SQLite

Artifact [b88ffc18cf]
Login

Artifact b88ffc18cf8a4bcb6608cacaa692ede4b7511a2a:


# 2007 May 8
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests to verify that the limits defined in
# sqlite source file limits.h are enforced.
#
# $Id: sqllimits1.test,v 1.2 2007/05/08 16:13:45 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

#--------------------------------------------------------------------
# Test cases sqllimits-1.* test that the SQLITE_MAX_LENGTH limit
# is enforced.
#
do_test sqllimits-1.1 {
  catchsql { SELECT randomblob(2147483647) }
} {1 {string or blob too big}}

# Large, but allowable, blob-size.
#
set ::LARGESIZE [expr $SQLITE_MAX_LENGTH - 1] 

do_test sqllimits-1.2 {
  catchsql { SELECT LENGTH(randomblob($::LARGESIZE)) }
} "0 $::LARGESIZE"

do_test sqllimits-1.3 {
  catchsql { SELECT quote(randomblob($::LARGESIZE)) }
} {1 {string or blob too big}}

do_test sqllimits-1.4 {
  set ::str [string repeat A 65537]
  set ::rep [string repeat B 65537]
  catchsql { SELECT replace($::str, 'A', $::rep) }
} {1 {string or blob too big}}

#--------------------------------------------------------------------
# Test cases sqllimits-2.* test that the SQLITE_MAX_SQL limit
# is enforced.
#
do_test sqllimits-2.1 {
  set    sql "SELECT 1 WHERE 1==1"
  append sql [string repeat " AND 1==1" 200000]
  catchsql $sql
} {1 {String or BLOB exceeded size limit}}

#--------------------------------------------------------------------
# Test cases sqllimits-3.* test that the limit set using the
# max_page_count pragma.
#
do_test sqllimits-3.1 {
  execsql {
    PRAGMA max_page_count = 1000;
  }
} {1000}
do_test sqllimits-3.2 {
  execsql {
    CREATE TABLE trig (a INTEGER, b INTEGER);
  }

  # Set up a tree of triggers to fire when a row is inserted
  # into table "trig".
  #
  # INSERT -> insert_b -> update_b -> insert_a -> update_a      (chain 1)
  #                    -> update_a -> insert_a -> update_b      (chain 2)
  #        -> insert_a -> update_b -> insert_b -> update_a      (chain 3)
  #                    -> update_a -> insert_b -> update_b      (chain 4)
  #
  # Table starts with N rows.
  #
  #   Chain 1: insert_b (update N rows)
  #              -> update_b (insert 1 rows)
  #                -> insert_a (update N rows)
  #                  -> update_a (insert 1 rows)
  #
  # chains 2, 3 and 4 are similar. Each inserts more than N^2 rows, where
  # N is the number of rows at the conclusion of the previous chain.
  #
  # Therefore, a single insert adds (N^16 plus some) rows to the database.
  # A really long loop...
  #     
  execsql {
    CREATE TRIGGER update_b BEFORE UPDATE ON trig
      FOR EACH ROW BEGIN
        INSERT INTO trig VALUES (65, 'update_b');
      END;

    CREATE TRIGGER update_a AFTER UPDATE ON trig
      FOR EACH ROW BEGIN
        INSERT INTO trig VALUES (65, 'update_a');
      END;

    CREATE TRIGGER insert_b BEFORE INSERT ON trig
      FOR EACH ROW BEGIN
        UPDATE trig SET a = 1;
      END;

    CREATE TRIGGER insert_a AFTER INSERT ON trig
      FOR EACH ROW BEGIN
        UPDATE trig SET a = 1;
      END;
  }
} {}

do_test sqllimits1-3.3 {
  execsql {
    INSERT INTO trig VALUES (1,1); 
  }
} {}

do_test sqllimits1-3.4 {
  execsql {
    SELECT COUNT(*) FROM trig;
  }
} {7}

# This tries to insert so many rows it fills up the database (limited
# to 1MB, so not that noteworthy an achievement).
#
do_test sqllimits1-3.5 {
  catchsql {
    INSERT INTO trig VALUES (1,10);
  }
} {1 {database or disk is full}}

do_test sqllimits1-3.6 {
  catchsql {
    SELECT COUNT(*) FROM trig;
  }
} {0 7}

finish_test