/
static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
MemPage *pPage = pCur->pPage; /* Page being written */
if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
|| pCur->info.pPayload < pPage->aData + pPage->cellOffset
){
return SQLITE_CORRUPT_BKPT;
}
if( pCur->info.nLocal==nTotal ){
/* The entire cell is local */
return btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
0, pCur->info.nLocal);
}else{
/* The cell contains overflow content */
return btreeOverwriteOverflowCell(pCur, pX);
}
}
/*
** Insert a new record into the BTree. The content of the new record
** is described by the pX object. The pCur cursor is used only to
** define what table the record should be inserted into, and is left
** pointing at a random location.
**
** For a table btree (used for rowid tables), only the pX.nKey value of
** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
** hold the content of the row.
**
** For an index btree (used for indexes and WITHOUT ROWID tables), the
** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
** pX.pData,nData,nZero fields must be zero.
**
** If the seekResult parameter is non-zero, then a successful call to
** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
** been performed. In other words, if seekResult!=0 then the cursor
** is currently pointing to a cell that will be adjacent to the cell
** to be inserted. If seekResult<0 then pCur points to a cell that is
** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
** that is larger than (pKey,nKey).
**
** If seekResult==0, that means pCur is pointing at some unknown location.
** In that case, this routine must seek the cursor to the correct insertion
** point for (pKey,nKey) before doing the insertion. For index btrees,
** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
** key values and pX->aMem can be used instead of pX->pKey to avoid having
** to decode the key.
*/
int sqlite3BtreeInsert(
BtCursor *pCur, /* Insert data into the table of this cursor */
const BtreePayload *pX, /* Content of the row to be inserted */
int flags, /* True if this is likely an append */
int seekResult /* Result of prior IndexMoveto() call */
){
int rc;
int loc = seekResult; /* -1: before desired location +1: after */
int szNew = 0;
int idx;
MemPage *pPage;
Btree *p = pCur->pBtree;
unsigned char *oldCell;
unsigned char *newCell = 0;
assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
/* Save the positions of any other cursors open on this table.
**
** In some cases, the call to btreeMoveto() below is a no-op. For
** example, when inserting data into a table with auto-generated integer
** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
** integer key to use. It then calls this function to actually insert the
** data into the intkey B-Tree. In this case btreeMoveto() recognizes
** that the cursor is already where it needs to be and returns without
** doing any work. To avoid thwarting these optimizations, it is important
** not to clear the cursor here.
*/
if( pCur->curFlags & BTCF_Multiple ){
rc = saveAllCursors(p->pBt, pCur->pgnoRoot, pCur);
if( rc ) return rc;
if( loc && pCur->iPage<0 ){
/* This can only happen if the schema is corrupt such that there is more
** than one table or index with the same root page as used by the cursor.
** Which can only happen if the SQLITE_NoSchemaError flag was set when
** the schema was loaded. This cannot be asserted though, as a user might
** set the flag, load the schema, and then unset the flag. */
return SQLITE_CORRUPT_BKPT;
}
}
/* Ensure that the cursor is not in the CURSOR_FAULT state and that it
** points to a valid cell.
*/
if( pCur->eState>=CURSOR_REQUIRESEEK ){
testcase( pCur->eState==CURSOR_REQUIRESEEK );
testcase( pCur->eState==CURSOR_FAULT );
rc = moveToRoot(pCur);
if( rc && rc!=SQLITE_EMPTY ) return rc;
}
assert( cursorOwnsBtShared(pCur) );
assert( (pCur->curFlags & BTCF_WriteFlag)!=0
&& p->pBt->inTransaction==TRANS_WRITE
&& (p->pBt->btsFlags & BTS_READ_ONLY)==0 );
assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
/* Assert that the caller has been consistent. If this cursor was opened
** expecting an index b-tree, then the caller should be inserting blob
** keys with no associated data. If the cursor was opened expecting an
** intkey table, the caller should be inserting integer keys with a
** blob of associated data. */
assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
if( pCur->pKeyInfo==0 ){
assert( pX->pKey==0 );
/* If this is an insert into a table b-tree, invalidate any incrblob
** cursors open on the row being replaced */
if( p->hasIncrblobCur ){
invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
}
/* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
** to a row with the same key as the new entry being inserted.
*/
#ifdef SQLITE_DEBUG
if( flags & BTREE_SAVEPOSITION ){
assert( pCur->curFlags & BTCF_ValidNKey );
assert( pX->nKey==pCur->info.nKey );
assert( loc==0 );
}
#endif
/* On the other hand, BTREE_SAVEPOSITION==0 does not imply
** that the cursor is not pointing to a row to be overwritten.
** So do a complete check.
*/
if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
/* The cursor is pointing to the entry that is to be
** overwritten */
assert( pX->nData>=0 && pX->nZero>=0 );
if( pCur->info.nSize!=0
&& pCur->info.nPayload==(u32)pX->nData+pX->nZero
){
/* New entry is the same size as the old. Do an overwrite */
return btreeOverwriteCell(pCur, pX);
}
assert( loc==0 );
}else if( loc==0 ){
/* The cursor is *not* pointing to the cell to be overwritten, nor
** to an adjacent cell. Move the cursor so that it is pointing either
** to the cell to be overwritten or an adjacent cell.
*/
rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
(flags & BTREE_APPEND)!=0, &loc);
if( rc ) return rc;
}
}else{
/* This is an index or a WITHOUT ROWID table */
/* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
** to a row with the same key as the new entry being inserted.
*/
assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
/* If the cursor is not already pointing either to the cell to be
** overwritten, or if a new cell is being inserted, if the cursor is
** not pointing to an immediately adjacent cell, then move the cursor
** so that it does.
*/
if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
if( pX->nMem ){
UnpackedRecord r;
r.pKeyInfo = pCur->pKeyInfo;
r.aMem = pX->aMem;
r.nField = pX->nMem;
r.default_rc = 0;
r.eqSeen = 0;
rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
}else{
rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
(flags & BTREE_APPEND)!=0, &loc);
}
if( rc ) return rc;
}
/* If the cursor is currently pointing to an entry to be overwritten
** and the new content is the same as as the old, then use the
** overwrite optimization.
*/
if( loc==0 ){
getCellInfo(pCur);
if( pCur->info.nKey==pX->nKey ){
BtreePayload x2;
x2.pData = pX->pKey;
x2.nData = pX->nKey;
x2.nZero = 0;
return btreeOverwriteCell(pCur, &x2);
}
}
}
assert( pCur->eState==CURSOR_VALID
|| (pCur->eState==CURSOR_INVALID && loc) || CORRUPT_DB );
pPage = pCur->pPage;
assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
assert( pPage->leaf || !pPage->intKey );
if( pPage->nFree<0 ){
if( NEVER(pCur->eState>CURSOR_INVALID) ){
/* ^^^^^--- due to the moveToRoot() call above */
rc = SQLITE_CORRUPT_BKPT;
}else{
rc = btreeComputeFreeSpace(pPage);
}
if( rc ) return rc;
}
TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n",
pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
loc==0 ? "overwrite" : "new entry"));
assert( pPage->isInit || CORRUPT_DB );
newCell = p->pBt->pTmpSpace;
assert( newCell!=0 );
assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
if( flags & BTREE_PREFORMAT ){
rc = SQLITE_OK;
szNew = p->pBt->nPreformatSize;
if( szNew<4 ) szNew = 4;
if( ISAUTOVACUUM(p->pBt) && szNew>pPage->maxLocal ){
CellInfo info;
pPage->xParseCell(pPage, newCell, &info);
if( info.nPayload!=info.nLocal ){
Pgno ovfl = get4byte(&newCell[szNew-4]);
ptrmapPut(p->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
if( NEVER(rc) ) goto end_insert;
}
}
}else{
rc = fillInCell(pPage, newCell, pX, &szNew);
if( rc ) goto end_insert;
}
assert( szNew==pPage->xCellSize(pPage, newCell) );
assert( szNew <= MX_CELL_SIZE(p->pBt) );
idx = pCur->ix;
pCur->info.nSize = 0;
if( loc==0 ){
CellInfo info;
assert( idx>=0 );
if( idx>=pPage->nCell ){
return SQLITE_CORRUPT_BKPT;
}
rc = sqlite3PagerWrite(pPage->pDbPage);
if( rc ){
goto end_insert;
}
oldCell = findCell(pPage, idx);
if( !pPage->leaf ){
memcpy(newCell, oldCell, 4);
}
BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
testcase( pCur->curFlags & BTCF_ValidOvfl );
invalidateOverflowCache(pCur);
if( info.nSize==szNew && info.nLocal==info.nPayload
&& (!ISAUTOVACUUM(p->pBt) || szNew<pPage->minLocal)
){
/* Overwrite the old cell with the new if they are the same size.
