SQLite

Check-in Differences
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Difference From version-3.7.15 To version-3.7.16

2013-03-18
17:18
Clarifications to the documentation for the sqlite3_aggregate_context() API. Also, shorten an over-length source line in sqlite.h.in. (check-in: 4fe2db1d86 user: drh tags: trunk)
16:24
Adjust the MSVC makefile so that it correctly handles the sessions extension being included in the amalgamation. Import the test case changes that appeared in 3.7.16 final. (check-in: 9bac09a99a user: drh tags: sessions)
11:39
Version 3.7.16 (check-in: 66d5f2b767 user: drh tags: trunk, release, version-3.7.16)
2013-03-13
07:02
Enhance tests for ticket [4dd95f6943]. (check-in: 0b452734fa user: dan tags: trunk)
2012-12-19
17:10
Backport to the 3.7.15 branch the fix to the segfault problem of ticket [a7b7803e8d1e869] which involved the use of "AS" named result columns as logical terms of the WHERE clause. Also, change the version number to 3.7.15.1. (check-in: bae528f486 user: drh tags: branch-3.7.15)
2012-12-12
14:30
Allow the error message from "PRAGMA integrity_check" to be longer than 20,000 bytes. (check-in: 120c82d56e user: drh tags: trunk)
13:36
Version 3.7.15 (check-in: cd0b37c526 user: dan tags: trunk, release, version-3.7.15)
2012-12-11
19:40
Update requirements marks and test cases for multi-VALUE INSERT and to fix typos in requirements text. (check-in: 81d9ee0f0d user: drh tags: trunk)

Changes to Makefile.in.
353
354
355
356
357
358
359

360
361
362
363
364
365
366
367
368
369
370
371
372

373
374
375
376
377
378
379
  $(TOP)/src/test_autoext.c \
  $(TOP)/src/test_async.c \
  $(TOP)/src/test_backup.c \
  $(TOP)/src/test_btree.c \
  $(TOP)/src/test_config.c \
  $(TOP)/src/test_demovfs.c \
  $(TOP)/src/test_devsym.c \

  $(TOP)/src/test_func.c \
  $(TOP)/src/test_fuzzer.c \
  $(TOP)/src/test_hexio.c \
  $(TOP)/src/test_init.c \
  $(TOP)/src/test_intarray.c \
  $(TOP)/src/test_journal.c \
  $(TOP)/src/test_malloc.c \
  $(TOP)/src/test_multiplex.c \
  $(TOP)/src/test_mutex.c \
  $(TOP)/src/test_onefile.c \
  $(TOP)/src/test_osinst.c \
  $(TOP)/src/test_pcache.c \
  $(TOP)/src/test_quota.c \

  $(TOP)/src/test_rtree.c \
  $(TOP)/src/test_schema.c \
  $(TOP)/src/test_server.c \
  $(TOP)/src/test_superlock.c \
  $(TOP)/src/test_syscall.c \
  $(TOP)/src/test_stat.c \
  $(TOP)/src/test_tclvar.c \







>













>







353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
  $(TOP)/src/test_autoext.c \
  $(TOP)/src/test_async.c \
  $(TOP)/src/test_backup.c \
  $(TOP)/src/test_btree.c \
  $(TOP)/src/test_config.c \
  $(TOP)/src/test_demovfs.c \
  $(TOP)/src/test_devsym.c \
  $(TOP)/src/test_fs.c \
  $(TOP)/src/test_func.c \
  $(TOP)/src/test_fuzzer.c \
  $(TOP)/src/test_hexio.c \
  $(TOP)/src/test_init.c \
  $(TOP)/src/test_intarray.c \
  $(TOP)/src/test_journal.c \
  $(TOP)/src/test_malloc.c \
  $(TOP)/src/test_multiplex.c \
  $(TOP)/src/test_mutex.c \
  $(TOP)/src/test_onefile.c \
  $(TOP)/src/test_osinst.c \
  $(TOP)/src/test_pcache.c \
  $(TOP)/src/test_quota.c \
  $(TOP)/src/test_regexp.c \
  $(TOP)/src/test_rtree.c \
  $(TOP)/src/test_schema.c \
  $(TOP)/src/test_server.c \
  $(TOP)/src/test_superlock.c \
  $(TOP)/src/test_syscall.c \
  $(TOP)/src/test_stat.c \
  $(TOP)/src/test_tclvar.c \
Changes to Makefile.msc.
674
675
676
677
678
679
680

681
682
683
684
685
686
687
688
689
690
691
692
693

694
695
696
697
698
699
700
  $(TOP)\src\test_autoext.c \
  $(TOP)\src\test_async.c \
  $(TOP)\src\test_backup.c \
  $(TOP)\src\test_btree.c \
  $(TOP)\src\test_config.c \
  $(TOP)\src\test_demovfs.c \
  $(TOP)\src\test_devsym.c \

  $(TOP)\src\test_func.c \
  $(TOP)\src\test_fuzzer.c \
  $(TOP)\src\test_hexio.c \
  $(TOP)\src\test_init.c \
  $(TOP)\src\test_intarray.c \
  $(TOP)\src\test_journal.c \
  $(TOP)\src\test_malloc.c \
  $(TOP)\src\test_multiplex.c \
  $(TOP)\src\test_mutex.c \
  $(TOP)\src\test_onefile.c \
  $(TOP)\src\test_osinst.c \
  $(TOP)\src\test_pcache.c \
  $(TOP)\src\test_quota.c \

  $(TOP)\src\test_rtree.c \
  $(TOP)\src\test_schema.c \
  $(TOP)\src\test_server.c \
  $(TOP)\src\test_superlock.c \
  $(TOP)\src\test_syscall.c \
  $(TOP)\src\test_stat.c \
  $(TOP)\src\test_tclvar.c \







>













>







674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
  $(TOP)\src\test_autoext.c \
  $(TOP)\src\test_async.c \
  $(TOP)\src\test_backup.c \
  $(TOP)\src\test_btree.c \
  $(TOP)\src\test_config.c \
  $(TOP)\src\test_demovfs.c \
  $(TOP)\src\test_devsym.c \
  $(TOP)\src\test_fs.c \
  $(TOP)\src\test_func.c \
  $(TOP)\src\test_fuzzer.c \
  $(TOP)\src\test_hexio.c \
  $(TOP)\src\test_init.c \
  $(TOP)\src\test_intarray.c \
  $(TOP)\src\test_journal.c \
  $(TOP)\src\test_malloc.c \
  $(TOP)\src\test_multiplex.c \
  $(TOP)\src\test_mutex.c \
  $(TOP)\src\test_onefile.c \
  $(TOP)\src\test_osinst.c \
  $(TOP)\src\test_pcache.c \
  $(TOP)\src\test_quota.c \
  $(TOP)\src\test_regexp.c \
  $(TOP)\src\test_rtree.c \
  $(TOP)\src\test_schema.c \
  $(TOP)\src\test_server.c \
  $(TOP)\src\test_superlock.c \
  $(TOP)\src\test_syscall.c \
  $(TOP)\src\test_stat.c \
  $(TOP)\src\test_tclvar.c \
Changes to VERSION.
1
3.7.15
|
1
3.7.16
Changes to configure.
1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.7.15.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##


|







1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.7.16.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.7.15'
PACKAGE_STRING='sqlite 3.7.15'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>







|
|







739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.7.16'
PACKAGE_STRING='sqlite 3.7.16'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.7.15 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.







|







1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.7.16 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.7.15:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]







|







1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.7.16:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.7.15
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.7.15, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{







|













|







1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.7.16
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.7.16, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
{ $as_echo "$as_me:$LINENO: checking the name lister ($NM) interface" >&5
$as_echo_n "checking the name lister ($NM) interface... " >&6; }
if test "${lt_cv_nm_interface+set}" = set; then
  $as_echo_n "(cached) " >&6
else
  lt_cv_nm_interface="BSD nm"
  echo "int some_variable = 0;" > conftest.$ac_ext
  (eval echo "\"\$as_me:3737: $ac_compile\"" >&5)
  (eval "$ac_compile" 2>conftest.err)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3740: $NM \\\"conftest.$ac_objext\\\"\"" >&5)
  (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3743: output\"" >&5)
  cat conftest.out >&5
  if $GREP 'External.*some_variable' conftest.out > /dev/null; then
    lt_cv_nm_interface="MS dumpbin"
  fi
  rm -f conftest*
fi
{ $as_echo "$as_me:$LINENO: result: $lt_cv_nm_interface" >&5







|


|


|







3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
{ $as_echo "$as_me:$LINENO: checking the name lister ($NM) interface" >&5
$as_echo_n "checking the name lister ($NM) interface... " >&6; }
if test "${lt_cv_nm_interface+set}" = set; then
  $as_echo_n "(cached) " >&6
else
  lt_cv_nm_interface="BSD nm"
  echo "int some_variable = 0;" > conftest.$ac_ext
  (eval echo "\"\$as_me:3736: $ac_compile\"" >&5)
  (eval "$ac_compile" 2>conftest.err)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3739: $NM \\\"conftest.$ac_objext\\\"\"" >&5)
  (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3742: output\"" >&5)
  cat conftest.out >&5
  if $GREP 'External.*some_variable' conftest.out > /dev/null; then
    lt_cv_nm_interface="MS dumpbin"
  fi
  rm -f conftest*
fi
{ $as_echo "$as_me:$LINENO: result: $lt_cv_nm_interface" >&5
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
	;;
    esac
  fi
  rm -rf conftest*
  ;;
*-*-irix6*)
  # Find out which ABI we are using.
  echo '#line 4965 "configure"' > conftest.$ac_ext
  if { (eval echo "$as_me:$LINENO: \"$ac_compile\"") >&5
  (eval $ac_compile) 2>&5
  ac_status=$?
  $as_echo "$as_me:$LINENO: \$? = $ac_status" >&5
  (exit $ac_status); }; then
    if test "$lt_cv_prog_gnu_ld" = yes; then
      case `/usr/bin/file conftest.$ac_objext` in







|







4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
	;;
    esac
  fi
  rm -rf conftest*
  ;;
*-*-irix6*)
  # Find out which ABI we are using.
  echo '#line 4964 "configure"' > conftest.$ac_ext
  if { (eval echo "$as_me:$LINENO: \"$ac_compile\"") >&5
  (eval $ac_compile) 2>&5
  ac_status=$?
  $as_echo "$as_me:$LINENO: \$? = $ac_status" >&5
  (exit $ac_status); }; then
    if test "$lt_cv_prog_gnu_ld" = yes; then
      case `/usr/bin/file conftest.$ac_objext` in
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:6834: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:6838: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_rtti_exceptions=yes







|



|







6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:6833: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:6837: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_rtti_exceptions=yes
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7173: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:7177: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_pic_works=yes







|



|







7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7172: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:7176: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_pic_works=yes
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7278: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7282: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then







|



|







7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7277: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7281: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7333: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7337: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then







|



|







7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7332: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7336: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 10146 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>







|







10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 10145 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self_static=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 10242 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>







|







10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self_static=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 10241 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918








  fi
fi
if test "${use_tcl}" = "no" ; then
  HAVE_TCL=""
else
  HAVE_TCL=1
fi







<







12904
12905
12906
12907
12908
12909
12910

12911
12912
12913
12914
12915
12916
12917








  fi
fi
if test "${use_tcl}" = "no" ; then
  HAVE_TCL=""
else
  HAVE_TCL=1
fi
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.7.15, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@







|







14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.7.16, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.7.15
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."








|







14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.7.16
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."

Changes to ext/rtree/rtree.c.
3045
3046
3047
3048
3049
3050
3051
3052

3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064


3065
3066
3067
3068
3069
3070
3071



3072
3073
3074
3075
3076
3077
3078
** This ensures that each node is stored on a single database page. If the 
** database page-size is so large that more than RTREE_MAXCELLS entries 
** would fit in a single node, use a smaller node-size.
*/
static int getNodeSize(
  sqlite3 *db,                    /* Database handle */
  Rtree *pRtree,                  /* Rtree handle */
  int isCreate                    /* True for xCreate, false for xConnect */

){
  int rc;
  char *zSql;
  if( isCreate ){
    int iPageSize = 0;
    zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
    rc = getIntFromStmt(db, zSql, &iPageSize);
    if( rc==SQLITE_OK ){
      pRtree->iNodeSize = iPageSize-64;
      if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
        pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
      }


    }
  }else{
    zSql = sqlite3_mprintf(
        "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
        pRtree->zDb, pRtree->zName
    );
    rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);



  }

  sqlite3_free(zSql);
  return rc;
}

/* 







|
>












>
>







>
>
>







3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
** This ensures that each node is stored on a single database page. If the 
** database page-size is so large that more than RTREE_MAXCELLS entries 
** would fit in a single node, use a smaller node-size.
*/
static int getNodeSize(
  sqlite3 *db,                    /* Database handle */
  Rtree *pRtree,                  /* Rtree handle */
  int isCreate,                   /* True for xCreate, false for xConnect */
  char **pzErr                    /* OUT: Error message, if any */
){
  int rc;
  char *zSql;
  if( isCreate ){
    int iPageSize = 0;
    zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
    rc = getIntFromStmt(db, zSql, &iPageSize);
    if( rc==SQLITE_OK ){
      pRtree->iNodeSize = iPageSize-64;
      if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
        pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
      }
    }else{
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }
  }else{
    zSql = sqlite3_mprintf(
        "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
        pRtree->zDb, pRtree->zName
    );
    rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
    if( rc!=SQLITE_OK ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }
  }

  sqlite3_free(zSql);
  return rc;
}

/* 
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
  pRtree->nDim = (argc-4)/2;
  pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
  pRtree->eCoordType = eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate);

  /* Create/Connect to the underlying relational database schema. If
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  if( rc==SQLITE_OK ){
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){







|







3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
  pRtree->nDim = (argc-4)/2;
  pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
  pRtree->eCoordType = eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate, pzErr);

  /* Create/Connect to the underlying relational database schema. If
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  if( rc==SQLITE_OK ){
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
Changes to main.mk.
236
237
238
239
240
241
242

243
244
245
246
247
248
249
250
251
252
253
254
255

256
257
258
259
260
261
262
  $(TOP)/src/test_autoext.c \
  $(TOP)/src/test_async.c \
  $(TOP)/src/test_backup.c \
  $(TOP)/src/test_btree.c \
  $(TOP)/src/test_config.c \
  $(TOP)/src/test_demovfs.c \
  $(TOP)/src/test_devsym.c \

  $(TOP)/src/test_func.c \
  $(TOP)/src/test_fuzzer.c \
  $(TOP)/src/test_hexio.c \
  $(TOP)/src/test_init.c \
  $(TOP)/src/test_intarray.c \
  $(TOP)/src/test_journal.c \
  $(TOP)/src/test_malloc.c \
  $(TOP)/src/test_multiplex.c \
  $(TOP)/src/test_mutex.c \
  $(TOP)/src/test_onefile.c \
  $(TOP)/src/test_osinst.c \
  $(TOP)/src/test_pcache.c \
  $(TOP)/src/test_quota.c \

  $(TOP)/src/test_rtree.c \
  $(TOP)/src/test_schema.c \
  $(TOP)/src/test_server.c \
  $(TOP)/src/test_stat.c \
  $(TOP)/src/test_sqllog.c \
  $(TOP)/src/test_superlock.c \
  $(TOP)/src/test_syscall.c \







>













>







236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  $(TOP)/src/test_autoext.c \
  $(TOP)/src/test_async.c \
  $(TOP)/src/test_backup.c \
  $(TOP)/src/test_btree.c \
  $(TOP)/src/test_config.c \
  $(TOP)/src/test_demovfs.c \
  $(TOP)/src/test_devsym.c \
  $(TOP)/src/test_fs.c \
  $(TOP)/src/test_func.c \
  $(TOP)/src/test_fuzzer.c \
  $(TOP)/src/test_hexio.c \
  $(TOP)/src/test_init.c \
  $(TOP)/src/test_intarray.c \
  $(TOP)/src/test_journal.c \
  $(TOP)/src/test_malloc.c \
  $(TOP)/src/test_multiplex.c \
  $(TOP)/src/test_mutex.c \
  $(TOP)/src/test_onefile.c \
  $(TOP)/src/test_osinst.c \
  $(TOP)/src/test_pcache.c \
  $(TOP)/src/test_quota.c \
  $(TOP)/src/test_regexp.c \
  $(TOP)/src/test_rtree.c \
  $(TOP)/src/test_schema.c \
  $(TOP)/src/test_server.c \
  $(TOP)/src/test_stat.c \
  $(TOP)/src/test_sqllog.c \
  $(TOP)/src/test_superlock.c \
  $(TOP)/src/test_syscall.c \
Changes to src/analyze.c.
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
  }
  if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
    /* Do not gather statistics on system tables */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );







|







469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
  }
  if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){
    /* Do not gather statistics on system tables */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
      v = v*10 + c - '0';
      z++;
    }
    if( i==0 ) pTable->nRowEst = v;
    if( pIndex==0 ) break;
    pIndex->aiRowEst[i] = v;
    if( *z==' ' ) z++;
    if( memcmp(z, "unordered", 10)==0 ){
      pIndex->bUnordered = 1;
      break;
    }
  }
  return 0;
}








|







879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
      v = v*10 + c - '0';
      z++;
    }
    if( i==0 ) pTable->nRowEst = v;
    if( pIndex==0 ) break;
    pIndex->aiRowEst[i] = v;
    if( *z==' ' ) z++;
    if( strcmp(z, "unordered")==0 ){
      pIndex->bUnordered = 1;
      break;
    }
  }
  return 0;
}

Changes to src/backup.c.
208
209
210
211
212
213
214
215





216
217
218
219
220
221
222
}

/*
** Parameter zSrcData points to a buffer containing the data for 
** page iSrcPg from the source database. Copy this data into the 
** destination database.
*/
static int backupOnePage(sqlite3_backup *p, Pgno iSrcPg, const u8 *zSrcData){





  Pager * const pDestPager = sqlite3BtreePager(p->pDest);
  const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
  int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
  const int nCopy = MIN(nSrcPgsz, nDestPgsz);
  const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
#ifdef SQLITE_HAS_CODEC
  /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is







|
>
>
>
>
>







208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
}

/*
** Parameter zSrcData points to a buffer containing the data for 
** page iSrcPg from the source database. Copy this data into the 
** destination database.
*/
static int backupOnePage(
  sqlite3_backup *p,              /* Backup handle */
  Pgno iSrcPg,                    /* Source database page to backup */
  const u8 *zSrcData,             /* Source database page data */
  int bUpdate                     /* True for an update, false otherwise */
){
  Pager * const pDestPager = sqlite3BtreePager(p->pDest);
  const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
  int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
  const int nCopy = MIN(nSrcPgsz, nDestPgsz);
  const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
#ifdef SQLITE_HAS_CODEC
  /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is
281
282
283
284
285
286
287



288
289
290
291
292
293
294
      ** and the pager code use this trick (clearing the first byte
      ** of the page 'extra' space to invalidate the Btree layers
      ** cached parse of the page). MemPage.isInit is marked 
      ** "MUST BE FIRST" for this purpose.
      */
      memcpy(zOut, zIn, nCopy);
      ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;



    }
    sqlite3PagerUnref(pDestPg);
  }

  return rc;
}








>
>
>







286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
      ** and the pager code use this trick (clearing the first byte
      ** of the page 'extra' space to invalidate the Btree layers
      ** cached parse of the page). MemPage.isInit is marked 
      ** "MUST BE FIRST" for this purpose.
      */
      memcpy(zOut, zIn, nCopy);
      ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;
      if( iOff==0 && bUpdate==0 ){
        sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc));
      }
    }
    sqlite3PagerUnref(pDestPg);
  }

  return rc;
}

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg));
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }
    if( rc==SQLITE_OK ){
      p->nPagecount = nSrcPage;







|







395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }
    if( rc==SQLITE_OK ){
      p->nPagecount = nSrcPage;
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470


471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486












487

488
489
490
491
492
493
494
          if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
            nDestTruncate--;
          }
        }else{
          nDestTruncate = nSrcPage * (pgszSrc/pgszDest);
        }
        assert( nDestTruncate>0 );
        sqlite3PagerTruncateImage(pDestPager, nDestTruncate);

        if( pgszSrc<pgszDest ){
          /* If the source page-size is smaller than the destination page-size,
          ** two extra things may need to happen:
          **
          **   * The destination may need to be truncated, and
          **
          **   * Data stored on the pages immediately following the 
          **     pending-byte page in the source database may need to be
          **     copied into the destination database.
          */
          const i64 iSize = (i64)pgszSrc * (i64)nSrcPage;
          sqlite3_file * const pFile = sqlite3PagerFile(pDestPager);


          i64 iOff;
          i64 iEnd;

          assert( pFile );
          assert( nDestTruncate==0 
              || (i64)nDestTruncate*(i64)pgszDest >= iSize || (
                nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
             && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest
          ));

          /* This call ensures that all data required to recreate the original
          ** database has been stored in the journal for pDestPager and the
          ** journal synced to disk. So at this point we may safely modify
          ** the database file in any way, knowing that if a power failure
          ** occurs, the original database will be reconstructed from the 
          ** journal file.  */












          rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1);


          /* Write the extra pages and truncate the database file as required */
          iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
          for(
            iOff=PENDING_BYTE+pgszSrc; 
            rc==SQLITE_OK && iOff<iEnd; 
            iOff+=pgszSrc







<













>
>










|





>
>
>
>
>
>
>
>
>
>
>
>
|
>







458
459
460
461
462
463
464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
          if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
            nDestTruncate--;
          }
        }else{
          nDestTruncate = nSrcPage * (pgszSrc/pgszDest);
        }
        assert( nDestTruncate>0 );


        if( pgszSrc<pgszDest ){
          /* If the source page-size is smaller than the destination page-size,
          ** two extra things may need to happen:
          **
          **   * The destination may need to be truncated, and
          **
          **   * Data stored on the pages immediately following the 
          **     pending-byte page in the source database may need to be
          **     copied into the destination database.
          */
          const i64 iSize = (i64)pgszSrc * (i64)nSrcPage;
          sqlite3_file * const pFile = sqlite3PagerFile(pDestPager);
          Pgno iPg;
          int nDstPage;
          i64 iOff;
          i64 iEnd;

          assert( pFile );
          assert( nDestTruncate==0 
              || (i64)nDestTruncate*(i64)pgszDest >= iSize || (
                nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
             && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest
          ));

          /* This block ensures that all data required to recreate the original
          ** database has been stored in the journal for pDestPager and the
          ** journal synced to disk. So at this point we may safely modify
          ** the database file in any way, knowing that if a power failure
          ** occurs, the original database will be reconstructed from the 
          ** journal file.  */
          sqlite3PagerPagecount(pDestPager, &nDstPage);
          for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){
            if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){
              DbPage *pPg;
              rc = sqlite3PagerGet(pDestPager, iPg, &pPg);
              if( rc==SQLITE_OK ){
                rc = sqlite3PagerWrite(pPg);
                sqlite3PagerUnref(pPg);
              }
            }
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1);
          }

          /* Write the extra pages and truncate the database file as required */
          iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
          for(
            iOff=PENDING_BYTE+pgszSrc; 
            rc==SQLITE_OK && iOff<iEnd; 
            iOff+=pgszSrc
507
508
509
510
511
512
513

514
515
516
517
518
519
520
          }

          /* Sync the database file to disk. */
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerSync(pDestPager);
          }
        }else{

          rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0);
        }
    
        /* Finish committing the transaction to the destination database. */
        if( SQLITE_OK==rc
         && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0))
        ){







>







529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
          }

          /* Sync the database file to disk. */
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerSync(pDestPager);
          }
        }else{
          sqlite3PagerTruncateImage(pDestPager, nDestTruncate);
          rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0);
        }
    
        /* Finish committing the transaction to the destination database. */
        if( SQLITE_OK==rc
         && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0))
        ){
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
      /* The backup process p has already copied page iPage. But now it
      ** has been modified by a transaction on the source pager. Copy
      ** the new data into the backup.
      */
      int rc;
      assert( p->pDestDb );
      sqlite3_mutex_enter(p->pDestDb->mutex);
      rc = backupOnePage(p, iPage, aData);
      sqlite3_mutex_leave(p->pDestDb->mutex);
      assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
      if( rc!=SQLITE_OK ){
        p->rc = rc;
      }
    }
  }







|







658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
      /* The backup process p has already copied page iPage. But now it
      ** has been modified by a transaction on the source pager. Copy
      ** the new data into the backup.
      */
      int rc;
      assert( p->pDestDb );
      sqlite3_mutex_enter(p->pDestDb->mutex);
      rc = backupOnePage(p, iPage, aData, 1);
      sqlite3_mutex_leave(p->pDestDb->mutex);
      assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
      if( rc!=SQLITE_OK ){
        p->rc = rc;
      }
    }
  }
Changes to src/btree.c.
39
40
41
42
43
44
45



















46
47
48
49
50
51
52
** This routine is used to extract the "offset to cell content area" value
** from the header of a btree page.  If the page size is 65536 and the page
** is empty, the offset should be 65536, but the 2-byte value stores zero.
** This routine makes the necessary adjustment to 65536.
*/
#define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)




















#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** A list of BtShared objects that are eligible for participation
** in shared cache.  This variable has file scope during normal builds,
** but the test harness needs to access it so we make it global for 
** test builds.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
** This routine is used to extract the "offset to cell content area" value
** from the header of a btree page.  If the page size is 65536 and the page
** is empty, the offset should be 65536, but the 2-byte value stores zero.
** This routine makes the necessary adjustment to 65536.
*/
#define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)

/*
** Values passed as the 5th argument to allocateBtreePage()
*/
#define BTALLOC_ANY   0           /* Allocate any page */
#define BTALLOC_EXACT 1           /* Allocate exact page if possible */
#define BTALLOC_LE    2           /* Allocate any page <= the parameter */

/*
** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 
** defined, or 0 if it is. For example:
**
**   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
#define IfNotOmitAV(expr) (expr)
#else
#define IfNotOmitAV(expr) 0
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** A list of BtShared objects that are eligible for participation
** in shared cache.  This variable has file scope during normal builds,
** but the test harness needs to access it so we make it global for 
** test builds.
**
2591
2592
2593
2594
2595
2596
2597

2598
2599
2600
2601
2602
2603
2604
  /* If the btree is already in a write-transaction, or it
  ** is already in a read-transaction and a read-transaction
  ** is requested, this is a no-op.
  */
  if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
    goto trans_begun;
  }


  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }








>







2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
  /* If the btree is already in a write-transaction, or it
  ** is already in a read-transaction and a read-transaction
  ** is requested, this is a no-op.
  */
  if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
    goto trans_begun;
  }
  assert( IfNotOmitAV(pBt->bDoTruncate)==0 );

  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

2907
2908
2909
2910
2911
2912
2913
2914
2915
2916

2917
2918
2919
2920


2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
  return rc;
}

/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);

/*
** Perform a single step of an incremental-vacuum. If successful,
** return SQLITE_OK. If there is no work to do (and therefore no
** point in calling this function again), return SQLITE_DONE.

**
** More specificly, this function attempts to re-organize the 
** database so that the last page of the file currently in use
** is no longer in use.


**
** If the nFin parameter is non-zero, this function assumes
** that the caller will keep calling incrVacuumStep() until
** it returns SQLITE_DONE or an error, and that nFin is the
** number of pages the database file will contain after this 
** process is complete.  If nFin is zero, it is assumed that
** incrVacuumStep() will be called a finite amount of times
** which may or may not empty the freelist.  A full autovacuum
** has nFin>0.  A "PRAGMA incremental_vacuum" has nFin==0.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
  Pgno nFreeList;           /* Number of pages still on the free-list */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( iLastPg>nFin );

  if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){







|
|
|
>

|
|
|
>
>

|
|
|
<
<
<
<
|

|







2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947




2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
  return rc;
}

/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);

/*
** Perform a single step of an incremental-vacuum. If successful, return
** SQLITE_OK. If there is no work to do (and therefore no point in 
** calling this function again), return SQLITE_DONE. Or, if an error 
** occurs, return some other error code.
**
** More specificly, this function attempts to re-organize the database so 
** that the last page of the file currently in use is no longer in use.
**
** Parameter nFin is the number of pages that this database would contain
** were this function called until it returns SQLITE_DONE.
**
** If the bCommit parameter is non-zero, this function assumes that the 
** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 
** or an error. bCommit is passed true for an auto-vacuum-on-commmit 




** operation, or false for an incremental vacuum.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
  Pgno nFreeList;           /* Number of pages still on the free-list */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( iLastPg>nFin );

  if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973


2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986




2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009

3010
3011
3012
3013
3014
3015

3016
3017
3018
3019

3020






3021
3022





3023

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048







3049
3050
3051
3052
3053



3054
3055
3056
3057
3058
3059
3060
      return rc;
    }
    if( eType==PTRMAP_ROOTPAGE ){
      return SQLITE_CORRUPT_BKPT;
    }

    if( eType==PTRMAP_FREEPAGE ){
      if( nFin==0 ){
        /* Remove the page from the files free-list. This is not required
        ** if nFin is non-zero. In that case, the free-list will be
        ** truncated to zero after this function returns, so it doesn't 
        ** matter if it still contains some garbage entries.
        */
        Pgno iFreePg;
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        assert( iFreePg==iLastPg );
        releasePage(pFreePg);
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;



      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If nFin is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
      ** On the other hand, if nFin is greater than zero, then keep
      ** looping until a free-page located within the first nFin pages
      ** of the file is found.
      */




      do {
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
        if( rc!=SQLITE_OK ){
          releasePage(pLastPg);
          return rc;
        }
        releasePage(pFreePg);
      }while( nFin!=0 && iFreePg>nFin );
      assert( iFreePg<iLastPg );
      
      rc = sqlite3PagerWrite(pLastPg->pDbPage);
      if( rc==SQLITE_OK ){
        rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
      }
      releasePage(pLastPg);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  if( nFin==0 ){

    iLastPg--;
    while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
      if( PTRMAP_ISPAGE(pBt, iLastPg) ){
        MemPage *pPg;
        rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
        if( rc!=SQLITE_OK ){

          return rc;
        }
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);

        if( rc!=SQLITE_OK ){






          return rc;
        }





      }

      iLastPg--;
    }
    sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
    pBt->nPage = iLastPg;
  }
  return SQLITE_OK;
}

/*
** A write-transaction must be opened before calling this function.
** It performs a single unit of work towards an incremental vacuum.
**
** If the incremental vacuum is finished after this function has run,
** SQLITE_DONE is returned. If it is not finished, but no error occurred,
** SQLITE_OK is returned. Otherwise an SQLite error code. 
*/
int sqlite3BtreeIncrVacuum(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  if( !pBt->autoVacuum ){
    rc = SQLITE_DONE;
  }else{







    invalidateAllOverflowCache(pBt);
    rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
    if( rc==SQLITE_OK ){
      rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
      put4byte(&pBt->pPage1->aData[28], pBt->nPage);



    }
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*







|

|





|









>
>






|


|



>
>
>
>


|





|


<
<
|
<







|
>
|
|
|
|
<
<
>
|
|
|
<
>
|
>
>
>
>
>
>
|
|
>
>
>
>
>
|
>
|
|
<
<
|
|



















>
>
>
>
>
>
>
|
|
|
|
|
>
>
>







2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022


3023

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036


3037
3038
3039
3040

3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059


3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
      return rc;
    }
    if( eType==PTRMAP_ROOTPAGE ){
      return SQLITE_CORRUPT_BKPT;
    }

    if( eType==PTRMAP_FREEPAGE ){
      if( bCommit==0 ){
        /* Remove the page from the files free-list. This is not required
        ** if bCommit is non-zero. In that case, the free-list will be
        ** truncated to zero after this function returns, so it doesn't 
        ** matter if it still contains some garbage entries.
        */
        Pgno iFreePg;
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        assert( iFreePg==iLastPg );
        releasePage(pFreePg);
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;
      u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
      Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */

      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If bCommit is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
      ** On the other hand, if bCommit is greater than zero, then keep
      ** looping until a free-page located within the first nFin pages
      ** of the file is found.
      */
      if( bCommit==0 ){
        eMode = BTALLOC_LE;
        iNear = nFin;
      }
      do {
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
        if( rc!=SQLITE_OK ){
          releasePage(pLastPg);
          return rc;
        }
        releasePage(pFreePg);
      }while( bCommit && iFreePg>nFin );
      assert( iFreePg<iLastPg );
      


      rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);

      releasePage(pLastPg);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  if( bCommit==0 ){
    do {
      iLastPg--;
    }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
    pBt->bDoTruncate = 1;
    pBt->nPage = iLastPg;


  }
  return SQLITE_OK;
}


/*
** The database opened by the first argument is an auto-vacuum database
** nOrig pages in size containing nFree free pages. Return the expected 
** size of the database in pages following an auto-vacuum operation.
*/
static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
  int nEntry;                     /* Number of entries on one ptrmap page */
  Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
  Pgno nFin;                      /* Return value */

  nEntry = pBt->usableSize/5;
  nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
  nFin = nOrig - nFree - nPtrmap;
  if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
    nFin--;
  }
  while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
    nFin--;
  }



  return nFin;
}

/*
** A write-transaction must be opened before calling this function.
** It performs a single unit of work towards an incremental vacuum.
**
** If the incremental vacuum is finished after this function has run,
** SQLITE_DONE is returned. If it is not finished, but no error occurred,
** SQLITE_OK is returned. Otherwise an SQLite error code. 
*/
int sqlite3BtreeIncrVacuum(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  if( !pBt->autoVacuum ){
    rc = SQLITE_DONE;
  }else{
    Pgno nOrig = btreePagecount(pBt);
    Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
    Pgno nFin = finalDbSize(pBt, nOrig, nFree);

    if( nOrig<nFin ){
      rc = SQLITE_CORRUPT_BKPT;
    }else if( nFree>0 ){
      invalidateAllOverflowCache(pBt);
      rc = incrVacuumStep(pBt, nFin, nOrig, 0);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
        put4byte(&pBt->pPage1->aData[28], pBt->nPage);
      }
    }else{
      rc = SQLITE_DONE;
    }
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121

  assert( sqlite3_mutex_held(pBt->mutex) );
  invalidateAllOverflowCache(pBt);
  assert(pBt->autoVacuum);
  if( !pBt->incrVacuum ){
    Pgno nFin;         /* Number of pages in database after autovacuuming */
    Pgno nFree;        /* Number of pages on the freelist initially */
    Pgno nPtrmap;      /* Number of PtrMap pages to be freed */
    Pgno iFree;        /* The next page to be freed */
    int nEntry;        /* Number of entries on one ptrmap page */
    Pgno nOrig;        /* Database size before freeing */

    nOrig = btreePagecount(pBt);
    if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
      /* It is not possible to create a database for which the final page
      ** is either a pointer-map page or the pending-byte page. If one
      ** is encountered, this indicates corruption.
      */
      return SQLITE_CORRUPT_BKPT;
    }

    nFree = get4byte(&pBt->pPage1->aData[36]);
    nEntry = pBt->usableSize/5;
    nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
    nFin = nOrig - nFree - nPtrmap;
    if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
      nFin--;
    }
    while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
      nFin--;
    }
    if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;

    for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
      rc = incrVacuumStep(pBt, nFin, iFree);
    }
    if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
      rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
      put4byte(&pBt->pPage1->aData[32], 0);
      put4byte(&pBt->pPage1->aData[36], 0);
      put4byte(&pBt->pPage1->aData[28], nFin);
      sqlite3PagerTruncateImage(pBt->pPager, nFin);
      pBt->nPage = nFin;
    }
    if( rc!=SQLITE_OK ){
      sqlite3PagerRollback(pPager);
    }
  }








<

<












<
|
<
<
<
<
<
<
<



|






|







3115
3116
3117
3118
3119
3120
3121

3122

3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134

3135







3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153

  assert( sqlite3_mutex_held(pBt->mutex) );
  invalidateAllOverflowCache(pBt);
  assert(pBt->autoVacuum);
  if( !pBt->incrVacuum ){
    Pgno nFin;         /* Number of pages in database after autovacuuming */
    Pgno nFree;        /* Number of pages on the freelist initially */

    Pgno iFree;        /* The next page to be freed */

    Pgno nOrig;        /* Database size before freeing */

    nOrig = btreePagecount(pBt);
    if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
      /* It is not possible to create a database for which the final page
      ** is either a pointer-map page or the pending-byte page. If one
      ** is encountered, this indicates corruption.
      */
      return SQLITE_CORRUPT_BKPT;
    }

    nFree = get4byte(&pBt->pPage1->aData[36]);

    nFin = finalDbSize(pBt, nOrig, nFree);







    if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;

    for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
      rc = incrVacuumStep(pBt, nFin, iFree, 1);
    }
    if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
      rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
      put4byte(&pBt->pPage1->aData[32], 0);
      put4byte(&pBt->pPage1->aData[36], 0);
      put4byte(&pBt->pPage1->aData[28], nFin);
      pBt->bDoTruncate = 1;
      pBt->nPage = nFin;
    }
    if( rc!=SQLITE_OK ){
      sqlite3PagerRollback(pPager);
    }
  }

3162
3163
3164
3165
3166
3167
3168



3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183



3184
3185
3186
3187
3188
3189
3190
    if( pBt->autoVacuum ){
      rc = autoVacuumCommit(pBt);
      if( rc!=SQLITE_OK ){
        sqlite3BtreeLeave(p);
        return rc;
      }
    }



#endif
    rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
** at the conclusion of a transaction.
*/
static void btreeEndTransaction(Btree *p){
  BtShared *pBt = p->pBt;
  assert( sqlite3BtreeHoldsMutex(p) );




  btreeClearHasContent(pBt);
  if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
    /* If there are other active statements that belong to this database
    ** handle, downgrade to a read-only transaction. The other statements
    ** may still be reading from the database.  */
    downgradeAllSharedCacheTableLocks(p);
    p->inTrans = TRANS_READ;







>
>
>















>
>
>







3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
    if( pBt->autoVacuum ){
      rc = autoVacuumCommit(pBt);
      if( rc!=SQLITE_OK ){
        sqlite3BtreeLeave(p);
        return rc;
      }
    }
    if( pBt->bDoTruncate ){
      sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
    }
#endif
    rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
** at the conclusion of a transaction.
*/
static void btreeEndTransaction(Btree *p){
  BtShared *pBt = p->pBt;
  assert( sqlite3BtreeHoldsMutex(p) );

#ifndef SQLITE_OMIT_AUTOVACUUM
  pBt->bDoTruncate = 0;
#endif
  btreeClearHasContent(pBt);
  if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
    /* If there are other active statements that belong to this database
    ** handle, downgrade to a read-only transaction. The other statements
    ** may still be reading from the database.  */
    downgradeAllSharedCacheTableLocks(p);
    p->inTrans = TRANS_READ;
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863


4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880

4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897

4898
4899
4900
4901
4902
4903
4904
4905
4906


4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920

4921
4922
4923
4924
4925
4926
4927
** been referenced and the calling routine is responsible for calling
** sqlite3PagerUnref() on the new page when it is done.
**
** SQLITE_OK is returned on success.  Any other return value indicates
** an error.  *ppPage and *pPgno are undefined in the event of an error.
** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
**
** If the "nearby" parameter is not 0, then a (feeble) effort is made to 
** locate a page close to the page number "nearby".  This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the "exact" parameter is not 0, and the page-number nearby exists 
** anywhere on the free-list, then it is guarenteed to be returned. This
** is only used by auto-vacuum databases when allocating a new table.


*/
static int allocateBtreePage(
  BtShared *pBt, 
  MemPage **ppPage, 
  Pgno *pPgno, 
  Pgno nearby,
  u8 exact
){
  MemPage *pPage1;
  int rc;
  u32 n;     /* Number of pages on the freelist */
  u32 k;     /* Number of leaves on the trunk of the freelist */
  MemPage *pTrunk = 0;
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite3_mutex_held(pBt->mutex) );

  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);
  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
    Pgno iTrunk;
    u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
    
    /* If the 'exact' parameter was true and a query of the pointer-map
    ** shows that the page 'nearby' is somewhere on the free-list, then
    ** the entire-list will be searched for that page.
    */
#ifndef SQLITE_OMIT_AUTOVACUUM

    if( exact && nearby<=mxPage ){
      u8 eType;
      assert( nearby>0 );
      assert( pBt->autoVacuum );
      rc = ptrmapGet(pBt, nearby, &eType, 0);
      if( rc ) return rc;
      if( eType==PTRMAP_FREEPAGE ){
        searchList = 1;
      }


      *pPgno = nearby;
    }
#endif

    /* Decrement the free-list count by 1. Set iTrunk to the index of the
    ** first free-list trunk page. iPrevTrunk is initially 1.
    */
    rc = sqlite3PagerWrite(pPage1->pDbPage);
    if( rc ) return rc;
    put4byte(&pPage1->aData[36], n-1);

    /* The code within this loop is run only once if the 'searchList' variable
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located.

    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){
        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{
        iTrunk = get4byte(&pPage1->aData[32]);







|




|
|
|
>
>


|
|
|
|
|










>












|




>
|
|
|
|
|
|
|
|
|
>
>
|












|
>







4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
** been referenced and the calling routine is responsible for calling
** sqlite3PagerUnref() on the new page when it is done.
**
** SQLITE_OK is returned on success.  Any other return value indicates
** an error.  *ppPage and *pPgno are undefined in the event of an error.
** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
**
** If the "nearby" parameter is not 0, then an effort is made to 
** locate a page close to the page number "nearby".  This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
** anywhere on the free-list, then it is guaranteed to be returned.  If
** eMode is BTALLOC_LT then the page returned will be less than or equal
** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
** are no restrictions on which page is returned.
*/
static int allocateBtreePage(
  BtShared *pBt,         /* The btree */
  MemPage **ppPage,      /* Store pointer to the allocated page here */
  Pgno *pPgno,           /* Store the page number here */
  Pgno nearby,           /* Search for a page near this one */
  u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
){
  MemPage *pPage1;
  int rc;
  u32 n;     /* Number of pages on the freelist */
  u32 k;     /* Number of leaves on the trunk of the freelist */
  MemPage *pTrunk = 0;
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);
  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
    Pgno iTrunk;
    u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
    
    /* If eMode==BTALLOC_EXACT and a query of the pointer-map
    ** shows that the page 'nearby' is somewhere on the free-list, then
    ** the entire-list will be searched for that page.
    */
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( eMode==BTALLOC_EXACT ){
      if( nearby<=mxPage ){
        u8 eType;
        assert( nearby>0 );
        assert( pBt->autoVacuum );
        rc = ptrmapGet(pBt, nearby, &eType, 0);
        if( rc ) return rc;
        if( eType==PTRMAP_FREEPAGE ){
          searchList = 1;
        }
      }
    }else if( eMode==BTALLOC_LE ){
      searchList = 1;
    }
#endif

    /* Decrement the free-list count by 1. Set iTrunk to the index of the
    ** first free-list trunk page. iPrevTrunk is initially 1.
    */
    rc = sqlite3PagerWrite(pPage1->pDbPage);
    if( rc ) return rc;
    put4byte(&pPage1->aData[36], n-1);

    /* The code within this loop is run only once if the 'searchList' variable
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
    ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){
        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{
        iTrunk = get4byte(&pPage1->aData[32]);
4955
4956
4957
4958
4959
4960
4961
4962


4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
      }else if( k>(u32)(pBt->usableSize/4 - 2) ){
        /* Value of k is out of range.  Database corruption */
        rc = SQLITE_CORRUPT_BKPT;
        goto end_allocate_page;
#ifndef SQLITE_OMIT_AUTOVACUUM
      }else if( searchList && nearby==iTrunk ){


        /* The list is being searched and this trunk page is the page
        ** to allocate, regardless of whether it has leaves.
        */
        assert( *pPgno==iTrunk );
        *ppPage = pTrunk;
        searchList = 0;
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        if( k==0 ){







|
>
>



|







5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
      }else if( k>(u32)(pBt->usableSize/4 - 2) ){
        /* Value of k is out of range.  Database corruption */
        rc = SQLITE_CORRUPT_BKPT;
        goto end_allocate_page;
#ifndef SQLITE_OMIT_AUTOVACUUM
      }else if( searchList 
            && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 
      ){
        /* The list is being searched and this trunk page is the page
        ** to allocate, regardless of whether it has leaves.
        */
        *pPgno = iTrunk;
        *ppPage = pTrunk;
        searchList = 0;
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        if( k==0 ){
5022
5023
5024
5025
5026
5027
5028
5029
5030










5031
5032
5033
5034
5035
5036

5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050


5051
5052
5053
5054
5055
5056
5057
      }else if( k>0 ){
        /* Extract a leaf from the trunk */
        u32 closest;
        Pgno iPage;
        unsigned char *aData = pTrunk->aData;
        if( nearby>0 ){
          u32 i;
          int dist;
          closest = 0;










          dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
          for(i=1; i<k; i++){
            int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
            if( d2<dist ){
              closest = i;
              dist = d2;

            }
          }
        }else{
          closest = 0;
        }

        iPage = get4byte(&aData[8+closest*4]);
        testcase( iPage==mxPage );
        if( iPage>mxPage ){
          rc = SQLITE_CORRUPT_BKPT;
          goto end_allocate_page;
        }
        testcase( iPage==mxPage );
        if( !searchList || iPage==nearby ){


          int noContent;
          *pPgno = iPage;
          TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
                 ": %d more free pages\n",
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;







<

>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
>













|
>
>







5069
5070
5071
5072
5073
5074
5075

5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
      }else if( k>0 ){
        /* Extract a leaf from the trunk */
        u32 closest;
        Pgno iPage;
        unsigned char *aData = pTrunk->aData;
        if( nearby>0 ){
          u32 i;

          closest = 0;
          if( eMode==BTALLOC_LE ){
            for(i=0; i<k; i++){
              iPage = get4byte(&aData[8+i*4]);
              if( iPage<=nearby ){
                closest = i;
                break;
              }
            }
          }else{
            int dist;
            dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
            for(i=1; i<k; i++){
              int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
              if( d2<dist ){
                closest = i;
                dist = d2;
              }
            }
          }
        }else{
          closest = 0;
        }

        iPage = get4byte(&aData[8+closest*4]);
        testcase( iPage==mxPage );
        if( iPage>mxPage ){
          rc = SQLITE_CORRUPT_BKPT;
          goto end_allocate_page;
        }
        testcase( iPage==mxPage );
        if( !searchList 
         || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 
        ){
          int noContent;
          *pPgno = iPage;
          TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
                 ": %d more free pages\n",
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
5070
5071
5072
5073
5074
5075
5076
5077


















5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
          searchList = 0;
        }
      }
      releasePage(pPrevTrunk);
      pPrevTrunk = 0;
    }while( searchList );
  }else{
    /* There are no pages on the freelist, so create a new page at the


















    ** end of the file */
    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|














|













|







5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
          searchList = 0;
        }
      }
      releasePage(pPrevTrunk);
      pPrevTrunk = 0;
    }while( searchList );
  }else{
    /* There are no pages on the freelist, so append a new page to the
    ** database image.
    **
    ** Normally, new pages allocated by this block can be requested from the
    ** pager layer with the 'no-content' flag set. This prevents the pager
    ** from trying to read the pages content from disk. However, if the
    ** current transaction has already run one or more incremental-vacuum
    ** steps, then the page we are about to allocate may contain content
    ** that is required in the event of a rollback. In this case, do
    ** not set the no-content flag. This causes the pager to load and journal
    ** the current page content before overwriting it.
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate));

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
    }
    assert( pgnoRoot>=3 );

    /* Allocate a page. The page that currently resides at pgnoRoot will
    ** be moved to the allocated page (unless the allocated page happens
    ** to reside at pgnoRoot).
    */
    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    if( pgnoMove!=pgnoRoot ){
      /* pgnoRoot is the page that will be used for the root-page of
      ** the new table (assuming an error did not occur). But we were







|







7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
    }
    assert( pgnoRoot>=3 );

    /* Allocate a page. The page that currently resides at pgnoRoot will
    ** be moved to the allocated page (unless the allocated page happens
    ** to reside at pgnoRoot).
    */
    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    if( pgnoMove!=pgnoRoot ){
      /* pgnoRoot is the page that will be used for the root-page of
      ** the new table (assuming an error did not occur). But we were
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
  if( !sCheck.aPgRef ){
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return 0;
  }
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");








|







8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
  if( !sCheck.aPgRef ){
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return 0;
  }
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");

Changes to src/btreeInt.h.
407
408
409
410
411
412
413

414
415
416
417
418
419
420
  sqlite3 *db;          /* Database connection currently using this Btree */
  BtCursor *pCursor;    /* A list of all open cursors */
  MemPage *pPage1;      /* First page of the database */
  u8 openFlags;         /* Flags to sqlite3BtreeOpen() */
#ifndef SQLITE_OMIT_AUTOVACUUM
  u8 autoVacuum;        /* True if auto-vacuum is enabled */
  u8 incrVacuum;        /* True if incr-vacuum is enabled */

#endif
  u8 inTransaction;     /* Transaction state */
  u8 max1bytePayload;   /* Maximum first byte of cell for a 1-byte payload */
  u16 btsFlags;         /* Boolean parameters.  See BTS_* macros below */
  u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
  u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
  u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */







>







407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
  sqlite3 *db;          /* Database connection currently using this Btree */
  BtCursor *pCursor;    /* A list of all open cursors */
  MemPage *pPage1;      /* First page of the database */
  u8 openFlags;         /* Flags to sqlite3BtreeOpen() */
#ifndef SQLITE_OMIT_AUTOVACUUM
  u8 autoVacuum;        /* True if auto-vacuum is enabled */
  u8 incrVacuum;        /* True if incr-vacuum is enabled */
  u8 bDoTruncate;       /* True to truncate db on commit */
#endif
  u8 inTransaction;     /* Transaction state */
  u8 max1bytePayload;   /* Maximum first byte of cell for a 1-byte payload */
  u16 btsFlags;         /* Boolean parameters.  See BTS_* macros below */
  u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
  u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
  u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */
Changes to src/build.c.
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
  sqlite3VdbeJumpHere(v, addr1);
  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
  if( pIndex->onError!=OE_None ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "indexed columns are not unique", P4_STATIC
    );
  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);







|
|







2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
  sqlite3VdbeJumpHere(v, addr1);
  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
  if( pIndex->onError!=OE_None ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE,
        OE_Abort, "indexed columns are not unique", P4_STATIC
    );
  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
    ** (made available to the compiler for reuse) using 
    ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
    ** opcode use the values stored within seems dangerous. However, since
    ** we can be sure that no other temp registers have been allocated
    ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
    */
    sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
  }
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
#endif
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
  sqlite3VdbeJumpHere(v, addr1);







|
|







2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
    ** (made available to the compiler for reuse) using 
    ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
    ** opcode use the values stored within seems dangerous. However, since
    ** we can be sure that no other temp registers have been allocated
    ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
    */
    sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE,
        "indexed columns are not unique", P4_STATIC);
  }
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
#endif
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
  sqlite3VdbeJumpHere(v, addr1);
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  }
  pDb = &db->aDb[iDb];

  assert( pTab!=0 );
  assert( pParse->nErr==0 );
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 
       && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "views may not be indexed");
    goto exit_create_index;







|







2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  }
  pDb = &db->aDb[iDb];

  assert( pTab!=0 );
  assert( pParse->nErr==0 );
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 
       && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "views may not be indexed");
    goto exit_create_index;
3688
3689
3690
3691
3692
3693
3694
3695






3696

3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
}

/*
** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
** error. The onError parameter determines which (if any) of the statement
** and/or current transaction is rolled back.
*/
void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){






  Vdbe *v = sqlite3GetVdbe(pParse);

  if( onError==OE_Abort ){
    sqlite3MayAbort(pParse);
  }
  sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
}

/*
** Check to see if pIndex uses the collating sequence pColl.  Return
** true if it does and false if it does not.
*/
#ifndef SQLITE_OMIT_REINDEX







|
>
>
>
>
>
>

>



|







3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
}

/*
** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
** error. The onError parameter determines which (if any) of the statement
** and/or current transaction is rolled back.
*/
void sqlite3HaltConstraint(
  Parse *pParse,    /* Parsing context */
  int errCode,      /* extended error code */
  int onError,      /* Constraint type */
  char *p4,         /* Error message */
  int p4type        /* P4_STATIC or P4_TRANSIENT */
){
  Vdbe *v = sqlite3GetVdbe(pParse);
  assert( (errCode&0xff)==SQLITE_CONSTRAINT );
  if( onError==OE_Abort ){
    sqlite3MayAbort(pParse);
  }
  sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
}

/*
** Check to see if pIndex uses the collating sequence pColl.  Return
** true if it does and false if it does not.
*/
#ifndef SQLITE_OMIT_REINDEX
Changes to src/delete.c.
89
90
91
92
93
94
95
96

97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
void sqlite3MaterializeView(
  Parse *pParse,       /* Parsing context */
  Table *pView,        /* View definition */
  Expr *pWhere,        /* Optional WHERE clause to be added */
  int iCur             /* Cursor number for ephemerial table */
){
  SelectDest dest;
  Select *pDup;

  sqlite3 *db = pParse->db;

  pDup = sqlite3SelectDup(db, pView->pSelect, 0);
  if( pWhere ){
    SrcList *pFrom;
    
    pWhere = sqlite3ExprDup(db, pWhere, 0);
    pFrom = sqlite3SrcListAppend(db, 0, 0, 0);

    if( pFrom ){
      assert( pFrom->nSrc==1 );
      pFrom->a[0].zAlias = sqlite3DbStrDup(db, pView->zName);
      pFrom->a[0].pSelect = pDup;
      assert( pFrom->a[0].pOn==0 );
      assert( pFrom->a[0].pUsing==0 );
    }else{
      sqlite3SelectDelete(db, pDup);
    }

    pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
    if( pDup ) pDup->selFlags |= SF_Materialize;
  }
  sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
  sqlite3Select(pParse, pDup, &dest);
  sqlite3SelectDelete(db, pDup);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */

#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Generate an expression tree to implement the WHERE, ORDER BY,
** and LIMIT/OFFSET portion of DELETE and UPDATE statements.







|
>

|
<
<
<
|
|
|
>
|
|
|
|
|
|
<
<
|
>
|
|
|

|
|







89
90
91
92
93
94
95
96
97
98
99



100
101
102
103
104
105
106
107
108
109


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
void sqlite3MaterializeView(
  Parse *pParse,       /* Parsing context */
  Table *pView,        /* View definition */
  Expr *pWhere,        /* Optional WHERE clause to be added */
  int iCur             /* Cursor number for ephemerial table */
){
  SelectDest dest;
  Select *pSel;
  SrcList *pFrom;
  sqlite3 *db = pParse->db;
  int iDb = sqlite3SchemaToIndex(db, pView->pSchema);




  pWhere = sqlite3ExprDup(db, pWhere, 0);
  pFrom = sqlite3SrcListAppend(db, 0, 0, 0);

  if( pFrom ){
    assert( pFrom->nSrc==1 );
    pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName);
    pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
    assert( pFrom->a[0].pOn==0 );
    assert( pFrom->a[0].pUsing==0 );


  }

  pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
  if( pSel ) pSel->selFlags |= SF_Materialize;

  sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
  sqlite3Select(pParse, pSel, &dest);
  sqlite3SelectDelete(db, pSel);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */

#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Generate an expression tree to implement the WHERE, ORDER BY,
** and LIMIT/OFFSET portion of DELETE and UPDATE statements.
Changes to src/expr.c.
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    }else{
      /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
      ** number as the prior appearance of the same name, or if the name
      ** has never appeared before, reuse the same variable number
      */
      ynVar i;
      for(i=0; i<pParse->nzVar; i++){
        if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){
          pExpr->iColumn = x = (ynVar)i+1;
          break;
        }
      }
      if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
    }
    if( x>0 ){







|







634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    }else{
      /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
      ** number as the prior appearance of the same name, or if the name
      ** has never appeared before, reuse the same variable number
      */
      ynVar i;
      for(i=0; i<pParse->nzVar; i++){
        if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
          pExpr->iColumn = x = (ynVar)i+1;
          break;
        }
      }
      if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
    }
    if( x>0 ){
1452
1453
1454
1455
1456
1457
1458
1459

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
** all members of the RHS set, skipping duplicates.
**
** A cursor is opened on the b-tree object that the RHS of the IN operator
** and pX->iTable is set to the index of that cursor.
**
** The returned value of this function indicates the b-tree type, as follows:
**
**   IN_INDEX_ROWID - The cursor was opened on a database table.

**   IN_INDEX_INDEX - The cursor was opened on a database index.
**   IN_INDEX_EPH -   The cursor was opened on a specially created and
**                    populated epheremal table.
**
** An existing b-tree might be used if the RHS expression pX is a simple
** subquery such as:
**
**     SELECT <column> FROM <table>
**
** If the RHS of the IN operator is a list or a more complex subquery, then







|
>
|
|
|







1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
** all members of the RHS set, skipping duplicates.
**
** A cursor is opened on the b-tree object that the RHS of the IN operator
** and pX->iTable is set to the index of that cursor.
**
** The returned value of this function indicates the b-tree type, as follows:
**
**   IN_INDEX_ROWID      - The cursor was opened on a database table.
**   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
**   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
**   IN_INDEX_EPH        - The cursor was opened on a specially created and
**                         populated epheremal table.
**
** An existing b-tree might be used if the RHS expression pX is a simple
** subquery such as:
**
**     SELECT <column> FROM <table>
**
** If the RHS of the IN operator is a list or a more complex subquery, then
1578
1579
1580
1581
1582
1583
1584

1585
1586
1587
1588
1589
1590
1591
1592
  
          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
          iAddr = sqlite3CodeOnce(pParse);
  
          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
                               pKey,P4_KEYINFO_HANDOFF);
          VdbeComment((v, "%s", pIdx->zName));

          eType = IN_INDEX_INDEX;

          sqlite3VdbeJumpHere(v, iAddr);
          if( prNotFound && !pTab->aCol[iCol].notNull ){
            *prNotFound = ++pParse->nMem;
            sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
          }
        }







>
|







1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
  
          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
          iAddr = sqlite3CodeOnce(pParse);
  
          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
                               pKey,P4_KEYINFO_HANDOFF);
          VdbeComment((v, "%s", pIdx->zName));
          assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
          eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];

          sqlite3VdbeJumpHere(v, iAddr);
          if( prNotFound && !pTab->aCol[iCol].notNull ){
            *prNotFound = ++pParse->nMem;
            sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
          }
        }
2931
2932
2933
2934
2935
2936
2937
2938

2939
2940
2941
2942
2943
2944
2945
        sqlite3MayAbort(pParse);
      }
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      if( pExpr->affinity==OE_Ignore ){
        sqlite3VdbeAddOp4(
            v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
      }else{
        sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);

      }

      break;
    }
#endif
  }
  sqlite3ReleaseTempReg(pParse, regFree1);







|
>







2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
        sqlite3MayAbort(pParse);
      }
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      if( pExpr->affinity==OE_Ignore ){
        sqlite3VdbeAddOp4(
            v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
      }else{
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
                              pExpr->affinity, pExpr->u.zToken, 0);
      }

      break;
    }
#endif
  }
  sqlite3ReleaseTempReg(pParse, regFree1);
3277
3278
3279
3280
3281
3282
3283






3284
3285
3286
3287
3288
3289
3290
  }else{
    sqlite3ExplainPush(pOut);
    for(i=0; i<pList->nExpr; i++){
      sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
      sqlite3ExplainPush(pOut);
      sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
      sqlite3ExplainPop(pOut);






      if( i<pList->nExpr-1 ){
        sqlite3ExplainNL(pOut);
      }
    }
    sqlite3ExplainPop(pOut);
  }
}







>
>
>
>
>
>







3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
  }else{
    sqlite3ExplainPush(pOut);
    for(i=0; i<pList->nExpr; i++){
      sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
      sqlite3ExplainPush(pOut);
      sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
      sqlite3ExplainPop(pOut);
      if( pList->a[i].zName ){
        sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
      }
      if( pList->a[i].bSpanIsTab ){
        sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
      }
      if( i<pList->nExpr-1 ){
        sqlite3ExplainNL(pOut);
      }
    }
    sqlite3ExplainPop(pOut);
  }
}
Changes to src/fkey.c.
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
#ifndef SQLITE_OMIT_TRIGGER

/*
** Deferred and Immediate FKs
** --------------------------
**
** Foreign keys in SQLite come in two flavours: deferred and immediate.
** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT

** is returned and the current statement transaction rolled back. If a 
** deferred foreign key constraint is violated, no action is taken 
** immediately. However if the application attempts to commit the 
** transaction before fixing the constraint violation, the attempt fails.
**
** Deferred constraints are implemented using a simple counter associated
** with the database handle. The counter is set to zero each time a 
** database transaction is opened. Each time a statement is executed 







|
>
|







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#ifndef SQLITE_OMIT_TRIGGER

/*
** Deferred and Immediate FKs
** --------------------------
**
** Foreign keys in SQLite come in two flavours: deferred and immediate.
** If an immediate foreign key constraint is violated,
** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
** statement transaction rolled back. If a 
** deferred foreign key constraint is violated, no action is taken 
** immediately. However if the application attempts to commit the 
** transaction before fixing the constraint violation, the attempt fails.
**
** Deferred constraints are implemented using a simple counter associated
** with the database handle. The counter is set to zero each time a 
** database transaction is opened. Each time a statement is executed 
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
** If a delete caused by OR REPLACE violates an FK constraint, an exception
** is thrown, even if the FK constraint would be satisfied after the new 
** row is inserted.
**
** Immediate constraints are usually handled similarly. The only difference 
** is that the counter used is stored as part of each individual statement
** object (struct Vdbe). If, after the statement has run, its immediate
** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT

** and the statement transaction is rolled back. An exception is an INSERT
** statement that inserts a single row only (no triggers). In this case,
** instead of using a counter, an exception is thrown immediately if the
** INSERT violates a foreign key constraint. This is necessary as such
** an INSERT does not open a statement transaction.
**
** TODO: How should dropping a table be handled? How should renaming a 







|
>







83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
** If a delete caused by OR REPLACE violates an FK constraint, an exception
** is thrown, even if the FK constraint would be satisfied after the new 
** row is inserted.
**
** Immediate constraints are usually handled similarly. The only difference 
** is that the counter used is stored as part of each individual statement
** object (struct Vdbe). If, after the statement has run, its immediate
** constraint counter is greater than zero,
** it returns SQLITE_CONSTRAINT_FOREIGNKEY
** and the statement transaction is rolled back. An exception is an INSERT
** statement that inserts a single row only (no triggers). In this case,
** instead of using a counter, an exception is thrown immediately if the
** INSERT violates a foreign key constraint. This is necessary as such
** an INSERT does not open a statement transaction.
**
** TODO: How should dropping a table be handled? How should renaming a 
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
**   Register (x+3):      3.1  (type real)
*/

/*
** A foreign key constraint requires that the key columns in the parent
** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
** Given that pParent is the parent table for foreign key constraint pFKey, 
** search the schema a unique index on the parent key columns. 
**
** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 
** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 
** is set to point to the unique index. 
** 
** If the parent key consists of a single column (the foreign key constraint
** is not a composite foreign key), output variable *paiCol is set to NULL.







|







140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
**   Register (x+3):      3.1  (type real)
*/

/*
** A foreign key constraint requires that the key columns in the parent
** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
** Given that pParent is the parent table for foreign key constraint pFKey, 
** search the schema for a unique index on the parent key columns. 
**
** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 
** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 
** is set to point to the unique index. 
** 
** If the parent key consists of a single column (the foreign key constraint
** is not a composite foreign key), output variable *paiCol is set to NULL.
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
**      consists of a a different number of columns to the child key in 
**      the child table.
**
** then non-zero is returned, and a "foreign key mismatch" error loaded
** into pParse. If an OOM error occurs, non-zero is returned and the
** pParse->db->mallocFailed flag is set.
*/
static int locateFkeyIndex(
  Parse *pParse,                  /* Parse context to store any error in */
  Table *pParent,                 /* Parent table of FK constraint pFKey */
  FKey *pFKey,                    /* Foreign key to find index for */
  Index **ppIdx,                  /* OUT: Unique index on parent table */
  int **paiCol                    /* OUT: Map of index columns in pFKey */
){
  Index *pIdx = 0;                    /* Value to return via *ppIdx */







|







176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
**      consists of a a different number of columns to the child key in 
**      the child table.
**
** then non-zero is returned, and a "foreign key mismatch" error loaded
** into pParse. If an OOM error occurs, non-zero is returned and the
** pParse->db->mallocFailed flag is set.
*/
int sqlite3FkLocateIndex(
  Parse *pParse,                  /* Parse context to store any error in */
  Table *pParent,                 /* Parent table of FK constraint pFKey */
  FKey *pFKey,                    /* Foreign key to find index for */
  Index **ppIdx,                  /* OUT: Unique index on parent table */
  int **paiCol                    /* OUT: Map of index columns in pFKey */
){
  Index *pIdx = 0;                    /* Value to return via *ppIdx */
271
272
273
274
275
276
277
278


279
280
281
282
283
284
285
        if( i==nCol ) break;      /* pIdx is usable */
      }
    }
  }

  if( !pIdx ){
    if( !pParse->disableTriggers ){
      sqlite3ErrorMsg(pParse, "foreign key mismatch");


    }
    sqlite3DbFree(pParse->db, aiCol);
    return 1;
  }

  *ppIdx = pIdx;
  return 0;







|
>
>







273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        if( i==nCol ) break;      /* pIdx is usable */
      }
    }
  }

  if( !pIdx ){
    if( !pParse->disableTriggers ){
      sqlite3ErrorMsg(pParse,
           "foreign key mismatch - \"%w\" referencing \"%w\"",
           pFKey->pFrom->zName, pFKey->zTo);
    }
    sqlite3DbFree(pParse->db, aiCol);
    return 1;
  }

  *ppIdx = pIdx;
  return 0;
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

  if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
    /* Special case: If this is an INSERT statement that will insert exactly
    ** one row into the table, raise a constraint immediately instead of
    ** incrementing a counter. This is necessary as the VM code is being
    ** generated for will not open a statement transaction.  */
    assert( nIncr==1 );
    sqlite3HaltConstraint(
        pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
    );
  }else{
    if( nIncr>0 && pFKey->isDeferred==0 ){
      sqlite3ParseToplevel(pParse)->mayAbort = 1;
    }
    sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  }







|
|







424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

  if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
    /* Special case: If this is an INSERT statement that will insert exactly
    ** one row into the table, raise a constraint immediately instead of
    ** incrementing a counter. This is necessary as the VM code is being
    ** generated for will not open a statement transaction.  */
    assert( nIncr==1 );
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
        OE_Abort, "foreign key constraint failed", P4_STATIC
    );
  }else{
    if( nIncr>0 && pFKey->isDeferred==0 ){
      sqlite3ParseToplevel(pParse)->mayAbort = 1;
    }
    sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  }
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    pParse->disableTriggers = 0;

    /* If the DELETE has generated immediate foreign key constraint 
    ** violations, halt the VDBE and return an error at this point, before
    ** any modifications to the schema are made. This is because statement
    ** transactions are not able to rollback schema changes.  */
    sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
    );

    if( iSkip ){
      sqlite3VdbeResolveLabel(v, iSkip);
    }
  }
}







|
|







665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    pParse->disableTriggers = 0;

    /* If the DELETE has generated immediate foreign key constraint 
    ** violations, halt the VDBE and return an error at this point, before
    ** any modifications to the schema are made. This is because statement
    ** transactions are not able to rollback schema changes.  */
    sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
        OE_Abort, "foreign key constraint failed", P4_STATIC
    );

    if( iSkip ){
      sqlite3VdbeResolveLabel(v, iSkip);
    }
  }
}
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    ** schema items cannot be located, set an error in pParse and return 
    ** early.  */
    if( pParse->disableTriggers ){
      pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
    }else{
      pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
    }
    if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
      assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
      if( !isIgnoreErrors || db->mallocFailed ) return;
      if( pTo==0 ){
        /* If isIgnoreErrors is true, then a table is being dropped. In this
        ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
        ** before actually dropping it in order to check FK constraints.
        ** If the parent table of an FK constraint on the current table is







|







736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
    ** schema items cannot be located, set an error in pParse and return 
    ** early.  */
    if( pParse->disableTriggers ){
      pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
    }else{
      pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
    }
    if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
      assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
      if( !isIgnoreErrors || db->mallocFailed ) return;
      if( pTo==0 ){
        /* If isIgnoreErrors is true, then a table is being dropped. In this
        ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
        ** before actually dropping it in order to check FK constraints.
        ** If the parent table of an FK constraint on the current table is
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
    if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause an immediate
      ** foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
      if( !isIgnoreErrors || db->mallocFailed ) return;
      continue;
    }
    assert( aiCol || pFKey->nCol==1 );

    /* Create a SrcList structure containing a single table (the table 
    ** the foreign key that refers to this table is attached to). This







|







816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
    if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause an immediate
      ** foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
      if( !isIgnoreErrors || db->mallocFailed ) return;
      continue;
    }
    assert( aiCol || pFKey->nCol==1 );

    /* Create a SrcList structure containing a single table (the table 
    ** the foreign key that refers to this table is attached to). This
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
    FKey *p;
    int i;
    for(p=pTab->pFKey; p; p=p->pNextFrom){
      for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
    }
    for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
      Index *pIdx = 0;
      locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
      if( pIdx ){
        for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
      }
    }
  }
  return mask;
}







|







871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
    FKey *p;
    int i;
    for(p=pTab->pFKey; p; p=p->pNextFrom){
      for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
    }
    for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
      Index *pIdx = 0;
      sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
      if( pIdx ){
        for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
      }
    }
  }
  return mask;
}
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    TriggerStep *pStep = 0;        /* First (only) step of trigger program */
    Expr *pWhere = 0;             /* WHERE clause of trigger step */
    ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
    Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
    int i;                        /* Iterator variable */
    Expr *pWhen = 0;              /* WHEN clause for the trigger */

    if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
    assert( aiCol || pFKey->nCol==1 );

    for(i=0; i<pFKey->nCol; i++){
      Token tOld = { "old", 3 };  /* Literal "old" token */
      Token tNew = { "new", 3 };  /* Literal "new" token */
      Token tFromCol;             /* Name of column in child table */
      Token tToCol;               /* Name of column in parent table */







|







997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    TriggerStep *pStep = 0;        /* First (only) step of trigger program */
    Expr *pWhere = 0;             /* WHERE clause of trigger step */
    ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
    Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
    int i;                        /* Iterator variable */
    Expr *pWhen = 0;              /* WHEN clause for the trigger */

    if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
    assert( aiCol || pFKey->nCol==1 );

    for(i=0; i<pFKey->nCol; i++){
      Token tOld = { "old", 3 };  /* Literal "old" token */
      Token tNew = { "new", 3 };  /* Literal "new" token */
      Token tFromCol;             /* Name of column in child table */
      Token tToCol;               /* Name of column in parent table */
Changes to src/func.c.
957
958
959
960
961
962
963
























































964
965
966
967
968
969
970
    default: {
      assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
      sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
      break;
    }
  }
}

























































/*
** The hex() function.  Interpret the argument as a blob.  Return
** a hexadecimal rendering as text.
*/
static void hexFunc(
  sqlite3_context *context,







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    default: {
      assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
      sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
      break;
    }
  }
}

/*
** The unicode() function.  Return the integer unicode code-point value
** for the first character of the input string. 
*/
static void unicodeFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const unsigned char *z = sqlite3_value_text(argv[0]);
  (void)argc;
  if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
}

/*
** The char() function takes zero or more arguments, each of which is
** an integer.  It constructs a string where each character of the string
** is the unicode character for the corresponding integer argument.
*/
static void charFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  unsigned char *z, *zOut;
  int i;
  zOut = z = sqlite3_malloc( argc*4 );
  if( z==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }
  for(i=0; i<argc; i++){
    sqlite3_int64 x;
    unsigned c;
    x = sqlite3_value_int64(argv[i]);
    if( x<0 || x>0x10ffff ) x = 0xfffd;
    c = (unsigned)(x & 0x1fffff);
    if( c<0x00080 ){
      *zOut++ = (u8)(c&0xFF);
    }else if( c<0x00800 ){
      *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
      *zOut++ = 0x80 + (u8)(c & 0x3F);
    }else if( c<0x10000 ){
      *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
      *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
      *zOut++ = 0x80 + (u8)(c & 0x3F);
    }else{
      *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
      *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
      *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
      *zOut++ = 0x80 + (u8)(c & 0x3F);
    }                                                    \
  }
  sqlite3_result_text(context, (char*)z, (int)(zOut-z), sqlite3_free);
}

/*
** The hex() function.  Interpret the argument as a blob.  Return
** a hexadecimal rendering as text.
*/
static void hexFunc(
  sqlite3_context *context,
1585
1586
1587
1588
1589
1590
1591


1592
1593
1594
1595
1596
1597
1598
    FUNCTION(max,                0, 1, 1, 0                ),
    AGGREGATE(max,               1, 1, 1, minmaxStep,      minMaxFinalize ),
    FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
    FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
    FUNCTION(instr,              2, 0, 0, instrFunc        ),
    FUNCTION(substr,             2, 0, 0, substrFunc       ),
    FUNCTION(substr,             3, 0, 0, substrFunc       ),


    FUNCTION(abs,                1, 0, 0, absFunc          ),
#ifndef SQLITE_OMIT_FLOATING_POINT
    FUNCTION(round,              1, 0, 0, roundFunc        ),
    FUNCTION(round,              2, 0, 0, roundFunc        ),
#endif
    FUNCTION(upper,              1, 0, 0, upperFunc        ),
    FUNCTION(lower,              1, 0, 0, lowerFunc        ),







>
>







1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
    FUNCTION(max,                0, 1, 1, 0                ),
    AGGREGATE(max,               1, 1, 1, minmaxStep,      minMaxFinalize ),
    FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
    FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
    FUNCTION(instr,              2, 0, 0, instrFunc        ),
    FUNCTION(substr,             2, 0, 0, substrFunc       ),
    FUNCTION(substr,             3, 0, 0, substrFunc       ),
    FUNCTION(unicode,            1, 0, 0, unicodeFunc      ),
    FUNCTION(char,              -1, 0, 0, charFunc         ),
    FUNCTION(abs,                1, 0, 0, absFunc          ),
#ifndef SQLITE_OMIT_FLOATING_POINT
    FUNCTION(round,              1, 0, 0, roundFunc        ),
    FUNCTION(round,              2, 0, 0, roundFunc        ),
#endif
    FUNCTION(upper,              1, 0, 0, upperFunc        ),
    FUNCTION(lower,              1, 0, 0, lowerFunc        ),
Changes to src/insert.c.
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
    switch( onError ){
      case OE_Abort:
        sqlite3MayAbort(pParse);
      case OE_Rollback:
      case OE_Fail: {
        char *zMsg;
        sqlite3VdbeAddOp3(v, OP_HaltIfNull,
                                  SQLITE_CONSTRAINT, onError, regData+i);
        zMsg = sqlite3MPrintf(db, "%s.%s may not be NULL",
                              pTab->zName, pTab->aCol[i].zName);
        sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
        break;
      }
      case OE_Ignore: {
        sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);







|







1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
    switch( onError ){
      case OE_Abort:
        sqlite3MayAbort(pParse);
      case OE_Rollback:
      case OE_Fail: {
        char *zMsg;
        sqlite3VdbeAddOp3(v, OP_HaltIfNull,
                          SQLITE_CONSTRAINT_NOTNULL, onError, regData+i);
        zMsg = sqlite3MPrintf(db, "%s.%s may not be NULL",
                              pTab->zName, pTab->aCol[i].zName);
        sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
        break;
      }
      case OE_Ignore: {
        sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);
1281
1282
1283
1284
1285
1286
1287
1288

1289
1290
1291
1292
1293
1294
1295
        char *zConsName = pCheck->a[i].zName;
        if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
        if( zConsName ){
          zConsName = sqlite3MPrintf(db, "constraint %s failed", zConsName);
        }else{
          zConsName = 0;
        }
        sqlite3HaltConstraint(pParse, onError, zConsName, P4_DYNAMIC);

      }
      sqlite3VdbeResolveLabel(v, allOk);
    }
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key







|
>







1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        char *zConsName = pCheck->a[i].zName;
        if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
        if( zConsName ){
          zConsName = sqlite3MPrintf(db, "constraint %s failed", zConsName);
        }else{
          zConsName = 0;
        }
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
                              onError, zConsName, P4_DYNAMIC);
      }
      sqlite3VdbeResolveLabel(v, allOk);
    }
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        sqlite3HaltConstraint(
          pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
        break;
      }
      case OE_Replace: {
        /* If there are DELETE triggers on this table and the
        ** recursive-triggers flag is set, call GenerateRowDelete() to
        ** remove the conflicting row from the table. This will fire
        ** the triggers and remove both the table and index b-tree entries.







|
|







1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_PRIMARYKEY,
           onError, "PRIMARY KEY must be unique", P4_STATIC);
        break;
      }
      case OE_Replace: {
        /* If there are DELETE triggers on this table and the
        ** recursive-triggers flag is set, call GenerateRowDelete() to
        ** remove the conflicting row from the table. This will fire
        ** the triggers and remove both the table and index b-tree entries.
1440
1441
1442
1443
1444
1445
1446
1447

1448
1449
1450
1451
1452
1453
1454
          sqlite3StrAccumAppend(&errMsg, zSep, -1);
          zSep = ", ";
          sqlite3StrAccumAppend(&errMsg, zCol, -1);
        }
        sqlite3StrAccumAppend(&errMsg,
            pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
        zErr = sqlite3StrAccumFinish(&errMsg);
        sqlite3HaltConstraint(pParse, onError, zErr, 0);

        sqlite3DbFree(errMsg.db, zErr);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;







|
>







1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
          sqlite3StrAccumAppend(&errMsg, zSep, -1);
          zSep = ", ";
          sqlite3StrAccumAppend(&errMsg, zCol, -1);
        }
        sqlite3StrAccumAppend(&errMsg,
            pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
        zErr = sqlite3StrAccumFinish(&errMsg);
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE,
                              onError, zErr, 0);
        sqlite3DbFree(errMsg.db, zErr);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
  sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
  emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
  regData = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
    sqlite3HaltConstraint(
        pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, regRowid);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    assert( (pDest->tabFlags & TF_Autoincrement)==0 );







|
|







1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
  sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
  emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
  regData = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_PRIMARYKEY,
        onError, "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, regRowid);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    assert( (pDest->tabFlags & TF_Autoincrement)==0 );
Changes to src/journal.c.
54
55
56
57
58
59
60








61
62
63
64
65
66
67
    sqlite3_file *pReal = (sqlite3_file *)&p[1];
    rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
    if( rc==SQLITE_OK ){
      p->pReal = pReal;
      if( p->iSize>0 ){
        assert(p->iSize<=p->nBuf);
        rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);








      }
    }
  }
  return rc;
}

/*







>
>
>
>
>
>
>
>







54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    sqlite3_file *pReal = (sqlite3_file *)&p[1];
    rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
    if( rc==SQLITE_OK ){
      p->pReal = pReal;
      if( p->iSize>0 ){
        assert(p->iSize<=p->nBuf);
        rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
      }
      if( rc!=SQLITE_OK ){
        /* If an error occurred while writing to the file, close it before
        ** returning. This way, SQLite uses the in-memory journal data to 
        ** roll back changes made to the internal page-cache before this
        ** function was called.  */
        sqlite3OsClose(pReal);
        p->pReal = 0;
      }
    }
  }
  return rc;
}

/*
Changes to src/loadext.c.
374
375
376
377
378
379
380













381
382
383
384
385
386
387
  0,
  0,
  0,
#endif
  sqlite3_blob_reopen,
  sqlite3_vtab_config,
  sqlite3_vtab_on_conflict,













};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.







