Documentation Source Text

Check-in [2262f22f31]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fix formatting problems in vtab.html associated with <yyterm> marks.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 2262f22f31fdb870e09af147ecedba0d26bd883f
User & Date: drh 2016-09-12 21:06:01.247
Context
2016-09-13
01:12
Use <codeblock> in more places, instead of <blockquote><pre>. Improved CSS for codeblock and for syntax diagrams. (check-in: 14e4769852 user: drh tags: trunk)
2016-09-12
21:06
Fix formatting problems in vtab.html associated with <yyterm> marks. (check-in: 2262f22f31 user: drh tags: trunk)
21:01
Fix a typo in vtab.in. (check-in: 4df3244e10 user: dan tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to pages/vtab.in.
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

<p>The CREATE VIRTUAL TABLE statement creates a new table
called <yyterm>table-name</yyterm> derived from the class
class <yyterm>module-name</yyterm>.  The <yyterm>module-name</yyterm>
is the name that is registered for the virtual table by
the [sqlite3_create_module()] interface.

<blockquote><pre>
   CREATE VIRTUAL TABLE tablename USING modulename;
</pre></blockquote>

<p>One can also provide comma-separated arguments to the module following 
the module name:

<blockquote><pre>
   CREATE VIRTUAL TABLE tablename USING modulename(arg1, arg2, ...);
</pre></blockquote>

<p>The format of the arguments to the module is very general. Each 
<yyterm>module-argument</yyterm>
may contain keywords, string literals, identifiers, numbers, and 
punctuation. Each <yyterm>module-argument</yyterm> is passed as 
written (as text) into the
[xCreate | constructor method] of the virtual table implementation 







|

|




|

|







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

<p>The CREATE VIRTUAL TABLE statement creates a new table
called <yyterm>table-name</yyterm> derived from the class
class <yyterm>module-name</yyterm>.  The <yyterm>module-name</yyterm>
is the name that is registered for the virtual table by
the [sqlite3_create_module()] interface.

<codeblock>
   CREATE VIRTUAL TABLE tablename USING modulename;
</codeblock>

<p>One can also provide comma-separated arguments to the module following 
the module name:

<codeblock>
   CREATE VIRTUAL TABLE tablename USING modulename(arg1, arg2, ...);
</codeblock>

<p>The format of the arguments to the module is very general. Each 
<yyterm>module-argument</yyterm>
may contain keywords, string literals, identifiers, numbers, and 
punctuation. Each <yyterm>module-argument</yyterm> is passed as 
written (as text) into the
[xCreate | constructor method] of the virtual table implementation 
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

<h3>Temporary virtual tables</h3>

<p>There is no "CREATE TEMP VIRTUAL TABLE" statement.  To create a
temporary virtual table, add the "temp" schema
before the virtual table name.

<blockquote><pre>
   CREATE VIRTUAL TABLE <b>temp.</b>tablename USING module(arg1, ...);
</pre></blockquote>

<tcl>hd_fragment epovtab {eponymous virtual tables}  \
        {eponymous virtual table}</tcl>
<h3>Eponymous virtual tables</h3>

<p>Some virtual tables exist automatically in the "main" schema of
every database connection in which their







|

|







101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

<h3>Temporary virtual tables</h3>

<p>There is no "CREATE TEMP VIRTUAL TABLE" statement.  To create a
temporary virtual table, add the "temp" schema
before the virtual table name.

<codeblock>
   CREATE VIRTUAL TABLE <b>temp.</b>tablename USING module(arg1, ...);
</codeblock>

<tcl>hd_fragment epovtab {eponymous virtual tables}  \
        {eponymous virtual table}</tcl>
<h3>Eponymous virtual tables</h3>

<p>Some virtual tables exist automatically in the "main" schema of
every database connection in which their
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
<p>An example of an eponymous virtual table is the [dbstat virtual table].
To use the dbstat virtual table as an eponymous virtual table, 
simply query against the "dbstat"
module name, as if it were an ordinary table.  (Note that SQLite
must be compiled with the [SQLITE_ENABLE_DBSTAT_VTAB] option to include
the dbstat virtual table in the build.)

<blockquote><pre>
   SELECT * FROM dbstat;
</pre></blockquote>

<p>A virtual table is eponymous if its [xCreate] method is the exact same
function as the [xConnect] method, or if the [xCreate] method is NULL.
The [xCreate] method is called when a virtual table is first created
using the [CREATE VIRTUAL TABLE] statement.  The [xConnect] method whenever
a database connection attaches to or reparses a schema. When these two methods
are the same, that indicates that the virtual table has no persistent







|

|







125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
<p>An example of an eponymous virtual table is the [dbstat virtual table].
To use the dbstat virtual table as an eponymous virtual table, 
simply query against the "dbstat"
module name, as if it were an ordinary table.  (Note that SQLite
must be compiled with the [SQLITE_ENABLE_DBSTAT_VTAB] option to include
the dbstat virtual table in the build.)

<codeblock>
   SELECT * FROM dbstat;
</codeblock>

<p>A virtual table is eponymous if its [xCreate] method is the exact same
function as the [xConnect] method, or if the [xCreate] method is NULL.
The [xCreate] method is called when a virtual table is first created
using the [CREATE VIRTUAL TABLE] statement.  The [xConnect] method whenever
a database connection attaches to or reparses a schema. When these two methods
are the same, that indicates that the virtual table has no persistent
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
command is attempted against that virtual table module, a jump to a NULL
pointer will occur, resulting in a crash.

<h2>Implementation</h2>

<p>Several new C-level objects are used by the virtual table implementation:

<blockquote><pre>
  typedef struct sqlite3_vtab sqlite3_vtab;
  typedef struct sqlite3_index_info sqlite3_index_info;
  typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
  typedef struct sqlite3_module sqlite3_module;
</pre></blockquote>

<p>The [sqlite3_module] structure defines a module object used to implement
a virtual table. Think of a module as a class from which one can 
construct multiple virtual tables having similar properties. For example,
one might have a module that provides read-only access to 
comma-separated-value (CSV) files on disk. That one module can then be
used to create several virtual tables where each virtual table refers
to a different CSV file.

<p>The module structure contains methods that are invoked by SQLite to
perform various actions on the virtual table such as creating new
instances of a virtual table or destroying old ones, reading and
writing data, searching for and deleting, updating, or inserting rows. 
The module structure is explained in more detail below.

<p>Each virtual table instance is represented by an [sqlite3_vtab] structure. 
The sqlite3_vtab structure looks like this:

<blockquote><pre>
  struct sqlite3_vtab {
    const sqlite3_module *pModule;
    int nRef;
    char *zErrMsg;
  };
</pre></blockquote>

<p>Virtual table implementations will normally subclass this structure 
to add additional private and implementation-specific fields. 
The nRef field is used internally by the SQLite core and should not 
be altered by the virtual table implementation. The virtual table 
implementation may pass error message text to the core by putting 
an error message string in zErrMsg.







|




|


















|





|







156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
command is attempted against that virtual table module, a jump to a NULL
pointer will occur, resulting in a crash.

