/*
** 2007 August 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for
** use by the SQLite core.
**
** $Id: mutex.c,v 1.8 2007/08/22 02:56:44 drh Exp $
*/
/*
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
** omitted and equivalent functionality must be provided by the
** application that links against the SQLite library.
*/
#ifndef SQLITE_MUTEX_APPDEF
/* This is the beginning of real code
*/
#include "sqliteInt.h"
/*
** Figure out what version of the code to use
*/
#define SQLITE_MUTEX_NOOP 1 /* The default */
#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_NOOP_DEBUG
#endif
#if 0
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_PTHREAD
#endif
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_WIN
#endif
#endif
#ifdef SQLITE_MUTEX_NOOP
/************************ No-op Mutex Implementation **********************
**
** This first implementation of mutexes is really a no-op. In other words,
** no real locking occurs. This implementation is appropriate for use
** in single threaded applications which do not want the extra overhead
** of thread locking primitives.
*/
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int idNotUsed){
return (sqlite3_mutex*)8;
}
/*
** This routine deallocates a previously allocated mutex.
*/
void sqlite3_mutex_free(sqlite3_mutex *pNotUsed){}
/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread. In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
void sqlite3_mutex_enter(sqlite3_mutex *pNotUsed){}
int sqlite3_mutex_try(sqlite3_mutex *pNotUsed){ return SQLITE_OK; }
/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *pNotUsed){}
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *pNotUsed){
return 1;
}
int sqlite3_mutex_notheld(sqlite3_mutex *pNotUsed){
return 1;
}
#endif /* SQLITE_MUTEX_NOOP */
#ifdef SQLITE_MUTEX_NOOP_DEBUG
/*************** Error-checking No-op Mutex Implementation *******************
**
** In this implementation, mutexes do not provide any mutual exclusion.
** But the error checking is provided. This implementation is useful
** for test purposes.
*/
/*
** The mutex object
*/
struct sqlite3_mutex {
int id;
int cnt;
};
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int id){
static sqlite3_mutex aStatic[4];
sqlite3_mutex *pNew = 0;
switch( id ){
case SQLITE_MUTEX_FAST:
case SQLITE_MUTEX_RECURSIVE: {
pNew = sqlite3_malloc(sizeof(*pNew));
if( pNew ){
pNew->id = id;
pNew->cnt = 0;
}
break;
}
default: {
assert( id-2 >= 0 );
assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) );
pNew = &aStatic[id-2];
pNew->id = id;
break;
}
}
return pNew;
}
/*
** This routine deallocates a previously allocated mutex.
*/
void sqlite3_mutex_free(sqlite3_mutex *p){
assert( p );
assert( p->cnt==0 );
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
sqlite3_free(p);
}
/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread. In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
assert( p );
assert( p->cnt==0 || p->id==SQLITE_MUTEX_RECURSIVE );
p->cnt++;
}
int sqlite3_mutex_try(sqlite3_mutex *p){
assert( p );
if( p->cnt>0 && p->id!=SQLITE_MUTEX_RECURSIVE ){
return SQLITE_BUSY;
}
p->cnt++;
return SQLITE_OK;
}
/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *p){
assert( p->cnt>0 );
p->cnt--;
}
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *p){
return p==0 || p->cnt>0;
}
int sqlite3_mutex_notheld(sqlite3_mutex *p){
return p==0 || p->cnt==0;