>
>
>
>
>
>
>
>
>
>
>
>
>







374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
  0,
  0,
  0,
#endif
  sqlite3_blob_reopen,
  sqlite3_vtab_config,
  sqlite3_vtab_on_conflict,
  sqlite3_close_v2,
  sqlite3_db_filename,
  sqlite3_db_readonly,
  sqlite3_db_release_memory,
  sqlite3_errstr,
  sqlite3_stmt_busy,
  sqlite3_stmt_readonly,
  sqlite3_stricmp,
  sqlite3_uri_boolean,
  sqlite3_uri_int64,
  sqlite3_uri_parameter,
  sqlite3_vsnprintf,
  sqlite3_wal_checkpoint_v2
};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.
Changes to src/main.c.
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
      sqlite3BtreeRollback(p, tripCode);
      db->aDb[i].inTrans = 0;
    }
  }
  sqlite3VtabRollback(db);
  sqlite3EndBenignMalloc();

  if( db->flags&SQLITE_InternChanges ){
    sqlite3ExpirePreparedStatements(db);
    sqlite3ResetAllSchemasOfConnection(db);
  }

  /* Any deferred constraint violations have now been resolved. */
  db->nDeferredCons = 0;








|







998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
      sqlite3BtreeRollback(p, tripCode);
      db->aDb[i].inTrans = 0;
    }
  }
  sqlite3VtabRollback(db);
  sqlite3EndBenignMalloc();

  if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){
    sqlite3ExpirePreparedStatements(db);
    sqlite3ResetAllSchemasOfConnection(db);
  }

  /* Any deferred constraint violations have now been resolved. */
  db->nDeferredCons = 0;

Changes to src/os_unix.c.
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
  { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
#else
  { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
                    aSyscall[13].pCurrent)

#if SQLITE_ENABLE_LOCKING_STYLE
  { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },
#else
  { "fchmod",       (sqlite3_syscall_ptr)0,          0  },
#endif
#define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
  { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
#else
  { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
#endif







<

<
<
<







408
409
410
411
412
413
414

415



416
417
418
419
420
421
422
  { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
#else
  { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
                    aSyscall[13].pCurrent)


  { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },



#define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
  { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
#else
  { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
#endif
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

  { "fchown",       (sqlite3_syscall_ptr)posixFchown,     0 },
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)

  { "umask",        (sqlite3_syscall_ptr)umask,           0 },
#define osUmask     ((mode_t(*)(mode_t))aSyscall[21].pCurrent)

}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.







<
<
<







433
434
435
436
437
438
439



440
441
442
443
444
445
446

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

  { "fchown",       (sqlite3_syscall_ptr)posixFchown,     0 },
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)




}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

566





567
568

569
570
571

572
573
574
575
576
577
578
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int fd;
  mode_t m2;
  mode_t origM = 0;
  if( m==0 ){
    m2 = SQLITE_DEFAULT_FILE_PERMISSIONS;
  }else{
    m2 = m;
    origM = osUmask(0);
  }
  do{
#if defined(O_CLOEXEC)
    fd = osOpen(z,f|O_CLOEXEC,m2);
#else
    fd = osOpen(z,f,m2);
#endif
  }while( fd<0 && errno==EINTR );

  if( m ){





    osUmask(origM);
  }

#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
  if( fd>=0 ) osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif

  return fd;
}

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be 







<
<
<
|
<
<
<
<







>
|
>
>
>
>
>
|
|
>

|

>







537
538
539
540
541
542
543



544




545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int fd;



  mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;




  do{
#if defined(O_CLOEXEC)
    fd = osOpen(z,f|O_CLOEXEC,m2);
#else
    fd = osOpen(z,f,m2);
#endif
  }while( fd<0 && errno==EINTR );
  if( fd>=0 ){
    if( m!=0 ){
      struct stat statbuf;
      if( osFstat(fd, &statbuf)==0 
       && statbuf.st_size==0
       && (statbuf.st_mode&0777)!=m 
      ){
        osFchmod(fd, m);
      }
    }
#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
    osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif
  }
  return fd;
}

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be 
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
  pNew->pVfs = pVfs;
  pNew->zPath = zFilename;
  pNew->ctrlFlags = (u8)ctrlFlags;
  if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
                           "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pNew->ctrlFlags |= UNIXFILE_PSOW;
  }
  if( memcmp(pVfs->zName,"unix-excl",10)==0 ){
    pNew->ctrlFlags |= UNIXFILE_EXCL;
  }

#if OS_VXWORKS
  pNew->pId = vxworksFindFileId(zFilename);
  if( pNew->pId==0 ){
    ctrlFlags |= UNIXFILE_NOLOCK;







|







4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
  pNew->pVfs = pVfs;
  pNew->zPath = zFilename;
  pNew->ctrlFlags = (u8)ctrlFlags;
  if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
                           "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pNew->ctrlFlags |= UNIXFILE_PSOW;
  }
  if( strcmp(pVfs->zName,"unix-excl")==0 ){
    pNew->ctrlFlags |= UNIXFILE_EXCL;
  }

#if OS_VXWORKS
  pNew->pId = vxworksFindFileId(zFilename);
  if( pNew->pId==0 ){
    ctrlFlags |= UNIXFILE_NOLOCK;
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==22 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}







|







6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==21 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}
Changes to src/os_win.c.
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
}

/*
** This function outputs the specified (ANSI) string to the Win32 debugger
** (if available).
*/

void sqlite3_win32_write_debug(char *zBuf, int nBuf){
  char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
  int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
  if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
  assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
#if defined(SQLITE_WIN32_HAS_ANSI)
  if( nMin>0 ){
    memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);







|







984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
}

/*
** This function outputs the specified (ANSI) string to the Win32 debugger
** (if available).
*/

void sqlite3_win32_write_debug(const char *zBuf, int nBuf){
  char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
  int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
  if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
  assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
#if defined(SQLITE_WIN32_HAS_ANSI)
  if( nMin>0 ){
    memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
1617
1618
1619
1620
1621
1622
1623

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/

/*
** Windows CE does not have a localtime() function.  So create a
** substitute.
*/
#include <time.h>
struct tm *__cdecl localtime(const time_t *t)
{
  static struct tm y;
  FILETIME uTm, lTm;
  SYSTEMTIME pTm;







>

|
|







1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/
#if !defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API
/*
** The MSVC CRT on Windows CE may not have a localtime() function.  So
** create a substitute.
*/
#include <time.h>
struct tm *__cdecl localtime(const time_t *t)
{
  static struct tm y;
  FILETIME uTm, lTm;
  SYSTEMTIME pTm;
1643
1644
1645
1646
1647
1648
1649

1650
1651
1652
1653
1654
1655
1656
  y.tm_wday = pTm.wDayOfWeek;
  y.tm_mday = pTm.wDay;
  y.tm_hour = pTm.wHour;
  y.tm_min = pTm.wMinute;
  y.tm_sec = pTm.wSecond;
  return &y;
}


#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]

/*
** Acquire a lock on the handle h
*/
static void winceMutexAcquire(HANDLE h){







>







1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
  y.tm_wday = pTm.wDayOfWeek;
  y.tm_mday = pTm.wDay;
  y.tm_hour = pTm.wHour;
  y.tm_min = pTm.wMinute;
  y.tm_sec = pTm.wSecond;
  return &y;
}
#endif

#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]

/*
** Acquire a lock on the handle h
*/
static void winceMutexAcquire(HANDLE h){
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673


1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695

1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714

1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729

1730
1731
1732
1733
1734
1735
1736






1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
*/
#define winceMutexRelease(h) ReleaseMutex(h)

/*
** Create the mutex and shared memory used for locking in the file
** descriptor pFile
*/
static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
  LPWSTR zTok;
  LPWSTR zName;


  BOOL bInit = TRUE;

  zName = utf8ToUnicode(zFilename);
  if( zName==0 ){
    /* out of memory */
    return FALSE;
  }

  /* Initialize the local lockdata */
  memset(&pFile->local, 0, sizeof(pFile->local));

  /* Replace the backslashes from the filename and lowercase it
  ** to derive a mutex name. */
  zTok = osCharLowerW(zName);
  for (;*zTok;zTok++){
    if (*zTok == '\\') *zTok = '_';
  }

  /* Create/open the named mutex */
  pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
  if (!pFile->hMutex){
    pFile->lastErrno = osGetLastError();

    winLogError(SQLITE_ERROR, pFile->lastErrno, "winceCreateLock1", zFilename);
    sqlite3_free(zName);
    return FALSE;
  }

  /* Acquire the mutex before continuing */
  winceMutexAcquire(pFile->hMutex);
  
  /* Since the names of named mutexes, semaphores, file mappings etc are 
  ** case-sensitive, take advantage of that by uppercasing the mutex name
  ** and using that as the shared filemapping name.
  */
  osCharUpperW(zName);
  pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
                                        PAGE_READWRITE, 0, sizeof(winceLock),
                                        zName);  

  /* Set a flag that indicates we're the first to create the memory so it 
  ** must be zero-initialized */

  if (osGetLastError() == ERROR_ALREADY_EXISTS){
    bInit = FALSE;
  }

  sqlite3_free(zName);

  /* If we succeeded in making the shared memory handle, map it. */
  if (pFile->hShared){
    pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared, 
             FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
    /* If mapping failed, close the shared memory handle and erase it */
    if (!pFile->shared){
      pFile->lastErrno = osGetLastError();
      winLogError(SQLITE_ERROR, pFile->lastErrno,
               "winceCreateLock2", zFilename);

      osCloseHandle(pFile->hShared);
      pFile->hShared = NULL;
    }
  }

  /* If shared memory could not be created, then close the mutex and fail */
  if (pFile->hShared == NULL){






    winceMutexRelease(pFile->hMutex);
    osCloseHandle(pFile->hMutex);
    pFile->hMutex = NULL;
    return FALSE;
  }
  
  /* Initialize the shared memory if we're supposed to */
  if (bInit) {
    memset(pFile->shared, 0, sizeof(winceLock));
  }

  winceMutexRelease(pFile->hMutex);
  return TRUE;
}

/*
** Destroy the part of winFile that deals with wince locks
*/
static void winceDestroyLock(winFile *pFile){
  if (pFile->hMutex){







|


>
>





|
















>
|

|
















>
|






|



|

|
|
>






|
>
>
>
>
>
>



|



|




|







1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
*/
#define winceMutexRelease(h) ReleaseMutex(h)

/*
** Create the mutex and shared memory used for locking in the file
** descriptor pFile
*/
static int winceCreateLock(const char *zFilename, winFile *pFile){
  LPWSTR zTok;
  LPWSTR zName;
  DWORD lastErrno;
  BOOL bLogged = FALSE;
  BOOL bInit = TRUE;

  zName = utf8ToUnicode(zFilename);
  if( zName==0 ){
    /* out of memory */
    return SQLITE_IOERR_NOMEM;
  }

  /* Initialize the local lockdata */
  memset(&pFile->local, 0, sizeof(pFile->local));

  /* Replace the backslashes from the filename and lowercase it
  ** to derive a mutex name. */
  zTok = osCharLowerW(zName);
  for (;*zTok;zTok++){
    if (*zTok == '\\') *zTok = '_';
  }

  /* Create/open the named mutex */
  pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
  if (!pFile->hMutex){
    pFile->lastErrno = osGetLastError();
    winLogError(SQLITE_IOERR, pFile->lastErrno,
                "winceCreateLock1", zFilename);
    sqlite3_free(zName);
    return SQLITE_IOERR;
  }

  /* Acquire the mutex before continuing */
  winceMutexAcquire(pFile->hMutex);
  
  /* Since the names of named mutexes, semaphores, file mappings etc are 
  ** case-sensitive, take advantage of that by uppercasing the mutex name
  ** and using that as the shared filemapping name.
  */
  osCharUpperW(zName);
  pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
                                        PAGE_READWRITE, 0, sizeof(winceLock),
                                        zName);  

  /* Set a flag that indicates we're the first to create the memory so it 
  ** must be zero-initialized */
  lastErrno = osGetLastError();
  if (lastErrno == ERROR_ALREADY_EXISTS){
    bInit = FALSE;
  }

  sqlite3_free(zName);

  /* If we succeeded in making the shared memory handle, map it. */
  if( pFile->hShared ){
    pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared, 
             FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
    /* If mapping failed, close the shared memory handle and erase it */
    if( !pFile->shared ){
      pFile->lastErrno = osGetLastError();
      winLogError(SQLITE_IOERR, pFile->lastErrno,
                  "winceCreateLock2", zFilename);
      bLogged = TRUE;
      osCloseHandle(pFile->hShared);
      pFile->hShared = NULL;
    }
  }

  /* If shared memory could not be created, then close the mutex and fail */
  if( pFile->hShared==NULL ){
    if( !bLogged ){
      pFile->lastErrno = lastErrno;
      winLogError(SQLITE_IOERR, pFile->lastErrno,
                  "winceCreateLock3", zFilename);
      bLogged = TRUE;
    }
    winceMutexRelease(pFile->hMutex);
    osCloseHandle(pFile->hMutex);
    pFile->hMutex = NULL;
    return SQLITE_IOERR;
  }
  
  /* Initialize the shared memory if we're supposed to */
  if( bInit ){
    memset(pFile->shared, 0, sizeof(winceLock));
  }

  winceMutexRelease(pFile->hMutex);
  return SQLITE_OK;
}

/*
** Destroy the part of winFile that deals with wince locks
*/
static void winceDestroyLock(winFile *pFile){
  if (pFile->hMutex){
1821
1822
1823
1824
1825
1826
1827
1828

1829
1830
1831
1832
1833
1834
1835
1836
1837
1838

1839
1840
1841
1842
1843
1844
1845
        pFile->shared->nReaders ++;
      }
      bReturn = TRUE;
    }
  }

  /* Want a pending lock? */
  else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){

    /* If no pending lock has been acquired, then acquire it */
    if (pFile->shared->bPending == 0) {
      pFile->shared->bPending = TRUE;
      pFile->local.bPending = TRUE;
      bReturn = TRUE;
    }
  }

  /* Want a reserved lock? */
  else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){

    if (pFile->shared->bReserved == 0) {
      pFile->shared->bReserved = TRUE;
      pFile->local.bReserved = TRUE;
      bReturn = TRUE;
    }
  }








|
>









|
>







1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
        pFile->shared->nReaders ++;
      }
      bReturn = TRUE;
    }
  }

  /* Want a pending lock? */
  else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
           && nNumberOfBytesToLockLow == 1){
    /* If no pending lock has been acquired, then acquire it */
    if (pFile->shared->bPending == 0) {
      pFile->shared->bPending = TRUE;
      pFile->local.bPending = TRUE;
      bReturn = TRUE;
    }
  }

  /* Want a reserved lock? */
  else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
           && nNumberOfBytesToLockLow == 1){
    if (pFile->shared->bReserved == 0) {
      pFile->shared->bReserved = TRUE;
      pFile->local.bReserved = TRUE;
      bReturn = TRUE;
    }
  }

1874
1875
1876
1877
1878
1879
1880
1881

1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892

1893
1894
1895
1896
1897
1898
1899
1900

1901
1902
1903
1904
1905
1906
1907
      pFile->local.bExclusive = FALSE;
      pFile->shared->bExclusive = FALSE;
      bReturn = TRUE;
    }

    /* Did we just have a reader lock? */
    else if (pFile->local.nReaders){
      assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1);

      pFile->local.nReaders --;
      if (pFile->local.nReaders == 0)
      {
        pFile->shared->nReaders --;
      }
      bReturn = TRUE;
    }
  }

  /* Releasing a pending lock */
  else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){

    if (pFile->local.bPending){
      pFile->local.bPending = FALSE;
      pFile->shared->bPending = FALSE;
      bReturn = TRUE;
    }
  }
  /* Releasing a reserved lock */
  else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){

    if (pFile->local.bReserved) {
      pFile->local.bReserved = FALSE;
      pFile->shared->bReserved = FALSE;
      bReturn = TRUE;
    }
  }








|
>










|
>







|
>







1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
      pFile->local.bExclusive = FALSE;
      pFile->shared->bExclusive = FALSE;
      bReturn = TRUE;
    }

    /* Did we just have a reader lock? */
    else if (pFile->local.nReaders){
      assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE
             || nNumberOfBytesToUnlockLow == 1);
      pFile->local.nReaders --;
      if (pFile->local.nReaders == 0)
      {
        pFile->shared->nReaders --;
      }
      bReturn = TRUE;
    }
  }

  /* Releasing a pending lock */
  else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
           && nNumberOfBytesToUnlockLow == 1){
    if (pFile->local.bPending){
      pFile->local.bPending = FALSE;
      pFile->shared->bPending = FALSE;
      bReturn = TRUE;
    }
  }
  /* Releasing a reserved lock */
  else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
           && nNumberOfBytesToUnlockLow == 1){
    if (pFile->local.bReserved) {
      pFile->local.bReserved = FALSE;
      pFile->shared->bReserved = FALSE;
      bReturn = TRUE;
    }
  }

2059
2060
2061
2062
2063
2064
2065

2066
2067
2068
2069
2070
2071
2072
  winFile *pFile = (winFile*)id;

  assert( id!=0 );
#ifndef SQLITE_OMIT_WAL
  assert( pFile->pShm==0 );
#endif
  OSTRACE(("CLOSE %d\n", pFile->h));

  do{
    rc = osCloseHandle(pFile->h);
    /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
  }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
#if SQLITE_OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3
  winceDestroyLock(pFile);







>







2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
  winFile *pFile = (winFile*)id;

  assert( id!=0 );
#ifndef SQLITE_OMIT_WAL
  assert( pFile->pShm==0 );
#endif
  OSTRACE(("CLOSE %d\n", pFile->h));
  assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE );
  do{
    rc = osCloseHandle(pFile->h);
    /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
  }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
#if SQLITE_OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3
  winceDestroyLock(pFile);
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
        win32IoerrRetryDelay = a[1];
      }else{
        a[1] = win32IoerrRetryDelay;
      }
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_TEMPFILENAME: {
      char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname );
      if( zTFile ){
        getTempname(pFile->pVfs->mxPathname, zTFile);
        *(char**)pArg = zTFile;
      }
      return SQLITE_OK;
    }
  }







|







2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
        win32IoerrRetryDelay = a[1];
      }else{
        a[1] = win32IoerrRetryDelay;
      }
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_TEMPFILENAME: {
      char *zTFile = sqlite3MallocZero( pFile->pVfs->mxPathname );
      if( zTFile ){
        getTempname(pFile->pVfs->mxPathname, zTFile);
        *(char**)pArg = zTFile;
      }
      return SQLITE_OK;
    }
  }
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
                 (int)osGetCurrentProcessId(), i,
                 bRc ? "ok" : "failed"));
        bRc = osCloseHandle(p->aRegion[i].hMap);
        OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n",
                 (int)osGetCurrentProcessId(), i,
                 bRc ? "ok" : "failed"));
      }
      if( p->hFile.h != INVALID_HANDLE_VALUE ){
        SimulateIOErrorBenign(1);
        winClose((sqlite3_file *)&p->hFile);
        SimulateIOErrorBenign(0);
      }
      if( deleteFlag ){
        SimulateIOErrorBenign(1);
        sqlite3BeginBenignMalloc();







|







2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
                 (int)osGetCurrentProcessId(), i,
                 bRc ? "ok" : "failed"));
        bRc = osCloseHandle(p->aRegion[i].hMap);
        OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n",
                 (int)osGetCurrentProcessId(), i,
                 bRc ? "ok" : "failed"));
      }
      if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){
        SimulateIOErrorBenign(1);
        winClose((sqlite3_file *)&p->hFile);
        SimulateIOErrorBenign(0);
      }
      if( deleteFlag ){
        SimulateIOErrorBenign(1);
        sqlite3BeginBenignMalloc();
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
      rc = SQLITE_IOERR_NOMEM;
      goto shm_open_err;
    }

    rc = winOpen(pDbFd->pVfs,
                 pShmNode->zFilename,             /* Name of the file (UTF-8) */
                 (sqlite3_file*)&pShmNode->hFile,  /* File handle here */
                 SQLITE_OPEN_WAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, /* Mode flags */
                 0);
    if( SQLITE_OK!=rc ){
      goto shm_open_err;
    }

    /* Check to see if another process is holding the dead-man switch.
    ** If not, truncate the file to zero length. 







|







3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
      rc = SQLITE_IOERR_NOMEM;
      goto shm_open_err;
    }

    rc = winOpen(pDbFd->pVfs,
                 pShmNode->zFilename,             /* Name of the file (UTF-8) */
                 (sqlite3_file*)&pShmNode->hFile,  /* File handle here */
                 SQLITE_OPEN_WAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE,
                 0);
    if( SQLITE_OK!=rc ){
      goto shm_open_err;
    }

    /* Check to see if another process is holding the dead-man switch.
    ** If not, truncate the file to zero length. 
3670
3671
3672
3673
3674
3675
3676
3677
3678

3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693

3694
3695
3696
3697
3698
3699
3700
  /* Assert that the upper layer has set one of the "file-type" flags. */
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
  );

  assert( id!=0 );
  UNUSED_PARAMETER(pVfs);


#if SQLITE_OS_WINRT
  if( !sqlite3_temp_directory ){
    sqlite3_log(SQLITE_ERROR,
        "sqlite3_temp_directory variable should be set for WinRT");
  }
#endif

  pFile->h = INVALID_HANDLE_VALUE;

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){
    assert(isDelete && !isOpenJournal);

    rc = getTempname(MAX_PATH+2, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zUtf8Name = zTmpname;
  }








|
|
>








<
<





>







3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706


3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
  /* Assert that the upper layer has set one of the "file-type" flags. */
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
  );

  assert( pFile!=0 );
  memset(pFile, 0, sizeof(winFile));
  pFile->h = INVALID_HANDLE_VALUE;

#if SQLITE_OS_WINRT
  if( !sqlite3_temp_directory ){
    sqlite3_log(SQLITE_ERROR,
        "sqlite3_temp_directory variable should be set for WinRT");
  }
#endif



  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){
    assert(isDelete && !isOpenJournal);
    memset(zTmpname, 0, MAX_PATH+2);
    rc = getTempname(MAX_PATH+2, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zUtf8Name = zTmpname;
  }

3809
3810
3811
3812
3813
3814
3815
3816


3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857









3858
3859
3860
3861
3862
3863
3864

  if( h==INVALID_HANDLE_VALUE ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
    sqlite3_free(zConverted);
    if( isReadWrite && !isExclusive ){
      return winOpen(pVfs, zName, id, 
             ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags);


    }else{
      return SQLITE_CANTOPEN_BKPT;
    }
  }

  if( pOutFlags ){
    if( isReadWrite ){
      *pOutFlags = SQLITE_OPEN_READWRITE;
    }else{
      *pOutFlags = SQLITE_OPEN_READONLY;
    }
  }

  memset(pFile, 0, sizeof(*pFile));
  pFile->pMethod = &winIoMethod;
  pFile->h = h;
  pFile->lastErrno = NO_ERROR;
  pFile->pVfs = pVfs;
#ifndef SQLITE_OMIT_WAL
  pFile->pShm = 0;
#endif
  pFile->zPath = zName;
  if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pFile->ctrlFlags |= WINFILE_PSOW;
  }

#if SQLITE_OS_WINCE
  if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
       && !winceCreateLock(zName, pFile)
  ){
    osCloseHandle(h);
    sqlite3_free(zConverted);
    return SQLITE_CANTOPEN_BKPT;
  }
  if( isTemp ){
    pFile->zDeleteOnClose = zConverted;
  }else
#endif
  {
    sqlite3_free(zConverted);
  }










  OpenCounter(+1);
  return rc;
}

/*
** Delete the named file.







|
>
>













<
<
<
<
<
<
<
<
<
<
<
<
<


|



|








>
>
>
>
>
>
>
>
>







3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850













3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881

  if( h==INVALID_HANDLE_VALUE ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
    sqlite3_free(zConverted);
    if( isReadWrite && !isExclusive ){
      return winOpen(pVfs, zName, id, 
         ((flags|SQLITE_OPEN_READONLY) &
                     ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
         pOutFlags);
    }else{
      return SQLITE_CANTOPEN_BKPT;
    }
  }

  if( pOutFlags ){
    if( isReadWrite ){
      *pOutFlags = SQLITE_OPEN_READWRITE;
    }else{
      *pOutFlags = SQLITE_OPEN_READONLY;
    }
  }














#if SQLITE_OS_WINCE
  if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
       && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK
  ){
    osCloseHandle(h);
    sqlite3_free(zConverted);
    return rc;
  }
  if( isTemp ){
    pFile->zDeleteOnClose = zConverted;
  }else
#endif
  {
    sqlite3_free(zConverted);
  }

  pFile->pMethod = &winIoMethod;
  pFile->pVfs = pVfs;
  pFile->h = h;
  if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pFile->ctrlFlags |= WINFILE_PSOW;
  }
  pFile->lastErrno = NO_ERROR;
  pFile->zPath = zName;

  OpenCounter(+1);
  return rc;
}

/*
** Delete the named file.
3896
3897
3898
3899
3900
3901
3902
3903

3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915

3916
3917
3918
3919
3920
3921
3922
      WIN32_FILE_ATTRIBUTE_DATA sAttrData;
      memset(&sAttrData, 0, sizeof(sAttrData));
      if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard,
                                  &sAttrData) ){
        attr = sAttrData.dwFileAttributes;
      }else{
        lastErrno = osGetLastError();
        if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){

          rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
        }else{
          rc = SQLITE_ERROR;
        }
        break;
      }
#else
      attr = osGetFileAttributesW(zConverted);
#endif
      if ( attr==INVALID_FILE_ATTRIBUTES ){
        lastErrno = osGetLastError();
        if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){

          rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
        }else{
          rc = SQLITE_ERROR;
        }
        break;
      }
      if ( attr&FILE_ATTRIBUTE_DIRECTORY ){







|
>











|
>







3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
      WIN32_FILE_ATTRIBUTE_DATA sAttrData;
      memset(&sAttrData, 0, sizeof(sAttrData));
      if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard,
                                  &sAttrData) ){
        attr = sAttrData.dwFileAttributes;
      }else{
        lastErrno = osGetLastError();
        if( lastErrno==ERROR_FILE_NOT_FOUND
         || lastErrno==ERROR_PATH_NOT_FOUND ){
          rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
        }else{
          rc = SQLITE_ERROR;
        }
        break;
      }
#else
      attr = osGetFileAttributesW(zConverted);
#endif
      if ( attr==INVALID_FILE_ATTRIBUTES ){
        lastErrno = osGetLastError();
        if( lastErrno==ERROR_FILE_NOT_FOUND
         || lastErrno==ERROR_PATH_NOT_FOUND ){
          rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
        }else{
          rc = SQLITE_ERROR;
        }
        break;
      }
      if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
3935
3936
3937
3938
3939
3940
3941
3942

3943
3944
3945
3946
3947
3948
3949
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    do {
      attr = osGetFileAttributesA(zConverted);
      if ( attr==INVALID_FILE_ATTRIBUTES ){
        lastErrno = osGetLastError();
        if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){

          rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
        }else{
          rc = SQLITE_ERROR;
        }
        break;
      }
      if ( attr&FILE_ATTRIBUTE_DIRECTORY ){







|
>







3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
  }
#ifdef SQLITE_WIN32_HAS_ANSI
  else{
    do {
      attr = osGetFileAttributesA(zConverted);
      if ( attr==INVALID_FILE_ATTRIBUTES ){
        lastErrno = osGetLastError();
        if( lastErrno==ERROR_FILE_NOT_FOUND
         || lastErrno==ERROR_PATH_NOT_FOUND ){
          rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
        }else{
          rc = SQLITE_ERROR;
        }
        break;
      }
      if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
4103
4104
4105
4106
4107
4108
4109
4110

4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
    ** NOTE: We are dealing with a relative path name and the data
    **       directory has been set.  Therefore, use it as the basis
    **       for converting the relative path name to an absolute
    **       one by prepending the data directory and a slash.
    */
    char zOut[MAX_PATH+1];
    memset(zOut, 0, MAX_PATH+1);
    cygwin_conv_to_win32_path(zRelative, zOut); /* POSIX to Win32 */

    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s",
                     sqlite3_data_directory, zOut);
  }else{
    /*
    ** NOTE: The Cygwin docs state that the maximum length needed
    **       for the buffer passed to cygwin_conv_to_full_win32_path
    **       is MAX_PATH.
    */
    cygwin_conv_to_full_win32_path(zRelative, zFull);
  }
  return SQLITE_OK;
#endif

#if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__)
  SimulateIOError( return SQLITE_ERROR );
  /* WinCE has no concept of a relative pathname, or so I am told. */







|
>



<
<
<
<
<
|







4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134





4135
4136
4137
4138
4139
4140
4141
4142
    ** NOTE: We are dealing with a relative path name and the data
    **       directory has been set.  Therefore, use it as the basis
    **       for converting the relative path name to an absolute
    **       one by prepending the data directory and a slash.
    */
    char zOut[MAX_PATH+1];
    memset(zOut, 0, MAX_PATH+1);
    cygwin_conv_path(CCP_POSIX_TO_WIN_A|CCP_RELATIVE, zRelative, zOut,
                     MAX_PATH+1);
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s",
                     sqlite3_data_directory, zOut);
  }else{





    cygwin_conv_path(CCP_POSIX_TO_WIN_A, zRelative, zFull, nFull);
  }
  return SQLITE_OK;
#endif

#if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__)
  SimulateIOError( return SQLITE_ERROR );
  /* WinCE has no concept of a relative pathname, or so I am told. */
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
  sqlite3_free(zConverted);
  return (void*)h;
}
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
  UNUSED_PARAMETER(pVfs);
  getLastErrorMsg(osGetLastError(), nBuf, zBufOut);
}
static void (*winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){
  UNUSED_PARAMETER(pVfs);
  return (void(*)(void))osGetProcAddressA((HANDLE)pHandle, zSymbol);
}
static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
  UNUSED_PARAMETER(pVfs);
  osFreeLibrary((HANDLE)pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
  #define winDlOpen  0







|

|







4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
  sqlite3_free(zConverted);
  return (void*)h;
}
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
  UNUSED_PARAMETER(pVfs);
  getLastErrorMsg(osGetLastError(), nBuf, zBufOut);
}
static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){
  UNUSED_PARAMETER(pVfs);
  return (void(*)(void))osGetProcAddressA((HANDLE)pH, zSym);
}
static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
  UNUSED_PARAMETER(pVfs);
  osFreeLibrary((HANDLE)pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
  #define winDlOpen  0
4370
4371
4372
4373
4374
4375
4376
4377

4378
4379
4380
4381
4382
4383
4384
  FILETIME ft;
  static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
#ifdef SQLITE_TEST
  static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
#endif
  /* 2^32 - to avoid use of LL and warnings in gcc */
  static const sqlite3_int64 max32BitValue = 
      (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + (sqlite3_int64)294967296;


#if SQLITE_OS_WINCE
  SYSTEMTIME time;
  osGetSystemTime(&time);
  /* if SystemTimeToFileTime() fails, it returns zero. */
  if (!osSystemTimeToFileTime(&time,&ft)){
    return SQLITE_ERROR;







|
>







4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
  FILETIME ft;
  static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
#ifdef SQLITE_TEST
  static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
#endif
  /* 2^32 - to avoid use of LL and warnings in gcc */
  static const sqlite3_int64 max32BitValue = 
      (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 +
      (sqlite3_int64)294967296;

#if SQLITE_OS_WINCE
  SYSTEMTIME time;
  osGetSystemTime(&time);
  /* if SystemTimeToFileTime() fails, it returns zero. */
  if (!osSystemTimeToFileTime(&time,&ft)){
    return SQLITE_ERROR;
Changes to src/pager.c.
1834
1835
1836
1837
1838
1839
1840


1841
1842
1843
1844
1845
1846
1847
  if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
    pPager->errCode = rc;
    pPager->eState = PAGER_ERROR;
  }
  return rc;
}



/*
** This routine ends a transaction. A transaction is usually ended by 
** either a COMMIT or a ROLLBACK operation. This routine may be called 
** after rollback of a hot-journal, or if an error occurs while opening
** the journal file or writing the very first journal-header of a
** database transaction.
** 







>
>







1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
  if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
    pPager->errCode = rc;
    pPager->eState = PAGER_ERROR;
  }
  return rc;
}

static int pager_truncate(Pager *pPager, Pgno nPage);

/*
** This routine ends a transaction. A transaction is usually ended by 
** either a COMMIT or a ROLLBACK operation. This routine may be called 
** after rollback of a hot-journal, or if an error occurs while opening
** the journal file or writing the very first journal-header of a
** database transaction.
** 
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
** database then the IO error code is returned to the user. If the 
** operation to finalize the journal file fails, then the code still
** tries to unlock the database file if not in exclusive mode. If the
** unlock operation fails as well, then the first error code related
** to the first error encountered (the journal finalization one) is
** returned.
*/
static int pager_end_transaction(Pager *pPager, int hasMaster){
  int rc = SQLITE_OK;      /* Error code from journal finalization operation */
  int rc2 = SQLITE_OK;     /* Error code from db file unlock operation */

  /* Do nothing if the pager does not have an open write transaction
  ** or at least a RESERVED lock. This function may be called when there
  ** is no write-transaction active but a RESERVED or greater lock is
  ** held under two circumstances:







|







1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
** database then the IO error code is returned to the user. If the 
** operation to finalize the journal file fails, then the code still
** tries to unlock the database file if not in exclusive mode. If the
** unlock operation fails as well, then the first error code related
** to the first error encountered (the journal finalization one) is
** returned.
*/
static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){
  int rc = SQLITE_OK;      /* Error code from journal finalization operation */
  int rc2 = SQLITE_OK;     /* Error code from db file unlock operation */

  /* Do nothing if the pager does not have an open write transaction
  ** or at least a RESERVED lock. This function may be called when there
  ** is no write-transaction active but a RESERVED or greater lock is
  ** held under two circumstances:
1973
1974
1975
1976
1977
1978
1979









1980

1981
1982
1983
1984
1985
1986
1987
  if( pagerUseWal(pPager) ){
    /* Drop the WAL write-lock, if any. Also, if the connection was in 
    ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE 
    ** lock held on the database file.
    */
    rc2 = sqlite3WalEndWriteTransaction(pPager->pWal);
    assert( rc2==SQLITE_OK );









  }

  if( !pPager->exclusiveMode 
   && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0))
  ){
    rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
    pPager->changeCountDone = 0;
  }
  pPager->eState = PAGER_READER;







>
>
>
>
>
>
>
>
>

>







1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
  if( pagerUseWal(pPager) ){
    /* Drop the WAL write-lock, if any. Also, if the connection was in 
    ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE 
    ** lock held on the database file.
    */
    rc2 = sqlite3WalEndWriteTransaction(pPager->pWal);
    assert( rc2==SQLITE_OK );
  }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){
    /* This branch is taken when committing a transaction in rollback-journal
    ** mode if the database file on disk is larger than the database image.
    ** At this point the journal has been finalized and the transaction 
    ** successfully committed, but the EXCLUSIVE lock is still held on the
    ** file. So it is safe to truncate the database file to its minimum
    ** required size.  */
    assert( pPager->eLock==EXCLUSIVE_LOCK );
    rc = pager_truncate(pPager, pPager->dbSize);
  }

  if( !pPager->exclusiveMode 
   && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0))
  ){
    rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
    pPager->changeCountDone = 0;
  }
  pPager->eState = PAGER_READER;
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
    assert( assert_pager_state(pPager) );
    if( pPager->eState>=PAGER_WRITER_LOCKED ){
      sqlite3BeginBenignMalloc();
      sqlite3PagerRollback(pPager);
      sqlite3EndBenignMalloc();
    }else if( !pPager->exclusiveMode ){
      assert( pPager->eState==PAGER_READER );
      pager_end_transaction(pPager, 0);
    }
  }
  pager_unlock(pPager);
}

/*
** Parameter aData must point to a buffer of pPager->pageSize bytes







|







2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
    assert( assert_pager_state(pPager) );
    if( pPager->eState>=PAGER_WRITER_LOCKED ){
      sqlite3BeginBenignMalloc();
      sqlite3PagerRollback(pPager);
      sqlite3EndBenignMalloc();
    }else if( !pPager->exclusiveMode ){
      assert( pPager->eState==PAGER_READER );
      pager_end_transaction(pPager, 0, 0);
    }
  }
  pager_unlock(pPager);
}

/*
** Parameter aData must point to a buffer of pPager->pageSize bytes
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
  }
  if( rc==SQLITE_OK
   && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
  ){
    rc = sqlite3PagerSync(pPager);
  }
  if( rc==SQLITE_OK ){
    rc = pager_end_transaction(pPager, zMaster[0]!='\0');
    testcase( rc!=SQLITE_OK );
  }
  if( rc==SQLITE_OK && zMaster[0] && res ){
    /* If there was a master journal and this routine will return success,
    ** see if it is possible to delete the master journal.
    */
    rc = pager_delmaster(pPager, zMaster);







|







2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
  }
  if( rc==SQLITE_OK
   && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
  ){
    rc = sqlite3PagerSync(pPager);
  }
  if( rc==SQLITE_OK ){
    rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0);
    testcase( rc!=SQLITE_OK );
  }
  if( rc==SQLITE_OK && zMaster[0] && res ){
    /* If there was a master journal and this routine will return success,
    ** see if it is possible to delete the master journal.
    */
    rc = pager_delmaster(pPager, zMaster);
3739
3740
3741
3742
3743
3744
3745





3746
3747
3748
3749
3750

3751








3752
3753
3754
3755
3756
3757
3758
#endif

/*
** Truncate the in-memory database file image to nPage pages. This 
** function does not actually modify the database file on disk. It 
** just sets the internal state of the pager object so that the 
** truncation will be done when the current transaction is committed.





*/
void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
  assert( pPager->dbSize>=nPage );
  assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
  pPager->dbSize = nPage;

  assertTruncateConstraint(pPager);








}


/*
** This function is called before attempting a hot-journal rollback. It
** syncs the journal file to disk, then sets pPager->journalHdr to the
** size of the journal file so that the pager_playback() routine knows







>
>
>
>
>





>
|
>
>
>
>
>
>
>
>







3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
#endif

/*
** Truncate the in-memory database file image to nPage pages. This 
** function does not actually modify the database file on disk. It 
** just sets the internal state of the pager object so that the 
** truncation will be done when the current transaction is committed.
**
** This function is only called right before committing a transaction.
** Once this function has been called, the transaction must either be
** rolled back or committed. It is not safe to call this function and
** then continue writing to the database.
*/
void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
  assert( pPager->dbSize>=nPage );
  assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
  pPager->dbSize = nPage;

  /* At one point the code here called assertTruncateConstraint() to
  ** ensure that all pages being truncated away by this operation are,
  ** if one or more savepoints are open, present in the savepoint 
  ** journal so that they can be restored if the savepoint is rolled
  ** back. This is no longer necessary as this function is now only
  ** called right before committing a transaction. So although the 
  ** Pager object may still have open savepoints (Pager.nSavepoint!=0), 
  ** they cannot be rolled back. So the assertTruncateConstraint() call
  ** is no longer correct. */
}


/*
** This function is called before attempting a hot-journal rollback. It
** syncs the journal file to disk, then sets pPager->journalHdr to the
** size of the journal file so that the pager_playback() routine knows
4797
4798
4799
4800
4801
4802
4803





4804
4805
4806
4807
4808
4809
4810
    if( pPager->eLock<=SHARED_LOCK ){
      rc = hasHotJournal(pPager, &bHotJournal);
    }
    if( rc!=SQLITE_OK ){
      goto failed;
    }
    if( bHotJournal ){





      /* Get an EXCLUSIVE lock on the database file. At this point it is
      ** important that a RESERVED lock is not obtained on the way to the
      ** EXCLUSIVE lock. If it were, another process might open the
      ** database file, detect the RESERVED lock, and conclude that the
      ** database is safe to read while this process is still rolling the 
      ** hot-journal back.
      ** 







>
>
>
>
>







4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
    if( pPager->eLock<=SHARED_LOCK ){
      rc = hasHotJournal(pPager, &bHotJournal);
    }
    if( rc!=SQLITE_OK ){
      goto failed;
    }
    if( bHotJournal ){
      if( pPager->readOnly ){
        rc = SQLITE_READONLY_ROLLBACK;
        goto failed;
      }

      /* Get an EXCLUSIVE lock on the database file. At this point it is
      ** important that a RESERVED lock is not obtained on the way to the
      ** EXCLUSIVE lock. If it were, another process might open the
      ** database file, detect the RESERVED lock, and conclude that the
      ** database is safe to read while this process is still rolling the 
      ** hot-journal back.
      ** 
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
        }
      }
  #else
      rc = pager_incr_changecounter(pPager, 0);
  #endif
      if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
  
      /* If this transaction has made the database smaller, then all pages
      ** being discarded by the truncation must be written to the journal
      ** file.
      **
      ** Before reading the pages with page numbers larger than the 
      ** current value of Pager.dbSize, set dbSize back to the value
      ** that it took at the start of the transaction. Otherwise, the
      ** calls to sqlite3PagerGet() return zeroed pages instead of 
      ** reading data from the database file.
      */
      if( pPager->dbSize<pPager->dbOrigSize 
       && pPager->journalMode!=PAGER_JOURNALMODE_OFF
      ){
        Pgno i;                                   /* Iterator variable */
        const Pgno iSkip = PAGER_MJ_PGNO(pPager); /* Pending lock page */
        const Pgno dbSize = pPager->dbSize;       /* Database image size */ 
        pPager->dbSize = pPager->dbOrigSize;
        for( i=dbSize+1; i<=pPager->dbOrigSize; i++ ){
          if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
            PgHdr *pPage;             /* Page to journal */
            rc = sqlite3PagerGet(pPager, i, &pPage);
            if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
            rc = sqlite3PagerWrite(pPage);
            sqlite3PagerUnref(pPage);
            if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
          }
        }
        pPager->dbSize = dbSize;
      } 
  
      /* Write the master journal name into the journal file. If a master 
      ** journal file name has already been written to the journal file, 
      ** or if zMaster is NULL (no master journal), then this call is a no-op.
      */
      rc = writeMasterJournal(pPager, zMaster);
      if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
  







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







5912
5913
5914
5915
5916
5917
5918






























5919
5920
5921
5922
5923
5924
5925
        }
      }
  #else
      rc = pager_incr_changecounter(pPager, 0);
  #endif
      if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
  






























      /* Write the master journal name into the journal file. If a master 
      ** journal file name has already been written to the journal file, 
      ** or if zMaster is NULL (no master journal), then this call is a no-op.
      */
      rc = writeMasterJournal(pPager, zMaster);
      if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
  
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948



5949
5950
5951
5952
5953
5954
5955
5956
  
      rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache));
      if( rc!=SQLITE_OK ){
        assert( rc!=SQLITE_IOERR_BLOCKED );
        goto commit_phase_one_exit;
      }
      sqlite3PcacheCleanAll(pPager->pPCache);
  
      /* If the file on disk is not the same size as the database image,
      ** then use pager_truncate to grow or shrink the file here.
      */



      if( pPager->dbSize!=pPager->dbFileSize ){
        Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager));
        assert( pPager->eState==PAGER_WRITER_DBMOD );
        rc = pager_truncate(pPager, nNew);
        if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
      }
  
      /* Finally, sync the database file. */







|
|
|
|
>
>
>
|







5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
  
      rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache));
      if( rc!=SQLITE_OK ){
        assert( rc!=SQLITE_IOERR_BLOCKED );
        goto commit_phase_one_exit;
      }
      sqlite3PcacheCleanAll(pPager->pPCache);

      /* If the file on disk is smaller than the database image, use 
      ** pager_truncate to grow the file here. This can happen if the database
      ** image was extended as part of the current transaction and then the
      ** last page in the db image moved to the free-list. In this case the
      ** last page is never written out to disk, leaving the database file
      ** undersized. Fix this now if it is the case.  */
      if( pPager->dbSize>pPager->dbFileSize ){
        Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager));
        assert( pPager->eState==PAGER_WRITER_DBMOD );
        rc = pager_truncate(pPager, nNew);
        if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
      }
  
      /* Finally, sync the database file. */
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
  ){
    assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
    pPager->eState = PAGER_READER;
    return SQLITE_OK;
  }

  PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
  rc = pager_end_transaction(pPager, pPager->setMaster);
  return pager_error(pPager, rc);
}

/*
** If a write transaction is open, then all changes made within the 
** transaction are reverted and the current write-transaction is closed.
** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR







|







6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
  ){
    assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
    pPager->eState = PAGER_READER;
    return SQLITE_OK;
  }

  PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
  rc = pager_end_transaction(pPager, pPager->setMaster, 1);
  return pager_error(pPager, rc);
}

/*
** If a write transaction is open, then all changes made within the 
** transaction are reverted and the current write-transaction is closed.
** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
  assert( assert_pager_state(pPager) );
  if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
  if( pPager->eState<=PAGER_READER ) return SQLITE_OK;

  if( pagerUseWal(pPager) ){
    int rc2;
    rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
    rc2 = pager_end_transaction(pPager, pPager->setMaster);
    if( rc==SQLITE_OK ) rc = rc2;
  }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
    int eState = pPager->eState;
    rc = pager_end_transaction(pPager, 0);
    if( !MEMDB && eState>PAGER_WRITER_LOCKED ){
      /* This can happen using journal_mode=off. Move the pager to the error 
      ** state to indicate that the contents of the cache may not be trusted.
      ** Any active readers will get SQLITE_ABORT.
      */
      pPager->errCode = SQLITE_ABORT;
      pPager->eState = PAGER_ERROR;







|



|







6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
  assert( assert_pager_state(pPager) );
  if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
  if( pPager->eState<=PAGER_READER ) return SQLITE_OK;

  if( pagerUseWal(pPager) ){
    int rc2;
    rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
    rc2 = pager_end_transaction(pPager, pPager->setMaster, 0);
    if( rc==SQLITE_OK ) rc = rc2;
  }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
    int eState = pPager->eState;
    rc = pager_end_transaction(pPager, 0, 0);
    if( !MEMDB && eState>PAGER_WRITER_LOCKED ){
      /* This can happen using journal_mode=off. Move the pager to the error 
      ** state to indicate that the contents of the cache may not be trusted.
      ** Any active readers will get SQLITE_ABORT.
      */
      pPager->errCode = SQLITE_ABORT;
      pPager->eState = PAGER_ERROR;
6462
6463
6464
6465
6466
6467
6468

6469
6470
6471
6472
6473
6474
6475
6476
  **
  ** If the isCommit flag is set, there is no need to remember that
  ** the journal needs to be sync()ed before database page pPg->pgno 
  ** can be written to. The caller has already promised not to write to it.
  */
  if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
    needSyncPgno = pPg->pgno;

    assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize );
    assert( pPg->flags&PGHDR_DIRTY );
  }

  /* If the cache contains a page with page-number pgno, remove it
  ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 
  ** page pgno before the 'move' operation, it needs to be retained 
  ** for the page moved there.







>
|







6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
  **
  ** If the isCommit flag is set, there is no need to remember that
  ** the journal needs to be sync()ed before database page pPg->pgno 
  ** can be written to. The caller has already promised not to write to it.
  */
  if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
    needSyncPgno = pPg->pgno;
    assert( pPager->journalMode==PAGER_JOURNALMODE_OFF ||
            pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize );
    assert( pPg->flags&PGHDR_DIRTY );
  }

  /* If the cache contains a page with page-number pgno, remove it
  ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 
  ** page pgno before the 'move' operation, it needs to be retained 
  ** for the page moved there.
Changes to src/parse.y.
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
                 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
  A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
}

// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
// present and false (0) if it is not.
//
%type distinct {int}
distinct(A) ::= DISTINCT.   {A = 1;}
distinct(A) ::= ALL.        {A = 0;}
distinct(A) ::= .           {A = 0;}

// selcollist is a list of expressions that are to become the return
// values of the SELECT statement.  The "*" in statements like
// "SELECT * FROM ..." is encoded as a special expression with an
// opcode of TK_ALL.







|
|







431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
                 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
  A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
}

// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
// present and false (0) if it is not.
//
%type distinct {u16}
distinct(A) ::= DISTINCT.   {A = SF_Distinct;}
distinct(A) ::= ALL.        {A = 0;}
distinct(A) ::= .           {A = 0;}

// selcollist is a list of expressions that are to become the return
// values of the SELECT statement.  The "*" in statements like
// "SELECT * FROM ..." is encoded as a special expression with an
// opcode of TK_ALL.
495
496
497
498
499
500
501
502

503
504
505
506
507
508
509
510
511
512
513
514










515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
// in a SELECT statement.  "stl_prefix" is a prefix of this list.
//
stl_prefix(A) ::= seltablist(X) joinop(Y).    {
   A = X;
   if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
}
stl_prefix(A) ::= .                           {A = 0;}
seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). {

  A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
  sqlite3SrcListIndexedBy(pParse, A, &I);
}
%ifndef SQLITE_OMIT_SUBQUERY
  seltablist(A) ::= stl_prefix(X) LP select(S) RP
                    as(Z) on_opt(N) using_opt(U). {
    A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
  }
  seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
                    as(Z) on_opt(N) using_opt(U). {
    if( X==0 && Z.n==0 && N==0 && U==0 ){
      A = F;










    }else{
      Select *pSubquery;
      sqlite3SrcListShiftJoinType(F);
      pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
      A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
    }
  }
  
  // A seltablist_paren nonterminal represents anything in a FROM that
  // is contained inside parentheses.  This can be either a subquery or
  // a grouping of table and subqueries.
  //
//  %type seltablist_paren {Select*}
//  %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);}
//  seltablist_paren(A) ::= select(S).      {A = S;}
//  seltablist_paren(A) ::= seltablist(F).  {
//     sqlite3SrcListShiftJoinType(F);
//     A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
//  }
%endif  SQLITE_OMIT_SUBQUERY

%type dbnm {Token}
dbnm(A) ::= .          {A.z=0; A.n=0;}
dbnm(A) ::= DOT nm(X). {A = X;}

%type fullname {SrcList*}







|
>












>
>
>
>
>
>
>
>
>
>



|



<
<
<
<
<
<
<
<
<
<
<
<







495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532












533
534
535
536
537
538
539
// in a SELECT statement.  "stl_prefix" is a prefix of this list.
//
stl_prefix(A) ::= seltablist(X) joinop(Y).    {
   A = X;
   if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
}
stl_prefix(A) ::= .                           {A = 0;}
seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I)
                  on_opt(N) using_opt(U). {
  A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
  sqlite3SrcListIndexedBy(pParse, A, &I);
}
%ifndef SQLITE_OMIT_SUBQUERY
  seltablist(A) ::= stl_prefix(X) LP select(S) RP
                    as(Z) on_opt(N) using_opt(U). {
    A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
  }
  seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
                    as(Z) on_opt(N) using_opt(U). {
    if( X==0 && Z.n==0 && N==0 && U==0 ){
      A = F;
    }else if( F->nSrc==1 ){
      A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U);
      if( A ){
        struct SrcList_item *pNew = &A->a[A->nSrc-1];
        struct SrcList_item *pOld = F->a;
        pNew->zName = pOld->zName;
        pNew->zDatabase = pOld->zDatabase;
        pOld->zName = pOld->zDatabase = 0;
      }
      sqlite3SrcListDelete(pParse->db, F);
    }else{
      Select *pSubquery;
      sqlite3SrcListShiftJoinType(F);
      pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
      A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
    }
  }












%endif  SQLITE_OMIT_SUBQUERY

%type dbnm {Token}
dbnm(A) ::= .          {A.z=0; A.n=0;}
dbnm(A) ::= DOT nm(X). {A = X;}

%type fullname {SrcList*}
649
650
651
652
653
654
655
656

657
658
659
660
661
662
663
664

665
666
667
668
669
670
671

where_opt(A) ::= .                    {A = 0;}
where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}

////////////////////////// The UPDATE command ////////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L).  {

  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3ExprListCheckLength(pParse,Y,"set list"); 
  W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
  sqlite3Update(pParse,X,Y,W,R);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W).  {

  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3ExprListCheckLength(pParse,Y,"set list"); 
  sqlite3Update(pParse,X,Y,W,R);
}
%endif

%type setlist {ExprList*}







|
>







|
>







648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

where_opt(A) ::= .                    {A = 0;}
where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}

////////////////////////// The UPDATE command ////////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W)
        orderby_opt(O) limit_opt(L).  {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3ExprListCheckLength(pParse,Y,"set list"); 
  W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
  sqlite3Update(pParse,X,Y,W,R);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
        where_opt(W).  {
  sqlite3SrcListIndexedBy(pParse, X, &I);
  sqlite3ExprListCheckLength(pParse,Y,"set list"); 
  sqlite3Update(pParse,X,Y,W,R);
}
%endif

%type setlist {ExprList*}
Changes to src/pragma.c.
180
181
182
183
184
185
186



187
188
189
190
191
192
193
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    { "automatic_index",          SQLITE_AutoIndex     },
#endif
#ifdef SQLITE_DEBUG
    { "sql_trace",                SQLITE_SqlTrace      },
    { "vdbe_listing",             SQLITE_VdbeListing   },
    { "vdbe_trace",               SQLITE_VdbeTrace     },



#endif
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },








>
>
>







180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    { "automatic_index",          SQLITE_AutoIndex     },
#endif
#ifdef SQLITE_DEBUG
    { "sql_trace",                SQLITE_SqlTrace      },
    { "vdbe_listing",             SQLITE_VdbeListing   },
    { "vdbe_trace",               SQLITE_VdbeTrace     },
    { "vdbe_addoptrace",          SQLITE_VdbeAddopTrace},
    { "vdbe_debug",    SQLITE_SqlTrace | SQLITE_VdbeListing
                               | SQLITE_VdbeTrace      },
#endif
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },

944
945
946
947
948
949
950
951
952
953


954
955

956
957
958
959
960
961
962
  ** dflt_value: The default value for the column, if any.
  */
  if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i;
      int nHidden = 0;
      Column *pCol;


      sqlite3VdbeSetNumCols(v, 6);
      pParse->nMem = 6;

      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);







|


>
>


>







947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
  ** dflt_value: The default value for the column, if any.
  */
  if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i, k;
      int nHidden = 0;
      Column *pCol;
      Index *pPk;
      for(pPk=pTab->pIndex; pPk && pPk->autoIndex!=2; pPk=pPk->pNext){}
      sqlite3VdbeSetNumCols(v, 6);
      pParse->nMem = 6;
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);
971
972
973
974
975
976
977







978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

995
996
997
998
999
1000
1001
           pCol->zType ? pCol->zType : "", 0);
        sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4);
        if( pCol->zDflt ){
          sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0);
        }else{
          sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
        }







        sqlite3VdbeAddOp2(v, OP_Integer,
                            (pCol->colFlags&COLFLAG_PRIMKEY)!=0, 6);
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      pParse->nMem = 3;

      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);







>
>
>
>
>
>
>
|
<















>







977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
           pCol->zType ? pCol->zType : "", 0);
        sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4);
        if( pCol->zDflt ){
          sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0);
        }else{
          sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
        }
        if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
          k = 0;
        }else if( pPk==0 ){
          k = 1;
        }else{
          for(k=1; ALWAYS(k<=pTab->nCol) && pPk->aiColumn[k-1]!=i; k++){}
        }
        sqlite3VdbeAddOp2(v, OP_Integer, k, 6);

        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      pParse->nMem = 3;
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
1014
1015
1016
1017
1018
1019
1020

1021
1022
1023
1024
1025
1026
1027
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        pParse->nMem = 3;

        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);







>







1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        pParse->nMem = 3;
        sqlite3CodeVerifySchema(pParse, iDb);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
1077
1078
1079
1080
1081
1082
1083

1084
1085
1086
1087
1088
1089
1090
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 8);
        pParse->nMem = 8;

        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC);







>







1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 8);
        pParse->nMem = 8;
        sqlite3CodeVerifySchema(pParse, iDb);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC);
1110
1111
1112
1113
1114
1115
1116




















































































































1117
1118
1119
1120
1121
1122
1123
          pFK = pFK->pNextFrom;
        }
      }
    }
  }else
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */





















































































































#ifndef NDEBUG
  if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
    if( zRight ){
      if( sqlite3GetBoolean(zRight, 0) ){
        sqlite3ParserTrace(stderr, "parser: ");
      }else{
        sqlite3ParserTrace(0, 0);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
          pFK = pFK->pNextFrom;
        }
      }
    }
  }else
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef SQLITE_OMIT_FOREIGN_KEY
#ifndef SQLITE_OMIT_TRIGGER
  if( sqlite3StrICmp(zLeft, "foreign_key_check")==0 ){
    FKey *pFK;             /* A foreign key constraint */
    Table *pTab;           /* Child table contain "REFERENCES" keyword */
    Table *pParent;        /* Parent table that child points to */
    Index *pIdx;           /* Index in the parent table */
    int i;                 /* Loop counter:  Foreign key number for pTab */
    int j;                 /* Loop counter:  Field of the foreign key */
    HashElem *k;           /* Loop counter:  Next table in schema */
    int x;                 /* result variable */
    int regResult;         /* 3 registers to hold a result row */
    int regKey;            /* Register to hold key for checking the FK */
    int regRow;            /* Registers to hold a row from pTab */
    int addrTop;           /* Top of a loop checking foreign keys */
    int addrOk;            /* Jump here if the key is OK */
    int *aiCols;           /* child to parent column mapping */

    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    regResult = pParse->nMem+1;
    pParse->nMem += 4;
    regKey = ++pParse->nMem;
    regRow = ++pParse->nMem;
    v = sqlite3GetVdbe(pParse);
    sqlite3VdbeSetNumCols(v, 4);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "table", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "rowid", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "parent", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "fkid", SQLITE_STATIC);
    sqlite3CodeVerifySchema(pParse, iDb);
    k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
    while( k ){
      if( zRight ){
        pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
        k = 0;
      }else{
        pTab = (Table*)sqliteHashData(k);
        k = sqliteHashNext(k);
      }
      if( pTab==0 || pTab->pFKey==0 ) continue;
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
      if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
      sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
      sqlite3VdbeAddOp4(v, OP_String8, 0, regResult, 0, pTab->zName,
                        P4_TRANSIENT);
      for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
        pParent = sqlite3LocateTable(pParse, 0, pFK->zTo, zDb);
        if( pParent==0 ) break;
        pIdx = 0;
        sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
        x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
        if( x==0 ){
          if( pIdx==0 ){
            sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
          }else{
            KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
            sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
            sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
          }
        }else{
          k = 0;
          break;
        }
      }
      if( pFK ) break;
      if( pParse->nTab<i ) pParse->nTab = i;
      addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0);
      for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
        pParent = sqlite3LocateTable(pParse, 0, pFK->zTo, zDb);
        assert( pParent!=0 );
        pIdx = 0;
        aiCols = 0;
        x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
        assert( x==0 );
        addrOk = sqlite3VdbeMakeLabel(v);
        if( pIdx==0 ){
          int iKey = pFK->aCol[0].iFrom;
          assert( iKey>=0 && iKey<pTab->nCol );
          if( iKey!=pTab->iPKey ){
            sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow);
            sqlite3ColumnDefault(v, pTab, iKey, regRow);
            sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk);
            sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow,
               sqlite3VdbeCurrentAddr(v)+3);
          }else{
            sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow);
          }
          sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow);
          sqlite3VdbeAddOp2(v, OP_Goto, 0, addrOk);
          sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
        }else{
          for(j=0; j<pFK->nCol; j++){
            sqlite3ExprCodeGetColumnOfTable(v, pTab, 0,
                            aiCols ? aiCols[j] : pFK->aCol[0].iFrom, regRow+j);
            sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk);
          }
          sqlite3VdbeAddOp3(v, OP_MakeRecord, regRow, pFK->nCol, regKey);
          sqlite3VdbeChangeP4(v, -1,
                   sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
          sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
        }
        sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
        sqlite3VdbeAddOp4(v, OP_String8, 0, regResult+2, 0, 
                          pFK->zTo, P4_TRANSIENT);
        sqlite3VdbeAddOp2(v, OP_Integer, i-1, regResult+3);
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
        sqlite3VdbeResolveLabel(v, addrOk);
        sqlite3DbFree(db, aiCols);
      }
      sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1);
      sqlite3VdbeJumpHere(v, addrTop);
    }
  }else
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef NDEBUG
  if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
    if( zRight ){
      if( sqlite3GetBoolean(zRight, 0) ){
        sqlite3ParserTrace(stderr, "parser: ");
      }else{
        sqlite3ParserTrace(0, 0);
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
      sqlite3_key(db, zKey, i/2);
    }else{
      sqlite3_rekey(db, zKey, i/2);
    }
  }else
#endif
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
  if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){
#ifdef SQLITE_HAS_CODEC
    if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
      sqlite3_activate_see(&zRight[4]);
    }
#endif
#ifdef SQLITE_ENABLE_CEROD
    if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){







|







1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
      sqlite3_key(db, zKey, i/2);
    }else{
      sqlite3_rekey(db, zKey, i/2);
    }
  }else
#endif
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
  if( sqlite3StrICmp(zLeft, "activate_extensions")==0 && zRight ){
#ifdef SQLITE_HAS_CODEC
    if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
      sqlite3_activate_see(&zRight[4]);
    }
#endif
#ifdef SQLITE_ENABLE_CEROD
    if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
Changes to src/prepare.c.
255
256
257
258
259
260
261

262
263
264
265
266



267
268
269
270
271
272
273
  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
  */
  if( meta[BTREE_TEXT_ENCODING-1] ){  /* text encoding */
    if( iDb==0 ){

      u8 encoding;
      /* If opening the main database, set ENC(db). */
      encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
      if( encoding==0 ) encoding = SQLITE_UTF8;
      ENC(db) = encoding;



    }else{
      /* If opening an attached database, the encoding much match ENC(db) */
      if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){
        sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
            " text encoding as main database");
        rc = SQLITE_ERROR;
        goto initone_error_out;







>





>
>
>







255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
  */
  if( meta[BTREE_TEXT_ENCODING-1] ){  /* text encoding */
    if( iDb==0 ){
#ifndef SQLITE_OMIT_UTF16
      u8 encoding;
      /* If opening the main database, set ENC(db). */
      encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
      if( encoding==0 ) encoding = SQLITE_UTF8;
      ENC(db) = encoding;
#else
      ENC(db) = SQLITE_UTF8;
#endif
    }else{
      /* If opening an attached database, the encoding much match ENC(db) */
      if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){
        sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
            " text encoding as main database");
        rc = SQLITE_ERROR;
        goto initone_error_out;
Changes to src/resolve.c.
146
147
148
149
150
151
152





























153
154
155
156
157
158
159
    for(k=0; k<pUsing->nId; k++){
      if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1;
    }
  }
  return 0;
}































/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    for(k=0; k<pUsing->nId; k++){
      if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1;
    }
  }
  return 0;
}

/*
** Subqueries stores the original database, table and column names for their
** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN".
** Check to see if the zSpan given to this routine matches the zDb, zTab,
** and zCol.  If any of zDb, zTab, and zCol are NULL then those fields will
** match anything.
*/
int sqlite3MatchSpanName(
  const char *zSpan,
  const char *zCol,
  const char *zTab,
  const char *zDb
){
  int n;
  for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
  if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){
    return 0;
  }
  zSpan += n+1;
  for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
  if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){
    return 0;
  }
  zSpan += n+1;
  if( zCol && sqlite3StrICmp(zSpan, zCol)!=0 ){
    return 0;
  }
  return 1;
}

/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
201
202
203
204
205
206
207














208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226

227


228

229
230


231
232
233
234
235





236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264




265

266
267
268
269
270
271
272
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
  pExpr->pTab = 0;
  ExprSetIrreducible(pExpr);















  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab;
        int iDb;
        Column *pCol;
  
        pTab = pItem->pTab;
        assert( pTab!=0 && pTab->zName!=0 );
        iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
        assert( pTab->nCol>0 );
        if( zTab ){
          if( pItem->zAlias ){

            char *zTabName = pItem->zAlias;

            if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;


          }else{

            char *zTabName = pTab->zName;
            if( NEVER(zTabName==0) || sqlite3StrICmp(zTabName, zTab)!=0 ){


              continue;
            }
            if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
              continue;
            }





          }
        }
        if( 0==(cntTab++) ){
          pExpr->iTable = pItem->iCursor;
          pExpr->pTab = pTab;
          pSchema = pTab->pSchema;
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            /* If there has been exactly one prior match and this match
            ** is for the right-hand table of a NATURAL JOIN or is in a 
            ** USING clause, then skip this match.
            */
            if( cnt==1 ){
              if( pItem->jointype & JT_NATURAL ) continue;
              if( nameInUsingClause(pItem->pUsing, zCol) ) continue;
            }
            cnt++;
            pExpr->iTable = pItem->iCursor;
            pExpr->pTab = pTab;
            pMatch = pItem;
            pSchema = pTab->pSchema;
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
            break;
          }
        }
      }




    }


#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){
      int op = pParse->eTriggerOp;







>
>
>
>
>
>
>
>
>
>
>
>
>
>









<




<

<
|
>
|
>
|
>
>
|
>
|
<
>
>
|
|
|
|
|
>
>
>
>
>



<
<
<













<
<

<






>
>
>
>
|
>







230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

260
261
262
263

264

265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289



290
291
292
293
294
295
296
297
298
299
300
301
302


303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
  pExpr->pTab = 0;
  ExprSetIrreducible(pExpr);

  /* Translate the schema name in zDb into a pointer to the corresponding
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){
    for(i=0; i<db->nDb; i++){
      assert( db->aDb[i].zName );
      if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){
        pSchema = db->aDb[i].pSchema;
        break;
      }
    }
  }

  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab;

        Column *pCol;
  
        pTab = pItem->pTab;
        assert( pTab!=0 && pTab->zName!=0 );

        assert( pTab->nCol>0 );

        if( pItem->pSelect && (pItem->pSelect->selFlags & SF_NestedFrom)!=0 ){
          int hit = 0;
          pEList = pItem->pSelect->pEList;
          for(j=0; j<pEList->nExpr; j++){
            if( sqlite3MatchSpanName(pEList->a[j].zSpan, zCol, zTab, zDb) ){
              cnt++;
              cntTab = 2;
              pMatch = pItem;
              pExpr->iColumn = j;
              hit = 1;

            }
          }
          if( hit || zTab==0 ) continue;
        }
        if( zDb && pTab->pSchema!=pSchema ){
          continue;
        }
        if( zTab ){
          const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName;
          assert( zTabName!=0 );
          if( sqlite3StrICmp(zTabName, zTab)!=0 ){
            continue;
          }
        }
        if( 0==(cntTab++) ){



          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            /* If there has been exactly one prior match and this match
            ** is for the right-hand table of a NATURAL JOIN or is in a 
            ** USING clause, then skip this match.
            */
            if( cnt==1 ){
              if( pItem->jointype & JT_NATURAL ) continue;
              if( nameInUsingClause(pItem->pUsing, zCol) ) continue;
            }
            cnt++;


            pMatch = pItem;

            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->pTab = pMatch->pTab;
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){
      int op = pParse->eTriggerOp;
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        }
      }
#endif
      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }







|







643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        }
      }
#endif
      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func && pParse->db->init.busy==0 ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
        sqlite3ResolveExprNames(&sNC, p->pOffset) ){
      return WRC_Abort;
    }
  
    /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
    ** resolve the result-set expression list.
    */
    sNC.ncFlags = NC_AllowAgg;
    sNC.pSrcList = p->pSrc;
    sNC.pNext = pOuterNC;
  
    /* Resolve names in the result set. */
    pEList = p->pEList;
    assert( pEList!=0 );
    for(i=0; i<pEList->nExpr; i++){
      Expr *pX = pEList->a[i].pExpr;
      if( sqlite3ResolveExprNames(&sNC, pX) ){
        return WRC_Abort;
      }
    }
  
    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        NameContext *pNC;         /* Used to iterate name contexts */
        int nRef = 0;             /* Refcount for pOuterNC and outer contexts */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1079
1080
1081
1082
1083
1084
1085

















1086
1087
1088
1089
1090
1091
1092
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
        sqlite3ResolveExprNames(&sNC, p->pOffset) ){
      return WRC_Abort;
    }
  

















    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        NameContext *pNC;         /* Used to iterate name contexts */
        int nRef = 0;             /* Refcount for pOuterNC and outer contexts */
1072
1073
1074
1075
1076
1077
1078

















1079
1080
1081
1082
1083
1084
1085
        if( pParse->nErr || db->mallocFailed ) return WRC_Abort;

        for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef;
        assert( pItem->isCorrelated==0 && nRef<=0 );
        pItem->isCorrelated = (nRef!=0);
      }
    }

















  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
    pGroupBy = p->pGroupBy;
    if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
        if( pParse->nErr || db->mallocFailed ) return WRC_Abort;

        for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef;
        assert( pItem->isCorrelated==0 && nRef<=0 );
        pItem->isCorrelated = (nRef!=0);
      }
    }
  
    /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
    ** resolve the result-set expression list.
    */
    sNC.ncFlags = NC_AllowAgg;
    sNC.pSrcList = p->pSrc;
    sNC.pNext = pOuterNC;
  
    /* Resolve names in the result set. */
    pEList = p->pEList;
    assert( pEList!=0 );
    for(i=0; i<pEList->nExpr; i++){
      Expr *pX = pEList->a[i].pExpr;
      if( sqlite3ResolveExprNames(&sNC, pX) ){
        return WRC_Abort;
      }
    }
  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
    pGroupBy = p->pGroupBy;
    if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){
Changes to src/select.c.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
  Parse *pParse,        /* Parsing context */
  ExprList *pEList,     /* which columns to include in the result */
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  int isDistinct,       /* true if the DISTINCT keyword is present */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );







|







51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
  Parse *pParse,        /* Parsing context */
  ExprList *pEList,     /* which columns to include in the result */
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  u16 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  pNew->pEList = pEList;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->selFlags = isDistinct ? SF_Distinct : 0;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset==0 || pLimit!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;







|







75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  pNew->pEList = pEList;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->selFlags = selFlags;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset==0 || pLimit!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
  *pnCol = nCol;
  *paCol = aCol;

  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
    assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
               || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
      zName = sqlite3DbStrDup(db, zName);
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){







<
<







1332
1333
1334
1335
1336
1337
1338


1339
1340
1341
1342
1343
1344
1345
  *pnCol = nCol;
  *paCol = aCol;

  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);


    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
      zName = sqlite3DbStrDup(db, zName);
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
1371
1372
1373
1374
1375
1376
1377



1378
1379
1380
1381
1382
1383
1384
    /* Make sure the column name is unique.  If the name is not unique,
    ** append a integer to the name so that it becomes unique.
    */
    nName = sqlite3Strlen30(zName);
    for(j=cnt=0; j<i; j++){
      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
        char *zNewName;



        zName[nName] = 0;
        zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
        sqlite3DbFree(db, zName);
        zName = zNewName;
        j = -1;
        if( zName==0 ) break;
      }







>
>
>







1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
    /* Make sure the column name is unique.  If the name is not unique,
    ** append a integer to the name so that it becomes unique.
    */
    nName = sqlite3Strlen30(zName);
    for(j=cnt=0; j<i; j++){
      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
        char *zNewName;
        int k;
        for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
        if( zName[k]==':' ) nName = k;
        zName[nName] = 0;
        zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
        sqlite3DbFree(db, zName);
        zName = zNewName;
        j = -1;
        if( zName==0 ) break;
      }
1702
1703
1704
1705
1706
1707
1708


1709
1710
1711
1712
1713
1714
1715
  /* Generate code for the left and right SELECT statements.
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      int nLimit;
      assert( !pPrior->pLimit );


      pPrior->pLimit = p->pLimit;
      pPrior->pOffset = p->pOffset;
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &dest);
      p->pLimit = 0;
      p->pOffset = 0;
      if( rc ){







>
>







1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
  /* Generate code for the left and right SELECT statements.
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      int nLimit;
      assert( !pPrior->pLimit );
      pPrior->iLimit = p->iLimit;
      pPrior->iOffset = p->iOffset;
      pPrior->pLimit = p->pLimit;
      pPrior->pOffset = p->pOffset;
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &dest);
      p->pLimit = 0;
      p->pOffset = 0;
      if( rc ){
2359
2360
2361
2362
2363
2364
2365
2366

2367
2368
2369
2370
2371
2372
2373
  ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
  */
  if( op==TK_ALL ){
    regPrev = 0;
  }else{
    int nExpr = p->pEList->nExpr;
    assert( nOrderBy>=nExpr || db->mallocFailed );
    regPrev = sqlite3GetTempRange(pParse, nExpr+1);

    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
    pKeyDup = sqlite3DbMallocZero(db,
                  sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
    if( pKeyDup ){
      pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
      pKeyDup->nField = (u16)nExpr;
      pKeyDup->enc = ENC(db);







|
>







2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
  ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
  */
  if( op==TK_ALL ){
    regPrev = 0;
  }else{
    int nExpr = p->pEList->nExpr;
    assert( nOrderBy>=nExpr || db->mallocFailed );
    regPrev = pParse->nMem+1;
    pParse->nMem += nExpr+1;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
    pKeyDup = sqlite3DbMallocZero(db,
                  sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
    if( pKeyDup ){
      pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
      pKeyDup->nField = (u16)nExpr;
      pKeyDup->enc = ENC(db);
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
  sqlite3VdbeResolveLabel(v, labelCmpr);
  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
                         (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
  sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);

  /* Release temporary registers
  */
  if( regPrev ){
    sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
  }

  /* Jump to the this point in order to terminate the query.
  */
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Set the number of output columns
  */
  if( pDest->eDest==SRT_Output ){







<
<
<
<
<
<







2545
2546
2547
2548
2549
2550
2551






2552
2553
2554
2555
2556
2557
2558
  sqlite3VdbeResolveLabel(v, labelCmpr);
  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
                         (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
  sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);







  /* Jump to the this point in order to terminate the query.
  */
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Set the number of output columns
  */
  if( pDest->eDest==SRT_Output ){
2958
2959
2960
2961
2962
2963
2964

2965
2966
2967
2968
2969

2970

2971
2972
2973
2974
2975
2976
2977
  **
  ** We call this the "compound-subquery flattening".
  */
  for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
    Select *pNew;
    ExprList *pOrderBy = p->pOrderBy;
    Expr *pLimit = p->pLimit;

    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;

    pNew = sqlite3SelectDup(db, p, 0);

    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->pSrc = pSrc;
    p->op = TK_ALL;
    p->pRightmost = 0;
    if( pNew==0 ){
      pNew = pPrior;







>





>

>







2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
  **
  ** We call this the "compound-subquery flattening".
  */
  for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
    Select *pNew;
    ExprList *pOrderBy = p->pOrderBy;
    Expr *pLimit = p->pLimit;
    Expr *pOffset = p->pOffset;
    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;
    p->pOffset = 0;
    pNew = sqlite3SelectDup(db, p, 0);
    p->pOffset = pOffset;
    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->pSrc = pSrc;
    p->op = TK_ALL;
    p->pRightmost = 0;
    if( pNew==0 ){
      pNew = pPrior;
3156
3157
3158
3159
3160
3161
3162

3163
3164
3165
3166
3167


3168
3169
3170
3171




3172
3173




3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186

3187
3188

3189




3190
3191
3192
3193
3194
3195
3196
3197
  sqlite3SelectDelete(db, pSub1);

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*

** Analyze the SELECT statement passed as an argument to see if it
** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 
** it is, or 0 otherwise. At present, a query is considered to be
** a min()/max() query if:
**


**   1. There is a single object in the FROM clause.
**
**   2. There is a single expression in the result set, and it is
**      either min(x) or max(x), where x is a column reference.




