A Lesson In Low-Defect Software

Or

A Journey From A Quick Hack
To A High-Reliability Database Engine

and how you can use the same techniques to reduce
the number of bugs in your own software projects

D. Richard Hipp
2009-03-10

What Is ?

Public domain Small footprint

Serverless
Embedded

Transactional Single-file Database

ACID

SQL Database Engine

Robust
Stable, cross-platform file format

Zero-administration

Efficient Easy to integrate

SQL?
What's That?

e “Structured Query Langauge”

* A high-level language for interacting with
databases

 The most widely known programming language
in the world.

Why SQLite?

PostgreSQL
Apache Derby ","
 IE77 DB2.

¢ N

ORACLE Mysal

database
engine

. Microsoft
Informix SQL Server

e Serverless

e Zero-administration
e Portable file format
e Small footprint
 Public domain

» Serverless -
e Zero-administration

e Portable file format

e Small footprint

 Public domain

Client [Client }

(Client Client]

w
Database
Files on
Disk
w

Advantages of Serverless

No background server process

No configuration files

No IPC

No security issues

Nothing to start, shutdown, or reboot

Nothing to go wrong or need tending to

Advantages of Serverless

ackground server process
 No confl
 No IPC
 No security issues

* Nothing to start, shutdown, orgboot

* Nothing to go wrong or need tendin

Zero-administration

e Serverless

e Zero-administration
e Portable file format
e Small footprint
 Public domain

Database Administrators

TO ATMOSFHERE

J_, BCWF-FFT ZCWF-V-21 - TOWF-T-14
.
oAT rc
r
ECTF-W-22 El=ats] o
AT] {2} {=} I I—' — ACCUMULATOR
ECWF-6FT ECWPATLE
THAFT SEAL
OIL DRIF
EOQOTTLE
2EF-Y -1, COMFRESSOR 2
[% e I BCTAF- V-3 }{ZDW'P-V-:.S
FOUF-V-11
—
BCF-V-ES i
OIL FRESE
it FTF--10 KEG VIV
SUT-FET '
ZOUF-V-26
wlu] @ L
+— BSWE-3FT =] &
e -+
LW Lo SUFV-EEOE l—" et
DHYR ? d ez -
EX
F W w
TU-F-0554
FCTIF-V-43 OIL SUMF
2O F-V-d5 S5 CONDENSER CWFCD-3
' SW-EsEA g =) 1 ——T Lécc?jfzn
ECF-T-dd SU-F-054A
¥ o V3L om
i LH'@ FUMF
2 F- FURGE o ZCWF-
- COMDEMSER d :
b E Vo SUS-BR1E ECUF-T-2
2CTF-2FT _@
SW-V-EELA YARIRELE | =
ORIFICE il %
COMT VLY
e T
X ECWF-V-di
TARIAFLE —% =i
ORIFIGE ry A
CONT VLY II -
—|£ -
ot A1 ¥)
- e
2CWFAPT
E x 5
XZG‘A.I'.P- v % v
- - = ZCUWF-V-24
CUWE-Y-P1A WS vexe d e
-ain g M- W64 il
o
YWY crrae
£
ek T
EVAFORATOR W -FRi CW-CD-3
-CW FUMF £
W CWS-F-5h
RN TS Wz s
CUE-V-FEA iy v--ﬁn SISV -T0R
BCTF-V-F
[Es]
EVAFORATOR
OIL EDUCTOR
ECWF-V-33

AMEz
d-Zz0-0-E

R |

9 (annot connected to database

1]

Client

Database
Files on
Disk
w

SQLite 1.0
2000-08-17

Another way to think of
SQLite in relation to

traditional SQL database
engines....

Photos

Extras
Settings
Shuffle Songs

ORACLE

is to as

SQLite =

7,

MENU

« SQLite does not compete with Oracle

« SQLite does not compete with Oracle
« SQLite competes with fopen()

e Serverless

e Zero-administration
e Portable file format
e Small footprint
 Public domain

Portable File Format

* A database is a single ordinary disk file

* No special naming conventions or required file
suffixes

o Cross-platform: big/little-endian and 32/64-bit
« Backwards compatible through 3.0.0
 Promise to keep it compatible moving forward

* Not tied to any particular programming
language.

=]
=
=]
=]
=
=]
- Sanisk
> 512u:
=]

e Serverless

e Zero-administration
e Portable file format
e Small footprint
 Public domain

Small Footprint

gcc -Os -DSQLITE_THREADSAFE=0

272 KiB

gce -03 -DSQLITE_ENABLE_FTS3=1 -DSQLITE_ENABLE_RTREE=1

739 KiB

As of 2009-02-17

Single Source Code File

* The "amalgamation” source code file: sqlite3.c
* About 60,000 lines of ANSI C code

« 3.5 MB

* No other library dependencies on than standard
library routines:

- memcpy(), memset(), malloc(), free(), etc
* Very simple to add to a larger C program

drhiel 1y Fos=ilimldsrcr s

add,c content, c makeheaders html schema, timeline,c
admin,c db,c makemake, tcl setup.,c tkt.,c
allrepo,c delta,c manifest.c setup,c.bul thisetup.c
bag.c deltacmd.c md5, tranzlate,c
blaob,c descendants.c merged.c zhu undo,
branch.c diff.c MErge, ; sqlited,c update.c
browse,c diffeomd,c mk.index,c sqlited.h url.,c

cgi.c doc.c My_page.c user,c
checkin,c encode, c FIAME , C werify, o
checkout,c file.c pivot,c WERESTOM
clearszign,c http.c pPOUELIE, while,o
clone,c info,c printf,c taguiew,c wiki,c
comformat,c login,c rebuild,c th,c wikifaormat,c
config,h main,c report,c th.h winhttp.c
configure,c main,mk FEs, o th_lang,c wfer,c

conztruct,c makeheaders.c ratats,.c th_main,c zip.c
drhelly:”/fos=il/ml src> (]

e Serverless

e Zero-administration
e Portable file format
e Small footprint
 Public domain

Other Features Of SQLite

App-defined functions « Full text search
App-defined collating « R-Trees
sequences ATTACH DATABASE