** We could also try to do this if the old cell is smaller, then add
** the leftover space to the free list. But experiments show that
** doing that is no faster then skipping this optimization and just
** calling dropCell() and insertCell().
**
** This optimization cannot be used on an autovacuum database if the
** new entry uses overflow pages, as the insertCell() call below is
** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
return SQLITE_CORRUPT_BKPT;
}
if( oldCell+szNew > pPage->aDataEnd ){
return SQLITE_CORRUPT_BKPT;
}
memcpy(oldCell, newCell, szNew);
return SQLITE_OK;
}
dropCell(pPage, idx, info.nSize, &rc);
if( rc ) goto end_insert;
}else if( loc<0 && pPage->nCell>0 ){
assert( pPage->leaf );
idx = ++pCur->ix;
pCur->curFlags &= ~BTCF_ValidNKey;
}else{
assert( pPage->leaf );
}
rc = insertCellFast(pPage, idx, newCell, szNew);
assert( pPage->nOverflow==0 || rc==SQLITE_OK );
assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
/* If no error has occurred and pPage has an overflow cell, call balance()
** to redistribute the cells within the tree. Since balance() may move
** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
** variables.
**
** Previous versions of SQLite called moveToRoot() to move the cursor
** back to the root page as balance() used to invalidate the contents
** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
** set the cursor state to "invalid". This makes common insert operations
** slightly faster.
**
** There is a subtle but important optimization here too. When inserting
** multiple records into an intkey b-tree using a single cursor (as can
** happen while processing an "INSERT INTO ... SELECT" statement), it
** is advantageous to leave the cursor pointing to the last entry in
** the b-tree if possible. If the cursor is left pointing to the last
** entry in the table, and the next row inserted has an integer key
** larger than the largest existing key, it is possible to insert the
** row without seeking the cursor. This can be a big performance boost.
*/
if( pPage->nOverflow ){
assert( rc==SQLITE_OK );
pCur->curFlags &= ~(BTCF_ValidNKey);
rc = balance(pCur);
/* Must make sure nOverflow is reset to zero even if the balance()
** fails. Internal data structure corruption will result otherwise.
** Also, set the cursor state to invalid. This stops saveCursorPosition()
** from trying to save the current position of the cursor. */
pCur->pPage->nOverflow = 0;
pCur->eState = CURSOR_INVALID;
if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
btreeReleaseAllCursorPages(pCur);
if( pCur->pKeyInfo ){
assert( pCur->pKey==0 );
pCur->pKey = sqlite3Malloc( pX->nKey );
if( pCur->pKey==0 ){
rc = SQLITE_NOMEM;
}else{
memcpy(pCur->pKey, pX->pKey, pX->nKey);
}
}
pCur->eState = CURSOR_REQUIRESEEK;
pCur->nKey = pX->nKey;
}
}
assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
end_insert:
return rc;
}
/*
** This function is used as part of copying the current row from cursor
** pSrc into cursor pDest. If the cursors are open on intkey tables, then
** parameter iKey is used as the rowid value when the record is copied
** into pDest. Otherwise, the record is copied verbatim.
**
** This function does not actually write the new value to cursor pDest.
** Instead, it creates and populates any required overflow pages and
** writes the data for the new cell into the BtShared.pTmpSpace buffer
** for the destination database. The size of the cell, in bytes, is left
** in BtShared.nPreformatSize. The caller completes the insertion by
** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
**
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
*/
int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
BtShared *pBt = pDest->pBt;
u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
const u8 *aIn; /* Pointer to next input buffer */
u32 nIn; /* Size of input buffer aIn[] */
u32 nRem; /* Bytes of data still to copy */
getCellInfo(pSrc);
if( pSrc->info.nPayload<0x80 ){
*(aOut++) = pSrc->info.nPayload;
}else{
aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
}
if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
nIn = pSrc->info.nLocal;
aIn = pSrc->info.pPayload;
if( aIn+nIn>pSrc->pPage->aDataEnd ){
return SQLITE_CORRUPT_BKPT;
}
nRem = pSrc->info.nPayload;
if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
memcpy(aOut, aIn, nIn);
pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
return SQLITE_OK;
}else{
int rc = SQLITE_OK;
Pager *pSrcPager = pSrc->pBt->pPager;
u8 *pPgnoOut = 0;
Pgno ovflIn = 0;
DbPage *pPageIn = 0;
MemPage *pPageOut = 0;
u32 nOut; /* Size of output buffer aOut[] */
nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
if( nOut<pSrc->info.nPayload ){
pPgnoOut = &aOut[nOut];
pBt->nPreformatSize += 4;
}
if( nRem>nIn ){
if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
return SQLITE_CORRUPT_BKPT;
}
ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
}
do {
nRem -= nOut;
do{
assert( nOut>0 );
if( nIn>0 ){
int nCopy = MIN(nOut, nIn);
memcpy(aOut, aIn, nCopy);
nOut -= nCopy;
nIn -= nCopy;
aOut += nCopy;
aIn += nCopy;
}
if( nOut>0 ){
sqlite3PagerUnref(pPageIn);
pPageIn = 0;
rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
if( rc==SQLITE_OK ){
aIn = (const u8*)sqlite3PagerGetData(pPageIn);
ovflIn = get4byte(aIn);
aIn += 4;
nIn = pSrc->pBt->usableSize - 4;
}
}
}while( rc==SQLITE_OK && nOut>0 );
if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
Pgno pgnoNew;
MemPage *pNew = 0;
rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
put4byte(pPgnoOut, pgnoNew);
if( ISAUTOVACUUM(pBt) && pPageOut ){
ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
}
releasePage(pPageOut);
pPageOut = pNew;
if( pPageOut ){
pPgnoOut = pPageOut->aData;
put4byte(pPgnoOut, 0);
aOut = &pPgnoOut[4];
nOut = MIN(pBt->usableSize - 4, nRem);
}
}
}while( nRem>0 && rc==SQLITE_OK );
releasePage(pPageOut);
sqlite3PagerUnref(pPageIn);
return rc;