<h2>Implementation</h2>

<p>Several new C-level objects are used by the virtual table implementation:

<codeblock>
  typedef struct sqlite3_vtab sqlite3_vtab;
  typedef struct sqlite3_index_info sqlite3_index_info;
  typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
  typedef struct sqlite3_module sqlite3_module;
</codeblock>

<p>The [sqlite3_module] structure defines a module object used to implement
a virtual table. Think of a module as a class from which one can 
construct multiple virtual tables having similar properties. For example,
one might have a module that provides read-only access to 
comma-separated-value (CSV) files on disk. That one module can then be
used to create several virtual tables where each virtual table refers
to a different CSV file.

<p>The module structure contains methods that are invoked by SQLite to
perform various actions on the virtual table such as creating new
instances of a virtual table or destroying old ones, reading and
writing data, searching for and deleting, updating, or inserting rows. 
The module structure is explained in more detail below.

<p>Each virtual table instance is represented by an [sqlite3_vtab] structure. 
The sqlite3_vtab structure looks like this:

<codeblock>
  struct sqlite3_vtab {
    const sqlite3_module *pModule;
    int nRef;
    char *zErrMsg;
  };
</codeblock>

<p>Virtual table implementations will normally subclass this structure 
to add additional private and implementation-specific fields. 
The nRef field is used internally by the SQLite core and should not 
be altered by the virtual table implementation. The virtual table 
implementation may pass error message text to the core by putting 
an error message string in zErrMsg.
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
it destroys the virtual table. The virtual table implementation only 
needs to worry about freeing the zErrMsg content when it overwrites 
the content with a new, different error message.

<p>The [sqlite3_vtab_cursor] structure represents a pointer to a specific
row of a virtual table. This is what an sqlite3_vtab_cursor looks like:

<blockquote><pre>
  struct sqlite3_vtab_cursor {
    sqlite3_vtab *pVtab;
  };
</pre></blockquote>

<p>Once again, practical implementations will likely subclass this 
structure to add additional private fields.

<p>The [sqlite3_index_info] structure is used to pass information into
and out of the xBestIndex method of the module that implements a 
virtual table.

<p>Before a [CREATE VIRTUAL TABLE] statement can be run, the module 
specified in that statement must be registered with the database 
connection. This is accomplished using either of the [sqlite3_create_module()]
or [sqlite3_create_module_v2()] interfaces:

<blockquote><pre>
  int sqlite3_create_module(
    sqlite3 *db,               /* SQLite connection to register module with */
    const char *zName,         /* Name of the module */
    const sqlite3_module *,    /* Methods for the module */
    void *                     /* Client data for xCreate/xConnect */
  );
  int sqlite3_create_module_v2(
    sqlite3 *db,               /* SQLite connection to register module with */
    const char *zName,         /* Name of the module */
    const sqlite3_module *,    /* Methods for the module */
    void *,                    /* Client data for xCreate/xConnect */
    void(*xDestroy)(void*)     /* Client data destructor function */
  );
</pre></blockquote>

<p>The [sqlite3_create_module()] and [sqlite3_create_module_v2()]
routines associates a module name with 
an [sqlite3_module] structure and a separate client data that is specific 
to each module.  The only difference between the two create_module methods
is that the _v2 method includes an extra parameter that specifies a
destructor for client data pointer.  The module structure is what defines
the behavior of a virtual table.  The module structure looks like this:

<blockquote><pre>  
  struct sqlite3_module {
    int iVersion;
    int (*xCreate)(sqlite3*, void *pAux,
                 int argc, char **argv,
                 sqlite3_vtab **ppVTab,
                 char **pzErr);
    int (*xConnect)(sqlite3*, void *pAux,







|



|













|













|









|







209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
it destroys the virtual table. The virtual table implementation only 
needs to worry about freeing the zErrMsg content when it overwrites 
the content with a new, different error message.

<p>The [sqlite3_vtab_cursor] structure represents a pointer to a specific
row of a virtual table. This is what an sqlite3_vtab_cursor looks like:

<codeblock>
  struct sqlite3_vtab_cursor {
    sqlite3_vtab *pVtab;
  };
</codeblock>

<p>Once again, practical implementations will likely subclass this 
structure to add additional private fields.

<p>The [sqlite3_index_info] structure is used to pass information into
and out of the xBestIndex method of the module that implements a 
virtual table.

<p>Before a [CREATE VIRTUAL TABLE] statement can be run, the module 
specified in that statement must be registered with the database 
connection. This is accomplished using either of the [sqlite3_create_module()]
or [sqlite3_create_module_v2()] interfaces:

<codeblock>
  int sqlite3_create_module(
    sqlite3 *db,               /* SQLite connection to register module with */
    const char *zName,         /* Name of the module */
    const sqlite3_module *,    /* Methods for the module */
    void *                     /* Client data for xCreate/xConnect */
  );
  int sqlite3_create_module_v2(
    sqlite3 *db,               /* SQLite connection to register module with */
    const char *zName,         /* Name of the module */
    const sqlite3_module *,    /* Methods for the module */
    void *,                    /* Client data for xCreate/xConnect */
    void(*xDestroy)(void*)     /* Client data destructor function */
  );
</codeblock>

<p>The [sqlite3_create_module()] and [sqlite3_create_module_v2()]
routines associates a module name with 
an [sqlite3_module] structure and a separate client data that is specific 
to each module.  The only difference between the two create_module methods
is that the _v2 method includes an extra parameter that specifies a
destructor for client data pointer.  The module structure is what defines
the behavior of a virtual table.  The module structure looks like this:

<codeblock>  
  struct sqlite3_module {
    int iVersion;
    int (*xCreate)(sqlite3*, void *pAux,
                 int argc, char **argv,
                 sqlite3_vtab **ppVTab,
                 char **pzErr);
    int (*xConnect)(sqlite3*, void *pAux,
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    int (*Rename)(sqlite3_vtab *pVtab, const char *zNew);
    /* The methods above are in version 1 of the sqlite_module object. Those 
    ** below are for version 2 and greater. */
    int (*xSavepoint)(sqlite3_vtab *pVTab, int);
    int (*xRelease)(sqlite3_vtab *pVTab, int);
    int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
  };
</pre></blockquote>

<p>The module structure defines all of the methods for each virtual 
table object. The module structure also contains the iVersion field which
defines the particular edition of the module table structure. Currently, 
iVersion is always 1, but in future releases of SQLite the module structure 
definition might be extended with additional methods and in that case 
the iVersion value will be increased.







|







288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    int (*Rename)(sqlite3_vtab *pVtab, const char *zNew);
    /* The methods above are in version 1 of the sqlite_module object. Those 
    ** below are for version 2 and greater. */
    int (*xSavepoint)(sqlite3_vtab *pVTab, int);
    int (*xRelease)(sqlite3_vtab *pVTab, int);
    int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
  };
</codeblock>

<p>The module structure defines all of the methods for each virtual 
table object. The module structure also contains the iVersion field which
defines the particular edition of the module table structure. Currently, 
iVersion is always 1, but in future releases of SQLite the module structure 
definition might be extended with additional methods and in that case 
the iVersion value will be increased.
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
[sqlite3_load_extension | loadable extension].