*/
static u8 minMaxQuery(Select *p){




  Expr *pExpr;
  ExprList *pEList = p->pEList;

  if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
  pExpr = pEList->a[0].pExpr;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
  if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
  pEList = pExpr->x.pList;
  if( pEList==0 || pEList->nExpr!=1 ) return 0;
  if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
  assert( !ExprHasProperty(pExpr, EP_IntValue) );
  if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
    return WHERE_ORDERBY_MIN;

  }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
    return WHERE_ORDERBY_MAX;

  }




  return WHERE_ORDERBY_NORMAL;
}

/*
** The select statement passed as the first argument is an aggregate query.
** The second argment is the associated aggregate-info object. This 
** function tests if the SELECT is of the form:
**







>
|
<
<
<

>
>
|

|
|
>
>
>
>

|
>
>
>
>
|
|

<
<
|
<
<
<
|
|
|
|
>
|
|
>
|
>
>
>
>
|







3157
3158
3159
3160
3161
3162
3163
3164
3165



3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185


3186



3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
  sqlite3SelectDelete(db, pSub1);

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** Based on the contents of the AggInfo structure indicated by the first
** argument, this function checks if the following are true:



**
**    * the query contains just a single aggregate function,
**    * the aggregate function is either min() or max(), and
**    * the argument to the aggregate function is a column value.
**
** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
** is returned as appropriate. Also, *ppMinMax is set to point to the 
** list of arguments passed to the aggregate before returning.
**
** Or, if the conditions above are not met, *ppMinMax is set to 0 and
** WHERE_ORDERBY_NORMAL is returned.
*/
static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
  int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */

  *ppMinMax = 0;
  if( pAggInfo->nFunc==1 ){
    Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
    ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */



    assert( pExpr->op==TK_AGG_FUNCTION );



    if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
      const char *zFunc = pExpr->u.zToken;
      if( sqlite3StrICmp(zFunc, "min")==0 ){
        eRet = WHERE_ORDERBY_MIN;
        *ppMinMax = pEList;
      }else if( sqlite3StrICmp(zFunc, "max")==0 ){
        eRet = WHERE_ORDERBY_MAX;
        *ppMinMax = pEList;
      }
    }
  }

  assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
  return eRet;
}

/*
** The select statement passed as the first argument is an aggregate query.
** The second argment is the associated aggregate-info object. This 
** function tests if the SELECT is of the form:
**
3278
3279
3280
3281
3282
3283
3284


3285

3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
static int selectExpander(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;
  int i, j, k;
  SrcList *pTabList;
  ExprList *pEList;
  struct SrcList_item *pFrom;
  sqlite3 *db = pParse->db;




  if( db->mallocFailed  ){
    return WRC_Abort;
  }
  if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }
  p->selFlags |= SF_Expanded;
  pTabList = p->pSrc;
  pEList = p->pEList;

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);







>
>

>



|


<







3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304

3305
3306
3307
3308
3309
3310
3311
static int selectExpander(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;
  int i, j, k;
  SrcList *pTabList;
  ExprList *pEList;
  struct SrcList_item *pFrom;
  sqlite3 *db = pParse->db;
  Expr *pE, *pRight, *pExpr;
  u16 selFlags = p->selFlags;

  p->selFlags |= SF_Expanded;
  if( db->mallocFailed  ){
    return WRC_Abort;
  }
  if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }

  pTabList = p->pSrc;
  pEList = p->pEList;

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);
3328
3329
3330
3331
3332
3333
3334






3335
3336
3337
3338
3339
3340
3341
      pTab->tabFlags |= TF_Ephemeral;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
      if( pTab==0 ) return WRC_Abort;






      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);







>
>
>
>
>
>







3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
      pTab->tabFlags |= TF_Ephemeral;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
      if( pTab==0 ) return WRC_Abort;
      if( pTab->nRef==0xffff ){
        sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
           pTab->zName);
        pFrom->pTab = 0;
        return WRC_Abort;
      }
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387







3388
3389

3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415

3416


3417
3418
3419
3420


3421
3422
3423
3424


3425
3426
3427
3428
3429
3430







3431
3432
3433
3434
3435
3436
3437
3438
3439

3440
3441
3442
3443
3444
3445
3446
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    Expr *pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    assert( pE->op!=TK_DOT || pE->pRight!=0 );
    assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
    if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
  }
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;








    for(k=0; k<pEList->nExpr; k++){
      Expr *pE = a[k].pExpr;

      assert( pE->op!=TK_DOT || pE->pRight!=0 );
      if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
          pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
          a[k].zName = 0;
          a[k].zSpan = 0;
        }
        a[k].pExpr = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName;            /* text of name of TABLE */
        if( pE->op==TK_DOT ){
          assert( pE->pLeft!=0 );
          assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
          zTName = pE->pLeft->u.zToken;
        }else{
          zTName = 0;
        }
        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
          Table *pTab = pFrom->pTab;

          char *zTabName = pFrom->zAlias;


          if( zTabName==0 ){
            zTabName = pTab->zName;
          }
          if( db->mallocFailed ) break;


          if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
            continue;
          }
          tableSeen = 1;


          for(j=0; j<pTab->nCol; j++){
            Expr *pExpr, *pRight;
            char *zName = pTab->aCol[j].zName;
            char *zColname;  /* The computed column name */
            char *zToFree;   /* Malloced string that needs to be freed */
            Token sColname;  /* Computed column name as a token */








            /* If a column is marked as 'hidden' (currently only possible
            ** for virtual tables), do not include it in the expanded
            ** result-set list.
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }


            if( i>0 && zTName==0 ){
              if( (pFrom->jointype & JT_NATURAL)!=0
                && tableAndColumnIndex(pTabList, i, zName, 0, 0)
              ){
                /* In a NATURAL join, omit the join columns from the 
                ** table to the right of the join */







|

















>
>
>
>
>
>
>

|
>
|
|














|




<
<



>

>
>




>
>
|
|
|
|
>
>

<




>
>
>
>
>
>
>









>







3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436


3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456

3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    assert( pE->op!=TK_DOT || pE->pRight!=0 );
    assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
    if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
  }
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    /* When processing FROM-clause subqueries, it is always the case
    ** that full_column_names=OFF and short_column_names=ON.  The
    ** sqlite3ResultSetOfSelect() routine makes it so. */
    assert( (p->selFlags & SF_NestedFrom)==0
          || ((flags & SQLITE_FullColNames)==0 &&
              (flags & SQLITE_ShortColNames)!=0) );

    for(k=0; k<pEList->nExpr; k++){
      pE = a[k].pExpr;
      pRight = pE->pRight;
      assert( pE->op!=TK_DOT || pRight!=0 );
      if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
          pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
          a[k].zName = 0;
          a[k].zSpan = 0;
        }
        a[k].pExpr = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName = 0;       /* text of name of TABLE */
        if( pE->op==TK_DOT ){
          assert( pE->pLeft!=0 );
          assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
          zTName = pE->pLeft->u.zToken;


        }
        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
          Table *pTab = pFrom->pTab;
          Select *pSub = pFrom->pSelect;
          char *zTabName = pFrom->zAlias;
          const char *zSchemaName = 0;
          int iDb;
          if( zTabName==0 ){
            zTabName = pTab->zName;
          }
          if( db->mallocFailed ) break;
          if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
            pSub = 0;
            if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
              continue;
            }
            iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
            zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
          }
          for(j=0; j<pTab->nCol; j++){

            char *zName = pTab->aCol[j].zName;
            char *zColname;  /* The computed column name */
            char *zToFree;   /* Malloced string that needs to be freed */
            Token sColname;  /* Computed column name as a token */

            assert( zName );
            if( zTName && pSub
             && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
            ){
              continue;
            }

            /* If a column is marked as 'hidden' (currently only possible
            ** for virtual tables), do not include it in the expanded
            ** result-set list.
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }
            tableSeen = 1;

            if( i>0 && zTName==0 ){
              if( (pFrom->jointype & JT_NATURAL)!=0
                && tableAndColumnIndex(pTabList, i, zName, 0, 0)
              ){
                /* In a NATURAL join, omit the join columns from the 
                ** table to the right of the join */
3455
3456
3457
3458
3459
3460
3461




3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472












3473
3474
3475
3476
3477
3478
3479
            pRight = sqlite3Expr(db, TK_ID, zName);
            zColname = zName;
            zToFree = 0;
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft;
              pLeft = sqlite3Expr(db, TK_ID, zTabName);
              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);




              if( longNames ){
                zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
                zToFree = zColname;
              }
            }else{
              pExpr = pRight;
            }
            pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
            sColname.z = zColname;
            sColname.n = sqlite3Strlen30(zColname);
            sqlite3ExprListSetName(pParse, pNew, &sColname, 0);












            sqlite3DbFree(db, zToFree);
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
          }else{







>
>
>
>











>
>
>
>
>
>
>
>
>
>
>
>







3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
            pRight = sqlite3Expr(db, TK_ID, zName);
            zColname = zName;
            zToFree = 0;
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft;
              pLeft = sqlite3Expr(db, TK_ID, zTabName);
              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
              if( zSchemaName ){
                pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
                pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
              }
              if( longNames ){
                zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
                zToFree = zColname;
              }
            }else{
              pExpr = pRight;
            }
            pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
            sColname.z = zColname;
            sColname.n = sqlite3Strlen30(zColname);
            sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
            if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
              struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
              if( pSub ){
                pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
                testcase( pX->zSpan==0 );
              }else{
                pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
                                           zSchemaName, zTabName, zColname);
                testcase( pX->zSpan==0 );
              }
              pX->bSpanIsTab = 1;
            }
            sqlite3DbFree(db, zToFree);
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
          }else{
3604
3605
3606
3607
3608
3609
3610

3611
3612
3613
3614
3615
3616
3617
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* Name context for container */
){
  sqlite3 *db;
  if( NEVER(p==0) ) return;
  db = pParse->db;

  if( p->selFlags & SF_HasTypeInfo ) return;
  sqlite3SelectExpand(pParse, p);
  if( pParse->nErr || db->mallocFailed ) return;
  sqlite3ResolveSelectNames(pParse, p, pOuterNC);
  if( pParse->nErr || db->mallocFailed ) return;
  sqlite3SelectAddTypeInfo(pParse, p);
}







>







3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* Name context for container */
){
  sqlite3 *db;
  if( NEVER(p==0) ) return;
  db = pParse->db;
  if( db->mallocFailed ) return;
  if( p->selFlags & SF_HasTypeInfo ) return;
  sqlite3SelectExpand(pParse, p);
  if( pParse->nErr || db->mallocFailed ) return;
  sqlite3ResolveSelectNames(pParse, p, pOuterNC);
  if( pParse->nErr || db->mallocFailed ) return;
  sqlite3SelectAddTypeInfo(pParse, p);
}
4523
4524
4525
4526
4527
4528
4529





4530



4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
        **
        **   + The optimizer code in where.c (the thing that decides which
        **     index or indices to use) should place a different priority on 
        **     satisfying the 'ORDER BY' clause than it does in other cases.
        **     Refer to code and comments in where.c for details.
        */
        ExprList *pMinMax = 0;





        u8 flag = minMaxQuery(p);



        if( flag ){
          assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
          assert( p->pEList->a[0].pExpr->x.pList->nExpr==1 );
          pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
          pDel = pMinMax;
          if( pMinMax && !db->mallocFailed ){
            pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
            pMinMax->a[0].pExpr->op = TK_COLUMN;
          }
        }
  







>
>
>
>
>
|
>
>
>

<
<
|







4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594


4595
4596
4597
4598
4599
4600
4601
4602
        **
        **   + The optimizer code in where.c (the thing that decides which
        **     index or indices to use) should place a different priority on 
        **     satisfying the 'ORDER BY' clause than it does in other cases.
        **     Refer to code and comments in where.c for details.
        */
        ExprList *pMinMax = 0;
        u8 flag = WHERE_ORDERBY_NORMAL;
        
        assert( p->pGroupBy==0 );
        assert( flag==0 );
        if( p->pHaving==0 ){
          flag = minMaxQuery(&sAggInfo, &pMinMax);
        }
        assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );

        if( flag ){


          pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
          pDel = pMinMax;
          if( pMinMax && !db->mallocFailed ){
            pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
            pMinMax->a[0].pExpr->op = TK_COLUMN;
          }
        }
  
4683
4684
4685
4686
4687
4688
4689
4690



4691
4692
4693
4694
4695
4696
4697
  }
}
void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
  if( p==0 ){
    sqlite3ExplainPrintf(pVdbe, "(null-select)");
    return;
  }
  while( p->pPrior ) p = p->pPrior;



  sqlite3ExplainPush(pVdbe);
  while( p ){
    explainOneSelect(pVdbe, p);
    p = p->pNext;
    if( p==0 ) break;
    sqlite3ExplainNL(pVdbe);
    sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));







|
>
>
>







4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
  }
}
void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
  if( p==0 ){
    sqlite3ExplainPrintf(pVdbe, "(null-select)");
    return;
  }
  while( p->pPrior ){
    p->pPrior->pNext = p;
    p = p->pPrior;
  }
  sqlite3ExplainPush(pVdbe);
  while( p ){
    explainOneSelect(pVdbe, p);
    p = p->pNext;
    if( p==0 ) break;
    sqlite3ExplainNL(pVdbe);
    sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
Changes to src/shell.c.
86
87
88
89
90
91
92
93

94
95
96
97
98
99
100
static int enableTimer = 0;

/* ctype macros that work with signed characters */
#define IsSpace(X)  isspace((unsigned char)X)
#define IsDigit(X)  isdigit((unsigned char)X)
#define ToLower(X)  (char)tolower((unsigned char)X)

#if !defined(_WIN32) && !defined(WIN32) && !defined(_WRS_KERNEL)

#include <sys/time.h>
#include <sys/resource.h>

/* Saved resource information for the beginning of an operation */
static struct rusage sBegin;

/*







|
>







86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
static int enableTimer = 0;

/* ctype macros that work with signed characters */
#define IsSpace(X)  isspace((unsigned char)X)
#define IsDigit(X)  isdigit((unsigned char)X)
#define ToLower(X)  (char)tolower((unsigned char)X)

#if !defined(_WIN32) && !defined(WIN32) && !defined(_WRS_KERNEL) \
 && !defined(__minux)
#include <sys/time.h>
#include <sys/resource.h>

/* Saved resource information for the beginning of an operation */
static struct rusage sBegin;

/*
1476
1477
1478
1479
1480
1481
1482












1483
1484
1485
1486
1487
1488
1489
      fprintf(stderr,"Error: unable to open database \"%s\": %s\n", 
          p->zDbFilename, sqlite3_errmsg(db));
      exit(1);
    }
#ifndef SQLITE_OMIT_LOAD_EXTENSION
    sqlite3_enable_load_extension(p->db, 1);
#endif












  }
}

/*
** Do C-language style dequoting.
**
**    \t    -> tab







>
>
>
>
>
>
>
>
>
>
>
>







1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
      fprintf(stderr,"Error: unable to open database \"%s\": %s\n", 
          p->zDbFilename, sqlite3_errmsg(db));
      exit(1);
    }
#ifndef SQLITE_OMIT_LOAD_EXTENSION
    sqlite3_enable_load_extension(p->db, 1);
#endif
#ifdef SQLITE_ENABLE_REGEXP
    {
      extern int sqlite3_add_regexp_func(sqlite3*);
      sqlite3_add_regexp_func(db);
    }
#endif
#ifdef SQLITE_ENABLE_SPELLFIX
    {
      extern int sqlite3_spellfix1_register(sqlite3*);
      sqlite3_spellfix1_register(db);
    }
#endif
  }
}

/*
** Do C-language style dequoting.
**
**    \t    -> tab
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531


1532
1533
1534
1535
1536
1537


1538
1539
1540
1541
1542
1543
1544
1545
  z[j] = 0;
}

/*
** Interpret zArg as a boolean value.  Return either 0 or 1.
*/
static int booleanValue(char *zArg){
  int val = atoi(zArg);
  int j;
  for(j=0; zArg[j]; j++){
    zArg[j] = ToLower(zArg[j]);


  }
  if( strcmp(zArg,"on")==0 ){
    val = 1;
  }else if( strcmp(zArg,"yes")==0 ){
    val = 1;
  }


  return val;
}

/*
** Close an output file, assuming it is not stderr or stdout
*/
static void output_file_close(FILE *f){
  if( f && f!=stdout && f!=stderr ) fclose(f);







<
|
|
|
>
>

|
|
<
<

>
>
|







1534
1535
1536
1537
1538
1539
1540

1541
1542
1543
1544
1545
1546
1547
1548


1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
  z[j] = 0;
}

/*
** Interpret zArg as a boolean value.  Return either 0 or 1.
*/
static int booleanValue(char *zArg){

  int i;
  for(i=0; zArg[i]>='0' && zArg[i]<='9'; i++){}
  if( i>0 && zArg[i]==0 ) return atoi(zArg);
  if( sqlite3_stricmp(zArg, "on")==0 || sqlite3_stricmp(zArg,"yes")==0 ){
    return 1;
  }
  if( sqlite3_stricmp(zArg, "off")==0 || sqlite3_stricmp(zArg,"no")==0 ){
    return 0;


  }
  fprintf(stderr, "ERROR: Not a boolean value: \"%s\". Assuming \"no\".\n",
          zArg);
  return 0;
}

/*
** Close an output file, assuming it is not stderr or stdout
*/
static void output_file_close(FILE *f){
  if( f && f!=stdout && f!=stderr ) fclose(f);
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

1629
1630

1631
1632



1633
1634





1635


1636



1637






1638
1639
1640
1641
1642
1643





1644
1645
1646
1647
1648
1649
1650
  }

  /* Process the input line.
  */
  if( nArg==0 ) return 0; /* no tokens, no error */
  n = strlen30(azArg[0]);
  c = azArg[0][0];
  if( c=='b' && n>=3 && strncmp(azArg[0], "backup", n)==0 && nArg>1 && nArg<4){
    const char *zDestFile;
    const char *zDb;

    sqlite3 *pDest;
    sqlite3_backup *pBackup;

    if( nArg==2 ){
      zDestFile = azArg[1];



      zDb = "main";
    }else{





      zDestFile = azArg[2];


      zDb = azArg[1];



    }






    rc = sqlite3_open(zDestFile, &pDest);
    if( rc!=SQLITE_OK ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zDestFile);
      sqlite3_close(pDest);
      return 1;
    }





    open_db(p);
    pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb);
    if( pBackup==0 ){
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest));
      sqlite3_close(pDest);
      return 1;
    }







|
|
|
>


>
|
|
>
>
>
|
|
>
>
>
>
>
|
>
>
|
>
>
>
|
>
>
>
>
>
>






>
>
>
>
>







1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
  }

  /* Process the input line.
  */
  if( nArg==0 ) return 0; /* no tokens, no error */
  n = strlen30(azArg[0]);
  c = azArg[0][0];
  if( c=='b' && n>=3 && strncmp(azArg[0], "backup", n)==0 ){
    const char *zDestFile = 0;
    const char *zDb = 0;
    const char *zKey = 0;
    sqlite3 *pDest;
    sqlite3_backup *pBackup;
    int j;
    for(j=1; j<nArg; j++){
      const char *z = azArg[j];
      if( z[0]=='-' ){
        while( z[0]=='-' ) z++;
        if( strcmp(z,"key")==0 && j<nArg-1 ){
          zKey = azArg[++j];
        }else
        {
          fprintf(stderr, "unknown option: %s\n", azArg[j]);
          return 1;
        }
      }else if( zDestFile==0 ){
        zDestFile = azArg[j];
      }else if( zDb==0 ){
        zDb = zDestFile;
        zDestFile = azArg[j];
      }else{
        fprintf(stderr, "too many arguments to .backup\n");
        return 1;
      }
    }
    if( zDestFile==0 ){
      fprintf(stderr, "missing FILENAME argument on .backup\n");
      return 1;
    }
    if( zDb==0 ) zDb = "main";
    rc = sqlite3_open(zDestFile, &pDest);
    if( rc!=SQLITE_OK ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zDestFile);
      sqlite3_close(pDest);
      return 1;
    }
#ifdef SQLITE_HAS_CODEC
    sqlite3_key(pDest, zKey, (int)strlen(zKey));
#else
    (void)zKey;
#endif
    open_db(p);
    pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb);
    if( pBackup==0 ){
      fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest));
      sqlite3_close(pDest);
      return 1;
    }
1738
1739
1740
1741
1742
1743
1744
1745

1746
1747
1748
1749
1750
1751
1752
    fprintf(p->out, p->nErr ? "ROLLBACK; -- due to errors\n" : "COMMIT;\n");
  }else

  if( c=='e' && strncmp(azArg[0], "echo", n)==0 && nArg>1 && nArg<3 ){
    p->echoOn = booleanValue(azArg[1]);
  }else

  if( c=='e' && strncmp(azArg[0], "exit", n)==0  && nArg==1 ){

    rc = 2;
  }else

  if( c=='e' && strncmp(azArg[0], "explain", n)==0 && nArg<3 ){
    int val = nArg>=2 ? booleanValue(azArg[1]) : 1;
    if(val == 1) {
      if(!p->explainPrev.valid) {







|
>







1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
    fprintf(p->out, p->nErr ? "ROLLBACK; -- due to errors\n" : "COMMIT;\n");
  }else

  if( c=='e' && strncmp(azArg[0], "echo", n)==0 && nArg>1 && nArg<3 ){
    p->echoOn = booleanValue(azArg[1]);
  }else

  if( c=='e' && strncmp(azArg[0], "exit", n)==0 ){
    if( nArg>1 && (rc = atoi(azArg[1]))!=0 ) exit(rc);
    rc = 2;
  }else

  if( c=='e' && strncmp(azArg[0], "explain", n)==0 && nArg<3 ){
    int val = nArg>=2 ? booleanValue(azArg[1]) : 1;
    if(val == 1) {
      if(!p->explainPrev.valid) {
Changes to src/sqlite.h.in.
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
** host languages that are garbage collected, and where the order in which
** destructors are called is arbitrary.
**
** Applications should [sqlite3_finalize | finalize] all [prepared statements],
** [sqlite3_blob_close | close] all [BLOB handles], and 
** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
** with the [sqlite3] object prior to attempting to close the object.  ^If
** sqlite3_close() is called on a [database connection] that still has
** outstanding [prepared statements], [BLOB handles], and/or
** [sqlite3_backup] objects then it returns SQLITE_OK but the deallocation
** of resources is deferred until all [prepared statements], [BLOB handles],
** and [sqlite3_backup] objects are also destroyed.
**
** ^If an [sqlite3] object is destroyed while a transaction is open,
** the transaction is automatically rolled back.







|







279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
** host languages that are garbage collected, and where the order in which
** destructors are called is arbitrary.
**
** Applications should [sqlite3_finalize | finalize] all [prepared statements],
** [sqlite3_blob_close | close] all [BLOB handles], and 
** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
** with the [sqlite3] object prior to attempting to close the object.  ^If
** sqlite3_close_v2() is called on a [database connection] that still has
** outstanding [prepared statements], [BLOB handles], and/or
** [sqlite3_backup] objects then it returns SQLITE_OK but the deallocation
** of resources is deferred until all [prepared statements], [BLOB handles],
** and [sqlite3_backup] objects are also destroyed.
**
** ^If an [sqlite3] object is destroyed while a transaction is open,
** the transaction is automatically rolled back.
474
475
476
477
478
479
480

481









482
483
484
485
486
487
488
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))

#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))










/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.







>

>
>
>
>
>
>
>
>
>







474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_READONLY_ROLLBACK       (SQLITE_READONLY | (3<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))
#define SQLITE_CONSTRAINT_CHECK        (SQLITE_CONSTRAINT | (1<<8))
#define SQLITE_CONSTRAINT_COMMITHOOK   (SQLITE_CONSTRAINT | (2<<8))
#define SQLITE_CONSTRAINT_FOREIGNKEY   (SQLITE_CONSTRAINT | (3<<8))
#define SQLITE_CONSTRAINT_FUNCTION     (SQLITE_CONSTRAINT | (4<<8))
#define SQLITE_CONSTRAINT_NOTNULL      (SQLITE_CONSTRAINT | (5<<8))
#define SQLITE_CONSTRAINT_PRIMARYKEY   (SQLITE_CONSTRAINT | (6<<8))
#define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
#define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
#define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))

/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
Changes to src/sqlite3ext.h.
232
233
234
235
236
237
238














239
240
241
242
243
244
245
  int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite3*,int);
  int (*wal_checkpoint)(sqlite3*,const char*);
  void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
  int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
  int (*vtab_config)(sqlite3*,int op,...);
  int (*vtab_on_conflict)(sqlite3*);














};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file







>
>
>
>
>
>
>
>
>
>
>
>
>
>







232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
  int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite3*,int);
  int (*wal_checkpoint)(sqlite3*,const char*);
  void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
  int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
  int (*vtab_config)(sqlite3*,int op,...);
  int (*vtab_on_conflict)(sqlite3*);
  /* Version 3.7.16 and later */
  int (*close_v2)(sqlite3*);
  const char *(*db_filename)(sqlite3*,const char*);
  int (*db_readonly)(sqlite3*,const char*);
  int (*db_release_memory)(sqlite3*);
  const char *(*errstr)(int);
  int (*stmt_busy)(sqlite3_stmt*);
  int (*stmt_readonly)(sqlite3_stmt*);
  int (*stricmp)(const char*,const char*);
  int (*uri_boolean)(const char*,const char*,int);
  sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
  const char *(*uri_parameter)(const char*,const char*);
  char *(*vsnprintf)(int,char*,const char*,va_list);
  int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
435
436
437
438
439
440
441














442
443
444
445
446
447
#define sqlite3_unlock_notify          sqlite3_api->unlock_notify
#define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
#define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
#define sqlite3_wal_hook               sqlite3_api->wal_hook
#define sqlite3_blob_reopen            sqlite3_api->blob_reopen
#define sqlite3_vtab_config            sqlite3_api->vtab_config
#define sqlite3_vtab_on_conflict       sqlite3_api->vtab_on_conflict














#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;

#endif /* _SQLITE3EXT_H_ */







>
>
>
>
>
>
>
>
>
>
>
>
>
>






449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#define sqlite3_unlock_notify          sqlite3_api->unlock_notify
#define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
#define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
#define sqlite3_wal_hook               sqlite3_api->wal_hook
#define sqlite3_blob_reopen            sqlite3_api->blob_reopen
#define sqlite3_vtab_config            sqlite3_api->vtab_config
#define sqlite3_vtab_on_conflict       sqlite3_api->vtab_on_conflict
/* Version 3.7.16 and later */
#define sqlite3_close_v2               sqlite3_api->close_v2
#define sqlite3_db_filename            sqlite3_api->db_filename
#define sqlite3_db_readonly            sqlite3_api->db_readonly
#define sqlite3_db_release_memory      sqlite3_api->db_release_memory
#define sqlite3_errstr                 sqlite3_api->errstr
#define sqlite3_stmt_busy              sqlite3_api->stmt_busy
#define sqlite3_stmt_readonly          sqlite3_api->stmt_readonly
#define sqlite3_stricmp                sqlite3_api->stricmp
#define sqlite3_uri_boolean            sqlite3_api->uri_boolean
#define sqlite3_uri_int64              sqlite3_api->uri_int64
#define sqlite3_uri_parameter          sqlite3_api->uri_parameter
#define sqlite3_uri_vsnprintf          sqlite3_api->vsnprintf
#define sqlite3_wal_checkpoint_v2      sqlite3_api->wal_checkpoint_v2
#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;

#endif /* _SQLITE3EXT_H_ */
Changes to src/sqliteInt.h.
62
63
64
65
66
67
68




69
70
71
72
73
74
75
#endif

/* Needed for various definitions... */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif





/*
** Include standard header files as necessary
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H







>
>
>
>







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#endif

/* Needed for various definitions... */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
# define _BSD_SOURCE
#endif

/*
** Include standard header files as necessary
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
196
197
198
199
200
201
202
203

204
205
206
207
208
209
210
** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
** implemented on some systems.  So we avoid defining it at all
** if it is already defined or if it is unneeded because we are
** not doing a threadsafe build.  Ticket #2681.
**
** See also ticket #2741.
*/
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE

#  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
#endif

/*
** The TCL headers are only needed when compiling the TCL bindings.
*/
#if defined(SQLITE_TCL) || defined(TCLSH)







|
>







200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
** implemented on some systems.  So we avoid defining it at all
** if it is already defined or if it is unneeded because we are
** not doing a threadsafe build.  Ticket #2681.
**
** See also ticket #2741.
*/
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) \
 && !defined(__APPLE__) && SQLITE_THREADSAFE
#  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
#endif

/*
** The TCL headers are only needed when compiling the TCL bindings.
*/
#if defined(SQLITE_TCL) || defined(TCLSH)
571
572
573
574
575
576
577





578
579
580
581
582
583
584

/*
** A convenience macro that returns the number of elements in
** an array.
*/
#define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))






/*
** The following value as a destructor means to use sqlite3DbFree().
** The sqlite3DbFree() routine requires two parameters instead of the 
** one parameter that destructors normally want.  So we have to introduce 
** this magic value that the code knows to handle differently.  Any 
** pointer will work here as long as it is distinct from SQLITE_STATIC
** and SQLITE_TRANSIENT.







>
>
>
>
>







576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

/*
** A convenience macro that returns the number of elements in
** an array.
*/
#define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))

/*
** Determine if the argument is a power of two
*/
#define IsPowerOfTwo(X) (((X)&((X)-1))==0)

/*
** The following value as a destructor means to use sqlite3DbFree().
** The sqlite3DbFree() routine requires two parameters instead of the 
** one parameter that destructors normally want.  So we have to introduce 
** this magic value that the code knows to handle differently.  Any 
** pointer will work here as long as it is distinct from SQLITE_STATIC
** and SQLITE_TRANSIENT.
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00000020  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000040  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00000080  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00000100  /* OK to update SQLITE_MASTER */
                         /*   0x00000200  Unused */
#define SQLITE_IgnoreChecks   0x00000400  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0000800  /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00001000  /* Create new databases in format 1 */
#define SQLITE_FullFSync      0x00002000  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00004000  /* Use full fsync for checkpoint */
#define SQLITE_RecoveryMode   0x00008000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x00010000  /* Reverse unordered SELECTs */







|







950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00000020  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000040  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00000080  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00000100  /* OK to update SQLITE_MASTER */
#define SQLITE_VdbeAddopTrace 0x00000200  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_IgnoreChecks   0x00000400  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0000800  /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00001000  /* Create new databases in format 1 */
#define SQLITE_FullFSync      0x00002000  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00004000  /* Use full fsync for checkpoint */
#define SQLITE_RecoveryMode   0x00008000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x00010000  /* Reverse unordered SELECTs */
969
970
971
972
973
974
975

976
977
978
979
980
981
982
#define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
#define SQLITE_IdxRealAsInt   0x0010   /* Store REAL as INT in indices */
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */

#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)







>







979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
#define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
#define SQLITE_IdxRealAsInt   0x0010   /* Store REAL as INT in indices */
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
** must be unique and what to do if they are not.  When Index.onError=OE_None,
** it means this is not a unique index.  Otherwise it is a unique index
** and the value of Index.onError indicate the which conflict resolution 
** algorithm to employ whenever an attempt is made to insert a non-unique
** element.
*/
struct Index {
  char *zName;     /* Name of this index */
  int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
  tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
  Table *pTable;   /* The SQL table being indexed */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  Schema *pSchema; /* Schema containing this index */
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  char **azColl;   /* Array of collation sequence names for index */
  int nColumn;     /* Number of columns in the table used by this index */
  int tnum;        /* Page containing root of this index in database file */

  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  u8 bUnordered;   /* Use this index for == or IN queries only */
#ifdef SQLITE_ENABLE_STAT3
  int nSample;             /* Number of elements in aSample[] */
  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};








|
|
|
|
|
|
|
|
|
<
|
>
|
|
|







1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
** must be unique and what to do if they are not.  When Index.onError=OE_None,
** it means this is not a unique index.  Otherwise it is a unique index
** and the value of Index.onError indicate the which conflict resolution 
** algorithm to employ whenever an attempt is made to insert a non-unique
** element.
*/
struct Index {
  char *zName;             /* Name of this index */
  int *aiColumn;           /* Which columns are used by this index.  1st is 0 */
  tRowcnt *aiRowEst;       /* From ANALYZE: Est. rows selected by each column */
  Table *pTable;           /* The SQL table being indexed */
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */

  int tnum;                /* DB Page containing root of this index */
  u16 nColumn;             /* Number of columns in table used by this index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned autoIndex:2;    /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
#ifdef SQLITE_ENABLE_STAT3
  int nSample;             /* Number of elements in aSample[] */
  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

1767
1768
1769
1770
1771
1772
1773








1774
1775
1776
1777
1778
1779
1780
1781
1782
1783

1784
1785
1786
1787
1788
1789
1790
1791
1792
/*
** A list of expressions.  Each expression may optionally have a
** name.  An expr/name combination can be used in several ways, such
** as the list of "expr AS ID" fields following a "SELECT" or in the
** list of "ID = expr" items in an UPDATE.  A list of expressions can
** also be used as the argument to a function, in which case the a.zName
** field is not used.








*/
struct ExprList {
  int nExpr;             /* Number of expressions on the list */
  int iECursor;          /* VDBE Cursor associated with this ExprList */
  struct ExprList_item { /* For each expression in the list */
    Expr *pExpr;           /* The list of expressions */
    char *zName;           /* Token associated with this expression */
    char *zSpan;           /* Original text of the expression */
    u8 sortOrder;          /* 1 for DESC or 0 for ASC */
    u8 done;               /* A flag to indicate when processing is finished */

    u16 iOrderByCol;       /* For ORDER BY, column number in result set */
    u16 iAlias;            /* Index into Parse.aAlias[] for zName */
  } *a;                  /* Alloc a power of two greater or equal to nExpr */
};

/*
** An instance of this structure is used by the parser to record both
** the parse tree for an expression and the span of input text for an
** expression.







>
>
>
>
>
>
>
>





|
|
|
|
|
>
|
|







1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
/*
** A list of expressions.  Each expression may optionally have a
** name.  An expr/name combination can be used in several ways, such
** as the list of "expr AS ID" fields following a "SELECT" or in the
** list of "ID = expr" items in an UPDATE.  A list of expressions can
** also be used as the argument to a function, in which case the a.zName
** field is not used.
**
** By default the Expr.zSpan field holds a human-readable description of
** the expression that is used in the generation of error messages and
** column labels.  In this case, Expr.zSpan is typically the text of a
** column expression as it exists in a SELECT statement.  However, if
** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
** form is used for name resolution with nested FROM clauses.
*/
struct ExprList {
  int nExpr;             /* Number of expressions on the list */
  int iECursor;          /* VDBE Cursor associated with this ExprList */
  struct ExprList_item { /* For each expression in the list */
    Expr *pExpr;            /* The list of expressions */
    char *zName;            /* Token associated with this expression */
    char *zSpan;            /* Original text of the expression */
    u8 sortOrder;           /* 1 for DESC or 0 for ASC */
    unsigned done :1;       /* A flag to indicate when processing is finished */
    unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
    u16 iOrderByCol;        /* For ORDER BY, column number in result set */
    u16 iAlias;             /* Index into Parse.aAlias[] for zName */
  } *a;                  /* Alloc a power of two greater or equal to nExpr */
};

/*
** An instance of this structure is used by the parser to record both
** the parse tree for an expression and the span of input text for an
** expression.
1946
1947
1948
1949
1950
1951
1952

1953
1954
1955
1956
1957
1958
1959
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on plan.wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */

      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  double rOptCost;      /* "Optimal" cost for this level */

  /* The following field is really not part of the current level.  But







>







1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on plan.wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  double rOptCost;      /* "Optimal" cost for this level */

  /* The following field is really not part of the current level.  But
2098
2099
2100
2101
2102
2103
2104

2105
2106
2107
2108
2109
2110
2111
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* Force materialization of views */



/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */







>







2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* Force materialization of views */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */


/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
void sqlite3IdListDelete(sqlite3*, IdList*);
void sqlite3SrcListDelete(sqlite3*, SrcList*);
Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
                        Token*, int, int);
void sqlite3DropIndex(Parse*, SrcList*, int);
int sqlite3Select(Parse*, Select*, SelectDest*);
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
                         Expr*,ExprList*,int,Expr*,Expr*);
void sqlite3SelectDelete(sqlite3*, Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
void sqlite3WhereEnd(WhereInfo*);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);







|





|







2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
void sqlite3IdListDelete(sqlite3*, IdList*);
void sqlite3SrcListDelete(sqlite3*, SrcList*);
Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
                        Token*, int, int);
void sqlite3DropIndex(Parse*, SrcList*, int);
int sqlite3Select(Parse*, Select*, SelectDest*);
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
                         Expr*,ExprList*,u16,Expr*,Expr*);
void sqlite3SelectDelete(sqlite3*, Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
void sqlite3WhereEnd(WhereInfo*);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
                                     int*,int,int,int,int,int*);
void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
void sqlite3BeginWriteOperation(Parse*, int, int);
void sqlite3MultiWrite(Parse*);
void sqlite3MayAbort(Parse*);
void sqlite3HaltConstraint(Parse*, int, char*, int);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);







|







2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
                                     int*,int,int,int,int,int*);
void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
void sqlite3BeginWriteOperation(Parse*, int, int);
void sqlite3MultiWrite(Parse*);
void sqlite3MayAbort(Parse*);
void sqlite3HaltConstraint(Parse*, int, int, char*, int);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
2997
2998
2999
3000
3001
3002
3003
3004

3005


3006
3007
3008
3009
3010
3011
3012
**     x = sqlite3GetVarint32( A, &B );
**     x = sqlite3PutVarint32( A, B );
**
**     x = getVarint32( A, B );
**     x = putVarint32( A, B );
**
*/
#define getVarint32(A,B)  (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))

#define putVarint32(A,B)  (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))


#define getVarint    sqlite3GetVarint
#define putVarint    sqlite3PutVarint


const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
void sqlite3TableAffinityStr(Vdbe *, Table *);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);







|
>
|
>
>







3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
**     x = sqlite3GetVarint32( A, &B );
**     x = sqlite3PutVarint32( A, B );
**
**     x = getVarint32( A, B );
**     x = putVarint32( A, B );
**
*/
#define getVarint32(A,B)  \
  (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
#define putVarint32(A,B)  \
  (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
  sqlite3PutVarint32((A),(B)))
#define getVarint    sqlite3GetVarint
#define putVarint    sqlite3PutVarint


const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
void sqlite3TableAffinityStr(Vdbe *, Table *);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3067
3068
3069
3070
3071
3072
3073

3074
3075
3076
3077
3078
3079
3080
void sqlite3AlterFunctions(void);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);

int sqlite3ResolveExprNames(NameContext*, Expr*);
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);







>







3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
void sqlite3AlterFunctions(void);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
int sqlite3ResolveExprNames(NameContext*, Expr*);
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
3205
3206
3207
3208
3209
3210
3211

3212
3213

3214
3215
3216
3217
3218
3219
3220
  #define sqlite3FkCheck(a,b,c,d)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)      0
  #define sqlite3FkRequired(a,b,c,d) 0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
  void sqlite3FkDelete(sqlite3 *, Table*);

#else
  #define sqlite3FkDelete(a,b)

#endif


/*
** Available fault injectors.  Should be numbered beginning with 0.
*/
#define SQLITE_FAULTINJECTOR_MALLOC     0







>


>







3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
  #define sqlite3FkCheck(a,b,c,d)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)      0
  #define sqlite3FkRequired(a,b,c,d) 0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
  void sqlite3FkDelete(sqlite3 *, Table*);
  int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
#else
  #define sqlite3FkDelete(a,b)
  #define sqlite3FkLocateIndex(a,b,c,d,e)
#endif


/*
** Available fault injectors.  Should be numbered beginning with 0.
*/
#define SQLITE_FAULTINJECTOR_MALLOC     0
3231
3232
3233
3234
3235
3236
3237
3238

3239
3240
3241
3242
3243
3244
3245
#else
  #define sqlite3BeginBenignMalloc()
  #define sqlite3EndBenignMalloc()
#endif

#define IN_INDEX_ROWID           1
#define IN_INDEX_EPH             2
#define IN_INDEX_INDEX           3

int sqlite3FindInIndex(Parse *, Expr *, int*);

#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
  int sqlite3JournalSize(sqlite3_vfs *);
  int sqlite3JournalCreate(sqlite3_file *);
  int sqlite3JournalExists(sqlite3_file *p);







|
>







3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
#else
  #define sqlite3BeginBenignMalloc()
  #define sqlite3EndBenignMalloc()
#endif

#define IN_INDEX_ROWID           1
#define IN_INDEX_EPH             2
#define IN_INDEX_INDEX_ASC       3
#define IN_INDEX_INDEX_DESC      4
int sqlite3FindInIndex(Parse *, Expr *, int*);

#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
  int sqlite3JournalSize(sqlite3_vfs *);
  int sqlite3JournalCreate(sqlite3_file *);
  int sqlite3JournalExists(sqlite3_file *p);
Changes to src/tclsqlite.c.
3667
3668
3669
3670
3671
3672
3673

3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686

3687
3688
3689
3690
3691
3692
3693
    extern int Sqlitetest_hexio_Init(Tcl_Interp*);
    extern int Sqlitetest_init_Init(Tcl_Interp*);
    extern int Sqlitetest_malloc_Init(Tcl_Interp*);
    extern int Sqlitetest_mutex_Init(Tcl_Interp*);
    extern int Sqlitetestschema_Init(Tcl_Interp*);
    extern int Sqlitetestsse_Init(Tcl_Interp*);
    extern int Sqlitetesttclvar_Init(Tcl_Interp*);

    extern int SqlitetestThread_Init(Tcl_Interp*);
    extern int SqlitetestOnefile_Init();
    extern int SqlitetestOsinst_Init(Tcl_Interp*);
    extern int Sqlitetestbackup_Init(Tcl_Interp*);
    extern int Sqlitetestintarray_Init(Tcl_Interp*);
    extern int Sqlitetestvfs_Init(Tcl_Interp *);
    extern int Sqlitetestrtree_Init(Tcl_Interp*);
    extern int Sqlitequota_Init(Tcl_Interp*);
    extern int Sqlitemultiplex_Init(Tcl_Interp*);
    extern int SqliteSuperlock_Init(Tcl_Interp*);
    extern int SqlitetestSyscall_Init(Tcl_Interp*);
    extern int Sqlitetestfuzzer_Init(Tcl_Interp*);
    extern int Sqlitetestwholenumber_Init(Tcl_Interp*);


#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
    extern int Sqlitetestfts3_Init(Tcl_Interp *interp);
#endif

#ifdef SQLITE_ENABLE_ZIPVFS
    extern int Zipvfs_Init(Tcl_Interp*);







>













>







3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
    extern int Sqlitetest_hexio_Init(Tcl_Interp*);
    extern int Sqlitetest_init_Init(Tcl_Interp*);
    extern int Sqlitetest_malloc_Init(Tcl_Interp*);
    extern int Sqlitetest_mutex_Init(Tcl_Interp*);
    extern int Sqlitetestschema_Init(Tcl_Interp*);
    extern int Sqlitetestsse_Init(Tcl_Interp*);
    extern int Sqlitetesttclvar_Init(Tcl_Interp*);
    extern int Sqlitetestfs_Init(Tcl_Interp*);
    extern int SqlitetestThread_Init(Tcl_Interp*);
    extern int SqlitetestOnefile_Init();
    extern int SqlitetestOsinst_Init(Tcl_Interp*);
    extern int Sqlitetestbackup_Init(Tcl_Interp*);
    extern int Sqlitetestintarray_Init(Tcl_Interp*);
    extern int Sqlitetestvfs_Init(Tcl_Interp *);
    extern int Sqlitetestrtree_Init(Tcl_Interp*);
    extern int Sqlitequota_Init(Tcl_Interp*);
    extern int Sqlitemultiplex_Init(Tcl_Interp*);
    extern int SqliteSuperlock_Init(Tcl_Interp*);
    extern int SqlitetestSyscall_Init(Tcl_Interp*);
    extern int Sqlitetestfuzzer_Init(Tcl_Interp*);
    extern int Sqlitetestwholenumber_Init(Tcl_Interp*);
    extern int Sqlitetestregexp_Init(Tcl_Interp*);

#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
    extern int Sqlitetestfts3_Init(Tcl_Interp *interp);
#endif

#ifdef SQLITE_ENABLE_ZIPVFS
    extern int Zipvfs_Init(Tcl_Interp*);
3710
3711
3712
3713
3714
3715
3716

3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729

3730
3731
3732
3733
3734
3735
3736
    Sqlitetest_func_Init(interp);
    Sqlitetest_hexio_Init(interp);
    Sqlitetest_init_Init(interp);
    Sqlitetest_malloc_Init(interp);
    Sqlitetest_mutex_Init(interp);
    Sqlitetestschema_Init(interp);
    Sqlitetesttclvar_Init(interp);

    SqlitetestThread_Init(interp);
    SqlitetestOnefile_Init(interp);
    SqlitetestOsinst_Init(interp);
    Sqlitetestbackup_Init(interp);
    Sqlitetestintarray_Init(interp);
    Sqlitetestvfs_Init(interp);
    Sqlitetestrtree_Init(interp);
    Sqlitequota_Init(interp);
    Sqlitemultiplex_Init(interp);
    SqliteSuperlock_Init(interp);
    SqlitetestSyscall_Init(interp);
    Sqlitetestfuzzer_Init(interp);
    Sqlitetestwholenumber_Init(interp);


#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
    Sqlitetestfts3_Init(interp);
#endif

    Tcl_CreateObjCommand(
        interp, "load_testfixture_extensions", init_all_cmd, 0, 0







>













>







3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
    Sqlitetest_func_Init(interp);
    Sqlitetest_hexio_Init(interp);
    Sqlitetest_init_Init(interp);
    Sqlitetest_malloc_Init(interp);
    Sqlitetest_mutex_Init(interp);
    Sqlitetestschema_Init(interp);
    Sqlitetesttclvar_Init(interp);
    Sqlitetestfs_Init(interp);
    SqlitetestThread_Init(interp);
    SqlitetestOnefile_Init(interp);
    SqlitetestOsinst_Init(interp);
    Sqlitetestbackup_Init(interp);
    Sqlitetestintarray_Init(interp);
    Sqlitetestvfs_Init(interp);
    Sqlitetestrtree_Init(interp);
    Sqlitequota_Init(interp);
    Sqlitemultiplex_Init(interp);
    SqliteSuperlock_Init(interp);
    SqlitetestSyscall_Init(interp);
    Sqlitetestfuzzer_Init(interp);
    Sqlitetestwholenumber_Init(interp);
    Sqlitetestregexp_Init(interp);

#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
    Sqlitetestfts3_Init(interp);
#endif

    Tcl_CreateObjCommand(
        interp, "load_testfixture_extensions", init_all_cmd, 0, 0
Changes to src/test1.c.
134
135
136
137
138
139
140












141
142
143
144
145
146
147
    case SQLITE_FULL:                zName = "SQLITE_FULL";              break;
    case SQLITE_CANTOPEN:            zName = "SQLITE_CANTOPEN";          break;
    case SQLITE_PROTOCOL:            zName = "SQLITE_PROTOCOL";          break;
    case SQLITE_EMPTY:               zName = "SQLITE_EMPTY";             break;
    case SQLITE_SCHEMA:              zName = "SQLITE_SCHEMA";            break;
    case SQLITE_TOOBIG:              zName = "SQLITE_TOOBIG";            break;
    case SQLITE_CONSTRAINT:          zName = "SQLITE_CONSTRAINT";        break;












    case SQLITE_MISMATCH:            zName = "SQLITE_MISMATCH";          break;
    case SQLITE_MISUSE:              zName = "SQLITE_MISUSE";            break;
    case SQLITE_NOLFS:               zName = "SQLITE_NOLFS";             break;
    case SQLITE_AUTH:                zName = "SQLITE_AUTH";              break;
    case SQLITE_FORMAT:              zName = "SQLITE_FORMAT";            break;
    case SQLITE_RANGE:               zName = "SQLITE_RANGE";             break;
    case SQLITE_NOTADB:              zName = "SQLITE_NOTADB";            break;







>
>
>
>
>
>
>
>
>
>
>
>







134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    case SQLITE_FULL:                zName = "SQLITE_FULL";              break;
    case SQLITE_CANTOPEN:            zName = "SQLITE_CANTOPEN";          break;
    case SQLITE_PROTOCOL:            zName = "SQLITE_PROTOCOL";          break;
    case SQLITE_EMPTY:               zName = "SQLITE_EMPTY";             break;
    case SQLITE_SCHEMA:              zName = "SQLITE_SCHEMA";            break;
    case SQLITE_TOOBIG:              zName = "SQLITE_TOOBIG";            break;
    case SQLITE_CONSTRAINT:          zName = "SQLITE_CONSTRAINT";        break;
    case SQLITE_CONSTRAINT_UNIQUE:   zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
    case SQLITE_CONSTRAINT_TRIGGER:  zName = "SQLITE_CONSTRAINT_TRIGGER";break;
    case SQLITE_CONSTRAINT_FOREIGNKEY:
                                 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break;
    case SQLITE_CONSTRAINT_CHECK:    zName = "SQLITE_CONSTRAINT_CHECK";  break;
    case SQLITE_CONSTRAINT_PRIMARYKEY:
                                 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break;
    case SQLITE_CONSTRAINT_NOTNULL:  zName = "SQLITE_CONSTRAINT_NOTNULL";break;
    case SQLITE_CONSTRAINT_COMMITHOOK:
                                 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break;
    case SQLITE_CONSTRAINT_VTAB:     zName = "SQLITE_CONSTRAINT_VTAB";   break;
    case SQLITE_CONSTRAINT_FUNCTION: zName = "SQLITE_CONSTRAINT_FUNCTION";break;
    case SQLITE_MISMATCH:            zName = "SQLITE_MISMATCH";          break;
    case SQLITE_MISUSE:              zName = "SQLITE_MISUSE";            break;
    case SQLITE_NOLFS:               zName = "SQLITE_NOLFS";             break;
    case SQLITE_AUTH:                zName = "SQLITE_AUTH";              break;
    case SQLITE_FORMAT:              zName = "SQLITE_FORMAT";            break;
    case SQLITE_RANGE:               zName = "SQLITE_RANGE";             break;
    case SQLITE_NOTADB:              zName = "SQLITE_NOTADB";            break;
162
163
164
165
166
167
168

169
170
171
172
173
174
175
    case SQLITE_IOERR_ACCESS:        zName = "SQLITE_IOERR_ACCESS";      break;
    case SQLITE_IOERR_CHECKRESERVEDLOCK:
                               zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
    case SQLITE_IOERR_LOCK:          zName = "SQLITE_IOERR_LOCK";        break;
    case SQLITE_CORRUPT_VTAB:        zName = "SQLITE_CORRUPT_VTAB";      break;
    case SQLITE_READONLY_RECOVERY:   zName = "SQLITE_READONLY_RECOVERY"; break;
    case SQLITE_READONLY_CANTLOCK:   zName = "SQLITE_READONLY_CANTLOCK"; break;

    default:                         zName = "SQLITE_Unknown";           break;
  }
  return zName;
}
#define t1ErrorName sqlite3TestErrorName

/*







>







174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    case SQLITE_IOERR_ACCESS:        zName = "SQLITE_IOERR_ACCESS";      break;
    case SQLITE_IOERR_CHECKRESERVEDLOCK:
                               zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
    case SQLITE_IOERR_LOCK:          zName = "SQLITE_IOERR_LOCK";        break;
    case SQLITE_CORRUPT_VTAB:        zName = "SQLITE_CORRUPT_VTAB";      break;
    case SQLITE_READONLY_RECOVERY:   zName = "SQLITE_READONLY_RECOVERY"; break;
    case SQLITE_READONLY_CANTLOCK:   zName = "SQLITE_READONLY_CANTLOCK"; break;
    case SQLITE_READONLY_ROLLBACK:   zName = "SQLITE_READONLY_ROLLBACK"; break;
    default:                         zName = "SQLITE_Unknown";           break;
  }
  return zName;
}
#define t1ErrorName sqlite3TestErrorName

/*
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
  extern int sqlite3_pager_writej_count;
#if SQLITE_OS_WIN
  extern int sqlite3_os_type;
#endif
#ifdef SQLITE_DEBUG
  extern int sqlite3WhereTrace;
  extern int sqlite3OSTrace;
  extern int sqlite3VdbeAddopTrace;
  extern int sqlite3WalTrace;
#endif
#ifdef SQLITE_TEST
  extern char sqlite3_query_plan[];
  static char *query_plan = sqlite3_query_plan;
#ifdef SQLITE_ENABLE_FTS3
  extern int sqlite3_fts3_enable_parentheses;







<







6245
6246
6247
6248
6249
6250
6251

6252
6253
6254
6255
6256
6257
6258
  extern int sqlite3_pager_writej_count;
#if SQLITE_OS_WIN
  extern int sqlite3_os_type;
#endif
#ifdef SQLITE_DEBUG
  extern int sqlite3WhereTrace;
  extern int sqlite3OSTrace;

  extern int sqlite3WalTrace;
#endif
#ifdef SQLITE_TEST
  extern char sqlite3_query_plan[];
  static char *query_plan = sqlite3_query_plan;
#ifdef SQLITE_ENABLE_FTS3
  extern int sqlite3_fts3_enable_parentheses;
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
      (char*)&sqlite3_os_type, TCL_LINK_INT);
#endif
#ifdef SQLITE_TEST
  Tcl_LinkVar(interp, "sqlite_query_plan",
      (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#ifdef SQLITE_DEBUG
  Tcl_LinkVar(interp, "sqlite_addop_trace",
      (char*)&sqlite3VdbeAddopTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_where_trace",
      (char*)&sqlite3WhereTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_os_trace",
      (char*)&sqlite3OSTrace, TCL_LINK_INT);
#ifndef SQLITE_OMIT_WAL
  Tcl_LinkVar(interp, "sqlite_wal_trace",
      (char*)&sqlite3WalTrace, TCL_LINK_INT);







<
<







6307
6308
6309
6310
6311
6312
6313


6314
6315
6316
6317
6318
6319
6320
      (char*)&sqlite3_os_type, TCL_LINK_INT);
#endif
#ifdef SQLITE_TEST
  Tcl_LinkVar(interp, "sqlite_query_plan",
      (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#ifdef SQLITE_DEBUG


  Tcl_LinkVar(interp, "sqlite_where_trace",
      (char*)&sqlite3WhereTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_os_trace",
      (char*)&sqlite3OSTrace, TCL_LINK_INT);
#ifndef SQLITE_OMIT_WAL
  Tcl_LinkVar(interp, "sqlite_wal_trace",
      (char*)&sqlite3WalTrace, TCL_LINK_INT);
Changes to src/test8.c.
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;

  sqlite3Spellfix1Register(db);
  return TCL_OK;
}

#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */

/*
** Register commands with the TCL interpreter.







|







1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;

  sqlite3_spellfix1_register(db);
  return TCL_OK;
}

#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */

/*
** Register commands with the TCL interpreter.
Added src/test_fs.c.


























































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*
** 2013 Jan 11
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the virtual table interfaces.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** The FS virtual table is created as follows:
**
**   CREATE VIRTUAL TABLE tbl USING fs(idx);
**
** where idx is the name of a table in the db with 2 columns.  The virtual
** table also has two columns - file path and file contents.
**
** The first column of table idx must be an IPK, and the second contains file
** paths. For example:
**
**   CREATE TABLE idx(id INTEGER PRIMARY KEY, path TEXT);
**   INSERT INTO idx VALUES(4, '/etc/passwd');
**
** Adding the row to the idx table automatically creates a row in the 
** virtual table with rowid=4, path=/etc/passwd and a text field that 
** contains data read from file /etc/passwd on disk.
*/
#include "sqliteInt.h"
#include "tcl.h"

#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#if SQLITE_OS_UNIX
# include <unistd.h>
#endif
#if SQLITE_OS_WIN
# include <io.h>
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE

typedef struct fs_vtab fs_vtab;
typedef struct fs_cursor fs_cursor;

/* 
** A fs virtual-table object 
*/
struct fs_vtab {
  sqlite3_vtab base;
  sqlite3 *db;
  char *zDb;                      /* Name of db containing zTbl */
  char *zTbl;                     /* Name of docid->file map table */
};

/* A fs cursor object */
struct fs_cursor {
  sqlite3_vtab_cursor base;
  sqlite3_stmt *pStmt;
  char *zBuf;
  int nBuf;
  int nAlloc;
};

/*
** This function is the implementation of both the xConnect and xCreate
** methods of the fs virtual table.
**
** The argv[] array contains the following:
**
**   argv[0]   -> module name  ("fs")
**   argv[1]   -> database name
**   argv[2]   -> table name
**   argv[...] -> other module argument fields.
*/
static int fsConnect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  fs_vtab *pVtab;
  int nByte;
  const char *zTbl;
  const char *zDb = argv[1];

  if( argc!=4 ){
    *pzErr = sqlite3_mprintf("wrong number of arguments");
    return SQLITE_ERROR;
  }
  zTbl = argv[3];

  nByte = sizeof(fs_vtab) + strlen(zTbl) + 1 + strlen(zDb) + 1;
  pVtab = (fs_vtab *)sqlite3MallocZero( nByte );
  if( !pVtab ) return SQLITE_NOMEM;

  pVtab->zTbl = (char *)&pVtab[1];
  pVtab->zDb = &pVtab->zTbl[strlen(zTbl)+1];
  pVtab->db = db;
  memcpy(pVtab->zTbl, zTbl, strlen(zTbl));
  memcpy(pVtab->zDb, zDb, strlen(zDb));
  *ppVtab = &pVtab->base;
  sqlite3_declare_vtab(db, "CREATE TABLE xyz(path TEXT, data TEXT)");

  return SQLITE_OK;
}
/* Note that for this virtual table, the xCreate and xConnect
** methods are identical. */

static int fsDisconnect(sqlite3_vtab *pVtab){
  sqlite3_free(pVtab);
  return SQLITE_OK;
}
/* The xDisconnect and xDestroy methods are also the same */

/*
** Open a new fs cursor.
*/
static int fsOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  fs_cursor *pCur;
  pCur = sqlite3MallocZero(sizeof(fs_cursor));
  *ppCursor = &pCur->base;
  return SQLITE_OK;
}

/*
** Close a fs cursor.
*/
static int fsClose(sqlite3_vtab_cursor *cur){
  fs_cursor *pCur = (fs_cursor *)cur;
  sqlite3_finalize(pCur->pStmt);
  sqlite3_free(pCur->zBuf);
  sqlite3_free(pCur);
  return SQLITE_OK;
}

static int fsNext(sqlite3_vtab_cursor *cur){
  fs_cursor *pCur = (fs_cursor *)cur;
  int rc;

  rc = sqlite3_step(pCur->pStmt);
  if( rc==SQLITE_ROW || rc==SQLITE_DONE ) rc = SQLITE_OK;

  return rc;
}

static int fsFilter(
  sqlite3_vtab_cursor *pVtabCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  int rc;
  fs_cursor *pCur = (fs_cursor *)pVtabCursor;
  fs_vtab *p = (fs_vtab *)(pVtabCursor->pVtab);

  assert( (idxNum==0 && argc==0) || (idxNum==1 && argc==1) );
  if( idxNum==1 ){
    char *zStmt = sqlite3_mprintf(
        "SELECT * FROM %Q.%Q WHERE rowid=?", p->zDb, p->zTbl);
    if( !zStmt ) return SQLITE_NOMEM;
    rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pCur->pStmt, 0);
    sqlite3_free(zStmt);
    if( rc==SQLITE_OK ){
      sqlite3_bind_value(pCur->pStmt, 1, argv[0]);
    }
  }else{
    char *zStmt = sqlite3_mprintf("SELECT * FROM %Q.%Q", p->zDb, p->zTbl);
    if( !zStmt ) return SQLITE_NOMEM;
    rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pCur->pStmt, 0);
    sqlite3_free(zStmt);
  }

  if( rc==SQLITE_OK ){
    rc = fsNext(pVtabCursor); 
  }
  return rc;
}

static int fsColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
  fs_cursor *pCur = (fs_cursor*)cur;

  assert( i==0 || i==1 );
  if( i==0 ){
    sqlite3_result_value(ctx, sqlite3_column_value(pCur->pStmt, 0));
  }else{
    const char *zFile = (const char *)sqlite3_column_text(pCur->pStmt, 1);
    struct stat sbuf;
    int fd;

    fd = open(zFile, O_RDONLY);
    if( fd<0 ) return SQLITE_IOERR;
    fstat(fd, &sbuf);

    if( sbuf.st_size>=pCur->nAlloc ){
      int nNew = sbuf.st_size*2;
      char *zNew;
      if( nNew<1024 ) nNew = 1024;

      zNew = sqlite3Realloc(pCur->zBuf, nNew);
      if( zNew==0 ){
        close(fd);
        return SQLITE_NOMEM;
      }
      pCur->zBuf = zNew;
      pCur->nAlloc = nNew;
    }

    read(fd, pCur->zBuf, sbuf.st_size);
    close(fd);
    pCur->nBuf = sbuf.st_size;
    pCur->zBuf[pCur->nBuf] = '\0';

    sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
  }
  return SQLITE_OK;
}

static int fsRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
  fs_cursor *pCur = (fs_cursor*)cur;
  *pRowid = sqlite3_column_int64(pCur->pStmt, 0);
  return SQLITE_OK;
}

static int fsEof(sqlite3_vtab_cursor *cur){
  fs_cursor *pCur = (fs_cursor*)cur;
  return (sqlite3_data_count(pCur->pStmt)==0);
}

static int fsBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int ii;

  for(ii=0; ii<pIdxInfo->nConstraint; ii++){
    struct sqlite3_index_constraint const *pCons = &pIdxInfo->aConstraint[ii];
    if( pCons->iColumn<0 && pCons->usable
           && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      struct sqlite3_index_constraint_usage *pUsage;
      pUsage = &pIdxInfo->aConstraintUsage[ii];
      pUsage->omit = 0;
      pUsage->argvIndex = 1;
      pIdxInfo->idxNum = 1;
      pIdxInfo->estimatedCost = 1.0;
      break;
    }
  }

  return SQLITE_OK;
}

/*
** A virtual table module that provides read-only access to a
** Tcl global variable namespace.
*/
static sqlite3_module fsModule = {
  0,                         /* iVersion */
  fsConnect,
  fsConnect,
  fsBestIndex,
  fsDisconnect, 
  fsDisconnect,
  fsOpen,                      /* xOpen - open a cursor */
  fsClose,                     /* xClose - close a cursor */
  fsFilter,                    /* xFilter - configure scan constraints */
  fsNext,                      /* xNext - advance a cursor */
  fsEof,                       /* xEof - check for end of scan */
  fsColumn,                    /* xColumn - read data */
  fsRowid,                     /* xRowid - read data */
  0,                           /* xUpdate */
  0,                           /* xBegin */
  0,                           /* xSync */
  0,                           /* xCommit */
  0,                           /* xRollback */
  0,                           /* xFindMethod */
  0,                           /* xRename */
};

/*
** Decode a pointer to an sqlite3 object.
*/
extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb);

/*
** Register the echo virtual table module.
*/
static int register_fs_module(
  ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3 *db;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3_create_module(db, "fs", &fsModule, (void *)interp);
#endif
  return TCL_OK;
}

#endif


/*
** Register commands with the TCL interpreter.
*/
int Sqlitetestfs_Init(Tcl_Interp *interp){
#ifndef SQLITE_OMIT_VIRTUALTABLE
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
     void *clientData;
  } aObjCmd[] = {
     { "register_fs_module",   register_fs_module, 0 },
  };
  int i;
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, 
        aObjCmd[i].xProc, aObjCmd[i].clientData, 0);
  }
#endif
  return TCL_OK;
}
Changes to src/test_quota.c.
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
  }

  quotaEnter();
  pGroup = quotaGroupFind(zFull);
  if( pGroup ){
    for(pFile=pGroup->pFiles; pFile && rc==SQLITE_OK; pFile=pNextFile){
      pNextFile = pFile->pNext;
      diff = memcmp(zFull, pFile->zFilename, nFull);
      if( diff==0 && ((c = pFile->zFilename[nFull])==0 || c=='/' || c=='\\') ){
        if( pFile->nRef ){
          pFile->deleteOnClose = 1;
        }else{
          rc = gQuota.pOrigVfs->xDelete(gQuota.pOrigVfs, pFile->zFilename, 0);
          quotaRemoveFile(pFile);
          quotaGroupDeref(pGroup);







|







1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
  }

  quotaEnter();
  pGroup = quotaGroupFind(zFull);
  if( pGroup ){
    for(pFile=pGroup->pFiles; pFile && rc==SQLITE_OK; pFile=pNextFile){
      pNextFile = pFile->pNext;
      diff = strncmp(zFull, pFile->zFilename, nFull);
      if( diff==0 && ((c = pFile->zFilename[nFull])==0 || c=='/' || c=='\\') ){
        if( pFile->nRef ){
          pFile->deleteOnClose = 1;
        }else{
          rc = gQuota.pOrigVfs->xDelete(gQuota.pOrigVfs, pFile->zFilename, 0);
          quotaRemoveFile(pFile);
          quotaGroupDeref(pGroup);
Added src/test_regexp.c.