}
}
/*
** Delete the entry that the cursor is pointing to.
**
** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
** the cursor is left pointing at an arbitrary location after the delete.
** But if that bit is set, then the cursor is left in a state such that
** the next call to BtreeNext() or BtreePrev() moves it to the same row
** as it would have been on if the call to BtreeDelete() had been omitted.
**
** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
** associated with a single table entry and its indexes. Only one of those
** deletes is considered the "primary" delete. The primary delete occurs
** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
** but which might be used by alternative storage engines.
*/
int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
Btree *p = pCur->pBtree;
BtShared *pBt = p->pBt;
int rc; /* Return code */
MemPage *pPage; /* Page to delete cell from */
unsigned char *pCell; /* Pointer to cell to delete */
int iCellIdx; /* Index of cell to delete */
int iCellDepth; /* Depth of node containing pCell */
CellInfo info; /* Size of the cell being deleted */
u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
assert( cursorOwnsBtShared(pCur) );
assert( pBt->inTransaction==TRANS_WRITE );
assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
assert( pCur->curFlags & BTCF_WriteFlag );
assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
assert( !hasReadConflicts(p, pCur->pgnoRoot) );
assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
if( pCur->eState!=CURSOR_VALID ){
if( pCur->eState>=CURSOR_REQUIRESEEK ){
rc = btreeRestoreCursorPosition(pCur);
assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
if( rc || pCur->eState!=CURSOR_VALID ) return rc;
}else{
return SQLITE_CORRUPT_BKPT;
}
}
assert( pCur->eState==CURSOR_VALID );
iCellDepth = pCur->iPage;
iCellIdx = pCur->ix;
pPage = pCur->pPage;
if( pPage->nCell<=iCellIdx ){
return SQLITE_CORRUPT_BKPT;
}
pCell = findCell(pPage, iCellIdx);
if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
return SQLITE_CORRUPT_BKPT;
}
if( pCell<&pPage->aCellIdx[pPage->nCell] ){
return SQLITE_CORRUPT_BKPT;
}
/* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
** be preserved following this delete operation. If the current delete
** will cause a b-tree rebalance, then this is done by saving the cursor
** key and leaving the cursor in CURSOR_REQUIRESEEK state before
** returning.
**
** If the current delete will not cause a rebalance, then the cursor
** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
** before or after the deleted entry.
**
** The bPreserve value records which path is required:
**
** bPreserve==0 Not necessary to save the cursor position
** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
*/
bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
if( bPreserve ){
if( !pPage->leaf
|| (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
(int)(pBt->usableSize*2/3)
|| pPage->nCell==1 /* See dbfuzz001.test for a test case */
){
/* A b-tree rebalance will be required after deleting this entry.
** Save the cursor key. */
rc = saveCursorKey(pCur);
if( rc ) return rc;
}else{
bPreserve = 2;
}
}
/* If the page containing the entry to delete is not a leaf page, move
** the cursor to the largest entry in the tree that is smaller than
** the entry being deleted. This cell will replace the cell being deleted
** from the internal node. The 'previous' entry is used for this instead
** of the 'next' entry, as the previous entry is always a part of the
** sub-tree headed by the child page of the cell being deleted. This makes
** balancing the tree following the delete operation easier. */
if( !pPage->leaf ){
rc = sqlite3BtreePrevious(pCur, 0);
assert( rc!=SQLITE_DONE );
if( rc ) return rc;
}
/* Save the positions of any other cursors open on this table before
** making any modifications. */
if( pCur->curFlags & BTCF_Multiple ){
rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
if( rc ) return rc;
}
/* If this is a delete operation to remove a row from a table b-tree,
** invalidate any incrblob cursors open on the row being deleted. */
if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
}
/* Make the page containing the entry to be deleted writable. Then free any
** overflow pages associated with the entry and finally remove the cell
** itself from within the page. */
rc = sqlite3PagerWrite(pPage->pDbPage);
if( rc ) return rc;
BTREE_CLEAR_CELL(rc, pPage, pCell, info);
dropCell(pPage, iCellIdx, info.nSize, &rc);
if( rc ) return rc;
/* If the cell deleted was not located on a leaf page, then the cursor
** is currently pointing to the largest entry in the sub-tree headed
** by the child-page of the cell that was just deleted from an internal
** node. The cell from the leaf node needs to be moved to the internal
** node to replace the deleted cell. */
if( !pPage->leaf ){
MemPage *pLeaf = pCur->pPage;
int nCell;
Pgno n;
unsigned char *pTmp;
if( pLeaf->nFree<0 ){
rc = btreeComputeFreeSpace(pLeaf);
if( rc ) return rc;
}
if( iCellDepth<pCur->iPage-1 ){
n = pCur->apPage[iCellDepth+1]->pgno;
}else{
n = pCur->pPage->pgno;
}
pCell = findCell(pLeaf, pLeaf->nCell-1);
if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
nCell = pLeaf->xCellSize(pLeaf, pCell);
assert( MX_CELL_SIZE(pBt) >= nCell );
pTmp = pBt->pTmpSpace;
assert( pTmp!=0 );
rc = sqlite3PagerWrite(pLeaf->pDbPage);
if( rc==SQLITE_OK ){
rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);
}
dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
if( rc ) return rc;
}
/* Balance the tree. If the entry deleted was located on a leaf page,
** then the cursor still points to that page. In this case the first
** call to balance() repairs the tree, and the if(...) condition is
** never true.
**
** Otherwise, if the entry deleted was on an internal node page, then
** pCur is pointing to the leaf page from which a cell was removed to
** replace the cell deleted from the internal node. This is slightly
** tricky as the leaf node may be underfull, and the internal node may
** be either under or overfull. In this case run the balancing algorithm
** on the leaf node first. If the balance proceeds far enough up the
** tree that we can be sure that any problem in the internal node has
** been corrected, so be it. Otherwise, after balancing the leaf node,
** walk the cursor up the tree to the internal node and balance it as
** well. */
assert( pCur->pPage->nOverflow==0 );
assert( pCur->pPage->nFree>=0 );
if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
/* Optimization: If the free space is less than 2/3rds of the page,
** then balance() will always be a no-op. No need to invoke it. */
rc = SQLITE_OK;
}else{
rc = balance(pCur);
}
if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
releasePageNotNull(pCur->pPage);
pCur->iPage--;
while( pCur->iPage>iCellDepth ){
releasePage(pCur->apPage[pCur->iPage--]);
}
pCur->pPage = pCur->apPage[pCur->iPage];
rc = balance(pCur);
}
if( rc==SQLITE_OK ){
if( bPreserve>1 ){
assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
assert( pPage==pCur->pPage || CORRUPT_DB );
assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
pCur->eState = CURSOR_SKIPNEXT;
if( iCellIdx>=pPage->nCell ){
pCur->skipNext = -1;
pCur->ix = pPage->nCell-1;
}else{
pCur->skipNext = 1;
}
}else{
rc = moveToRoot(pCur);
if( bPreserve ){
btreeReleaseAllCursorPages(pCur);
pCur->eState = CURSOR_REQUIRESEEK;
}
if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
}
}
return rc;
}
/*
** Create a new BTree table. Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter. Only the
** following values of flags are currently in use. Other values for
** flags might not work:
**
** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
** BTREE_ZERODATA Used for SQL indices
*/
static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
BtShared *pBt = p->pBt;
MemPage *pRoot;
Pgno pgnoRoot;
int rc;
int ptfFlags; /* Page-type flags for the root page of new table */
assert( sqlite3BtreeHoldsMutex(p) );
assert( pBt->inTransaction==TRANS_WRITE );
assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
#ifdef SQLITE_OMIT_AUTOVACUUM
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
if( rc ){
return rc;