<h1>Virtual Table Methods</h1>

<tcl>hd_fragment xcreate {sqlite3_module.xCreate} {xCreate}</tcl>
<h2>The xCreate Method</h2>

<blockquote><pre>
  int (*xCreate)(sqlite3 *db, void *pAux,
               int argc, char **argv,
               sqlite3_vtab **ppVTab,
               char **pzErr);
</pre></blockquote>

<p>The xCreate method is called to create a new instance of a virtual table 
in response to a [CREATE VIRTUAL TABLE] statement.
If the xCreate method is the same pointer as the [xConnect] method, then the
virtual table is an [eponymous virtual table].
If the xCreate method is omitted (if it is a NULL pointer) then the virtual 
table is an [eponymous-only virtual table].







|




|







341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
[sqlite3_load_extension | loadable extension].

<h1>Virtual Table Methods</h1>

<tcl>hd_fragment xcreate {sqlite3_module.xCreate} {xCreate}</tcl>
<h2>The xCreate Method</h2>

<codeblock>
  int (*xCreate)(sqlite3 *db, void *pAux,
               int argc, char **argv,
               sqlite3_vtab **ppVTab,
               char **pzErr);
</codeblock>

<p>The xCreate method is called to create a new instance of a virtual table 
in response to a [CREATE VIRTUAL TABLE] statement.
If the xCreate method is the same pointer as the [xConnect] method, then the
virtual table is an [eponymous virtual table].
If the xCreate method is omitted (if it is a NULL pointer) then the virtual 
table is an [eponymous-only virtual table].
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
(an [sqlite3_vtab] object) and return a pointer to it in *ppVTab.

<p>As part of the task of creating a new [sqlite3_vtab] structure, this 
method <u>must</u> invoke [sqlite3_declare_vtab()] to tell the SQLite 
core about the columns and datatypes in the virtual table. 
The [sqlite3_declare_vtab()] API has the following prototype:

<blockquote><pre>
    int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable)
</pre></blockquote>

<p>The first argument to [sqlite3_declare_vtab()] must be the same 
[database connection] pointer as the first parameter to this method.
The second argument to [sqlite3_declare_vtab()] must a zero-terminated 
UTF-8 string that contains a well-formed [CREATE TABLE] statement that 
defines the columns in the virtual table and their data types. 
The name of the table in this CREATE TABLE statement is ignored, 







|

|







383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
(an [sqlite3_vtab] object) and return a pointer to it in *ppVTab.

<p>As part of the task of creating a new [sqlite3_vtab] structure, this 
method <u>must</u> invoke [sqlite3_declare_vtab()] to tell the SQLite 
core about the columns and datatypes in the virtual table. 
The [sqlite3_declare_vtab()] API has the following prototype:

<codeblock>
    int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable)
</codeblock>

<p>The first argument to [sqlite3_declare_vtab()] must be the same 
[database connection] pointer as the first parameter to this method.
The second argument to [sqlite3_declare_vtab()] must a zero-terminated 
UTF-8 string that contains a well-formed [CREATE TABLE] statement that 
defines the columns in the virtual table and their data types. 
The name of the table in this CREATE TABLE statement is ignored, 
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
     expression in the result set of a [SELECT], and
<li> Hidden columns are not included in the implicit column-list 
     used by an [INSERT] statement that lacks an explicit column-list. 
</ul>

<p>For example, if the following SQL is passed to [sqlite3_declare_vtab()]:

<blockquote><pre>
   CREATE TABLE x(a HIDDEN VARCHAR(12), b INTEGER, c INTEGER Hidden);
</pre></blockquote>

<p>Then the virtual table would be created with two hidden columns,
and with datatypes of "VARCHAR(12)" and "INTEGER".

<p>An example use of hidden columns can be seen in the [FTS3] virtual 
table implementation, where every FTS virtual table
contains an [FTS hidden column] that is used to pass information from the







|

|







449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
     expression in the result set of a [SELECT], and
<li> Hidden columns are not included in the implicit column-list 
     used by an [INSERT] statement that lacks an explicit column-list. 
</ul>

<p>For example, if the following SQL is passed to [sqlite3_declare_vtab()]:

<codeblock>
   CREATE TABLE x(a HIDDEN VARCHAR(12), b INTEGER, c INTEGER Hidden);
</codeblock>

<p>Then the virtual table would be created with two hidden columns,
and with datatypes of "VARCHAR(12)" and "INTEGER".

<p>An example use of hidden columns can be seen in the [FTS3] virtual 
table implementation, where every FTS virtual table
contains an [FTS hidden column] that is used to pass information from the
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
the HIDDEN columns of the virtual table.

<p>For example, the "generate_series" extension (located in the
[http://www.sqlite.org/src/artifact?ci=trunk&filename=ext/misc/series.c|ext/misc/series.c]
file in the [http://www.sqlite.org/src/tree?ci=trunk|source tree])
implements an [eponymous virtual table] with the following schema:

<blockquote><pre>
CREATE TABLE generate_series(
  value,
  start HIDDEN,
  stop HIDDEN,
  step HIDDEN
);
</pre></blockquote>

<p>The [sqlite3_module.xBestIndex] method in the implementation of this
table checks for equality constraints against the HIDDEN columns, and uses
those as input parameters to determine the range of integer "value" outputs
to generate.  Reasonable defaults are used for any unconstrained columns.
For example, to list all integers between 5 and 50:

<blockquote><pre>
SELECT value FROM generate_series(5,50);
</pre></blockquote>

<p>The previous query is equivalent to the following:

<blockquote><pre>
SELECT value FROM generate_series WHERE start=5 AND stop=50;
</pre></blockquote>

<p>Arguments on the virtual table name are matched to [hidden columns]
in order.  The number of arguments can be less than the
number of hidden columns, in which case the latter hidden columns are
unconstrained.  However, an error results if there are more arguments
than there are hidden columns in the virtual table.








|






|







|

|



|

|







475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
the HIDDEN columns of the virtual table.