UTF8 or UTF16 . Gigibyte size BLOBs
Robust against power and strings

0SS * Robust against I/0O

Robust against errors
malloc() failures

o Zero-malloc option

Adobe Photoshop Lightroom

866 = Adobe Lightroom Beta - Develop (=)

Develop

Show Clipping

Basic

Color
White Balance Custom ~
Temperature === _=—— 6550
Tint
Saturation

Exposure
Blacks

Brightness

Contrast

Tone Curve

Highlights
Compression -_— ——————

Luminance e

Brightness

Contrast

Adobe Reader

Doguments

Full Screen
General

Page Display
3D
Accessibility
Forms

Identity
International
Intermet
JavaScript
Measuring (2D)
Measuring (3D)
Meeting
Multimadia
Multimedia Trust
Online Semvices
Reading
Reviewing
Search
Security
Sendhdail

w30°C @ L()@f) . SunFeb24. 540FM

. Preferences

oo W powee

lusrilipisesmonkey-1.1.2

D &

Mozilla Firefox

Google Android

IPhone

IPod & iTunes

AT

o Applications
i Eadio

I iTures Stoie
o Purchased

Datwi

TV
E . Steve's iPhoss
AT
e Pty Shafla

B

Fhp Rerams Fadls B

Il

i <
Sheep Through the Stalk Saprriero Erothee

15, o E & L gkl il

IStuff

Blackberry

Etack&erry

("@

>

Palm webOS

Skype

Sony Playstation

... and so forth

Various Programming Languages

@ python’

ActiveState

The Dynamic Languages Company

@ REALDbasic q ADOBE AIR

SQLite.org

The Company

The SQLite Development Team

symbian A\

Adobe

mozilla Bloomberg

« Guarantees of project continuity

* Enterprise-level technical support
* Highest priority bug fixes

« Community Outreach

symbian A\

Adobe

mozilla Bloomberg

Keep It Reliable And Bug-Free!
- e i

* Enterprise-level technical support
» Highest priority bug fixes
« Community Outreach

The SQLite Journey

« SQLite 1.0 started out as a quick hack

- To solve a single problem in a single application
- Used only in a tightly controlled environment

e |t has evolved into highly reliable and low-defect
software

- The most widely used SQL database engine in the
world

- Hundreds of millions of deployments
- Any defect has huge impact

« How did we achieve this?

First, some terminology:

Safety # Reliability

Reliability: no failures

Safety: no harm

Volvo: Safe but not Reliable

Nitroglycerin: Reliable but not Safe

Safety # Reliability

Safe _ Reliable
Software Software

Safe - Extrgmely
= Reliable
Software

Software

Safe Programming Languages?

Safe Programming Languages?

* Prevent buffer overruns
* Help prevent memory leaks
* Trap exceptions

Safe Programming Languages?

Prevent buffer overruns
Help prevent memory leaks
Trap exceptions

But....

They can still get the wrong answer

Safe Programming Languages?

A \®\

Less likely to have
a zero-day exploit

Less likely to cause
Injury or death

What Programming Languages
Does The World's Most Reliable
Software Use?

What Programming Languages
Does The World's Most Reliable
Software Use?

Hint: The answer is not any of the following:

(e @
P [G M |crosoft ! @ \| %_(g 5
python - Java

Space Shuttle: HAL/S

Avionics: Ada or C

DO-178B and ED-12B

o |t's the development process not the
programming language that counts.

o Captures best practices
* Required for safety-critical software by:

DO-178B and ED-12B

e 21 “outputs” (mostly reports)
e 66 “objectives’

Reports &
Documentation ~ ~><

Code —

Planning Documents

* Plan for Software Aspects of Certification
o Software Development Plan

« Software Verification Plan

« Software Configuration Management Plan
« Software Quality Assurance Plan

o Software Requirements Standards

o Software Design Standards

o Software Coding Standards

Verification Documents

« Software Verifications Cases & Procedures

« Software Verification Results

« Software Configuration Management Records
o Software Configuration Index

 Bug Reports

o Software Quality Assurance Records

« Software Conformity Review

o Software Accomplishment Summary

Requirements Stack

System Requirements

Y

High Level Requirements

Y

Software Architecture

Y

Low Level Requirements

Y

Source Code

Y

Object Code

4 Sample Objectives out of 66

* High-level requirements comply with system
requirements (with independence)

« High-level requirement algorithms are accurate
(with independence)

e Source code it traceable to low-level
requirements

« Modified Condition/Decision test coverage is
achieved (with independence)

End result of DO-178B/ED-12B....

« Software that has very few defects

End result of DO-178B/ED-12B....

« Software that has very few defects

Also...