}
#else
if( pBt->autoVacuum ){
Pgno pgnoMove; /* Move a page here to make room for the root-page */
MemPage *pPageMove; /* The page to move to. */
/* Creating a new table may probably require moving an existing database
** to make room for the new tables root page. In case this page turns
** out to be an overflow page, delete all overflow page-map caches
** held by open cursors.
*/
invalidateAllOverflowCache(pBt);
/* Read the value of meta[3] from the database to determine where the
** root page of the new table should go. meta[3] is the largest root-page
** created so far, so the new root-page is (meta[3]+1).
*/
sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
if( pgnoRoot>btreePagecount(pBt) ){
return SQLITE_CORRUPT_BKPT;
}
pgnoRoot++;
/* The new root-page may not be allocated on a pointer-map page, or the
** PENDING_BYTE page.
*/
while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
pgnoRoot++;
}
assert( pgnoRoot>=3 );
/* Allocate a page. The page that currently resides at pgnoRoot will
** be moved to the allocated page (unless the allocated page happens
** to reside at pgnoRoot).
*/
rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
if( rc!=SQLITE_OK ){
return rc;
}
if( pgnoMove!=pgnoRoot ){
/* pgnoRoot is the page that will be used for the root-page of
** the new table (assuming an error did not occur). But we were
** allocated pgnoMove. If required (i.e. if it was not allocated
** by extending the file), the current page at position pgnoMove
** is already journaled.
*/
u8 eType = 0;
Pgno iPtrPage = 0;
/* Save the positions of any open cursors. This is required in
** case they are holding a reference to an xFetch reference
** corresponding to page pgnoRoot. */
rc = saveAllCursors(pBt, 0, 0);
releasePage(pPageMove);
if( rc!=SQLITE_OK ){
return rc;
}
/* Move the page currently at pgnoRoot to pgnoMove. */
rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
if( rc!=SQLITE_OK ){
return rc;
}
rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
rc = SQLITE_CORRUPT_BKPT;
}
if( rc!=SQLITE_OK ){
releasePage(pRoot);
return rc;
}
assert( eType!=PTRMAP_ROOTPAGE );
assert( eType!=PTRMAP_FREEPAGE );
rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
releasePage(pRoot);
/* Obtain the page at pgnoRoot */
if( rc!=SQLITE_OK ){
return rc;
}
rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
if( rc!=SQLITE_OK ){
return rc;
}
rc = sqlite3PagerWrite(pRoot->pDbPage);
if( rc!=SQLITE_OK ){
releasePage(pRoot);
return rc;
}
}else{
pRoot = pPageMove;
}
/* Update the pointer-map and meta-data with the new root-page number. */
ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
if( rc ){
releasePage(pRoot);
return rc;
}
/* When the new root page was allocated, page 1 was made writable in
** order either to increase the database filesize, or to decrement the
** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
*/
assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
if( NEVER(rc) ){
releasePage(pRoot);
return rc;
}
}else{
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
if( rc ) return rc;
}
#endif
assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
if( createTabFlags & BTREE_INTKEY ){
ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
}else{
ptfFlags = PTF_ZERODATA | PTF_LEAF;
}
zeroPage(pRoot, ptfFlags);
sqlite3PagerUnref(pRoot->pDbPage);
assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
*piTable = pgnoRoot;
return SQLITE_OK;
}
int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
int rc;
sqlite3BtreeEnter(p);
rc = btreeCreateTable(p, piTable, flags);
sqlite3BtreeLeave(p);
return rc;
}
/*
** Erase the given database page and all its children. Return
** the page to the freelist.
*/
static int clearDatabasePage(
BtShared *pBt, /* The BTree that contains the table */
Pgno pgno, /* Page number to clear */
int freePageFlag, /* Deallocate page if true */
i64 *pnChange /* Add number of Cells freed to this counter */
){
MemPage *pPage;
int rc;
unsigned char *pCell;
int i;
int hdr;
CellInfo info;
assert( sqlite3_mutex_held(pBt->mutex) );
if( pgno>btreePagecount(pBt) ){
return SQLITE_CORRUPT_BKPT;
}
rc = getAndInitPage(pBt, pgno, &pPage, 0);
if( rc ) return rc;
if( (pBt->openFlags & BTREE_SINGLE)==0
&& sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
){
rc = SQLITE_CORRUPT_BKPT;
goto cleardatabasepage_out;
}
hdr = pPage->hdrOffset;
for(i=0; i<pPage->nCell; i++){
pCell = findCell(pPage, i);
if( !pPage->leaf ){
rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
if( rc ) goto cleardatabasepage_out;
}
BTREE_CLEAR_CELL(rc, pPage, pCell, info);
if( rc ) goto cleardatabasepage_out;
}
if( !pPage->leaf ){
rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
if( rc ) goto cleardatabasepage_out;
if( pPage->intKey ) pnChange = 0;
}
if( pnChange ){
testcase( !pPage->intKey );
*pnChange += pPage->nCell;
}
if( freePageFlag ){
freePage(pPage, &rc);
}else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
}
cleardatabasepage_out:
releasePage(pPage);
return rc;
}
/*
** Delete all information from a single table in the database. iTable is
** the page number of the root of the table. After this routine returns,
** the root page is empty, but still exists.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** read cursors on the table. Open write cursors are moved to the
** root of the table.
**
** If pnChange is not NULL, then the integer value pointed to by pnChange
** is incremented by the number of entries in the table.
*/
int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
int rc;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
assert( p->inTrans==TRANS_WRITE );
rc = saveAllCursors(pBt, (Pgno)iTable, 0);
if( SQLITE_OK==rc ){
/* Invalidate all incrblob cursors open on table iTable (assuming iTable
** is the root of a table b-tree - if it is not, the following call is
** a no-op). */
if( p->hasIncrblobCur ){
invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
}
rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** Delete all information from the single table that pCur is open on.
**
** This routine only work for pCur on an ephemeral table.
*/
int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
}
/*
** Erase all information in a table and add the root of the table to
** the freelist. Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** cursors on the table.
**
** If AUTOVACUUM is enabled and the page at iTable is not the last
** root page in the database file, then the last root page
** in the database file is moved into the slot formerly occupied by
** iTable and that last slot formerly occupied by the last root page
** is added to the freelist instead of iTable. In this say, all
** root pages are kept at the beginning of the database file, which
** is necessary for AUTOVACUUM to work right. *piMoved is set to the
** page number that used to be the last root page in the file before
** the move. If no page gets moved, *piMoved is set to 0.
** The last root page is recorded in meta[3] and the value of
** meta[3] is updated by this procedure.
*/
static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
int rc;
MemPage *pPage = 0;
BtShared *pBt = p->pBt;
assert( sqlite3BtreeHoldsMutex(p) );
assert( p->inTrans==TRANS_WRITE );
assert( iTable>=2 );
if( iTable>btreePagecount(pBt) ){
return SQLITE_CORRUPT_BKPT;
}
rc = sqlite3BtreeClearTable(p, iTable, 0);
if( rc ) return rc;
rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
if( NEVER(rc) ){
releasePage(pPage);
return rc;
}
*piMoved = 0;
#ifdef SQLITE_OMIT_AUTOVACUUM
freePage(pPage, &rc);
releasePage(pPage);
#else
if( pBt->autoVacuum ){
Pgno maxRootPgno;
sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
if( iTable==maxRootPgno ){
/* If the table being dropped is the table with the largest root-page
** number in the database, put the root page on the free list.
*/
freePage(pPage, &rc);
releasePage(pPage);
if( rc!=SQLITE_OK ){
return rc;
}
}else{
/* The table being dropped does not have the largest root-page
** number in the database. So move the page that does into the
** gap left by the deleted root-page.
*/
MemPage *pMove;
releasePage(pPage);
rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
if( rc!=SQLITE_OK ){
return rc;
}
rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
releasePage(pMove);
if( rc!=SQLITE_OK ){
return rc;
}
pMove = 0;
rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
freePage(pMove, &rc);
releasePage(pMove);
if( rc!=SQLITE_OK ){
return rc;
}
*piMoved = maxRootPgno;
}
/* Set the new 'max-root-page' value in the database header. This
** is the old value less one, less one more if that happens to
** be a root-page number, less one again if that is the
** PENDING_BYTE_PAGE.
*/
maxRootPgno--;
while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
|| PTRMAP_ISPAGE(pBt, maxRootPgno) ){
maxRootPgno--;
}
assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
}else{
freePage(pPage, &rc);
releasePage(pPage);
}
#endif
return rc;
}
int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
int rc;
sqlite3BtreeEnter(p);
rc = btreeDropTable(p, iTable, piMoved);
sqlite3BtreeLeave(p);
return rc;
}
/*
** This function may only be called if the b-tree connection already
** has a read or write transaction open on the database.
**
** Read the meta-information out of a database file. Meta[0]
** is the number of free pages currently in the database. Meta[1]
** through meta[15] are available for use by higher layers. Meta[0]
** is read-only, the others are read/write.
**
** The schema layer numbers meta values differently. At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible. So Cookie[0] is the same as Meta[1].