<p>For example, the "generate_series" extension (located in the
[http://www.sqlite.org/src/artifact?ci=trunk&filename=ext/misc/series.c|ext/misc/series.c]
file in the [http://www.sqlite.org/src/tree?ci=trunk|source tree])
implements an [eponymous virtual table] with the following schema:

<codeblock>
CREATE TABLE generate_series(
  value,
  start HIDDEN,
  stop HIDDEN,
  step HIDDEN
);
</codeblock>

<p>The [sqlite3_module.xBestIndex] method in the implementation of this
table checks for equality constraints against the HIDDEN columns, and uses
those as input parameters to determine the range of integer "value" outputs
to generate.  Reasonable defaults are used for any unconstrained columns.
For example, to list all integers between 5 and 50:

<codeblock>
SELECT value FROM generate_series(5,50);
</codeblock>

<p>The previous query is equivalent to the following:

<codeblock>
SELECT value FROM generate_series WHERE start=5 AND stop=50;
</codeblock>

<p>Arguments on the virtual table name are matched to [hidden columns]
in order.  The number of arguments can be less than the
number of hidden columns, in which case the latter hidden columns are
unconstrained.  However, an error results if there are more arguments
than there are hidden columns in the virtual table.

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
WITHOUT ROWID virtual tables must be read-only.


<tcl>############################################################# xConnect
hd_fragment xconnect {sqlite3_module.xConnect} {xConnect}</tcl>
<h2>The xConnect Method</h2>

<blockquote><pre>
  int (*xConnect)(sqlite3*, void *pAux,
               int argc, char **argv,
               sqlite3_vtab **ppVTab,
               char **pzErr);
</pre></blockquote>

<p>The xConnect method is very similar to [xCreate]. 
It has the same parameters and constructs a new [sqlite3_vtab] structure 
just like xCreate. 
And it must also call [sqlite3_declare_vtab()] like xCreate.

<p>The difference is that xConnect is called to establish a new 







|




|







535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
WITHOUT ROWID virtual tables must be read-only.


<tcl>############################################################# xConnect
hd_fragment xconnect {sqlite3_module.xConnect} {xConnect}</tcl>
<h2>The xConnect Method</h2>

<codeblock>
  int (*xConnect)(sqlite3*, void *pAux,
               int argc, char **argv,
               sqlite3_vtab **ppVTab,
               char **pzErr);
</codeblock>

<p>The xConnect method is very similar to [xCreate]. 
It has the same parameters and constructs a new [sqlite3_vtab] structure 
just like xCreate. 
And it must also call [sqlite3_declare_vtab()] like xCreate.

<p>The difference is that xConnect is called to establish a new 
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
hd_fragment xbestindex {sqlite3_module.xBestIndex} {xBestIndex}</tcl>
<h2>The xBestIndex Method</h2>

<p>SQLite uses the xBestIndex method of a virtual table module to determine
the best way to access the virtual table. 
The xBestIndex method has a prototype like this:

<blockquote><pre>
  int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
</pre></blockquote>

<p>The SQLite core communicates with the xBestIndex method by filling 
in certain fields of the [sqlite3_index_info] structure and passing a 
pointer to that structure into xBestIndex as the second parameter. 
The xBestIndex method fills out other fields of this structure which
forms the reply. The [sqlite3_index_info] structure looks like this:

<blockquote><pre>
  struct sqlite3_index_info {
    /* Inputs */
    const int nConstraint;     /* Number of entries in aConstraint */
    const struct sqlite3_index_constraint {
       int iColumn;              /* Column constrained.  -1 for ROWID */
       unsigned char op;         /* Constraint operator */
       unsigned char usable;     /* True if this constraint is usable */







|

|







|







595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
hd_fragment xbestindex {sqlite3_module.xBestIndex} {xBestIndex}</tcl>
<h2>The xBestIndex Method</h2>

<p>SQLite uses the xBestIndex method of a virtual table module to determine
the best way to access the virtual table. 
The xBestIndex method has a prototype like this:

<codeblock>
  int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
</codeblock>

<p>The SQLite core communicates with the xBestIndex method by filling 
in certain fields of the [sqlite3_index_info] structure and passing a 
pointer to that structure into xBestIndex as the second parameter. 
The xBestIndex method fills out other fields of this structure which
forms the reply. The [sqlite3_index_info] structure looks like this:

<codeblock>
  struct sqlite3_index_info {
    /* Inputs */
    const int nConstraint;     /* Number of entries in aConstraint */
    const struct sqlite3_index_constraint {
       int iColumn;              /* Column constrained.  -1 for ROWID */
       unsigned char op;         /* Constraint operator */
       unsigned char usable;     /* True if this constraint is usable */
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    <b>/* Fields below are only available in SQLite 3.8.2 and later */</b>
    sqlite3_int64 estimatedRows;    /* Estimated number of rows returned */
    <b>/* Fields below are only available in SQLite 3.9.0 and later */</b>
    int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */
    <b>/* Fields below are only available in SQLite 3.10.0 and later */</b>
    sqlite3_uint64 colUsed;    /* Input: Mask of columns used by statement */
  };
</pre></blockquote>

<p>Note the warnings on the "estimatedRows", "idxFlags", and colUsed fields.
These fields were added with SQLite versions 3.8.2, 3.9.0, and 3.10.0, respectively. 
Any extension that reads or writes these fields must first check that the 
version of the SQLite library in use is greater than or equal to appropriate
version - perhaps comparing the value returned from [sqlite3_libversion_number()]
against constants 3008002, 3009000, and/or 3010000. The result of attempting 
to access these fields in an sqlite3_index_info structure created by an 
older version of SQLite are undefined.

<p>In addition, there are some defined constants:

<blockquote><pre>
  #define SQLITE_INDEX_CONSTRAINT_EQ      2
  #define SQLITE_INDEX_CONSTRAINT_GT      4
  #define SQLITE_INDEX_CONSTRAINT_LE      8
  #define SQLITE_INDEX_CONSTRAINT_LT     16
  #define SQLITE_INDEX_CONSTRAINT_GE     32
  #define SQLITE_INDEX_CONSTRAINT_MATCH  64
  #define SQLITE_INDEX_CONSTRAINT_LIKE   65     /* 3.10.0 and later only */
  #define SQLITE_INDEX_CONSTRAINT_GLOB   66     /* 3.10.0 and later only */
  #define SQLITE_INDEX_CONSTRAINT_REGEXP 67     /* 3.10.0 and later only */
  #define SQLITE_INDEX_SCAN_UNIQUE        1     /* Scan visits at most 1 row */
</pre></blockquote>

<p>The SQLite core calls the xBestIndex method when it is compiling a query
that involves a virtual table. In other words, SQLite calls this method 
when it is running [sqlite3_prepare()] or the equivalent. 
By calling this method, the 
SQLite core is saying to the virtual table that it needs to access 
some subset of the rows in the virtual table and it wants to know the







|












|










|







638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    <b>/* Fields below are only available in SQLite 3.8.2 and later */</b>
    sqlite3_int64 estimatedRows;    /* Estimated number of rows returned */
    <b>/* Fields below are only available in SQLite 3.9.0 and later */</b>
    int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */
    <b>/* Fields below are only available in SQLite 3.10.0 and later */</b>
    sqlite3_uint64 colUsed;    /* Input: Mask of columns used by statement */
  };
</codeblock>

<p>Note the warnings on the "estimatedRows", "idxFlags", and colUsed fields.
These fields were added with SQLite versions 3.8.2, 3.9.0, and 3.10.0, respectively. 
Any extension that reads or writes these fields must first check that the 
version of the SQLite library in use is greater than or equal to appropriate
version - perhaps comparing the value returned from [sqlite3_libversion_number()]
against constants 3008002, 3009000, and/or 3010000. The result of attempting 
to access these fields in an sqlite3_index_info structure created by an 
older version of SQLite are undefined.