« Expensive software

o Software that takes a long time to bring to
market

« Boring software

The Essence of DO-178B

« Use your whole brain
« Full coverage testing
« Good configuration management

3 Steps Toward Low-Defect Code

« Use your whole brain
« Full coverage testing
« Good configuration management

4
3 Steps Toward Low-Defect Code

Use your whole brain

Full coverage testing

Good configuration management
Don't just fix bugs — fix your process

N

Not in DO-178B, but ought to be

4 Steps Toward Low-Defect Code

Use your whole brain

Full coverage testing
Good configuration management
Don't just fix bugs — fix your process

Use Your Whole Brain

Math side Language side

Use Your Whole Brain

Code side Comment side

Why Put Comments In Code?

1) Make the code easier to read
2) Engage the linguistic side of your brain

Code without Comments?

* Only uses have your
brain.

* In English we call this
being a “half-wit”.

Why Put Comments In Code?

1) Make the code easier to read

2) Engage the timguistic-side-et\rourbrain—

Catch and fix code defects early

Hey, Carl, can you look at this problem with me. I've been working on this for
hours. You see the X variable clearly cannot be less than zero because Y
has to be more than 20.... Oh wait. That's not right. OK, I've got it now.
Thanks, Carl!

Why Put Comments In Code?

1) Make the code easier to read
2) Engage the linguistic side of your brain

Common Fallacy:
“Well-written code needs no comments”

 |gnores reason (2) for writing comments
e No code is ever that well written

What To Comment

Each function or procedure and major code
blocks

- Explain what it computes, not how it works
- Preconditions, postconditions, invariants

Each variable, constant, and type declaration

- Explain what the variable or type represents
- Constraints

Comments stand in for low-level requirements

Be succinct — avoid fancy formatting and
boilerplate

Mother-tongue Or English?

* English-language comments are best for
readabillity.

* Mother-tongue comments are best for catching
bugs.

 Why not do both?

Code :: Comment
53813 :: 27695

* As of 2009-03-03 18:20 EST

5@(—5‘&2/?7

Code :: Comment
2 1

Express ldeas In Different Ways

ALTER TABLE fullname RENAME TO id.
ALTER TABLE fullname ADD column opt column def.

stmt ::
stmt ::

O—Il-{_ ALTER _)—I-(_ TABLE _)—DT(database-name)—»-Ojr—r(table-name Jj

-

RENAME)-»(TO }»{(new-table-name)jw
(ADD) COLUMN }T.- column-def
-

Use Multiple Brains

o Structured Walk-Throughs & Inspections

- Finds errors that a single programmer will miss
- Keeps the code uniform

- Helps entire team stay up-to-date

— Training for junior team members

- Only works if down well

Use Multiple Brains

e Pair Programming

- Two people working together on the same
workstation

* One person works the keyboard
* The other person reads and checks for mistakes

- Builds a sense of community ownership

- Promotes uniformity of coding and commenting
style

- Requires that programmers be colocated

- Requires interpersonal skills (which many
programmers lack)

Use Multiple Brains

e Open-Source

- Encourage volunteer code reviewers
- It helps if your code has good (English) comments!
- In practice, very few bugs are ever found this way

(5 B B SQLite CVSTrac L

{@E @ @ @ (n hrep:/jwww.sglite.org/cvstrac /tkiview?tn=3699 g v\‘l = *./Goc-gle Q:l

News > Projects~ Biz~ Jesus~* Memory~

: 7=
SQ L‘{-Q (:t’/"f Small. Fast. Reliable.

Choose any three.

ABOUT SITEMAP DOCUMENTATION DOWNLOAD LICENSE MNEWS DEVELOPERS SUPPORT

sqlite - Ticket #3699 [Browse] [Home] [Logout] [Milestone] [Reports])
Logged in as drh Search] [Setup] [Ticket] [Timeline] [Users]| |

[Attach] [Edit] [Hif¥SHg] |

Ticket 3699: Clarify parameter documentation for
pager_playback_one_page in pager.c

at line 1470 the parameter pOffset is documentated

ie4 *pOffset, /* Offset of record to playback */

Since this value is increased to the start of the next page in the journal, a clearer
comment would be something like the following

ied *pOffset, /* IN: Offset of record to playback */
/* OUT: Start of next page in journal =*/

Remarks: [Add remarks]
Properties:
Type: doc Version: 1.570
Status: active Created: 2009-Mar-03 19:28
Severity: 5 Last Change: 2009-Mar-03 19:28
Priority: 4 Subsystem: back
Assigned To: Derived From:
Creator: anonymous Contact: St e

alel

Resolution: Pending Likelihood: Universal

4 Steps Toward Low-Defect Code

Use your whole brain

Full coverage testing

Good configuration management
Don't just fix bugs — fix your process

Full Coverage Testing

« Automated tests that exercise all features of the
program
— All entry points
— All subroutines
— All branches and conditions
- All cases

— All boundary values
* The single best way to find bugs

 DO-178B places special emphasis on testing

If it has not been tested
then 1t does not work.

Fly what you test
and test what you fly.

Statement Coverage:

Tests cause every line of code to run at least once.