**
** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
** of reading the value out of the header, it instead loads the "DataVersion"
** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
** database file. It is a number computed by the pager. But its access
** pattern is the same as header meta values, and so it is convenient to
** read it from this routine.
*/
void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
assert( p->inTrans>TRANS_NONE );
assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
assert( pBt->pPage1 );
assert( idx>=0 && idx<=15 );
if( idx==BTREE_DATA_VERSION ){
*pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
}else{
*pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
}
/* If auto-vacuum is disabled in this build and this is an auto-vacuum
** database, mark the database as read-only. */
#ifdef SQLITE_OMIT_AUTOVACUUM
if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
pBt->btsFlags |= BTS_READ_ONLY;
}
#endif
sqlite3BtreeLeave(p);
}
/*
** Write meta-information back into the database. Meta[0] is
** read-only and may not be written.
*/
int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
BtShared *pBt = p->pBt;
unsigned char *pP1;
int rc;
assert( idx>=1 && idx<=15 );
sqlite3BtreeEnter(p);
assert( p->inTrans==TRANS_WRITE );
assert( pBt->pPage1!=0 );
pP1 = pBt->pPage1->aData;
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
if( rc==SQLITE_OK ){
put4byte(&pP1[36 + idx*4], iMeta);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( idx==BTREE_INCR_VACUUM ){
assert( pBt->autoVacuum || iMeta==0 );
assert( iMeta==0 || iMeta==1 );
pBt->incrVacuum = (u8)iMeta;
}
#endif
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** The first argument, pCur, is a cursor opened on some b-tree. Count the
** number of entries in the b-tree and write the result to *pnEntry.
**
** SQLITE_OK is returned if the operation is successfully executed.
** Otherwise, if an error is encountered (i.e. an IO error or database
** corruption) an SQLite error code is returned.
*/
int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
i64 nEntry = 0; /* Value to return in *pnEntry */
int rc; /* Return code */
rc = moveToRoot(pCur);
if( rc==SQLITE_EMPTY ){
*pnEntry = 0;
return SQLITE_OK;
}
/* Unless an error occurs, the following loop runs one iteration for each
** page in the B-Tree structure (not including overflow pages).
*/
while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
int iIdx; /* Index of child node in parent */
MemPage *pPage; /* Current page of the b-tree */
/* If this is a leaf page or the tree is not an int-key tree, then
** this page contains countable entries. Increment the entry counter
** accordingly.
*/
pPage = pCur->pPage;
if( pPage->leaf || !pPage->intKey ){
nEntry += pPage->nCell;
}
/* pPage is a leaf node. This loop navigates the cursor so that it
** points to the first interior cell that it points to the parent of
** the next page in the tree that has not yet been visited. The
** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
** of the page, or to the number of cells in the page if the next page
** to visit is the right-child of its parent.
**
** If all pages in the tree have been visited, return SQLITE_OK to the
** caller.
*/
if( pPage->leaf ){
do {
if( pCur->iPage==0 ){
/* All pages of the b-tree have been visited. Return successfully. */
*pnEntry = nEntry;
return moveToRoot(pCur);
}
moveToParent(pCur);
}while ( pCur->ix>=pCur->pPage->nCell );
pCur->ix++;
pPage = pCur->pPage;
}
/* Descend to the child node of the cell that the cursor currently
** points at. This is the right-child if (iIdx==pPage->nCell).
*/
iIdx = pCur->ix;
if( iIdx==pPage->nCell ){
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
}else{
rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
}
}
/* An error has occurred. Return an error code. */
return rc;
}
/*
** Return the pager associated with a BTree. This routine is used for
** testing and debugging only.
*/
Pager *sqlite3BtreePager(Btree *p){
return p->pBt->pPager;
}
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Record an OOM error during integrity_check
*/
static void checkOom(IntegrityCk *pCheck){
pCheck->rc = SQLITE_NOMEM;
pCheck->mxErr = 0; /* Causes integrity_check processing to stop */
if( pCheck->nErr==0 ) pCheck->nErr++;
}
/*
** Invoke the progress handler, if appropriate. Also check for an
** interrupt.
*/
static void checkProgress(IntegrityCk *pCheck){
sqlite3 *db = pCheck->db;
if( AtomicLoad(&db->u1.isInterrupted) ){
pCheck->rc = SQLITE_INTERRUPT;
pCheck->nErr++;
pCheck->mxErr = 0;
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
if( db->xProgress ){
assert( db->nProgressOps>0 );
pCheck->nStep++;
if( (pCheck->nStep % db->nProgressOps)==0
&& db->xProgress(db->pProgressArg)
){
pCheck->rc = SQLITE_INTERRUPT;
pCheck->nErr++;
pCheck->mxErr = 0;
}
}
#endif
}
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(
IntegrityCk *pCheck,
const char *zFormat,
...
){
va_list ap;
checkProgress(pCheck);
if( !pCheck->mxErr ) return;
pCheck->mxErr--;
pCheck->nErr++;
va_start(ap, zFormat);
if( pCheck->errMsg.nChar ){
sqlite3_str_append(&pCheck->errMsg, "\n", 1);
}
if( pCheck->zPfx ){
sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx,
pCheck->v0, pCheck->v1, pCheck->v2);
}
sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
va_end(ap);
if( pCheck->errMsg.accError==SQLITE_NOMEM ){
checkOom(pCheck);
}
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
** corresponds to page iPg is already set.
*/
static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
}
/*
** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
*/
static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
}
/*
** Add 1 to the reference count for page iPage. If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 or more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage){
if( iPage>pCheck->nPage || iPage==0 ){
checkAppendMsg(pCheck, "invalid page number %u", iPage);
return 1;
}
if( getPageReferenced(pCheck, iPage) ){
checkAppendMsg(pCheck, "2nd reference to page %u", iPage);
return 1;
}
setPageReferenced(pCheck, iPage);
return 0;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void checkPtrmap(
IntegrityCk *pCheck, /* Integrity check context */
Pgno iChild, /* Child page number */
u8 eType, /* Expected pointer map type */
Pgno iParent /* Expected pointer map parent page number */
){
int rc;
u8 ePtrmapType;
Pgno iPtrmapParent;
rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) checkOom(pCheck);
checkAppendMsg(pCheck, "Failed to read ptrmap key=%u", iChild);
return;
}
if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
checkAppendMsg(pCheck,
"Bad ptr map entry key=%u expected=(%u,%u) got=(%u,%u)",
iChild, eType, iParent, ePtrmapType, iPtrmapParent);
}
}
#endif
/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
IntegrityCk *pCheck, /* Integrity checking context */
int isFreeList, /* True for a freelist. False for overflow page list */
Pgno iPage, /* Page number for first page in the list */
u32 N /* Expected number of pages in the list */
){
int i;
u32 expected = N;
int nErrAtStart = pCheck->nErr;
while( iPage!=0 && pCheck->mxErr ){
DbPage *pOvflPage;
unsigned char *pOvflData;
if( checkRef(pCheck, iPage) ) break;
N--;
if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
checkAppendMsg(pCheck, "failed to get page %u", iPage);
break;
}
pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
if( isFreeList ){
u32 n = (u32)get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pCheck->pBt->autoVacuum ){
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
}
#endif
if( n>pCheck->pBt->usableSize/4-2 ){
checkAppendMsg(pCheck,
"freelist leaf count too big on page %u", iPage);
N--;
}else{
for(i=0; i<(int)n; i++){
Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pCheck->pBt->autoVacuum ){
checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
}
#endif
checkRef(pCheck, iFreePage);
}
N -= n;