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
/*
** 2012-11-13
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** The code in this file implements a compact but reasonably
** efficient regular-expression matcher for posix extended regular
** expressions against UTF8 text.  The following syntax is supported:
**
**     X*      zero or more occurrences of X
**     X+      one or more occurrences of X
**     X?      zero or one occurrences of X
**     X{p,q}  between p and q occurrences of X
**     (X)     match X
**     X|Y     X or Y
**     ^X      X occurring at the beginning of the string
**     X$      X occurring at the end of the string
**     .       Match any single character
**     \c      Character c where c is one of \{}()[]|*+?.
**     \c      C-language escapes for c in afnrtv.  ex: \t or \n
**     \uXXXX  Where XXXX is exactly 4 hex digits, unicode value XXXX
**     \xXX    Where XX is exactly 2 hex digits, unicode value XX
**     [abc]   Any single character from the set abc
**     [^abc]  Any single character not in the set abc
**     [a-z]   Any single character in the range a-z
**     [^a-z]  Any single character not in the range a-z
**     \b      Word boundary
**     \w      Word character.  [A-Za-z0-9_]
**     \W      Non-word character
**     \d      Digit
**     \D      Non-digit
**     \s      Whitespace character
**     \S      Non-whitespace character
**
** A nondeterministic finite automaton (NFA) is used for matching, so the
** performance is bounded by O(N*M) where N is the size of the regular
** expression and M is the size of the input string.  The matcher never
** exhibits exponential behavior.  Note that the X{p,q} operator expands
** to p copies of X following by q-p copies of X? and that the size of the
** regular expression in the O(N*M) performance bound is computed after
** this expansion.
*/
#include <string.h>
#include <stdlib.h>
#include "sqlite3.h"

/* The end-of-input character */
#define RE_EOF            0    /* End of input */

/* The NFA is implemented as sequence of opcodes taken from the following
** set.  Each opcode has a single integer argument.
*/
#define RE_OP_MATCH       1    /* Match the one character in the argument */
#define RE_OP_ANY         2    /* Match any one character.  (Implements ".") */
#define RE_OP_ANYSTAR     3    /* Special optimized version of .* */
#define RE_OP_FORK        4    /* Continue to both next and opcode at iArg */
#define RE_OP_GOTO        5    /* Jump to opcode at iArg */
#define RE_OP_ACCEPT      6    /* Halt and indicate a successful match */
#define RE_OP_CC_INC      7    /* Beginning of a [...] character class */
#define RE_OP_CC_EXC      8    /* Beginning of a [^...] character class */
#define RE_OP_CC_VALUE    9    /* Single value in a character class */
#define RE_OP_CC_RANGE   10    /* Range of values in a character class */
#define RE_OP_WORD       11    /* Perl word character [A-Za-z0-9_] */
#define RE_OP_NOTWORD    12    /* Not a perl word character */
#define RE_OP_DIGIT      13    /* digit:  [0-9] */
#define RE_OP_NOTDIGIT   14    /* Not a digit */
#define RE_OP_SPACE      15    /* space:  [ \t\n\r\v\f] */
#define RE_OP_NOTSPACE   16    /* Not a digit */
#define RE_OP_BOUNDARY   17    /* Boundary between word and non-word */

/* Each opcode is a "state" in the NFA */
typedef unsigned short ReStateNumber;

/* Because this is an NFA and not a DFA, multiple states can be active at
** once.  An instance of the following object records all active states in
** the NFA.  The implementation is optimized for the common case where the
** number of actives states is small.
*/
typedef struct ReStateSet {
  unsigned nState;            /* Number of current states */
  ReStateNumber *aState;      /* Current states */
} ReStateSet;

/* An input string read one character at a time.
*/
typedef struct ReInput ReInput;
struct ReInput {
  const unsigned char *z;  /* All text */
  int i;                   /* Next byte to read */
  int mx;                  /* EOF when i>=mx */
};

/* A compiled NFA (or an NFA that is in the process of being compiled) is
** an instance of the following object.
*/
typedef struct ReCompiled ReCompiled;
struct ReCompiled {
  ReInput sIn;                /* Regular expression text */
  const char *zErr;           /* Error message to return */
  char *aOp;                  /* Operators for the virtual machine */
  int *aArg;                  /* Arguments to each operator */
  unsigned (*xNextChar)(ReInput*);  /* Next character function */
  unsigned char zInit[12];    /* Initial text to match */
  int nInit;                  /* Number of characters in zInit */
  unsigned nState;            /* Number of entries in aOp[] and aArg[] */
  unsigned nAlloc;            /* Slots allocated for aOp[] and aArg[] */
};

/* Add a state to the given state set if it is not already there */
static void re_add_state(ReStateSet *pSet, int newState){
  unsigned i;
  for(i=0; i<pSet->nState; i++) if( pSet->aState[i]==newState ) return;
  pSet->aState[pSet->nState++] = newState;
}

/* Extract the next unicode character from *pzIn and return it.  Advance
** *pzIn to the first byte past the end of the character returned.  To
** be clear:  this routine converts utf8 to unicode.  This routine is 
** optimized for the common case where the next character is a single byte.
*/
static unsigned re_next_char(ReInput *p){
  unsigned c;
  if( p->i>=p->mx ) return 0;
  c = p->z[p->i++];
  if( c>=0x80 ){
    if( (c&0xe0)==0xc0 && p->i<p->mx && (p->z[p->i]&0xc0)==0x80 ){
      c = (c&0x1f)<<6 | (p->z[p->i++]&0x3f);
      if( c<0x80 ) c = 0xfffd;
    }else if( (c&0xf0)==0xe0 && p->i+1<p->mx && (p->z[p->i]&0xc0)==0x80
           && (p->z[p->i+1]&0xc0)==0x80 ){
      c = (c&0x0f)<<12 | ((p->z[p->i]&0x3f)<<6) | (p->z[p->i+1]&0x3f);
      p->i += 2;
      if( c<=0x3ff || (c>=0xd800 && c<=0xdfff) ) c = 0xfffd;
    }else if( (c&0xf8)==0xf0 && p->i+3<p->mx && (p->z[p->i]&0xc0)==0x80
           && (p->z[p->i+1]&0xc0)==0x80 && (p->z[p->i+2]&0xc0)==0x80 ){
      c = (c&0x07)<<18 | ((p->z[p->i]&0x3f)<<12) | ((p->z[p->i+1]&0x3f)<<6)
                       | (p->z[p->i+2]&0x3f);
      p->i += 3;
      if( c<=0xffff || c>0x10ffff ) c = 0xfffd;
    }else{
      c = 0xfffd;
    }
  }
  return c;
}
static unsigned re_next_char_nocase(ReInput *p){
  unsigned c = re_next_char(p);
  if( c>='A' && c<='Z' ) c += 'a' - 'A';
  return c;
}

/* Return true if c is a perl "word" character:  [A-Za-z0-9_] */
static int re_word_char(int c){
  return (c>='0' && c<='9') || (c>='a' && c<='z')
      || (c>='A' && c<='Z') || c=='_';
}

/* Return true if c is a "digit" character:  [0-9] */
static int re_digit_char(int c){
  return (c>='0' && c<='9');
}

/* Return true if c is a perl "space" character:  [ \t\r\n\v\f] */
static int re_space_char(int c){
  return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
}

/* Run a compiled regular expression on the zero-terminated input
** string zIn[].  Return true on a match and false if there is no match.
*/
int re_match(ReCompiled *pRe, const unsigned char *zIn, int nIn){
  ReStateSet aStateSet[2], *pThis, *pNext;
  ReStateNumber aSpace[100];
  ReStateNumber *pToFree;
  unsigned int i = 0;
  unsigned int iSwap = 0;
  int c = RE_EOF+1;
  int cPrev = 0;
  int rc = 0;
  ReInput in;

  in.z = zIn;
  in.i = 0;
  in.mx = nIn>=0 ? nIn : strlen((char const*)zIn);

  /* Look for the initial prefix match, if there is one. */
  if( pRe->nInit ){
    unsigned char x = pRe->zInit[0];
    while( in.i+pRe->nInit<=in.mx 
     && (zIn[in.i]!=x ||
         strncmp((const char*)zIn+in.i, (const char*)pRe->zInit, pRe->nInit)!=0)
    ){
      in.i++;
    }
    if( in.i+pRe->nInit>in.mx ) return 0;
  }

  if( pRe->nState<=(sizeof(aSpace)/(sizeof(aSpace[0])*2)) ){
    pToFree = 0;
    aStateSet[0].aState = aSpace;
  }else{
    pToFree = sqlite3_malloc( sizeof(ReStateNumber)*2*pRe->nState );
    if( pToFree==0 ) return -1;
    aStateSet[0].aState = pToFree;
  }
  aStateSet[1].aState = &aStateSet[0].aState[pRe->nState];
  pNext = &aStateSet[1];
  pNext->nState = 0;
  re_add_state(pNext, 0);
  while( c!=RE_EOF && pNext->nState>0 ){
    cPrev = c;
    c = pRe->xNextChar(&in);
    pThis = pNext;
    pNext = &aStateSet[iSwap];
    iSwap = 1 - iSwap;
    pNext->nState = 0;
    for(i=0; i<pThis->nState; i++){
      int x = pThis->aState[i];
      switch( pRe->aOp[x] ){
        case RE_OP_MATCH: {
          if( pRe->aArg[x]==c ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_ANY: {
          re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_WORD: {
          if( re_word_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_NOTWORD: {
          if( !re_word_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_DIGIT: {
          if( re_digit_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_NOTDIGIT: {
          if( !re_digit_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_SPACE: {
          if( re_space_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_NOTSPACE: {
          if( !re_space_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_BOUNDARY: {
          if( re_word_char(c)!=re_word_char(cPrev) ) re_add_state(pThis, x+1);
          break;
        }
        case RE_OP_ANYSTAR: {
          re_add_state(pNext, x);
          re_add_state(pThis, x+1);
          break;
        }
        case RE_OP_FORK: {
          re_add_state(pThis, x+pRe->aArg[x]);
          re_add_state(pThis, x+1);
          break;
        }
        case RE_OP_GOTO: {
          re_add_state(pThis, x+pRe->aArg[x]);
          break;
        }
        case RE_OP_ACCEPT: {
          rc = 1;
          goto re_match_end;
        }
        case RE_OP_CC_INC:
        case RE_OP_CC_EXC: {
          int j = 1;
          int n = pRe->aArg[x];
          int hit = 0;
          for(j=1; j>0 && j<n; j++){
            if( pRe->aOp[x+j]==RE_OP_CC_VALUE ){
              if( pRe->aArg[x+j]==c ){
                hit = 1;
                j = -1;
              }
            }else{
              if( pRe->aArg[x+j]<=c && pRe->aArg[x+j+1]>=c ){
                hit = 1;
                j = -1;
              }else{
                j++;
              }
            }
          }
          if( pRe->aOp[x]==RE_OP_CC_EXC ) hit = !hit;
          if( hit ) re_add_state(pNext, x+n);
          break;            
        }
      }
    }
  }
  for(i=0; i<pNext->nState; i++){
    if( pRe->aOp[pNext->aState[i]]==RE_OP_ACCEPT ){ rc = 1; break; }
  }
re_match_end:
  sqlite3_free(pToFree);
  return rc;
}

/* Resize the opcode and argument arrays for an RE under construction.
*/
static int re_resize(ReCompiled *p, int N){
  char *aOp;
  int *aArg;
  aOp = sqlite3_realloc(p->aOp, N*sizeof(p->aOp[0]));
  if( aOp==0 ) return 1;
  p->aOp = aOp;
  aArg = sqlite3_realloc(p->aArg, N*sizeof(p->aArg[0]));
  if( aArg==0 ) return 1;
  p->aArg = aArg;
  p->nAlloc = N;
  return 0;
}

/* Insert a new opcode and argument into an RE under construction.  The
** insertion point is just prior to existing opcode iBefore.
*/
static int re_insert(ReCompiled *p, int iBefore, int op, int arg){
  int i;
  if( p->nAlloc<=p->nState && re_resize(p, p->nAlloc*2) ) return 0;
  for(i=p->nState; i>iBefore; i--){
    p->aOp[i] = p->aOp[i-1];
    p->aArg[i] = p->aArg[i-1];
  }
  p->nState++;
  p->aOp[iBefore] = op;
  p->aArg[iBefore] = arg;
  return iBefore;
}

/* Append a new opcode and argument to the end of the RE under construction.
*/
static int re_append(ReCompiled *p, int op, int arg){
  return re_insert(p, p->nState, op, arg);
}

/* Make a copy of N opcodes starting at iStart onto the end of the RE
** under construction.
*/
static void re_copy(ReCompiled *p, int iStart, int N){
  if( p->nState+N>=p->nAlloc && re_resize(p, p->nAlloc*2+N) ) return;
  memcpy(&p->aOp[p->nState], &p->aOp[iStart], N*sizeof(p->aOp[0]));
  memcpy(&p->aArg[p->nState], &p->aArg[iStart], N*sizeof(p->aArg[0]));
  p->nState += N;
}

/* Return true if c is a hexadecimal digit character:  [0-9a-fA-F]
** If c is a hex digit, also set *pV = (*pV)*16 + valueof(c).  If
** c is not a hex digit *pV is unchanged.
*/
static int re_hex(int c, int *pV){
  if( c>='0' && c<='9' ){
    c -= '0';
  }else if( c>='a' && c<='f' ){
    c -= 'a' - 10;
  }else if( c>='A' && c<='F' ){
    c -= 'A' - 10;
  }else{
    return 0;
  }
  *pV = (*pV)*16 + (c & 0xff);
  return 1;
}

/* A backslash character has been seen, read the next character and
** return its interpretation.
*/
static unsigned re_esc_char(ReCompiled *p){
  static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]";
  static const char zTrans[] = "\a\f\n\r\t\v";
  int i, v = 0;
  char c;
  if( p->sIn.i>=p->sIn.mx ) return 0;
  c = p->sIn.z[p->sIn.i];
  if( c=='u' && p->sIn.i+4<p->sIn.mx ){
    const unsigned char *zIn = p->sIn.z + p->sIn.i;
    if( re_hex(zIn[1],&v)
     && re_hex(zIn[2],&v)
     && re_hex(zIn[3],&v)
     && re_hex(zIn[4],&v)
    ){
      p->sIn.i += 5;
      return v;
    }
  }
  if( c=='x' && p->sIn.i+2<p->sIn.mx ){
    const unsigned char *zIn = p->sIn.z + p->sIn.i;
    if( re_hex(zIn[1],&v)
     && re_hex(zIn[2],&v)
    ){
      p->sIn.i += 3;
      return v;
    }
  }
  for(i=0; zEsc[i] && zEsc[i]!=c; i++){}
  if( zEsc[i] ){
    if( i<6 ) c = zTrans[i];
    p->sIn.i++;
  }else{
    p->zErr = "unknown \\ escape";
  }
  return c;
}

/* Forward declaration */
static const char *re_subcompile_string(ReCompiled*);

/* Peek at the next byte of input */
static unsigned char rePeek(ReCompiled *p){
  return p->sIn.i<p->sIn.mx ? p->sIn.z[p->sIn.i] : 0;
}

/* Compile RE text into a sequence of opcodes.  Continue up to the
** first unmatched ")" character, then return.  If an error is found,
** return a pointer to the error message string.
*/
static const char *re_subcompile_re(ReCompiled *p){
  const char *zErr;
  int iStart, iEnd, iGoto;
  iStart = p->nState;
  zErr = re_subcompile_string(p);
  if( zErr ) return zErr;
  while( rePeek(p)=='|' ){
    iEnd = p->nState;
    re_insert(p, iStart, RE_OP_FORK, iEnd + 2 - iStart);
    iGoto = re_append(p, RE_OP_GOTO, 0);
    p->sIn.i++;
    zErr = re_subcompile_string(p);
    if( zErr ) return zErr;
    p->aArg[iGoto] = p->nState - iGoto;
  }
  return 0;
}

/* Compile an element of regular expression text (anything that can be
** an operand to the "|" operator).  Return NULL on success or a pointer
** to the error message if there is a problem.
*/
static const char *re_subcompile_string(ReCompiled *p){
  int iPrev = -1;
  int iStart;
  unsigned c;
  const char *zErr;
  while( (c = p->xNextChar(&p->sIn))!=0 ){
    iStart = p->nState;
    switch( c ){
      case '|':
      case '$': 
      case ')': {
        p->sIn.i--;
        return 0;
      }
      case '(': {
        zErr = re_subcompile_re(p);
        if( zErr ) return zErr;
        if( rePeek(p)!=')' ) return "unmatched '('";
        p->sIn.i++;
        break;
      }
      case '.': {
        if( rePeek(p)=='*' ){
          re_append(p, RE_OP_ANYSTAR, 0);
          p->sIn.i++;
        }else{ 
          re_append(p, RE_OP_ANY, 0);
        }
        break;
      }
      case '*': {
        if( iPrev<0 ) return "'*' without operand";
        re_insert(p, iPrev, RE_OP_GOTO, p->nState - iPrev + 1);
        re_append(p, RE_OP_FORK, iPrev - p->nState + 1);
        break;
      }
      case '+': {
        if( iPrev<0 ) return "'+' without operand";
        re_append(p, RE_OP_FORK, iPrev - p->nState);
        break;
      }
      case '?': {
        if( iPrev<0 ) return "'?' without operand";
        re_insert(p, iPrev, RE_OP_FORK, p->nState - iPrev+1);
        break;
      }
      case '{': {
        int m = 0, n = 0;
        int sz, j;
        if( iPrev<0 ) return "'{m,n}' without operand";
        while( (c=rePeek(p))>='0' && c<='9' ){ m = m*10 + c - '0'; p->sIn.i++; }
        n = m;
        if( c==',' ){
          p->sIn.i++;
          n = 0;
          while( (c=rePeek(p))>='0' && c<='9' ){ n = n*10 + c-'0'; p->sIn.i++; }
        }
        if( c!='}' ) return "unmatched '{'";
        if( n>0 && n<m ) return "n less than m in '{m,n}'";
        p->sIn.i++;
        sz = p->nState - iPrev;
        if( m==0 ){
          if( n==0 ) return "both m and n are zero in '{m,n}'";
          re_insert(p, iPrev, RE_OP_FORK, sz+1);
          n--;
        }else{
          for(j=1; j<m; j++) re_copy(p, iPrev, sz);
        }
        for(j=m; j<n; j++){
          re_append(p, RE_OP_FORK, sz+1);
          re_copy(p, iPrev, sz);
        }
        if( n==0 && m>0 ){
          re_append(p, RE_OP_FORK, -sz);
        }
        break;
      }
      case '[': {
        int iFirst = p->nState;
        if( rePeek(p)=='^' ){
          re_append(p, RE_OP_CC_EXC, 0);
          p->sIn.i++;
        }else{
          re_append(p, RE_OP_CC_INC, 0);
        }
        while( (c = p->xNextChar(&p->sIn))!=0 ){
          if( c=='[' && rePeek(p)==':' ){
            return "POSIX character classes not supported";
          }
          if( c=='\\' ) c = re_esc_char(p);
          if( rePeek(p)=='-' ){
            re_append(p, RE_OP_CC_RANGE, c);
            p->sIn.i++;
            c = p->xNextChar(&p->sIn);
            if( c=='\\' ) c = re_esc_char(p);
            re_append(p, RE_OP_CC_RANGE, c);
          }else{
            re_append(p, RE_OP_CC_VALUE, c);
          }
          if( rePeek(p)==']' ){ p->sIn.i++; break; }
        }
        if( c==0 ) return "unclosed '['";
        p->aArg[iFirst] = p->nState - iFirst;
        break;
      }
      case '\\': {
        int specialOp = 0;
        switch( rePeek(p) ){
          case 'b': specialOp = RE_OP_BOUNDARY;   break;
          case 'd': specialOp = RE_OP_DIGIT;      break;
          case 'D': specialOp = RE_OP_NOTDIGIT;   break;
          case 's': specialOp = RE_OP_SPACE;      break;
          case 'S': specialOp = RE_OP_NOTSPACE;   break;
          case 'w': specialOp = RE_OP_WORD;       break;
          case 'W': specialOp = RE_OP_NOTWORD;    break;
        }
        if( specialOp ){
          p->sIn.i++;
          re_append(p, specialOp, 0);
        }else{
          c = re_esc_char(p);
          re_append(p, RE_OP_MATCH, c);
        }
        break;
      }
      default: {
        re_append(p, RE_OP_MATCH, c);
        break;
      }
    }
    iPrev = iStart;
  }
  return 0;
}

/* Free and reclaim all the memory used by a previously compiled
** regular expression.  Applications should invoke this routine once
** for every call to re_compile() to avoid memory leaks.
*/
void re_free(ReCompiled *pRe){
  if( pRe ){
    sqlite3_free(pRe->aOp);
    sqlite3_free(pRe->aArg);
    sqlite3_free(pRe);
  }
}

/*
** Compile a textual regular expression in zIn[] into a compiled regular
** expression suitable for us by re_match() and return a pointer to the
** compiled regular expression in *ppRe.  Return NULL on success or an
** error message if something goes wrong.
*/
const char *re_compile(ReCompiled **ppRe, const char *zIn, int noCase){
  ReCompiled *pRe;
  const char *zErr;
  int i, j;

  *ppRe = 0;
  pRe = sqlite3_malloc( sizeof(*pRe) );
  if( pRe==0 ){
    return "out of memory";
  }
  memset(pRe, 0, sizeof(*pRe));
  pRe->xNextChar = noCase ? re_next_char_nocase : re_next_char;
  if( re_resize(pRe, 30) ){
    re_free(pRe);
    return "out of memory";
  }
  if( zIn[0]=='^' ){
    zIn++;
  }else{
    re_append(pRe, RE_OP_ANYSTAR, 0);
  }
  pRe->sIn.z = (unsigned char*)zIn;
  pRe->sIn.i = 0;
  pRe->sIn.mx = strlen(zIn);
  zErr = re_subcompile_re(pRe);
  if( zErr ){
    re_free(pRe);
    return zErr;
  }
  if( rePeek(pRe)=='$' && pRe->sIn.i+1>=pRe->sIn.mx ){
    re_append(pRe, RE_OP_MATCH, RE_EOF);
    re_append(pRe, RE_OP_ACCEPT, 0);
    *ppRe = pRe;
  }else if( pRe->sIn.i>=pRe->sIn.mx ){
    re_append(pRe, RE_OP_ACCEPT, 0);
    *ppRe = pRe;
  }else{
    re_free(pRe);
    return "unrecognized character";
  }

  /* The following is a performance optimization.  If the regex begins with
  ** ".*" (if the input regex lacks an initial "^") and afterwards there are
  ** one or more matching characters, enter those matching characters into
  ** zInit[].  The re_match() routine can then search ahead in the input 
  ** string looking for the initial match without having to run the whole
  ** regex engine over the string.  Do not worry able trying to match
  ** unicode characters beyond plane 0 - those are very rare and this is
  ** just an optimization. */
  if( pRe->aOp[0]==RE_OP_ANYSTAR ){
    for(j=0, i=1; j<sizeof(pRe->zInit)-2 && pRe->aOp[i]==RE_OP_MATCH; i++){
      unsigned x = pRe->aArg[i];
      if( x<=127 ){
        pRe->zInit[j++] = x;
      }else if( x<=0xfff ){
        pRe->zInit[j++] = 0xc0 | (x>>6);
        pRe->zInit[j++] = 0x80 | (x&0x3f);
      }else if( x<=0xffff ){
        pRe->zInit[j++] = 0xd0 | (x>>12);
        pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f);
        pRe->zInit[j++] = 0x80 | (x&0x3f);
      }else{
        break;
      }
    }
    if( j>0 && pRe->zInit[j-1]==0 ) j--;
    pRe->nInit = j;
  }
  return pRe->zErr;
}

/*
** Implementation of the regexp() SQL function.  This function implements
** the build-in REGEXP operator.  The first argument to the function is the
** pattern and the second argument is the string.  So, the SQL statements:
**
**       A REGEXP B
**
** is implemented as regexp(B,A).
*/
static void re_sql_func(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  ReCompiled *pRe;          /* Compiled regular expression */
  const char *zPattern;     /* The regular expression */
  const unsigned char *zStr;/* String being searched */
  const char *zErr;         /* Compile error message */

  pRe = sqlite3_get_auxdata(context, 0);
  if( pRe==0 ){
    zPattern = (const char*)sqlite3_value_text(argv[0]);
    if( zPattern==0 ) return;
    zErr = re_compile(&pRe, zPattern, 0);
    if( zErr ){
      re_free(pRe);
      sqlite3_result_error(context, zErr, -1);
      return;
    }
    if( pRe==0 ){
      sqlite3_result_error_nomem(context);
      return;
    }
    sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free);
  }
  zStr = (const unsigned char*)sqlite3_value_text(argv[1]);
  if( zStr!=0 ){
    sqlite3_result_int(context, re_match(pRe, zStr, -1));
  }
}

/*
** Invoke this routine in order to install the REGEXP function in an
** SQLite database connection.
**
** Use:
**
**      sqlite3_auto_extension(sqlite3_add_regexp_func);
**
** to cause this extension to be automatically loaded into each new
** database connection.
*/
int sqlite3_add_regexp_func(sqlite3 *db){
  return sqlite3_create_function(db, "regexp", 2, SQLITE_UTF8, 0,
                                 re_sql_func, 0, 0);
}


/***************************** Test Code ***********************************/
#ifdef SQLITE_TEST
#include <tcl.h>
extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb);

/* Implementation of the TCL command:
**
**      sqlite3_add_regexp_func $DB
*/
static int tclSqlite3AddRegexpFunc(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3 *db;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  sqlite3_add_regexp_func(db);
  return TCL_OK;
}

/* Register the sqlite3_add_regexp_func TCL command with the TCL interpreter.
*/
int Sqlitetestregexp_Init(Tcl_Interp *interp){
  Tcl_CreateObjCommand(interp, "sqlite3_add_regexp_func",
                       tclSqlite3AddRegexpFunc, 0, 0);
  return TCL_OK;
}
#endif /* SQLITE_TEST */
/**************************** End Of Test Code *******************************/
Changes to src/test_spellfix.c.
17
18
19
20
21
22
23





24
25
26
27
28
29
30
#if SQLITE_CORE
# include "sqliteInt.h"
#else
# include <string.h>
# include <stdio.h>
# include <stdlib.h>
# include "sqlite3ext.h"





  SQLITE_EXTENSION_INIT1
#endif /* !SQLITE_CORE */
#include <ctype.h>

/*
** Character classes for ASCII characters:
**







>
>
>
>
>







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#if SQLITE_CORE
# include "sqliteInt.h"
#else
# include <string.h>
# include <stdio.h>
# include <stdlib.h>
# include "sqlite3ext.h"
# include <assert.h>
# define ALWAYS(X)  1
# define NEVER(X)   0
  typedef unsigned char u8;
  typedef unsigned short u16;
  SQLITE_EXTENSION_INIT1
#endif /* !SQLITE_CORE */
#include <ctype.h>

/*
** Character classes for ASCII characters:
**
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
    }
  }
  if( len>N ) len = N;
  return len;
}

/*
** Return TRUE (non-zero) of the To side of the given cost matches
** the given string.
*/
static int matchTo(EditDist3Cost *p, const char *z, int n){
  if( p->nTo>n ) return 0;
  if( memcmp(p->a+p->nFrom, z, p->nTo)!=0 ) return 0;
  return 1;
}

/*
** Return TRUE (non-zero) of the To side of the given cost matches
** the given string.
*/
static int matchFrom(EditDist3Cost *p, const char *z, int n){
  assert( p->nFrom<=n );
  if( memcmp(p->a, z, p->nFrom)!=0 ) return 0;
  return 1;
}

/*
** Return TRUE (non-zero) of the next FROM character and the next TO
** character are the same.
*/







|




|




|




|







740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
    }
  }
  if( len>N ) len = N;
  return len;
}

/*
** Return TRUE (non-zero) if the To side of the given cost matches
** the given string.
*/
static int matchTo(EditDist3Cost *p, const char *z, int n){
  if( p->nTo>n ) return 0;
  if( strncmp(p->a+p->nFrom, z, p->nTo)!=0 ) return 0;
  return 1;
}

/*
** Return TRUE (non-zero) if the From side of the given cost matches
** the given string.
*/
static int matchFrom(EditDist3Cost *p, const char *z, int n){
  assert( p->nFrom<=n );
  if( strncmp(p->a, z, p->nFrom)!=0 ) return 0;
  return 1;
}

/*
** Return TRUE (non-zero) of the next FROM character and the next TO
** character are the same.
*/
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
      spellfix1DbExec(&rc, db,
         "CREATE INDEX IF NOT EXISTS \"%w\".\"%w_index_%llx\" "
            "ON \"%w_vocab\"(langid,k2);",
         zDbName, zModule, r, zTableName
      );
    }
    for(i=3; rc==SQLITE_OK && i<argc; i++){
      if( memcmp(argv[i],"edit_cost_table=",16)==0 && pNew->zCostTable==0 ){
        pNew->zCostTable = spellfix1Dequote(&argv[i][16]);
        if( pNew->zCostTable==0 ) rc = SQLITE_NOMEM;
        continue;
      }
      *pzErr = sqlite3_mprintf("bad argument to spellfix1(): \"%s\"", argv[i]);
      rc = SQLITE_ERROR; 
    }







|







1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
      spellfix1DbExec(&rc, db,
         "CREATE INDEX IF NOT EXISTS \"%w\".\"%w_index_%llx\" "
            "ON \"%w_vocab\"(langid,k2);",
         zDbName, zModule, r, zTableName
      );
    }
    for(i=3; rc==SQLITE_OK && i<argc; i++){
      if( strncmp(argv[i],"edit_cost_table=",16)==0 && pNew->zCostTable==0 ){
        pNew->zCostTable = spellfix1Dequote(&argv[i][16]);
        if( pNew->zCostTable==0 ) rc = SQLITE_NOMEM;
        continue;
      }
      *pzErr = sqlite3_mprintf("bad argument to spellfix1(): \"%s\"", argv[i]);
      rc = SQLITE_ERROR; 
    }
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677












2678
2679
2680
2681
2682
2683
2684
      ** cause zWord to be NULL, so we look at the "command" column to see
      ** what special actions to take */
      const char *zCmd = 
         (const char*)sqlite3_value_text(argv[SPELLFIX_COL_COMMAND+2]);
      if( zCmd==0 ){
        pVTab->zErrMsg = sqlite3_mprintf("%s.word may not be NULL",
                                         p->zTableName);
        return SQLITE_CONSTRAINT;
      }
      if( strcmp(zCmd,"reset")==0 ){
        /* Reset the  edit cost table (if there is one). */
        editDist3ConfigDelete(p->pConfig3);
        p->pConfig3 = 0;
        return SQLITE_OK;












      }
      pVTab->zErrMsg = sqlite3_mprintf("unknown value for %s.command: \"%w\"",
                                       p->zTableName, zCmd);
      return SQLITE_ERROR;
    }
    if( iRank<1 ) iRank = 1;
    if( zSoundslike ){







|






>
>
>
>
>
>
>
>
>
>
>
>







2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
      ** cause zWord to be NULL, so we look at the "command" column to see
      ** what special actions to take */
      const char *zCmd = 
         (const char*)sqlite3_value_text(argv[SPELLFIX_COL_COMMAND+2]);
      if( zCmd==0 ){
        pVTab->zErrMsg = sqlite3_mprintf("%s.word may not be NULL",
                                         p->zTableName);
        return SQLITE_CONSTRAINT_NOTNULL;
      }
      if( strcmp(zCmd,"reset")==0 ){
        /* Reset the  edit cost table (if there is one). */
        editDist3ConfigDelete(p->pConfig3);
        p->pConfig3 = 0;
        return SQLITE_OK;
      }
      if( strncmp(zCmd,"edit_cost_table=",16)==0 ){
        editDist3ConfigDelete(p->pConfig3);
        p->pConfig3 = 0;
        sqlite3_free(p->zCostTable);
        p->zCostTable = spellfix1Dequote(zCmd+16);
        if( p->zCostTable==0 ) return SQLITE_NOMEM;
        if( p->zCostTable[0]==0 || sqlite3_stricmp(p->zCostTable,"null")==0 ){
          sqlite3_free(p->zCostTable);
          p->zCostTable = 0;
        }
        return SQLITE_OK;
      }
      pVTab->zErrMsg = sqlite3_mprintf("unknown value for %s.command: \"%w\"",
                                       p->zTableName, zCmd);
      return SQLITE_ERROR;
    }
    if( iRank<1 ) iRank = 1;
    if( zSoundslike ){
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
  return rc;
}

#if SQLITE_CORE || defined(SQLITE_TEST)
/*
** Register the spellfix1 virtual table and its associated functions.
*/
int sqlite3Spellfix1Register(sqlite3 *db){
  return spellfix1Register(db);
}
#endif


#if !SQLITE_CORE
/*
** Extension load function.
*/
int sqlite3_extension_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
  return spellfix1Register(db);
}
#endif /* !SQLITE_CORE */







|









|








2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
  return rc;
}

#if SQLITE_CORE || defined(SQLITE_TEST)
/*
** Register the spellfix1 virtual table and its associated functions.
*/
int sqlite3_spellfix1_register(sqlite3 *db){
  return spellfix1Register(db);
}
#endif


#if !SQLITE_CORE
/*
** Extension load function.
*/
int sqlite3_spellfix1_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
  return spellfix1Register(db);
}
#endif /* !SQLITE_CORE */
Changes to src/test_vfs.c.
261
262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312


static void tvfsExecTcl(
  Testvfs *p, 
  const char *zMethod,
  Tcl_Obj *arg1,
  Tcl_Obj *arg2,
  Tcl_Obj *arg3

){
  int rc;                         /* Return code from Tcl_EvalObj() */
  Tcl_Obj *pEval;
  assert( p->pScript );

  assert( zMethod );
  assert( p );
  assert( arg2==0 || arg1!=0 );
  assert( arg3==0 || arg2!=0 );

  pEval = Tcl_DuplicateObj(p->pScript);
  Tcl_IncrRefCount(p->pScript);
  Tcl_ListObjAppendElement(p->interp, pEval, Tcl_NewStringObj(zMethod, -1));
  if( arg1 ) Tcl_ListObjAppendElement(p->interp, pEval, arg1);
  if( arg2 ) Tcl_ListObjAppendElement(p->interp, pEval, arg2);
  if( arg3 ) Tcl_ListObjAppendElement(p->interp, pEval, arg3);


  rc = Tcl_EvalObjEx(p->interp, pEval, TCL_EVAL_GLOBAL);
  if( rc!=TCL_OK ){
    Tcl_BackgroundError(p->interp);
    Tcl_ResetResult(p->interp);
  }
}


/*
** Close an tvfs-file.
*/
static int tvfsClose(sqlite3_file *pFile){
  int rc;
  TestvfsFile *pTestfile = (TestvfsFile *)pFile;
  TestvfsFd *pFd = pTestfile->pFd;
  Testvfs *p = (Testvfs *)pFd->pVfs->pAppData;

  if( p->pScript && p->mask&TESTVFS_CLOSE_MASK ){
    tvfsExecTcl(p, "xClose", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId, 0
    );
  }

  if( pFd->pShmId ){
    Tcl_DecrRefCount(pFd->pShmId);
    pFd->pShmId = 0;
  }







|
>
















>




















|







261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314


static void tvfsExecTcl(
  Testvfs *p, 
  const char *zMethod,
  Tcl_Obj *arg1,
  Tcl_Obj *arg2,
  Tcl_Obj *arg3,
  Tcl_Obj *arg4
){
  int rc;                         /* Return code from Tcl_EvalObj() */
  Tcl_Obj *pEval;
  assert( p->pScript );

  assert( zMethod );
  assert( p );
  assert( arg2==0 || arg1!=0 );
  assert( arg3==0 || arg2!=0 );

  pEval = Tcl_DuplicateObj(p->pScript);
  Tcl_IncrRefCount(p->pScript);
  Tcl_ListObjAppendElement(p->interp, pEval, Tcl_NewStringObj(zMethod, -1));
  if( arg1 ) Tcl_ListObjAppendElement(p->interp, pEval, arg1);
  if( arg2 ) Tcl_ListObjAppendElement(p->interp, pEval, arg2);
  if( arg3 ) Tcl_ListObjAppendElement(p->interp, pEval, arg3);
  if( arg4 ) Tcl_ListObjAppendElement(p->interp, pEval, arg4);

  rc = Tcl_EvalObjEx(p->interp, pEval, TCL_EVAL_GLOBAL);
  if( rc!=TCL_OK ){
    Tcl_BackgroundError(p->interp);
    Tcl_ResetResult(p->interp);
  }
}


/*
** Close an tvfs-file.
*/
static int tvfsClose(sqlite3_file *pFile){
  int rc;
  TestvfsFile *pTestfile = (TestvfsFile *)pFile;
  TestvfsFd *pFd = pTestfile->pFd;
  Testvfs *p = (Testvfs *)pFd->pVfs->pAppData;

  if( p->pScript && p->mask&TESTVFS_CLOSE_MASK ){
    tvfsExecTcl(p, "xClose", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId, 0, 0
    );
  }

  if( pFd->pShmId ){
    Tcl_DecrRefCount(pFd->pShmId);
    pFd->pShmId = 0;
  }
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
  sqlite_int64 iOfst
){
  int rc = SQLITE_OK;
  TestvfsFd *pFd = tvfsGetFd(pFile);
  Testvfs *p = (Testvfs *)pFd->pVfs->pAppData;
  if( p->pScript && p->mask&TESTVFS_READ_MASK ){
    tvfsExecTcl(p, "xRead", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId, 0
    );
    tvfsResultCode(p, &rc);
  }
  if( rc==SQLITE_OK && p->mask&TESTVFS_READ_MASK && tvfsInjectIoerr(p) ){
    rc = SQLITE_IOERR;
  }
  if( rc==SQLITE_OK ){







|







331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  sqlite_int64 iOfst
){
  int rc = SQLITE_OK;
  TestvfsFd *pFd = tvfsGetFd(pFile);
  Testvfs *p = (Testvfs *)pFd->pVfs->pAppData;
  if( p->pScript && p->mask&TESTVFS_READ_MASK ){
    tvfsExecTcl(p, "xRead", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId, 0, 0
    );
    tvfsResultCode(p, &rc);
  }
  if( rc==SQLITE_OK && p->mask&TESTVFS_READ_MASK && tvfsInjectIoerr(p) ){
    rc = SQLITE_IOERR;
  }
  if( rc==SQLITE_OK ){
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  int rc = SQLITE_OK;
  TestvfsFd *pFd = tvfsGetFd(pFile);
  Testvfs *p = (Testvfs *)pFd->pVfs->pAppData;

  if( p->pScript && p->mask&TESTVFS_WRITE_MASK ){
    tvfsExecTcl(p, "xWrite", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId, 
        Tcl_NewWideIntObj(iOfst)
    );
    tvfsResultCode(p, &rc);
  }

  if( rc==SQLITE_OK && tvfsInjectFullerr(p) ){
    rc = SQLITE_FULL;
  }







|







360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  int rc = SQLITE_OK;
  TestvfsFd *pFd = tvfsGetFd(pFile);
  Testvfs *p = (Testvfs *)pFd->pVfs->pAppData;

  if( p->pScript && p->mask&TESTVFS_WRITE_MASK ){
    tvfsExecTcl(p, "xWrite", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId, 
        Tcl_NewWideIntObj(iOfst), Tcl_NewIntObj(iAmt)
    );
    tvfsResultCode(p, &rc);
  }

  if( rc==SQLITE_OK && tvfsInjectFullerr(p) ){
    rc = SQLITE_FULL;
  }
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
static int tvfsTruncate(sqlite3_file *pFile, sqlite_int64 size){
  int rc = SQLITE_OK;
  TestvfsFd *pFd = tvfsGetFd(pFile);
  Testvfs *p = (Testvfs *)pFd->pVfs->pAppData;

  if( p->pScript && p->mask&TESTVFS_TRUNCATE_MASK ){
    tvfsExecTcl(p, "xTruncate", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId, 0
    );
    tvfsResultCode(p, &rc);
  }
  
  if( rc==SQLITE_OK ){
    rc = sqlite3OsTruncate(pFd->pReal, size);
  }







|







388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
static int tvfsTruncate(sqlite3_file *pFile, sqlite_int64 size){
  int rc = SQLITE_OK;
  TestvfsFd *pFd = tvfsGetFd(pFile);
  Testvfs *p = (Testvfs *)pFd->pVfs->pAppData;

  if( p->pScript && p->mask&TESTVFS_TRUNCATE_MASK ){
    tvfsExecTcl(p, "xTruncate", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId, 0, 0
    );
    tvfsResultCode(p, &rc);
  }
  
  if( rc==SQLITE_OK ){
    rc = sqlite3OsTruncate(pFd->pReal, size);
  }
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        break;
      default:
        assert(0);
    }

    tvfsExecTcl(p, "xSync", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId,
        Tcl_NewStringObj(zFlags, -1)
    );
    tvfsResultCode(p, &rc);
  }

  if( rc==SQLITE_OK && tvfsInjectFullerr(p) ) rc = SQLITE_FULL;

  if( rc==SQLITE_OK ){







|







429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        break;
      default:
        assert(0);
    }

    tvfsExecTcl(p, "xSync", 
        Tcl_NewStringObj(pFd->zFilename, -1), pFd->pShmId,
        Tcl_NewStringObj(zFlags, -1), 0
    );
    tvfsResultCode(p, &rc);
  }

  if( rc==SQLITE_OK && tvfsInjectFullerr(p) ) rc = SQLITE_FULL;

  if( rc==SQLITE_OK ){
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
      while( *z ){
        Tcl_ListObjAppendElement(0, pArg, Tcl_NewStringObj(z, -1));
        z += strlen(z) + 1;
        Tcl_ListObjAppendElement(0, pArg, Tcl_NewStringObj(z, -1));
        z += strlen(z) + 1;
      }
    }
    tvfsExecTcl(p, "xOpen", Tcl_NewStringObj(pFd->zFilename, -1), pArg, 0);
    Tcl_DecrRefCount(pArg);
    if( tvfsResultCode(p, &rc) ){
      if( rc!=SQLITE_OK ) return rc;
    }else{
      pId = Tcl_GetObjResult(p->interp);
    }
  }







|







576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
      while( *z ){
        Tcl_ListObjAppendElement(0, pArg, Tcl_NewStringObj(z, -1));
        z += strlen(z) + 1;
        Tcl_ListObjAppendElement(0, pArg, Tcl_NewStringObj(z, -1));
        z += strlen(z) + 1;
      }
    }
    tvfsExecTcl(p, "xOpen", Tcl_NewStringObj(pFd->zFilename, -1), pArg, 0, 0);
    Tcl_DecrRefCount(pArg);
    if( tvfsResultCode(p, &rc) ){
      if( rc!=SQLITE_OK ) return rc;
    }else{
      pId = Tcl_GetObjResult(p->interp);
    }
  }
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
*/
static int tvfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  int rc = SQLITE_OK;
  Testvfs *p = (Testvfs *)pVfs->pAppData;

  if( p->pScript && p->mask&TESTVFS_DELETE_MASK ){
    tvfsExecTcl(p, "xDelete", 
        Tcl_NewStringObj(zPath, -1), Tcl_NewIntObj(dirSync), 0
    );
    tvfsResultCode(p, &rc);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3OsDelete(PARENTVFS(pVfs), zPath, dirSync);
  }
  return rc;







|







633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
*/
static int tvfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  int rc = SQLITE_OK;
  Testvfs *p = (Testvfs *)pVfs->pAppData;

  if( p->pScript && p->mask&TESTVFS_DELETE_MASK ){
    tvfsExecTcl(p, "xDelete", 
        Tcl_NewStringObj(zPath, -1), Tcl_NewIntObj(dirSync), 0, 0
    );
    tvfsResultCode(p, &rc);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3OsDelete(PARENTVFS(pVfs), zPath, dirSync);
  }
  return rc;
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
  if( p->pScript && p->mask&TESTVFS_ACCESS_MASK ){
    int rc;
    char *zArg = 0;
    if( flags==SQLITE_ACCESS_EXISTS ) zArg = "SQLITE_ACCESS_EXISTS";
    if( flags==SQLITE_ACCESS_READWRITE ) zArg = "SQLITE_ACCESS_READWRITE";
    if( flags==SQLITE_ACCESS_READ ) zArg = "SQLITE_ACCESS_READ";
    tvfsExecTcl(p, "xAccess", 
        Tcl_NewStringObj(zPath, -1), Tcl_NewStringObj(zArg, -1), 0
    );
    if( tvfsResultCode(p, &rc) ){
      if( rc!=SQLITE_OK ) return rc;
    }else{
      Tcl_Interp *interp = p->interp;
      if( TCL_OK==Tcl_GetBooleanFromObj(0, Tcl_GetObjResult(interp), pResOut) ){
        return SQLITE_OK;







|







661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
  if( p->pScript && p->mask&TESTVFS_ACCESS_MASK ){
    int rc;
    char *zArg = 0;
    if( flags==SQLITE_ACCESS_EXISTS ) zArg = "SQLITE_ACCESS_EXISTS";
    if( flags==SQLITE_ACCESS_READWRITE ) zArg = "SQLITE_ACCESS_READWRITE";
    if( flags==SQLITE_ACCESS_READ ) zArg = "SQLITE_ACCESS_READ";
    tvfsExecTcl(p, "xAccess", 
        Tcl_NewStringObj(zPath, -1), Tcl_NewStringObj(zArg, -1), 0, 0
    );
    if( tvfsResultCode(p, &rc) ){
      if( rc!=SQLITE_OK ) return rc;
    }else{
      Tcl_Interp *interp = p->interp;
      if( TCL_OK==Tcl_GetBooleanFromObj(0, Tcl_GetObjResult(interp), pResOut) ){
        return SQLITE_OK;
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
  const char *zPath, 
  int nOut, 
  char *zOut
){
  Testvfs *p = (Testvfs *)pVfs->pAppData;
  if( p->pScript && p->mask&TESTVFS_FULLPATHNAME_MASK ){
    int rc;
    tvfsExecTcl(p, "xFullPathname", Tcl_NewStringObj(zPath, -1), 0, 0);
    if( tvfsResultCode(p, &rc) ){
      if( rc!=SQLITE_OK ) return rc;
    }
  }
  return sqlite3OsFullPathname(PARENTVFS(pVfs), zPath, nOut, zOut);
}








|







689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
  const char *zPath, 
  int nOut, 
  char *zOut
){
  Testvfs *p = (Testvfs *)pVfs->pAppData;
  if( p->pScript && p->mask&TESTVFS_FULLPATHNAME_MASK ){
    int rc;
    tvfsExecTcl(p, "xFullPathname", Tcl_NewStringObj(zPath, -1), 0, 0, 0);
    if( tvfsResultCode(p, &rc) ){
      if( rc!=SQLITE_OK ) return rc;
    }
  }
  return sqlite3OsFullPathname(PARENTVFS(pVfs), zPath, nOut, zOut);
}

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

  /* Evaluate the Tcl script: 
  **
  **   SCRIPT xShmOpen FILENAME
  */
  Tcl_ResetResult(p->interp);
  if( p->pScript && p->mask&TESTVFS_SHMOPEN_MASK ){
    tvfsExecTcl(p, "xShmOpen", Tcl_NewStringObj(pFd->zFilename, -1), 0, 0);
    if( tvfsResultCode(p, &rc) ){
      if( rc!=SQLITE_OK ) return rc;
    }
  }

  assert( rc==SQLITE_OK );
  if( p->mask&TESTVFS_SHMOPEN_MASK && tvfsInjectIoerr(p) ){







|







769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

  /* Evaluate the Tcl script: 
  **
  **   SCRIPT xShmOpen FILENAME
  */
  Tcl_ResetResult(p->interp);
  if( p->pScript && p->mask&TESTVFS_SHMOPEN_MASK ){
    tvfsExecTcl(p, "xShmOpen", Tcl_NewStringObj(pFd->zFilename, -1), 0, 0, 0);
    if( tvfsResultCode(p, &rc) ){
      if( rc!=SQLITE_OK ) return rc;
    }
  }

  assert( rc==SQLITE_OK );
  if( p->mask&TESTVFS_SHMOPEN_MASK && tvfsInjectIoerr(p) ){
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
  if( p->pScript && p->mask&TESTVFS_SHMMAP_MASK ){
    Tcl_Obj *pArg = Tcl_NewObj();
    Tcl_IncrRefCount(pArg);
    Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(iPage));
    Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(pgsz));
    Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(isWrite));
    tvfsExecTcl(p, "xShmMap", 
        Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId, pArg
    );
    tvfsResultCode(p, &rc);
    Tcl_DecrRefCount(pArg);
  }
  if( rc==SQLITE_OK && p->mask&TESTVFS_SHMMAP_MASK && tvfsInjectIoerr(p) ){
    rc = SQLITE_IOERR;
  }







|







839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
  if( p->pScript && p->mask&TESTVFS_SHMMAP_MASK ){
    Tcl_Obj *pArg = Tcl_NewObj();
    Tcl_IncrRefCount(pArg);
    Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(iPage));
    Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(pgsz));
    Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(isWrite));
    tvfsExecTcl(p, "xShmMap", 
        Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId, pArg, 0
    );
    tvfsResultCode(p, &rc);
    Tcl_DecrRefCount(pArg);
  }
  if( rc==SQLITE_OK && p->mask&TESTVFS_SHMMAP_MASK && tvfsInjectIoerr(p) ){
    rc = SQLITE_IOERR;
  }
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
    if( flags & SQLITE_SHM_SHARED ){
      strcpy(&zLock[nLock], " shared");
    }else{
      strcpy(&zLock[nLock], " exclusive");
    }
    tvfsExecTcl(p, "xShmLock", 
        Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId,
        Tcl_NewStringObj(zLock, -1)
    );
    tvfsResultCode(p, &rc);
  }

  if( rc==SQLITE_OK && p->mask&TESTVFS_SHMLOCK_MASK && tvfsInjectIoerr(p) ){
    rc = SQLITE_IOERR;
  }







|







889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
    if( flags & SQLITE_SHM_SHARED ){
      strcpy(&zLock[nLock], " shared");
    }else{
      strcpy(&zLock[nLock], " exclusive");
    }
    tvfsExecTcl(p, "xShmLock", 
        Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId,
        Tcl_NewStringObj(zLock, -1), 0
    );
    tvfsResultCode(p, &rc);
  }

  if( rc==SQLITE_OK && p->mask&TESTVFS_SHMLOCK_MASK && tvfsInjectIoerr(p) ){
    rc = SQLITE_IOERR;
  }
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
  if( p->isFullshm ){
    sqlite3OsShmBarrier(pFd->pReal);
    return;
  }

  if( p->pScript && p->mask&TESTVFS_SHMBARRIER_MASK ){
    tvfsExecTcl(p, "xShmBarrier", 
        Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId, 0
    );
  }
}

static int tvfsShmUnmap(
  sqlite3_file *pFile,
  int deleteFlag







|







935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
  if( p->isFullshm ){
    sqlite3OsShmBarrier(pFd->pReal);
    return;
  }

  if( p->pScript && p->mask&TESTVFS_SHMBARRIER_MASK ){
    tvfsExecTcl(p, "xShmBarrier", 
        Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId, 0, 0
    );
  }
}

static int tvfsShmUnmap(
  sqlite3_file *pFile,
  int deleteFlag
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
  }

  if( !pBuffer ) return SQLITE_OK;
  assert( pFd->pShmId && pFd->pShm );

  if( p->pScript && p->mask&TESTVFS_SHMCLOSE_MASK ){
    tvfsExecTcl(p, "xShmUnmap", 
        Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId, 0
    );
    tvfsResultCode(p, &rc);
  }

  for(ppFd=&pBuffer->pFile; *ppFd!=pFd; ppFd=&((*ppFd)->pNext));
  assert( (*ppFd)==pFd );
  *ppFd = pFd->pNext;







|







959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
  }

  if( !pBuffer ) return SQLITE_OK;
  assert( pFd->pShmId && pFd->pShm );

  if( p->pScript && p->mask&TESTVFS_SHMCLOSE_MASK ){
    tvfsExecTcl(p, "xShmUnmap", 
        Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId, 0, 0
    );
    tvfsResultCode(p, &rc);
  }

  for(ppFd=&pBuffer->pFile; *ppFd!=pFd; ppFd=&((*ppFd)->pNext));
  assert( (*ppFd)==pFd );
  *ppFd = pFd->pNext;
Changes to src/vdbe.c.
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
    sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}

/* Opcode: Integer P1 P2 * * *







|







865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
    sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}

/* Opcode: Integer P1 P2 * * *
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    db->vtabOnConflict = vtabOnConflict;
    importVtabErrMsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = rowid;
    }
    if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;
      }else{
        p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
      }
    }else{
      p->nChange++;







|







6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    db->vtabOnConflict = vtabOnConflict;
    importVtabErrMsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = rowid;
    }
    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;
      }else{
        p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
      }
    }else{
      p->nChange++;
Changes to src/vdbeInt.h.
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
  Op *aOp;                /* Program instructions for parent frame */
  Mem *aMem;              /* Array of memory cells for parent frame */
  u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
  VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
  void *token;            /* Copy of SubProgram.token */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  u16 nCursor;            /* Number of entries in apCsr */
  int pc;                 /* Program Counter in parent (calling) frame */
  int nOp;                /* Size of aOp array */
  int nMem;               /* Number of entries in aMem */
  int nOnceFlag;          /* Number of entries in aOnceFlag */
  int nChildMem;          /* Number of memory cells for child frame */
  int nChildCsr;          /* Number of cursors for child frame */
  int nChange;            /* Statement changes (Vdbe.nChanges)     */







|







119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
  Op *aOp;                /* Program instructions for parent frame */
  Mem *aMem;              /* Array of memory cells for parent frame */
  u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
  VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
  void *token;            /* Copy of SubProgram.token */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  int nCursor;            /* Number of entries in apCsr */
  int pc;                 /* Program Counter in parent (calling) frame */
  int nOp;                /* Size of aOp array */
  int nMem;               /* Number of entries in aMem */
  int nOnceFlag;          /* Number of entries in aOnceFlag */
  int nChildMem;          /* Number of memory cells for child frame */
  int nChildCsr;          /* Number of cursors for child frame */
  int nChange;            /* Statement changes (Vdbe.nChanges)     */
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
  Mem *pResultSet;        /* Pointer to an array of results */
  int nMem;               /* Number of memory locations currently allocated */
  int nOp;                /* Number of instructions in the program */
  int nOpAlloc;           /* Number of slots allocated for aOp[] */
  int nLabel;             /* Number of labels used */
  int *aLabel;            /* Space to hold the labels */
  u16 nResColumn;         /* Number of columns in one row of the result set */
  u16 nCursor;            /* Number of slots in apCsr[] */
  u32 magic;              /* Magic number for sanity checking */
  char *zErrMsg;          /* Error message written here */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  VdbeCursor **apCsr;     /* One element of this array for each open cursor */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */







|







305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
  Mem *pResultSet;        /* Pointer to an array of results */
  int nMem;               /* Number of memory locations currently allocated */
  int nOp;                /* Number of instructions in the program */
  int nOpAlloc;           /* Number of slots allocated for aOp[] */
  int nLabel;             /* Number of labels used */
  int *aLabel;            /* Space to hold the labels */
  u16 nResColumn;         /* Number of columns in one row of the result set */
  int nCursor;            /* Number of slots in apCsr[] */
  u32 magic;              /* Magic number for sanity checking */
  char *zErrMsg;          /* Error message written here */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  VdbeCursor **apCsr;     /* One element of this array for each open cursor */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */
Changes to src/vdbeapi.c.
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
  int i;
  if( p==0 ){
    return 0;
  }
  if( zName ){
    for(i=0; i<p->nzVar; i++){
      const char *z = p->azVar[i];
      if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){
        return i+1;
      }
    }
  }
  return 0;
}
int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){







|







1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
  int i;
  if( p==0 ){
    return 0;
  }
  if( zName ){
    for(i=0; i<p->nzVar; i++){
      const char *z = p->azVar[i];
      if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
        return i+1;
      }
    }
  }
  return 0;
}
int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
Changes to src/vdbeaux.c.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"



/*
** When debugging the code generator in a symbolic debugger, one can
** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
** as they are added to the instruction stream.
*/
#ifdef SQLITE_DEBUG
int sqlite3VdbeAddopTrace = 0;
#endif


/*
** Create a new virtual database engine.
*/
Vdbe *sqlite3VdbeCreate(sqlite3 *db){
  Vdbe *p;
  p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
  if( p==0 ) return 0;







<
<
<
<
<
<
<
<
<
<
<
<







13
14
15
16
17
18
19












20
21
22
23
24
25
26
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"













/*
** Create a new virtual database engine.
*/
Vdbe *sqlite3VdbeCreate(sqlite3 *db){
  Vdbe *p;
  p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
  if( p==0 ) return 0;
154
155
156
157
158
159
160

161

162
163
164
165
166
167
168
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;
#ifdef SQLITE_DEBUG
  pOp->zComment = 0;

  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);

#endif
#ifdef VDBE_PROFILE
  pOp->cycles = 0;
  pOp->cnt = 0;
#endif
  return i;
}







>
|
>







142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;
#ifdef SQLITE_DEBUG
  pOp->zComment = 0;
  if( p->db->flags & SQLITE_VdbeAddopTrace ){
    sqlite3VdbePrintOp(0, i, &p->aOp[i]);
  }
#endif
#ifdef VDBE_PROFILE
  pOp->cycles = 0;
  pOp->cnt = 0;
#endif
  return i;
}
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
#ifndef SQLITE_OMIT_FOREIGN_KEY
     || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 
#endif
     || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
      && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }
  }
  sqlite3DbFree(v->db, sIter.apSub);








|







363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
#ifndef SQLITE_OMIT_FOREIGN_KEY
     || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 
#endif
     || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
      && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }
  }
  sqlite3DbFree(v->db, sIter.apSub);

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
      }
      pOut->p3 = pIn->p3;
      pOut->p4type = P4_NOTUSED;
      pOut->p4.p = 0;
      pOut->p5 = 0;
#ifdef SQLITE_DEBUG
      pOut->zComment = 0;
      if( sqlite3VdbeAddopTrace ){
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;







|







498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
      }
      pOut->p3 = pIn->p3;
      pOut->p4type = P4_NOTUSED;
      pOut->p4.p = 0;
      pOut->p5 = 0;
#ifdef SQLITE_DEBUG
      pOut->zComment = 0;
      if( p->db->flags & SQLITE_VdbeAddopTrace ){
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

  p->nCursor = (u16)nCursor;
  p->nOnceFlag = nOnce;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }







|







1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

  p->nCursor = nCursor;
  p->nOnceFlag = nOnce;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
    return rc;
  }

  /* If there are any write-transactions at all, invoke the commit hook */
  if( needXcommit && db->xCommitCallback ){
    rc = db->xCommitCallback(db->pCommitArg);
    if( rc ){
      return SQLITE_CONSTRAINT;
    }
  }

  /* The simple case - no more than one database file (not counting the
  ** TEMP database) has a transaction active.   There is no need for the
  ** master-journal.
  **







|







1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
    return rc;
  }

  /* If there are any write-transactions at all, invoke the commit hook */
  if( needXcommit && db->xCommitCallback ){
    rc = db->xCommitCallback(db->pCommitArg);
    if( rc ){
      return SQLITE_CONSTRAINT_COMMITHOOK;
    }
  }

  /* The simple case - no more than one database file (not counting the
  ** TEMP database) has a transaction active.   There is no need for the
  ** master-journal.
  **
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
** If there are outstanding FK violations and this function returns 
** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
** an error message to it. Then return SQLITE_ERROR.
*/
#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
  sqlite3 *db = p->db;
  if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
    p->rc = SQLITE_CONSTRAINT;
    p->errorAction = OE_Abort;
    sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}
#endif







|
|





|







2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
** If there are outstanding FK violations and this function returns 
** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
** and write an error message to it. Then return SQLITE_ERROR.
*/
#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
  sqlite3 *db = p->db;
  if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
    p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
    p->errorAction = OE_Abort;
    sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}
#endif
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
        rc = sqlite3VdbeCheckFk(p, 1);
        if( rc!=SQLITE_OK ){
          if( NEVER(p->readOnly) ){
            sqlite3VdbeLeave(p);
            return SQLITE_ERROR;
          }
          rc = SQLITE_CONSTRAINT;
        }else{ 
          /* The auto-commit flag is true, the vdbe program was successful 
          ** or hit an 'OR FAIL' constraint and there are no deferred foreign
          ** key constraints to hold up the transaction. This means a commit 
          ** is required. */
          rc = vdbeCommit(db, p);
        }







|







2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
        rc = sqlite3VdbeCheckFk(p, 1);
        if( rc!=SQLITE_OK ){
          if( NEVER(p->readOnly) ){
            sqlite3VdbeLeave(p);
            return SQLITE_ERROR;
          }
          rc = SQLITE_CONSTRAINT_FOREIGNKEY;
        }else{ 
          /* The auto-commit flag is true, the vdbe program was successful 
          ** or hit an 'OR FAIL' constraint and there are no deferred foreign
          ** key constraints to hold up the transaction. This means a commit 
          ** is required. */
          rc = vdbeCommit(db, p);
        }
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
    ** do so. If this operation returns an error, and the current statement
    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
    ** current statement error code.
    */
    if( eStatementOp ){
      rc = sqlite3VdbeCloseStatement(p, eStatementOp);
      if( rc ){
        if( p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ){
          p->rc = rc;
          sqlite3DbFree(db, p->zErrMsg);
          p->zErrMsg = 0;
        }
        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
        sqlite3CloseSavepoints(db);
        db->autoCommit = 1;







|







2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
    ** do so. If this operation returns an error, and the current statement
    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
    ** current statement error code.
    */
    if( eStatementOp ){
      rc = sqlite3VdbeCloseStatement(p, eStatementOp);
      if( rc ){
        if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
          p->rc = rc;
          sqlite3DbFree(db, p->zErrMsg);
          p->zErrMsg = 0;
        }
        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
        sqlite3CloseSavepoints(db);
        db->autoCommit = 1;
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
  sqlite3_free(p->zExplain);
  sqlite3DbFree(db, p->pExplain);
#endif
}

/*
** Delete an entire VDBE.
*/







|







2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
  sqlite3DbFree(db, p->zExplain);
  sqlite3DbFree(db, p->pExplain);
#endif
}

/*
** Delete an entire VDBE.
*/
Changes to src/vdbemem.c.
28
29
30
31
32
33
34

35

36
37
38
39
40
41
42
** routine is a no-op.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){

  int rc;

  assert( (pMem->flags&MEM_RowSet)==0 );
  assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
           || desiredEnc==SQLITE_UTF16BE );
  if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
    return SQLITE_OK;
  }
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );







>

>







28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
** routine is a no-op.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
#ifndef SQLITE_OMIT_UTF16
  int rc;
#endif
  assert( (pMem->flags&MEM_RowSet)==0 );
  assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
           || desiredEnc==SQLITE_UTF16BE );
  if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
    return SQLITE_OK;
  }
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
Changes to src/where.c.
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */
    WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
  } u;
  u16 eOperator;          /* A WO_xx value describing <op> */
  u8 wtFlags;             /* TERM_xxx bit flags.  See below */
  u8 nChild;              /* Number of children that must disable us */
  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */







|
|







94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
    WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
  } u;
  u16 eOperator;          /* A WO_xx value describing <op> */
  u8 wtFlags;             /* TERM_xxx bit flags.  See below */
  u8 nChild;              /* Number of children that must disable us */
  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
** There are separate WhereClause objects for the whole clause and for
** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
** subclauses points to the WhereClause object for the whole clause.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */
  WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
  Bitmask vmask;           /* Bitmask identifying virtual table cursors */
  WhereClause *pOuter;     /* Outer conjunction */
  u8 op;                   /* Split operator.  TK_AND or TK_OR */
  u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
#if defined(SQLITE_SMALL_STACK)







<







136
137
138
139
140
141
142

143
144
145
146
147
148
149
** There are separate WhereClause objects for the whole clause and for
** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
** subclauses points to the WhereClause object for the whole clause.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */
  WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */

  WhereClause *pOuter;     /* Outer conjunction */
  u8 op;                   /* Split operator.  TK_AND or TK_OR */
  u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
#if defined(SQLITE_SMALL_STACK)
223
224
225
226
227
228
229

230
231
232
233
234
235
236
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
#define WO_MATCH  0x040
#define WO_ISNULL 0x080
#define WO_OR     0x100       /* Two or more OR-connected terms */
#define WO_AND    0x200       /* Two or more AND-connected terms */

#define WO_NOOP   0x800       /* This term does not restrict search space */

#define WO_ALL    0xfff       /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */

/*
** Value for wsFlags returned by bestIndex() and stored in







>







222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
#define WO_MATCH  0x040
#define WO_ISNULL 0x080
#define WO_OR     0x100       /* Two or more OR-connected terms */
#define WO_AND    0x200       /* Two or more AND-connected terms */
#define WO_EQUIV  0x400       /* Of the form A==B, both columns */
#define WO_NOOP   0x800       /* This term does not restrict search space */

#define WO_ALL    0xfff       /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */

/*
** Value for wsFlags returned by bestIndex() and stored in
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
#define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
#define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
#define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
#define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
#define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
#define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */
#define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
#define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
#define WHERE_IDX_ONLY     0x00400000  /* Use index only - omit table */
#define WHERE_ORDERED      0x00800000  /* Output will appear in correct order */
#define WHERE_REVERSE      0x01000000  /* Scan in reverse order */
#define WHERE_UNIQUE       0x02000000  /* Selects no more than one row */







|







249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
#define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
#define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
#define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
#define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
#define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
#define WHERE_IN_ABLE      0x080f1000  /* Able to support an IN operator */
#define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
#define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
#define WHERE_IDX_ONLY     0x00400000  /* Use index only - omit table */
#define WHERE_ORDERED      0x00800000  /* Output will appear in correct order */
#define WHERE_REVERSE      0x01000000  /* Scan in reverse order */
#define WHERE_UNIQUE       0x02000000  /* Selects no more than one row */
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
){
  pWC->pParse = pParse;
  pWC->pMaskSet = pMaskSet;
  pWC->pOuter = 0;
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;
  pWC->vmask = 0;
  pWC->wctrlFlags = wctrlFlags;
}

/* Forward reference */
static void whereClauseClear(WhereClause*);

/*







<







312
313
314
315
316
317
318

319
320
321
322
323
324
325
){
  pWC->pParse = pParse;
  pWC->pMaskSet = pMaskSet;
  pWC->pOuter = 0;
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;

  pWC->wctrlFlags = wctrlFlags;
}

/* Forward reference */
static void whereClauseClear(WhereClause*);

/*
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
    if( pOld!=pWC->aStatic ){
      sqlite3DbFree(db, pOld);
    }
    pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
  }
  pTerm = &pWC->a[idx = pWC->nTerm++];
  pTerm->pExpr = p;
  pTerm->wtFlags = wtFlags;
  pTerm->pWC = pWC;
  pTerm->iParent = -1;
  return idx;
}

/*







|







398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
    if( pOld!=pWC->aStatic ){
      sqlite3DbFree(db, pOld);
    }
    pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
  }
  pTerm = &pWC->a[idx = pWC->nTerm++];
  pTerm->pExpr = sqlite3ExprSkipCollate(p);
  pTerm->wtFlags = wtFlags;
  pTerm->pWC = pWC;
  pTerm->iParent = -1;
  return idx;
}

/*
625
626
627
628
629
630
631

















632
633
634
635
636
637
638
639
640
641









642
643
644


645
646
647
648
649


650
651
652
653
654
655
656

657
658
659
660


661
662
663
664
665
666
667
668
669
670
671
672
673

674


675



676
677







678














679
680
681
682
683
684
685
686
}

/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.

