<p>In addition, there are some defined constants:

<codeblock>
  #define SQLITE_INDEX_CONSTRAINT_EQ      2
  #define SQLITE_INDEX_CONSTRAINT_GT      4
  #define SQLITE_INDEX_CONSTRAINT_LE      8
  #define SQLITE_INDEX_CONSTRAINT_LT     16
  #define SQLITE_INDEX_CONSTRAINT_GE     32
  #define SQLITE_INDEX_CONSTRAINT_MATCH  64
  #define SQLITE_INDEX_CONSTRAINT_LIKE   65     /* 3.10.0 and later only */
  #define SQLITE_INDEX_CONSTRAINT_GLOB   66     /* 3.10.0 and later only */
  #define SQLITE_INDEX_CONSTRAINT_REGEXP 67     /* 3.10.0 and later only */
  #define SQLITE_INDEX_SCAN_UNIQUE        1     /* Scan visits at most 1 row */
</codeblock>

<p>The SQLite core calls the xBestIndex method when it is compiling a query
that involves a virtual table. In other words, SQLite calls this method 
when it is running [sqlite3_prepare()] or the equivalent. 
By calling this method, the 
SQLite core is saying to the virtual table that it needs to access 
some subset of the rows in the virtual table and it wants to know the
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
     column  OP  EXPR
</blockquote>

<p>Where "column" is a column in the virtual table, OP is an operator 
like "=" or "&lt;", and EXPR is an arbitrary expression. So, for example,
if the WHERE clause contained a term like this:

<blockquote><pre>
     a = 5
</pre></blockquote>

<p>Then one of the constraints would be on the "a" column with 
operator "=" and an expression of "5". Constraints need not have a
literal representation of the WHERE clause. The query optimizer might
make transformations to the 
WHERE clause in order to extract as many constraints 
as it can. So, for example, if the WHERE clause contained something 
like this:

<blockquote><pre>
     x BETWEEN 10 AND 100 AND 999&gt;y
</pre></blockquote>

<p>The query optimizer might translate this into three separate constraints:

<blockquote><pre>
     x &gt;= 10
     x &lt;= 100
     y &lt; 999
</pre></blockquote>

<p>For each constraint, the aConstraint[].iColumn field indicates which 
column appears on the left-hand side of the constraint.
The first column of the virtual table is column 0. 
The rowid of the virtual table is column -1. 
The aConstraint[].op field indicates which operator is used. 
The SQLITE_INDEX_CONSTRAINT_* constants map integer constants 







|

|









|

|



|



|







721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
     column  OP  EXPR
</blockquote>

<p>Where "column" is a column in the virtual table, OP is an operator 
like "=" or "&lt;", and EXPR is an arbitrary expression. So, for example,
if the WHERE clause contained a term like this:

<codeblock>
     a = 5
</codeblock>

<p>Then one of the constraints would be on the "a" column with 
operator "=" and an expression of "5". Constraints need not have a
literal representation of the WHERE clause. The query optimizer might
make transformations to the 
WHERE clause in order to extract as many constraints 
as it can. So, for example, if the WHERE clause contained something 
like this:

<codeblock>
     x BETWEEN 10 AND 100 AND 999&gt;y
</codeblock>

<p>The query optimizer might translate this into three separate constraints:

<codeblock>
     x &gt;= 10
     x &lt;= 100
     y &lt; 999
</codeblock>

<p>For each constraint, the aConstraint[].iColumn field indicates which 
column appears on the left-hand side of the constraint.
The first column of the virtual table is column 0. 
The rowid of the virtual table is column -1. 
The aConstraint[].op field indicates which operator is used. 
The SQLITE_INDEX_CONSTRAINT_* constants map integer constants 
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
each row of the virtual table that it receives. If such a check 
is redundant, the xBestFilter method can suppress that double-check by 
setting aConstraintUsage[].omit.

<tcl>hd_fragment xdisconnect {sqlite3_module.xDisconnect} {xDisconnect}</tcl>
<h2>The xDisconnect Method</h2>

<blockquote><pre>
  int (*xDisconnect)(sqlite3_vtab *pVTab);
</pre></blockquote>

<p>This method releases a connection to a virtual table. 
Only the [sqlite3_vtab] object is destroyed.
The virtual table is not destroyed and any backing store 
associated with the virtual table persists. 

This method undoes the work of [xConnect].

<p>This method is a destructor for a connection to the virtual table.
Contrast this method with [xDestroy].  The xDestroy is a destructor
for the entire virtual table.

<p>The xDisconnect method is required for every virtual table implementation,
though it is acceptable for the xDisconnect and [xDestroy] methods to be
the same function if that makes sense for the particular virtual table.

<tcl>########################################################## xDestroy
hd_fragment {sqlite3_module.xDestroy} {xDestroy}</tcl>
<h2>The xDestroy Method</h2>

<blockquote><pre>
  int (*xDestroy)(sqlite3_vtab *pVTab);
</pre></blockquote>

<p>This method releases a connection to a virtual table, just like 
the [xDisconnect] method, and it also destroys the underlying 
table implementation. This method undoes the work of [xCreate].

<p>The [xDisconnect] method is called whenever a database connection
that uses a virtual table is closed. The xDestroy method is only 
called when a [DROP TABLE] statement is executed against the virtual table.

<p>The xDestroy method is required for every virtual table implementation,
though it is acceptable for the [xDisconnect] and xDestroy methods to be
the same function if that makes sense for the particular virtual table.

<tcl>########################################################## xOpen
hd_fragment xopen {sqlite3_module.xOpen}</tcl>
<h2>The xOpen Method</h2>

<blockquote><pre>
  int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
</pre></blockquote>

<p>The xOpen method creates a new cursor used for accessing (read and/or
writing) a virtual table.  A successful invocation of this method 
will allocate the memory for the [sqlite3_vtab_cursor] (or a subclass),
initialize the new object, and make *ppCursor point to the new object.
The successful call then returns [SQLITE_OK].








|

|




















|

|

















|

|







850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
each row of the virtual table that it receives. If such a check 
is redundant, the xBestFilter method can suppress that double-check by 
setting aConstraintUsage[].omit.

<tcl>hd_fragment xdisconnect {sqlite3_module.xDisconnect} {xDisconnect}</tcl>
<h2>The xDisconnect Method</h2>

<codeblock>
  int (*xDisconnect)(sqlite3_vtab *pVTab);
</codeblock>

<p>This method releases a connection to a virtual table. 
Only the [sqlite3_vtab] object is destroyed.
The virtual table is not destroyed and any backing store 
associated with the virtual table persists. 