}
#endif /* SQLITE_MUTEX_NOOP_DEBUG */
#ifdef SQLITE_MUTEX_PTHREAD
/**************** Non-recursive Pthread Mutex Implementation *****************
**
** This implementation of mutexes is built using a version of pthreads that
** does not have native support for recursive mutexes.
*/
/*
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
pthread_mutex_t mainMutex; /* Mutex controlling the lock */
pthread_mutex_t auxMutex; /* Mutex controlling access to nRef and owner */
int id; /* Mutex type */
int nRef; /* Number of entrances */
pthread_t owner; /* Thread that is within this mutex */
};
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated. SQLite
** will unwind its stack and return an error. The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li> SQLITE_MUTEX_FAST 0
** <li> SQLITE_MUTEX_RECURSIVE 1
** <li> SQLITE_MUTEX_STATIC_MASTER 2
** <li> SQLITE_MUTEX_STATIC_MEM 3
** <li> SQLITE_MUTEX_STATIC_PRNG 4
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to. But SQLite will only request a recursive mutex in
** cases where it really needs one. If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. Three static mutexes are
** used by the current version of SQLite. Future versions of SQLite
** may add additional static mutexes. Static mutexes are for internal
** use by SQLite only. Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call. But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
static sqlite3_mutex staticMutexes[] = {
{ PTHREAD_MUTEX_INITIALIZER, },
{ PTHREAD_MUTEX_INITIALIZER, },
{ PTHREAD_MUTEX_INITIALIZER, },
{ PTHREAD_MUTEX_INITIALIZER, },
};
sqlite3_mutex *p;
switch( iType ){
case SQLITE_MUTEX_FAST: {
p = sqlite3MallocZero( sizeof(*p) );
if( p ){
p->id = iType;
pthread_mutex_init(&px->mainMutex, 0);
}
break;
}
case SQLITE_MUTEX_RECURSIVE: {
p = sqlite3_malloc( sizeof(*p) );
if( p ){
px->id = iType;
pthread_mutex_init(&px->auxMutex, 0);
pthread_mutex_init(&px->mainMutex, 0);
px->nRef = 0;
}
break;
}
default: {
assert( iType-2 >= 0 );
assert( iType-2 < count(staticMutexes) );
p = &staticMutexes[iType-2];
p->id = iType;
break;
}
}
return p;
}
/*
** This routine deallocates a previously
** allocated mutex. SQLite is careful to deallocate every
** mutex that it allocates.
*/
void sqlite3_mutex_free(sqlite3_mutex *p){
assert( p );
assert( p->nRef==0 );
if( p->id==SQLITE_MUTEX_FAST ){
pthread_mutex_destroy(&p->mainMutex);
}else{
assert( p->id==SQLITE_MUTEX_RECURSIVE );
pthread_mutex_destroy(&p->auxMutex);
pthread_mutex_destroy(&p->mainMutex);
}
sqlite3_free(p);
}
/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread. In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
if( p->id==SQLITE_MUTEX_RECURSIVE ){
while(1){
pthread_mutex_lock(&p->auxMutex);
if( p->nRef==0 ){
p->nRef++;
p->owner = pthread_self();
pthread_mutex_lock(&p->mainMutex);
pthread_mutex_unlock(&p->auxMutex);
break;
}else if( pthread_equal(p->owner, pthread_self()) ){
p->nRef++;
pthread_mutex_unlock(&p->auxMutex);
break;
}else{
pthread_mutex_unlock(&p->auxMutex);
pthread_mutex_lock(&p->mainMutex);
pthread_mutex_unlock(&p->mainMutex);
}
}
}else{
assert( p->nRef==0 || pthread_equal(p->owner, pthread_self())==0 );
pthread_mutex_lock(&p->mutex);
assert( (p->nRef = 1)!=0 );
assert( (p->owner = pthread_self())==pthread_self() );
}
}
int sqlite3_mutex_try(sqlite3_mutex *p){
if( p->id==SQLITE_MUTEX_RECURSIVE ){
pthread_mutex_lock(&p->auxMutex);
if( p->nRef==0 ){
p->nRef++;
p->owner = pthread_self();
pthread_mutex_lock(&p->mainMutex);
pthread_mutex_unlock(&p->auxMutex);
}else if( pthread_equal(p->owner, pthread_self()) ){
p->nRef++;
pthread_mutex_unlock(&p->auxMutex);
}else{
pthread_mutex_unlock(&p->auxMutex);
return SQLITE_BUSY;
}
}else{
assert( p->nRef==0 || pthread_equal(p->owner, pthread_self())==0 );
if( pthread_mutex_trylock(&p->mutex) ){
return SQLITE_BUSY;
}
}
return SQLITE_OK;
}
/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *pMutex){
if( p->id==SQLITE_MUTEX_RECURSIVE ){
pthread_mutex_lock(&p->auxMutex);
assert( p->nRef>0 );
assert( pthread_equal(p->owner, pthread_self()) );
p->nRef--;
if( p->nRef<=0 ){
pthread_mutex_unlock(&p->mainMutex);
}
pthread_mutex_unlock(&p->auxMutex);
}else{
assert( p->nRef==1 );
assert( pthread_equal(p->owner, pthread_self()) );
p->nRef = 0;
pthread_mutex_unlock(&p->mutex);
}
}
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *p){
assert( p );
return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
}
int sqlite3_mutex_notheld(sqlite3_mutex *pNotUsed){
assert( p );
return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
}
#endif /* SQLITE_MUTEX_PTHREAD */
#endif /* !defined(SQLITE_MUTEX_APPDEF) */