*/
static WhereTerm *findTerm(
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u32 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pTerm;









  int k;
  assert( iCur>=0 );
  op &= WO_ALL;


  for(; pWC; pWC=pWC->pOuter){
    for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
      if( pTerm->leftCursor==iCur
         && (pTerm->prereqRight & notReady)==0
         && pTerm->u.leftColumn==iColumn


         && (pTerm->eOperator & op)!=0
      ){
        if( iColumn>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
          Expr *pX = pTerm->pExpr;
          CollSeq *pColl;
          char idxaff;
          int j;

          Parse *pParse = pWC->pParse;
  
          idxaff = pIdx->pTable->aCol[iColumn].affinity;
          if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;


  
          /* Figure out the collation sequence required from an index for
          ** it to be useful for optimising expression pX. Store this
          ** value in variable pColl.
          */
          assert(pX->pLeft);
          pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
          if( pColl==0 ) pColl = pParse->db->pDfltColl;
  
          for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
            if( NEVER(j>=pIdx->nColumn) ) return 0;
          }
          if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;

        }


        return pTerm;



      }
    }







  }














  return 0;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









|
>
>
>
>
>
>
>
>
>
|

|
>
>
|
|
|
<
|
>
>
|
|
|
<
|
|
|
>
|
<
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
>
|
>
>
>
|
|
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

675
676
677
678
679
680

681
682
683
684
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
}

/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.
**
** The term returned might by Y=<expr> if there is another constraint in
** the WHERE clause that specifies that X=Y.  Any such constraints will be
** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
** aEquiv[] array holds X and all its equivalents, with each SQL variable
** taking up two slots in aEquiv[].  The first slot is for the cursor number
** and the second is for the column number.  There are 22 slots in aEquiv[]
** so that means we can look for X plus up to 10 other equivalent values.
** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3
** and ... and A9=A10 and A10=<expr>.
**
** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
** then try for the one with no dependencies on <expr> - in other words where
** <expr> is a constant expression of some kind.  Only return entries of
** the form "X <op> Y" where Y is a column in another table if no terms of
** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
** exist, try to return a term that does not use WO_EQUIV.
*/
static WhereTerm *findTerm(
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u32 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pTerm;            /* Term being examined as possible result */
  WhereTerm *pResult = 0;      /* The answer to return */
  WhereClause *pWCOrig = pWC;  /* Original pWC value */
  int j, k;                    /* Loop counters */
  Expr *pX;                /* Pointer to an expression */
  Parse *pParse;           /* Parsing context */
  int iOrigCol = iColumn;  /* Original value of iColumn */
  int nEquiv = 2;          /* Number of entires in aEquiv[] */
  int iEquiv = 2;          /* Number of entries of aEquiv[] processed so far */
  int aEquiv[22];          /* iCur,iColumn and up to 10 other equivalents */

  assert( iCur>=0 );
  aEquiv[0] = iCur;
  aEquiv[1] = iColumn;
  for(;;){
    for(pWC=pWCOrig; pWC; pWC=pWC->pOuter){
      for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
        if( pTerm->leftCursor==iCur

          && pTerm->u.leftColumn==iColumn
        ){
          if( (pTerm->prereqRight & notReady)==0
           && (pTerm->eOperator & op & WO_ALL)!=0
          ){
            if( iOrigCol>=0 && pIdx && (pTerm->eOperator & WO_ISNULL)==0 ){

              CollSeq *pColl;
              char idxaff;
      
              pX = pTerm->pExpr;
              pParse = pWC->pParse;

              idxaff = pIdx->pTable->aCol[iOrigCol].affinity;
              if( !sqlite3IndexAffinityOk(pX, idxaff) ){
                continue;
              }
      
              /* Figure out the collation sequence required from an index for
              ** it to be useful for optimising expression pX. Store this
              ** value in variable pColl.
              */
              assert(pX->pLeft);
              pColl = sqlite3BinaryCompareCollSeq(pParse,pX->pLeft,pX->pRight);
              if( pColl==0 ) pColl = pParse->db->pDfltColl;
      
              for(j=0; pIdx->aiColumn[j]!=iOrigCol; j++){
                if( NEVER(j>=pIdx->nColumn) ) return 0;
              }
              if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ){
                continue;
              }
            }
            if( pTerm->prereqRight==0 ){
              pResult = pTerm;
              goto findTerm_success;
            }else if( pResult==0 ){
              pResult = pTerm;
            }
          }
          if( (pTerm->eOperator & WO_EQUIV)!=0
           && nEquiv<ArraySize(aEquiv)
          ){
            pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
            assert( pX->op==TK_COLUMN );
            for(j=0; j<nEquiv; j+=2){
              if( aEquiv[j]==pX->iTable && aEquiv[j+1]==pX->iColumn ) break;
            }
            if( j==nEquiv ){
              aEquiv[j] = pX->iTable;
              aEquiv[j+1] = pX->iColumn;
              nEquiv += 2;
            }
          }
        }
      }
    }
    if( iEquiv>=nEquiv ) break;
    iCur = aEquiv[iEquiv++];
    iColumn = aEquiv[iEquiv++];
  }
findTerm_success:
  return pResult;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
**     (B)     x=expr1 OR expr2=x OR x=expr3
**     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
**     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
**     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
**
** CASE 1:
**
** If all subterms are of the form T.C=expr for some single column of C
** a single table T (as shown in example B above) then create a new virtual
** term that is an equivalent IN expression.  In other words, if the term
** being analyzed is:
**
**      x = expr1  OR  expr2 = x  OR  x = expr3
**
** then create a new virtual term like this:







|







914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
**     (B)     x=expr1 OR expr2=x OR x=expr3
**     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
**     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
**     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
**
** CASE 1:
**
** If all subterms are of the form T.C=expr for some single column of C and
** a single table T (as shown in example B above) then create a new virtual
** term that is an equivalent IN expression.  In other words, if the term
** being analyzed is:
**
**      x = expr1  OR  expr2 = x  OR  x = expr3
**
** then create a new virtual term like this:
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 2.
  */
  indexable = ~(Bitmask)0;
  chngToIN = ~(pWC->vmask);
  for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
    if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
      WhereAndInfo *pAndInfo;
      assert( pOrTerm->eOperator==0 );
      assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
      chngToIN = 0;
      pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
      if( pAndInfo ){
        WhereClause *pAndWC;
        WhereTerm *pAndTerm;
        int j;







|



<







1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

1013
1014
1015
1016
1017
1018
1019
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 2.
  */
  indexable = ~(Bitmask)0;
  chngToIN = ~(Bitmask)0;
  for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
    if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
      WhereAndInfo *pAndInfo;

      assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
      chngToIN = 0;
      pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
      if( pAndInfo ){
        WhereClause *pAndWC;
        WhereTerm *pAndTerm;
        int j;
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
      Bitmask b;
      b = getMask(pMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= getMask(pMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( pOrTerm->eOperator!=WO_EQ ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }
    }
  }








|







1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
      Bitmask b;
      b = getMask(pMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= getMask(pMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( (pOrTerm->eOperator & WO_EQ)==0 ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }
    }
  }

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    ** will be recorded in iCursor and iColumn.  There might not be any
    ** such table and column.  Set okToChngToIN if an appropriate table
    ** and column is found but leave okToChngToIN false if not found.
    */
    for(j=0; j<2 && !okToChngToIN; j++){
      pOrTerm = pOrWc->a;
      for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
        assert( pOrTerm->eOperator==WO_EQ );
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }







|







1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    ** will be recorded in iCursor and iColumn.  There might not be any
    ** such table and column.  Set okToChngToIN if an appropriate table
    ** and column is found but leave okToChngToIN false if not found.
    */
    for(j=0; j<2 && !okToChngToIN; j++){
      pOrTerm = pOrWc->a;
      for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
        assert( pOrTerm->eOperator & WO_EQ );
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        iCursor = pOrTerm->leftCursor;
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( (chngToIN&(chngToIN-1))==0 );
        assert( chngToIN==getMask(pMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;
      for(; i>=0 && okToChngToIN; i--, pOrTerm++){
        assert( pOrTerm->eOperator==WO_EQ );
        if( pOrTerm->leftCursor!=iCursor ){
          pOrTerm->wtFlags &= ~TERM_OR_OK;
        }else if( pOrTerm->u.leftColumn!=iColumn ){
          okToChngToIN = 0;
        }else{
          int affLeft, affRight;
          /* If the right-hand side is also a column, then the affinities







|









|







1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
        iCursor = pOrTerm->leftCursor;
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( IsPowerOfTwo(chngToIN) );
        assert( chngToIN==getMask(pMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;
      for(; i>=0 && okToChngToIN; i--, pOrTerm++){
        assert( pOrTerm->eOperator & WO_EQ );
        if( pOrTerm->leftCursor!=iCursor ){
          pOrTerm->wtFlags &= ~TERM_OR_OK;
        }else if( pOrTerm->u.leftColumn!=iColumn ){
          okToChngToIN = 0;
        }else{
          int affLeft, affRight;
          /* If the right-hand side is also a column, then the affinities
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
      Expr *pDup;            /* A transient duplicate expression */
      ExprList *pList = 0;   /* The RHS of the IN operator */
      Expr *pLeft = 0;       /* The LHS of the IN operator */
      Expr *pNew;            /* The complete IN operator */

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator==WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );







|







1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
      Expr *pDup;            /* A transient duplicate expression */
      ExprList *pList = 0;   /* The RHS of the IN operator */
      Expr *pLeft = 0;       /* The LHS of the IN operator */
      Expr *pNew;            /* The complete IN operator */

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator & WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
    }
  }
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */


/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
**







<







1196
1197
1198
1199
1200
1201
1202

1203
1204
1205
1206
1207
1208
1209
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
    }
  }
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */


/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
**
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = pWC->pMaskSet;
  pExpr = sqlite3ExprSkipCollate(pTerm->pExpr);

  prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
    }else{







|
>







1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = pWC->pMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
    }else{
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

1220
1221
1222
1223
1224
1225
1226
1227

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241







1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    extraRight = x-1;  /* ON clause terms may not be used with an index
                       ** on left table of a LEFT JOIN.  Ticket #3015 */
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);

    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->u.leftColumn = pLeft->iColumn;
      pTerm->eOperator = operatorMask(op);
    }
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;

      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(db, pExpr, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        pNew->iParent = idxTerm;
        pTerm = &pWC->a[idxTerm];
        pTerm->nChild = 1;
        pTerm->wtFlags |= TERM_COPIED;







      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
      pNew->leftCursor = pLeft->iTable;
      pNew->u.leftColumn = pLeft->iColumn;
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = operatorMask(pDup->op);
    }
  }

#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
  /* If a term is the BETWEEN operator, create two new virtual terms
  ** that define the range that the BETWEEN implements.  For example:
  **







|


>



|




>














>
>
>
>
>
>
>











|







1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
    extraRight = x-1;  /* ON clause terms may not be used with an index
                       ** on left table of a LEFT JOIN.  Ticket #3015 */
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->u.leftColumn = pLeft->iColumn;
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(db, pExpr, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        pNew->iParent = idxTerm;
        pTerm = &pWC->a[idxTerm];
        pTerm->nChild = 1;
        pTerm->wtFlags |= TERM_COPIED;
        if( pExpr->op==TK_EQ
         && !ExprHasProperty(pExpr, EP_FromJoin)
         && OptimizationEnabled(db, SQLITE_Transitive)
        ){
          pTerm->eOperator |= WO_EQUIV;
          eExtraOp = WO_EQUIV;
        }
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
      pNew->leftCursor = pLeft->iTable;
      pNew->u.leftColumn = pLeft->iColumn;
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
    }
  }

#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
  /* If a term is the BETWEEN operator, create two new virtual terms
  ** that define the range that the BETWEEN implements.  For example:
  **
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
  }
  if( pWC->wctrlFlags & WHERE_AND_ONLY ){
    return;
  }

  /* Search the WHERE clause terms for a usable WO_OR term. */
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( pTerm->eOperator==WO_OR 
     && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0
     && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int flags = WHERE_MULTI_OR;
      double rTotal = 0;
      double nRow = 0;
      Bitmask used = 0;
      WhereBestIdx sBOI;

      sBOI = *p;
      sBOI.pOrderBy = 0;
      sBOI.pDistinct = 0;
      sBOI.ppIdxInfo = 0;
      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
          (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        ));
        if( pOrTerm->eOperator==WO_AND ){
          sBOI.pWC = &pOrTerm->u.pAndInfo->wc;
          bestIndex(&sBOI);
        }else if( pOrTerm->leftCursor==iCur ){
          WhereClause tempWC;
          tempWC.pParse = pWC->pParse;
          tempWC.pMaskSet = pWC->pMaskSet;
          tempWC.pOuter = pWC;







|




















|







1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
  }
  if( pWC->wctrlFlags & WHERE_AND_ONLY ){
    return;
  }

  /* Search the WHERE clause terms for a usable WO_OR term. */
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( (pTerm->eOperator & WO_OR)!=0
     && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0
     && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int flags = WHERE_MULTI_OR;
      double rTotal = 0;
      double nRow = 0;
      Bitmask used = 0;
      WhereBestIdx sBOI;

      sBOI = *p;
      sBOI.pOrderBy = 0;
      sBOI.pDistinct = 0;
      sBOI.ppIdxInfo = 0;
      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
          (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        ));
        if( (pOrTerm->eOperator& WO_AND)!=0 ){
          sBOI.pWC = &pOrTerm->u.pAndInfo->wc;
          bestIndex(&sBOI);
        }else if( pOrTerm->leftCursor==iCur ){
          WhereClause tempWC;
          tempWC.pParse = pWC->pParse;
          tempWC.pMaskSet = pWC->pMaskSet;
          tempWC.pOuter = pWC;
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
static int termCanDriveIndex(
  WhereTerm *pTerm,              /* WHERE clause term to check */
  struct SrcList_item *pSrc,     /* Table we are trying to access */
  Bitmask notReady               /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( pTerm->eOperator!=WO_EQ ) return 0;
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;
  aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  return 1;
}
#endif








|







1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
static int termCanDriveIndex(
  WhereTerm *pTerm,              /* WHERE clause term to check */
  struct SrcList_item *pSrc,     /* Table we are trying to access */
  Bitmask notReady               /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;
  aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  return 1;
}
#endif

2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066

  WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
    testcase( pTerm->eOperator==WO_IN );
    testcase( pTerm->eOperator==WO_ISNULL );
    if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    nTerm++;
  }

  /* If the ORDER BY clause contains only columns in the current 
  ** virtual table then allocate space for the aOrderBy part of
  ** the sqlite3_index_info structure.







|
|
|
|







2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130

  WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_ISNULL );
    if( pTerm->eOperator & (WO_ISNULL) ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    nTerm++;
  }

  /* If the ORDER BY clause contains only columns in the current 
  ** virtual table then allocate space for the aOrderBy part of
  ** the sqlite3_index_info structure.
2100
2101
2102
2103
2104
2105
2106

2107
2108
2109
2110
2111
2112
2113
2114


2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
  *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
  *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
  *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
                                                                   pUsage;

  for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){

    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
    testcase( pTerm->eOperator==WO_IN );
    testcase( pTerm->eOperator==WO_ISNULL );
    if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    pIdxCons[j].iColumn = pTerm->u.leftColumn;
    pIdxCons[j].iTermOffset = i;


    pIdxCons[j].op = (u8)pTerm->eOperator;
    /* The direct assignment in the previous line is possible only because
    ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
    ** following asserts verify this fact. */
    assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
    assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
    assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
    assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
    assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
    assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
    assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
    j++;
  }
  for(i=0; i<nOrderBy; i++){
    Expr *pExpr = pOrderBy->a[i].pExpr;
    pIdxOrderBy[i].iColumn = pExpr->iColumn;
    pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
  }







>

|
|
|
|



>
>
|









|







2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
  *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
  *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
  *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
                                                                   pUsage;

  for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    u8 op;
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_ISNULL );
    if( pTerm->eOperator & (WO_ISNULL) ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    pIdxCons[j].iColumn = pTerm->u.leftColumn;
    pIdxCons[j].iTermOffset = i;
    op = (u8)pTerm->eOperator & WO_ALL;
    if( op==WO_IN ) op = WO_EQ;
    pIdxCons[j].op = op;
    /* The direct assignment in the previous line is possible only because
    ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
    ** following asserts verify this fact. */
    assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
    assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
    assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
    assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
    assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
    assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
    assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
    j++;
  }
  for(i=0; i<nOrderBy; i++){
    Expr *pExpr = pOrderBy->a[i].pExpr;
    pIdxOrderBy[i].iColumn = pExpr->iColumn;
    pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
  }
2202
2203
2204
2205
2206
2207
2208
2209
2210


2211
2212
2213
2214
2215
2216
2217
  WhereClause *pWC = p->pWC;      /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  Table *pTab = pSrc->pTab;
  sqlite3_index_info *pIdxInfo;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int i, j;
  int nOrderBy;


  double rCost;

  /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
  ** malloc in allocateIndexInfo() fails and this function returns leaving
  ** wsFlags in an uninitialized state, the caller may behave unpredictably.
  */
  memset(&p->cost, 0, sizeof(p->cost));







|

>
>







2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
  WhereClause *pWC = p->pWC;      /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  Table *pTab = pSrc->pTab;
  sqlite3_index_info *pIdxInfo;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int i, j, k;
  int nOrderBy;
  int sortOrder;                  /* Sort order for IN clauses */
  int bAllowIN;                   /* Allow IN optimizations */
  double rCost;

  /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
  ** malloc in allocateIndexInfo() fails and this function returns leaving
  ** wsFlags in an uninitialized state, the caller may behave unpredictably.
  */
  memset(&p->cost, 0, sizeof(p->cost));
2238
2239
2240
2241
2242
2243
2244


2245

2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264























2265
2266
2267
2268
2269



2270



2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290

2291
2292
2293


2294







2295




2296
2297






2298
2299
2300
2301
2302
2303
2304
  /* The module name must be defined. Also, by this point there must
  ** be a pointer to an sqlite3_vtab structure. Otherwise
  ** sqlite3ViewGetColumnNames() would have picked up the error. 
  */
  assert( pTab->azModuleArg && pTab->azModuleArg[0] );
  assert( sqlite3GetVTable(pParse->db, pTab) );



  /* Set the aConstraint[].usable fields and initialize all 

  ** output variables to zero.
  **
  ** aConstraint[].usable is true for constraints where the right-hand
  ** side contains only references to tables to the left of the current
  ** table.  In other words, if the constraint is of the form:
  **
  **           column = expr
  **
  ** and we are evaluating a join, then the constraint on column is 
  ** only valid if all tables referenced in expr occur to the left
  ** of the table containing column.
  **
  ** The aConstraints[] array contains entries for all constraints
  ** on the current table.  That way we only have to compute it once
  ** even though we might try to pick the best index multiple times.
  ** For each attempt at picking an index, the order of tables in the
  ** join might be different so we have to recompute the usable flag
  ** each time.
  */























  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  pUsage = pIdxInfo->aConstraintUsage;
  for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
    j = pIdxCons->iTermOffset;
    pTerm = &pWC->a[j];



    pIdxCons->usable = (pTerm->prereqRight&p->notReady) ? 0 : 1;



  }
  memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
  if( pIdxInfo->needToFreeIdxStr ){
    sqlite3_free(pIdxInfo->idxStr);
  }
  pIdxInfo->idxStr = 0;
  pIdxInfo->idxNum = 0;
  pIdxInfo->needToFreeIdxStr = 0;
  pIdxInfo->orderByConsumed = 0;
  /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
  nOrderBy = pIdxInfo->nOrderBy;
  if( !p->pOrderBy ){
    pIdxInfo->nOrderBy = 0;
  }

  if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
    return;
  }


  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( pUsage[i].argvIndex>0 ){


      p->cost.used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;







    }




  }







  /* If there is an ORDER BY clause, and the selected virtual table index
  ** does not satisfy it, increase the cost of the scan accordingly. This
  ** matches the processing for non-virtual tables in bestBtreeIndex().
  */
  rCost = pIdxInfo->estimatedCost;
  if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){
    rCost += estLog(rCost)*rCost;







>
>
|
>
|
<
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
>
>
>
|
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
>
>
|
>
>
>
>
>
>
>
|
>
>
>
>
|
|
>
>
>
>
>
>







2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318

2319









2320





2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
  /* The module name must be defined. Also, by this point there must
  ** be a pointer to an sqlite3_vtab structure. Otherwise
  ** sqlite3ViewGetColumnNames() would have picked up the error. 
  */
  assert( pTab->azModuleArg && pTab->azModuleArg[0] );
  assert( sqlite3GetVTable(pParse->db, pTab) );

  /* Try once or twice.  On the first attempt, allow IN optimizations.
  ** If an IN optimization is accepted by the virtual table xBestIndex
  ** method, but the  pInfo->aConstrainUsage.omit flag is not set, then
  ** the query will not work because it might allow duplicate rows in
  ** output.  In that case, run the xBestIndex method a second time

  ** without the IN constraints.  Usually this loop only runs once.









  ** The loop will exit using a "break" statement.





  */
  for(bAllowIN=1; 1; bAllowIN--){
    assert( bAllowIN==0 || bAllowIN==1 );

    /* Set the aConstraint[].usable fields and initialize all 
    ** output variables to zero.
    **
    ** aConstraint[].usable is true for constraints where the right-hand
    ** side contains only references to tables to the left of the current
    ** table.  In other words, if the constraint is of the form:
    **
    **           column = expr
    **
    ** and we are evaluating a join, then the constraint on column is 
    ** only valid if all tables referenced in expr occur to the left
    ** of the table containing column.
    **
    ** The aConstraints[] array contains entries for all constraints
    ** on the current table.  That way we only have to compute it once
    ** even though we might try to pick the best index multiple times.
    ** For each attempt at picking an index, the order of tables in the
    ** join might be different so we have to recompute the usable flag
    ** each time.
    */
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    pUsage = pIdxInfo->aConstraintUsage;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      j = pIdxCons->iTermOffset;
      pTerm = &pWC->a[j];
      if( (pTerm->prereqRight&p->notReady)==0
       && (bAllowIN || (pTerm->eOperator & WO_IN)==0)
      ){
        pIdxCons->usable = 1;
      }else{
        pIdxCons->usable = 0;
      }
    }
    memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
    if( pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    pIdxInfo->idxStr = 0;
    pIdxInfo->idxNum = 0;
    pIdxInfo->needToFreeIdxStr = 0;
    pIdxInfo->orderByConsumed = 0;
    /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
    nOrderBy = pIdxInfo->nOrderBy;
    if( !p->pOrderBy ){
      pIdxInfo->nOrderBy = 0;
    }
  
    if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
      return;
    }
  
    sortOrder = SQLITE_SO_ASC;
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      if( pUsage[i].argvIndex>0 ){
        j = pIdxCons->iTermOffset;
        pTerm = &pWC->a[j];
        p->cost.used |= pTerm->prereqRight;
        if( (pTerm->eOperator & WO_IN)!=0 ){
          if( pUsage[i].omit==0 ){
            /* Do not attempt to use an IN constraint if the virtual table
            ** says that the equivalent EQ constraint cannot be safely omitted.
            ** If we do attempt to use such a constraint, some rows might be
            ** repeated in the output. */
            break;
          }
          for(k=0; k<pIdxInfo->nOrderBy; k++){
            if( pIdxInfo->aOrderBy[k].iColumn==pIdxCons->iColumn ){
              sortOrder = pIdxInfo->aOrderBy[k].desc;
              break;
            }
          }
        }
      }
    }
    if( i>=pIdxInfo->nConstraint ) break;
  }
  
  /* If there is an ORDER BY clause, and the selected virtual table index
  ** does not satisfy it, increase the cost of the scan accordingly. This
  ** matches the processing for non-virtual tables in bestBtreeIndex().
  */
  rCost = pIdxInfo->estimatedCost;
  if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){
    rCost += estLog(rCost)*rCost;
2314
2315
2316
2317
2318
2319
2320

2321
2322
2323
2324
2325
2326
2327
2328
  if( (SQLITE_BIG_DBL/((double)2))<rCost ){
    p->cost.rCost = (SQLITE_BIG_DBL/((double)2));
  }else{
    p->cost.rCost = rCost;
  }
  p->cost.plan.u.pVtabIdx = pIdxInfo;
  if( pIdxInfo->orderByConsumed ){

    p->cost.plan.wsFlags |= WHERE_ORDERED;
    p->cost.plan.nOBSat = nOrderBy;
  }else{
    p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
  }
  p->cost.plan.nEq = 0;
  pIdxInfo->nOrderBy = nOrderBy;








>
|







2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
  if( (SQLITE_BIG_DBL/((double)2))<rCost ){
    p->cost.rCost = (SQLITE_BIG_DBL/((double)2));
  }else{
    p->cost.rCost = rCost;
  }
  p->cost.plan.u.pVtabIdx = pIdxInfo;
  if( pIdxInfo->orderByConsumed ){
    assert( sortOrder==0 || sortOrder==1 );
    p->cost.plan.wsFlags |= WHERE_ORDERED + sortOrder*WHERE_REVERSE;
    p->cost.plan.nOBSat = nOrderBy;
  }else{
    p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
  }
  p->cost.plan.nEq = 0;
  pIdxInfo->nOrderBy = nOrderBy;

2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
    tRowcnt iUpper = p->aiRowEst[0];
    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;

    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
      ){
        iLower = a[0];
        if( pLower->eOperator==WO_GT ) iLower += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
      ){
        iUpper = a[0];
        if( pUpper->eOperator==WO_LE ) iUpper += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK ){
      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];
      }else{







|




|






|




|







2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
    tRowcnt iUpper = p->aiRowEst[0];
    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;

    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
      ){
        iLower = a[0];
        if( (pLower->eOperator & WO_GT)!=0 ) iLower += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
      ){
        iUpper = a[0];
        if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK ){
      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];
      }else{
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929

    /* If X is the column in the index and ORDER BY clause, check to see
    ** if there are any X= or X IS NULL constraints in the WHERE clause. */
    pConstraint = findTerm(p->pWC, base, iColumn, p->notReady,
                           WO_EQ|WO_ISNULL|WO_IN, pIdx);
    if( pConstraint==0 ){
      isEq = 0;
    }else if( pConstraint->eOperator==WO_IN ){
      /* Constraints of the form: "X IN ..." cannot be used with an ORDER BY
      ** because we do not know in what order the values on the RHS of the IN
      ** operator will occur. */
      break;
    }else if( pConstraint->eOperator==WO_ISNULL ){
      uniqueNotNull = 0;
      isEq = 1;  /* "X IS NULL" means X has only a single value */
    }else if( pConstraint->prereqRight==0 ){
      isEq = 1;  /* Constraint "X=constant" means X has only a single value */
    }else{
      Expr *pRight = pConstraint->pExpr->pRight;
      if( pRight->op==TK_COLUMN ){







|
|
<
<
<
|







3017
3018
3019
3020
3021
3022
3023
3024
3025



3026
3027
3028
3029
3030
3031
3032
3033

    /* If X is the column in the index and ORDER BY clause, check to see
    ** if there are any X= or X IS NULL constraints in the WHERE clause. */
    pConstraint = findTerm(p->pWC, base, iColumn, p->notReady,
                           WO_EQ|WO_ISNULL|WO_IN, pIdx);
    if( pConstraint==0 ){
      isEq = 0;
    }else if( (pConstraint->eOperator & WO_IN)!=0 ){
      isEq = 0;



    }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){
      uniqueNotNull = 0;
      isEq = 1;  /* "X IS NULL" means X has only a single value */
    }else if( pConstraint->prereqRight==0 ){
      isEq = 1;  /* Constraint "X=constant" means X has only a single value */
    }else{
      Expr *pRight = pConstraint->pExpr->pRight;
      if( pRight->op==TK_COLUMN ){
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
 
    /* If the index being considered is UNIQUE, and there is an equality 
    ** constraint for all columns in the index, then this search will find
    ** at most a single row. In this case set the WHERE_UNIQUE flag to 
    ** indicate this to the caller.
    **
    ** Otherwise, if the search may find more than one row, test to see if
    ** there is a range constraint on indexed column (pc.plan.nEq+1) that can be 
    ** optimized using the index. 
    */
    if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
      testcase( pc.plan.wsFlags & WHERE_COLUMN_IN );
      testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL );
      if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        pc.plan.wsFlags |= WHERE_UNIQUE;
        if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){







|
|







3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
 
    /* If the index being considered is UNIQUE, and there is an equality 
    ** constraint for all columns in the index, then this search will find
    ** at most a single row. In this case set the WHERE_UNIQUE flag to 
    ** indicate this to the caller.
    **
    ** Otherwise, if the search may find more than one row, test to see if
    ** there is a range constraint on indexed column (pc.plan.nEq+1) that
    ** can be optimized using the index. 
    */
    if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
      testcase( pc.plan.wsFlags & WHERE_COLUMN_IN );
      testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL );
      if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        pc.plan.wsFlags |= WHERE_UNIQUE;
        if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
    ** variable.  */
    if( bSort && (pSrc->jointype & JT_LEFT)==0 ){
      int bRev = 2;
      WHERETRACE(("      --> before isSortingIndex: nPriorSat=%d\n",nPriorSat));
      pc.plan.nOBSat = isSortingIndex(p, pProbe, iCur, &bRev);
      WHERETRACE(("      --> after  isSortingIndex: bRev=%d nOBSat=%d\n",
                  bRev, pc.plan.nOBSat));
      if( nPriorSat<pc.plan.nOBSat || (pc.plan.wsFlags & WHERE_UNIQUE)!=0 ){
        pc.plan.wsFlags |= WHERE_ORDERED;
      }
      if( nOrderBy==pc.plan.nOBSat ){
        bSort = 0;
        pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE;
      }
      if( bRev & 1 ) pc.plan.wsFlags |= WHERE_REVERSE;







|







3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
    ** variable.  */
    if( bSort && (pSrc->jointype & JT_LEFT)==0 ){
      int bRev = 2;
      WHERETRACE(("      --> before isSortingIndex: nPriorSat=%d\n",nPriorSat));
      pc.plan.nOBSat = isSortingIndex(p, pProbe, iCur, &bRev);
      WHERETRACE(("      --> after  isSortingIndex: bRev=%d nOBSat=%d\n",
                  bRev, pc.plan.nOBSat));
      if( nPriorSat<pc.plan.nOBSat || (pc.plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
        pc.plan.wsFlags |= WHERE_ORDERED;
      }
      if( nOrderBy==pc.plan.nOBSat ){
        bSort = 0;
        pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE;
      }
      if( bRev & 1 ) pc.plan.wsFlags |= WHERE_REVERSE;
3328
3329
3330
3331
3332
3333
3334
3335
3336

3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( pc.plan.nRow>(double)1 && pc.plan.nEq==1
     && pFirstTerm!=0 && aiRowEst[1]>1 ){
      assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->eOperator==WO_ISNULL );

        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight,
                          &pc.plan.nRow);
      }else if( bInEst==0 ){
        assert( pFirstTerm->eOperator==WO_IN );
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList,
                       &pc.plan.nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows







|
|
>



|







3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( pc.plan.nRow>(double)1 && pc.plan.nEq==1
     && pFirstTerm!=0 && aiRowEst[1]>1 ){
      assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator & WO_EQ );
        testcase( pFirstTerm->eOperator & WO_EQUIV );
        testcase( pFirstTerm->eOperator & WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight,
                          &pc.plan.nRow);
      }else if( bInEst==0 ){
        assert( pFirstTerm->eOperator & WO_IN );
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList,
                       &pc.plan.nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
            ** set size by a factor of 3.  Indexed range constraints reduce
            ** the search space by a larger factor: 4.  We make indexed range
            ** more selective intentionally because of the subjective 
            ** observation that indexed range constraints really are more
            ** selective in practice, on average. */
            pc.plan.nRow /= 3;
          }
        }else if( pTerm->eOperator!=WO_NOOP ){
          /* Any other expression lowers the output row count by half */
          pc.plan.nRow /= 2;
        }
      }
      if( pc.plan.nRow<2 ) pc.plan.nRow = 2;
    }








|







3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
            ** set size by a factor of 3.  Indexed range constraints reduce
            ** the search space by a larger factor: 4.  We make indexed range
            ** more selective intentionally because of the subjective 
            ** observation that indexed range constraints really are more
            ** selective in practice, on average. */
            pc.plan.nRow /= 3;
          }
        }else if( (pTerm->eOperator & WO_NOOP)==0 ){
          /* Any other expression lowers the output row count by half */
          pc.plan.nRow /= 2;
        }
      }
      if( pc.plan.nRow<2 ) pc.plan.nRow = 2;
    }

3532
3533
3534
3535
3536
3537
3538
3539
3540

3541
3542
3543
3544
3545
3546
3547
  assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 );
  assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 );
  assert( pSrc->pIndex==0 
       || p->cost.plan.u.pIdx==0 
       || p->cost.plan.u.pIdx==pSrc->pIndex 
  );

  WHERETRACE(("   best index is: %s\n",
         p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk"));

  
  bestOrClauseIndex(p);
  bestAutomaticIndex(p);
  p->cost.plan.wsFlags |= eqTermMask;
}

/*







|
|
>







3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
  assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 );
  assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 );
  assert( pSrc->pIndex==0 
       || p->cost.plan.u.pIdx==0 
       || p->cost.plan.u.pIdx==pSrc->pIndex 
  );

  WHERETRACE(("   best index is %s cost=%.1f\n",
         p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk",
         p->cost.rCost));
  
  bestOrClauseIndex(p);
  bestAutomaticIndex(p);
  p->cost.plan.wsFlags |= eqTermMask;
}

/*
3558
3559
3560
3561
3562
3563
3564

3565
3566
3567
3568
3569
3570
3571
3572
*/
static void bestIndex(WhereBestIdx *p){
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(p->pSrc->pTab) ){
    sqlite3_index_info *pIdxInfo = 0;
    p->ppIdxInfo = &pIdxInfo;
    bestVirtualIndex(p);

    if( pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    sqlite3DbFree(p->pParse->db, pIdxInfo);
  }else
#endif
  {
    bestBtreeIndex(p);







>
|







3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
*/
static void bestIndex(WhereBestIdx *p){
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(p->pSrc->pTab) ){
    sqlite3_index_info *pIdxInfo = 0;
    p->ppIdxInfo = &pIdxInfo;
    bestVirtualIndex(p);
    assert( pIdxInfo!=0 || p->pParse->db->mallocFailed );
    if( pIdxInfo && pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    sqlite3DbFree(p->pParse->db, pIdxInfo);
  }else
#endif
  {
    bestBtreeIndex(p);
3664
3665
3666
3667
3668
3669
3670
3671

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688

3689









3690
3691
3692




3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711

3712
3713
3714
3715
3716
3717
3718
** For a constraint of the form X=expr, the expression is evaluated and its
** result is left on the stack.  For constraints of the form X IN (...)
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  WhereLevel *pLevel, /* When level of the FROM clause we are working on */

  int iTarget         /* Attempt to leave results in this register */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  int iReg;                  /* Register holding results */

  assert( iTarget>0 );
  if( pX->op==TK_EQ ){
    iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
  }else if( pX->op==TK_ISNULL ){
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;











    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);




    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
    assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
    pIn = pLevel->u.in.aInLoop;
    if( pIn ){
      pIn += pLevel->u.in.nIn - 1;
      pIn->iCur = iTab;
      if( eType==IN_INDEX_ROWID ){
        pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
      }else{
        pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
      }

      sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
    }else{
      pLevel->u.in.nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);







|
>

















>

>
>
>
>
>
>
>
>
>



>
>
>
>

|

















>







3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
** For a constraint of the form X=expr, the expression is evaluated and its
** result is left on the stack.  For constraints of the form X IN (...)
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  WhereLevel *pLevel, /* The level of the FROM clause we are working on */
  int iEq,            /* Index of the equality term within this level */
  int iTarget         /* Attempt to leave results in this register */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  int iReg;                  /* Register holding results */

  assert( iTarget>0 );
  if( pX->op==TK_EQ ){
    iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
  }else if( pX->op==TK_ISNULL ){
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;
    u8 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;

    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 
      && pLevel->plan.u.pIdx->aSortOrder[iEq]
    ){
      testcase( iEq==0 );
      testcase( iEq==pLevel->plan.u.pIdx->nColumn-1 );
      testcase( iEq>0 && iEq+1<pLevel->plan.u.pIdx->nColumn );
      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);
    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
    pIn = pLevel->u.in.aInLoop;
    if( pIn ){
      pIn += pLevel->u.in.nIn - 1;
      pIn->iCur = iTab;
      if( eType==IN_INDEX_ROWID ){
        pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
      }else{
        pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
      }
      pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
      sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
    }else{
      pLevel->u.in.nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
    if( pTerm==0 ) break;
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
    if( r1!=regBase+j ){
      if( nReg==1 ){
        sqlite3ReleaseTempReg(pParse, regBase);
        regBase = r1;
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }







|







3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
    if( pTerm==0 ) break;
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, regBase+j);
    if( r1!=regBase+j ){
      if( nReg==1 ){
        sqlite3ReleaseTempReg(pParse, regBase);
        regBase = r1;
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }
4059
4060
4061
4062
4063
4064
4065

4066
4067
4068
4069
4070
4071
4072
4073
4074

4075
4076
4077

4078




4079

4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.
    */
    int iReg;   /* P3 Value for OP_VFilter */

    sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
    int nConstraint = pVtabIdx->nConstraint;
    struct sqlite3_index_constraint_usage *aUsage =
                                                pVtabIdx->aConstraintUsage;
    const struct sqlite3_index_constraint *aConstraint =
                                                pVtabIdx->aConstraint;

    sqlite3ExprCachePush(pParse);
    iReg = sqlite3GetTempRange(pParse, nConstraint+2);

    for(j=1; j<=nConstraint; j++){
      for(k=0; k<nConstraint; k++){
        if( aUsage[k].argvIndex==j ){

          int iTerm = aConstraint[k].iTermOffset;




          sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);

          break;
        }
      }
      if( k==nConstraint ) break;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
                      pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
    pVtabIdx->needToFreeIdxStr = 0;
    for(j=0; j<nConstraint; j++){
      if( aUsage[j].omit ){
        int iTerm = aConstraint[j].iTermOffset;
        disableTerm(pLevel, &pWC->a[iTerm]);
      }







>









>



>
|
>
>
>
>
|
>







|







4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.
    */
    int iReg;   /* P3 Value for OP_VFilter */
    int addrNotFound;
    sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
    int nConstraint = pVtabIdx->nConstraint;
    struct sqlite3_index_constraint_usage *aUsage =
                                                pVtabIdx->aConstraintUsage;
    const struct sqlite3_index_constraint *aConstraint =
                                                pVtabIdx->aConstraint;

    sqlite3ExprCachePush(pParse);
    iReg = sqlite3GetTempRange(pParse, nConstraint+2);
    addrNotFound = pLevel->addrBrk;
    for(j=1; j<=nConstraint; j++){
      for(k=0; k<nConstraint; k++){
        if( aUsage[k].argvIndex==j ){
          int iTarget = iReg+j+1;
          pTerm = &pWC->a[aConstraint[k].iTermOffset];
          if( pTerm->eOperator & WO_IN ){
            codeEqualityTerm(pParse, pTerm, pLevel, k, iTarget);
            addrNotFound = pLevel->addrNxt;
          }else{
            sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
          }
          break;
        }
      }
      if( k==nConstraint ) break;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pVtabIdx->idxStr,
                      pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
    pVtabIdx->needToFreeIdxStr = 0;
    for(j=0; j<nConstraint; j++){
      if( aUsage[j].omit ){
        int iTerm = aConstraint[j].iTermOffset;
        disableTerm(pLevel, &pWC->a[iTerm]);
      }
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120

4121
4122
4123
4124
4125
4126
4127
    **          we reference multiple rows using a "rowid IN (...)"
    **          construct.
    */
    iReleaseReg = sqlite3GetTempReg(pParse);
    pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
    assert( pTerm!=0 );
    assert( pTerm->pExpr!=0 );
    assert( pTerm->leftCursor==iCur );
    assert( omitTable==0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);

    sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
    VdbeComment((v, "pk"));
    pLevel->op = OP_Noop;
  }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
    /* Case 2:  We have an inequality comparison against the ROWID field.
    */
    int testOp = OP_Noop;







<


|



>







4238
4239
4240
4241
4242
4243
4244

4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
    **          we reference multiple rows using a "rowid IN (...)"
    **          construct.
    */
    iReleaseReg = sqlite3GetTempReg(pParse);
    pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
    assert( pTerm!=0 );
    assert( pTerm->pExpr!=0 );

    assert( omitTable==0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
    sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
    sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
    VdbeComment((v, "pk"));
    pLevel->op = OP_Noop;
  }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
    /* Case 2:  We have an inequality comparison against the ROWID field.
    */
    int testOp = OP_Noop;
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator==WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

    /* Set up a new SrcList in pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.







|







4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

    /* Set up a new SrcList in pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr;
        if( pAndExpr ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */







|







4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr;
        if( pAndExpr ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
  ** the bitmask for all FROM clause terms to the left of the N-th term
  ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
  ** its Expr.iRightJoinTable value to find the bitmask of the right table
  ** of the join.  Subtracting one from the right table bitmask gives a
  ** bitmask for all tables to the left of the join.  Knowing the bitmask
  ** for all tables to the left of a left join is important.  Ticket #3015.
  **
  ** Configure the WhereClause.vmask variable so that bits that correspond
  ** to virtual table cursors are set. This is used to selectively disable 
  ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 
  ** with virtual tables.
  **
  ** Note that bitmasks are created for all pTabList->nSrc tables in
  ** pTabList, not just the first nTabList tables.  nTabList is normally
  ** equal to pTabList->nSrc but might be shortened to 1 if the
  ** WHERE_ONETABLE_ONLY flag is set.
  */
  assert( sWBI.pWC->vmask==0 && pMaskSet->n==0 );
  for(ii=0; ii<pTabList->nSrc; ii++){
    createMask(pMaskSet, pTabList->a[ii].iCursor);
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( ALWAYS(pTabList->a[ii].pTab) && IsVirtual(pTabList->a[ii].pTab) ){
      sWBI.pWC->vmask |= ((Bitmask)1 << ii);
    }
#endif
  }
#ifndef NDEBUG
  {
    Bitmask toTheLeft = 0;
    for(ii=0; ii<pTabList->nSrc; ii++){
      Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor);
      assert( (m-1)==toTheLeft );







<
<
<
<
<





<


<
<
<
<
<







5080
5081
5082
5083
5084
5085
5086





5087
5088
5089
5090
5091

5092
5093





5094
5095
5096
5097
5098
5099
5100
  ** the bitmask for all FROM clause terms to the left of the N-th term
  ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
  ** its Expr.iRightJoinTable value to find the bitmask of the right table
  ** of the join.  Subtracting one from the right table bitmask gives a
  ** bitmask for all tables to the left of the join.  Knowing the bitmask
  ** for all tables to the left of a left join is important.  Ticket #3015.
  **





  ** Note that bitmasks are created for all pTabList->nSrc tables in
  ** pTabList, not just the first nTabList tables.  nTabList is normally
  ** equal to pTabList->nSrc but might be shortened to 1 if the
  ** WHERE_ONETABLE_ONLY flag is set.
  */

  for(ii=0; ii<pTabList->nSrc; ii++){
    createMask(pMaskSet, pTabList->a[ii].iCursor);





  }
#ifndef NDEBUG
  {
    Bitmask toTheLeft = 0;
    for(ii=0; ii<pTabList->nSrc; ii++){
      Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor);
      assert( (m-1)==toTheLeft );
5026
5027
5028
5029
5030
5031
5032

5033
5034
5035
5036
5037
5038
5039
  for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */

    int nUnconstrained;         /* Number tables without INDEXED BY */
    Bitmask notIndexed;         /* Mask of tables that cannot use an index */

    memset(&bestPlan, 0, sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;
    WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i));








>







5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
  for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */
    int ckOptimal;              /* Do the optimal scan check */
    int nUnconstrained;         /* Number tables without INDEXED BY */
    Bitmask notIndexed;         /* Mask of tables that cannot use an index */

    memset(&bestPlan, 0, sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;
    WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i));

5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085






5086
5087
5088
5089
5090
5091
5092
5093
5094






















5095
5096
5097
5098
5099
5100
5101
    ** that do not use indices.  But this nRow reduction only happens if the
    ** table really is the innermost join.  
    **
    ** The second loop iteration is only performed if no optimal scan
    ** strategies were found by the first iteration. This second iteration
    ** is used to search for the lowest cost scan overall.
    **
    ** Previous versions of SQLite performed only the second iteration -
    ** the next outermost loop was always that with the lowest overall
    ** cost. However, this meant that SQLite could select the wrong plan
    ** for scripts such as the following:
    **   
    **   CREATE TABLE t1(a, b); 
    **   CREATE TABLE t2(c, d);
    **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
    **
    ** The best strategy is to iterate through table t1 first. However it
    ** is not possible to determine this with a simple greedy algorithm.
    ** Since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much
    ** costlier approach.
    */
    nUnconstrained = 0;
    notIndexed = 0;
    for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){






      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
        int doNotReorder;    /* True if this table should not be reordered */
  
        doNotReorder =  (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0;
        if( j!=iFrom && doNotReorder ) break;
        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          if( j==iFrom ) iFrom++;
          continue;






















        }
        sWBI.notReady = (isOptimal ? m : sWBI.notValid);
        if( sWBI.pSrc->pIndex==0 ) nUnconstrained++;
  
        WHERETRACE(("   === trying table %d (%s) with isOptimal=%d ===\n",
                    j, sWBI.pSrc->pTab->zName, isOptimal));
        assert( sWBI.pSrc->pTab );







|
<
<
|














|
>
>
>
>
>
>

<
<
<
<




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







5181
5182
5183
5184
5185
5186
5187
5188


5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211




5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
    ** that do not use indices.  But this nRow reduction only happens if the
    ** table really is the innermost join.  
    **
    ** The second loop iteration is only performed if no optimal scan
    ** strategies were found by the first iteration. This second iteration
    ** is used to search for the lowest cost scan overall.
    **
    ** Without the optimal scan step (the first iteration) a suboptimal


    ** plan might be chosen for queries like this:
    **   
    **   CREATE TABLE t1(a, b); 
    **   CREATE TABLE t2(c, d);
    **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
    **
    ** The best strategy is to iterate through table t1 first. However it
    ** is not possible to determine this with a simple greedy algorithm.
    ** Since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much
    ** costlier approach.
    */
    nUnconstrained = 0;
    notIndexed = 0;

    /* The optimal scan check only occurs if there are two or more tables
    ** available to be reordered */
    if( iFrom==nTabList-1 ){
      ckOptimal = 0;  /* Common case of just one table in the FROM clause */
    }else{
      ckOptimal = -1;
      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){




        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          if( j==iFrom ) iFrom++;
          continue;
        }
        if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break;
        if( ++ckOptimal ) break;
        if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;
      }
    }
    assert( ckOptimal==0 || ckOptimal==1 );

    for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){
      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
        if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){
          /* This break and one like it in the ckOptimal computation loop
          ** above prevent table reordering across LEFT and CROSS JOINs.
          ** The LEFT JOIN case is necessary for correctness.  The prohibition
          ** against reordering across a CROSS JOIN is an SQLite feature that
          ** allows the developer to control table reordering */
          break;
        }
        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          assert( j>iFrom );
          continue;
        }
        sWBI.notReady = (isOptimal ? m : sWBI.notValid);
        if( sWBI.pSrc->pIndex==0 ) nUnconstrained++;
  
        WHERETRACE(("   === trying table %d (%s) with isOptimal=%d ===\n",
                    j, sWBI.pSrc->pTab->zName, isOptimal));
        assert( sWBI.pSrc->pTab );
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
                  || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex );

        if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
          notIndexed |= m;
        }
        if( isOptimal ){
          pWInfo->a[j].rOptCost = sWBI.cost.rCost;
        }else if( iFrom<nTabList-1 ){
          /* If two or more tables have nearly the same outer loop cost,
          ** very different inner loop (optimal) cost, we want to choose
          ** for the outer loop that table which benefits the least from
          ** being in the inner loop.  The following code scales the 
          ** outer loop cost estimate to accomplish that. */
          WHERETRACE(("   scaling cost from %.1f to %.1f\n",
                      sWBI.cost.rCost,
                      sWBI.cost.rCost/pWInfo->a[j].rOptCost));







|
|







5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
                  || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex );

        if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
          notIndexed |= m;
        }
        if( isOptimal ){
          pWInfo->a[j].rOptCost = sWBI.cost.rCost;
        }else if( ckOptimal ){
          /* If two or more tables have nearly the same outer loop cost, but
          ** very different inner loop (optimal) cost, we want to choose
          ** for the outer loop that table which benefits the least from
          ** being in the inner loop.  The following code scales the 
          ** outer loop cost estimate to accomplish that. */
          WHERETRACE(("   scaling cost from %.1f to %.1f\n",
                      sWBI.cost.rCost,
                      sWBI.cost.rCost/pWInfo->a[j].rOptCost));
5163
5164
5165
5166
5167
5168
5169
5170




5171
5172
5173
5174




5175
5176
5177
5178
5179
5180
5181
                      "       cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n",
                      j, sWBI.pSrc->pTab->zName,
                      sWBI.cost.rCost, sWBI.cost.plan.nRow,
                      sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags));
          bestPlan = sWBI.cost;
          bestJ = j;
        }
        if( doNotReorder ) break;




      }
    }
    assert( bestJ>=0 );
    assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );




    WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n"
                "    cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n",
                bestJ, pTabList->a[bestJ].pTab->zName,
                pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow,
                bestPlan.plan.nOBSat, bestPlan.plan.wsFlags));
    if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
      assert( pWInfo->eDistinct==0 );







|
>
>
>
>




>
>
>
>







5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
                      "       cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n",
                      j, sWBI.pSrc->pTab->zName,
                      sWBI.cost.rCost, sWBI.cost.plan.nRow,
                      sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags));
          bestPlan = sWBI.cost;
          bestJ = j;
        }

        /* In a join like "w JOIN x LEFT JOIN y JOIN z"  make sure that
        ** table y (and not table z) is always the next inner loop inside
        ** of table x. */
        if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;
      }
    }
    assert( bestJ>=0 );
    assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
    assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 );
    testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 );
    testcase( bestJ>iFrom && bestJ<nTabList-1
                          && (pTabList->a[bestJ+1].jointype & JT_LEFT)!=0 );
    WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n"
                "    cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n",
                bestJ, pTabList->a[bestJ].pTab->zName,
                pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow,
                bestPlan.plan.nOBSat, bestPlan.plan.wsFlags));
    if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
      assert( pWInfo->eDistinct==0 );
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
    }
    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
      }
      sqlite3DbFree(db, pLevel->u.in.aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->iLeftJoin ){
      int addr;







|







5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
    }
    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
      }
      sqlite3DbFree(db, pLevel->u.in.aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->iLeftJoin ){
      int addr;
Changes to test/auth.test.
2258
2259
2260
2261
2262
2263
2264


2265
2266
2267
2268
2269
2270
2271
2272
  }
  set authargs
} [list \
  SQLITE_UPDATE v1     x  main {} \
  SQLITE_SELECT {}     {} {}   v1 \
  SQLITE_READ   t2     a  main v1 \
  SQLITE_READ   t2     b  main v1 \


  SQLITE_SELECT {}     {} {}   {} \
  SQLITE_READ   v1     x  main v1 \
  SQLITE_INSERT v1chng {} main r2 \
  SQLITE_READ   v1     x  main r2 \
  SQLITE_READ   v1     x  main r2 \
]

do_test auth-4.4 {







>
>
|







2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
  }
  set authargs
} [list \
  SQLITE_UPDATE v1     x  main {} \
  SQLITE_SELECT {}     {} {}   v1 \
  SQLITE_READ   t2     a  main v1 \
  SQLITE_READ   t2     b  main v1 \
  SQLITE_READ   v1     x  main v1 \
  SQLITE_READ   v1     x  main v1 \
  SQLITE_SELECT {}     {} {} v1   \
  SQLITE_READ   v1     x  main v1 \
  SQLITE_INSERT v1chng {} main r2 \
  SQLITE_READ   v1     x  main r2 \
  SQLITE_READ   v1     x  main r2 \
]

do_test auth-4.4 {
2284
2285
2286
2287
2288
2289
2290


2291
2292
2293
2294
2295
2296
2297
2298
  }
  set authargs
} [list \
  SQLITE_DELETE v1     {} main {} \
  SQLITE_SELECT {}     {} {}   v1 \
  SQLITE_READ   t2     a  main v1 \
  SQLITE_READ   t2     b  main v1 \


  SQLITE_SELECT {}     {} {}   {} \
  SQLITE_READ   v1     x  main v1 \
  SQLITE_INSERT v1chng {} main r3 \
  SQLITE_READ   v1     x  main r3 \
]

} ;# ifcapable view && trigger








>
>
|







2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
  }
  set authargs
} [list \
  SQLITE_DELETE v1     {} main {} \
  SQLITE_SELECT {}     {} {}   v1 \
  SQLITE_READ   t2     a  main v1 \
  SQLITE_READ   t2     b  main v1 \
  SQLITE_READ   v1     x  main v1 \
  SQLITE_READ   v1     x  main v1 \
  SQLITE_SELECT {}     {} {} v1   \
  SQLITE_READ   v1     x  main v1 \
  SQLITE_INSERT v1chng {} main r3 \
  SQLITE_READ   v1     x  main r3 \
]

} ;# ifcapable view && trigger

Changes to test/auth2.test.
127
128
129
130
131
132
133
134
135
136
137
138
139


140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161


162
163
164
165


166
167
168
169
170
do_test auth2-2.3 {
  set ::authargs {}
  db eval {
    SELECT a, b FROM v2;
  }
  set ::authargs
} {SQLITE_SELECT {} {} {} {}
SQLITE_READ v2 a main {}
SQLITE_READ v2 b main {}
SQLITE_READ t2 x main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 z main v2


SQLITE_SELECT {} {} {} v2
}
do_test auth2-2.4 {
  db2 eval {
    CREATE TABLE t3(p,q,r);
  }
  set ::authargs {}
  db eval {
    SELECT b, a FROM v2;
  }
  set ::authargs
} {SQLITE_SELECT {} {} {} {}
SQLITE_READ v2 b main {}
SQLITE_READ v2 a main {}
SQLITE_READ t2 x main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 z main v2
SQLITE_SELECT {} {} {} v2
SQLITE_SELECT {} {} {} {}
SQLITE_READ v2 b main {}
SQLITE_READ v2 a main {}


SQLITE_READ t2 x main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 z main v2


SQLITE_SELECT {} {} {} v2
}
db2 close

finish_test







<
<




>
>












<
<




<
<


>
>




>
>





127
128
129
130
131
132
133


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


152
153
154
155


156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
do_test auth2-2.3 {
  set ::authargs {}
  db eval {
    SELECT a, b FROM v2;
  }
  set ::authargs
} {SQLITE_SELECT {} {} {} {}


SQLITE_READ t2 x main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 z main v2
SQLITE_READ v2 a main {}
SQLITE_READ v2 b main {}
SQLITE_SELECT {} {} {} v2
}
do_test auth2-2.4 {
  db2 eval {
    CREATE TABLE t3(p,q,r);
  }
  set ::authargs {}
  db eval {
    SELECT b, a FROM v2;
  }
  set ::authargs
} {SQLITE_SELECT {} {} {} {}


SQLITE_READ t2 x main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 z main v2


SQLITE_READ v2 b main {}
SQLITE_READ v2 a main {}
SQLITE_SELECT {} {} {} v2
SQLITE_SELECT {} {} {} {}
SQLITE_READ t2 x main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 y main v2
SQLITE_READ t2 z main v2
SQLITE_READ v2 b main {}
SQLITE_READ v2 a main {}
SQLITE_SELECT {} {} {} v2
}
db2 close

finish_test
Changes to test/autoindex1.test.
253
254
255
256
257
258
259




























































































































260
261
  CREATE TABLE t5(a, b, c);
  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  0 0 0 {SCAN TABLE t5 (~100000 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}






























































































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
  CREATE TABLE t5(a, b, c);
  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  0 0 0 {SCAN TABLE t5 (~100000 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {
  CREATE TABLE accounts(
    _id INTEGER PRIMARY KEY AUTOINCREMENT,
    account_name TEXT,
    account_type TEXT,
    data_set TEXT
  );
  CREATE TABLE data(
    _id INTEGER PRIMARY KEY AUTOINCREMENT,
    package_id INTEGER REFERENCES package(_id),
    mimetype_id INTEGER REFERENCES mimetype(_id) NOT NULL,
    raw_contact_id INTEGER REFERENCES raw_contacts(_id) NOT NULL,
    is_read_only INTEGER NOT NULL DEFAULT 0,
    is_primary INTEGER NOT NULL DEFAULT 0,
    is_super_primary INTEGER NOT NULL DEFAULT 0,
    data_version INTEGER NOT NULL DEFAULT 0,
    data1 TEXT,
    data2 TEXT,
    data3 TEXT,
    data4 TEXT,
    data5 TEXT,
    data6 TEXT,
    data7 TEXT,
    data8 TEXT,
    data9 TEXT,
    data10 TEXT,
    data11 TEXT,
    data12 TEXT,
    data13 TEXT,
    data14 TEXT,
    data15 TEXT,
    data_sync1 TEXT,
    data_sync2 TEXT,
    data_sync3 TEXT,
    data_sync4 TEXT 
  );
  CREATE TABLE mimetypes(
    _id INTEGER PRIMARY KEY AUTOINCREMENT,
    mimetype TEXT NOT NULL
  );
  CREATE TABLE raw_contacts(
    _id INTEGER PRIMARY KEY AUTOINCREMENT,
    account_id INTEGER REFERENCES accounts(_id),
    sourceid TEXT,
    raw_contact_is_read_only INTEGER NOT NULL DEFAULT 0,
    version INTEGER NOT NULL DEFAULT 1,
    dirty INTEGER NOT NULL DEFAULT 0,
    deleted INTEGER NOT NULL DEFAULT 0,
    contact_id INTEGER REFERENCES contacts(_id),
    aggregation_mode INTEGER NOT NULL DEFAULT 0,
    aggregation_needed INTEGER NOT NULL DEFAULT 1,
    custom_ringtone TEXT,
    send_to_voicemail INTEGER NOT NULL DEFAULT 0,
    times_contacted INTEGER NOT NULL DEFAULT 0,
    last_time_contacted INTEGER,
    starred INTEGER NOT NULL DEFAULT 0,
    display_name TEXT,
    display_name_alt TEXT,
    display_name_source INTEGER NOT NULL DEFAULT 0,
    phonetic_name TEXT,
    phonetic_name_style TEXT,
    sort_key TEXT,
    sort_key_alt TEXT,
    name_verified INTEGER NOT NULL DEFAULT 0,
    sync1 TEXT,
    sync2 TEXT,
    sync3 TEXT,
    sync4 TEXT,
    sync_uid TEXT,
    sync_version INTEGER NOT NULL DEFAULT 1,
    has_calendar_event INTEGER NOT NULL DEFAULT 0,
    modified_time INTEGER,
    is_restricted INTEGER DEFAULT 0,
    yp_source TEXT,
    method_selected INTEGER DEFAULT 0,
    custom_vibration_type INTEGER DEFAULT 0,
    custom_ringtone_path TEXT,
    message_notification TEXT,
    message_notification_path TEXT
  );
  CREATE INDEX data_mimetype_data1_index ON data (mimetype_id,data1);
  CREATE INDEX data_raw_contact_id ON data (raw_contact_id);
  CREATE UNIQUE INDEX mime_type ON mimetypes (mimetype);
  CREATE INDEX raw_contact_sort_key1_index ON raw_contacts (sort_key);
  CREATE INDEX raw_contact_sort_key2_index ON raw_contacts (sort_key_alt);
  CREATE INDEX raw_contacts_contact_id_index ON raw_contacts (contact_id);
  CREATE INDEX raw_contacts_source_id_account_id_index
      ON raw_contacts (sourceid, account_id);
  ANALYZE sqlite_master;
  INSERT INTO sqlite_stat1
     VALUES('raw_contacts','raw_contact_sort_key2_index','1600 4');
  INSERT INTO sqlite_stat1
     VALUES('raw_contacts','raw_contact_sort_key1_index','1600 4');
  INSERT INTO sqlite_stat1
     VALUES('raw_contacts','raw_contacts_source_id_account_id_index',
            '1600 1600 1600');
  INSERT INTO sqlite_stat1
     VALUES('raw_contacts','raw_contacts_contact_id_index','1600 1');
  INSERT INTO sqlite_stat1 VALUES('mimetypes','mime_type','12 1');
  INSERT INTO sqlite_stat1
     VALUES('data','data_mimetype_data1_index','9819 2455 3');
  INSERT INTO sqlite_stat1 VALUES('data','data_raw_contact_id','9819 7');
  INSERT INTO sqlite_stat1 VALUES('accounts',NULL,'1');
  DROP TABLE IF EXISTS sqlite_stat3;
  ANALYZE sqlite_master;
  
  EXPLAIN QUERY PLAN
  SELECT * FROM 
        data JOIN mimetypes ON (data.mimetype_id=mimetypes._id) 
             JOIN raw_contacts ON (data.raw_contact_id=raw_contacts._id) 
             JOIN accounts ON (raw_contacts.account_id=accounts._id)
   WHERE mimetype_id=10 AND data14 IS NOT NULL;
} {/SEARCH TABLE data .*SEARCH TABLE raw_contacts/}
do_execsql_test autoindex1-801 {
  EXPLAIN QUERY PLAN
  SELECT * FROM 
        data JOIN mimetypes ON (data.mimetype_id=mimetypes._id) 
             JOIN raw_contacts ON (data.raw_contact_id=raw_contacts._id) 
             JOIN accounts ON (raw_contacts.account_id=accounts._id)
   WHERE mimetypes._id=10 AND data14 IS NOT NULL;
} {/SEARCH TABLE data .*SEARCH TABLE raw_contacts/}

finish_test
Changes to test/capi2.test.
231
232
233
234
235
236
237
238

239
240
241
242
243
244
245
246

# Update for v3: Preparing a statement does not affect the change counter.
# (Test result changes from 0 to 1).  (Later:) change counter updates occur
# when sqlite3_step returns, not at finalize time.
do_test capi2-3.13b {db changes} {0}

do_test capi2-3.14 {
  list [sqlite3_finalize $VM] [sqlite3_errmsg $DB]

} {SQLITE_CONSTRAINT {column a is not unique}}
do_test capi2-3.15 {
  set VM [sqlite3_prepare $DB {CREATE TABLE t2(a NOT NULL, b)} -1 TAIL]
  set TAIL
} {}
do_test capi2-3.16 {
  list [sqlite3_step $VM] \
       [sqlite3_column_count $VM] \







|
>
|







231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

# Update for v3: Preparing a statement does not affect the change counter.
# (Test result changes from 0 to 1).  (Later:) change counter updates occur
# when sqlite3_step returns, not at finalize time.
do_test capi2-3.13b {db changes} {0}

do_test capi2-3.14 {
  list [sqlite3_finalize $VM] [sqlite3_errmsg $DB] \
       [sqlite3_extended_errcode $DB]
} {SQLITE_CONSTRAINT {column a is not unique} SQLITE_CONSTRAINT_UNIQUE}
do_test capi2-3.15 {
  set VM [sqlite3_prepare $DB {CREATE TABLE t2(a NOT NULL, b)} -1 TAIL]
  set TAIL
} {}
do_test capi2-3.16 {
  list [sqlite3_step $VM] \
       [sqlite3_column_count $VM] \
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
  set VM [sqlite3_prepare $DB {INSERT INTO t2 VALUES(NULL,2)} -1 TAIL]
  list [sqlite3_step $VM] \
       [sqlite3_column_count $VM] \
       [get_row_values $VM] \
       [get_column_names $VM]
} {SQLITE_ERROR 0 {} {}}
do_test capi2-3.19 {
  list [sqlite3_finalize $VM] [sqlite3_errmsg $DB]

} {SQLITE_CONSTRAINT {t2.a may not be NULL}}

do_test capi2-3.20 {
  execsql {
    CREATE TABLE a1(message_id, name , UNIQUE(message_id, name) );
    INSERT INTO a1 VALUES(1, 1);
  }
} {}
do_test capi2-3.21 {
  set VM [sqlite3_prepare $DB {INSERT INTO a1 VALUES(1, 1)} -1 TAIL]
  sqlite3_step $VM
} {SQLITE_ERROR}
do_test capi2-3.22 {
  sqlite3_errcode $DB
} {SQLITE_ERROR}
do_test capi2-3.23 {
  sqlite3_finalize $VM
} {SQLITE_CONSTRAINT}
do_test capi2-3.24 {
  sqlite3_errcode $DB
} {SQLITE_CONSTRAINT}

# Two or more virtual machines exists at the same time.
#
do_test capi2-4.1 {
  set VM1 [sqlite3_prepare $DB {INSERT INTO t2 VALUES(1,2)} -1 TAIL]
  set TAIL
} {}







|
>
|


















|
|







255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
  set VM [sqlite3_prepare $DB {INSERT INTO t2 VALUES(NULL,2)} -1 TAIL]
  list [sqlite3_step $VM] \
       [sqlite3_column_count $VM] \
       [get_row_values $VM] \
       [get_column_names $VM]
} {SQLITE_ERROR 0 {} {}}
do_test capi2-3.19 {
  list [sqlite3_finalize $VM] [sqlite3_errmsg $DB] \
       [sqlite3_extended_errcode $DB]
} {SQLITE_CONSTRAINT {t2.a may not be NULL} SQLITE_CONSTRAINT_NOTNULL}

do_test capi2-3.20 {
  execsql {
    CREATE TABLE a1(message_id, name , UNIQUE(message_id, name) );
    INSERT INTO a1 VALUES(1, 1);
  }
} {}
do_test capi2-3.21 {
  set VM [sqlite3_prepare $DB {INSERT INTO a1 VALUES(1, 1)} -1 TAIL]
  sqlite3_step $VM
} {SQLITE_ERROR}
do_test capi2-3.22 {
  sqlite3_errcode $DB
} {SQLITE_ERROR}
do_test capi2-3.23 {
  sqlite3_finalize $VM
} {SQLITE_CONSTRAINT}
do_test capi2-3.24 {
  list [sqlite3_errcode $DB] [sqlite3_extended_errcode $DB]
} {SQLITE_CONSTRAINT SQLITE_CONSTRAINT_UNIQUE}

# Two or more virtual machines exists at the same time.
#
do_test capi2-4.1 {
  set VM1 [sqlite3_prepare $DB {INSERT INTO t2 VALUES(1,2)} -1 TAIL]
  set TAIL
} {}
Changes to test/check.test.
11
12
13
14
15
16
17

18
19
20
21
22
23
24
# This file implements regression tests for SQLite library.  The
# focus of this file is testing CHECK constraints
#
# $Id: check.test,v 1.13 2009/06/05 17:09:12 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Only run these tests if the build includes support for CHECK constraints
ifcapable !check {
  finish_test
  return
}








>







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# This file implements regression tests for SQLite library.  The
# focus of this file is testing CHECK constraints
#
# $Id: check.test,v 1.13 2009/06/05 17:09:12 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix check

# Only run these tests if the build includes support for CHECK constraints
ifcapable !check {
  finish_test
  return
}

408
409
410
411
412
413
414
415






































416
} {0 {}}
do_test check-6.15 {
  execsql {SELECT * FROM t1}
} {3 12.0 2 20.0}


}







































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
} {0 {}}
do_test check-6.15 {
  execsql {SELECT * FROM t1}
} {3 12.0 2 20.0}


}

#--------------------------------------------------------------------------
# If a connection opens a database that contains a CHECK constraint that
# uses an unknown UDF, the schema should not be considered malformed.
# Attempting to modify the table should fail (since the CHECK constraint
# cannot be tested).
#
reset_db
proc myfunc {x} {expr $x < 10}
db func myfunc myfunc

do_execsql_test  7.1 { CREATE TABLE t6(a CHECK (myfunc(a))) }
do_execsql_test  7.2 { INSERT INTO t6 VALUES(9)  }
do_catchsql_test 7.3 { INSERT INTO t6 VALUES(11) } {1 {constraint failed}}

do_test 7.4 {
  sqlite3 db2 test.db
  execsql { SELECT * FROM t6 } db2 
} {9}

do_test 7.5 {
  catchsql { INSERT INTO t6 VALUES(8) } db2
} {1 {unknown function: myfunc()}}

do_test 7.6 {
  catchsql { CREATE TABLE t7(a CHECK (myfunc(a))) } db2
} {1 {no such function: myfunc}}

do_test 7.7 {
  db2 func myfunc myfunc
  execsql { INSERT INTO t6 VALUES(8) } db2
} {}

do_test 7.8 {
  db2 func myfunc myfunc
  catchsql { INSERT INTO t6 VALUES(12) } db2
} {1 {constraint failed}}


finish_test
Changes to test/conflict.test.
576
577
578
579
580
581
582

583
584
585
586
587
588
589
590
591
592
593
594

595
596
597
598
599
600
601
  catchsql {
    BEGIN;
    UPDATE t3 SET x=x+1;
    INSERT INTO t2 VALUES(3,3,3,3,1);
    SELECT * FROM t2;
  }
} {1 {column e is not unique}}

do_test conflict-9.20 {
  catch {execsql {COMMIT}}
  execsql {SELECT * FROM t3}
} {5}
do_test conflict-9.21 {
  catchsql {
    BEGIN;
    UPDATE t3 SET x=x+1;
    UPDATE t2 SET e=e+1 WHERE e=1;
    SELECT * FROM t2;
  }
} {1 {column e is not unique}}

do_test conflict-9.22 {
  catch {execsql {COMMIT}}
  execsql {SELECT * FROM t3}
} {5}
do_test conflict-9.23 {
  catchsql {
    INSERT INTO t2 VALUES(3,3,1,3,3);







>












>







576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
  catchsql {
    BEGIN;
    UPDATE t3 SET x=x+1;
    INSERT INTO t2 VALUES(3,3,3,3,1);
    SELECT * FROM t2;
  }
} {1 {column e is not unique}}
verify_ex_errcode conflict-9.21b SQLITE_CONSTRAINT_UNIQUE
do_test conflict-9.20 {
  catch {execsql {COMMIT}}
  execsql {SELECT * FROM t3}
} {5}
do_test conflict-9.21 {
  catchsql {
    BEGIN;
    UPDATE t3 SET x=x+1;
    UPDATE t2 SET e=e+1 WHERE e=1;
    SELECT * FROM t2;
  }
} {1 {column e is not unique}}
verify_ex_errcode conflict-9.21b SQLITE_CONSTRAINT_UNIQUE
do_test conflict-9.22 {
  catch {execsql {COMMIT}}
  execsql {SELECT * FROM t3}
} {5}
do_test conflict-9.23 {
  catchsql {
    INSERT INTO t2 VALUES(3,3,1,3,3);
777
778
779
780
781
782
783

784
785
786
787
788
789
790
  }
} {1 one 2 two}
do_test conflict-12.3 {
  catchsql {
    UPDATE t5 SET a=a+1 WHERE a=1;
  }
} {1 {PRIMARY KEY must be unique}}

do_test conflict-12.4 {
  execsql {
    UPDATE OR REPLACE t5 SET a=a+1 WHERE a=1;
    SELECT * FROM t5;
  }
} {2 one}








>







779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
  }
} {1 one 2 two}
do_test conflict-12.3 {
  catchsql {
    UPDATE t5 SET a=a+1 WHERE a=1;
  }
} {1 {PRIMARY KEY must be unique}}
verify_ex_errcode conflict-12.3b SQLITE_CONSTRAINT_PRIMARYKEY
do_test conflict-12.4 {
  execsql {
    UPDATE OR REPLACE t5 SET a=a+1 WHERE a=1;
    SELECT * FROM t5;
  }
} {2 one}

798
799
800
801
802
803
804

805
806
807
808
809
810
811
812
813
814
    BEGIN;
    REPLACE INTO t13 VALUES(1);
  }
  catchsql {
    REPLACE INTO t13 VALUES(2);
  }
} {1 {constraint failed}}

do_test conflict-13.2 {
  execsql {
    REPLACE INTO t13 VALUES(3);
    COMMIT;
    SELECT * FROM t13;
  }
} {1 3}


finish_test







>










801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    BEGIN;
    REPLACE INTO t13 VALUES(1);
  }
  catchsql {
    REPLACE INTO t13 VALUES(2);
  }
} {1 {constraint failed}}
verify_ex_errcode conflict-13.1b SQLITE_CONSTRAINT_CHECK
do_test conflict-13.2 {
  execsql {
    REPLACE INTO t13 VALUES(3);
    COMMIT;
    SELECT * FROM t13;
  }
} {1 3}


finish_test
Changes to test/descidx3.test.
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
} {9 7 6 8 3 4 2 5}

ifcapable subquery {
  # If the subquery capability is not compiled in to the binary, then
  # the IN(...) operator is not available. Hence these tests cannot be 
  # run.
  do_test descidx3-4.1 {
    execsql {
      UPDATE t1 SET a=2 WHERE i<6;
      SELECT i FROM t1 WHERE a IN (1,2) AND b>0 AND b<'zzz';
    }
  } {8 6 2 4 3}
  do_test descidx3-4.2 {
    execsql {
      UPDATE t1 SET a=1;
      SELECT i FROM t1 WHERE a IN (1,2) AND b>0 AND b<'zzz';
    }
  } {2 4 3 8 6}
  do_test descidx3-4.3 {







|


|
|







128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
} {9 7 6 8 3 4 2 5}

ifcapable subquery {
  # If the subquery capability is not compiled in to the binary, then
  # the IN(...) operator is not available. Hence these tests cannot be 
  # run.
  do_test descidx3-4.1 {
    lsort [execsql {
      UPDATE t1 SET a=2 WHERE i<6;
      SELECT i FROM t1 WHERE a IN (1,2) AND b>0 AND b<'zzz';
    }]
  } {2 3 4 6 8}
  do_test descidx3-4.2 {
    execsql {
      UPDATE t1 SET a=1;
      SELECT i FROM t1 WHERE a IN (1,2) AND b>0 AND b<'zzz';
    }
  } {2 4 3 8 6}
  do_test descidx3-4.3 {
Changes to test/e_fkey.test.
623
624
625
626
627
628
629
630

631
632
633
634
635
636
637
  }
} {}
proc test_efkey_57 {tn isError sql} {
  catchsql { DROP TABLE t1 }
  execsql $sql
  do_test e_fkey-18.$tn {
    catchsql { INSERT INTO t2 VALUES(NULL) }
  } [lindex {{0 {}} {1 {foreign key mismatch}}} $isError]

}
test_efkey_57 2 0 { CREATE TABLE t1(x PRIMARY KEY) }
test_efkey_57 3 0 { CREATE TABLE t1(x UNIQUE) }
test_efkey_57 4 0 { CREATE TABLE t1(x); CREATE UNIQUE INDEX t1i ON t1(x) }
test_efkey_57 5 1 { 
  CREATE TABLE t1(x); 
  CREATE UNIQUE INDEX t1i ON t1(x COLLATE nocase);







|
>







623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
  }
} {}
proc test_efkey_57 {tn isError sql} {
  catchsql { DROP TABLE t1 }
  execsql $sql
  do_test e_fkey-18.$tn {
    catchsql { INSERT INTO t2 VALUES(NULL) }
  } [lindex {{0 {}} {/1 {foreign key mismatch - ".*" referencing ".*"}/}} \
     $isError]
}
test_efkey_57 2 0 { CREATE TABLE t1(x PRIMARY KEY) }
test_efkey_57 3 0 { CREATE TABLE t1(x UNIQUE) }
test_efkey_57 4 0 { CREATE TABLE t1(x); CREATE UNIQUE INDEX t1i ON t1(x) }
test_efkey_57 5 1 { 
  CREATE TABLE t1(x); 
  CREATE UNIQUE INDEX t1i ON t1(x COLLATE nocase);
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    INSERT INTO child1 VALUES('xxx', 1);
    INSERT INTO child2 VALUES('xxx', 2);
    INSERT INTO child3 VALUES(3, 4);
  }
} {}
do_test e_fkey-19.2 {
  catchsql { INSERT INTO child4 VALUES('xxx', 5) }
} {1 {foreign key mismatch}}
do_test e_fkey-19.3 {
  catchsql { INSERT INTO child5 VALUES('xxx', 6) }
} {1 {foreign key mismatch}}
do_test e_fkey-19.4 {
  catchsql { INSERT INTO child6 VALUES(2, 3) }
} {1 {foreign key mismatch}}
do_test e_fkey-19.5 {
  catchsql { INSERT INTO child7 VALUES(3) }
} {1 {foreign key mismatch}}

#-------------------------------------------------------------------------
# Test errors in the database schema that are detected while preparing
# DML statements. The error text for these messages always matches 
# either "foreign key mismatch" or "no such table*" (using [string match]).
#
# EVIDENCE-OF: R-45488-08504 If the database schema contains foreign key







|


|


|


|







695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    INSERT INTO child1 VALUES('xxx', 1);
    INSERT INTO child2 VALUES('xxx', 2);
    INSERT INTO child3 VALUES(3, 4);
  }
} {}
do_test e_fkey-19.2 {
  catchsql { INSERT INTO child4 VALUES('xxx', 5) }
} {1 {foreign key mismatch - "child4" referencing "parent"}}
do_test e_fkey-19.3 {
  catchsql { INSERT INTO child5 VALUES('xxx', 6) }
} {1 {foreign key mismatch - "child5" referencing "parent"}}
do_test e_fkey-19.4 {
  catchsql { INSERT INTO child6 VALUES(2, 3) }
} {1 {foreign key mismatch - "child6" referencing "parent"}}
do_test e_fkey-19.5 {
  catchsql { INSERT INTO child7 VALUES(3) }
} {1 {foreign key mismatch - "child7" referencing "parent"}}

#-------------------------------------------------------------------------
# Test errors in the database schema that are detected while preparing
# DML statements. The error text for these messages always matches 
# either "foreign key mismatch" or "no such table*" (using [string match]).
#
# EVIDENCE-OF: R-45488-08504 If the database schema contains foreign key
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
    CREATE TABLE p7(a, b, PRIMARY KEY(a, b));
    CREATE TABLE c7(c, d REFERENCES p7);
  }
} {}

foreach {tn tbl ptbl err} {
  2 c1 {} "no such table: main.nosuchtable"
  3 c2 p2 "foreign key mismatch"
  4 c3 p3 "foreign key mismatch"
  5 c4 p4 "foreign key mismatch"
  6 c5 p5 "foreign key mismatch"
  7 c6 p6 "foreign key mismatch"
  8 c7 p7 "foreign key mismatch"
} {
  do_test e_fkey-20.$tn.1 {
    catchsql "INSERT INTO $tbl VALUES('a', 'b')"
  } [list 1 $err]
  do_test e_fkey-20.$tn.2 {
    catchsql "UPDATE $tbl SET c = ?, d = ?"
  } [list 1 $err]







|
|
|
|
|
|







762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    CREATE TABLE p7(a, b, PRIMARY KEY(a, b));
    CREATE TABLE c7(c, d REFERENCES p7);
  }
} {}

foreach {tn tbl ptbl err} {
  2 c1 {} "no such table: main.nosuchtable"
  3 c2 p2 "foreign key mismatch - \"c2\" referencing \"p2\""
  4 c3 p3 "foreign key mismatch - \"c3\" referencing \"p3\""
  5 c4 p4 "foreign key mismatch - \"c4\" referencing \"p4\""
  6 c5 p5 "foreign key mismatch - \"c5\" referencing \"p5\""
  7 c6 p6 "foreign key mismatch - \"c6\" referencing \"p6\""
  8 c7 p7 "foreign key mismatch - \"c7\" referencing \"p7\""
} {
  do_test e_fkey-20.$tn.1 {
    catchsql "INSERT INTO $tbl VALUES('a', 'b')"
  } [list 1 $err]
  do_test e_fkey-20.$tn.2 {
    catchsql "UPDATE $tbl SET c = ?, d = ?"
  } [list 1 $err]
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
  execsql {
    INSERT INTO parent2 VALUES('I', 'II');
    INSERT INTO child8 VALUES('I', 'II');
  }
} {}
do_test e_fkey-21.3 {
  catchsql { INSERT INTO child9 VALUES('I') }
} {1 {foreign key mismatch}}
do_test e_fkey-21.4 {
  catchsql { INSERT INTO child9 VALUES('II') }
} {1 {foreign key mismatch}}
do_test e_fkey-21.5 {
  catchsql { INSERT INTO child9 VALUES(NULL) }
} {1 {foreign key mismatch}}
do_test e_fkey-21.6 {
  catchsql { INSERT INTO child10 VALUES('I', 'II', 'III') }
} {1 {foreign key mismatch}}
do_test e_fkey-21.7 {
  catchsql { INSERT INTO child10 VALUES(1, 2, 3) }
} {1 {foreign key mismatch}}
do_test e_fkey-21.8 {
  catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) }
} {1 {foreign key mismatch}}