This method undoes the work of [xConnect].

<p>This method is a destructor for a connection to the virtual table.
Contrast this method with [xDestroy].  The xDestroy is a destructor
for the entire virtual table.

<p>The xDisconnect method is required for every virtual table implementation,
though it is acceptable for the xDisconnect and [xDestroy] methods to be
the same function if that makes sense for the particular virtual table.

<tcl>########################################################## xDestroy
hd_fragment {sqlite3_module.xDestroy} {xDestroy}</tcl>
<h2>The xDestroy Method</h2>

<codeblock>
  int (*xDestroy)(sqlite3_vtab *pVTab);
</codeblock>

<p>This method releases a connection to a virtual table, just like 
the [xDisconnect] method, and it also destroys the underlying 
table implementation. This method undoes the work of [xCreate].

<p>The [xDisconnect] method is called whenever a database connection
that uses a virtual table is closed. The xDestroy method is only 
called when a [DROP TABLE] statement is executed against the virtual table.

<p>The xDestroy method is required for every virtual table implementation,
though it is acceptable for the [xDisconnect] and xDestroy methods to be
the same function if that makes sense for the particular virtual table.

<tcl>########################################################## xOpen
hd_fragment xopen {sqlite3_module.xOpen}</tcl>
<h2>The xOpen Method</h2>

<codeblock>
  int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
</codeblock>

<p>The xOpen method creates a new cursor used for accessing (read and/or
writing) a virtual table.  A successful invocation of this method 
will allocate the memory for the [sqlite3_vtab_cursor] (or a subclass),
initialize the new object, and make *ppCursor point to the new object.
The successful call then returns [SQLITE_OK].

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

<p>The xOpen method is required for every virtual table implementation.

<tcl>############################################################### xClose
hd_fragment xclose {sqlite3_module.xClose}</tcl>
<h2>The xClose Method</h2>

<blockquote><pre>
  int (*xClose)(sqlite3_vtab_cursor*);
</pre></blockquote>

<p>The xClose method closes a cursor previously opened by 
[sqlite3_module.xOpen | xOpen]. 
The SQLite core will always call xClose once for each cursor opened 
using xOpen.

<p>This method must release all resources allocated by the
corresponding xOpen call. The routine will not be called again even if it
returns an error.  The SQLite core will not use the
[sqlite3_vtab_cursor] again after it has been closed.

<p>The xClose method is required for every virtual table implementation.

<tcl>############################################################## xEof
hd_fragment xeof {sqlite3_module.xEof} {xEof}</tcl>
<h2>The xEof Method</h2>

<blockquote><pre>
  int (*xEof)(sqlite3_vtab_cursor*);
</pre></blockquote>

<p>The xEof method must return false (zero) if the specified cursor 
currently points to a valid row of data, or true (non-zero) otherwise. 
This method is called by the SQL engine immediately after each 
[xFilter] and [xNext] invocation.

<p>The xEof method is required for every virtual table implementation.

<tcl>############################################################## xFilter
hd_fragment xfilter {sqlite3_module.xFilter} {xFilter}</tcl>
<h2>The xFilter Method</h2>

<blockquote><pre>
  int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
                int argc, sqlite3_value **argv);
</pre></blockquote>

<p>This method begins a search of a virtual table. 
The first argument is a cursor opened by [sqlite3_module.xOpen | xOpen]. 
The next two arguments define a particular search index previously 
chosen by [xBestIndex]. The specific meanings of idxNum and idxStr 
are unimportant as long as xFilter and xBestIndex agree on what 
that meaning is.







|

|

















|

|












|


|







924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

<p>The xOpen method is required for every virtual table implementation.

<tcl>############################################################### xClose
hd_fragment xclose {sqlite3_module.xClose}</tcl>
<h2>The xClose Method</h2>

<codeblock>
  int (*xClose)(sqlite3_vtab_cursor*);
</codeblock>

<p>The xClose method closes a cursor previously opened by 
[sqlite3_module.xOpen | xOpen]. 
The SQLite core will always call xClose once for each cursor opened 
using xOpen.

<p>This method must release all resources allocated by the
corresponding xOpen call. The routine will not be called again even if it
returns an error.  The SQLite core will not use the
[sqlite3_vtab_cursor] again after it has been closed.

<p>The xClose method is required for every virtual table implementation.

<tcl>############################################################## xEof
hd_fragment xeof {sqlite3_module.xEof} {xEof}</tcl>
<h2>The xEof Method</h2>

<codeblock>
  int (*xEof)(sqlite3_vtab_cursor*);
</codeblock>

<p>The xEof method must return false (zero) if the specified cursor 
currently points to a valid row of data, or true (non-zero) otherwise. 
This method is called by the SQL engine immediately after each 
[xFilter] and [xNext] invocation.

<p>The xEof method is required for every virtual table implementation.

<tcl>############################################################## xFilter
hd_fragment xfilter {sqlite3_module.xFilter} {xFilter}</tcl>
<h2>The xFilter Method</h2>

<codeblock>
  int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
                int argc, sqlite3_value **argv);
</codeblock>

<p>This method begins a search of a virtual table. 
The first argument is a cursor opened by [sqlite3_module.xOpen | xOpen]. 
The next two arguments define a particular search index previously 
chosen by [xBestIndex]. The specific meanings of idxNum and idxStr 
are unimportant as long as xFilter and xBestIndex agree on what 
that meaning is.
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

<p>The xFilter method is required for every virtual table implementation.

<tcl>############################################################### xNext
hd_fragment xnext {sqlite3_module.xNext} {xNext}</tcl>
<h2>The xNext Method</h2>

<blockquote><pre>
  int (*xNext)(sqlite3_vtab_cursor*);
</pre></blockquote>

<p>The xNext method advances a [sqlite3_vtab_cursor | virtual table cursor]
to the next row of a result set initiated by [xFilter]. 
If the cursor is already pointing at the last row when this 
routine is called, then the cursor no longer points to valid 
data and a subsequent call to the [xEof] method must return true (non-zero). 
If the cursor is successfully advanced to another row of content, then
subsequent calls to [xEof] must return false (zero).

<p>This method must return [SQLITE_OK] if successful, or an sqlite 
[error code] if an error occurs.

<p>The xNext method is required for every virtual table implementation.

<tcl>############################################################## xColumn
hd_fragment xcolumn {sqlite3_module.xColumn} {xColumn}</tcl>
<h2>The xColumn Method</h2>

<blockquote><pre>
  int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int N);
</pre></blockquote>

<p>The SQLite core invokes this method in order to find the value for 
the N-th column of the current row. N is zero-based so the first column 
is numbered 0. 
The xColumn method may return its result back to SQLite using one of the
following interface:








|

|


















|

|







994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

<p>The xFilter method is required for every virtual table implementation.