}
}
#ifndef SQLITE_OMIT_AUTOVACUUM
else{
/* If this database supports auto-vacuum and iPage is not the last
** page in this overflow list, check that the pointer-map entry for
** the following page matches iPage.
*/
if( pCheck->pBt->autoVacuum && N>0 ){
i = get4byte(pOvflData);
checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
}
}
#endif
iPage = get4byte(pOvflData);
sqlite3PagerUnref(pOvflPage);
}
if( N && nErrAtStart==pCheck->nErr ){
checkAppendMsg(pCheck,
"%s is %u but should be %u",
isFreeList ? "size" : "overflow list length",
expected-N, expected);
}
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/*
** An implementation of a min-heap.
**
** aHeap[0] is the number of elements on the heap. aHeap[1] is the
** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
** and aHeap[N*2+1].
**
** The heap property is this: Every node is less than or equal to both
** of its daughter nodes. A consequence of the heap property is that the
** root node aHeap[1] is always the minimum value currently in the heap.
**
** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
** the heap, preserving the heap property. The btreeHeapPull() routine
** removes the root element from the heap (the minimum value in the heap)
** and then moves other nodes around as necessary to preserve the heap
** property.
**
** This heap is used for cell overlap and coverage testing. Each u32
** entry represents the span of a cell or freeblock on a btree page.
** The upper 16 bits are the index of the first byte of a range and the
** lower 16 bits are the index of the last byte of that range.
*/
static void btreeHeapInsert(u32 *aHeap, u32 x){
u32 j, i;
assert( aHeap!=0 );
i = ++aHeap[0];
aHeap[i] = x;
while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
x = aHeap[j];
aHeap[j] = aHeap[i];
aHeap[i] = x;
i = j;
}
}
static int btreeHeapPull(u32 *aHeap, u32 *pOut){
u32 j, i, x;
if( (x = aHeap[0])==0 ) return 0;
*pOut = aHeap[1];
aHeap[1] = aHeap[x];
aHeap[x] = 0xffffffff;
aHeap[0]--;
i = 1;
while( (j = i*2)<=aHeap[0] ){
if( aHeap[j]>aHeap[j+1] ) j++;
if( aHeap[i]<aHeap[j] ) break;
x = aHeap[i];
aHeap[i] = aHeap[j];
aHeap[j] = x;
i = j;
}
return 1;
}
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Do various sanity checks on a single page of a tree. Return
** the tree depth. Root pages return 0. Parents of root pages
** return 1, and so forth.
**
** These checks are done:
**
** 1. Make sure that cells and freeblocks do not overlap
** but combine to completely cover the page.
** 2. Make sure integer cell keys are in order.
** 3. Check the integrity of overflow pages.
** 4. Recursively call checkTreePage on all children.
** 5. Verify that the depth of all children is the same.
*/
static int checkTreePage(
IntegrityCk *pCheck, /* Context for the sanity check */
Pgno iPage, /* Page number of the page to check */
i64 *piMinKey, /* Write minimum integer primary key here */
i64 maxKey /* Error if integer primary key greater than this */
){
MemPage *pPage = 0; /* The page being analyzed */
int i; /* Loop counter */
int rc; /* Result code from subroutine call */
int depth = -1, d2; /* Depth of a subtree */
int pgno; /* Page number */
int nFrag; /* Number of fragmented bytes on the page */
int hdr; /* Offset to the page header */
int cellStart; /* Offset to the start of the cell pointer array */
int nCell; /* Number of cells */
int doCoverageCheck = 1; /* True if cell coverage checking should be done */
int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
** False if IPK must be strictly less than maxKey */
u8 *data; /* Page content */
u8 *pCell; /* Cell content */
u8 *pCellIdx; /* Next element of the cell pointer array */
BtShared *pBt; /* The BtShared object that owns pPage */
u32 pc; /* Address of a cell */
u32 usableSize; /* Usable size of the page */
u32 contentOffset; /* Offset to the start of the cell content area */
u32 *heap = 0; /* Min-heap used for checking cell coverage */
u32 x, prev = 0; /* Next and previous entry on the min-heap */
const char *saved_zPfx = pCheck->zPfx;
int saved_v1 = pCheck->v1;
int saved_v2 = pCheck->v2;
u8 savedIsInit = 0;
/* Check that the page exists
*/
checkProgress(pCheck);
if( pCheck->mxErr==0 ) goto end_of_check;
pBt = pCheck->pBt;
usableSize = pBt->usableSize;
if( iPage==0 ) return 0;
if( checkRef(pCheck, iPage) ) return 0;
pCheck->zPfx = "Tree %u page %u: ";
pCheck->v1 = iPage;
if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
checkAppendMsg(pCheck,
"unable to get the page. error code=%d", rc);
goto end_of_check;
}
/* Clear MemPage.isInit to make sure the corruption detection code in
** btreeInitPage() is executed. */
savedIsInit = pPage->isInit;
pPage->isInit = 0;
if( (rc = btreeInitPage(pPage))!=0 ){
assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
checkAppendMsg(pCheck,
"btreeInitPage() returns error code %d", rc);
goto end_of_check;
}
if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
assert( rc==SQLITE_CORRUPT );
checkAppendMsg(pCheck, "free space corruption", rc);
goto end_of_check;
}
data = pPage->aData;
hdr = pPage->hdrOffset;
/* Set up for cell analysis */
pCheck->zPfx = "Tree %u page %u cell %u: ";
contentOffset = get2byteNotZero(&data[hdr+5]);
assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
/* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
** number of cells on the page. */
nCell = get2byte(&data[hdr+3]);
assert( pPage->nCell==nCell );
/* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
** immediately follows the b-tree page header. */
cellStart = hdr + 12 - 4*pPage->leaf;
assert( pPage->aCellIdx==&data[cellStart] );
pCellIdx = &data[cellStart + 2*(nCell-1)];
if( !pPage->leaf ){
/* Analyze the right-child page of internal pages */
pgno = get4byte(&data[hdr+8]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
pCheck->zPfx = "Tree %u page %u right child: ";
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
}
#endif
depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
keyCanBeEqual = 0;
}else{
/* For leaf pages, the coverage check will occur in the same loop
** as the other cell checks, so initialize the heap. */
heap = pCheck->heap;
heap[0] = 0;
}
/* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
** integer offsets to the cell contents. */
for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
CellInfo info;
/* Check cell size */
pCheck->v2 = i;
assert( pCellIdx==&data[cellStart + i*2] );
pc = get2byteAligned(pCellIdx);
pCellIdx -= 2;
if( pc<contentOffset || pc>usableSize-4 ){
checkAppendMsg(pCheck, "Offset %u out of range %u..%u",
pc, contentOffset, usableSize-4);
doCoverageCheck = 0;
continue;
}
pCell = &data[pc];
pPage->xParseCell(pPage, pCell, &info);
if( pc+info.nSize>usableSize ){
checkAppendMsg(pCheck, "Extends off end of page");
doCoverageCheck = 0;
continue;
}
/* Check for integer primary key out of range */
if( pPage->intKey ){
if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
}
maxKey = info.nKey;
keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
}
/* Check the content overflow list */
if( info.nPayload>info.nLocal ){
u32 nPage; /* Number of pages on the overflow chain */
Pgno pgnoOvfl; /* First page of the overflow chain */
assert( pc + info.nSize - 4 <= usableSize );
nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
}
#endif
checkList(pCheck, 0, pgnoOvfl, nPage);
}
if( !pPage->leaf ){
/* Check sanity of left child page for internal pages */
pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
}
#endif
d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
keyCanBeEqual = 0;
if( d2!=depth ){
checkAppendMsg(pCheck, "Child page depth differs");
depth = d2;
}
}else{
/* Populate the coverage-checking heap for leaf pages */
btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
}
}
*piMinKey = maxKey;
/* Check for complete coverage of the page
*/
pCheck->zPfx = 0;
if( doCoverageCheck && pCheck->mxErr>0 ){
/* For leaf pages, the min-heap has already been initialized and the
** cells have already been inserted. But for internal pages, that has
** not yet been done, so do it now */
if( !pPage->leaf ){
heap = pCheck->heap;
heap[0] = 0;
for(i=nCell-1; i>=0; i--){
u32 size;
pc = get2byteAligned(&data[cellStart+i*2]);
size = pPage->xCellSize(pPage, &data[pc]);
btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
}
}
/* Add the freeblocks to the min-heap
**
** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
** is the offset of the first freeblock, or zero if there are no
** freeblocks on the page.
*/
i = get2byte(&data[hdr+1]);
while( i>0 ){
int size, j;
assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
size = get2byte(&data[i+2]);
assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
/* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
** big-endian integer which is the offset in the b-tree page of the next
** freeblock in the chain, or zero if the freeblock is the last on the
** chain. */
j = get2byte(&data[i]);
/* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
** increasing offset. */
assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
i = j;
}
/* Analyze the min-heap looking for overlap between cells and/or
** freeblocks, and counting the number of untracked bytes in nFrag.
**
** Each min-heap entry is of the form: (start_address<<16)|end_address.
** There is an implied first entry the covers the page header, the cell
** pointer index, and the gap between the cell pointer index and the start
** of cell content.
**
** The loop below pulls entries from the min-heap in order and compares
** the start_address against the previous end_address. If there is an
** overlap, that means bytes are used multiple times. If there is a gap,
** that gap is added to the fragmentation count.
*/
nFrag = 0;
prev = contentOffset - 1; /* Implied first min-heap entry */
while( btreeHeapPull(heap,&x) ){
if( (prev&0xffff)>=(x>>16) ){
checkAppendMsg(pCheck,
"Multiple uses for byte %u of page %u", x>>16, iPage);
break;
}else{
nFrag += (x>>16) - (prev&0xffff) - 1;
prev = x;
}
}
nFrag += usableSize - (prev&0xffff) - 1;
/* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
** is stored in the fifth field of the b-tree page header.
** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
** number of fragmented free bytes within the cell content area.
*/
if( heap[0]==0 && nFrag!=data[hdr+7] ){
checkAppendMsg(pCheck,
"Fragmentation of %u bytes reported as %u on page %u",
nFrag, data[hdr+7], iPage);
}
}
end_of_check:
if( !doCoverageCheck ) pPage->isInit = savedIsInit;
releasePage(pPage);
pCheck->zPfx = saved_zPfx;
pCheck->v1 = saved_v1;
pCheck->v2 = saved_v2;
return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file. aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table. nRoot is the number of entries in aRoot.
**
** A read-only or read-write transaction must be opened before calling
** this function.
**
** Write the number of error seen in *pnErr. Except for some memory
** allocation errors, an error message held in memory obtained from
** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
** returned. If a memory allocation error occurs, NULL is returned.
**
** If the first entry in aRoot[] is 0, that indicates that the list of
** root pages is incomplete. This is a "partial integrity-check". This
** happens when performing an integrity check on a single table. The
** zero is skipped, of course. But in addition, the freelist checks
** and the checks to make sure every page is referenced are also skipped,
** since obviously it is not possible to know which pages are covered by
** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
** checks are still performed.
*/
int sqlite3BtreeIntegrityCheck(
sqlite3 *db, /* Database connection that is running the check */
Btree *p, /* The btree to be checked */
Pgno *aRoot, /* An array of root pages numbers for individual trees */
int nRoot, /* Number of entries in aRoot[] */
int mxErr, /* Stop reporting errors after this many */
int *pnErr, /* OUT: Write number of errors seen to this variable */
char **pzOut /* OUT: Write the error message string here */
){
Pgno i;
IntegrityCk sCheck;
BtShared *pBt = p->pBt;
u64 savedDbFlags = pBt->db->flags;
char zErr[100];
int bPartial = 0; /* True if not checking all btrees */
int bCkFreelist = 1; /* True to scan the freelist */
VVA_ONLY( int nRef );
assert( nRoot>0 );
/* aRoot[0]==0 means this is a partial check */
if( aRoot[0]==0 ){
assert( nRoot>1 );
bPartial = 1;
if( aRoot[1]!=1 ) bCkFreelist = 0;
}
sqlite3BtreeEnter(p);
assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
assert( nRef>=0 );
memset(&sCheck, 0, sizeof(sCheck));
sCheck.db = db;
sCheck.pBt = pBt;
sCheck.pPager = pBt->pPager;
sCheck.nPage = btreePagecount(sCheck.pBt);
sCheck.mxErr = mxErr;
sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
if( sCheck.nPage==0 ){
goto integrity_ck_cleanup;
}
sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
if( !sCheck.aPgRef ){
checkOom(&sCheck);
goto integrity_ck_cleanup;
}
sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
if( sCheck.heap==0 ){
checkOom(&sCheck);
goto integrity_ck_cleanup;
}
i = PENDING_BYTE_PAGE(pBt);
if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
/* Check the integrity of the freelist
*/
if( bCkFreelist ){
sCheck.zPfx = "Freelist: ";
checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
get4byte(&pBt->pPage1->aData[36]));
sCheck.zPfx = 0;
}
/* Check all the tables.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
if( !bPartial ){
if( pBt->autoVacuum ){
Pgno mx = 0;
Pgno mxInHdr;
for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
mxInHdr = get4byte(&pBt->pPage1->aData[52]);
if( mx!=mxInHdr ){
checkAppendMsg(&sCheck,
"max rootpage (%u) disagrees with header (%u)",
mx, mxInHdr
);
}
}else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
checkAppendMsg(&sCheck,
"incremental_vacuum enabled with a max rootpage of zero"
);
}
}
#endif
testcase( pBt->db->flags & SQLITE_CellSizeCk );
pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
i64 notUsed;
if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
}
#endif
sCheck.v0 = aRoot[i];
checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64);
}
pBt->db->flags = savedDbFlags;
/* Make sure every page in the file is referenced
*/
if( !bPartial ){
for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
if( getPageReferenced(&sCheck, i)==0 ){
checkAppendMsg(&sCheck, "Page %u: never used", i);
}
#else
/* If the database supports auto-vacuum, make sure no tables contain
** references to pointer-map pages.
*/
if( getPageReferenced(&sCheck, i)==0 &&
(PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
checkAppendMsg(&sCheck, "Page %u: never used", i);
}
if( getPageReferenced(&sCheck, i)!=0 &&
(PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
checkAppendMsg(&sCheck, "Page %u: pointer map referenced", i);
}
#endif
}
}
/* Clean up and report errors.