#-------------------------------------------------------------------------
# Test errors that are reported when creating the child table. 
# Specifically:
#
#   * different number of child and parent key columns, and
#   * child columns that do not exist.







|


|


|


|


|


|







817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
  execsql {
    INSERT INTO parent2 VALUES('I', 'II');
    INSERT INTO child8 VALUES('I', 'II');
  }
} {}
do_test e_fkey-21.3 {
  catchsql { INSERT INTO child9 VALUES('I') }
} {1 {foreign key mismatch - "child9" referencing "parent2"}}
do_test e_fkey-21.4 {
  catchsql { INSERT INTO child9 VALUES('II') }
} {1 {foreign key mismatch - "child9" referencing "parent2"}}
do_test e_fkey-21.5 {
  catchsql { INSERT INTO child9 VALUES(NULL) }
} {1 {foreign key mismatch - "child9" referencing "parent2"}}
do_test e_fkey-21.6 {
  catchsql { INSERT INTO child10 VALUES('I', 'II', 'III') }
} {1 {foreign key mismatch - "child10" referencing "parent2"}}
do_test e_fkey-21.7 {
  catchsql { INSERT INTO child10 VALUES(1, 2, 3) }
} {1 {foreign key mismatch - "child10" referencing "parent2"}}
do_test e_fkey-21.8 {
  catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) }
} {1 {foreign key mismatch - "child10" referencing "parent2"}}

#-------------------------------------------------------------------------
# Test errors that are reported when creating the child table. 
# Specifically:
#
#   * different number of child and parent key columns, and
#   * child columns that do not exist.
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
do_test e_fkey-28.8 {
  drop_all_tables
  execsql {
    CREATE TABLE p(x PRIMARY KEY);
    CREATE TABLE c(a, b, FOREIGN KEY(a,b) REFERENCES p);
  }
  catchsql {DELETE FROM p}
} {1 {foreign key mismatch}}
do_test e_fkey-28.9 {
  drop_all_tables
  execsql {
    CREATE TABLE p(x, y, PRIMARY KEY(x,y));
    CREATE TABLE c(a REFERENCES p);
  }
  catchsql {DELETE FROM p}
} {1 {foreign key mismatch}}


#-------------------------------------------------------------------------
# EVIDENCE-OF: R-24676-09859
#
# Test the example schema in the "Composite Foreign Key Constraints" 
# section.







|







|







1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
do_test e_fkey-28.8 {
  drop_all_tables
  execsql {
    CREATE TABLE p(x PRIMARY KEY);
    CREATE TABLE c(a, b, FOREIGN KEY(a,b) REFERENCES p);
  }
  catchsql {DELETE FROM p}
} {1 {foreign key mismatch - "c" referencing "p"}}
do_test e_fkey-28.9 {
  drop_all_tables
  execsql {
    CREATE TABLE p(x, y, PRIMARY KEY(x,y));
    CREATE TABLE c(a REFERENCES p);
  }
  catchsql {DELETE FROM p}
} {1 {foreign key mismatch - "c" referencing "p"}}


#-------------------------------------------------------------------------
# EVIDENCE-OF: R-24676-09859
#
# Test the example schema in the "Composite Foreign Key Constraints" 
# section.
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
      SELECT * FROM c3;
    ROLLBACK;
  }
} {{} 2}
do_test e_fkey-60.4 {
  execsql { CREATE TABLE nosuchtable(x PRIMARY KEY) }
  catchsql { DELETE FROM p }
} {1 {foreign key mismatch}}
do_test e_fkey-60.5 {
  execsql { DROP TABLE c1 }
  catchsql { DELETE FROM p }
} {1 {foreign key mismatch}}
do_test e_fkey-60.6 {
  execsql { DROP TABLE c2 }
  execsql { DELETE FROM p }
} {}

#-------------------------------------------------------------------------
# Test that the special behaviours of ALTER and DROP TABLE are only







|



|







2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
      SELECT * FROM c3;
    ROLLBACK;
  }
} {{} 2}
do_test e_fkey-60.4 {
  execsql { CREATE TABLE nosuchtable(x PRIMARY KEY) }
  catchsql { DELETE FROM p }
} {1 {foreign key mismatch - "c2" referencing "p"}}
do_test e_fkey-60.5 {
  execsql { DROP TABLE c1 }
  catchsql { DELETE FROM p }
} {1 {foreign key mismatch - "c2" referencing "p"}}
do_test e_fkey-60.6 {
  execsql { DROP TABLE c2 }
  execsql { DELETE FROM p }
} {}

#-------------------------------------------------------------------------
# Test that the special behaviours of ALTER and DROP TABLE are only
Changes to test/errmsg.test.
76
77
78
79
80
81
82

83
84
85
86
87
88

89
90
91
92
93
94
95
}
do_test 2.2 {
  error_messages "INSERT INTO t1 VALUES('ghi', 'def')"
} [list {*}{
    SQLITE_ERROR      {SQL logic error or missing database} 
    SQLITE_CONSTRAINT {column b is not unique}
}]

do_test 2.3 {
  error_messages_v2 "INSERT INTO t1 VALUES('ghi', 'def')"
} [list {*}{
    SQLITE_CONSTRAINT {column b is not unique}
    SQLITE_CONSTRAINT {column b is not unique}
}]


#-------------------------------------------------------------------------
# Test SQLITE_SCHEMA errors. And, for _v2(), test that if the schema
# change invalidates the SQL statement itself the error message is returned
# correctly.
#
do_execsql_test 3.1.1 {







>






>







76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
}
do_test 2.2 {
  error_messages "INSERT INTO t1 VALUES('ghi', 'def')"
} [list {*}{
    SQLITE_ERROR      {SQL logic error or missing database} 
    SQLITE_CONSTRAINT {column b is not unique}
}]
verify_ex_errcode 2.2b SQLITE_CONSTRAINT_UNIQUE
do_test 2.3 {
  error_messages_v2 "INSERT INTO t1 VALUES('ghi', 'def')"
} [list {*}{
    SQLITE_CONSTRAINT {column b is not unique}
    SQLITE_CONSTRAINT {column b is not unique}
}]
verify_ex_errcode 2.3b SQLITE_CONSTRAINT_UNIQUE

#-------------------------------------------------------------------------
# Test SQLITE_SCHEMA errors. And, for _v2(), test that if the schema
# change invalidates the SQL statement itself the error message is returned
# correctly.
#
do_execsql_test 3.1.1 {
Changes to test/filefmt.test.
209
210
211
212
213
214
215


































216

  sql36231 { DROP TABLE t1 } 
} {}
do_execsql_test filefmt-3.3 {
  SELECT * FROM sqlite_master;
  PRAGMA integrity_check;
} {ok}



































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  sql36231 { DROP TABLE t1 } 
} {}
do_execsql_test filefmt-3.3 {
  SELECT * FROM sqlite_master;
  PRAGMA integrity_check;
} {ok}

reset_db
do_execsql_test filefmt-4.1 {
  PRAGMA auto_vacuum = 1;
  CREATE TABLE t1(x, y);
  CREATE TABLE t2(x, y);

  INSERT INTO t1 VALUES(randomblob(100), randomblob(100));
  INSERT INTO t1 VALUES(randomblob(100), randomblob(100));
  INSERT INTO t1 VALUES(randomblob(100), randomblob(100));
  INSERT INTO t1 VALUES(randomblob(100), randomblob(100));
  INSERT INTO t1 VALUES(randomblob(100), randomblob(100));
  INSERT INTO t1 VALUES(randomblob(100), randomblob(100));

  INSERT INTO t2 SELECT randomblob(100), randomblob(100) FROM t1;
  INSERT INTO t2 SELECT randomblob(100), randomblob(100) FROM t1;
  INSERT INTO t2 SELECT randomblob(100), randomblob(100) FROM t1;
  INSERT INTO t2 SELECT randomblob(100), randomblob(100) FROM t1;
}

do_test filefmt-4.2 { 
  sql36231 { INSERT INTO t2 SELECT * FROM t1 }
} {}

do_test filefmt-4.3 { 
  forcedelete bak.db
  db backup bak.db
} {}

do_test filefmt-4.4 { 
  sqlite3 db2 bak.db
  db2 eval { PRAGMA integrity_check }
} {ok}
db2 close

finish_test

Changes to test/fkey2.test.
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149






150
151
152
153
154
155
156
157






158
159
160
161
162
163
164
165
166
167






168
169
170
171
172
173
174
  4.13 "UPDATE t7 SET b = 1"              {0 {}}
  4.14 "INSERT INTO t8 VALUES('a', 'b')"  {1 {foreign key constraint failed}}
  4.15 "UPDATE t7 SET b = 5"              {1 {foreign key constraint failed}}
  4.16 "UPDATE t7 SET rowid = 5"          {1 {foreign key constraint failed}}
  4.17 "UPDATE t7 SET a = 10"             {0 {}}

  5.1  "INSERT INTO t9 VALUES(1, 3)"      {1 {no such table: main.nosuchtable}}
  5.2  "INSERT INTO t10 VALUES(1, 3)"     {1 {foreign key mismatch}}

}

do_test fkey2-1.1.0 {
  execsql [string map {/D/ {}} $FkeySimpleSchema]
} {}
foreach {tn zSql res} $FkeySimpleTests {
  do_test fkey2-1.1.$tn { catchsql $zSql } $res






}
drop_all_tables

do_test fkey2-1.2.0 {
  execsql [string map {/D/ {DEFERRABLE INITIALLY DEFERRED}} $FkeySimpleSchema]
} {}
foreach {tn zSql res} $FkeySimpleTests {
  do_test fkey2-1.2.$tn { catchsql $zSql } $res






}
drop_all_tables

do_test fkey2-1.3.0 {
  execsql [string map {/D/ {}} $FkeySimpleSchema]
  execsql { PRAGMA count_changes = 1 }
} {}
foreach {tn zSql res} $FkeySimpleTests {
  if {$res == "0 {}"} { set res {0 1} }
  do_test fkey2-1.3.$tn { catchsql $zSql } $res






}
execsql { PRAGMA count_changes = 0 }
drop_all_tables

do_test fkey2-1.4.0 {
  execsql [string map {/D/ {}} $FkeySimpleSchema]
  execsql { PRAGMA count_changes = 1 }







|
>






|
>
>
>
>
>
>








>
>
>
>
>
>










>
>
>
>
>
>







135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
  4.13 "UPDATE t7 SET b = 1"              {0 {}}
  4.14 "INSERT INTO t8 VALUES('a', 'b')"  {1 {foreign key constraint failed}}
  4.15 "UPDATE t7 SET b = 5"              {1 {foreign key constraint failed}}
  4.16 "UPDATE t7 SET rowid = 5"          {1 {foreign key constraint failed}}
  4.17 "UPDATE t7 SET a = 10"             {0 {}}

  5.1  "INSERT INTO t9 VALUES(1, 3)"      {1 {no such table: main.nosuchtable}}
  5.2  "INSERT INTO t10 VALUES(1, 3)"  
                            {1 {foreign key mismatch - "t10" referencing "t9"}}
}

do_test fkey2-1.1.0 {
  execsql [string map {/D/ {}} $FkeySimpleSchema]
} {}
foreach {tn zSql res} $FkeySimpleTests {
  do_test fkey2-1.1.$tn.1 { catchsql $zSql } $res
  do_test fkey2-1.1.$tn.2 { execsql {PRAGMA foreign_key_check(t1)} } {}
  do_test fkey2-1.1.$tn.3 { execsql {PRAGMA foreign_key_check(t2)} } {}
  do_test fkey2-1.1.$tn.4 { execsql {PRAGMA foreign_key_check(t3)} } {}
  do_test fkey2-1.1.$tn.5 { execsql {PRAGMA foreign_key_check(t4)} } {}
  do_test fkey2-1.1.$tn.6 { execsql {PRAGMA foreign_key_check(t7)} } {}
  do_test fkey2-1.1.$tn.7 { execsql {PRAGMA foreign_key_check(t8)} } {}
}
drop_all_tables

do_test fkey2-1.2.0 {
  execsql [string map {/D/ {DEFERRABLE INITIALLY DEFERRED}} $FkeySimpleSchema]
} {}
foreach {tn zSql res} $FkeySimpleTests {
  do_test fkey2-1.2.$tn { catchsql $zSql } $res
  do_test fkey2-1.2.$tn.2 { execsql {PRAGMA foreign_key_check(t1)} } {}
  do_test fkey2-1.2.$tn.3 { execsql {PRAGMA foreign_key_check(t2)} } {}
  do_test fkey2-1.2.$tn.4 { execsql {PRAGMA foreign_key_check(t3)} } {}
  do_test fkey2-1.2.$tn.5 { execsql {PRAGMA foreign_key_check(t4)} } {}
  do_test fkey2-1.2.$tn.6 { execsql {PRAGMA foreign_key_check(t7)} } {}
  do_test fkey2-1.2.$tn.7 { execsql {PRAGMA foreign_key_check(t8)} } {}
}
drop_all_tables

do_test fkey2-1.3.0 {
  execsql [string map {/D/ {}} $FkeySimpleSchema]
  execsql { PRAGMA count_changes = 1 }
} {}
foreach {tn zSql res} $FkeySimpleTests {
  if {$res == "0 {}"} { set res {0 1} }
  do_test fkey2-1.3.$tn { catchsql $zSql } $res
  do_test fkey2-1.3.$tn.2 { execsql {PRAGMA foreign_key_check(t1)} } {}
  do_test fkey2-1.3.$tn.3 { execsql {PRAGMA foreign_key_check(t2)} } {}
  do_test fkey2-1.3.$tn.4 { execsql {PRAGMA foreign_key_check(t3)} } {}
  do_test fkey2-1.3.$tn.5 { execsql {PRAGMA foreign_key_check(t4)} } {}
  do_test fkey2-1.3.$tn.6 { execsql {PRAGMA foreign_key_check(t7)} } {}
  do_test fkey2-1.3.$tn.7 { execsql {PRAGMA foreign_key_check(t8)} } {}
}
execsql { PRAGMA count_changes = 0 }
drop_all_tables

do_test fkey2-1.4.0 {
  execsql [string map {/D/ {}} $FkeySimpleSchema]
  execsql { PRAGMA count_changes = 1 }
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
  CREATE UNIQUE INDEX i ON p(a COLLATE nocase);
  CREATE TABLE c(x REFERENCES p(a));
}] {
  drop_all_tables
  do_test fkey2-10.1.[incr tn] {
    execsql $zSql
    catchsql { INSERT INTO c DEFAULT VALUES }
  } {1 {foreign key mismatch}}
}

# "rowid" cannot be used as part of a child or parent key definition 
# unless it happens to be the name of an explicitly declared column.
#
do_test fkey2-10.2.1 {
  drop_all_tables







|







696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
  CREATE UNIQUE INDEX i ON p(a COLLATE nocase);
  CREATE TABLE c(x REFERENCES p(a));
}] {
  drop_all_tables
  do_test fkey2-10.1.[incr tn] {
    execsql $zSql
    catchsql { INSERT INTO c DEFAULT VALUES }
  } {/1 {foreign key mismatch - "c" referencing "."}/}
}

# "rowid" cannot be used as part of a child or parent key definition 
# unless it happens to be the name of an explicitly declared column.
#
do_test fkey2-10.2.1 {
  drop_all_tables
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
  drop_all_tables
  catchsql {
    CREATE TABLE t1(a, b);
    CREATE TABLE t2(c, d, FOREIGN KEY(c) REFERENCES t1(rowid));
    INSERT INTO t1(rowid, a, b) VALUES(1, 1, 1);
    INSERT INTO t2 VALUES(1, 1);
  }
} {1 {foreign key mismatch}}
do_test fkey2-10.2.2 {
  drop_all_tables
  catchsql {
    CREATE TABLE t1(rowid PRIMARY KEY, b);
    CREATE TABLE t2(c, d, FOREIGN KEY(c) REFERENCES t1(rowid));
    INSERT INTO t1(rowid, b) VALUES(1, 1);
    INSERT INTO t2 VALUES(1, 1);







|







724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
  drop_all_tables
  catchsql {
    CREATE TABLE t1(a, b);
    CREATE TABLE t2(c, d, FOREIGN KEY(c) REFERENCES t1(rowid));
    INSERT INTO t1(rowid, a, b) VALUES(1, 1, 1);
    INSERT INTO t2 VALUES(1, 1);
  }
} {1 {foreign key mismatch - "t2" referencing "t1"}}
do_test fkey2-10.2.2 {
  drop_all_tables
  catchsql {
    CREATE TABLE t1(rowid PRIMARY KEY, b);
    CREATE TABLE t2(c, d, FOREIGN KEY(c) REFERENCES t1(rowid));
    INSERT INTO t1(rowid, b) VALUES(1, 1);
    INSERT INTO t2 VALUES(1, 1);
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
} {}
do_test fkey-2.14.3.8 {
  execsql {
    CREATE TABLE pp(x, y, PRIMARY KEY(x, y));
    CREATE TABLE cc(a, b, FOREIGN KEY(a, b) REFERENCES pp(x, z));
  }
  catchsql { INSERT INTO cc VALUES(1, 2) }
} {1 {foreign key mismatch}}
do_test fkey-2.14.3.9 {
  execsql { DROP TABLE cc }
} {}
do_test fkey-2.14.3.10 {
  execsql {
    CREATE TABLE cc(a, b, 
      FOREIGN KEY(a, b) REFERENCES pp DEFERRABLE INITIALLY DEFERRED







|







1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
} {}
do_test fkey-2.14.3.8 {
  execsql {
    CREATE TABLE pp(x, y, PRIMARY KEY(x, y));
    CREATE TABLE cc(a, b, FOREIGN KEY(a, b) REFERENCES pp(x, z));
  }
  catchsql { INSERT INTO cc VALUES(1, 2) }
} {1 {foreign key mismatch - "cc" referencing "pp"}}
do_test fkey-2.14.3.9 {
  execsql { DROP TABLE cc }
} {}
do_test fkey-2.14.3.10 {
  execsql {
    CREATE TABLE cc(a, b, 
      FOREIGN KEY(a, b) REFERENCES pp DEFERRABLE INITIALLY DEFERRED
1410
1411
1412
1413
1414
1415
1416

1417
1418
1419
1420

1421
1422
1423
1424
1425
1426
1427
1428

1429
1430
1431
1432
1433
1434
1435
    INSERT INTO one VALUES(1, 2, 3);
  }
} {1}
do_test fkey2-17.1.2 {
  set STMT [sqlite3_prepare_v2 db "INSERT INTO two VALUES(4, 5, 6)" -1 dummy]
  sqlite3_step $STMT
} {SQLITE_CONSTRAINT}

ifcapable autoreset {
  do_test fkey2-17.1.3 {
    sqlite3_step $STMT
  } {SQLITE_CONSTRAINT}

} else {
  do_test fkey2-17.1.3 {
    sqlite3_step $STMT
  } {SQLITE_MISUSE}
}
do_test fkey2-17.1.4 {
  sqlite3_finalize $STMT
} {SQLITE_CONSTRAINT}

do_test fkey2-17.1.5 {
  execsql {
    INSERT INTO one VALUES(2, 3, 4);
    INSERT INTO one VALUES(3, 4, 5);
    INSERT INTO two VALUES(1, 2, 3);
    INSERT INTO two VALUES(2, 3, 4);
    INSERT INTO two VALUES(3, 4, 5);







>




>








>







1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
    INSERT INTO one VALUES(1, 2, 3);
  }
} {1}
do_test fkey2-17.1.2 {
  set STMT [sqlite3_prepare_v2 db "INSERT INTO two VALUES(4, 5, 6)" -1 dummy]
  sqlite3_step $STMT
} {SQLITE_CONSTRAINT}
verify_ex_errcode fkey2-17.1.2b SQLITE_CONSTRAINT_FOREIGNKEY
ifcapable autoreset {
  do_test fkey2-17.1.3 {
    sqlite3_step $STMT
  } {SQLITE_CONSTRAINT}
  verify_ex_errcode fkey2-17.1.3b SQLITE_CONSTRAINT_FOREIGNKEY
} else {
  do_test fkey2-17.1.3 {
    sqlite3_step $STMT
  } {SQLITE_MISUSE}
}
do_test fkey2-17.1.4 {
  sqlite3_finalize $STMT
} {SQLITE_CONSTRAINT}
verify_ex_errcode fkey2-17.1.4b SQLITE_CONSTRAINT_FOREIGNKEY
do_test fkey2-17.1.5 {
  execsql {
    INSERT INTO one VALUES(2, 3, 4);
    INSERT INTO one VALUES(3, 4, 5);
    INSERT INTO two VALUES(1, 2, 3);
    INSERT INTO two VALUES(2, 3, 4);
    INSERT INTO two VALUES(3, 4, 5);
1465
1466
1467
1468
1469
1470
1471

1472
1473
1474

1475
1476
1477
1478
1479
1480
1481
} {SQLITE_ROW}
do_test fkey2-17.1.12 {
  sqlite3_column_text $STMT 0
} {1}
do_test fkey2-17.1.13 {
  sqlite3_step $STMT
} {SQLITE_CONSTRAINT}

do_test fkey2-17.1.14 {
  sqlite3_finalize $STMT
} {SQLITE_CONSTRAINT}


drop_all_tables
do_test fkey2-17.2.1 {
  execsql {
    CREATE TABLE high("a'b!" PRIMARY KEY, b);
    CREATE TABLE low(
      c, 







>



>







1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
} {SQLITE_ROW}
do_test fkey2-17.1.12 {
  sqlite3_column_text $STMT 0
} {1}
do_test fkey2-17.1.13 {
  sqlite3_step $STMT
} {SQLITE_CONSTRAINT}
verify_ex_errcode fkey2-17.1.13b SQLITE_CONSTRAINT_FOREIGNKEY
do_test fkey2-17.1.14 {
  sqlite3_finalize $STMT
} {SQLITE_CONSTRAINT}
verify_ex_errcode fkey2-17.1.14b SQLITE_CONSTRAINT_FOREIGNKEY

drop_all_tables
do_test fkey2-17.2.1 {
  execsql {
    CREATE TABLE high("a'b!" PRIMARY KEY, b);
    CREATE TABLE low(
      c, 
1621
1622
1623
1624
1625
1626
1627

1628
1629
1630

1631
1632
1633
1634
1635
1636
1637
  }
} {}
do_test fkey2-19.2 {
  set S [sqlite3_prepare_v2 db "DELETE FROM main WHERE id = ?" -1 dummy]
  sqlite3_bind_int $S 1 2
  sqlite3_step $S
} {SQLITE_CONSTRAINT}

do_test fkey2-19.3 {
  sqlite3_reset $S
} {SQLITE_CONSTRAINT}

do_test fkey2-19.4 {
  sqlite3_bind_int $S 1 1
  sqlite3_step $S
} {SQLITE_DONE}
do_test fkey2-19.4 {
  sqlite3_finalize $S
} {SQLITE_OK}







>



>







1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
  }
} {}
do_test fkey2-19.2 {
  set S [sqlite3_prepare_v2 db "DELETE FROM main WHERE id = ?" -1 dummy]
  sqlite3_bind_int $S 1 2
  sqlite3_step $S
} {SQLITE_CONSTRAINT}
verify_ex_errcode fkey2-19.2b SQLITE_CONSTRAINT_FOREIGNKEY
do_test fkey2-19.3 {
  sqlite3_reset $S
} {SQLITE_CONSTRAINT}
verify_ex_errcode fkey2-19.3b SQLITE_CONSTRAINT_FOREIGNKEY
do_test fkey2-19.4 {
  sqlite3_bind_int $S 1 1
  sqlite3_step $S
} {SQLITE_DONE}
do_test fkey2-19.4 {
  sqlite3_finalize $S
} {SQLITE_OK}
Changes to test/fkey4.test.
38
39
40
41
42
43
44

45
46
47
48

49
50
51
52
53
54
55

do_test fkey4-1.2 {
  set ::DB [sqlite3_connection_pointer db]
  set ::SQL {INSERT INTO t2 VALUES(2,4)}
  set ::STMT1 [sqlite3_prepare_v2 $::DB $::SQL -1 TAIL]
  sqlite3_step $::STMT1
} {SQLITE_CONSTRAINT}

do_test fkey4-1.3 {
  set ::STMT2 [sqlite3_prepare_v2 $::DB $::SQL -1 TAIL]
  sqlite3_step $::STMT2
} {SQLITE_CONSTRAINT}

do_test fkey4-1.4 {
  db eval {SELECT * FROM t2}
} {1 3}
sqlite3_finalize $::STMT1
sqlite3_finalize $::STMT2

finish_test







>




>







38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

do_test fkey4-1.2 {
  set ::DB [sqlite3_connection_pointer db]
  set ::SQL {INSERT INTO t2 VALUES(2,4)}
  set ::STMT1 [sqlite3_prepare_v2 $::DB $::SQL -1 TAIL]
  sqlite3_step $::STMT1
} {SQLITE_CONSTRAINT}
verify_ex_errcode fkey4-1.2b SQLITE_CONSTRAINT_FOREIGNKEY
do_test fkey4-1.3 {
  set ::STMT2 [sqlite3_prepare_v2 $::DB $::SQL -1 TAIL]
  sqlite3_step $::STMT2
} {SQLITE_CONSTRAINT}
verify_ex_errcode fkey4-1.3b SQLITE_CONSTRAINT_FOREIGNKEY
do_test fkey4-1.4 {
  db eval {SELECT * FROM t2}
} {1 3}
sqlite3_finalize $::STMT1
sqlite3_finalize $::STMT2

finish_test
Added test/fkey5.test.












































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# 2012 December 17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file tests the PRAGMA foreign_key_check command.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable {!foreignkey} {
  finish_test
  return
}

do_test fkey5-1.1 {
  db eval {
    CREATE TABLE p1(a INTEGER PRIMARY KEY); INSERT INTO p1 VALUES(88),(89);
    CREATE TABLE p2(a INT PRIMARY KEY); INSERT INTO p2 VALUES(77),(78);
    CREATE TABLE p3(a TEXT PRIMARY KEY);
    INSERT INTO p3 VALUES(66),(67),('alpha'),('BRAVO');
    CREATE TABLE p4(a TEXT PRIMARY KEY COLLATE nocase);
    INSERT INTO p4 VALUES('alpha'),('BRAVO'),('55'),('Delta'),('ECHO');
    CREATE TABLE p5(a INTEGER PRIMARY KEY, b, c, UNIQUE(b,c));
    INSERT INTO p5 VALUES(1,'Alpha','abc'),(2,'beta','def');
    CREATE TABLE p6(a INTEGER PRIMARY KEY, b TEXT COLLATE nocase,
                    c TEXT COLLATE rtrim, UNIQUE(b,c));
    INSERT INTO p6 VALUES(1,'Alpha','abc '),(2,'bETA','def    ');

    CREATE TABLE c1(x INTEGER PRIMARY KEY references p1);
    CREATE TABLE c2(x INTEGER PRIMARY KEY references p2);
    CREATE TABLE c3(x INTEGER PRIMARY KEY references p3);
    CREATE TABLE c4(x INTEGER PRIMARY KEY references p4);
    CREATE TABLE c5(x INT references p1);
    CREATE TABLE c6(x INT references p2);
    CREATE TABLE c7(x INT references p3);
    CREATE TABLE c8(x INT references p4);
    CREATE TABLE c9(x TEXT UNIQUE references p1);
    CREATE TABLE c10(x TEXT UNIQUE references p2);
    CREATE TABLE c11(x TEXT UNIQUE references p3);
    CREATE TABLE c12(x TEXT UNIQUE references p4);
    CREATE TABLE c13(x TEXT COLLATE nocase references p3);
    CREATE TABLE c14(x TEXT COLLATE nocase references p4);
    CREATE TABLE c15(x, y, FOREIGN KEY(x,y) REFERENCES p5(b,c));
    CREATE TABLE c16(x, y, FOREIGN KEY(x,y) REFERENCES p5(c,b));
    CREATE TABLE c17(x, y, FOREIGN KEY(x,y) REFERENCES p6(b,c));
    CREATE TABLE c18(x, y, FOREIGN KEY(x,y) REFERENCES p6(c,b));
    CREATE TABLE c19(x TEXT COLLATE nocase, y TEXT COLLATE rtrim,
                     FOREIGN KEY(x,y) REFERENCES p5(b,c));
    CREATE TABLE c20(x TEXT COLLATE nocase, y TEXT COLLATE rtrim,
                     FOREIGN KEY(x,y) REFERENCES p5(c,b));
    CREATE TABLE c21(x TEXT COLLATE nocase, y TEXT COLLATE rtrim,
                     FOREIGN KEY(x,y) REFERENCES p6(b,c));
    CREATE TABLE c22(x TEXT COLLATE nocase, y TEXT COLLATE rtrim,
                     FOREIGN KEY(x,y) REFERENCES p6(c,b));

    PRAGMA foreign_key_check;
  }
} {}    
do_test fkey5-1.2 {
  db eval {
    INSERT INTO c1 VALUES(90),(87),(88);
    PRAGMA foreign_key_check;
  }
} {c1 87 p1 0 c1 90 p1 0}
do_test fkey5-1.3 {
  db eval {
    PRAGMA foreign_key_check(c1);
  }
} {c1 87 p1 0 c1 90 p1 0}
do_test fkey5-1.4 {
  db eval {
    PRAGMA foreign_key_check(c2);
  }
} {}

do_test fkey5-2.0 {
  db eval {
    INSERT INTO c5 SELECT x FROM c1;
    DELETE FROM c1;
    PRAGMA foreign_key_check;
  }
} {c5 1 p1 0 c5 3 p1 0}
do_test fkey5-2.1 {
  db eval {
    PRAGMA foreign_key_check(c5);
  }
} {c5 1 p1 0 c5 3 p1 0}
do_test fkey5-2.2 {
  db eval {
    PRAGMA foreign_key_check(c1);
  }
} {}

do_test fkey5-3.0 {
  db eval {
    INSERT INTO c9 SELECT x FROM c5;
    DELETE FROM c5;
    PRAGMA foreign_key_check;
  }
} {c9 1 p1 0 c9 3 p1 0}
do_test fkey5-3.1 {
  db eval {
    PRAGMA foreign_key_check(c9);
  }
} {c9 1 p1 0 c9 3 p1 0}
do_test fkey5-3.2 {
  db eval {
    PRAGMA foreign_key_check(c5);
  }
} {}

do_test fkey5-4.0 {
  db eval {
    DELETE FROM c9;
    INSERT INTO c2 VALUES(79),(77),(76);
    PRAGMA foreign_key_check;
  }
} {c2 76 p2 0 c2 79 p2 0}
do_test fkey5-4.1 {
  db eval {
    PRAGMA foreign_key_check(c2);
  }
} {c2 76 p2 0 c2 79 p2 0}
do_test fkey5-4.2 {
  db eval {
    INSERT INTO c6 SELECT x FROM c2;
    DELETE FROM c2;
    PRAGMA foreign_key_check;
  }
} {c6 1 p2 0 c6 3 p2 0}
do_test fkey5-4.3 {
  db eval {
    PRAGMA foreign_key_check(c6);
  }
} {c6 1 p2 0 c6 3 p2 0}
do_test fkey5-4.4 {
  db eval {
    INSERT INTO c10 SELECT x FROM c6;
    DELETE FROM c6;
    PRAGMA foreign_key_check;
  }
} {c10 1 p2 0 c10 3 p2 0}
do_test fkey5-4.5 {
  db eval {
    PRAGMA foreign_key_check(c10);
  }
} {c10 1 p2 0 c10 3 p2 0}

do_test fkey5-5.0 {
  db eval {
    DELETE FROM c10;
    INSERT INTO c3 VALUES(68),(67),(65);
    PRAGMA foreign_key_check;
  }
} {c3 65 p3 0 c3 68 p3 0}
do_test fkey5-5.1 {
  db eval {
    PRAGMA foreign_key_check(c3);
  }
} {c3 65 p3 0 c3 68 p3 0}
do_test fkey5-5.2 {
  db eval {
    INSERT INTO c7 SELECT x FROM c3;
    INSERT INTO c7 VALUES('Alpha'),('alpha'),('foxtrot');
    DELETE FROM c3;
    PRAGMA foreign_key_check;
  }
} {c7 1 p3 0 c7 3 p3 0 c7 4 p3 0 c7 6 p3 0}
do_test fkey5-5.3 {
  db eval {
    PRAGMA foreign_key_check(c7);
  }
} {c7 1 p3 0 c7 3 p3 0 c7 4 p3 0 c7 6 p3 0}
do_test fkey5-5.4 {
  db eval {
    INSERT INTO c11 SELECT x FROM c7;
    DELETE FROM c7;
    PRAGMA foreign_key_check;
  }
} {c11 1 p3 0 c11 3 p3 0 c11 4 p3 0 c11 6 p3 0}
do_test fkey5-5.5 {
  db eval {
    PRAGMA foreign_key_check(c11);
  }
} {c11 1 p3 0 c11 3 p3 0 c11 4 p3 0 c11 6 p3 0}

do_test fkey5-6.0 {
  db eval {
    DELETE FROM c11;
    INSERT INTO c4 VALUES(54),(55),(56);
    PRAGMA foreign_key_check;
  }
} {c4 54 p4 0 c4 56 p4 0}
do_test fkey5-6.1 {
  db eval {
    PRAGMA foreign_key_check(c4);
  }
} {c4 54 p4 0 c4 56 p4 0}
do_test fkey5-6.2 {
  db eval {
    INSERT INTO c8 SELECT x FROM c4;
    INSERT INTO c8 VALUES('Alpha'),('ALPHA'),('foxtrot');
    DELETE FROM c4;
    PRAGMA foreign_key_check;
  }
} {c8 1 p4 0 c8 3 p4 0 c8 6 p4 0}
do_test fkey5-6.3 {
  db eval {
    PRAGMA foreign_key_check(c8);
  }
} {c8 1 p4 0 c8 3 p4 0 c8 6 p4 0}
do_test fkey5-6.4 {
  db eval {
    INSERT INTO c12 SELECT x FROM c8;
    DELETE FROM c8;
    PRAGMA foreign_key_check;
  }
} {c12 1 p4 0 c12 3 p4 0 c12 6 p4 0}
do_test fkey5-6.5 {
  db eval {
    PRAGMA foreign_key_check(c12);
  }
} {c12 1 p4 0 c12 3 p4 0 c12 6 p4 0}

do_test fkey5-7.1 {
  db eval {
    INSERT OR IGNORE INTO c13 SELECT * FROM c12;
    INSERT OR IGNORE INTO C14 SELECT * FROM c12;
    DELETE FROM c12;
    PRAGMA foreign_key_check;
  }
} {c14 1 p4 0 c14 3 p4 0 c14 6 p4 0 c13 1 p3 0 c13 2 p3 0 c13 3 p3 0 c13 4 p3 0 c13 5 p3 0 c13 6 p3 0}
do_test fkey5-7.2 {
  db eval {
    PRAGMA foreign_key_check(c14);
  }
} {c14 1 p4 0 c14 3 p4 0 c14 6 p4 0}
do_test fkey5-7.3 {
  db eval {
    PRAGMA foreign_key_check(c13);
  }
} {c13 1 p3 0 c13 2 p3 0 c13 3 p3 0 c13 4 p3 0 c13 5 p3 0 c13 6 p3 0}

do_test fkey5-8.0 {
  db eval {
    DELETE FROM c13;
    DELETE FROM c14;
    INSERT INTO c19 VALUES('alpha','abc');
    PRAGMA foreign_key_check(c19);
  }
} {c19 1 p5 0}
do_test fkey5-8.1 {
  db eval {
    DELETE FROM c19;
    INSERT INTO c19 VALUES('Alpha','abc');
    PRAGMA foreign_key_check(c19);
  }
} {}
do_test fkey5-8.2 {
  db eval {
    INSERT INTO c20 VALUES('Alpha','abc');
    PRAGMA foreign_key_check(c20);
  }
} {c20 1 p5 0}
do_test fkey5-8.3 {
  db eval {
    DELETE FROM c20;
    INSERT INTO c20 VALUES('abc','Alpha');
    PRAGMA foreign_key_check(c20);
  }
} {}
do_test fkey5-8.4 {
  db eval {
    INSERT INTO c21 VALUES('alpha','abc    ');
    PRAGMA foreign_key_check(c21);
  }
} {}
do_test fkey5-8.5 {
  db eval {
    DELETE FROM c21;
    INSERT INTO c19 VALUES('Alpha','abc');
    PRAGMA foreign_key_check(c21);
  }
} {}
do_test fkey5-8.6 {
  db eval {
    INSERT INTO c22 VALUES('Alpha','abc');
    PRAGMA foreign_key_check(c22);
  }
} {c22 1 p6 0}
do_test fkey5-8.7 {
  db eval {
    DELETE FROM c22;
    INSERT INTO c22 VALUES('abc  ','ALPHA');
    PRAGMA foreign_key_check(c22);
  }
} {}



finish_test
Changes to test/fkey_malloc.test.
25
26
27
28
29
30
31

32
33
34
35
36
37
38
  CREATE TABLE t1(a PRIMARY KEY, b UNIQUE);
  CREATE TABLE t2(x REFERENCES t1 ON UPDATE CASCADE ON DELETE CASCADE);
} -sqlbody {
  INSERT INTO t1 VALUES('aaa', 1);
  INSERT INTO t2 VALUES('aaa');
  UPDATE t1 SET a = 'bbb';
  DELETE FROM t1;

}

do_malloc_test fkey_malloc-2 -sqlprep {
  PRAGMA foreign_keys = 1;
  CREATE TABLE t1(a, b, UNIQUE(a, b));
} -sqlbody {
  CREATE TABLE t2(x, y, 







>







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
  CREATE TABLE t1(a PRIMARY KEY, b UNIQUE);
  CREATE TABLE t2(x REFERENCES t1 ON UPDATE CASCADE ON DELETE CASCADE);
} -sqlbody {
  INSERT INTO t1 VALUES('aaa', 1);
  INSERT INTO t2 VALUES('aaa');
  UPDATE t1 SET a = 'bbb';
  DELETE FROM t1;
  PRAGMA foreign_key_check;
}

do_malloc_test fkey_malloc-2 -sqlprep {
  PRAGMA foreign_keys = 1;
  CREATE TABLE t1(a, b, UNIQUE(a, b));
} -sqlbody {
  CREATE TABLE t2(x, y, 
124
125
126
127
128
129
130
131
132
  CREATE TABLE z(e, f, FOREIGN KEY(e, f) REFERENCES x);
} -sqlbody {
  DROP TABLE y;
  DROP TABLE x;
}

finish_test









<
<
125
126
127
128
129
130
131


  CREATE TABLE z(e, f, FOREIGN KEY(e, f) REFERENCES x);
} -sqlbody {
  DROP TABLE y;
  DROP TABLE x;
}

finish_test


Changes to test/fts3ai.test.
14
15
16
17
18
19
20





21
22
23
24
25
26
27
source $testdir/tester.tcl

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}






# Return the UTF-16 representation of the supplied UTF-8 string $str.
# If $nt is true, append two 0x00 bytes as a nul terminator.
# NOTE(shess) Copied from capi3.test.
proc utf16 {str {nt 1}} {
  set r [encoding convertto unicode $str]
  if {$nt} {







>
>
>
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
source $testdir/tester.tcl

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}

ifcapable !utf16 {
  finish_test
  return
}

# Return the UTF-16 representation of the supplied UTF-8 string $str.
# If $nt is true, append two 0x00 bytes as a nul terminator.
# NOTE(shess) Copied from capi3.test.
proc utf16 {str {nt 1}} {
  set r [encoding convertto unicode $str]
  if {$nt} {
Changes to test/fts4content.test.
42
43
44
45
46
47
48


49
50
51
52
53
54
55
#   7.* - Test that if content=xxx is specified and table xxx does not
#         exist, the FTS table can still be used for INSERT and some
#         SELECT statements.
#
#   8.* - Test that if the content=xxx and prefix options are used together,
#         the 'rebuild' command still works.
#



do_execsql_test 1.1.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES('w x', 'x y', 'y z');
  CREATE VIRTUAL TABLE ft1 USING fts4(content=t1);
}








>
>







42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#   7.* - Test that if content=xxx is specified and table xxx does not
#         exist, the FTS table can still be used for INSERT and some
#         SELECT statements.
#
#   8.* - Test that if the content=xxx and prefix options are used together,
#         the 'rebuild' command still works.
#
#   9.* - Test using content=xxx where xxx is a virtual table.
#

do_execsql_test 1.1.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES('w x', 'x y', 'y z');
  CREATE VIRTUAL TABLE ft1 USING fts4(content=t1);
}

517
518
519
520
521
522
523
524


































































































525

}

do_execsql_test 8.2 { SELECT * FROM ft10 WHERE a MATCH 'ab*';          }
do_execsql_test 8.3 { INSERT INTO ft10(ft10) VALUES('rebuild');        }
do_execsql_test 8.4 { SELECT rowid FROM ft10 WHERE a MATCH 'ab*';      } {1 2 3}
do_execsql_test 8.5 { SELECT rowid FROM ft10 WHERE b MATCH 'abav*';    } {3}
do_execsql_test 8.6 { SELECT rowid FROM ft10 WHERE ft10 MATCH 'abas*'; } {1}



































































































finish_test









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
}

do_execsql_test 8.2 { SELECT * FROM ft10 WHERE a MATCH 'ab*';          }
do_execsql_test 8.3 { INSERT INTO ft10(ft10) VALUES('rebuild');        }
do_execsql_test 8.4 { SELECT rowid FROM ft10 WHERE a MATCH 'ab*';      } {1 2 3}
do_execsql_test 8.5 { SELECT rowid FROM ft10 WHERE b MATCH 'abav*';    } {3}
do_execsql_test 8.6 { SELECT rowid FROM ft10 WHERE ft10 MATCH 'abas*'; } {1}

#-------------------------------------------------------------------------
# Test cases 9.*
# 
reset_db
register_echo_module [sqlite3_connection_pointer db]

do_execsql_test 9.1 {
  CREATE TABLE tbl1(a, b);
  INSERT INTO tbl1 VALUES('a b', 'c d');
  INSERT INTO tbl1 VALUES('e f', 'a b');
  CREATE VIRTUAL TABLE e1 USING echo(tbl1);
  CREATE VIRTUAL TABLE ft1 USING fts4(content=e1);
  INSERT INTO ft1(ft1) VALUES('rebuild');
}

do_execsql_test 9.2 {
  SELECT rowid, * FROM ft1 WHERE ft1 MATCH 'e'
} {2 {e f} {a b}}

do_execsql_test 9.3 {
  SELECT rowid, * FROM ft1 WHERE ft1 MATCH 'a'
} {1 {a b} {c d} 2 {e f} {a b}}

do_execsql_test 9.4 { 
  DELETE FROM ft1 WHERE docid=1;
}

do_execsql_test 9.5 {
  SELECT rowid, * FROM ft1 WHERE ft1 MATCH 'a'
} {2 {e f} {a b}}

do_execsql_test 9.6 {
  INSERT INTO ft1(ft1) VALUES('rebuild');
  SELECT rowid, * FROM ft1 WHERE ft1 MATCH 'a'
} {1 {a b} {c d} 2 {e f} {a b}}


#-------------------------------------------------------------------------
# Test cases 10.*
# 
reset_db
register_fs_module [sqlite3_connection_pointer db]

proc write_file {path text} {
  set fd [open $path w]
  puts -nonewline $fd $text
  close $fd
}

write_file t1.txt {a b c d e f g h i j k l m n o p q r s t u v w x y z}
write_file t2.txt {a b c d e f g h i j k l m a b c d e f g h i j k l m}
write_file t3.txt {n o p q r s t u v w x y z n o p q r s t u v w x y z}

do_execsql_test 10.1 {
  CREATE TABLE idx(id INTEGER PRIMARY KEY, path TEXT);
  INSERT INTO idx VALUES (1, 't1.txt');
  INSERT INTO idx VALUES (2, 't2.txt');
  INSERT INTO idx VALUES (3, 't3.txt');

  CREATE VIRTUAL TABLE vt USING fs(idx);
  SELECT * FROM vt;
} {
  1 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 
  2 {a b c d e f g h i j k l m a b c d e f g h i j k l m}
  3 {n o p q r s t u v w x y z n o p q r s t u v w x y z}
}

do_execsql_test 10.2 {
  SELECT * FROM vt WHERE rowid = 2;
} {
  2 {a b c d e f g h i j k l m a b c d e f g h i j k l m}
}

do_execsql_test 10.3 {
  CREATE VIRTUAL TABLE ft USING fts4(content=vt);
  INSERT INTO ft(ft) VALUES('rebuild');
}

do_execsql_test 10.4 {
  SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e'
} {
  {...c d [e] f g...} {...c d [e] f g...}
}

do_execsql_test 10.5 {
  SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 't'
} {
  {...r s [t] u v...} {...r s [t] u v...}
}

do_execsql_test 10.6 { DELETE FROM ft WHERE docid=2 }

do_execsql_test 10.7 {
  SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e'
} {
  {...c d [e] f g...}
}

finish_test

Changes to test/fts4unicode.test.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68



69
70
71
72
73
74
75
    append sql "'"
  }
  append sql ")"
  uplevel [list do_execsql_test $tn $sql [list [list {*}$res]]]
}

do_unicode_token_test 1.0 {a B c D} {0 a a 1 b B 2 c c 3 d D}
do_unicode_token_test 1.1 {Ä Ö Ü} {0 ä Ä 1 ö Ö 2 ü Ü}
do_unicode_token_test 1.2 {xÄx xÖx xÜx} {0 xäx xÄx 1 xöx xÖx 2 xüx xÜx}

# 0x00DF is a small "sharp s". 0x1E9E is a capital sharp s.
do_unicode_token_test 1.3 "\uDF" "0 \uDF \uDF"
do_unicode_token_test 1.4 "\u1E9E" "0 ß \u1E9E"
do_unicode_token_test 1.5 "\u1E9E" "0 \uDF \u1E9E"

do_unicode_token_test 1.6 "The quick brown fox" {
  0 the The 1 quick quick 2 brown brown 3 fox fox
}
do_unicode_token_test 1.7 "The\u00bfquick\u224ebrown\u2263fox" {
  0 the The 1 quick quick 2 brown brown 3 fox fox
}

do_unicode_token_test2 1.8  {a B c D} {0 a a 1 b B 2 c c 3 d D}
do_unicode_token_test2 1.9  {Ä Ö Ü} {0 a Ä 1 o Ö 2 u Ü}
do_unicode_token_test2 1.10 {xÄx xÖx xÜx} {0 xax xÄx 1 xox xÖx 2 xux xÜx}

# Check that diacritics are removed if remove_diacritics=1 is specified.
# And that they do not break tokens.
do_unicode_token_test2 1.10 "xx\u0301xx" "0 xxxx xx\u301xx"




#-------------------------------------------------------------------------
#
set docs [list {
  Enhance the INSERT syntax to allow multiple rows to be inserted via the
  VALUES clause.
} {







|
|



|










|
|



|
>
>
>







40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    append sql "'"
  }
  append sql ")"
  uplevel [list do_execsql_test $tn $sql [list [list {*}$res]]]
}

do_unicode_token_test 1.0 {a B c D} {0 a a 1 b B 2 c c 3 d D}
do_unicode_token_test 1.1 {Ä Ö Ü} {0 ä Ä 1 ö Ö 2 ü Ü}
do_unicode_token_test 1.2 {xÄx xÖx xÜx} {0 xäx xÄx 1 xöx xÖx 2 xüx xÜx}

# 0x00DF is a small "sharp s". 0x1E9E is a capital sharp s.
do_unicode_token_test 1.3 "\uDF" "0 \uDF \uDF"
do_unicode_token_test 1.4 "\u1E9E" "0 ß \u1E9E"
do_unicode_token_test 1.5 "\u1E9E" "0 \uDF \u1E9E"

do_unicode_token_test 1.6 "The quick brown fox" {
  0 the The 1 quick quick 2 brown brown 3 fox fox
}
do_unicode_token_test 1.7 "The\u00bfquick\u224ebrown\u2263fox" {
  0 the The 1 quick quick 2 brown brown 3 fox fox
}

do_unicode_token_test2 1.8  {a B c D} {0 a a 1 b B 2 c c 3 d D}
do_unicode_token_test2 1.9  {Ä Ö Ü} {0 a Ä 1 o Ö 2 u Ü}
do_unicode_token_test2 1.10 {xÄx xÖx xÜx} {0 xax xÄx 1 xox xÖx 2 xux xÜx}

# Check that diacritics are removed if remove_diacritics=1 is specified.
# And that they do not break tokens.
do_unicode_token_test2 1.11 "xx\u0301xx" "0 xxxx xx\u301xx"

# Title-case mappings work
do_unicode_token_test 1.12 "\u01c5" "0 \u01c6 \u01c5"

#-------------------------------------------------------------------------
#
set docs [list {
  Enhance the INSERT syntax to allow multiple rows to be inserted via the
  VALUES clause.
} {
379
380
381
382
383
384
385
386
387
  do_isspace_test 6.$T.19 $T   {8196 8197 8198 8199}
  do_isspace_test 6.$T.19 $T   {8200 8201 8202 8239}
  do_isspace_test 6.$T.19 $T   {8287 12288}
}


finish_test









<
<
382
383
384
385
386
387
388


  do_isspace_test 6.$T.19 $T   {8196 8197 8198 8199}
  do_isspace_test 6.$T.19 $T   {8200 8201 8202 8239}
  do_isspace_test 6.$T.19 $T   {8287 12288}
}


finish_test


Changes to test/func.test.
1285
1286
1287
1288
1289
1290
1291
1292















1293
1294
  db eval {SELECT sum(length(x)) FROM t29}
} {1000009}
do_test func-29.6 {
  set x [lindex [sqlite3_db_status db CACHE_MISS 1] 1]
  if {$x<5} {set x 1}
  set x
} {1}
  
















finish_test







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
  db eval {SELECT sum(length(x)) FROM t29}
} {1000009}
do_test func-29.6 {
  set x [lindex [sqlite3_db_status db CACHE_MISS 1] 1]
  if {$x<5} {set x 1}
  set x
} {1}

do_execsql_test func-30.1 {SELECT unicode('$');} 36
do_execsql_test func-30.2 [subst {SELECT unicode('\u00A2');}] 162
do_execsql_test func-30.3 [subst {SELECT unicode('\u20AC');}] 8364
do_execsql_test func-30.4 {SELECT char(36,162,8364);} [subst {$\u00A2\u20AC}]

for {set i 1} {$i<0xd800} {incr i 13} {
  do_execsql_test func-30.5.$i {SELECT unicode(char($i))} $i
}
for {set i 57344} {$i<=0xfffd} {incr i 17} {
  if {$i==0xfeff} continue
  do_execsql_test func-30.5.$i {SELECT unicode(char($i))} $i
}
for {set i 65536} {$i<=0x10ffff} {incr i 139} {
  do_execsql_test func-30.5.$i {SELECT unicode(char($i))} $i
}

finish_test
Changes to test/hook.test.
70
71
72
73
74
75
76

77
78
79
80
81
82
83
    set ::commit_cnt [execsql {SELECT * FROM t2}] 
    return 1
  }
  catchsql {
    INSERT INTO t2 VALUES(6,7);
  }
} {1 {constraint failed}}

do_test hook-3.7 {
  set ::commit_cnt
} {1 2 2 3 3 4 4 5 5 6 6 7}
do_test hook-3.8 {
  execsql {SELECT * FROM t2}
} {1 2 2 3 3 4 4 5 5 6}








>







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    set ::commit_cnt [execsql {SELECT * FROM t2}] 
    return 1
  }
  catchsql {
    INSERT INTO t2 VALUES(6,7);
  }
} {1 {constraint failed}}
verify_ex_errcode hook-3.6b SQLITE_CONSTRAINT_COMMITHOOK
do_test hook-3.7 {
  set ::commit_cnt
} {1 2 2 3 3 4 4 5 5 6 6 7}
do_test hook-3.8 {
  execsql {SELECT * FROM t2}
} {1 2 2 3 3 4 4 5 5 6}

Added test/incrvacuum3.test.




















































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# 2013 Feb 25
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for the SQLite library, focusing
# on the incremental vacuum feature.
#
# The tests in this file were added at the same time as optimizations 
# were made to:
#
#   * Truncate the database after a rollback mode commit, and
#
#   * Avoid moving pages to locations from which they may need to be moved
#     a second time if an incremental-vacuum proccess is allowed to vacuum
#     the entire database.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix incrvacuum3

# If this build of the library does not support auto-vacuum, omit this
# whole file.
ifcapable {!autovacuum || !pragma} {
  finish_test
  return
}

proc check_on_disk {} {

  # Copy the wal and journal files for database "test.db" to "test2.db".
  forcedelete test2.db test2.db-journal test2.db-wal
  if {[file exists test.db-journal]} { 
    forcecopy test.db-journal test2.db-journal 
  }
  if {[file exists test.db-wal]} { 
    forcecopy test.db-wal test2.db-wal 
  }

  # Now copy the database file itself. Do this using open/read/puts
  # instead of the [file copy] command in order to avoid attempting
  # to read the 512 bytes begining at offset $sqlite_pending_byte.
  #
  set sz [file size test.db]
  set fd [open test.db]
  set fd2 [open test2.db w]
  fconfigure $fd  -encoding binary -translation binary
  fconfigure $fd2 -encoding binary -translation binary
  if {$sz>$::sqlite_pending_byte} {
    puts -nonewline $fd2 [read $fd $::sqlite_pending_byte]
    seek $fd [expr $::sqlite_pending_byte+512]
    seek $fd2 [expr $::sqlite_pending_byte+512]
  }
  puts -nonewline $fd2 [read $fd]
  close $fd2
  close $fd

  # Open "test2.db" and check it is Ok.
  sqlite3 dbcheck test2.db
  set ret [dbcheck eval { PRAGMA integrity_check }]
  dbcheck close
  set ret
}

# Run these tests once in rollback journal mode, and once in wal mode.
#
foreach {T jrnl_mode} {
  1 delete
  2 wal
} {
  catch { db close }
  forcedelete test.db test.db-journal test.db-wal
  sqlite3 db test.db
  db eval {
    PRAGMA cache_size = 5;
    PRAGMA page_size = 1024;
    PRAGMA auto_vacuum = 2;
  }
  db eval "PRAGMA journal_mode = $jrnl_mode"
  
  foreach {tn sql} {
    1 {
      CREATE TABLE t1(x UNIQUE);
      INSERT INTO t1 VALUES(randomblob(400));
      INSERT INTO t1 VALUES(randomblob(400));
      INSERT INTO t1 SELECT randomblob(400) FROM t1;    --   4
      INSERT INTO t1 SELECT randomblob(400) FROM t1;    --   8
      INSERT INTO t1 SELECT randomblob(400) FROM t1;    --  16
      INSERT INTO t1 SELECT randomblob(400) FROM t1;    --  32
      INSERT INTO t1 SELECT randomblob(400) FROM t1;    --  64
      INSERT INTO t1 SELECT randomblob(400) FROM t1;    -- 128
      INSERT INTO t1 SELECT randomblob(400) FROM t1;    -- 256
    }
  
    2 {
      DELETE FROM t1 WHERE rowid%8;
    }
  
    3 { 
      BEGIN;
        PRAGMA incremental_vacuum = 100;
        INSERT INTO t1 SELECT randomblob(400) FROM t1;    --  64
        INSERT INTO t1 SELECT randomblob(400) FROM t1;    -- 128
        INSERT INTO t1 SELECT randomblob(400) FROM t1;    -- 256
      ROLLBACK;
    }
  
    4 { 
      BEGIN;
        SAVEPOINT one;
          PRAGMA incremental_vacuum = 100;
          SAVEPOINT two;
            INSERT INTO t1 SELECT randomblob(400) FROM t1;    --  64
            INSERT INTO t1 SELECT randomblob(400) FROM t1;    -- 128
            INSERT INTO t1 SELECT randomblob(400) FROM t1;    -- 256
    }
  
    5 {   ROLLBACK to two }
  
    6 { ROLLBACK to one }
  
    7 { 
        INSERT INTO t1 SELECT randomblob(400) FROM t1;    --  64
        PRAGMA incremental_vacuum = 1000;
        INSERT INTO t1 SELECT randomblob(400) FROM t1;    -- 128
        INSERT INTO t1 SELECT randomblob(400) FROM t1;    -- 256
      ROLLBACK;
    }
  
    8 { 
      BEGIN;
        INSERT INTO t1 SELECT randomblob(400) FROM t1;    --  64
        PRAGMA incremental_vacuum = 1000;
        INSERT INTO t1 SELECT randomblob(400) FROM t1;    --  128
      COMMIT;
    }
  } {
    do_execsql_test $T.1.$tn.1 $sql
    do_execsql_test $T.1.$tn.2 {PRAGMA integrity_check} ok
    do_test         $T.1.$tn.3 { check_on_disk }        ok
  }

  do_execsql_test $T.1.x.1 { PRAGMA freelist_count   } 0
  do_execsql_test $T.1.x.2 { SELECT count(*) FROM t1 } 128
}

finish_test

Changes to test/incrvacuum_ioerr.test.
135
136
137
138
139
140
141
142
143


144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  
  set ::rc 1
  for {set iTest 1} {$::rc && $iTest<2000} {incr iTest} {
  
    # Figure out how big the database is and how many free pages it
    # has before running incremental-vacuum.
    #
    set nPage [expr {[file size test.db]/1024}]
    set nFree [execsql {pragma freelist_count} db1]


  
    # Now run incremental-vacuum to vacuum 5 pages from the db file.
    # The iTest'th I/O call is set to fail.
    #
    set ::sqlite_io_error_pending $iTest
    set ::sqlite_io_error_persist 1
    do_test incrvacuum-ioerr-4.$iTest.1 {
      set ::rc [catch {execsql {pragma incremental_vacuum(5)} db1} msg]
      expr {$::rc==0 || $msg eq "disk I/O error"}
    } {1}
  
    set ::sqlite_io_error_pending 0
    set ::sqlite_io_error_persist 0
    set ::sqlite_io_error_hit 0
    set ::sqlite_io_error_hardhit 0
  
    set nFree2 [execsql {pragma freelist_count} db1]
    set nPage2 [expr {[file size test.db]/1024}]
  
    do_test incrvacuum-ioerr-4.$iTest.2 {
      set shrink [expr {$nPage-$nPage2}]
      expr {$shrink==0 || $shrink==5}
    } {1}
  
    do_test incrvacuum-ioerr-4.$iTest.3 {
      expr {$nPage - $nPage2}
    } [expr {$nFree - $nFree2}]
  }
  







<

>
>

















|



|







135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  
  set ::rc 1
  for {set iTest 1} {$::rc && $iTest<2000} {incr iTest} {
  
    # Figure out how big the database is and how many free pages it
    # has before running incremental-vacuum.
    #

    set nFree [execsql {pragma freelist_count} db1]
    set nPage [execsql {pragma page_count} db1]
    puts "nFree=$nFree nPage=$nPage"
  
    # Now run incremental-vacuum to vacuum 5 pages from the db file.
    # The iTest'th I/O call is set to fail.
    #
    set ::sqlite_io_error_pending $iTest
    set ::sqlite_io_error_persist 1
    do_test incrvacuum-ioerr-4.$iTest.1 {
      set ::rc [catch {execsql {pragma incremental_vacuum(5)} db1} msg]
      expr {$::rc==0 || $msg eq "disk I/O error"}
    } {1}
  
    set ::sqlite_io_error_pending 0
    set ::sqlite_io_error_persist 0
    set ::sqlite_io_error_hit 0
    set ::sqlite_io_error_hardhit 0
  
    set nFree2 [execsql {pragma freelist_count} db1]
    set nPage2 [execsql {pragma page_count} db1]
  
    do_test incrvacuum-ioerr-4.$iTest.2 {
      set shrink [expr {$nPage-$nPage2}]
      expr {$shrink==0 || $shrink==5 || ($nFree<5 && $shrink==$nFree)}
    } {1}
  
    do_test incrvacuum-ioerr-4.$iTest.3 {
      expr {$nPage - $nPage2}
    } [expr {$nFree - $nFree2}]
  }
  
Changes to test/index5.test.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  }
} {1024}

db close
testvfs tvfs
tvfs filter xWrite
tvfs script write_cb
proc write_cb {xCall file handle iOfst} {
  if {[file tail $file]=="test.db"} {
    lappend ::write_list [expr $iOfst/1024]
  }
  puts "$xCall $file $args"
}

do_test 1.2 {
  sqlite3 db test.db -vfs tvfs
  set ::write_list [list]
  execsql { CREATE INDEX i1 ON t1(x) }
} {}







|



<







32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
  }
} {1024}

db close
testvfs tvfs
tvfs filter xWrite
tvfs script write_cb
proc write_cb {xCall file handle iOfst args} {
  if {[file tail $file]=="test.db"} {
    lappend ::write_list [expr $iOfst/1024]
  }

}

do_test 1.2 {
  sqlite3 db test.db -vfs tvfs
  set ::write_list [list]
  execsql { CREATE INDEX i1 ON t1(x) }
} {}
61
62
63
64
65
66
67


68
69
70
71
72
73
74
75
    } elseif {$iNext==($iPrev-1)} { 
      incr nBackward 
    } else {
      incr nNoncont
    }
    set iPrev $iNext
  }



  expr {$nForward > $nBackward}
} {1}
db close
tvfs delete

finish_test








>
>

|





<
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    } elseif {$iNext==($iPrev-1)} { 
      incr nBackward 
    } else {
      incr nNoncont
    }
    set iPrev $iNext
  }
  puts -nonewline \
      " (forward=$nForward, back=$nBackward, noncontiguous=$nNoncont)"

  expr {$nForward > 2*($nBackward + $nNoncont)}
} {1}
db close
tvfs delete

finish_test

Added test/ioerr6.test.
























































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# 2012 December 18
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl
set ::testprefix ioerr6

ifcapable !atomicwrite {
  puts "skipping tests - not compiled with SQLITE_ENABLE_ATOMIC_WRITE..."
  finish_test
  return
}

if {[permutation]=="inmemory_journal"} {
  # These tests will not work with in-memory journals (as persistent VFS
  # errors commencing after a transaction has started to write to the db
  # cannot be recovered from).
  finish_test
  return
}

faultsim_save_and_close

do_test 1.1 {
  testvfs shmfault -default true
  shmfault devchar atomic
  sqlite3 db test.db
  execsql {
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a, b);
    INSERT INTO t1 VALUES(1, 2);
    INSERT INTO t1 VALUES(2, 4);
    INSERT INTO t1 VALUES(3, 6);
    INSERT INTO t1 VALUES(4, 8);
  }

  # Cause the first call to xWrite() to fail with SQLITE_FULL.
  shmfault full 2 1
  catchsql { INSERT INTO t1 VALUES(5, 10) }
} {1 {database or disk is full}}

do_test 1.2 {
  execsql { PRAGMA integrity_check }
} {ok}

db close
shmfault delete

do_faultsim_test 2 -faults full* -prep {
  shmfault devchar atomic
  faultsim_restore
  sqlite3 db test.db
} -body {
  db eval {
    CREATE TABLE t1(x PRIMARY KEY);
    INSERT INTO t1 VALUES('abc');
  }
} -test {
  set res [db one { PRAGMA integrity_check }]
  if {$res != "ok"} {
    error "integrity check: $res"
  }
}

do_faultsim_test 3 -faults full* -prep {
  shmfault devchar atomic
  faultsim_restore
  sqlite3 db test.db
} -body {
  db eval {
    CREATE TABLE t1(x);
    CREATE TABLE t2(x);
  }
} -test {
  db eval { CREATE TABLE t3(x) }
  if {[db one { PRAGMA integrity_check }] != "ok"} {
    error "integrity check failed"
  }
}

finish_test

Changes to test/limit.test.
464
465
466
467
468
469
470



















































































































































471
472
} {1 {no such column: x}}
do_test limit-12.4 {
  catchsql {
     SELECT * FROM t1 LIMIT 1 OFFSET x
  }
} {1 {no such column: x}}





















































































































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
} {1 {no such column: x}}
do_test limit-12.4 {
  catchsql {
     SELECT * FROM t1 LIMIT 1 OFFSET x
  }
} {1 {no such column: x}}

# Ticket [db4d96798da8b]
# LIMIT does not work with nested views containing UNION ALL 
#
do_test limit-13.1 {
  db eval {
    CREATE TABLE t13(x);
    INSERT INTO t13 VALUES(1),(2);
    CREATE VIEW v13a AS SELECT x AS y FROM t13;
    CREATE VIEW v13b AS SELECT y AS z FROM v13a UNION ALL SELECT y+10 FROM v13a;
    CREATE VIEW v13c AS SELECT z FROM v13b UNION ALL SELECT z+20 FROM v13b;
  }
} {}
do_test limit-13.2 {
  db eval {SELECT z FROM v13c LIMIT 1}
} {1}
do_test limit-13.3 {
  db eval {SELECT z FROM v13c LIMIT 2}
} {1 2}
do_test limit-13.4 {
  db eval {SELECT z FROM v13c LIMIT 3}
} {1 2 11}
do_test limit-13.5 {
  db eval {SELECT z FROM v13c LIMIT 4}
} {1 2 11 12}
do_test limit-13.6 {
  db eval {SELECT z FROM v13c LIMIT 5}
} {1 2 11 12 21}
do_test limit-13.7 {
  db eval {SELECT z FROM v13c LIMIT 6}
} {1 2 11 12 21 22}
do_test limit-13.8 {
  db eval {SELECT z FROM v13c LIMIT 7}
} {1 2 11 12 21 22 31}
do_test limit-13.9 {
  db eval {SELECT z FROM v13c LIMIT 8}
} {1 2 11 12 21 22 31 32}
do_test limit-13.10 {
  db eval {SELECT z FROM v13c LIMIT 9}
} {1 2 11 12 21 22 31 32}
do_test limit-13.11 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 1}
} {2}
do_test limit-13.12 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 1}
} {2 11}
do_test limit-13.13 {
  db eval {SELECT z FROM v13c LIMIT 3 OFFSET 1}
} {2 11 12}
do_test limit-13.14 {
  db eval {SELECT z FROM v13c LIMIT 4 OFFSET 1}
} {2 11 12 21}
do_test limit-13.15 {
  db eval {SELECT z FROM v13c LIMIT 5 OFFSET 1}
} {2 11 12 21 22}
do_test limit-13.16 {
  db eval {SELECT z FROM v13c LIMIT 6 OFFSET 1}
} {2 11 12 21 22 31}
do_test limit-13.17 {
  db eval {SELECT z FROM v13c LIMIT 7 OFFSET 1}
} {2 11 12 21 22 31 32}
do_test limit-13.18 {
  db eval {SELECT z FROM v13c LIMIT 8 OFFSET 1}
} {2 11 12 21 22 31 32}
do_test limit-13.21 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 2}
} {11}
do_test limit-13.22 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 2}
} {11 12}
do_test limit-13.23 {
  db eval {SELECT z FROM v13c LIMIT 3 OFFSET 2}
} {11 12 21}
do_test limit-13.24 {
  db eval {SELECT z FROM v13c LIMIT 4 OFFSET 2}
} {11 12 21 22}
do_test limit-13.25 {
  db eval {SELECT z FROM v13c LIMIT 5 OFFSET 2}
} {11 12 21 22 31}
do_test limit-13.26 {
  db eval {SELECT z FROM v13c LIMIT 6 OFFSET 2}
} {11 12 21 22 31 32}
do_test limit-13.27 {
  db eval {SELECT z FROM v13c LIMIT 7 OFFSET 2}
} {11 12 21 22 31 32}
do_test limit-13.31 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 3}
} {12}
do_test limit-13.32 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 3}
} {12 21}
do_test limit-13.33 {
  db eval {SELECT z FROM v13c LIMIT 3 OFFSET 3}
} {12 21 22}
do_test limit-13.34 {
  db eval {SELECT z FROM v13c LIMIT 4 OFFSET 3}
} {12 21 22 31}
do_test limit-13.35 {
  db eval {SELECT z FROM v13c LIMIT 5 OFFSET 3}
} {12 21 22 31 32}
do_test limit-13.36 {
  db eval {SELECT z FROM v13c LIMIT 6 OFFSET 3}
} {12 21 22 31 32}
do_test limit-13.41 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 4}
} {21}
do_test limit-13.42 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 4}
} {21 22}
do_test limit-13.43 {
  db eval {SELECT z FROM v13c LIMIT 3 OFFSET 4}
} {21 22 31}
do_test limit-13.44 {
  db eval {SELECT z FROM v13c LIMIT 4 OFFSET 4}
} {21 22 31 32}
do_test limit-13.45 {
  db eval {SELECT z FROM v13c LIMIT 5 OFFSET 4}
} {21 22 31 32}
do_test limit-13.51 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 5}
} {22}
do_test limit-13.52 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 5}
} {22 31}
do_test limit-13.53 {
  db eval {SELECT z FROM v13c LIMIT 3 OFFSET 5}
} {22 31 32}
do_test limit-13.54 {
  db eval {SELECT z FROM v13c LIMIT 4 OFFSET 5}
} {22 31 32}
do_test limit-13.61 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 6}
} {31}
do_test limit-13.62 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 6}
} {31 32}
do_test limit-13.63 {
  db eval {SELECT z FROM v13c LIMIT 3 OFFSET 6}
} {31 32}
do_test limit-13.71 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 7}
} {32}
do_test limit-13.72 {
  db eval {SELECT z FROM v13c LIMIT 2 OFFSET 7}
} {32}
do_test limit-13.81 {
  db eval {SELECT z FROM v13c LIMIT 1 OFFSET 8}
} {}

finish_test
Changes to test/mallocG.test.
48
49
50
51
52
53
54





55
56
57
58
59
60
61
   WHERE x BETWEEN 'a' AND 'z'
     AND x BETWEEN 'c' AND 'w'
     AND x BETWEEN 'e' AND 'u'
     AND x BETWEEN 'g' AND 'r'
     AND x BETWEEN 'i' AND 'q'
     AND x BETWEEN 'i' AND 'm'
}






proc utf16 {utf8} {
  set utf16 [encoding convertto unicode $utf8]
  append utf16 "\x00\x00"
  return $utf16
}








>
>
>
>
>







48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
   WHERE x BETWEEN 'a' AND 'z'
     AND x BETWEEN 'c' AND 'w'
     AND x BETWEEN 'e' AND 'u'
     AND x BETWEEN 'g' AND 'r'
     AND x BETWEEN 'i' AND 'q'
     AND x BETWEEN 'i' AND 'm'
}

ifcapable !utf16 {
  finish_test
  return
}

proc utf16 {utf8} {
  set utf16 [encoding convertto unicode $utf8]
  append utf16 "\x00\x00"
  return $utf16
}

Changes to test/minmax.test.
13
14
15
16
17
18
19

20
21
22
23
24
25
26
# aggregate min() and max() functions and which are handled as
# as a special case.
#
# $Id: minmax.test,v 1.21 2008/07/08 18:05:26 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl


do_test minmax-1.0 {
  execsql {
    BEGIN;
    CREATE TABLE t1(x, y);
    INSERT INTO t1 VALUES(1,1);
    INSERT INTO t1 VALUES(2,2);







>







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# aggregate min() and max() functions and which are handled as
# as a special case.
#
# $Id: minmax.test,v 1.21 2008/07/08 18:05:26 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix minmax

do_test minmax-1.0 {
  execsql {
    BEGIN;
    CREATE TABLE t1(x, y);
    INSERT INTO t1 VALUES(1,1);
    INSERT INTO t1 VALUES(2,2);
532
533
534
535
536
537
538


539























































































540
541
542
} {25}
do_test minmax-12.17 {
  execsql {
    SELECT max(rowid) FROM t7 WHERE a=3 AND b=5 AND c=15;
  }
} {5}





























































































finish_test







>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
} {25}
do_test minmax-12.17 {
  execsql {
    SELECT max(rowid) FROM t7 WHERE a=3 AND b=5 AND c=15;
  }
} {5}