Branch Coverage:

Tests cause every machine-language branch operation
to evaluate to both TRUE and FALSE at least once.

int exampleFunction(int a, int b) {

int ans = 0;

if(a>b && a<2*b) {
ans = a;

}else{
ans = b;

}

return ans;

int exampleFunction(int a, int b) {

int ans = 0;

if(a>b && a<2*b) {
ans = a;

}else({
ans = b;

}

return ans;

Test 1. exampleFunction(1,1)

5 out of 6 statements: 83.33% statement coverage

int exampleFunction(int a, int b) {

int ans = 0;

if(a>b && a<2*b) {
ans = a;

}else({
ans = b;

}

return ans;

Test 1. exampleFunction(1,1)
Test 2: exampleFunction(3,2)

6 out of 6 statements: 100% statement coverage

int exampleFunction(int a, int b) {

int ans = 0;

if(a>b && a<2*b) {
ans = a;

}else({
ans = b;

}

return ans;

Test 1. exampleFunction(1,1)
Test 2: exampleFunction(3,2)

Branches:
a>b Taken on test 2
l(a>b) Taken on test 1
a<2*b Taken on test 2

l(a<2*b) Never taken

3 out of 4 branches: 75% branch coverage

int exampleFunction(int a, int b) {

int ans = 0;

if(a>b && a<2*b) {
ans = a;

}else({
ans = b;

}

return ans;

Test 1. exampleFunction(1,1)
Test 2: exampleFunction(3,2)
Test 3: exampleFunction(4,2)

Branches:
a>b Taken on test 2
l(a>b) Taken on test 1
a<2*b Taken on test 2

l(a<2*b) Taken on test 3

4 out of 4 branches: 100% branch coverage

Measuring Statement Coverage

gcc -g -fprofile-arcs -ftest-coverage
./a.out

gcov -c exl.c

cat exl.c.gcov

Measuring Statement Coverage

1: l:int exampleFunction(int a, int b){
1: 2 int ans = 0;
1: 3 1f(a>b && a<2*b){
#H#AH 4 ans = a;
- 5 telse{
1: 6 ans = b;
- 7 }
1: 8: return ans;
- 9:}
* X Test 1 only

Line number in source file

|

Number of times this line was evaluated

Measuring Statement Coverage

2: l:int exampleFunction(int a, int b){

2: 2: int ans = 0;

2: 3 1f(a>b && a<2*b){

1: 4 ans = a;

- 5 telse{

1: 6 ans = b;

- 7 }

2: 8: return ans;

- 9:}

* X Tests 1 & 2

Line number in source file

|

Number of times this line was evaluated

Measuring Branch Coverage

gcc -g -fprofile-arcs -ftest-coverage
./a.out

gcov -b -c exl.c

cat exlRc.gcov

The only change

Measuring Branch Coverage

1:

1:

1:

branch 0
branch 1
branch 2
branch 3
HHAH#H -

I~ 1 |
(X} (X] (X} [X} (X}

l:int exampleFunction(int a, int b){

2:
3:

taken
taken
never
never

O 00 JO U

int ans = 0;

1f(a>b && a<2*b){

0 (fallthrough) e—

Branch never taken

1
executed
executed
ans = a;
telse/{
ans = b;
}
return ans;
}

Condition never evaluated

Test 1 only

Measuring Branch Coverage

branch
branch
branch
branch

I N1 R I RPWNEFEFODNDDNDDN
o0 00 00 o000 o0 oo o0 00 oo

l:int exampleFunction(int a, int b){

2:
3:

taken
taken
taken
taken

O 00 JO U

R N

int ans

1f(a>b && a<2*b){
(fallthrough)

(fallthrough)

<

ans
telse/{

ans
}

return

Branch never taken

ans; Tests 1 & 2

Measuring Branch Coverage

branch
branch
branch
branch

Il WL NI RPWNEFEFOWWW

taken
taken
taken
taken

O 00 JO U

:int exampl

eFunction(int a, int b){

int ans = 0;
if(a>b && a<2*b){
2 (fallthrough
1 () All branches taken
1 (fallthrough) at least once:
1 100% coverage!
ans = aj;
}else{
ans = b;
}
return ans; Tests 1.2, & 3
}

« Compile for coverage testing

 Verify same results as before

Fly what you test!

Run tests
Verify correct result
Recompile as delivered

Rerun tests

\

7
~

> Not what you fly

> What you fly

Fly what you test!

« Compile for coverage testing

° Not what you fl
Run teStS > Ve?lidvgtes i//oZr t)ésts

» Verify correct result p

« Recompile as delivered h

* Rerun tests > What you fly

Validates your product
 Verify same results as before

 Measuring coverage validates
your tests, not your product

Defensive Programming

Will never be larger than 0x40000010

\

void *sqglite3InternalMalloc(int nBytes){
if(nBytes<=0){
return O0;
telse({
return sqglite3LowLevelMalloc(nBytes);
}

}

» Unable to handle nBytes>0x7FFFFFFO
» Will return incorrectly sized buffer if nBytes is too large.
» Possible memory overrun exploit

Defensive Programming

void *sqglite3InternalMalloc(int nBytes){
if(nBytes<=0 || nBytes>=0x7fffff00){
return O0;
telse({
return sqgqlite3LgwLevelMalloc(nBytes);

}
}

* Prevents any possibility of an exploit
» But — how can we test it?

Defensive Programming

void *sqglite3InternalMalloc(int nBytes){
if(nBytes<=0 || NEVER(nBytes>=0x7fffff00)){
return 0; T4
telse({
return sqgqlite3LgwLevelMalloc(nBytes);
}

}

« NEVER() macro around conditions that are always FALSE
« ALWAYS() macro around conditions that are always TRUE

ALWAYS() and NEVER()

#if defined(SQLITE COVERAGE TEST)
define ALWAYS(X) 1
define NEVER(X) 0

#elif defined(SQLITE DEBUG)

define ALWAYS(X) ((X)?l:sglite3Panic())
define NEVER(X) ((X)?sglite3Panic():0)
#else
define ALWAYS(X) (X) What you fly:
, <
A pacrine NEVER(X) (X) ALWAYS and NEVER are

pass-throughs.