<tcl>############################################################### xNext
hd_fragment xnext {sqlite3_module.xNext} {xNext}</tcl>
<h2>The xNext Method</h2>

<codeblock>
  int (*xNext)(sqlite3_vtab_cursor*);
</codeblock>

<p>The xNext method advances a [sqlite3_vtab_cursor | virtual table cursor]
to the next row of a result set initiated by [xFilter]. 
If the cursor is already pointing at the last row when this 
routine is called, then the cursor no longer points to valid 
data and a subsequent call to the [xEof] method must return true (non-zero). 
If the cursor is successfully advanced to another row of content, then
subsequent calls to [xEof] must return false (zero).

<p>This method must return [SQLITE_OK] if successful, or an sqlite 
[error code] if an error occurs.

<p>The xNext method is required for every virtual table implementation.

<tcl>############################################################## xColumn
hd_fragment xcolumn {sqlite3_module.xColumn} {xColumn}</tcl>
<h2>The xColumn Method</h2>

<codeblock>
  int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int N);
</codeblock>

<p>The SQLite core invokes this method in order to find the value for 
the N-th column of the current row. N is zero-based so the first column 
is numbered 0. 
The xColumn method may return its result back to SQLite using one of the
following interface:

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

<p>The xColumn method is required for every virtual table implementation.

<tcl>############################################################# xRowid
hd_fragment xrowid {sqlite3_module.xRowid} {xRowid}</tcl>
<h2>The xRowid Method</h2>

<blockquote><pre>
  int (*xRowid)(sqlite3_vtab_cursor *pCur, sqlite_int64 *pRowid);
</pre></blockquote>

<p>A successful invocation of this method will cause *pRowid to be
filled with the [rowid] of row that the
[sqlite3_vtab_cursor | virtual table cursor] pCur is currently pointing at.
This method returns [SQLITE_OK] on success.
It returns an appropriate [error code] on failure.</p>

<p>The xRowid method is required for every virtual table implementation.

<tcl>############################################################# xUpdate
hd_fragment xupdate {sqlite3_module.xUpdate} {xUpdate}</tcl>
<h2>The xUpdate Method</h2>

<blockquote><pre>
  int (*xUpdate)(
    sqlite3_vtab *pVTab,
    int argc,
    sqlite3_value **argv,
    sqlite_int64 *pRowid
  );
</pre></blockquote>

<p>All changes to a virtual table are made using the xUpdate method.
This one method can be used to insert, delete, or update.

<p>The argc parameter specifies the number of entries in the argv array. 
The value of argc will be 1 for a pure delete operation or N+2 for an insert
or replace or update where N is the number of columns in the table.  







|

|













|






|







1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

<p>The xColumn method is required for every virtual table implementation.

<tcl>############################################################# xRowid
hd_fragment xrowid {sqlite3_module.xRowid} {xRowid}</tcl>
<h2>The xRowid Method</h2>

<codeblock>
  int (*xRowid)(sqlite3_vtab_cursor *pCur, sqlite_int64 *pRowid);
</codeblock>

<p>A successful invocation of this method will cause *pRowid to be
filled with the [rowid] of row that the
[sqlite3_vtab_cursor | virtual table cursor] pCur is currently pointing at.
This method returns [SQLITE_OK] on success.
It returns an appropriate [error code] on failure.</p>

<p>The xRowid method is required for every virtual table implementation.

<tcl>############################################################# xUpdate
hd_fragment xupdate {sqlite3_module.xUpdate} {xUpdate}</tcl>
<h2>The xUpdate Method</h2>

<codeblock>
  int (*xUpdate)(
    sqlite3_vtab *pVTab,
    int argc,
    sqlite3_value **argv,
    sqlite_int64 *pRowid
  );
</codeblock>

<p>All changes to a virtual table are made using the xUpdate method.
This one method can be used to insert, delete, or update.

<p>The argc parameter specifies the number of entries in the argv array. 
The value of argc will be 1 for a pure delete operation or N+2 for an insert
or replace or update where N is the number of columns in the table.  
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
is a NULL pointer, then the virtual table is read-only.


<tcl>########################################################## xFindFunction
hd_fragment xfindfunction {sqlite3_module.xFindFunction} {xFindFunction}</tcl>
<h2>The xFindFunction Method</h2>

<blockquote><pre>
  int (*xFindFunction)(
    sqlite3_vtab *pVtab,
    int nArg,
    const char *zName,
    void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
    void **ppArg
  );
</pre></blockquote>

<p>This method is called during [sqlite3_prepare()] to give the virtual
table implementation an opportunity to overload functions. 
This method may be set to NULL in which case no overloading occurs.

<p>When a function uses a column from a virtual table as its first 
argument, this method is called to see if the virtual table would 







|







|







1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
is a NULL pointer, then the virtual table is read-only.


<tcl>########################################################## xFindFunction
hd_fragment xfindfunction {sqlite3_module.xFindFunction} {xFindFunction}</tcl>
<h2>The xFindFunction Method</h2>

<codeblock>
  int (*xFindFunction)(
    sqlite3_vtab *pVtab,
    int nArg,
    const char *zName,
    void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
    void **ppArg
  );
</codeblock>

<p>This method is called during [sqlite3_prepare()] to give the virtual
table implementation an opportunity to overload functions. 
This method may be set to NULL in which case no overloading occurs.

<p>When a function uses a column from a virtual table as its first 
argument, this method is called to see if the virtual table would 
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
<p>The function pointer returned by this routine must be valid for
the lifetime of the [sqlite3_vtab] object given in the first parameter.

<tcl>############################################################ xBegin
hd_fragment xBegin {sqlite3_module.xBegin} {xBegin}</tcl>
<h2>The xBegin Method</h2>

<blockquote><pre>
  int (*xBegin)(sqlite3_vtab *pVTab);
</pre></blockquote>

<p>This method begins a transaction on a virtual table.
This is method is optional.  The xBegin pointer of [sqlite3_module]
may be NULL.

<p>This method is always followed by one call to either the
[xCommit] or [xRollback] method.  Virtual table transactions do
not nest, so the xBegin method will not be invoked more than once
on a single virtual table
without an intervening call to either [xCommit] or [xRollback].
Multiple calls to other methods can and likely will occur in between
the xBegin and the corresponding [xCommit] or [xRollback].

<tcl>############################################################ xSync
hd_fragment xsync {sqlite3_module.xSync}</tcl>
<h2>The xSync Method</h2>

<blockquote><pre>
  int (*xSync)(sqlite3_vtab *pVTab);
</pre></blockquote>


<p>This method signals the start of a two-phase commit on a virtual
table.
This is method is optional.  The xSync pointer of [sqlite3_module]
may be NULL.

<p>This method is only invoked after call to the [xBegin] method and
prior to an [xCommit] or [xRollback].  In order to implement two-phase
commit, the xSync method on all virtual tables is invoked prior to
invoking the [xCommit] method on any virtual table.  If any of the 
xSync methods fail, the entire transaction is rolled back.