#-------------------------------------------------------------------------
reset_db

proc do_test_13 {op name sql1 sql2 res} {
  set ::sqlite_search_count 0
  uplevel [list do_execsql_test $name.1 $sql1 $res]
  set a $::sqlite_search_count

  set ::sqlite_search_count 0
  uplevel [list do_execsql_test $name.2 $sql2 $res]
  set b $::sqlite_search_count

  uplevel [list do_test $name.3 [list expr "$a $op $b"] 1]
}

# Run a test named $name. Check that SQL statements $sql1 and $sql2 both
# return the same result, but that $sql2 increments the $sqlite_search_count
# variable more often (indicating that it is visiting more rows to determine
# the result).
#
proc do_test_13_opt {name sql1 sql2 res} {
  uplevel [list do_test_13 < $name $sql1 $sql2 $res]
}

# Like [do_test_13_noopt], except this time check that the $sqlite_search_count
# variable is incremented the same number of times by both SQL statements.
#
proc do_test_13_noopt {name sql1 sql2 res} {
  uplevel [list do_test_13 == $name $sql1 $sql2 $res]
}

do_execsql_test 13.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES('a', 1, 1);
  INSERT INTO t1 VALUES('b', 6, 6);
  INSERT INTO t1 VALUES('c', 5, 5);
  INSERT INTO t1 VALUES('a', 4, 4);
  INSERT INTO t1 VALUES('a', 5, 5);
  INSERT INTO t1 VALUES('c', 6, 6);
  INSERT INTO t1 VALUES('b', 4, 4);
  INSERT INTO t1 VALUES('c', 7, 7);
  INSERT INTO t1 VALUES('b', 2, 2);
  INSERT INTO t1 VALUES('b', 3, 3);
  INSERT INTO t1 VALUES('a', 3, 3);
  INSERT INTO t1 VALUES('b', 5, 5);
  INSERT INTO t1 VALUES('c', 4, 4);
  INSERT INTO t1 VALUES('c', 3, 3);
  INSERT INTO t1 VALUES('a', 2, 2);
  SELECT * FROM t1 ORDER BY a, b, c;
} {a 1 1 a 2 2 a 3 3 a 4 4 a 5 5
   b 2 2 b 3 3 b 4 4 b 5 5 b 6 6
   c 3 3 c 4 4 c 5 5 c 6 6 c 7 7
}
do_execsql_test 13.2 { CREATE INDEX i1 ON t1(a, b, c) }

do_test_13_opt 13.3 {
  SELECT min(b) FROM t1 WHERE a='b'
} {
  SELECT min(c) FROM t1 WHERE a='b'
} {2}

do_test_13_opt 13.4 {
  SELECT a, min(b) FROM t1 WHERE a='b'
} {
  SELECT a, min(c) FROM t1 WHERE a='b'
} {b 2}

do_test_13_opt 13.4 {
  SELECT a||c, max(b)+4 FROM t1 WHERE a='c'
} {
  SELECT a||c, max(c)+4 FROM t1 WHERE a='c'
} {c7 11}

do_test_13_noopt 13.5 {
  SELECT a||c, max(b+1) FROM t1 WHERE a='c'
} {
  SELECT a||c, max(c+1) FROM t1 WHERE a='c'
} {c7 8}

do_test_13_noopt 13.6 {
  SELECT count(b) FROM t1 WHERE a='c'
} {
  SELECT count(c) FROM t1 WHERE a='c'
} {5}

do_test_13_noopt 13.7 {
  SELECT min(b), count(b) FROM t1 WHERE a='a';
} {
  SELECT min(c), count(c) FROM t1 WHERE a='a';
} {1 5}


finish_test
Changes to test/misc7.test.
484
485
486
487
488
489
490




























491
492
493
494
495
#
do_test misc7-21.1 {
  set zFile [file join [get_pwd] "[string repeat abcde 104].db"]
  set rc [catch {sqlite3 db2 $zFile} msg]
  list $rc $msg
} {1 {unable to open database file}}






























db close
forcedelete test.db

finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#
do_test misc7-21.1 {
  set zFile [file join [get_pwd] "[string repeat abcde 104].db"]
  set rc [catch {sqlite3 db2 $zFile} msg]
  list $rc $msg
} {1 {unable to open database file}}

# Try to do hot-journal rollback with a read-only connection. The 
# error code should be SQLITE_READONLY_ROLLBACK.
#
do_test misc7-22.1 {
  db close
  forcedelete test.db copy.db-journal
  sqlite3 db test.db
  execsql {
    CREATE TABLE t1(a, b);
    INSERT INTO t1 VALUES(1, 2);
    INSERT INTO t1 VALUES(3, 4);
  }
  db close
  sqlite3 db test.db -readonly 1
  catchsql {
    INSERT INTO t1 VALUES(5, 6);
  }
} {1 {attempt to write a readonly database}}
do_test misc7-22.2 { execsql { SELECT * FROM t1 } } {1 2 3 4}
do_test misc7-22.3 { 
  set fd [open test.db-journal w]
  puts $fd [string repeat abc 1000]
  close $fd
  catchsql { SELECT * FROM t1 }
} {1 {attempt to write a readonly database}}
do_test misc7-22.4 { 
  sqlite3_extended_errcode db
} SQLITE_READONLY_ROLLBACK

db close
forcedelete test.db

finish_test
Changes to test/notnull.test.
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71

72
73
74
75
76
77
78
do_test notnull-1.2 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-1.3 {
  catchsql {
    DELETE FROM t1;
    INSERT OR IGNORE INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {}}
do_test notnull-1.4 {
  catchsql {
    DELETE FROM t1;
    INSERT OR REPLACE INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-1.5 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-1.6 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,c,d,e) VALUES(1,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {1 5 3 4 5}}







>














>







>







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
do_test notnull-1.2 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-1.2b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-1.3 {
  catchsql {
    DELETE FROM t1;
    INSERT OR IGNORE INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {}}
do_test notnull-1.4 {
  catchsql {
    DELETE FROM t1;
    INSERT OR REPLACE INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-1.4b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-1.5 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-1.5b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-1.6 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,c,d,e) VALUES(1,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {1 5 3 4 5}}
100
101
102
103
104
105
106

107
108
109
110
111
112
113
do_test notnull-1.10 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,null,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.b may not be NULL}}

do_test notnull-1.11 {
  catchsql {
    DELETE FROM t1;
    INSERT OR IGNORE INTO t1(a,b,c,d,e) VALUES(1,null,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {}}







>







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
do_test notnull-1.10 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,null,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.b may not be NULL}}
verify_ex_errcode notnull-1.10b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-1.11 {
  catchsql {
    DELETE FROM t1;
    INSERT OR IGNORE INTO t1(a,b,c,d,e) VALUES(1,null,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {}}
142
143
144
145
146
147
148

149
150
151
152
153
154
155

156
157
158
159
160
161
162
do_test notnull-1.16 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,d,e) VALUES(1,2,null,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.c may not be NULL}}

do_test notnull-1.17 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,d,e) VALUES(1,2,3,null,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.d may not be NULL}}

do_test notnull-1.18 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,e) VALUES(1,2,3,5);
    SELECT * FROM t1 order by a;
  }
} {0 {1 2 3 7 5}}







>







>







146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
do_test notnull-1.16 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,d,e) VALUES(1,2,null,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.c may not be NULL}}
verify_ex_errcode notnull-1.16b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-1.17 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,d,e) VALUES(1,2,3,null,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.d may not be NULL}}
verify_ex_errcode notnull-1.17b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-1.18 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,e) VALUES(1,2,3,5);
    SELECT * FROM t1 order by a;
  }
} {0 {1 2 3 7 5}}
170
171
172
173
174
175
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224

225
226
227
228
229
230
231
do_test notnull-1.20 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,null);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.e may not be NULL}}

do_test notnull-1.21 {
  catchsql {
    DELETE FROM t1;
    INSERT OR REPLACE INTO t1(e,d,c,b,a) VALUES(1,2,3,null,5);
    SELECT * FROM t1 order by a;
  }
} {0 {5 5 3 2 1}}

do_test notnull-2.1 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-2.2 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR REPLACE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-2.3 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR IGNORE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {0 {1 2 3 4 5}}
do_test notnull-2.4 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR ABORT t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-2.5 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET b=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.b may not be NULL}}

do_test notnull-2.6 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR REPLACE t1 SET b=null, d=e, e=d;
    SELECT * FROM t1 ORDER BY a;
  }







>
















>








>
















>








>







176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
do_test notnull-1.20 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,null);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.e may not be NULL}}
verify_ex_errcode notnull-1.20b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-1.21 {
  catchsql {
    DELETE FROM t1;
    INSERT OR REPLACE INTO t1(e,d,c,b,a) VALUES(1,2,3,null,5);
    SELECT * FROM t1 order by a;
  }
} {0 {5 5 3 2 1}}

do_test notnull-2.1 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-2.1b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-2.2 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR REPLACE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-2.2b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-2.3 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR IGNORE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {0 {1 2 3 4 5}}
do_test notnull-2.4 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR ABORT t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-2.4b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-2.5 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET b=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.b may not be NULL}}
verify_ex_errcode notnull-2.6b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-2.6 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR REPLACE t1 SET b=null, d=e, e=d;
    SELECT * FROM t1 ORDER BY a;
  }
258
259
260
261
262
263
264

265
266
267
268
269
270
271
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET e=null, a=b, b=a;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.e may not be NULL}}


do_test notnull-3.0 {
  execsql {
    CREATE INDEX t1a ON t1(a);
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1c ON t1(c);
    CREATE INDEX t1d ON t1(d);







>







269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET e=null, a=b, b=a;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.e may not be NULL}}
verify_ex_errcode notnull-2.10b SQLITE_CONSTRAINT_NOTNULL

do_test notnull-3.0 {
  execsql {
    CREATE INDEX t1a ON t1(a);
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1c ON t1(c);
    CREATE INDEX t1d ON t1(d);
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303

304
305
306
307
308
309
310

311
312
313
314
315
316
317
do_test notnull-3.2 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-3.3 {
  catchsql {
    DELETE FROM t1;
    INSERT OR IGNORE INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {}}
do_test notnull-3.4 {
  catchsql {
    DELETE FROM t1;
    INSERT OR REPLACE INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-3.5 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-3.6 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,c,d,e) VALUES(1,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {1 5 3 4 5}}







>














>







>







295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
do_test notnull-3.2 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-3.2b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-3.3 {
  catchsql {
    DELETE FROM t1;
    INSERT OR IGNORE INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {}}
do_test notnull-3.4 {
  catchsql {
    DELETE FROM t1;
    INSERT OR REPLACE INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-3.4b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-3.5 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(b,c,d,e) VALUES(2,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-3.5b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-3.6 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,c,d,e) VALUES(1,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {1 5 3 4 5}}
339
340
341
342
343
344
345

346
347
348
349
350
351
352
do_test notnull-3.10 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,null,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.b may not be NULL}}

do_test notnull-3.11 {
  catchsql {
    DELETE FROM t1;
    INSERT OR IGNORE INTO t1(a,b,c,d,e) VALUES(1,null,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {}}







>







354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
do_test notnull-3.10 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,null,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.b may not be NULL}}
verify_ex_errcode notnull-3.10b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-3.11 {
  catchsql {
    DELETE FROM t1;
    INSERT OR IGNORE INTO t1(a,b,c,d,e) VALUES(1,null,3,4,5);
    SELECT * FROM t1 order by a;
  }
} {0 {}}
381
382
383
384
385
386
387

388
389
390
391
392
393
394

395
396
397
398
399
400
401
do_test notnull-3.16 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,d,e) VALUES(1,2,null,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.c may not be NULL}}

do_test notnull-3.17 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,d,e) VALUES(1,2,3,null,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.d may not be NULL}}

do_test notnull-3.18 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,e) VALUES(1,2,3,5);
    SELECT * FROM t1 order by a;
  }
} {0 {1 2 3 7 5}}







>







>







397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
do_test notnull-3.16 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,d,e) VALUES(1,2,null,4,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.c may not be NULL}}
verify_ex_errcode notnull-3.16b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-3.17 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,d,e) VALUES(1,2,3,null,5);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.d may not be NULL}}
verify_ex_errcode notnull-3.17b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-3.18 {
  catchsql {
    DELETE FROM t1;
    INSERT OR ABORT INTO t1(a,b,c,e) VALUES(1,2,3,5);
    SELECT * FROM t1 order by a;
  }
} {0 {1 2 3 7 5}}
409
410
411
412
413
414
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

456
457
458
459
460
461
462
463

464
465
466
467
468
469
470
do_test notnull-3.20 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,null);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.e may not be NULL}}

do_test notnull-3.21 {
  catchsql {
    DELETE FROM t1;
    INSERT OR REPLACE INTO t1(e,d,c,b,a) VALUES(1,2,3,null,5);
    SELECT * FROM t1 order by a;
  }
} {0 {5 5 3 2 1}}

do_test notnull-4.1 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-4.2 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR REPLACE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-4.3 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR IGNORE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {0 {1 2 3 4 5}}
do_test notnull-4.4 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR ABORT t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}

do_test notnull-4.5 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET b=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.b may not be NULL}}

do_test notnull-4.6 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR REPLACE t1 SET b=null, d=e, e=d;
    SELECT * FROM t1 ORDER BY a;
  }







>
















>








>
















>








>







427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
do_test notnull-3.20 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,null);
    SELECT * FROM t1 order by a;
  }
} {1 {t1.e may not be NULL}}
verify_ex_errcode notnull-3.20b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-3.21 {
  catchsql {
    DELETE FROM t1;
    INSERT OR REPLACE INTO t1(e,d,c,b,a) VALUES(1,2,3,null,5);
    SELECT * FROM t1 order by a;
  }
} {0 {5 5 3 2 1}}

do_test notnull-4.1 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-4.1b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-4.2 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR REPLACE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-4.2b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-4.3 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR IGNORE t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {0 {1 2 3 4 5}}
do_test notnull-4.4 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR ABORT t1 SET a=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.a may not be NULL}}
verify_ex_errcode notnull-4.4b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-4.5 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET b=null;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.b may not be NULL}}
verify_ex_errcode notnull-4.5b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-4.6 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE OR REPLACE t1 SET b=null, d=e, e=d;
    SELECT * FROM t1 ORDER BY a;
  }
497
498
499
500
501
502
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

522
523
524
525
526
527
528
529
530
531
532
533

534
535
536
537
538
539
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET e=null, a=b, b=a;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.e may not be NULL}}


# Test that bug 29ab7be99f is fixed.
#
do_test notnull-5.1 {
  execsql {
    DROP TABLE IF EXISTS t1;
    CREATE TABLE t1(a, b NOT NULL);
    CREATE TABLE t2(c, d);
    INSERT INTO t2 VALUES(3, 4);
    INSERT INTO t2 VALUES(5, NULL);
  }
}  {}
do_test notnull-5.2 {
  catchsql {
    INSERT INTO t1 VALUES(1, 2);
    INSERT INTO t1 SELECT * FROM t2;
  }
} {1 {t1.b may not be NULL}}

do_test notnull-5.3 {
  execsql { SELECT * FROM t1 }
} {1 2}
do_test notnull-5.4 {
  catchsql {
    DELETE FROM t1;
    BEGIN;
      INSERT INTO t1 VALUES(1, 2);
      INSERT INTO t1 SELECT * FROM t2;
    COMMIT;
  }
} {1 {t1.b may not be NULL}}

do_test notnull-5.5 {
  execsql { SELECT * FROM t1 }
} {1 2}

finish_test








>


















>












>





<
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1,2,3,4,5);
    UPDATE t1 SET e=null, a=b, b=a;
    SELECT * FROM t1 ORDER BY a;
  }
} {1 {t1.e may not be NULL}}
verify_ex_errcode notnull-4.10b SQLITE_CONSTRAINT_NOTNULL

# Test that bug 29ab7be99f is fixed.
#
do_test notnull-5.1 {
  execsql {
    DROP TABLE IF EXISTS t1;
    CREATE TABLE t1(a, b NOT NULL);
    CREATE TABLE t2(c, d);
    INSERT INTO t2 VALUES(3, 4);
    INSERT INTO t2 VALUES(5, NULL);
  }
}  {}
do_test notnull-5.2 {
  catchsql {
    INSERT INTO t1 VALUES(1, 2);
    INSERT INTO t1 SELECT * FROM t2;
  }
} {1 {t1.b may not be NULL}}
verify_ex_errcode notnull-5.2b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-5.3 {
  execsql { SELECT * FROM t1 }
} {1 2}
do_test notnull-5.4 {
  catchsql {
    DELETE FROM t1;
    BEGIN;
      INSERT INTO t1 VALUES(1, 2);
      INSERT INTO t1 SELECT * FROM t2;
    COMMIT;
  }
} {1 {t1.b may not be NULL}}
verify_ex_errcode notnull-5.4b SQLITE_CONSTRAINT_NOTNULL
do_test notnull-5.5 {
  execsql { SELECT * FROM t1 }
} {1 2}

finish_test

Added test/orderby3.test.






















































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# 2013 January 09
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing that the optimizations that disable
# ORDER BY clauses work correctly on a 3-way join.  See ticket
# http://www.sqlite.org/src/956e4d7f89
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix orderby3

# Generate test data for a join.  Verify that the join gets the
# correct answer.
#
do_execsql_test 1.0 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY);
  CREATE TABLE t2(b INTEGER PRIMARY KEY, c INTEGER);
  CREATE TABLE t3(d INTEGER);
    
  INSERT INTO t1 VALUES(1),(2),(3);
    
  INSERT INTO t2 VALUES(3, 1);
  INSERT INTO t2 VALUES(4, 2);
  INSERT INTO t2 VALUES(5, 3);
    
  INSERT INTO t3 VALUES(4),(3),(5);
} {}
do_execsql_test 1.1.asc {
  SELECT t1.a
    FROM t1, t2, t3
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a;
} {1 2 3}
do_execsql_test 1.1.desc {
  SELECT t1.a
    FROM t1, t2, t3
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a DESC;
} {3 2 1}
do_execsql_test 1.123.asc {
  SELECT t1.a
    FROM t1 CROSS JOIN t2 CROSS JOIN t3
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a;
} {1 2 3}
do_execsql_test 1.123.desc {
  SELECT t1.a
    FROM t1 CROSS JOIN t2 CROSS JOIN t3
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a DESC;
} {3 2 1}
do_execsql_test 1.132.asc {
  SELECT t1.a
    FROM t1 CROSS JOIN t3 CROSS JOIN t2
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a;
} {1 2 3}
do_execsql_test 1.132.desc {
  SELECT t1.a
    FROM t1 CROSS JOIN t3 CROSS JOIN t2
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a DESC;
} {3 2 1}
do_execsql_test 1.213.asc {
  SELECT t1.a
    FROM t2 CROSS JOIN t1 CROSS JOIN t3
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a;
} {1 2 3}
do_execsql_test 1.213.desc {
  SELECT t1.a
    FROM t2 CROSS JOIN t1 CROSS JOIN t3
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a DESC;
} {3 2 1}
do_execsql_test 1.231.asc {
  SELECT t1.a
    FROM t2 CROSS JOIN t3 CROSS JOIN t1
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a;
} {1 2 3}
do_execsql_test 1.231.desc {
  SELECT t1.a
    FROM t2 CROSS JOIN t3 CROSS JOIN t1
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a DESC;
} {3 2 1}
do_execsql_test 1.312.asc {
  SELECT t1.a
    FROM t3 CROSS JOIN t1 CROSS JOIN t2
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a;
} {1 2 3}
do_execsql_test 1.312.desc {
  SELECT t1.a
    FROM t3 CROSS JOIN t1 CROSS JOIN t2
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a DESC;
} {3 2 1}
do_execsql_test 1.321.asc {
  SELECT t1.a
    FROM t3 CROSS JOIN t2 CROSS JOIN t1
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a;
} {1 2 3}
do_execsql_test 1.321.desc {
  SELECT t1.a
    FROM t3 CROSS JOIN t2 CROSS JOIN t1
   WHERE t1.a=t2.c AND t2.b=t3.d
   ORDER BY t1.a DESC;
} {3 2 1}

finish_test
Changes to test/pager1.test.
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

faultsim_restore_and_reopen
db close
sqlite3 db test.db -readonly 1
do_catchsql_test pager1.4.5.6 {
  SELECT * FROM t1;
  SELECT * FROM t2;
} {1 {disk I/O error}}
db close

# Snapshot the file-system just before multi-file commit. Save the name
# of the master journal file in $::mj_filename.
#
tv script copy_on_mj_delete
tv filter xDelete







|







748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

faultsim_restore_and_reopen
db close
sqlite3 db test.db -readonly 1
do_catchsql_test pager1.4.5.6 {
  SELECT * FROM t1;
  SELECT * FROM t2;
} {1 {attempt to write a readonly database}}
db close

# Snapshot the file-system just before multi-file commit. Save the name
# of the master journal file in $::mj_filename.
#
tv script copy_on_mj_delete
tv filter xDelete
879
880
881
882
883
884
885




886
887
888
889
890
891




892
893
894
895
896
897
898
    INSERT INTO t1 VALUES('IV', 'sixteen');
    INSERT INTO t1 VALUES('V' , 'twentyfive');
  COMMIT;
} {delete}
tv filter {}
db close
tv delete 




do_test pager1.4.7.2 {
  faultsim_restore_and_reopen
  catch {file attributes test.db-journal -permissions r--------}
  catch {file attributes test.db-journal -readonly 1}
  catchsql { SELECT * FROM t1 }
} {1 {unable to open database file}}




do_test pager1.4.7.3 {
  db close
  catch {file attributes test.db-journal -permissions rw-rw-rw-}
  catch {file attributes test.db-journal -readonly 0}
  delete_file test.db-journal
  file exists test.db-journal
} {0}







>
>
>
>






>
>
>
>







879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    INSERT INTO t1 VALUES('IV', 'sixteen');
    INSERT INTO t1 VALUES('V' , 'twentyfive');
  COMMIT;
} {delete}
tv filter {}
db close
tv delete 
catch {
  test_syscall install fchmod
  test_syscall fault 1 1
}
do_test pager1.4.7.2 {
  faultsim_restore_and_reopen
  catch {file attributes test.db-journal -permissions r--------}
  catch {file attributes test.db-journal -readonly 1}
  catchsql { SELECT * FROM t1 }
} {1 {unable to open database file}}
catch {
  test_syscall reset
  test_syscall fault 0 0
}
do_test pager1.4.7.3 {
  db close
  catch {file attributes test.db-journal -permissions rw-rw-rw-}
  catch {file attributes test.db-journal -readonly 0}
  delete_file test.db-journal
  file exists test.db-journal
} {0}
Changes to test/pragma.test.
530
531
532
533
534
535
536
537


538
539
540
541
542






543
544
545
546
547
548
549
do_test pragma-6.2.2 {
  execsql {
    CREATE TABLE t5(
      a TEXT DEFAULT CURRENT_TIMESTAMP, 
      b DEFAULT (5+3),
      c TEXT,
      d INTEGER DEFAULT NULL,
      e TEXT DEFAULT ''


    );
    PRAGMA table_info(t5);
  }
} {0 a TEXT 0 CURRENT_TIMESTAMP 0 1 b {} 0 5+3 0 2 c TEXT 0 <<NULL>> 0 3 d INTEGER 0 NULL 0 4 e TEXT 0 '' 0}
db nullvalue {}






ifcapable {foreignkey} {
  do_test pragma-6.3.1 {
    execsql {
      CREATE TABLE t3(a int references t2(b), b UNIQUE);
      pragma foreign_key_list(t3);
    }
  } {0 0 t2 a b {NO ACTION} {NO ACTION} NONE}







|
>
>



|

>
>
>
>
>
>







530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
do_test pragma-6.2.2 {
  execsql {
    CREATE TABLE t5(
      a TEXT DEFAULT CURRENT_TIMESTAMP, 
      b DEFAULT (5+3),
      c TEXT,
      d INTEGER DEFAULT NULL,
      e TEXT DEFAULT '',
      UNIQUE(b,c,d),
      PRIMARY KEY(e,b,c)
    );
    PRAGMA table_info(t5);
  }
} {0 a TEXT 0 CURRENT_TIMESTAMP 0 1 b {} 0 5+3 2 2 c TEXT 0 <<NULL>> 3 3 d INTEGER 0 NULL 0 4 e TEXT 0 '' 1}
db nullvalue {}
do_test pragma-6.2.3 {
  execsql {
    CREATE TABLE t2_3(a,b INTEGER PRIMARY KEY,c);
    pragma table_info(t2_3)
  }
} {0 a {} 0 {} 0 1 b INTEGER 0 {} 1 2 c {} 0 {} 0}
ifcapable {foreignkey} {
  do_test pragma-6.3.1 {
    execsql {
      CREATE TABLE t3(a int references t2(b), b UNIQUE);
      pragma foreign_key_list(t3);
    }
  } {0 0 t2 a b {NO ACTION} {NO ACTION} NONE}
1614
1615
1616
1617
1618
1619
1620




1621





1622






1623



























do_test 22.4.2 {
  execsql { PRAGMA main.integrity_check; }
} [list $mainerr]
do_test 22.4.3 {
  execsql { PRAGMA aux.integrity_check; }
} {ok}





finish_test















































>
>
>
>
|
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
do_test 22.4.2 {
  execsql { PRAGMA main.integrity_check; }
} [list $mainerr]
do_test 22.4.3 {
  execsql { PRAGMA aux.integrity_check; }
} {ok}

db close
forcedelete test.db test.db-wal test.db-journal
sqlite3 db test.db
sqlite3 db2 test.db
do_test 23.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d);
    CREATE INDEX i1 ON t1(b,c);
    CREATE INDEX i2 ON t1(c,d);
    CREATE TABLE t2(x INTEGER REFERENCES t1);
  }
  db2 eval {SELECT name FROM sqlite_master}
} {t1 i1 i2 t2}
do_test 23.2 {
  db eval {
    DROP INDEX i2;
    CREATE INDEX i2 ON t1(c,d,b);
  }
  db2 eval {PRAGMA index_info(i2)}
} {0 2 c 1 3 d 2 1 b}
do_test 23.3 {
  db eval {
    CREATE INDEX i3 ON t1(d,b,c);
  }
  db2 eval {PRAGMA index_list(t1)}
} {0 i3 0 1 i2 0 2 i1 0}
do_test 23.4 {
  db eval {
    ALTER TABLE t1 ADD COLUMN e;
  }
  db2 eval {
    PRAGMA table_info(t1);
  }
} {/4 e {} 0 {} 0/}
do_test 23.5 {
  db eval {
    DROP TABLE t2;
    CREATE TABLE t2(x, y INTEGER REFERENCES t1);
  }
  db2 eval {
    PRAGMA foreign_key_list(t2);
  }
} {0 0 t1 y {} {NO ACTION} {NO ACTION} NONE}

finish_test
Added test/regexp1.test.






































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# 2012 December 31
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# 
# This file implements test for the REGEXP operator in test_regexp.c.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_test regexp1-1.1 {
  sqlite3_add_regexp_func db
  db eval {
    CREATE TABLE t1(x INTEGER PRIMARY KEY, y TEXT);
    INSERT INTO t1 VALUES(1, 'For since by man came death,');
    INSERT INTO t1 VALUES(2, 'by man came also the resurrection of the dead.');
    INSERT INTO t1 VALUES(3, 'For as in Adam all die,');
    INSERT INTO t1 VALUES(4, 'even so in Christ shall all be made alive.');

    SELECT x FROM t1 WHERE y REGEXP '^For ' ORDER BY x;
  }
} {1 3}

do_execsql_test regexp1-1.2 {
  SELECT x FROM t1 WHERE y REGEXP 'by|in' ORDER BY x;
} {1 2 3 4}
do_execsql_test regexp1-1.3 {
  SELECT x FROM t1 WHERE y REGEXP 'by|Christ' ORDER BY x;
} {1 2 4}
do_execsql_test regexp1-1.4 {
  SELECT x FROM t1 WHERE y REGEXP 'shal+ al+' ORDER BY x;
} {4}
do_execsql_test regexp1-1.5 {
  SELECT x FROM t1 WHERE y REGEXP 'shall x*y*z*all' ORDER BY x;
} {4}
do_execsql_test regexp1-1.6 {
  SELECT x FROM t1 WHERE y REGEXP 'shallx?y? ?z?all' ORDER BY x;
} {4}
do_execsql_test regexp1-1.7 {
  SELECT x FROM t1 WHERE y REGEXP 'r{2}' ORDER BY x;
} {2}
do_execsql_test regexp1-1.8 {
  SELECT x FROM t1 WHERE y REGEXP 'r{3}' ORDER BY x;
} {}
do_execsql_test regexp1-1.9 {
  SELECT x FROM t1 WHERE y REGEXP 'r{1}' ORDER BY x;
} {1 2 3 4}
do_execsql_test regexp1-1.10 {
  SELECT x FROM t1 WHERE y REGEXP 'ur{2,10}e' ORDER BY x;
} {2}
do_execsql_test regexp1-1.11 {
  SELECT x FROM t1 WHERE y REGEXP '[Aa]dam' ORDER BY x;
} {3}
do_execsql_test regexp1-1.12 {
  SELECT x FROM t1 WHERE y REGEXP '[^Aa]dam' ORDER BY x;
} {}
do_execsql_test regexp1-1.13 {
  SELECT x FROM t1 WHERE y REGEXP '[^b-zB-Z]dam' ORDER BY x;
} {3}
do_execsql_test regexp1-1.14 {
  SELECT x FROM t1 WHERE y REGEXP 'alive' ORDER BY x;
} {4}
do_execsql_test regexp1-1.15 {
  SELECT x FROM t1 WHERE y REGEXP '^alive' ORDER BY x;
} {}
do_execsql_test regexp1-1.16 {
  SELECT x FROM t1 WHERE y REGEXP 'alive$' ORDER BY x;
} {}
do_execsql_test regexp1-1.17 {
  SELECT x FROM t1 WHERE y REGEXP 'alive.$' ORDER BY x;
} {4}
do_execsql_test regexp1-1.18 {
  SELECT x FROM t1 WHERE y REGEXP 'alive\.$' ORDER BY x;
} {4}
do_execsql_test regexp1-1.19 {
  SELECT x FROM t1 WHERE y REGEXP 'ma[nd]' ORDER BY x;
} {1 2 4}
do_execsql_test regexp1-1.20 {
  SELECT x FROM t1 WHERE y REGEXP '\bma[nd]' ORDER BY x;
} {1 2 4}
do_execsql_test regexp1-1.21 {
  SELECT x FROM t1 WHERE y REGEXP 'ma[nd]\b' ORDER BY x;
} {1 2}
do_execsql_test regexp1-1.22 {
  SELECT x FROM t1 WHERE y REGEXP 'ma\w' ORDER BY x;
} {1 2 4}
do_execsql_test regexp1-1.23 {
  SELECT x FROM t1 WHERE y REGEXP 'ma\W' ORDER BY x;
} {}
do_execsql_test regexp1-1.24 {
  SELECT x FROM t1 WHERE y REGEXP '\sma\w' ORDER BY x;
} {1 2 4}
do_execsql_test regexp1-1.25 {
  SELECT x FROM t1 WHERE y REGEXP '\Sma\w' ORDER BY x;
} {}
do_execsql_test regexp1-1.26 {
  SELECT x FROM t1 WHERE y REGEXP 'alive\S$' ORDER BY x;
} {4}
do_execsql_test regexp1-1.27 {
  SELECT x FROM t1 WHERE y REGEXP
          '\b(unto|us|son|given|his|name|called|' ||
          'wonderful|councelor|mighty|god|everlasting|father|' ||
          'prince|peace|alive)\b';
} {4}

do_execsql_test regexp1-2.1 {
  SELECT 'aaaabbbbcccc' REGEXP 'ab*c', 
         'aaaacccc' REGEXP 'ab*c';
} {1 1}
do_execsql_test regexp1-2.2 {
  SELECT 'aaaabbbbcccc' REGEXP 'ab+c',
         'aaaacccc' REGEXP 'ab+c';
} {1 0}
do_execsql_test regexp1-2.3 {
  SELECT 'aaaabbbbcccc' REGEXP 'ab?c',
         'aaaacccc' REGEXP 'ab?c';
} {0 1}
do_execsql_test regexp1-2.4 {
  SELECT 'aaaabbbbbbcccc' REGEXP 'ab{3,5}c',
         'aaaabbbbbcccc' REGEXP 'ab{3,5}c',
         'aaaabbbbcccc' REGEXP 'ab{3,5}c',
         'aaaabbbcccc' REGEXP 'ab{3,5}c',
         'aaaabbcccc' REGEXP 'ab{3,5}c',
         'aaaabcccc' REGEXP 'ab{3,5}c'
} {0 1 1 1 0 0}
do_execsql_test regexp1-2.5 {
  SELECT 'aaaabbbbcccc' REGEXP 'a(a|b|c)+c',
         'aaaabbbbcccc' REGEXP '^a(a|b|c){11}c$',
         'aaaabbbbcccc' REGEXP '^a(a|b|c){10}c$',
         'aaaabbbbcccc' REGEXP '^a(a|b|c){9}c$'
} {1 0 1 0}
do_execsql_test regexp1-2.6 {
  SELECT 'aaaabbbbcccc' REGEXP '^a(a|bb|c)+c$',
         'aaaabbbbcccc' REGEXP '^a(a|bbb|c)+c$',
         'aaaabbbbcccc' REGEXP '^a(a|bbbb|c)+c$'
} {1 0 1}
do_execsql_test regexp1-2.7 {
  SELECT 'aaaabbbbcccc' REGEXP '^a([ac]+|bb){3}c$',
         'aaaabbbbcccc' REGEXP '^a([ac]+|bb){4}c$',
         'aaaabbbbcccc' REGEXP '^a([ac]+|bb){5}c$'
} {0 1 1}

do_execsql_test regexp1-2.8 {
  SELECT 'abc*def+ghi.jkl[mno]pqr' REGEXP 'c.d',
         'abc*def+ghi.jkl[mno]pqr' REGEXP 'c\*d',
         'abc*def+ghi.jkl[mno]pqr' REGEXP 'f\+g',
         'abc*def+ghi.jkl[mno]pqr' REGEXP 'i\.j',
         'abc*def+ghi.jkl[mno]pqr' REGEXP 'l\[mno\]p'
} {1 1 1 1 1}

do_test regexp1-2.9 {
  set v1 "abc\ndef"
  db eval {SELECT $v1 REGEXP '^abc\ndef$'}
} {1}
do_test regexp1-2.10 {
  set v1 "abc\adef"
  db eval {SELECT $v1 REGEXP '^abc\adef$'}
} {1}
do_test regexp1-2.11 {
  set v1 "abc\tdef"
  db eval {SELECT $v1 REGEXP '^abc\tdef$'}
} {1}
do_test regexp1-2.12 {
  set v1 "abc\rdef"
  db eval {SELECT $v1 REGEXP '^abc\rdef$'}
} {1}
do_test regexp1-2.13 {
  set v1 "abc\fdef"
  db eval {SELECT $v1 REGEXP '^abc\fdef$'}
} {1}
do_test regexp1-2.14 {
  set v1 "abc\vdef"
  db eval {SELECT $v1 REGEXP '^abc\vdef$'}
} {1}
do_execsql_test regexp1-2.15 {
  SELECT 'abc\def' REGEXP '^abc\\def',
         'abc(def' REGEXP '^abc\(def',
         'abc)def' REGEXP '^abc\)def',
         'abc*def' REGEXP '^abc\*def',
         'abc.def' REGEXP '^abc\.def',
         'abc+def' REGEXP '^abc\+def',
         'abc?def' REGEXP '^abc\?def',
         'abc[def' REGEXP '^abc\[def',
         'abc$def' REGEXP '^abc\$',
         '^def'    REGEXP '\^def',
         'abc{4}x' REGEXP '^abc\{4\}x$',
         'abc|def' REGEXP '^abc\|def$'
} {1 1 1 1 1 1 1 1 1 1 1 1}

do_execsql_test regexp1-2.20 {
  SELECT 'abc$¢€xyz' REGEXP '^abc\u0024\u00a2\u20acxyz$',
         'abc$¢€xyz' REGEXP '^abc\u0024\u00A2\u20ACxyz$',
         'abc$¢€xyz' REGEXP '^abc\x24\xa2\u20acxyz$'
} {1 1 1}
do_execsql_test regexp1-2.21 {
  SELECT 'abc$¢€xyz' REGEXP '^abc[\u0024][\u00a2][\u20ac]xyz$',
         'abc$¢€xyz' REGEXP '^abc[\u0024\u00A2\u20AC]{3}xyz$',
         'abc$¢€xyz' REGEXP '^abc[\x24][\xa2\u20ac]+xyz$'
} {1 1 1}
do_execsql_test regexp1-2.22 {
  SELECT 'abc$¢€xyz' REGEXP '^abc[^\u0025-X][^ -\u007f][^\u20ab]xyz$'
} {1}

finish_test
Added test/selectD.test.






















































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# 2012 December 19
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for name resolution in SELECT
# statements that have parenthesized FROM clauses.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl


for {set i 1} {$i<=2} {incr i} {
  db close
  forcedelete test$i.db
  sqlite3 db test$i.db
  if {$i==2} {
    optimization_control db query-flattener off
  }
  do_test selectD-$i.0 {
    db eval {
      ATTACH ':memory:' AS aux1;
      CREATE TABLE t1(a,b); INSERT INTO t1 VALUES(111,'x1');
      CREATE TABLE t2(a,b); INSERT INTO t2 VALUES(222,'x2');
      CREATE TEMP TABLE t3(a,b); INSERT INTO t3 VALUES(333,'x3');
      CREATE TABLE main.t4(a,b); INSERT INTO main.t4 VALUES(444,'x4');
      CREATE TABLE aux1.t4(a,b); INSERT INTO aux1.t4 VALUES(555,'x5');
    }
  } {}
  do_test selectD-$i.1 {
    db eval {
      SELECT *
        FROM (t1), (t2), (t3), (t4)
       WHERE t4.a=t3.a+111 
         AND t3.a=t2.a+111
         AND t2.a=t1.a+111;
    }
  } {111 x1 222 x2 333 x3 444 x4}
  do_test selectD-$i.2.1 {
    db eval {
      SELECT *
        FROM t1 JOIN (t2 JOIN (t3 JOIN t4 ON t4.a=t3.a+111)
                              ON t3.a=t2.a+111)
                     ON t2.a=t1.a+111;
    }
  } {111 x1 222 x2 333 x3 444 x4}
  do_test selectD-$i.2.2 {
    db eval {
      SELECT t3.a
        FROM t1 JOIN (t2 JOIN (t3 JOIN t4 ON t4.a=t3.a+111)
                              ON t3.a=t2.a+111)
                     ON t2.a=t1.a+111;
    }
  } {333}
  do_test selectD-$i.2.3 {
    db eval {
      SELECT t3.*
        FROM t1 JOIN (t2 JOIN (t3 JOIN t4 ON t4.a=t3.a+111)
                              ON t3.a=t2.a+111)
                     ON t2.a=t1.a+111;
    }
  } {333 x3}
  do_test selectD-$i.2.3 {
    db eval {
      SELECT t3.*, t2.*
        FROM t1 JOIN (t2 JOIN (t3 JOIN t4 ON t4.a=t3.a+111)
                              ON t3.a=t2.a+111)
                     ON t2.a=t1.a+111;
    }
  } {333 x3 222 x2}
  do_test selectD-$i.2.4 {
    db eval {
      SELECT *
        FROM t1 JOIN (t2 JOIN (main.t4 JOIN aux1.t4 ON aux1.t4.a=main.t4.a+111)
                              ON main.t4.a=t2.a+222)
                     ON t2.a=t1.a+111;
    }
  } {111 x1 222 x2 444 x4 555 x5}
  do_test selectD-$i.2.5 {
    db eval {
      SELECT *
        FROM t1 JOIN (t2 JOIN (main.t4 AS x JOIN aux1.t4 ON aux1.t4.a=x.a+111)
                              ON x.a=t2.a+222)
                     ON t2.a=t1.a+111;
    }
  } {111 x1 222 x2 444 x4 555 x5}
  do_test selectD-$i.2.6 {
    catchsql {
      SELECT *
        FROM t1 JOIN (t2 JOIN (main.t4 JOIN aux.t4 ON aux.t4.a=main.t4.a+111)
                              ON main.t4.a=t2.a+222)
                     ON t2.a=t1.a+111;
    }
  } {1 {no such table: aux.t4}}
  do_test selectD-$i.2.7 {
    db eval {
      SELECT x.a, y.b
        FROM t1 JOIN (t2 JOIN (main.t4 x JOIN aux1.t4 y ON y.a=x.a+111)
                              ON x.a=t2.a+222)
                     ON t2.a=t1.a+111;
    }
  } {444 x5}
  do_test selectD-$i.3 {
    db eval {
      UPDATE t2 SET a=111;
      UPDATE t3 SET a=111;
      UPDATE t4 SET a=111;
      SELECT *
        FROM t1 JOIN (t2 JOIN (t3 JOIN t4 USING(a)) USING (a)) USING (a);
    }
  } {111 x1 x2 x3 x4}
  do_test selectD-$i.4 {
    db eval {
      UPDATE t2 SET a=111;
      UPDATE t3 SET a=111;
      UPDATE t4 SET a=111;
      SELECT *
        FROM t1 LEFT JOIN (t2 LEFT JOIN (t3 LEFT JOIN t4 USING(a))
                                        USING (a))
                           USING (a);
    }
  } {111 x1 x2 x3 x4}
  do_test selectD-$i.5 {
    db eval {
      UPDATE t3 SET a=222;
      UPDATE t4 SET a=222;
      SELECT *
        FROM (t1 LEFT JOIN t2 USING(a)) JOIN (t3 LEFT JOIN t4 USING(a))
             ON t1.a=t3.a-111;
    }
  } {111 x1 x2 222 x3 x4}
  do_test selectD-$i.6 {
    db eval {
      UPDATE t4 SET a=333;
      SELECT *
        FROM (t1 LEFT JOIN t2 USING(a)) JOIN (t3 LEFT JOIN t4 USING(a))
             ON t1.a=t3.a-111;
    }
  } {111 x1 x2 222 x3 {}}
  do_test selectD-$i.7 {
    db eval {
      SELECT t1.*, t2.*, t3.*, t4.b
        FROM (t1 LEFT JOIN t2 USING(a)) JOIN (t3 LEFT JOIN t4 USING(a))
             ON t1.a=t3.a-111;
    }
  } {111 x1 111 x2 222 x3 {}}
}

finish_test
Changes to test/shell1.test.
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  catchcmd "test.db" ".explain 1"
} {0 {}}
do_test shell1-2.3.2 {
  catchcmd "test.db" ".explain on"
} {0 {}}
do_test shell1-2.3.3 {
  catchcmd "test.db" ".explain \"1 2 3\""
} {0 {}}
do_test shell1-2.3.4 {
  catchcmd "test.db" ".explain \"OFF\""
} {0 {}}
do_test shell1-2.3.5 {
  catchcmd "test.db" ".\'explain\' \'OFF\'"
} {0 {}}
do_test shell1-2.3.6 {







|







216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  catchcmd "test.db" ".explain 1"
} {0 {}}
do_test shell1-2.3.2 {
  catchcmd "test.db" ".explain on"
} {0 {}}
do_test shell1-2.3.3 {
  catchcmd "test.db" ".explain \"1 2 3\""
} {1 {ERROR: Not a boolean value: "1 2 3". Assuming "no".}}
do_test shell1-2.3.4 {
  catchcmd "test.db" ".explain \"OFF\""
} {0 {}}
do_test shell1-2.3.5 {
  catchcmd "test.db" ".\'explain\' \'OFF\'"
} {0 {}}
do_test shell1-2.3.6 {
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#----------------------------------------------------------------------------
# Test cases shell1-3.*: Basic test that "dot" command can be called.
#

# .backup ?DB? FILE      Backup DB (default "main") to FILE
do_test shell1-3.1.1 {
  catchcmd "test.db" ".backup"
} {1 {Error: unknown command or invalid arguments:  "backup". Enter ".help" for help}}
do_test shell1-3.1.2 {
  catchcmd "test.db" ".backup FOO"
} {0 {}}
do_test shell1-3.1.3 {
  catchcmd "test.db" ".backup FOO BAR"
} {1 {Error: unknown database FOO}}
do_test shell1-3.1.4 {
  # too many arguments
  catchcmd "test.db" ".backup FOO BAR BAD"
} {1 {Error: unknown command or invalid arguments:  "backup". Enter ".help" for help}}

# .bail ON|OFF           Stop after hitting an error.  Default OFF
do_test shell1-3.2.1 {
  catchcmd "test.db" ".bail"
} {1 {Error: unknown command or invalid arguments:  "bail". Enter ".help" for help}}
do_test shell1-3.2.2 {
  catchcmd "test.db" ".bail ON"







|









|







249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#----------------------------------------------------------------------------
# Test cases shell1-3.*: Basic test that "dot" command can be called.
#

# .backup ?DB? FILE      Backup DB (default "main") to FILE
do_test shell1-3.1.1 {
  catchcmd "test.db" ".backup"
} {1 {missing FILENAME argument on .backup}}
do_test shell1-3.1.2 {
  catchcmd "test.db" ".backup FOO"
} {0 {}}
do_test shell1-3.1.3 {
  catchcmd "test.db" ".backup FOO BAR"
} {1 {Error: unknown database FOO}}
do_test shell1-3.1.4 {
  # too many arguments
  catchcmd "test.db" ".backup FOO BAR BAD"
} {1 {too many arguments to .backup}}

# .bail ON|OFF           Stop after hitting an error.  Default OFF
do_test shell1-3.2.1 {
  catchcmd "test.db" ".bail"
} {1 {Error: unknown command or invalid arguments:  "bail". Enter ".help" for help}}
do_test shell1-3.2.2 {
  catchcmd "test.db" ".bail ON"
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
  catchcmd "test.db" ".echo OFF BAD"
} {1 {Error: unknown command or invalid arguments:  "echo". Enter ".help" for help}}

# .exit                  Exit this program
do_test shell1-3.6.1 {
  catchcmd "test.db" ".exit"
} {0 {}}
do_test shell1-3.6.2 {
  # too many arguments
  catchcmd "test.db" ".exit BAD"
} {1 {Error: unknown command or invalid arguments:  "exit". Enter ".help" for help}}

# .explain ON|OFF        Turn output mode suitable for EXPLAIN on or off.
do_test shell1-3.7.1 {
  catchcmd "test.db" ".explain"
  # explain is the exception to the booleans.  without an option, it turns it on.
} {0 {}}
do_test shell1-3.7.2 {







<
<
<
<







322
323
324
325
326
327
328




329
330
331
332
333
334
335
  catchcmd "test.db" ".echo OFF BAD"
} {1 {Error: unknown command or invalid arguments:  "echo". Enter ".help" for help}}

# .exit                  Exit this program
do_test shell1-3.6.1 {
  catchcmd "test.db" ".exit"
} {0 {}}





# .explain ON|OFF        Turn output mode suitable for EXPLAIN on or off.
do_test shell1-3.7.1 {
  catchcmd "test.db" ".explain"
  # explain is the exception to the booleans.  without an option, it turns it on.
} {0 {}}
do_test shell1-3.7.2 {
Changes to test/spellfix.test.
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149





































150
151

do_test 3.2 {
  foreach w $vocab {
    execsql { INSERT INTO t3(word) VALUES($w) }
  }
} {}

breakpoint
foreach {tn word res} {
  1   kos*     {kosher 3 kiosk 4 kudo 2 kiss 3 kissed 3}
  2   kellj*   {killjoy 5 kill 4 killed 4 killer 4 killers 4}
  3   kellj    {kill 4 kills 5 killjoy 7 keel 4 killed 6}
} {
  do_execsql_test 1.2.$tn {
    SELECT word, matchlen FROM t3 WHERE word MATCH $word
     ORDER BY score, word LIMIT 5
  } $res
} 






































finish_test







<





|



|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

do_test 3.2 {
  foreach w $vocab {
    execsql { INSERT INTO t3(word) VALUES($w) }
  }
} {}


foreach {tn word res} {
  1   kos*     {kosher 3 kiosk 4 kudo 2 kiss 3 kissed 3}
  2   kellj*   {killjoy 5 kill 4 killed 4 killer 4 killers 4}
  3   kellj    {kill 4 kills 5 killjoy 7 keel 4 killed 6}
} {
  do_execsql_test 3.2.$tn {
    SELECT word, matchlen FROM t3 WHERE word MATCH $word
     ORDER BY score, word LIMIT 5
  } $res
}

do_execsql_test 4.0 {
  INSERT INTO t3(command) VALUES('edit_cost_table=NULL');
}
foreach {tn word res} {
  1   kosher     {kosher 0 kisser 51 kissers 76 kissed 126 kisses 126}
  2   kellj      {keels 60 killjoy 68 kills 80 keel 120 kill 125}
  3   kashar     {kosher 80 kisser 91 kissers 116 kissed 166 kisses 166}
} {
  do_execsql_test 4.1.$tn {
    SELECT word, distance FROM t3 WHERE word MATCH $word
     ORDER BY score, word LIMIT 5
  } $res
}
do_execsql_test 5.0 {
  CREATE TABLE costs2(iLang, cFrom, cTo, iCost);
  INSERT INTO costs2 VALUES(0, 'a', 'o', 1);
  INSERT INTO costs2 VALUES(0, 'e', 'o', 4);
  INSERT INTO costs2 VALUES(0, 'i', 'o', 8);
  INSERT INTO costs2 VALUES(0, 'u', 'o', 16);
  INSERT INTO t3(command) VALUES('edit_cost_table="costs2"');
}

foreach {tn word res} {
  1   kasher     {kosher 1}
  2   kesher     {kosher 4}
  3   kisher     {kosher 8}
  4   kosher     {kosher 0}
  5   kusher     {kosher 16}
} {
  do_execsql_test 5.1.$tn {
    SELECT word, distance FROM t3 WHERE word MATCH $word
     ORDER BY score, word LIMIT 1
  } $res
}



finish_test
Changes to test/tester.tcl.
50
51
52
53
54
55
56

57
58
59
60
61
62
63
#      execsql                SQL ?DB?
#
# Commands to run test cases:
#
#      do_ioerr_test          TESTNAME ARGS...
#      crashsql               ARGS...
#      integrity_check        TESTNAME ?DB?

#      do_test                TESTNAME SCRIPT EXPECTED
#      do_execsql_test        TESTNAME SQL EXPECTED
#      do_catchsql_test       TESTNAME SQL EXPECTED
#
# Commands providing a lower level interface to the global test counters:
#
#      set_test_counter       COUNTER ?VALUE?







>







50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#      execsql                SQL ?DB?
#
# Commands to run test cases:
#
#      do_ioerr_test          TESTNAME ARGS...
#      crashsql               ARGS...
#      integrity_check        TESTNAME ?DB?
#      verify_ex_errcode      TESTNAME EXPECTED ?DB?
#      do_test                TESTNAME SCRIPT EXPECTED
#      do_execsql_test        TESTNAME SQL EXPECTED
#      do_catchsql_test       TESTNAME SQL EXPECTED
#
# Commands providing a lower level interface to the global test counters:
#
#      set_test_counter       COUNTER ?VALUE?
964
965
966
967
968
969
970






971
972
973
974
975
976
977
#
proc integrity_check {name {db db}} {
  ifcapable integrityck {
    do_test $name [list execsql {PRAGMA integrity_check} $db] {ok}
  }
}








# Return true if the SQL statement passed as the second argument uses a
# statement transaction.
#
proc sql_uses_stmt {db sql} {
  set stmt [sqlite3_prepare $db $sql -1 dummy]
  set uses [uses_stmt_journal $stmt]







>
>
>
>
>
>







965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
#
proc integrity_check {name {db db}} {
  ifcapable integrityck {
    do_test $name [list execsql {PRAGMA integrity_check} $db] {ok}
  }
}

# Check the extended error code
#
proc verify_ex_errcode {name expected {db db}} {
  do_test $name [list sqlite3_extended_errcode $db] $expected
}


# Return true if the SQL statement passed as the second argument uses a
# statement transaction.
#
proc sql_uses_stmt {db sql} {
  set stmt [sqlite3_prepare $db $sql -1 dummy]
  set uses [uses_stmt_journal $stmt]
1106
1107
1108
1109
1110
1111
1112



















1113
1114
1115
1116
1117
1118
1119
    if {$msg=="child killed: unknown signal"} {
      set msg "child process exited abnormally"
    }
  }
  
  lappend r $msg
}




















# Usage: do_ioerr_test <test number> <options...>
#
# This proc is used to implement test cases that check that IO errors
# are correctly handled. The first argument, <test number>, is an integer 
# used to name the tests executed by this proc. Options are as follows:
#







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    if {$msg=="child killed: unknown signal"} {
      set msg "child process exited abnormally"
    }
  }
  
  lappend r $msg
}

proc run_ioerr_prep {} {
  set ::sqlite_io_error_pending 0
  catch {db close}
  catch {db2 close}
  catch {forcedelete test.db}
  catch {forcedelete test.db-journal}
  catch {forcedelete test2.db}
  catch {forcedelete test2.db-journal}
  set ::DB [sqlite3 db test.db; sqlite3_connection_pointer db]
  sqlite3_extended_result_codes $::DB $::ioerropts(-erc)
  if {[info exists ::ioerropts(-tclprep)]} {
    eval $::ioerropts(-tclprep)
  }
  if {[info exists ::ioerropts(-sqlprep)]} {
    execsql $::ioerropts(-sqlprep)
  }
  expr 0
}

# Usage: do_ioerr_test <test number> <options...>
#
# This proc is used to implement test cases that check that IO errors
# are correctly handled. The first argument, <test number>, is an integer 
# used to name the tests executed by this proc. Options are as follows:
#
1139
1140
1141
1142
1143
1144
1145

















1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
  set ::ioerropts(-ckrefcount) 0
  set ::ioerropts(-restoreprng) 1
  array set ::ioerropts $args

  # TEMPORARY: For 3.5.9, disable testing of extended result codes. There are
  # a couple of obscure IO errors that do not return them.
  set ::ioerropts(-erc) 0


















  set ::go 1
  #reset_prng_state
  save_prng_state
  for {set n $::ioerropts(-start)} {$::go} {incr n} {
    set ::TN $n
    incr ::ioerropts(-count) -1
    if {$::ioerropts(-count)<0} break
 
    # Skip this IO error if it was specified with the "-exclude" option.
    if {[info exists ::ioerropts(-exclude)]} {
      if {[lsearch $::ioerropts(-exclude) $n]!=-1} continue
    }
    if {$::ioerropts(-restoreprng)} {
      restore_prng_state
    }

    # Delete the files test.db and test2.db, then execute the TCL and 
    # SQL (in that order) to prepare for the test case.
    do_test $testname.$n.1 {
      set ::sqlite_io_error_pending 0
      catch {db close}
      catch {db2 close}
      catch {forcedelete test.db}
      catch {forcedelete test.db-journal}
      catch {forcedelete test2.db}
      catch {forcedelete test2.db-journal}
      set ::DB [sqlite3 db test.db; sqlite3_connection_pointer db]
      sqlite3_extended_result_codes $::DB $::ioerropts(-erc)
      if {[info exists ::ioerropts(-tclprep)]} {
        eval $::ioerropts(-tclprep)
      }
      if {[info exists ::ioerropts(-sqlprep)]} {
        execsql $::ioerropts(-sqlprep)
      }
      expr 0
    } {0}

    # Read the 'checksum' of the database.
    if {$::ioerropts(-cksum)} {
      set checksum [cksum]
    }

    # Set the Nth IO error to fail.
    do_test $testname.$n.2 [subst {
      set ::sqlite_io_error_persist $::ioerropts(-persist)
      set ::sqlite_io_error_pending $n
    }] $n
  
    # Create a single TCL script from the TCL and SQL specified
    # as the body of the test.
    set ::ioerrorbody {}
    if {[info exists ::ioerropts(-tclbody)]} {
      append ::ioerrorbody "$::ioerropts(-tclbody)\n"
    }
    if {[info exists ::ioerropts(-sqlbody)]} {
      append ::ioerrorbody "db eval {$::ioerropts(-sqlbody)}"
    }

    # Execute the TCL Script created in the above block. If
    # there are at least N IO operations performed by SQLite as
    # a result of the script, the Nth will fail.
    do_test $testname.$n.3 {
      set ::sqlite_io_error_hit 0
      set ::sqlite_io_error_hardhit 0
      set r [catch $::ioerrorbody msg]
      set ::errseen $r
      set rc [sqlite3_errcode $::DB]
      if {$::ioerropts(-erc)} {







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



<
















<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<




|







|
<
<
<
<
<
<
<
<
<
|
<
|
|







1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207










1208





1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221









1222

1223
1224
1225
1226
1227
1228
1229
1230
1231
  set ::ioerropts(-ckrefcount) 0
  set ::ioerropts(-restoreprng) 1
  array set ::ioerropts $args

  # TEMPORARY: For 3.5.9, disable testing of extended result codes. There are
  # a couple of obscure IO errors that do not return them.
  set ::ioerropts(-erc) 0
  
  # Create a single TCL script from the TCL and SQL specified
  # as the body of the test.
  set ::ioerrorbody {}
  if {[info exists ::ioerropts(-tclbody)]} {
    append ::ioerrorbody "$::ioerropts(-tclbody)\n"
  }
  if {[info exists ::ioerropts(-sqlbody)]} {
    append ::ioerrorbody "db eval {$::ioerropts(-sqlbody)}"
  }

  save_prng_state
  if {$::ioerropts(-cksum)} {
    run_ioerr_prep
    eval $::ioerrorbody
    set ::goodcksum [cksum]
  }

  set ::go 1
  #reset_prng_state

  for {set n $::ioerropts(-start)} {$::go} {incr n} {
    set ::TN $n
    incr ::ioerropts(-count) -1
    if {$::ioerropts(-count)<0} break
 
    # Skip this IO error if it was specified with the "-exclude" option.
    if {[info exists ::ioerropts(-exclude)]} {
      if {[lsearch $::ioerropts(-exclude) $n]!=-1} continue
    }
    if {$::ioerropts(-restoreprng)} {
      restore_prng_state
    }

    # Delete the files test.db and test2.db, then execute the TCL and 
    # SQL (in that order) to prepare for the test case.
    do_test $testname.$n.1 {










      run_ioerr_prep





    } {0}

    # Read the 'checksum' of the database.
    if {$::ioerropts(-cksum)} {
      set ::checksum [cksum]
    }

    # Set the Nth IO error to fail.
    do_test $testname.$n.2 [subst {
      set ::sqlite_io_error_persist $::ioerropts(-persist)
      set ::sqlite_io_error_pending $n
    }] $n










    # Execute the TCL script created for the body of this test. If

    # at least N IO operations performed by SQLite as a result of 
    # the script, the Nth will fail.
    do_test $testname.$n.3 {
      set ::sqlite_io_error_hit 0
      set ::sqlite_io_error_hardhit 0
      set r [catch $::ioerrorbody msg]
      set ::errseen $r
      set rc [sqlite3_errcode $::DB]
      if {$::ioerropts(-erc)} {
1304
1305
1306
1307
1308
1309
1310
1311



1312




1313
1314
1315
1316
1317
1318
1319
    # be the same as before the script that caused the IO error was run.
    #
    if {$::go && $::sqlite_io_error_hardhit && $::ioerropts(-cksum)} {
      do_test $testname.$n.6 {
        catch {db close}
        catch {db2 close}
        set ::DB [sqlite3 db test.db; sqlite3_connection_pointer db]
        cksum



      } $checksum




    }

    set ::sqlite_io_error_hardhit 0
    set ::sqlite_io_error_pending 0
    if {[info exists ::ioerropts(-cleanup)]} {
      catch $::ioerropts(-cleanup)
    }







|
>
>
>
|
>
>
>
>







1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
    # be the same as before the script that caused the IO error was run.
    #
    if {$::go && $::sqlite_io_error_hardhit && $::ioerropts(-cksum)} {
      do_test $testname.$n.6 {
        catch {db close}
        catch {db2 close}
        set ::DB [sqlite3 db test.db; sqlite3_connection_pointer db]
        set nowcksum [cksum]
        set res [expr {$nowcksum==$::checksum || $nowcksum==$::goodcksum}]
        if {$res==0} {
          puts "now=$nowcksum"
          puts "the=$::checksum"
          puts "fwd=$::goodcksum"
        }
        set res
      } 1
    }

    set ::sqlite_io_error_hardhit 0
    set ::sqlite_io_error_pending 0
    if {[info exists ::ioerropts(-cleanup)]} {
      catch $::ioerropts(-cleanup)
    }
Added test/tkt-4dd95f6943.test.














































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# 2013 March 13
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. 
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix tkt-4dd95f6943

do_execsql_test 1.0 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES (3), (4), (2), (1), (5), (6);
}

foreach {tn1 idx} {
  1 { CREATE INDEX i1 ON t1(x ASC) }
  2 { CREATE INDEX i1 ON t1(x DESC) }
} {
  do_execsql_test 1.$tn1.1 { DROP INDEX IF EXISTS i1; }
  do_execsql_test 1.$tn1.2 $idx

  do_execsql_test 1.$tn1.3 {
    SELECT x FROM t1 WHERE x IN(2, 4, 5) ORDER BY x ASC;
  } {2 4 5}

  do_execsql_test 1.$tn1.4 {
    SELECT x FROM t1 WHERE x IN(2, 4, 5) ORDER BY x DESC;
  } {5 4 2}
}


do_execsql_test 2.0 {
  CREATE TABLE t2(x, y);
  INSERT INTO t2 VALUES (5, 3), (5, 4), (5, 2), (5, 1), (5, 5), (5, 6);
  INSERT INTO t2 VALUES (1, 3), (1, 4), (1, 2), (1, 1), (1, 5), (1, 6);
  INSERT INTO t2 VALUES (3, 3), (3, 4), (3, 2), (3, 1), (3, 5), (3, 6);
  INSERT INTO t2 VALUES (2, 3), (2, 4), (2, 2), (2, 1), (2, 5), (2, 6);
  INSERT INTO t2 VALUES (4, 3), (4, 4), (4, 2), (4, 1), (4, 5), (4, 6);
  INSERT INTO t2 VALUES (6, 3), (6, 4), (6, 2), (6, 1), (6, 5), (6, 6);

  CREATE TABLE t3(a, b);
  INSERT INTO t3 VALUES (2, 2), (4, 4), (5, 5);
  CREATE UNIQUE INDEX t3i1 ON t3(a ASC);
  CREATE UNIQUE INDEX t3i2 ON t3(b DESC);
}

foreach {tn1 idx} {
  1 { CREATE INDEX i1 ON t2(x ASC,  y ASC) }
  2 { CREATE INDEX i1 ON t2(x ASC,  y DESC) }
  3 { CREATE INDEX i1 ON t2(x DESC, y ASC) }
  4 { CREATE INDEX i1 ON t2(x DESC, y DESC) }

  5 { CREATE INDEX i1 ON t2(y ASC,  x ASC) }
  6 { CREATE INDEX i1 ON t2(y ASC,  x DESC) }
  7 { CREATE INDEX i1 ON t2(y DESC, x ASC) }
  8 { CREATE INDEX i1 ON t2(y DESC, x DESC) }
} {
  do_execsql_test 2.$tn1.1 { DROP INDEX IF EXISTS i1; }
  do_execsql_test 2.$tn1.2 $idx

  foreach {tn2 inexpr} {
    3  "(2, 4, 5)"
    4  "(SELECT a FROM t3)"
    5  "(SELECT b FROM t3)"
  } {
    do_execsql_test 2.$tn1.$tn2.1 "
      SELECT x, y FROM t2 WHERE x = 1 AND y IN $inexpr ORDER BY x ASC, y ASC;
    " {1 2  1 4  1 5}

    do_execsql_test 2.$tn1.$tn2.2 "
      SELECT x, y FROM t2 WHERE x = 2 AND y IN $inexpr ORDER BY x ASC, y DESC;
    " {2 5  2 4  2 2}

    do_execsql_test 2.$tn1.$tn2.3 "
      SELECT x, y FROM t2 WHERE x = 3 AND y IN $inexpr ORDER BY x DESC, y ASC;
    " {3 2  3 4  3 5}

    do_execsql_test 2.$tn1.$tn2.4 "
      SELECT x, y FROM t2 WHERE x = 4 AND y IN $inexpr ORDER BY x DESC, y DESC;
    " {4 5  4 4  4 2}
    
    do_execsql_test 2.$tn1.$tn2.5 "
      SELECT a, x, y FROM t2, t3 WHERE a = 4 AND x = 1 AND y IN $inexpr 
      ORDER BY a, x ASC, y ASC;
    " {4 1 2  4 1 4  4 1 5}
    do_execsql_test 2.$tn1.$tn2.6 "
      SELECT a, x, y FROM t2, t3 WHERE a = 2 AND x = 1 AND y IN $inexpr 
      ORDER BY x ASC, y ASC;
    " {2 1 2  2 1 4  2 1 5}

    do_execsql_test 2.$tn1.$tn2.7 "
      SELECT a, x, y FROM t2, t3 WHERE a = 4 AND x = 1 AND y IN $inexpr 
      ORDER BY a, x ASC, y DESC;
    " {4 1 5  4 1 4  4 1 2}
    do_execsql_test 2.$tn1.8 "
      SELECT a, x, y FROM t2, t3 WHERE a = 2 AND x = 1 AND y IN $inexpr 
      ORDER BY x ASC, y DESC;
    " {2 1 5  2 1 4  2 1 2}

    do_execsql_test 2.$tn1.$tn2.9 "
      SELECT a, x, y FROM t2, t3 WHERE a = 4 AND x = 1 AND y IN $inexpr 
      ORDER BY a, x DESC, y ASC;
    " {4 1 2  4 1 4  4 1 5}
    do_execsql_test 2.$tn1.10 "
      SELECT a, x, y FROM t2, t3 WHERE a = 2 AND x = 1 AND y IN $inexpr 
      ORDER BY x DESC, y ASC;
    " {2 1 2  2 1 4  2 1 5}

    do_execsql_test 2.$tn1.$tn2.11 "
      SELECT a, x, y FROM t2, t3 WHERE a = 4 AND x = 1 AND y IN $inexpr 
      ORDER BY a, x DESC, y DESC;
    " {4 1 5  4 1 4  4 1 2}
    do_execsql_test 2.$tn1.$tn2.12 "
      SELECT a, x, y FROM t2, t3 WHERE a = 2 AND x = 1 AND y IN $inexpr 
      ORDER BY x DESC, y DESC;
    " {2 1 5  2 1 4  2 1 2}
  }
}

do_execsql_test 3.0 {
  CREATE TABLE t7(x);
  INSERT INTO t7 VALUES (1), (2), (3);
  CREATE INDEX i7 ON t7(x);

  CREATE TABLE t8(y);
  INSERT INTO t8 VALUES (1), (2), (3);
}

foreach {tn idxdir sortdir sortdata} {
  1 ASC  ASC  {1 2 3}
  2 ASC  DESC {3 2 1}
  3 DESC ASC  {1 2 3}
  4 ASC  DESC {3 2 1}
} {

  do_execsql_test 3.$tn "
    DROP INDEX IF EXISTS i8;
    CREATE UNIQUE INDEX i8 ON t8(y $idxdir);
    SELECT x FROM t7 WHERE x IN (SELECT y FROM t8) ORDER BY x $sortdir;
  " $sortdata
}

finish_test
Added test/tkt-7a31705a7e6.test.




















































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# 2013 February 26
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements regression tests for SQLite library. Specifically,
# it tests that ticket [7a31705a7e6c95d514e6f20a6900f436bbc9fed8] in the
# name resolver has been fixed.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_execsql_test tkt-7a31705a7e6-1.1 {
  CREATE TABLE t1 (a INTEGER PRIMARY KEY);
  CREATE TABLE t2 (a INTEGER PRIMARY KEY, b INTEGER);
  CREATE TABLE t2x (b INTEGER PRIMARY KEY);
  SELECT t1.a FROM ((t1 JOIN t2 ON t1.a=t2.a) AS x JOIN t2x ON x.b=t2x.b) as y;
} {}

Added test/tkt-a7b7803e.test.








































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# 2012 December 19
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. Specifically,
# it tests that ticket [a7b7803e8d1e8699cd8a460a38133b98892d2e17] has
# been fixed.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/lock_common.tcl
source $testdir/malloc_common.tcl

do_test tkt-a7b7803e.1 {
  db eval {
    CREATE TABLE t1(a,b);
    INSERT INTO t1 VALUES(0,'first'),(99,'fuzzy');
    SELECT (t1.a==0) AS x, b
      FROM t1
     WHERE a=0 OR x;
  }
} {1 first}
do_test tkt-a7b7803e.2 {
  db eval {
    SELECT a, (t1.b='fuzzy') AS x
      FROM t1
     WHERE x
  }
} {99 1}
do_test tkt-a7b7803e.3 {
  db eval {
    SELECT (a=99) AS x, (t1.b='fuzzy') AS y, *
      FROM t1
     WHERE x AND y
  }
} {1 1 99 fuzzy}
do_test tkt-a7b7803e.4 {
  db eval {
    SELECT (a=99) AS x, (t1.b='first') AS y, *
      FROM t1
     WHERE x OR y
     ORDER BY a
  }
} {0 1 0 first 1 0 99 fuzzy}
do_test tkt-a7b7803e.5 {
  db eval {
    SELECT (M.a=99) AS x, M.b, (N.b='first') AS y, N.b
      FROM t1 M, t1 N
     WHERE x OR y
     ORDER BY M.a, N.a
  }
} {0 first 1 first 1 fuzzy 1 first 1 fuzzy 0 fuzzy}
do_test tkt-a7b7803e.6 {
  db eval {
    SELECT (M.a=99) AS x, M.b, (N.b='first') AS y, N.b
      FROM t1 M, t1 N
     WHERE x AND y
     ORDER BY M.a, N.a
  }
} {1 fuzzy 1 first}
do_test tkt-a7b7803e.7 {
  db eval {
    SELECT (M.a=99) AS x, M.b, (N.b='first') AS y, N.b
      FROM t1 M JOIN t1 N ON x AND y
     ORDER BY M.a, N.a
  }
} {1 fuzzy 1 first}
do_test tkt-a7b7803e.8 {
  db eval {
    SELECT (M.a=99) AS x, M.b, (N.b='first') AS y, N.b
      FROM t1 M JOIN t1 N ON x
     ORDER BY M.a, N.a
  }
} {1 fuzzy 1 first 1 fuzzy 0 fuzzy}


finish_test
Added test/tkt-fc7bd6358f.test.




























































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# 2013 March 05
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. Specifically,
# it tests that ticket [fc7bd6358f]:
#
# The following SQL yields an incorrect result (zero rows) in all
# versions of SQLite between 3.6.14 and 3.7.15.2:
#
#    CREATE TABLE t(textid TEXT);
#    INSERT INTO t VALUES('12');
#    INSERT INTO t VALUES('34');
#    CREATE TABLE i(intid INTEGER PRIMARY KEY);
#    INSERT INTO i VALUES(12);
#    INSERT INTO i VALUES(34);
#
#    SELECT t1.textid AS a, i.intid AS b, t2.textid AS c
#      FROM t t1, i, t t2
#     WHERE t1.textid = i.intid
#       AND t1.textid = t2.textid;
#
# The correct result should be two rows, one with 12|12|12 and the other
# with 34|34|34. With this bug, no rows are returned. Bisecting shows that
# this bug was introduced with check-in [dd4d67a67454] on 2009-04-23. 
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_test tkt-fc7bd6358f.100 {
  db eval {
    CREATE TABLE t(textid TEXT);
    INSERT INTO t VALUES('12');
    INSERT INTO t VALUES('34');
    CREATE TABLE i(intid INTEGER PRIMARY KEY);
    INSERT INTO i VALUES(12);
    INSERT INTO i VALUES(34);
  }
} {}
unset -nocomplain from
unset -nocomplain where
unset -nocomplain a
unset -nocomplain b
foreach {a from} {
  1 {FROM t t1, i, t t2}
  2 {FROM i, t t1, t t2}
  3 {FROM t t1, t t2, i}
} {
  foreach {b where} {
    1 {WHERE t1.textid=i.intid AND t1.textid=t2.textid}
    2 {WHERE i.intid=t1.textid AND t1.textid=t2.textid}
    3 {WHERE t1.textid=i.intid AND i.intid=t2.textid}
    4 {WHERE t1.textid=i.intid AND t2.textid=i.intid}
    5 {WHERE i.intid=t1.textid AND i.intid=t2.textid}
    6 {WHERE i.intid=t1.textid AND t2.textid=i.intid}
    7 {WHERE t1.textid=t2.textid AND i.intid=t2.textid}
    8 {WHERE t1.textid=t2.textid AND t2.textid=i.intid}
  } {
    do_test tkt-fc7bd6358f.110.$a.$b.1 {
       db eval {PRAGMA automatic_index=ON}
       db eval "SELECT t1.textid, i.intid, t2.textid $from $where"
    } {12 12 12 34 34 34}
    do_test tkt-fc7bd6358f.110.$a.$b.2 {
       db eval {PRAGMA automatic_index=OFF}
       db eval "SELECT t1.textid, i.intid, t2.textid $from $where"
    } {12 12 12 34 34 34}
  }
}

    
finish_test
Changes to test/tkt3457.test.
57
58
59
60
61
62
63








64
65
66
67
68
69
70
  fconfigure $fd -encoding binary -translation binary
  seek $fd 0
  puts -nonewline $fd "\xd9\xd5\x05\xf9\x20\xa1\x63\xd7"
  close $fd

  execsql COMMIT
} {}









do_test tkt3457-1.2 {
  forcecopy bak.db-journal test.db-journal
  file attributes test.db-journal -permissions ---------
  catchsql { SELECT * FROM t1 }
} {1 {unable to open database file}}
do_test tkt3457-1.3 {







>
>
>
>
>
>
>
>







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  fconfigure $fd -encoding binary -translation binary
  seek $fd 0
  puts -nonewline $fd "\xd9\xd5\x05\xf9\x20\xa1\x63\xd7"
  close $fd

  execsql COMMIT
} {}

# Disable fchmod to make sure SQLite itself does not try to change the
# permission bits on us
#
catch {
  test_syscall install fchmod
  test_syscall fault 1 1
}

do_test tkt3457-1.2 {
  forcecopy bak.db-journal test.db-journal
  file attributes test.db-journal -permissions ---------
  catchsql { SELECT * FROM t1 }
} {1 {unable to open database file}}
do_test tkt3457-1.3 {
79
80
81
82
83
84
85
86






87
} {1 {unable to open database file}}

do_test tkt3457-1.5 {
  forcecopy bak.db-journal test.db-journal
  file attributes test.db-journal -permissions rw-rw-rw-
  catchsql { SELECT * FROM t1 }
} {0 {1 2 3 4 5 6}}







finish_test








>
>
>
>
>
>

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
} {1 {unable to open database file}}

do_test tkt3457-1.5 {
  forcecopy bak.db-journal test.db-journal
  file attributes test.db-journal -permissions rw-rw-rw-
  catchsql { SELECT * FROM t1 }
} {0 {1 2 3 4 5 6}}

# Reenable fchmod
catch {
  test_syscall uninstall
  test_syscall fault 0 0
}

finish_test
Changes to test/tkt3762.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2009 March 28
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Ticket #3762:  Make sure that an incremental vacuum that reduces the
# size of the database file such that a pointer-map page is elemented
# can be correctly rolled back.
#
# That ticket #3762 has been fixed has already been verified by the
# savepoint6.test test script.  But this script is simplier and a
# redundant test never hurts.
#
# $Id: tkt3762.test,v 1.1 2009/03/31 00:50:36 drh Exp $













|
|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2009 March 28
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Ticket #3762:  Make sure that an incremental vacuum that reduces the
# size of the database file such that if a pointer-map page is eliminated
# it can be correctly rolled back.
#
# That ticket #3762 has been fixed has already been verified by the
# savepoint6.test test script.  But this script is simplier and a
# redundant test never hurts.
#
# $Id: tkt3762.test,v 1.1 2009/03/31 00:50:36 drh Exp $

Added test/transitive1.test.




