ALWAYS() and NEVER()

#if defined(SQLITE COVERAGE TEST)

define ALWAYS (X 1
define NEVER(;()) 0 \ For test coverage measurement:

Unconditional so that there are no
untested branches
#elif defined(SQLITE DEBUG)

define ALWAYS(X) ((X)?l:sglite3Panic())
define NEVER(X) ((X)?sglite3Panic():0)
#else

define ALWAYS(X) (X)

define NEVER(X) (X)

#endif

ALWAYS() and NEVER()

#if defined(SQLITE COVERAGE TEST)
define ALWAYS(X) 1
define NEVER(X) 0

#elif defined(SQLITE DEBUG)
define ALWAYS(X) ((X)?l:sglite3Panic())
define NEVER(X) ((X)?sglite3Panic():0)

#else
define ALWAYS(X) (X)
define NEVER(X) (X)
#endif

During development:
Panic if ALWAYS() is false or
if NEVER() is true.

Testing In

 99% Statement Coverage
* 95% Branch Coverage

e Goal: 100% branch coverage by Dec 2009

« Striving for 100% test coverage has been our
most effective method for finding bugs.

Testing In

o “testfixture”

— Written in C + TCL
- Approximately 1 million test cases

° “th 3”

— Pure C code (for embedded platforms)
— Approximately 2.3 million test cases

» “sqllogictest”
- Compare SQLite against MySQL, PostgreSQL, etc
- Approximately 5.8 million test cases

Tcl/Tk in Google Summer of Code

slides available at http://purl.org/NET/gsoc2009

* Google Summer of Code (GSoC)
— Google pay 4500USD each qualified student

for coding for 12 weeks for approved open source project.

* Tcl/Tk — dynamic (scripting) language
also known as “The C Library” (high quality C source code)
http://www.tcl.tk (official) or http://tkosiak.blogspot.com (po polsku).

* D. Richard Hipp is Tcl Core Team Member “Emeriti” ©
* 9/9 students successfully completed GSoC 2008

and get paid with Tcl/Tk community
(note PHP also have 9 slots in GSoC 2008)

I:l DAC

SYSTEM

Why to apply to Tcl/Tk GSoC?

Tcl is easy to learn but very productive language.
Used in GCC/GDB, SQLite and Cisco, Intel, Mentor, IBM, Motorola ...

Tcl/Tk GSoC is about coding in C and/or Tcl

and is not crowded with students applications.

4/9 Tcl/Tk GSoC 2008 students were from Poland !!!

(please contact them about it: ania.pawelczyk@gmail.com,
blicharski@gmail.com, daniel.m.hans@gmail.com, Irem@go2.pl)
Tcl Community is known to be extremely friendly.

In Poland you have local Polish speaking experts willing to help:
o Tomasz Kosiak http://tkosiak.blogspot.com or http://wiki.tcl.tk/17873
o Wojciech Kocjan http://kocjan.org or http://wiki.tcl.tk/3684
o Pawet Salawa http://sqglitestudio.one.pl or http://wiki.tcl.tk/12959

For more details or help contact Tomasz Kosiak
(tkosiak@gmail.com /+48 503 021 130) who helps to organize Tcl/Tk GSoC.

Testing In

o “testfixture”

— Written in C + TCL
- Approximately 1 million test cases

° “th 3”

— Pure C code (for embedded platforms)
— Approximately 2.3 million test cases

» “sqllogictest”
- Compare SQLite against MySQL, PostgreSQL, etc
- Approximately 5.8 million test cases

Testing In

Code :: Test Data
1::716

Testing In

Crash testing

- Simulate recovery from power loss
/O Error and Out-of-memory testing
- Recovery from system errors.

* "fuzz” testing

- Test response to random inputs
valgrind

Fuzz Testing

SELECT NOT -2147483647 IN (SELECT DISTINCT 2147483649 FROM (SELECT DISTINCT EXISTS (SELECT ALL
'injection' FROM (SELECT DISTINCT 1, 'experiments’, 0) UNION ALL SELECT DISTINCT NULL) NOT IN

(SELECT EXISTS (SELECT ALL 'fault') IN (SELECT DISTINCT 'The") IN (SELECT DISTINCT 0 ORDER BY
'‘experiments' ASC, -2147483649 DESC)) IN (SELECT EXISTS (SELECT 'experiments') FROM (SELECT

DISTINCT NULL, -2147483647)) IN (SELECT EXISTS (SELECT DISTINCT 56.1 ORDER BY -456 ASC) ORDER

BY (SELECT ffirst') DESC), CAST((SELECT (SELECT 0) IN (SELECT DISTINCT 'injection') IN (SELECT

ALL 'The') NOT IN (SELECT DISTINCT 'firstt ORDER BY 2147483648 LIMIT 123456789.1234567899

OFFSET 2147483648)) AS blob) FROM (SELECT 'The', -1 UNION ALL SELECT 456, CAST(56.1 AS text)

ORDER BY CAST(-2147483649 AS real) ASC)))

06 Valgrind Home

@ (4 http:/valgrind.org/ Y- valgrind Q)

Mews = Projects~ Biz= Jesus~ Memory~

Information

About

News

Tool Suite
Supported Platforms
The Developers

Source Code

Current Releases
Release Archive
Front Ends / GUls
Variants / Patches
Code Repository

Documentation

Table of Contents
Quick Start

FAQ

User Manual
Download Manual
Research Papers

o g Eare,,
Fads

Valgrind is an award-winning instrumentation framework for building dynamic analysis toals.
There are Valgrind tools that can automatically detect many memory management and

Books threading bugs, and profile your programs in detail. You can also use Valgrind to build new
Contact tools.
g'lailir&g Lisrtls The Valgrind distribution currently includes six production-guality tools: a memory error

ug Reporis detector, two thread error detectors, a cache and branch-prediction profiler, a call-graph
Peature Requests enerating cache profiler, and a heap profiler. It also includes one experimental tool, which
Contact Summary g g P ’ PP ’ P '

detects out of bounds reads and writes of stack, global and heap arrays. It runs on the

Commercial Support - -) . ,
following platforms: X86/Linux, AMD6&4/Linux, PPC32/Linux, PPCE4/Linux.