<tcl>########################################################### xCommit
hd_fragment xcommit {sqlite3_module.xCommit} {xCommit}</tcl>
<h2>The xCommit Method</h2>

<blockquote><pre>
  int (*xCommit)(sqlite3_vtab *pVTab);
</pre></blockquote>

<p>This method causes a virtual table transaction to commit.
This is method is optional.  The xCommit pointer of [sqlite3_module]
may be NULL.

<p>A call to this method always follows a prior call to [xBegin] and
[sqlite3_module.xSync|xSync].


<tcl>############################################################## xRollback
hd_fragment xrollback {sqlite3_module.xRollback} {xRollback}</tcl>
<h2>The xRollback Method</h2>

<blockquote><pre>
  int (*xRollback)(sqlite3_vtab *pVTab);
</pre></blockquote>

<p>This method causes a virtual table transaction to rollback.
This is method is optional.  The xRollback pointer of [sqlite3_module]
may be NULL.

<p>A call to this method always follows a prior call to [xBegin].


<tcl>############################################################# xRename
hd_fragment xrename {sqlite3_module.xRename} {xRename}</tcl>
<h2>The xRename Method</h2>

<blockquote><pre>
  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
</pre></blockquote>

<p>This method provides notification that the virtual table implementation
that the virtual table will be given a new name. 
If this method returns [SQLITE_OK] then SQLite renames the table.
If this method returns an [error code] then the renaming is prevented.

<p>The xRename method is required for every virtual table implementation.

<tcl>############################################################# xSavepoint
hd_fragment xsavepoint {sqlite3_module.xSavepoint} {xSavepoint}\
  xRelease xRollbackTo</tcl>
<h2>The xSavepoint, xRelease, and xRollbackTo Methods</h2>

<blockquote><pre>
  int (*xSavepoint)(sqlite3_vtab *pVtab, int);
  int (*xRelease)(sqlite3_vtab *pVtab, int);
  int (*xRollbackTo)(sqlite3_vtab *pVtab, int);
</pre></blockquote>

<p>
These methods provide the virtual table implementation an opportunity to
implement nested transactions.  They are always optional and will only be
called in SQLite [version 3.7.7] and later.
</p>








|

|

















|

|

















|

|













|

|












|

|













|



|







1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
<p>The function pointer returned by this routine must be valid for
the lifetime of the [sqlite3_vtab] object given in the first parameter.

<tcl>############################################################ xBegin
hd_fragment xBegin {sqlite3_module.xBegin} {xBegin}</tcl>
<h2>The xBegin Method</h2>

<codeblock>
  int (*xBegin)(sqlite3_vtab *pVTab);
</codeblock>

<p>This method begins a transaction on a virtual table.
This is method is optional.  The xBegin pointer of [sqlite3_module]
may be NULL.

<p>This method is always followed by one call to either the
[xCommit] or [xRollback] method.  Virtual table transactions do
not nest, so the xBegin method will not be invoked more than once
on a single virtual table
without an intervening call to either [xCommit] or [xRollback].
Multiple calls to other methods can and likely will occur in between
the xBegin and the corresponding [xCommit] or [xRollback].

<tcl>############################################################ xSync
hd_fragment xsync {sqlite3_module.xSync}</tcl>
<h2>The xSync Method</h2>

<codeblock>
  int (*xSync)(sqlite3_vtab *pVTab);
</codeblock>


<p>This method signals the start of a two-phase commit on a virtual
table.
This is method is optional.  The xSync pointer of [sqlite3_module]
may be NULL.

<p>This method is only invoked after call to the [xBegin] method and
prior to an [xCommit] or [xRollback].  In order to implement two-phase
commit, the xSync method on all virtual tables is invoked prior to
invoking the [xCommit] method on any virtual table.  If any of the 
xSync methods fail, the entire transaction is rolled back.

<tcl>########################################################### xCommit
hd_fragment xcommit {sqlite3_module.xCommit} {xCommit}</tcl>
<h2>The xCommit Method</h2>

<codeblock>
  int (*xCommit)(sqlite3_vtab *pVTab);
</codeblock>

<p>This method causes a virtual table transaction to commit.
This is method is optional.  The xCommit pointer of [sqlite3_module]
may be NULL.

<p>A call to this method always follows a prior call to [xBegin] and
[sqlite3_module.xSync|xSync].


<tcl>############################################################## xRollback
hd_fragment xrollback {sqlite3_module.xRollback} {xRollback}</tcl>
<h2>The xRollback Method</h2>

<codeblock>
  int (*xRollback)(sqlite3_vtab *pVTab);
</codeblock>

<p>This method causes a virtual table transaction to rollback.
This is method is optional.  The xRollback pointer of [sqlite3_module]
may be NULL.

<p>A call to this method always follows a prior call to [xBegin].


<tcl>############################################################# xRename
hd_fragment xrename {sqlite3_module.xRename} {xRename}</tcl>
<h2>The xRename Method</h2>

<codeblock>
  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
</codeblock>

<p>This method provides notification that the virtual table implementation
that the virtual table will be given a new name. 
If this method returns [SQLITE_OK] then SQLite renames the table.
If this method returns an [error code] then the renaming is prevented.

<p>The xRename method is required for every virtual table implementation.

<tcl>############################################################# xSavepoint
hd_fragment xsavepoint {sqlite3_module.xSavepoint} {xSavepoint}\
  xRelease xRollbackTo</tcl>
<h2>The xSavepoint, xRelease, and xRollbackTo Methods</h2>

<codeblock>
  int (*xSavepoint)(sqlite3_vtab *pVtab, int);
  int (*xRelease)(sqlite3_vtab *pVtab, int);
  int (*xRollbackTo)(sqlite3_vtab *pVtab, int);
</codeblock>

<p>
These methods provide the virtual table implementation an opportunity to
implement nested transactions.  They are always optional and will only be
called in SQLite [version 3.7.7] and later.
</p>

Changes to search/hdom.tcl.
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  
  # All inline tags.
  variable aInline
  foreach x {
    tt i b big small u
    em strong dfn code samp kbd var cite abbr acronym
    a img object br script map q sub sup span bdo
    input select textarea label button tcl
  } { set aInline($x) 1 }

  variable aContentChecker
  set aContentChecker(p)        HtmlInlineContent
  set aContentChecker(th)       HtmlTableCellContent
  set aContentChecker(td)       HtmlTableCellContent
  set aContentChecker(tr)       HtmlTableRowContent







|







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  
  # All inline tags.
  variable aInline
  foreach x {
    tt i b big small u
    em strong dfn code samp kbd var cite abbr acronym
    a img object br script map q sub sup span bdo
    input select textarea label button tcl yyterm
  } { set aInline($x) 1 }

  variable aContentChecker
  set aContentChecker(p)        HtmlInlineContent
  set aContentChecker(th)       HtmlTableCellContent
  set aContentChecker(td)       HtmlTableCellContent
  set aContentChecker(tr)       HtmlTableRowContent