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# 2013 April 17
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#*************************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing of transitive WHERE clause constraints
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_execsql_test transitive1-100 {
  CREATE TABLE t1(a TEXT, b TEXT, c TEXT COLLATE NOCASE);
  INSERT INTO t1 VALUES('abc','abc','Abc');
  INSERT INTO t1 VALUES('def','def','def');
  INSERT INTO t1 VALUES('ghi','ghi','GHI');
  CREATE INDEX t1a1 ON t1(a);
  CREATE INDEX t1a2 ON t1(a COLLATE nocase);

  SELECT * FROM t1 WHERE a=b AND c=b AND c='DEF';
} {def def def}
do_execsql_test transitive1-110 {
  SELECT * FROM t1 WHERE a=b AND c=b AND c>='DEF' ORDER BY +a;
} {def def def ghi ghi GHI}
do_execsql_test transitive1-120 {
  SELECT * FROM t1 WHERE a=b AND c=b AND c<='DEF' ORDER BY +a;
} {abc abc Abc def def def}

do_execsql_test transitive1-200 {
  CREATE TABLE t2(a INTEGER, b INTEGER, c TEXT);
  INSERT INTO t2 VALUES(100,100,100);
  INSERT INTO t2 VALUES(20,20,20);
  INSERT INTO t2 VALUES(3,3,3);

  SELECT * FROM t2 WHERE a=b AND c=b AND c=20;
} {20 20 20}
do_execsql_test transitive1-210 {
  SELECT * FROM t2 WHERE a=b AND c=b AND c>=20 ORDER BY +a;
} {3 3 3 20 20 20}
do_execsql_test transitive1-220 {
  SELECT * FROM t2 WHERE a=b AND c=b AND c<=20 ORDER BY +a;
} {20 20 20 100 100 100}

finish_test
Changes to test/trigger1.test.
419
420
421
422
423
424
425

426
427
428
429
430
431
432
    END;
    SELECT type, name FROM sqlite_master;
  }
} [concat $view_v1 {table t2 trigger t2}]
do_test trigger1-6.3 {
  catchsql {DELETE FROM t2}
} {1 {deletes are not permitted}}

do_test trigger1-6.4 {
  execsql {SELECT * FROM t2}
} {3 4 7 8}
do_test trigger1-6.5 {
  db close
  sqlite3 db test.db
  execsql {SELECT type, name FROM sqlite_master}







>







419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    END;
    SELECT type, name FROM sqlite_master;
  }
} [concat $view_v1 {table t2 trigger t2}]
do_test trigger1-6.3 {
  catchsql {DELETE FROM t2}
} {1 {deletes are not permitted}}
verify_ex_errcode trigger1-6.3b SQLITE_CONSTRAINT_TRIGGER
do_test trigger1-6.4 {
  execsql {SELECT * FROM t2}
} {3 4 7 8}
do_test trigger1-6.5 {
  db close
  sqlite3 db test.db
  execsql {SELECT type, name FROM sqlite_master}
Changes to test/trigger3.test.
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
do_test trigger3-1.1 {
    catchsql {
        BEGIN;
        INSERT INTO tbl VALUES (5, 5, 6);
        INSERT INTO tbl VALUES (1, 5, 6);
    }
} {1 {Trigger abort}}

do_test trigger3-1.2 {
    execsql {
        SELECT * FROM tbl;
        ROLLBACK;
    }
} {5 5 6}
do_test trigger3-1.3 {
    execsql {SELECT * FROM tbl}
} {}

# FAIL
do_test trigger3-2.1 {
    catchsql {
        BEGIN;
        INSERT INTO tbl VALUES (5, 5, 6);
        INSERT INTO tbl VALUES (2, 5, 6);
    }
} {1 {Trigger fail}}

do_test trigger3-2.2 {
    execsql {
        SELECT * FROM tbl;
        ROLLBACK;
    }
} {5 5 6 2 5 6}
# ROLLBACK
do_test trigger3-3.1 {
    catchsql {
        BEGIN;
        INSERT INTO tbl VALUES (5, 5, 6);
        INSERT INTO tbl VALUES (3, 5, 6);
    }
} {1 {Trigger rollback}}

do_test trigger3-3.2 {
    execsql {
        SELECT * FROM tbl;
    }
} {}

# Verify that a ROLLBACK trigger works like a FAIL trigger if
# we are not within a transaction.  Ticket #3035.
#
do_test trigger3-3.3 {
    catchsql {COMMIT}
    catchsql {
        INSERT INTO tbl VALUES (3, 9, 10);
    }
} {1 {Trigger rollback}}

do_test trigger3-3.4 {
    execsql {SELECT * FROM tbl}
} {}

# IGNORE
do_test trigger3-4.1 {
    catchsql {







>


















>














>















>







41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
do_test trigger3-1.1 {
    catchsql {
        BEGIN;
        INSERT INTO tbl VALUES (5, 5, 6);
        INSERT INTO tbl VALUES (1, 5, 6);
    }
} {1 {Trigger abort}}
verify_ex_errcode trigger3-1.1b SQLITE_CONSTRAINT_TRIGGER
do_test trigger3-1.2 {
    execsql {
        SELECT * FROM tbl;
        ROLLBACK;
    }
} {5 5 6}
do_test trigger3-1.3 {
    execsql {SELECT * FROM tbl}
} {}

# FAIL
do_test trigger3-2.1 {
    catchsql {
        BEGIN;
        INSERT INTO tbl VALUES (5, 5, 6);
        INSERT INTO tbl VALUES (2, 5, 6);
    }
} {1 {Trigger fail}}
verify_ex_errcode trigger3-2.1b SQLITE_CONSTRAINT_TRIGGER
do_test trigger3-2.2 {
    execsql {
        SELECT * FROM tbl;
        ROLLBACK;
    }
} {5 5 6 2 5 6}
# ROLLBACK
do_test trigger3-3.1 {
    catchsql {
        BEGIN;
        INSERT INTO tbl VALUES (5, 5, 6);
        INSERT INTO tbl VALUES (3, 5, 6);
    }
} {1 {Trigger rollback}}
verify_ex_errcode trigger3-3.1b SQLITE_CONSTRAINT_TRIGGER
do_test trigger3-3.2 {
    execsql {
        SELECT * FROM tbl;
    }
} {}

# Verify that a ROLLBACK trigger works like a FAIL trigger if
# we are not within a transaction.  Ticket #3035.
#
do_test trigger3-3.3 {
    catchsql {COMMIT}
    catchsql {
        INSERT INTO tbl VALUES (3, 9, 10);
    }
} {1 {Trigger rollback}}
verify_ex_errcode trigger3-3.3b SQLITE_CONSTRAINT_TRIGGER
do_test trigger3-3.4 {
    execsql {SELECT * FROM tbl}
} {}

# IGNORE
do_test trigger3-4.1 {
    catchsql {
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192
193
194
}

do_test trigger3-7.1 {
    catchsql {
        INSERT INTO tbl_view VALUES(1, 2, 3);
    }
} {1 {View rollback}}

do_test trigger3-7.2 {
    catchsql {
        INSERT INTO tbl_view VALUES(2, 2, 3);
    }
} {0 {}}
do_test trigger3-7.3 {
    catchsql {
        INSERT INTO tbl_view VALUES(3, 2, 3);
    }
} {1 {View abort}}


} ;# ifcapable view

integrity_check trigger3-8.1

catchsql { DROP TABLE tbl; } 
catchsql { DROP TABLE tbl2; } 
catchsql { DROP VIEW tbl_view; }

finish_test







>










>










172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
}

do_test trigger3-7.1 {
    catchsql {
        INSERT INTO tbl_view VALUES(1, 2, 3);
    }
} {1 {View rollback}}
verify_ex_errcode trigger3-7.1b SQLITE_CONSTRAINT_TRIGGER
do_test trigger3-7.2 {
    catchsql {
        INSERT INTO tbl_view VALUES(2, 2, 3);
    }
} {0 {}}
do_test trigger3-7.3 {
    catchsql {
        INSERT INTO tbl_view VALUES(3, 2, 3);
    }
} {1 {View abort}}
verify_ex_errcode trigger3-7.3b SQLITE_CONSTRAINT_TRIGGER

} ;# ifcapable view

integrity_check trigger3-8.1

catchsql { DROP TABLE tbl; } 
catchsql { DROP TABLE tbl2; } 
catchsql { DROP VIEW tbl_view; }

finish_test
Changes to test/triggerA.test.
186
187
188
189
190
191
192







193
194
195
196
197
198
199
  db eval {
     DELETE FROM result4;
     CREATE TRIGGER r5u INSTEAD OF UPDATE ON v5 BEGIN
       INSERT INTO result4(a,b,c,d) VALUES(old.x, old.b, new.x, new.b);
     END;
     UPDATE v5 SET b = b+9900000 WHERE x BETWEEN 3 AND 5;
     SELECT * FROM result4 ORDER BY a;







  }
} {3 305 3 9900305 4 404 4 9900404 5 504 5 9900504}

# Only run the reamining tests if memory debugging is turned on.
#
ifcapable !memdebug {
   puts "Skipping triggerA malloc tests: not compiled with -DSQLITE_MEMDEBUG..."







>
>
>
>
>
>
>







186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
  db eval {
     DELETE FROM result4;
     CREATE TRIGGER r5u INSTEAD OF UPDATE ON v5 BEGIN
       INSERT INTO result4(a,b,c,d) VALUES(old.x, old.b, new.x, new.b);
     END;
     UPDATE v5 SET b = b+9900000 WHERE x BETWEEN 3 AND 5;
     SELECT * FROM result4 ORDER BY a;
  }
} {3 305 3 9900305 4 404 4 9900404 5 504 5 9900504}
do_test triggerA-2.11 {
  db eval {
     DELETE FROM result4;
     UPDATE v5 SET b = main.v5.b+9900000 WHERE main.v5.x BETWEEN 3 AND 5;
     SELECT * FROM result4 ORDER BY a;
  }
} {3 305 3 9900305 4 404 4 9900404 5 504 5 9900504}

# Only run the reamining tests if memory debugging is turned on.
#
ifcapable !memdebug {
   puts "Skipping triggerA malloc tests: not compiled with -DSQLITE_MEMDEBUG..."
Changes to test/unique.test.
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
  }
} {0 {}}
do_test unique-1.3 {
  catchsql {
    INSERT INTO t1(a,b,c) VALUES(1,3,4)
  }
} {1 {column a is not unique}}

do_test unique-1.4 {
  execsql {
    SELECT * FROM t1 ORDER BY a;
  }
} {1 2 3}
do_test unique-1.5 {
  catchsql {
    INSERT INTO t1(a,b,c) VALUES(3,2,4)
  }
} {1 {column b is not unique}}

do_test unique-1.6 {
  execsql {
    SELECT * FROM t1 ORDER BY a;
  }
} {1 2 3}
do_test unique-1.7 {
  catchsql {







>










>







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  }
} {0 {}}
do_test unique-1.3 {
  catchsql {
    INSERT INTO t1(a,b,c) VALUES(1,3,4)
  }
} {1 {column a is not unique}}
verify_ex_errcode unique-1.3b SQLITE_CONSTRAINT_UNIQUE
do_test unique-1.4 {
  execsql {
    SELECT * FROM t1 ORDER BY a;
  }
} {1 2 3}
do_test unique-1.5 {
  catchsql {
    INSERT INTO t1(a,b,c) VALUES(3,2,4)
  }
} {1 {column b is not unique}}
verify_ex_errcode unique-1.5b SQLITE_CONSTRAINT_UNIQUE
do_test unique-1.6 {
  execsql {
    SELECT * FROM t1 ORDER BY a;
  }
} {1 2 3}
do_test unique-1.7 {
  catchsql {
95
96
97
98
99
100
101

102
103
104
105
106
107
108
  }
} {0 {1 2 3 4}}
do_test unique-2.3 {
  catchsql {
    INSERT INTO t2 VALUES(1,5);
  }
} {1 {column a is not unique}}

do_test unique-2.4 {
  catchsql {
    SELECT * FROM t2 ORDER BY a
  }
} {0 {1 2 3 4}}
do_test unique-2.5 {
  catchsql {







>







97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
  }
} {0 {1 2 3 4}}
do_test unique-2.3 {
  catchsql {
    INSERT INTO t2 VALUES(1,5);
  }
} {1 {column a is not unique}}
verify_ex_errcode unique-2.3b SQLITE_CONSTRAINT_UNIQUE
do_test unique-2.4 {
  catchsql {
    SELECT * FROM t2 ORDER BY a
  }
} {0 {1 2 3 4}}
do_test unique-2.5 {
  catchsql {
121
122
123
124
125
126
127

128
129
130
131
132
133
134
  }
} {0 {1 2 1 5 3 4}}
do_test unique-2.8 {
  catchsql {
    CREATE UNIQUE INDEX i2 ON t2(a);
  }
} {1 {indexed columns are not unique}}

do_test unique-2.9 {
  catchsql {
    CREATE INDEX i2 ON t2(a);
  }
} {0 {}}
integrity_check unique-2.10








>







124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  }
} {0 {1 2 1 5 3 4}}
do_test unique-2.8 {
  catchsql {
    CREATE UNIQUE INDEX i2 ON t2(a);
  }
} {1 {indexed columns are not unique}}
verify_ex_errcode unique-2.8b SQLITE_CONSTRAINT_UNIQUE
do_test unique-2.9 {
  catchsql {
    CREATE INDEX i2 ON t2(a);
  }
} {0 {}}
integrity_check unique-2.10

159
160
161
162
163
164
165

166
167
168
169
170
171
172
} {0 {1 2 3 4 1 2 3 5}}
do_test unique-3.4 {
  catchsql {
    INSERT INTO t3(a,b,c,d) VALUES(1,4,3,5);
    SELECT * FROM t3 ORDER BY a,b,c,d;
  }
} {1 {columns a, c, d are not unique}}

integrity_check unique-3.5

# Make sure NULLs are distinct as far as the UNIQUE tests are
# concerned.
#
do_test unique-4.1 {
  execsql {







>







163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
} {0 {1 2 3 4 1 2 3 5}}
do_test unique-3.4 {
  catchsql {
    INSERT INTO t3(a,b,c,d) VALUES(1,4,3,5);
    SELECT * FROM t3 ORDER BY a,b,c,d;
  }
} {1 {columns a, c, d are not unique}}
verify_ex_errcode unique-3.4b SQLITE_CONSTRAINT_UNIQUE
integrity_check unique-3.5

# Make sure NULLs are distinct as far as the UNIQUE tests are
# concerned.
#
do_test unique-4.1 {
  execsql {
213
214
215
216
217
218
219

220
221
222
223
224
225
226
} {0 {}}
do_test unique-4.9 {
  catchsql {CREATE UNIQUE INDEX i4b ON t4(a,b,c)}
} {0 {}}
do_test unique-4.10 {
  catchsql {CREATE UNIQUE INDEX i4c ON t4(b)}
} {1 {indexed columns are not unique}}

integrity_check unique-4.99

# Test the error message generation logic.  In particular, make sure we
# do not overflow the static buffer used to generate the error message.
#
do_test unique-5.1 {
  execsql {







>







218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
} {0 {}}
do_test unique-4.9 {
  catchsql {CREATE UNIQUE INDEX i4b ON t4(a,b,c)}
} {0 {}}
do_test unique-4.10 {
  catchsql {CREATE UNIQUE INDEX i4c ON t4(b)}
} {1 {indexed columns are not unique}}
verify_ex_errcode unique-4.10b SQLITE_CONSTRAINT_UNIQUE
integrity_check unique-4.99

# Test the error message generation logic.  In particular, make sure we
# do not overflow the static buffer used to generate the error message.
#
do_test unique-5.1 {
  execsql {
245
246
247
248
249
250
251

252

253
  }
} {1 2 3 4 5 6}
do_test unique-5.2 {
  catchsql {
    INSERT INTO t5 VALUES(1,2,3,4,5,6);
  }
} {1 {columns first_column_with_long_name, second_column_with_long_name, third_column_with_long_name, fourth_column_with_long_name, fifth_column_with_long_name, sixth_column_with_long_name are not unique}}



finish_test







>

>

251
252
253
254
255
256
257
258
259
260
261
  }
} {1 2 3 4 5 6}
do_test unique-5.2 {
  catchsql {
    INSERT INTO t5 VALUES(1,2,3,4,5,6);
  }
} {1 {columns first_column_with_long_name, second_column_with_long_name, third_column_with_long_name, fourth_column_with_long_name, fifth_column_with_long_name, sixth_column_with_long_name are not unique}}
verify_ex_errcode unique-5.2b SQLITE_CONSTRAINT_UNIQUE


finish_test
Changes to test/view.test.
571
572
573
574
575
576
577



































578
579
  execsql {
    DROP TABLE IF EXISTS t1;
    DROP VIEW IF EXISTS v1;
    CREATE TABLE t1(c1);
    CREATE VIEW v1 AS SELECT c1 FROM (SELECT t1.c1 FROM t1);
  }
} {}




































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
  execsql {
    DROP TABLE IF EXISTS t1;
    DROP VIEW IF EXISTS v1;
    CREATE TABLE t1(c1);
    CREATE VIEW v1 AS SELECT c1 FROM (SELECT t1.c1 FROM t1);
  }
} {}

# Ticket [d58ccbb3f1b]: Prevent Table.nRef overflow.
db close
sqlite3 db :memory:
do_test view-21.1 {
  catchsql {
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(5);
    CREATE VIEW v1 AS SELECT x*2 FROM t1;
    CREATE VIEW v2 AS SELECT * FROM v1 UNION SELECT * FROM v1;
    CREATE VIEW v4 AS SELECT * FROM v2 UNION SELECT * FROM v2;
    CREATE VIEW v8 AS SELECT * FROM v4 UNION SELECT * FROM v4;
    CREATE VIEW v16 AS SELECT * FROM v8 UNION SELECT * FROM v8;
    CREATE VIEW v32 AS SELECT * FROM v16 UNION SELECT * FROM v16;
    CREATE VIEW v64 AS SELECT * FROM v32 UNION SELECT * FROM v32;
    CREATE VIEW v128 AS SELECT * FROM v64 UNION SELECT * FROM v64;
    CREATE VIEW v256 AS SELECT * FROM v128 UNION SELECT * FROM v128;
    CREATE VIEW v512 AS SELECT * FROM v256 UNION SELECT * FROM v256;
    CREATE VIEW v1024 AS SELECT * FROM v512 UNION SELECT * FROM v512;
    CREATE VIEW v2048 AS SELECT * FROM v1024 UNION SELECT * FROM v1024;
    CREATE VIEW v4096 AS SELECT * FROM v2048 UNION SELECT * FROM v2048;
    CREATE VIEW v8192 AS SELECT * FROM v4096 UNION SELECT * FROM v4096;
    CREATE VIEW v16384 AS SELECT * FROM v8192 UNION SELECT * FROM v8192;
    CREATE VIEW v32768 AS SELECT * FROM v16384 UNION SELECT * FROM v16384;
    CREATE VIEW vx AS SELECT * FROM v32768 UNION SELECT * FROM v32768;
  }
} {1 {too many references to "v1": max 65535}}
ifcapable progress {
  do_test view-21.2 {
    db progress 1000 {expr 1}
    catchsql {
      SELECT * FROM v32768;
    }
  } {1 interrupted}
}

finish_test
Changes to test/vtab1.test.
1086
1087
1088
1089
1090
1091
1092










































1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
} {15 {} 16}
do_test vtab1.13-3 {
  execsql { 
    SELECT * FROM echo_c WHERE b IS NULL AND a = 15;
  }
} {15 {} 16}












































do_test vtab1-14.1 {
  execsql { DELETE FROM c }
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid IN (1, 2, 3) }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c'} xFilter {SELECT rowid, * FROM 'c'}]

do_test vtab1-14.2 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE rowid = ?} xFilter {SELECT rowid, * FROM 'c' WHERE rowid = ?} 1]

do_test vtab1-14.3 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE a = ?} xFilter {SELECT rowid, * FROM 'c' WHERE a = ?} 1]

do_test vtab1-14.4 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a IN (1, 2) }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c'} xFilter {SELECT rowid, * FROM 'c'}]

do_test vtab1-15.1 {
  execsql {
    CREATE TABLE t1(a, b, c);
    CREATE VIRTUAL TABLE echo_t1 USING echo(t1);
  }
} {}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|

















|







1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
} {15 {} 16}
do_test vtab1.13-3 {
  execsql { 
    SELECT * FROM echo_c WHERE b IS NULL AND a = 15;
  }
} {15 {} 16}


do_test vtab1-14.001 {
  execsql {SELECT rowid, * FROM echo_c WHERE +rowid IN (1,2,3)}
} {1 3 G H 2 {} 15 16 3 15 {} 16}
do_test vtab1-14.002 {
  execsql {SELECT rowid, * FROM echo_c WHERE rowid IN (1,2,3)}
} {1 3 G H 2 {} 15 16 3 15 {} 16}
do_test vtab1-14.003 {
  execsql {SELECT rowid, * FROM echo_c WHERE +rowid IN (0,1,5,2,'a',3,NULL)}
} {1 3 G H 2 {} 15 16 3 15 {} 16}
do_test vtab1-14.004 {
  execsql {SELECT rowid, * FROM echo_c WHERE rowid IN (0,1,5,'a',2,3,NULL)}
} {1 3 G H 2 {} 15 16 3 15 {} 16}
do_test vtab1-14.005 {
  execsql {SELECT rowid, * FROM echo_c WHERE rowid NOT IN (0,1,5,'a',2,3)}
} {}
do_test vtab1-14.006 {
  execsql {SELECT rowid, * FROM echo_c WHERE rowid NOT IN (0,5,'a',2,3)}
} {1 3 G H}
do_test vtab1-14.007 {
  execsql {SELECT rowid, * FROM echo_c WHERE +rowid NOT IN (0,5,'a',2,3,NULL)}
} {}
do_test vtab1-14.008 {
  execsql {SELECT rowid, * FROM echo_c WHERE rowid NOT IN (0,5,'a',2,3,NULL)}
} {}
do_test vtab1-14.011 {
  execsql {SELECT * FROM echo_c WHERE +a IN (1,3,8,'x',NULL,15,24)}
} {3 G H 15 {} 16}
do_test vtab1-14.012 {
  execsql {SELECT * FROM echo_c WHERE a IN (1,3,8,'x',NULL,15,24)}
} {3 G H 15 {} 16}
do_test vtab1-14.013 {
  execsql {SELECT * FROM echo_c WHERE a NOT IN (1,8,'x',15,24)}
} {3 G H}
do_test vtab1-14.014 {
  execsql {SELECT * FROM echo_c WHERE a NOT IN (1,8,'x',NULL,15,24)}
} {}
do_test vtab1-14.015 {
  execsql {SELECT * FROM echo_c WHERE +a NOT IN (1,8,'x',NULL,15,24)}
} {}



do_test vtab1-14.1 {
  execsql { DELETE FROM c }
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid IN (1, 2, 3) }
  set echo_module
} {/xBestIndex {SELECT rowid, . FROM 'c' WHERE rowid = .} xFilter {SELECT rowid, . FROM 'c' WHERE rowid = .} 1/}

do_test vtab1-14.2 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE rowid = ?} xFilter {SELECT rowid, * FROM 'c' WHERE rowid = ?} 1]

do_test vtab1-14.3 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE a = ?} xFilter {SELECT rowid, * FROM 'c' WHERE a = ?} 1]

do_test vtab1-14.4 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a IN (1, 2) }
  set echo_module
} {/xBestIndex {SELECT rowid, . FROM 'c' WHERE a = .} xFilter {SELECT rowid, . FROM 'c' WHERE a = .} 1/}

do_test vtab1-15.1 {
  execsql {
    CREATE TABLE t1(a, b, c);
    CREATE VIRTUAL TABLE echo_t1 USING echo(t1);
  }
} {}
Changes to test/where.test.
375
376
377
378
379
380
381
382
383
384
385
386















387
388
389
390
391
392
393
    }
  } {1 0 4 2 1 9 3 1 16 4}
  do_test where-5.2 {
    count {
      SELECT * FROM t1 WHERE rowid+0 IN (1,2,3,1234) order by 1;
    }
  } {1 0 4 2 1 9 3 1 16 102}
  do_test where-5.3 {
    count {
      SELECT * FROM t1 WHERE w IN (-1,1,2,3) order by 1;
    }
  } {1 0 4 2 1 9 3 1 16 14}















  do_test where-5.4 {
    count {
      SELECT * FROM t1 WHERE w+0 IN (-1,1,2,3) order by 1;
    }
  } {1 0 4 2 1 9 3 1 16 102}
  do_test where-5.5 {
    count {







|



|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    }
  } {1 0 4 2 1 9 3 1 16 4}
  do_test where-5.2 {
    count {
      SELECT * FROM t1 WHERE rowid+0 IN (1,2,3,1234) order by 1;
    }
  } {1 0 4 2 1 9 3 1 16 102}
  do_test where-5.3a {
    count {
      SELECT * FROM t1 WHERE w IN (-1,1,2,3) order by 1;
    }
  } {1 0 4 2 1 9 3 1 16 13}
  do_test where-5.3b {
    count {
      SELECT * FROM t1 WHERE w IN (3,-1,1,2) order by 1;
    }
  } {1 0 4 2 1 9 3 1 16 13}
  do_test where-5.3c {
    count {
      SELECT * FROM t1 WHERE w IN (3,2,-1,1,2) order by 1;
    }
  } {1 0 4 2 1 9 3 1 16 13}
  do_test where-5.3d {
    count {
      SELECT * FROM t1 WHERE w IN (-1,1,2,3) order by 1 DESC;
    }
  } {3 1 16 2 1 9 1 0 4 12}
  do_test where-5.4 {
    count {
      SELECT * FROM t1 WHERE w+0 IN (-1,1,2,3) order by 1;
    }
  } {1 0 4 2 1 9 3 1 16 102}
  do_test where-5.5 {
    count {
448
449
450
451
452
453
454
























455
456
457
458
459
460
461
    }
  } {2 1 9 8}
  do_test where-5.15 {
    count {
      SELECT * FROM t1 WHERE x IN (1,7) AND y IN (9,16) ORDER BY 1;
    }
  } {2 1 9 3 1 16 11}
























}

# This procedure executes the SQL.  Then it checks to see if the OP_Sort
# opcode was executed.  If an OP_Sort did occur, then "sort" is appended
# to the result.  If no OP_Sort happened, then "nosort" is appended.
#
# This procedure is used to check to make sure sorting is or is not







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    }
  } {2 1 9 8}
  do_test where-5.15 {
    count {
      SELECT * FROM t1 WHERE x IN (1,7) AND y IN (9,16) ORDER BY 1;
    }
  } {2 1 9 3 1 16 11}
  do_test where-5.100 {
    db eval {
      SELECT w, x, y FROM t1 WHERE x IN (1,5) AND y IN (9,8,3025,1000,3969)
       ORDER BY x, y
    }
  } {2 1 9 54 5 3025 62 5 3969}
  do_test where-5.101 {
    db eval {
      SELECT w, x, y FROM t1 WHERE x IN (1,5) AND y IN (9,8,3025,1000,3969)
       ORDER BY x DESC, y DESC
    }
  } {62 5 3969 54 5 3025 2 1 9}
  do_test where-5.102 {
    db eval {
      SELECT w, x, y FROM t1 WHERE x IN (1,5) AND y IN (9,8,3025,1000,3969)
       ORDER BY x DESC, y
    }
  } {54 5 3025 62 5 3969 2 1 9}
  do_test where-5.103 {
    db eval {
      SELECT w, x, y FROM t1 WHERE x IN (1,5) AND y IN (9,8,3025,1000,3969)
       ORDER BY x, y DESC
    }
  } {2 1 9 62 5 3969 54 5 3025}
}

# This procedure executes the SQL.  Then it checks to see if the OP_Sort
# opcode was executed.  If an OP_Sort did occur, then "sort" is appended
# to the result.  If no OP_Sort happened, then "nosort" is appended.
#
# This procedure is used to check to make sure sorting is or is not
507
508
509
510
511
512
513
514
515
516
517
518





519
520
521
522
523
524
525
} {1 100 4 2 99 9 3 98 16 nosort}
do_test where-6.7 {
  cksort {
    SELECT * FROM t3 WHERE b>0 ORDER BY a LIMIT 3
  }
} {1 100 4 2 99 9 3 98 16 nosort}
ifcapable subquery {
  do_test where-6.8 {
    cksort {
      SELECT * FROM t3 WHERE a IN (3,5,7,1,9,4,2) ORDER BY a LIMIT 3
    }
  } {1 100 4 2 99 9 3 98 16 sort}





}
do_test where-6.9.1 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.1.1 {







|



|
>
>
>
>
>







546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
} {1 100 4 2 99 9 3 98 16 nosort}
do_test where-6.7 {
  cksort {
    SELECT * FROM t3 WHERE b>0 ORDER BY a LIMIT 3
  }
} {1 100 4 2 99 9 3 98 16 nosort}
ifcapable subquery {
  do_test where-6.8a {
    cksort {
      SELECT * FROM t3 WHERE a IN (3,5,7,1,9,4,2) ORDER BY a LIMIT 3
    }
  } {1 100 4 2 99 9 3 98 16 nosort}
  do_test where-6.8b {
    cksort {
      SELECT * FROM t3 WHERE a IN (3,5,7,1,9,4,2) ORDER BY a DESC LIMIT 3
    }
  } {9 92 100 7 94 64 5 96 36 nosort}
}
do_test where-6.9.1 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.1.1 {
Changes to test/where2.test.
163
164
165
166
167
168
169
170
























171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187






188
189
190
191
192
193
194
        SELECT * FROM t1 WHERE z IN (SELECT 10207 UNION SELECT 10006)
                         AND y IN (SELECT 10000 UNION SELECT 10201)
                         AND x>0 AND x<10
        ORDER BY w
      }
    } {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
  }
  do_test where2-4.6 {
























    queryplan {
      SELECT * FROM t1
       WHERE x IN (1,2,3,4,5,6,7,8)
         AND y IN (10000,10001,10002,10003,10004,10005)
       ORDER BY 2
    }
  } {99 6 10000 10006 sort t1 i1xy}

  # Duplicate entires on the RHS of an IN operator do not cause duplicate
  # output rows.
  #
  do_test where2-4.6 {
    queryplan {
      SELECT * FROM t1 WHERE z IN (10207,10006,10006,10207)
      ORDER BY w
    }
  } {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}






  ifcapable compound {
    do_test where2-4.7 {
      queryplan {
        SELECT * FROM t1 WHERE z IN (
           SELECT 10207 UNION ALL SELECT 10006
           UNION ALL SELECT 10006 UNION ALL SELECT 10207)
        ORDER BY w







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|






|





>
>
>
>
>
>







163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        SELECT * FROM t1 WHERE z IN (SELECT 10207 UNION SELECT 10006)
                         AND y IN (SELECT 10000 UNION SELECT 10201)
                         AND x>0 AND x<10
        ORDER BY w
      }
    } {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
  }
  do_test where2-4.6a {
    queryplan {
      SELECT * FROM t1
       WHERE x IN (1,2,3,4,5,6,7,8)
         AND y IN (10000,10001,10002,10003,10004,10005)
       ORDER BY x
    }
  } {99 6 10000 10006 nosort t1 i1xy}
  do_test where2-4.6b {
    queryplan {
      SELECT * FROM t1
       WHERE x IN (1,2,3,4,5,6,7,8)
         AND y IN (10000,10001,10002,10003,10004,10005)
       ORDER BY x DESC
    }
  } {99 6 10000 10006 nosort t1 i1xy}
  do_test where2-4.6c {
    queryplan {
      SELECT * FROM t1
       WHERE x IN (1,2,3,4,5,6,7,8)
         AND y IN (10000,10001,10002,10003,10004,10005)
       ORDER BY x, y
    }
  } {99 6 10000 10006 nosort t1 i1xy}
  do_test where2-4.6d {
    queryplan {
      SELECT * FROM t1
       WHERE x IN (1,2,3,4,5,6,7,8)
         AND y IN (10000,10001,10002,10003,10004,10005)
       ORDER BY x, y DESC
    }
  } {99 6 10000 10006 sort t1 i1xy}

  # Duplicate entires on the RHS of an IN operator do not cause duplicate
  # output rows.
  #
  do_test where2-4.6x {
    queryplan {
      SELECT * FROM t1 WHERE z IN (10207,10006,10006,10207)
      ORDER BY w
    }
  } {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
  do_test where2-4.6y {
    queryplan {
      SELECT * FROM t1 WHERE z IN (10207,10006,10006,10207)
      ORDER BY w DESC
    }
  } {100 6 10201 10207 99 6 10000 10006 sort t1 i1zyx}
  ifcapable compound {
    do_test where2-4.7 {
      queryplan {
        SELECT * FROM t1 WHERE z IN (
           SELECT 10207 UNION ALL SELECT 10006
           UNION ALL SELECT 10006 UNION ALL SELECT 10207)
        ORDER BY w
203
204
205
206
207
208
209
210
211
212
213
214





215
216
217
218
219
220
221
do_test where2-5.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 ORDER BY w
  }
} {99 6 10000 10006 nosort t1 i1w}

ifcapable subquery {
  do_test where2-5.2 {
    queryplan {
      SELECT * FROM t1 WHERE w IN (99) ORDER BY w
    }
  } {99 6 10000 10006 sort t1 i1w}





}

# Verify that OR clauses get translated into IN operators.
#
set ::idx {}
ifcapable subquery {set ::idx i1w}
do_test where2-6.1.1 {







|



|
>
>
>
>
>







233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
do_test where2-5.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 ORDER BY w
  }
} {99 6 10000 10006 nosort t1 i1w}

ifcapable subquery {
  do_test where2-5.2a {
    queryplan {
      SELECT * FROM t1 WHERE w IN (99) ORDER BY w
    }
  } {99 6 10000 10006 nosort t1 i1w}
  do_test where2-5.2b {
    queryplan {
      SELECT * FROM t1 WHERE w IN (99) ORDER BY w DESC
    }
  } {99 6 10000 10006 nosort t1 i1w}
}

# Verify that OR clauses get translated into IN operators.
#
set ::idx {}
ifcapable subquery {set ::idx i1w}
do_test where2-6.1.1 {
Changes to test/where8.test.
285
286
287
288
289
290
291














292
293
294
295
296
297
298
  execsql_status {
    SELECT c FROM t1, t2 WHERE a BETWEEN 1 AND 2 OR a = (
      SELECT sum(e IS NULL) FROM t2 AS inner WHERE t2.d>inner.d
    )
    ORDER BY c
  }
} {I I I I I I I I I I II II II II II II II II II II III III III III III 9 1}















#-----------------------------------------------------------------------
# The following tests - where8-4.* - verify that adding or removing 
# indexes does not change the results returned by various queries.
#
do_test where8-4.1 {
  execsql {







>
>
>
>
>
>
>
>
>
>
>
>
>
>







285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
  execsql_status {
    SELECT c FROM t1, t2 WHERE a BETWEEN 1 AND 2 OR a = (
      SELECT sum(e IS NULL) FROM t2 AS inner WHERE t2.d>inner.d
    )
    ORDER BY c
  }
} {I I I I I I I I I I II II II II II II II II II II III III III III III 9 1}


do_test where8-3.21 {
  execsql_status {
    SELECT a, d FROM t1, (t2) WHERE (a=d OR b=e) AND a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 0 0}
do_test where8-3.22 {
  execsql_status {
    SELECT a, d FROM ((((((t1))), (((t2))))))
     WHERE (a=d OR b=e) AND a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 0 0}


#-----------------------------------------------------------------------
# The following tests - where8-4.* - verify that adding or removing 
# indexes does not change the results returned by various queries.
#
do_test where8-4.1 {
  execsql {
Changes to test/where9.test.
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        OR (b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
    ORDER BY a
  }
} {90 91 92 97 scan 98 sort 0}
do_test where9-1.3.4 {
  count_steps {
    SELECT a FROM t4
     WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
    ORDER BY a
  }
} {90 91 92 97 scan 98 sort 0}








|







228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        OR (b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
    ORDER BY a
  }
} {90 91 92 97 scan 98 sort 0}
do_test where9-1.3.4 {
  count_steps {
    SELECT a FROM (t4)
     WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
    ORDER BY a
  }
} {90 91 92 97 scan 98 sort 0}

870
871
872
873
874
875
876
















877
878
879
880
    INSERT INTO t82 VALUES(2,4);
    INSERT INTO t83 VALUES(5,55);
    
    SELECT *
      FROM t81 LEFT JOIN t82 ON y=b JOIN t83
     WHERE c==p OR d==p
     ORDER BY +a;
















  }
} {2 3 4 5 {} {} 5 55 3 4 5 6 2 4 5 55}

finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
    INSERT INTO t82 VALUES(2,4);
    INSERT INTO t83 VALUES(5,55);
    
    SELECT *
      FROM t81 LEFT JOIN t82 ON y=b JOIN t83
     WHERE c==p OR d==p
     ORDER BY +a;
  }
} {2 3 4 5 {} {} 5 55 3 4 5 6 2 4 5 55}
do_test where9-8.2 {
  db eval {
    SELECT *
      FROM t81 LEFT JOIN (t82) ON y=b JOIN t83
     WHERE c==p OR d==p
     ORDER BY +a;
  }
} {2 3 4 5 {} {} 5 55 3 4 5 6 2 4 5 55}
do_test where9-8.3 {
  db eval {
    SELECT *
      FROM (t81) LEFT JOIN (main.t82) ON y=b JOIN t83
     WHERE c==p OR d==p
     ORDER BY +a;
  }
} {2 3 4 5 {} {} 5 55 3 4 5 6 2 4 5 55}

finish_test
Changes to tool/build-shell.sh.
11
12
13
14
15
16
17


18
19
20



21
make sqlite3.c
gcc -o sqlite3 -g -Os -I. \
   -DSQLITE_THREADSAFE=0 \
   -DSQLITE_ENABLE_VFSTRACE \
   -DSQLITE_ENABLE_STAT3 \
   -DSQLITE_ENABLE_FTS4 \
   -DSQLITE_ENABLE_RTREE \


   -DHAVE_READLINE \
   -DHAVE_USLEEP=1 \
   ../sqlite/src/shell.c ../sqlite/src/test_vfstrace.c \



   sqlite3.c -ldl -lreadline -lncurses







>
>


|
>
>
>

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
make sqlite3.c
gcc -o sqlite3 -g -Os -I. \
   -DSQLITE_THREADSAFE=0 \
   -DSQLITE_ENABLE_VFSTRACE \
   -DSQLITE_ENABLE_STAT3 \
   -DSQLITE_ENABLE_FTS4 \
   -DSQLITE_ENABLE_RTREE \
   -DSQLITE_ENABLE_REGEXP \
   -DSQLITE_ENABLE_SPELLFIX -DSQLITE_CORE=1 \
   -DHAVE_READLINE \
   -DHAVE_USLEEP=1 \
   ../sqlite/src/shell.c \
   ../sqlite/src/test_regexp.c \
   ../sqlite/src/test_spellfix.c \
   ../sqlite/src/test_vfstrace.c \
   sqlite3.c -ldl -lreadline -lncurses
Changes to tool/showdb.c.
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
  va_list ap;
  char *zMsg;

  va_start(ap, zFormat);
  zMsg = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  if( pgno<=0 || pgno>mxPage ){
    printf("ERROR: page %d out of bounds.  Range=1..%d.  Msg: %s\n",
            pgno, mxPage, zMsg);
    sqlite3_free(zMsg);
    return;
  }
  if( zPageUse[pgno]!=0 ){
    printf("ERROR: page %d used multiple times:\n", pgno);
    printf("ERROR:    previous: %s\n", zPageUse[pgno]);
    printf("ERROR:    current:  %s\n", zPageUse[pgno]);
    sqlite3_free(zPageUse[pgno]);
  }
  zPageUse[pgno] = zMsg;
}

/*
** Find overflow pages of a cell and describe their usage.







|







|







467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
  va_list ap;
  char *zMsg;

  va_start(ap, zFormat);
  zMsg = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  if( pgno<=0 || pgno>mxPage ){
    printf("ERROR: page %d out of range 1..%d: %s\n",
            pgno, mxPage, zMsg);
    sqlite3_free(zMsg);
    return;
  }
  if( zPageUse[pgno]!=0 ){
    printf("ERROR: page %d used multiple times:\n", pgno);
    printf("ERROR:    previous: %s\n", zPageUse[pgno]);
    printf("ERROR:    current:  %s\n", zMsg);
    sqlite3_free(zPageUse[pgno]);
  }
  zPageUse[pgno] = zMsg;
}

/*
** Find overflow pages of a cell and describe their usage.
610
611
612
613
614
615
616
















617
618
619
620
621
622
623
624
625
626

627
628
629
630
631
632
633
                     i, pgno);
    }
    free(a);
    parent = pgno;
    pgno = iNext;
  }
}

















/*
** Try to figure out how every page in the database file is being used.
*/
static void page_usage_report(const char *zDbName){
  int i;
  int rc;
  sqlite3 *db;
  sqlite3_stmt *pStmt;
  unsigned char *a;


  /* Avoid the pathological case */
  if( mxPage<1 ){
    printf("empty database\n");
    return;
  }








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|




>







610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
                     i, pgno);
    }
    free(a);
    parent = pgno;
    pgno = iNext;
  }
}

/*
** Determine pages used as PTRMAP pages
*/
static void page_usage_ptrmap(unsigned char *a){
  if( a[55] ){
    int usable = pagesize - a[20];
    int pgno = 2;
    int perPage = usable/5;
    while( pgno<=mxPage ){
      page_usage_msg(pgno, "PTRMAP page covering %d..%d",
                           pgno+1, pgno+perPage);
      pgno += perPage + 1;
    }
  }
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void page_usage_report(const char *zDbName){
  int i, j;
  int rc;
  sqlite3 *db;
  sqlite3_stmt *pStmt;
  unsigned char *a;
  char zQuery[200];

  /* Avoid the pathological case */
  if( mxPage<1 ){
    printf("empty database\n");
    return;
  }

644
645
646
647
648
649
650

651
652


653
654

655
656
657
658
659
660
661
662
663
664


665
666
667
668
669
670
671
672
673
674















































675
676
677
678
679
680
681
682
683
684

685
686
687
688
689
690
691
  zPageUse = sqlite3_malloc( sizeof(zPageUse[0])*(mxPage+1) );
  if( zPageUse==0 ) out_of_memory();
  memset(zPageUse, 0, sizeof(zPageUse[0])*(mxPage+1));

  /* Discover the usage of each page */
  a = getContent(0, 100);
  page_usage_freelist(decodeInt32(a+32));

  free(a);
  page_usage_btree(1, 0, 0, "sqlite_master");


  rc = sqlite3_prepare_v2(db,
           "SELECT type, name, rootpage FROM SQLITE_MASTER WHERE rootpage",

           -1, &pStmt, 0);
  if( rc==SQLITE_OK ){
    while( sqlite3_step(pStmt)==SQLITE_ROW ){
      int pgno = sqlite3_column_int(pStmt, 2);
      page_usage_btree(pgno, 0, 0, sqlite3_column_text(pStmt, 1));
    }
  }else{
    printf("ERROR: cannot query database: %s\n", sqlite3_errmsg(db));
  }
  sqlite3_finalize(pStmt);


  sqlite3_close(db);

  /* Print the report and free memory used */
  for(i=1; i<=mxPage; i++){
    printf("%5d: %s\n", i, zPageUse[i] ? zPageUse[i] : "???");
    sqlite3_free(zPageUse[i]);
  }
  sqlite3_free(zPageUse);
  zPageUse = 0;
}
















































/*
** Print a usage comment
*/
static void usage(const char *argv0){
  fprintf(stderr, "Usage %s FILENAME ?args...?\n\n", argv0);
  fprintf(stderr,
    "args:\n"
    "    dbheader        Show database header\n"
    "    pgidx           Index of how each page is used\n"

    "    NNN..MMM        Show hex of pages NNN through MMM\n"
    "    NNN..end        Show hex of pages NNN through end of file\n"
    "    NNNb            Decode btree page NNN\n"
    "    NNNbc           Decode btree page NNN and show content\n"
    "    NNNbm           Decode btree page NNN and show a layout map\n"
    "    NNNt            Decode freelist trunk page NNN\n"
    "    NNNtd           Show leaf freelist pages on the decode\n"







>


>
>
|
|
>
|
|
|
|
|
|
|
|
|
|
>
>










>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










>







661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
  zPageUse = sqlite3_malloc( sizeof(zPageUse[0])*(mxPage+1) );
  if( zPageUse==0 ) out_of_memory();
  memset(zPageUse, 0, sizeof(zPageUse[0])*(mxPage+1));

  /* Discover the usage of each page */
  a = getContent(0, 100);
  page_usage_freelist(decodeInt32(a+32));
  page_usage_ptrmap(a);
  free(a);
  page_usage_btree(1, 0, 0, "sqlite_master");
  sqlite3_exec(db, "PRAGMA writable_schema=ON", 0, 0, 0);
  for(j=0; j<2; j++){
    sqlite3_snprintf(sizeof(zQuery), zQuery,
             "SELECT type, name, rootpage FROM SQLITE_MASTER WHERE rootpage"
             " ORDER BY rowid %s", j?"DESC":"");
    rc = sqlite3_prepare_v2(db, zQuery, -1, &pStmt, 0);
    if( rc==SQLITE_OK ){
      while( sqlite3_step(pStmt)==SQLITE_ROW ){
        int pgno = sqlite3_column_int(pStmt, 2);
        page_usage_btree(pgno, 0, 0, sqlite3_column_text(pStmt, 1));
      }
    }else{
      printf("ERROR: cannot query database: %s\n", sqlite3_errmsg(db));
    }
    rc = sqlite3_finalize(pStmt);
    if( rc==SQLITE_OK ) break;
  }
  sqlite3_close(db);

  /* Print the report and free memory used */
  for(i=1; i<=mxPage; i++){
    printf("%5d: %s\n", i, zPageUse[i] ? zPageUse[i] : "???");
    sqlite3_free(zPageUse[i]);
  }
  sqlite3_free(zPageUse);
  zPageUse = 0;
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void ptrmap_coverage_report(const char *zDbName){
  unsigned int pgno;
  unsigned char *aHdr;
  unsigned char *a;
  int usable;
  int perPage;
  unsigned int i;

  /* Avoid the pathological case */
  if( mxPage<1 ){
    printf("empty database\n");
    return;
  }

  /* Make sure PTRMAPs are used in this database */
  aHdr = getContent(0, 100);
  if( aHdr[55]==0 ){
    printf("database does not use PTRMAP pages\n");
    return;
  }
  usable = pagesize - aHdr[20];
  perPage = usable/5;
  free(aHdr);
  printf("%5d: root of sqlite_master\n", 1);
  for(pgno=2; pgno<=mxPage; pgno += perPage+1){
    printf("%5d: PTRMAP page covering %d..%d\n", pgno,
           pgno+1, pgno+perPage);
    a = getContent((pgno-1)*pagesize, usable);
    for(i=0; i+5<=usable && pgno+1+i/5<=mxPage; i+=5){
      const char *zType = "???";
      unsigned int iFrom = decodeInt32(&a[i+1]);
      switch( a[i] ){
        case 1:  zType = "b-tree root page";        break;
        case 2:  zType = "freelist page";           break;
        case 3:  zType = "first page of overflow";  break;
        case 4:  zType = "later page of overflow";  break;
        case 5:  zType = "b-tree non-root page";    break;
      }
      printf("%5d: %s, parent=%u\n", pgno+1+i/5, zType, iFrom);
    }
    free(a);
  }
}

/*
** Print a usage comment
*/
static void usage(const char *argv0){
  fprintf(stderr, "Usage %s FILENAME ?args...?\n\n", argv0);
  fprintf(stderr,
    "args:\n"
    "    dbheader        Show database header\n"
    "    pgidx           Index of how each page is used\n"
    "    ptrmap          Show all PTRMAP page content\n"
    "    NNN..MMM        Show hex of pages NNN through MMM\n"
    "    NNN..end        Show hex of pages NNN through end of file\n"
    "    NNNb            Decode btree page NNN\n"
    "    NNNbc           Decode btree page NNN and show content\n"
    "    NNNbm           Decode btree page NNN and show a layout map\n"
    "    NNNt            Decode freelist trunk page NNN\n"
    "    NNNtd           Show leaf freelist pages on the decode\n"
726
727
728
729
730
731
732








733
734
735
736
737
738
739
      if( strcmp(argv[i], "dbheader")==0 ){
        print_db_header();
        continue;
      }
      if( strcmp(argv[i], "pgidx")==0 ){
        page_usage_report(argv[1]);
        continue;








      }
      if( !isdigit(argv[i][0]) ){
        fprintf(stderr, "%s: unknown option: [%s]\n", argv[0], argv[i]);
        continue;
      }
      iStart = strtol(argv[i], &zLeft, 0);
      if( zLeft && strcmp(zLeft,"..end")==0 ){







>
>
>
>
>
>
>
>







797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
      if( strcmp(argv[i], "dbheader")==0 ){
        print_db_header();
        continue;
      }
      if( strcmp(argv[i], "pgidx")==0 ){
        page_usage_report(argv[1]);
        continue;
      }
      if( strcmp(argv[i], "ptrmap")==0 ){
        ptrmap_coverage_report(argv[1]);
        continue;
      }
      if( strcmp(argv[i], "help")==0 ){
        usage(argv[0]);
        continue;
      }
      if( !isdigit(argv[i][0]) ){
        fprintf(stderr, "%s: unknown option: [%s]\n", argv[0], argv[i]);
        continue;
      }
      iStart = strtol(argv[i], &zLeft, 0);
      if( zLeft && strcmp(zLeft,"..end")==0 ){
Changes to tool/showwal.c.
14
15
16
17
18
19
20



























































21
22
23
24
25
26
27
static int pagesize = 1024;     /* Size of a database page */
static int fd = -1;             /* File descriptor for reading the WAL file */
static int mxFrame = 0;         /* Last frame */
static int perLine = 16;        /* HEX elements to print per line */

typedef long long int i64;      /* Datatype for 64-bit integers */





























































/*
** Convert the var-int format into i64.  Return the number of bytes
** in the var-int.  Write the var-int value into *pVal.
*/
static int decodeVarint(const unsigned char *z, i64 *pVal){
  i64 v = 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
static int pagesize = 1024;     /* Size of a database page */
static int fd = -1;             /* File descriptor for reading the WAL file */
static int mxFrame = 0;         /* Last frame */
static int perLine = 16;        /* HEX elements to print per line */

typedef long long int i64;      /* Datatype for 64-bit integers */

/* Information for computing the checksum */
typedef struct Cksum Cksum;
struct Cksum {
  int bSwap;           /* True to do byte swapping on 32-bit words */
  unsigned s0, s1;     /* Current checksum value */
};

/*
** extract a 32-bit big-endian integer
*/
static unsigned int getInt32(const unsigned char *a){
  unsigned int x = (a[0]<<24) + (a[1]<<16) + (a[2]<<8) + a[3];
  return x;
}

/*
** Swap bytes on a 32-bit unsigned integer
*/
static unsigned int swab32(unsigned int x){
  return (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)
         + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24);
}

/* Extend the checksum.  Reinitialize the checksum if bInit is true.
*/
static void extendCksum(
  Cksum *pCksum,
  unsigned char *aData,
  unsigned int nByte,
  int bInit
){
  unsigned int *a32;
  if( bInit ){
    int a = 0;
    *((char*)&a) = 1;
    if( a==1 ){
      /* Host is little-endian */
      pCksum->bSwap = getInt32(aData)!=0x377f0682;
    }else{
      /* Host is big-endian */
      pCksum->bSwap = getInt32(aData)!=0x377f0683;
    }
    pCksum->s0 = 0;
    pCksum->s1 = 0;
  }
  a32 = (unsigned int*)aData;
  while( nByte>0 ){
    unsigned int x0 = a32[0];
    unsigned int x1 = a32[1];
    if( pCksum->bSwap ){
      x0 = swab32(x0);
      x1 = swab32(x1);
    }
    pCksum->s0 += x0 + pCksum->s1;
    pCksum->s1 += x1 + pCksum->s0;
    nByte -= 8;
    a32 += 2;
  }
}

/*
** Convert the var-int format into i64.  Return the number of bytes
** in the var-int.  Write the var-int value into *pVal.
*/
static int decodeVarint(const unsigned char *z, i64 *pVal){
  i64 v = 0;
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168
169




170
171
172
173
174
175
176
177


178





179
180
181
182
183
184
185
186
187




188
189
190
191
192
193
194
195
196








197
198














199


















































200






























201


202
203





204
205
206
207
208
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224



225
226
227
228
229
230
231
232











233
234
235
236
237
238
239
240





241
242
243
244



245
246
247
248
249







250
251
252
253
254
255
256
257
258
259
260
261
262
263










264
265
266


267
268









269
270






271
272
273
274
275
276
277
  print_decode_line(aData,16, 4, 1, "Checksum-1");
  print_decode_line(aData,20, 4, 1, "Checksum-2");
  print_byte_range(iStart+24, pagesize, aData+24, 0);
  free(aData);
}

/*
** extract a 32-bit big-endian integer
*/
static unsigned int getInt32(const unsigned char *a){
  unsigned int x = (a[0]<<24) + (a[1]<<16) + (a[2]<<8) + a[3];
  return x;
}

/*
** Print an entire page of content as hex
*/
static void print_oneline_frame(int iFrame){
  int iStart;
  unsigned char *aData;

  iStart = 32 + (iFrame-1)*(pagesize+24);
  aData = getContent(iStart, 24);




  fprintf(stdout, "Frame %4d: %6d %6d 0x%08x 0x%08x 0x%08x 0x%08x\n",
          iFrame, 
          getInt32(aData),
          getInt32(aData+4),
          getInt32(aData+8),
          getInt32(aData+12),
          getInt32(aData+16),
          getInt32(aData+20)


  );





  free(aData);
}

/*
** Decode the WAL header.
*/
static void print_wal_header(void){
  unsigned char *aData;
  aData = getContent(0, 32);




  printf("WAL Header:\n");
  print_decode_line(aData, 0, 4,1,"Magic.  0x377f0682 (le) or 0x377f0683 (be)");
  print_decode_line(aData, 4, 4, 0, "File format");
  print_decode_line(aData, 8, 4, 0, "Database page size");
  print_decode_line(aData, 12,4, 0, "Checkpoint sequence number");
  print_decode_line(aData, 16,4, 1, "Salt-1");
  print_decode_line(aData, 20,4, 1, "Salt-2");
  print_decode_line(aData, 24,4, 1, "Checksum-1");
  print_decode_line(aData, 28,4, 1, "Checksum-2");








  free(aData);
}

































































/*






























** Create a description for a single cell.


*/
static int describeCell(unsigned char cType, unsigned char *a, char **pzDesc){





  int i;
  int nDesc = 0;
  int n = 0;
  int leftChild;
  i64 nPayload;
  i64 rowid;

  static char zDesc[100];
  i = 0;
  if( cType<=5 ){
    leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3];
    a += 4;
    n += 4;
    sprintf(zDesc, "left-child: %d ", leftChild);
    nDesc = strlen(zDesc);
  }
  if( cType!=5 ){
    i = decodeVarint(a, &nPayload);
    a += i;
    n += i;
    sprintf(&zDesc[nDesc], "sz: %lld ", nPayload);
    nDesc += strlen(&zDesc[nDesc]);



  }
  if( cType==5 || cType==13 ){
    i = decodeVarint(a, &rowid);
    a += i;
    n += i;
    sprintf(&zDesc[nDesc], "rowid: %lld ", rowid);
    nDesc += strlen(&zDesc[nDesc]);
  }











  *pzDesc = zDesc;
  return n;
}

/*
** Decode a btree page
*/
static void decode_btree_page(unsigned char *a, int pgno, int hdrSize){





  const char *zType = "unknown";
  int nCell;
  int i;
  int iCellPtr;



  switch( a[0] ){
    case 2:  zType = "index interior node";  break;
    case 5:  zType = "table interior node";  break;
    case 10: zType = "index leaf";           break;
    case 13: zType = "table leaf";           break;







  }
  printf("Decode of btree page %d:\n", pgno);
  print_decode_line(a, 0, 1, 0, zType);
  print_decode_line(a, 1, 2, 0, "Offset to first freeblock");
  print_decode_line(a, 3, 2, 0, "Number of cells on this page");
  nCell = a[3]*256 + a[4];
  print_decode_line(a, 5, 2, 0, "Offset to cell content area");
  print_decode_line(a, 7, 1, 0, "Fragmented byte count");
  if( a[0]==2 || a[0]==5 ){
    print_decode_line(a, 8, 4, 0, "Right child");
    iCellPtr = 12;
  }else{
    iCellPtr = 8;
  }










  for(i=0; i<nCell; i++){
    int cofst = iCellPtr + i*2;
    char *zDesc;


    cofst = a[cofst]*256 + a[cofst+1];
    describeCell(a[0], &a[cofst-hdrSize], &zDesc);









    printf(" %03x: cell[%d] %s\n", cofst, i, zDesc);
  }






}

int main(int argc, char **argv){
  struct stat sbuf;
  unsigned char zPgSz[2];
  if( argc<2 ){
    fprintf(stderr,"Usage: %s FILENAME ?PAGE? ...\n", argv[0]);







<
<
<
<
<
<
|
<
<

|


>


>
>
>
>
|





<
|
>
>

>
>
>
>
>






|


>
>
>
>









>
>
>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>

|
>
>
>
>
>






>
|





|






|

>
>
>





|


>
>
>
>
>
>
>
>
>
>
>

|





|
>
>
>
>
>


|

>
>
>





>
>
>
>
>
>
>














>
>
>
>
>
>
>
>
>
>



>
>

|
>
>
>
>
>
>
>
>
>


>
>
>
>
>
>







207
208
209
210
211
212
213






214


215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
  print_decode_line(aData,16, 4, 1, "Checksum-1");
  print_decode_line(aData,20, 4, 1, "Checksum-2");
  print_byte_range(iStart+24, pagesize, aData+24, 0);
  free(aData);
}

/*






** Summarize a single frame on a single line.


*/
static void print_oneline_frame(int iFrame, Cksum *pCksum){
  int iStart;
  unsigned char *aData;
  unsigned int s0, s1;
  iStart = 32 + (iFrame-1)*(pagesize+24);
  aData = getContent(iStart, 24);
  extendCksum(pCksum, aData, 8, 0);
  extendCksum(pCksum, getContent(iStart+24, pagesize), pagesize, 0);
  s0 = getInt32(aData+16);
  s1 = getInt32(aData+20);
  fprintf(stdout, "Frame %4d: %6d %6d 0x%08x,%08x 0x%08x,%08x %s\n",
          iFrame, 
          getInt32(aData),
          getInt32(aData+4),
          getInt32(aData+8),
          getInt32(aData+12),

          s0,
          s1,
          (s0==pCksum->s0 && s1==pCksum->s1) ? "" : "cksum-fail"
  );

  /* Reset the checksum so that a single frame checksum failure will not
  ** cause all subsequent frames to also show a failure. */
  pCksum->s0 = s0;
  pCksum->s1 = s1;
  free(aData);
}

/*
** Decode the WAL header.
*/
static void print_wal_header(Cksum *pCksum){
  unsigned char *aData;
  aData = getContent(0, 32);
  if( pCksum ){
    extendCksum(pCksum, aData, 24, 1);
    printf("Checksum byte order: %s\n", pCksum->bSwap ? "swapped" : "native");
  }
  printf("WAL Header:\n");
  print_decode_line(aData, 0, 4,1,"Magic.  0x377f0682 (le) or 0x377f0683 (be)");
  print_decode_line(aData, 4, 4, 0, "File format");
  print_decode_line(aData, 8, 4, 0, "Database page size");
  print_decode_line(aData, 12,4, 0, "Checkpoint sequence number");
  print_decode_line(aData, 16,4, 1, "Salt-1");
  print_decode_line(aData, 20,4, 1, "Salt-2");
  print_decode_line(aData, 24,4, 1, "Checksum-1");
  print_decode_line(aData, 28,4, 1, "Checksum-2");
  if( pCksum ){
    if( pCksum->s0!=getInt32(aData+24) ){
      printf("**** cksum-1 mismatch: 0x%08x\n", pCksum->s0);
    }
    if( pCksum->s1!=getInt32(aData+28) ){
      printf("**** cksum-2 mismatch: 0x%08x\n", pCksum->s1);
    }
  }
  free(aData);
}
/*
** Describe cell content.
*/
static int describeContent(
  unsigned char *a,       /* Cell content */
  int nLocal,             /* Bytes in a[] */
  char *zDesc             /* Write description here */
){
  int nDesc = 0;
  int n, i, j;
  i64 x, v;
  const unsigned char *pData;
  const unsigned char *pLimit;
  char sep = ' ';

  pLimit = &a[nLocal];
  n = decodeVarint(a, &x);
  pData = &a[x];
  a += n;
  i = x - n;
  while( i>0 && pData<=pLimit ){
    n = decodeVarint(a, &x);
    a += n;
    i -= n;
    nLocal -= n;
    zDesc[0] = sep;
    sep = ',';
    nDesc++;
    zDesc++;
    if( x==0 ){
      sprintf(zDesc, "*");     /* NULL is a "*" */
    }else if( x>=1 && x<=6 ){
      v = (signed char)pData[0];
      pData++;
      switch( x ){
        case 6:  v = (v<<16) + (pData[0]<<8) + pData[1];  pData += 2;
        case 5:  v = (v<<16) + (pData[0]<<8) + pData[1];  pData += 2;
        case 4:  v = (v<<8) + pData[0];  pData++;
        case 3:  v = (v<<8) + pData[0];  pData++;
        case 2:  v = (v<<8) + pData[0];  pData++;
      }
      sprintf(zDesc, "%lld", v);
    }else if( x==7 ){
      sprintf(zDesc, "real");
      pData += 8;
    }else if( x==8 ){
      sprintf(zDesc, "0");
    }else if( x==9 ){
      sprintf(zDesc, "1");
    }else if( x>=12 ){
      int size = (x-12)/2;
      if( (x&1)==0 ){
        sprintf(zDesc, "blob(%d)", size);
      }else{
        sprintf(zDesc, "txt(%d)", size);
      }
      pData += size;
    }
    j = strlen(zDesc);
    zDesc += j;
    nDesc += j;
  }
  return nDesc;
}

/*
** Compute the local payload size given the total payload size and
** the page size.
*/
static int localPayload(i64 nPayload, char cType){
  int maxLocal;
  int minLocal;
  int surplus;
  int nLocal;
  if( cType==13 ){
    /* Table leaf */
    maxLocal = pagesize-35;
    minLocal = (pagesize-12)*32/255-23;
  }else{
    maxLocal = (pagesize-12)*64/255-23;
    minLocal = (pagesize-12)*32/255-23;
  }
  if( nPayload>maxLocal ){
    surplus = minLocal + (nPayload-minLocal)%(pagesize-4);
    if( surplus<=maxLocal ){
      nLocal = surplus;
    }else{
      nLocal = minLocal;
    }
  }else{
    nLocal = nPayload;
  }
  return nLocal;
}

/*
** Create a description for a single cell.
**
** The return value is the local cell size.
*/
static int describeCell(
  unsigned char cType,    /* Page type */
  unsigned char *a,       /* Cell content */
  int showCellContent,    /* Show cell content if true */
  char **pzDesc           /* Store description here */
){
  int i;
  int nDesc = 0;
  int n = 0;
  int leftChild;
  i64 nPayload;
  i64 rowid;
  int nLocal;
  static char zDesc[1000];
  i = 0;
  if( cType<=5 ){
    leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3];
    a += 4;
    n += 4;
    sprintf(zDesc, "lx: %d ", leftChild);
    nDesc = strlen(zDesc);
  }
  if( cType!=5 ){
    i = decodeVarint(a, &nPayload);
    a += i;
    n += i;
    sprintf(&zDesc[nDesc], "n: %lld ", nPayload);
    nDesc += strlen(&zDesc[nDesc]);
    nLocal = localPayload(nPayload, cType);
  }else{
    nPayload = nLocal = 0;
  }
  if( cType==5 || cType==13 ){
    i = decodeVarint(a, &rowid);
    a += i;
    n += i;
    sprintf(&zDesc[nDesc], "r: %lld ", rowid);
    nDesc += strlen(&zDesc[nDesc]);
  }
  if( nLocal<nPayload ){
    int ovfl;
    unsigned char *b = &a[nLocal];
    ovfl = ((b[0]*256 + b[1])*256 + b[2])*256 + b[3];
    sprintf(&zDesc[nDesc], "ov: %d ", ovfl);
    nDesc += strlen(&zDesc[nDesc]);
    n += 4;
  }
  if( showCellContent && cType!=5 ){
    nDesc += describeContent(a, nLocal, &zDesc[nDesc-1]);
  }
  *pzDesc = zDesc;
  return nLocal+n;
}

/*
** Decode a btree page
*/
static void decode_btree_page(
  unsigned char *a,   /* Content of the btree page to be decoded */
  int pgno,           /* Page number */
  int hdrSize,        /* Size of the page1-header in bytes */
  const char *zArgs   /* Flags to control formatting */
){
  const char *zType = "unknown";
  int nCell;
  int i, j;
  int iCellPtr;
  int showCellContent = 0;
  int showMap = 0;
  char *zMap = 0;
  switch( a[0] ){
    case 2:  zType = "index interior node";  break;
    case 5:  zType = "table interior node";  break;
    case 10: zType = "index leaf";           break;
    case 13: zType = "table leaf";           break;
  }
  while( zArgs[0] ){
    switch( zArgs[0] ){
      case 'c': showCellContent = 1;  break;
      case 'm': showMap = 1;          break;
    }
    zArgs++;
  }
  printf("Decode of btree page %d:\n", pgno);
  print_decode_line(a, 0, 1, 0, zType);
  print_decode_line(a, 1, 2, 0, "Offset to first freeblock");
  print_decode_line(a, 3, 2, 0, "Number of cells on this page");
  nCell = a[3]*256 + a[4];
  print_decode_line(a, 5, 2, 0, "Offset to cell content area");
  print_decode_line(a, 7, 1, 0, "Fragmented byte count");
  if( a[0]==2 || a[0]==5 ){
    print_decode_line(a, 8, 4, 0, "Right child");
    iCellPtr = 12;
  }else{
    iCellPtr = 8;
  }
  if( nCell>0 ){
    printf(" key: lx=left-child n=payload-size r=rowid\n");
  }
  if( showMap ){
    zMap = malloc(pagesize);
    memset(zMap, '.', pagesize);
    memset(zMap, '1', hdrSize);
    memset(&zMap[hdrSize], 'H', iCellPtr);
    memset(&zMap[hdrSize+iCellPtr], 'P', 2*nCell);
  }
  for(i=0; i<nCell; i++){
    int cofst = iCellPtr + i*2;
    char *zDesc;
    int n;

    cofst = a[cofst]*256 + a[cofst+1];
    n = describeCell(a[0], &a[cofst-hdrSize], showCellContent, &zDesc);
    if( showMap ){
      char zBuf[30];
      memset(&zMap[cofst], '*', n);
      zMap[cofst] = '[';
      zMap[cofst+n-1] = ']';
      sprintf(zBuf, "%d", i);
      j = strlen(zBuf);
      if( j<=n-2 ) memcpy(&zMap[cofst+1], zBuf, j);
    }
    printf(" %03x: cell[%d] %s\n", cofst, i, zDesc);
  }
  if( showMap ){
    for(i=0; i<pagesize; i+=64){
      printf(" %03x: %.64s\n", i, &zMap[i]);
    }
    free(zMap);
  }  
}

int main(int argc, char **argv){
  struct stat sbuf;
  unsigned char zPgSz[2];
  if( argc<2 ){
    fprintf(stderr,"Usage: %s FILENAME ?PAGE? ...\n", argv[0]);
294
295
296
297
298
299
300

301
302


303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344
    printf("file too small to be a WAL\n");
    return 0;
  }
  mxFrame = (sbuf.st_size - 32)/(pagesize + 24);
  printf("Available pages: 1..%d\n", mxFrame);
  if( argc==2 ){
    int i;

    print_wal_header();
    for(i=1; i<=mxFrame; i++) print_oneline_frame(i);


  }else{
    int i;
    for(i=2; i<argc; i++){
      int iStart, iEnd;
      char *zLeft;
      if( strcmp(argv[i], "header")==0 ){
        print_wal_header();
        continue;
      }
      if( !isdigit(argv[i][0]) ){
        fprintf(stderr, "%s: unknown option: [%s]\n", argv[0], argv[i]);
        continue;
      }
      iStart = strtol(argv[i], &zLeft, 0);
      if( zLeft && strcmp(zLeft,"..end")==0 ){
        iEnd = mxFrame;
      }else if( zLeft && zLeft[0]=='.' && zLeft[1]=='.' ){
        iEnd = strtol(&zLeft[2], 0, 0);
#if 0
      }else if( zLeft && zLeft[0]=='b' ){
        int ofst, nByte, hdrSize;
        unsigned char *a;
        if( iStart==1 ){

          ofst = hdrSize = 100;
          nByte = pagesize-100;
        }else{
          hdrSize = 0;
          ofst = (iStart-1)*pagesize;
          nByte = pagesize;
        }

        a = getContent(ofst, nByte);
        decode_btree_page(a, iStart, hdrSize);
        free(a);
        continue;
#endif
      }else{
        iEnd = iStart;
      }
      if( iStart<1 || iEnd<iStart || iEnd>mxFrame ){
        fprintf(stderr,
          "Page argument should be LOWER?..UPPER?.  Range 1 to %d\n",
          mxFrame);







>
|
|
>
>






|











<




>







>

|


<







526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

573
574
575
576
577
578
579
    printf("file too small to be a WAL\n");
    return 0;
  }
  mxFrame = (sbuf.st_size - 32)/(pagesize + 24);
  printf("Available pages: 1..%d\n", mxFrame);
  if( argc==2 ){
    int i;
    Cksum x;
    print_wal_header(&x);
    for(i=1; i<=mxFrame; i++){
      print_oneline_frame(i, &x);
    }
  }else{
    int i;
    for(i=2; i<argc; i++){
      int iStart, iEnd;
      char *zLeft;
      if( strcmp(argv[i], "header")==0 ){
        print_wal_header(0);
        continue;
      }
      if( !isdigit(argv[i][0]) ){
        fprintf(stderr, "%s: unknown option: [%s]\n", argv[0], argv[i]);
        continue;
      }
      iStart = strtol(argv[i], &zLeft, 0);
      if( zLeft && strcmp(zLeft,"..end")==0 ){
        iEnd = mxFrame;
      }else if( zLeft && zLeft[0]=='.' && zLeft[1]=='.' ){
        iEnd = strtol(&zLeft[2], 0, 0);

      }else if( zLeft && zLeft[0]=='b' ){
        int ofst, nByte, hdrSize;
        unsigned char *a;
        if( iStart==1 ){
          hdrSize = 100;
          ofst = hdrSize = 100;
          nByte = pagesize-100;
        }else{
          hdrSize = 0;
          ofst = (iStart-1)*pagesize;
          nByte = pagesize;
        }
        ofst = 32 + hdrSize + (iStart-1)*(pagesize+24) + 24;
        a = getContent(ofst, nByte);
        decode_btree_page(a, iStart, hdrSize, zLeft+1);
        free(a);
        continue;

      }else{
        iEnd = iStart;
      }
      if( iStart<1 || iEnd<iStart || iEnd>mxFrame ){
        fprintf(stderr,
          "Page argument should be LOWER?..UPPER?.  Range 1 to %d\n",
          mxFrame);