How to Help
Contributing Valgrind is Open Source / Free Software, and is freely available under the GNU General
Project Suggestions Public License, version 2.
Gallery
Projects / Users
Press [Media Recent News
Awards
Surveys + June 17, 2008: We have a new books page.
Artwork
+ 28 February 2009: valgrind-3.4.1, for x86/Linux, AMD&4/Linux, PPC32/Linux and
PPCB4/Linux, is available. (release notes).

"y

Testing In

* Most bugs are found internally — before release
e External bugs are mostly build problems
 We do not do “alpha” or "beta” releases

— All releases are production ready
« Very, very few “wrong answers” found by users

4 Steps Toward Low-Defect Code

Use your whole brain
Full coverage testing

Good configuration management

Don't just fix bugs — fix your process

Configuration Management

 |dentification

« Access Control

* Archival Storage

e Reporting and Auditing
« Collaboration

» Defect Tracking

Configuration Management

* |dentification "\ Version Control System

° ACCGSS Control > CVS, Subversion, Git, Mercurial,

Monotone, Fossil, Bitkeeper,
Perforce, ClearCase

* Archival Storage _
e Reporting and Auditing
« Collaboration

» Defect Tracking

Configuration Management

 |dentification

* Access Control

* Archival Storage

e Reporting and Auditing)
e Collaboration \.. Various ad hoc add-ons.

» Defect Tracking _

Configuration Management

e |dentification
e Access Control

* Archival Storage

Very, very important yet
commonly ignored!

 Reporting and Auditing <——
« Collaboration
» Defect Tracking

Configuration Management

 |dentification

« Access Control

* Archival Storage

e Reporting and Auditing <—— “situational awareness”
« Collaboration

» Defect Tracking

Situational Awareness

Understanding what is happening around you

Recognizing how events and your own actions
will impact goals and objectives

Lack of situational awareness is the main cause
of human-error accidents

Important in work domains where information
flow is high and poor decisions may have
serious consequences

Situational Awareness in CM

 What has changed last N days?

o« W
o« W

nat has changed between release X and Y?

nat changed in module M between dates P
and Q?

 Who made the changes and why?

nen and w
nen and w

ny was line of code W inserted?

ny was subroutine U last modified?

nat bugs are still outstanding?

nat changes were made to address bug Z7?

Open-Source Reporting Systems

e CVSTrac

- http://www.cvstrac.org/
- CVS, Subversion, GIT

e Trac

- http://trac.edgewall.org/
— Subversion, GIT, Perforce, Mercurial, Darcs, Bazaar

e Fossil

- http://www.fossil-scm.org/
- Distributed version control with reporting built in

http://trac.edgewall.org/
http://www.fossil-scm.org/

Open-Source Reporting Systems

e CVSTrac N Used by SQLite
_ http /I\www.cvstrac. org / X Essential to the success of SQLite
_ CVS, SU bve rsion, G |-|-) I;Iyesvtvefr)'ggjects should consider newer
* Trac

- http://trac.edgewall.org/
— Subversion, GIT, Perforce, Mercurial, Darcs, Bazaar

e Fossil

- http://www.fossil-scm.org/
- Distributed version control with reporting built in

http://trac.edgewall.org/
http://www.fossil-scm.org/

77
SQL‘tQ (/, F Small. Fast. Reliable.

Choose any three.

ABouT SITEMAP DOCUMENTATION DowNLOAD LICENSE NEwS DEVELOPERS SUPPORT

sqlite - Timeline [Browse] [Home] [Logout] [Milestone] [Reports]
Logged in as drh [Search] [Setup] [Ticket] [Users] [Wiki]
RSS

Tuesday, 2009-Mar-03

04:45 > Unassign ticket #2698 from paul. (By danielk1977)
04:45 > Changes to ticket #3698 (By danielk1977)

04:44 +/ Closed ticket #3598, was active. (By danielk1977)
04:43 > Changes to ticket #3698 (By danielk1977)

Monday, 2009-Mar-02

22:17 =» Create ticket #3698: error to create more the one table (By anonymous)

17:18 « Check-in [6334] : Converted EXPR_*SIZE macros to use offsetof() to avoid MSVC
compiler warnings. (By shane)

14:24 < Check-in [6333] : Fix the SQLITE_ENABLE_UPDATE_DELETE_LIMIT option for the
new Expr compression logic of check-in [6305] . Bug discovered during regression
testing. (By drh)

03:40 > Changes to ticket #3689 (By shane)

01:22 e Check-in [6332] : Fix a bug in the GROUP BY alias name resolution. The bug was

by check-in [6305] . Discovered by regression test on 64-bit linux. Test cases
added so that the problems is detected on 32-bit systems. (By drh)

Sunday, 2009-Mar-01

22:29 +/ Fixed ticket #3696, was active. Plus other changes. (By drh)

22:29 s« Check-in [6331] : Suppress some compiler warnings (where possible). Ticket
#3696. (By drh)

19:42 e Check-in [6330] : Fix a critical bug in the VDBE opcode array resizer introduced by
check-in [6307] . Bug detected by regression testing. (By drh)

PR,

Check-in Number: 6331
Date: 2009-Mar-01 22:29:20 (local)
2009-Mar-01 22:29:20 (UTC)
User:drh
Branch:

Comment: Suppress some compiler warnings (where possible). Ticket #3696, (edit)

Tickets: #2696 compile time warning, solaris
Inspections:

Files: sqlite/src/os unix.c 1.241 -> 1.
sqglite/src/util.c 1.248 -> 1.