*/
integrity_ck_cleanup:
sqlite3PageFree(sCheck.heap);
sqlite3_free(sCheck.aPgRef);
*pnErr = sCheck.nErr;
if( sCheck.nErr==0 ){
sqlite3_str_reset(&sCheck.errMsg);
*pzOut = 0;
}else{
*pzOut = sqlite3StrAccumFinish(&sCheck.errMsg);
}
/* Make sure this analysis did not leave any unref() pages. */
assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
sqlite3BtreeLeave(p);
return sCheck.rc;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/*
** Return the full pathname of the underlying database file. Return
** an empty string if the database is in-memory or a TEMP database.
**
** The pager filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetFilename(Btree *p){
assert( p->pBt->pPager!=0 );
return sqlite3PagerFilename(p->pBt->pPager, 1);
}
/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
**
** The pager journal filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetJournalname(Btree *p){
assert( p->pBt->pPager!=0 );
return sqlite3PagerJournalname(p->pBt->pPager);
}
/*
** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
** to describe the current transaction state of Btree p.
*/
int sqlite3BtreeTxnState(Btree *p){
assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
return p ? p->inTrans : 0;
}
#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on the Btree passed as the first argument.
**
** Return SQLITE_LOCKED if this or any other connection has an open
** transaction on the shared-cache the argument Btree is connected to.
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
*/
int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
int rc = SQLITE_OK;
if( p ){
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
if( pBt->inTransaction!=TRANS_NONE ){
rc = SQLITE_LOCKED;
}else{
rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
}
sqlite3BtreeLeave(p);
}
return rc;
}
#endif
/*
** Return true if there is currently a backup running on Btree p.
*/
int sqlite3BtreeIsInBackup(Btree *p){
assert( p );
assert( sqlite3_mutex_held(p->db->mutex) );
return p->nBackup!=0;
}
/*
** This function returns a pointer to a blob of memory associated with
** a single shared-btree. The memory is used by client code for its own
** purposes (for example, to store a high-level schema associated with
** the shared-btree). The btree layer manages reference counting issues.
**
** The first time this is called on a shared-btree, nBytes bytes of memory
** are allocated, zeroed, and returned to the caller. For each subsequent
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned.
**
** If the nBytes parameter is 0 and the blob of memory has not yet been
** allocated, a null pointer is returned. If the blob has already been
** allocated, it is returned as normal.
**
** Just before the shared-btree is closed, the function passed as the
** xFree argument when the memory allocation was made is invoked on the
** blob of allocated memory. The xFree function should not call sqlite3_free()
** on the memory, the btree layer does that.
*/
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
if( !pBt->pSchema && nBytes ){
pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
pBt->xFreeSchema = xFree;
}
sqlite3BtreeLeave(p);
return pBt->pSchema;
}
/*
** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
** btree as the argument handle holds an exclusive lock on the
** sqlite_schema table. Otherwise SQLITE_OK.
*/
int sqlite3BtreeSchemaLocked(Btree *p){
int rc;
assert( sqlite3_mutex_held(p->db->mutex) );
sqlite3BtreeEnter(p);
rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
sqlite3BtreeLeave(p);
return rc;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Obtain a lock on the table whose root page is iTab. The
** lock is a write lock if isWritelock is true or a read lock
** if it is false.
*/
int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
int rc = SQLITE_OK;
assert( p->inTrans!=TRANS_NONE );
if( p->sharable ){
u8 lockType = READ_LOCK + isWriteLock;
assert( READ_LOCK+1==WRITE_LOCK );
assert( isWriteLock==0 || isWriteLock==1 );
sqlite3BtreeEnter(p);
rc = querySharedCacheTableLock(p, iTab, lockType);
if( rc==SQLITE_OK ){
rc = setSharedCacheTableLock(p, iTab, lockType);
}
sqlite3BtreeLeave(p);
}
return rc;
}
#endif
#ifndef SQLITE_OMIT_INCRBLOB
/*
** Argument pCsr must be a cursor opened for writing on an
** INTKEY table currently pointing at a valid table entry.
** This function modifies the data stored as part of that entry.
**
** Only the data content may only be modified, it is not possible to
** change the length of the data stored. If this function is called with
** parameters that attempt to write past the end of the existing data,
** no modifications are made and SQLITE_CORRUPT is returned.
*/
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
int rc;
assert( cursorOwnsBtShared(pCsr) );
assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
assert( pCsr->curFlags & BTCF_Incrblob );
rc = restoreCursorPosition(pCsr);
if( rc!=SQLITE_OK ){
return rc;
}
assert( pCsr->eState!=CURSOR_REQUIRESEEK );
if( pCsr->eState!=CURSOR_VALID ){
return SQLITE_ABORT;
}
/* Save the positions of all other cursors open on this table. This is
** required in case any of them are holding references to an xFetch
** version of the b-tree page modified by the accessPayload call below.
**
** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
** saveAllCursors can only return SQLITE_OK.
*/
VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
assert( rc==SQLITE_OK );
/* Check some assumptions:
** (a) the cursor is open for writing,
** (b) there is a read/write transaction open,
** (c) the connection holds a write-lock on the table (if required),
** (d) there are no conflicting read-locks, and
** (e) the cursor points at a valid row of an intKey table.
*/
if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
return SQLITE_READONLY;
}
assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
&& pCsr->pBt->inTransaction==TRANS_WRITE );
assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
assert( pCsr->pPage->intKey );
return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
}
/*
** Mark this cursor as an incremental blob cursor.
*/
void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
pCur->curFlags |= BTCF_Incrblob;
pCur->pBtree->hasIncrblobCur = 1;
}
#endif
/*
** Set both the "read version" (single byte at byte offset 18) and
** "write version" (single byte at byte offset 19) fields in the database
** header to iVersion.
*/
int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
BtShared *pBt = pBtree->pBt;
int rc; /* Return code */
assert( iVersion==1 || iVersion==2 );
/* If setting the version fields to 1, do not automatically open the
** WAL connection, even if the version fields are currently set to 2.
*/
pBt->btsFlags &= ~BTS_NO_WAL;
if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
if( rc==SQLITE_OK ){
u8 *aData = pBt->pPage1->aData;
if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
if( rc==SQLITE_OK ){
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
if( rc==SQLITE_OK ){
aData[18] = (u8)iVersion;
aData[19] = (u8)iVersion;
}
}
}
}
pBt->btsFlags &= ~BTS_NO_WAL;
return rc;
}
/*
** Return true if the cursor has a hint specified. This routine is
** only used from within assert() statements
*/
int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
return (pCsr->hints & mask)!=0;
}
/*
** Return true if the given Btree is read-only.
*/
int sqlite3BtreeIsReadonly(Btree *p){
return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}
/*
** Return the size of the header added to each page by this module.
*/
int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
/*
** If no transaction is active and the database is not a temp-db, clear
** the in-memory pager cache.
*/
void sqlite3BtreeClearCache(Btree *p){
BtShared *pBt = p->pBt;
if( pBt->inTransaction==TRANS_NONE ){
sqlite3PagerClearCache(pBt->pPager);
}
}
#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** Return true if the Btree passed as the only argument is sharable.
*/
int sqlite3BtreeSharable(Btree *p){
return p->sharable;
}
/*
** Return the number of connections to the BtShared object accessed by
** the Btree handle passed as the only argument. For private caches
** this is always 1. For shared caches it may be 1 or greater.
*/
int sqlite3BtreeConnectionCount(Btree *p){
testcase( p->sharable );
return p->pBt->nRef;
}
#endif