242 4 inserted, 2 deleted
249 5 inserted, 5 deleted

sqglite/src/os_unix.c 1.241 -> 1.242

--— 03_unix.e 2009/02/09 17:34:07 1.241

4+++ os_unix.c 2009/03/01 22:29:20 1.242

BE -43,7 +43,7 @@

* * Definitions of sglited_vifs objects for all locking methods

* plus implementations of sglite3 _os_init() and sglite3 os_end().

* &

-** 27d: os_unix.c,v 1.241 2009/02/09 17:34:07 drh Exp $
++*% 8T7d: os_unix.c,v 1.242 2009/03/01 22:29:20 drh Exp $

*f
#include "sgliteInt.h"
#if SQLITE OS5 _UNIX f* This file is used on unix only */

@@ =3984,16 +3984,18 @E
sp.tv_sec = microseconds / 1000000;
sp.tv_nsec = (microseconds % 1000000) * 1000;
nanosleep(&sp, NWULL);:

+ UNUSED PARAMETER(NotUsed);
return microseconds;

#elif defined(HAVE USLEEP) && HAVE USLEEP
usleep(microseconds) ;

+ UNUSED PARAMETER(NotUsed);
return microseconds;

#else
int seconds = (microseconds+999999)/1000000;
gleep(seconds);

+ UNUSED PARAMETER (NotUsed);
return seconds*1000000;

#Fendif

- UNUSED PARAMETER|NotUsed);

}

I *

sqlite/src/util.c 1.248 -> 1.249

e

17 - Choose any three.

ABOUT SITEMAP DOCUMENTATION DowNLOAD LICENSE NEwS DEVELOPERS SUPPORT

2009-Mar-01 22:29 » Check-in [6331] : Suppress some compiler warnings (where possible). Ticket
#3696, (By drh)

sqlite - Ticket #3696 [Browse] [Home] [Logout] [Milestone] [Reports]
Logged in as drh [Search] [Setup] [Ticket] [Timeline] [Users
[Attach] [Edit] [Hi¥Hi]
Ticket 3696: compile time warning, solaris
/libtool --mode=compile --tag=CC cc ~I/home/rupert/build.5.8-sparc/opt/osw/include -I/opt/ocsw/incl
libtocl: compile: ce -I/home/rupert/build.5.8-sparc/opt/esw/include -I/opt/csw/include -x03 -xtarge
"sglite3.c", line 19786: warning: integer overflow detected: op "<<"
"sglite3.c”, line 19803: warning: integer overflow detected: op "<<"
"sglite3.c", line 1989B: warning: integer overflow detected: op "<<"
"sglite3.c”, line 19899%: warning: integer overflow detected: op "<<"
"sglite3.c", line 26130: warning: statement not reached
"sglite3.c", line 3326l: warning: statement not reached
Remarks: [Add remarks]
Properties:
Type: warn Version: 3.6.11
Status: fixed Created: 2009-Mar-01 17:29
Severity: 4 Last Change: 2009-Mar-01 22:29
Priority: 3 Subsystem:
Assigned To: Derived From:
Creator: anonymous Contact: P 20 LS w0
Resolution: Fixed Likelihood: Universal
When_Introduced: Detected_By: other
Related Check-ins:
i
b

Are you already using a version control system?

Good! Be sure to add reporting and auditing software.
Maintain situational awareness!

Are you not currently using a version control?

» Go to http://www.fossil-scm.org/
» Download a pre-compiled binary for fossil
 Start using it!

http://www.fossil-scm.org/

e NéRa]

—4—‘ D > @ @ (,_, htep: / fwww.fossil-scm.org/ > v_‘\) . ' Google Q_“)

News = Projects > Biz= Jesus~™ Memory~

Fossil Documentation

Home Leaves Timeline Branches Tags Tickets Wiki Login

Not logged in

Fossil: Distributed Revision Control, Wiki, and
Bug-Tracking

Fossil is a distributed software version control svstem that includes an integrated distributed wiki and an integrated
distributed bug-tracking svstem all in a single, easy-to-use, stand-alone executable. Fossil is self-hosting since 2007-07-21
on two separate servers. You can download the latest sources and compile it yourself. Or you can grab pre-compiled
binaries.

Feature Summary:

s Flexible workflow:
o Disconnected, distributed development like git, monotone, mercurial, and bitkeeper
o Or, client/server operation like CVS and subversion,
o Or, operations on local repositories,
o Or, all of the above at the same time
« Integrated, distributed bug tracking and distributed wiki.
» Built-in web interface that supports deep archaeological digs through the project history.
» All network communication via HTTP with proxy support so that everything works from behind restrictive firewalls.
« Everything (client, server, and utilities) is included in a single self-contained executable - trivial to install
« Server runs as CGI, using inetd/xinetd or using its own built-in. stand alone web server.
« An entire project contained in single disk file (an SQLite database.)
= Uses an enduring file format that is designed to be readable, searchable, and extensible by people not yet born.
» Automatic self-check on repository changes makes it exceedingly unlikely that data will ever be lost because of a
software bug.
» Ridiculously easy to install and operate.
e License: GPL

User Links:

. FAQ

» The concepts behind fossil

« Quick Start guide to using fossil

« Testimonials from fossil users.

e Questions & Criticisms directed at fossil.

Done

Fossil: Documentation =

FEN

B,

Oe6 Fossil: Timeline =
{G)Ev__; @ @ (|_| | hrep:/ fwww. fossil-scm.org/index.html /timeline ‘{}‘ 1\1 " " Google Q\1
News = Projects > Biz= Jesus~™ Memory~

™

Fossil Timeline

Home Files Leaves Timeline Branches Tags Tickets Wiki Admin Logout

200 Events Checkins Only Older Tickets Only Wiki Only

20 most recent events

2009-02-26
01:21:04 [f6790b7c3c] Leaf Fix a memory leak that was preventing massive check-ins. (user: drh, tags: trunk)
2009-02-21

18:59:46 [c5f4ecOed5] Undo inadvertant hacking changes in previous ci (should have been documentation only) (user:
bharder, tags: trunk)

18:52:26 [53b29f6f65f] typo fix (user: bharder, tags: trunk)

13:09:40 [6ba52ae761] Documentation tweaks. No changes to code. (user: drh, tags: trunk)

2009-02-20

22:54:17 Ticket 5a13dbd275 add and ci/commit are inconsistent wrt "*" handling status still Open with 1 other change
(user: kkinnell)

2009-02-19

00:11:47 Closed ticket 1584b8bE3b: reposirory created in linux can't be open in windows plus 1 other change (user:
bharder)

2009-02-18

21:46:47 Ticket 1504b8bE3b repository created in linux can't be open in windows status still Open with 2 other changes
(user: anonymous)

2009-02-17

18:55:47 New ticket 8f1632a3f7 export function not yet implemented. (User: anonymous)
18:52:15 Ticket 1504bEbE3b reposirory created in linux can't be open in windows status still Open with 1 other change
(user: anonymous)

Logged in as drh

2009-02-16
14:45:03 Ticket 5a13dbd275 add and ci/commit are inconsistent wrr "*" handling status still Open with 1 other change
(user: bharder)
12:55:35 Ticket 5a13dbd275 add and ci/commit are inconsistent wrt "*" handling status still Open with 2 other changes |,
(user: drh) v
~ Daone %

a0

Fossil: Check-in Changes =

{G)Ev__; @ @ (|_| " http:/ fwww.fossil-scm.org/index.html vdiff /4554 BT 1\1 . " Google Q\1

News = Projects > Biz= Jesus~™ Memory~

Fossil

All Changes In Check-in [f6790b7¢3c]

sre/checkin.c
B -409,10 +409,11 @@
int forceFlag = 0; /* Force a fork */
char *zManifestFile; /* Name of the manifest file */
int nBasename; /* Length of "g.zLocalRoot/" */
const char *zBranch; /* Create a new branch with this name */

ee

ee

ee

Check-in Changes

Logged in as drh

Home Files Leaves Timeline Branches Tags Tickets Wiki Admin Logout

const char *zBgColor; /* Set background coleor when branching */
const char *zDateOvrd; /* Override date string */

Bleb filename; /* complete filename */

Blob manifest:

Blob muuid; /* Manifest uuid */

Bleb mcksum; /* Self-checksum on the manifest */
Bleb cksuml, cksum2; /* Before and after commit checksums =/

-422,10 +423,11 @@

noSign = find option("nosign",0,0)!=0;
zComment = find option("comment","m",1);
forcellag = find cption("force", "£", 0)i=0;
zBranch = find option({"branch","b",1);
zBgColor = find option("bgcolor",0,1);
zDateOvrd = find option("date-override” ,0,1);
db_must_be within tree();

noSign = db_get boolean{"omitsign", 0)|noSign;
if{ db_get boolean("clearsign”, 1l)==0 }{ noSign = 1; }
verify all options();

-535,10 +537,11 @@
rid = db column_int(&g, 2);

blob zero(&content);
blob read from file(&content, zFullname);
nrid = content_put(&content, 0, 0);
blob_reset(&content);
if({ rid>0){

content_deltify(rid, nrid, 0);
1

db_multi_exec("UPDATE vfile SET mrid=%d, rid=%d WHERE id=%d", nrid,nrid,id);
db_multi_exec("INSERT OR IGNORE INTO unsent VALUES(%d)", nrid);

-549,11 4552,11 @@

blek_zero(&manifest);

if{ bleb_size(&comment)==0 }{
blob_append(&comment, "(no comment)", -1);

bleb_appendf(&manifest, "C %F\n", blob_str(&comment));

o ke de {0 NORT TN ol o e ke Pl By ny

& [

4 Steps Toward Low-Defect Code

Use your whole brain
Full coverage testing
Good configuration management

Don't just fix bugs — fix your process

When you find a bug....

 Add a test case that demonstrates the bug
- Prevents the bug from recurring

e Ask: “Are there any similar bugs elsewhere in
the code?”

- Find and fix them too — adding new test cases

o Ask: "What tests or development procedures
might have prevented this bug?”

- Implement your answers

When you find a bug....

« Ask: “What is the root cause of this bug?”
- Fix the root cause, not the specific manifestation

« Ask: “What can be done to prevent future
occurrences of similar bugs?”

- Implement your answers

Summary

Use your whole brain
- Good comments and documentation reduce defects
Full coverage testing

— If it is not tested, it does not work
- Fly what you test and test what you fly

Good configuration management
- Maintain Situational Awareness
Don't just fix bugs — fix your process

